PSD-ASNR-P-CMTO-ZE-0050-10

SCC11-IV-4

Advanced EO system for the Japanese Small Satellite ASNARO

Shuhei Hikosaka, Tetsuo Fukunaga PASCO CORPORATION

> Toshiaki Ogawa NEC CORPORATION

Shoichiro Mihara Institute for Unmanned Space Experiment Free Flyer (USEF)

© PASCO CORPORATION 2011

Introduction

ASNARO Project						
ASNARO System						
Space Segment (USEF/NEC) -Spacecraft	Ground Segment (PASCO) - Datacenter - Ground Network - Integrated mobile station					

- ASNARO project is being promoted by the Ministry of Economy, Trade and Industry (METI) to develop Japanese first small EO satellite system (ASNARO System) and respond to demands from ASEAN nation.
- ASNARO system aims to provide the mission flexibility and product accuracy comparable to the large scale EO satellites.
- Space segment is being developed by USEF/NEC and Ground segment is being developed by PASCO
- Launch: Dec. 2012 by Dnepr

Configuration of ASNARO System

ASNARO spacecraft

	Item	Specification
Solar Paddle	Optical Sensor	Pan/Multi
	GSD	<0.5m/2m(Pan/Multi, from
	Swath	504km)
		10km
	Data	X-band 16QAM (Quadrature
	Transmission	Amplitude Modulation), App.
		800Mbps
	Mass Memory	>60 Scenes (Snap Shot mode)
	Size	
	Coverage	+/- 45deg (from Nadir)
Star	Orbit	Sun Synchronous Polar Orbit
Tracker	Altitude	504 km Nominal
	Inclination	97.4deg
OPS	Local Time	AM 11:00 at Descending Node
Cover /	Mass	<500kg
S band	Operational	>3 Years (5Years target)
Antenna X-band Antenna	Period	

Development Concept of Ground Segment

User oriented

• Global end-user can request a new acquisition with web service. Image products will be delivered within one hour after data acquisition.

High speed

• Cloud computed image processing with original tuned methods is performed. Level 1 product is generated within 1 minute after downlink start.

Automation

• From the user oriented ordering to final product delivery is fully automated. Number of the operators are only four persons.

Compact

 Drastic downsizing is realized by adapting virtualization of computing system, storage and network. Whole system can be stored in only one rack, except data storage.

Outline of the Data Center

Main Function

- Control and Monitoring of spacecraft
- Orbit Determination
- Acquisition Planning
- Image processing and archive
- Order handling and Distribution

Performance

Item	Specification		
Request Deadline	Nominal : Observation – (minus) 24h		
	Urgency : Uplink – (minus) 30min		
Acquisition Planning / TT&C	<15 minutes		
Orbit Determination	<3 m		
Time required for Delivery	online: 1 hour at earliest from Acquisition		
	Processing time :<1minute @L1b		
Archive capability	>200,000 Scenes(Snap Shot mode)		
Number of Operators	4 persons		

Functional diagram of the Data center

Outline of ASNARO Ground Network

Outline of the Integrated Mobile Station

Main Function

- TT&C and data reception
- Acquisition planning
- Image processing
- Spaceborne and Airborne data fusion
- Inbuilt power generation

Performance

Item	Specification		
G/T	13.7dB/K(S-band), 28db/K(X-band)		
Communication Corn	App. 1,250km in radius (with elevation 15deg)		
Antenna Diameter	4.6m		
Weight	<20t		
Dimension	Transportation position: 12m(L) x 2.5m(W) x 3.6m(H)		
	Operational position: 12m(L) x 4.7m(W) x 7m(H)		
Number of Operators	2 persons		
Deployment Time	< 2hours		

Illustration of Integrated Mobile Station

Combination of functions in Integrated Mobile Station

Function	Full Package	Mobile Disaster headquarter	Ground station & Processing Center	Small Satellite operation Center
TT&C and data reception	\checkmark	\checkmark	\checkmark	\checkmark
Control and Monitoring of spacecraft	\checkmark			\checkmark
Orbit Determination	\checkmark			\checkmark
Acquisition Planning	\checkmark	\checkmark	\checkmark	
Image processing	\checkmark	\checkmark	\checkmark	
Space borne and Airborne data fusion	\checkmark	\checkmark		
Inbuilt power generation	\checkmark	\checkmark	\checkmark	

Can be operational at any remote region

Innovative connectivity of the space and the ground segment

ASNARO system aims to provide the mission flexibility and product accuracy which are comparable to those of the large scale EO satellites.

The developed Innovative connectivity will improve acquisition capability, data delivery and product accuracy.

Improved acquisition capability

The ground segment will have improvements for the acquisition efficiency, chances and success rate

Improved data delivery

ASNARO spacecraft perform image acquisition and downlink separately to reduce the power consumption. The ground segment recover at this point to improve data delivery

Improved Product accuracy

To improve product accuracy, external information is used to perform correction processing in addition to orbit and attitude information from the satellite,

Conclusions

ASNARO project is an optical high resolution Earth imaging mission as a small satellite.

High performance functional layout of the Space Segment and Ground Segment is optimized and the total system is being built at the reduced costs.

ASNARO system will considerably facilitate the enlargement of space business in Japan and meet the growing Earth observation demands of the developing countries as well.

The whole concept is not only focusing for the satellite data distributions but also by providing total system including space and ground segments to the global market

Thank you for your attention

For discussion, Please visit our booth

Geospatial Services (Mapping)

Remote Sensing Survey System Engineering (GIS)

Ground Survey

Aerial Survey

- 3D Laser Measurement System
- Multi-line & Large Format Sensors
- Hyperspectral Sensor survey etc. Satellite Survey
- Optical Sensor's Survey
- SAR Sensor's Survey etc. Ground Survey
- Precise Land Surveying (GPS)
- Ground Control Monuments, etc.

© PASCO CORPORATION 2011

GIS Consultation

- GIS Implementation Planning
- Internet / WEB
- Integrated GIS / Corporate GIS
- Spatial Data Warehouse etc.
- **GIS Systems Development**
- Systems Design
- Prototype Development
- Application Development etc.
- GIS Software, data
- Integrated GIS System PasCAL
- GIS data, etc.

Consultation (including Environmental Survey)

Environment

- Heat Island Studies
- Forest Monitoring etc.
- **Disaster Management**
- Change Detection for Earthquakes
- Landslide Survey etc.

Agriculture

- Crop Identification
- Yield Estimation etc.

<u>Urban</u>

- Urban Planning
- Land Cover Mapping, etc.

PASCO's Sensing Technology

PASCO's Sensing Technology

PASCO owns world's most advanced sensing technology

