The Rise and Fall of the Capital Asset – An Investigation into the Aerospace Industry Dynamics and Emerging Small Satellite Missions

Logan, Utah 14 August 2006

Stanley O. Kennedy, Jr.

Sr. Program Manager

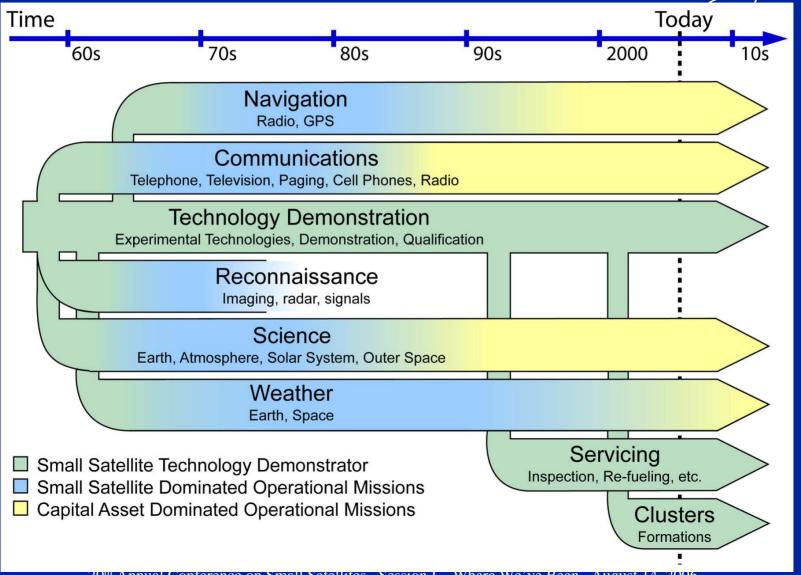
Lockheed Martin Space Systems Company

Dr. Todd Mosher
Sr. Program Manager
Lockheed Martin Space Systems Company

Quinn Young
Engineering Lead
Space Dynamics Lab

Premise

- Are Capital Assets Falling Out of Favor with Military, Civil, and Commercial Customers?
- Definition of the Capital Asset:
 - Multi-Purpose
 - > 1000 Kg
 - Long Duration (<5 years Mean-Mission Duration)
 - Highly Redundant (Class A)
- Conversely, are Capital Assets Being Replaced with Smaller, Shorter MMD, Spacecraft Focusing on Single Mission Functions at Reduced Cost and Complexity?


Brief Review

- Communications Satellites
 - Wide-Band Comm
 - Protected Comm
- Remote Sensing Satellites
 - Weather
 - EO/IR (Classified)
- Navigation
 - GPS Constellation
- Advent of the Capital Asset
 - Launch Vehicle Capabilities
 - Performance Push
 - Customer RequirementsPull

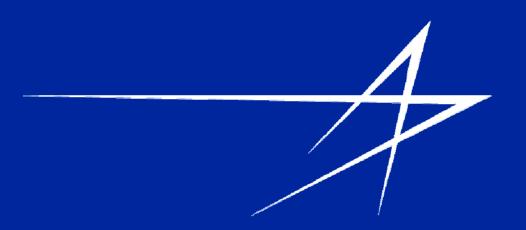
Mission Area	Launch Dates	Wet Mass (kg)
Wide-Band Comm. DSCS I (IDSCS) DSCS II DSCS III Wideband Gapfiller	1966-1968 1971-1989 1982-2003 ~2006-	45 520-611 2615 ~4500
Protected Comm. Milstar, Block I Milstar, Block II Advanced EHF	1994-1995 1999-2003 ~2006-	est. ~4500 ~4500 ~4100
Navigation GPS Block 1 GPS Block 2 GPS Block 2A GPS Block 2R GPS Block 2RM	1978-1985 1989-1990 1990-1997 1997-2004 2005-2007	770 1665 1816 2032 2032
Weather DMSP1 DMSP2 DMSP3 DMSP4 DMSP5A DMSP5B/C DMSP5D NPP NPOESS	1962 1964 1965-1966 1966-1969 1970-1971 1971-1976 1976- est. 2008 est. 2010	91 130 150 125 195 195 450-830 2000 est. >2000

Qualitative Mission Area Growth

Small Satellite Market Growth

- Mission Needs
 - Cost Constrained
 - Proof-of-Concept
 - Advanced Technology Demonstrators
- Technology Driven
 - Electronics
 - Miniaturization
 - Moore's Law
- Time to Market
- Obsolesces
- Customer Desires
 - Response to Asymmetric Needs
 - Emerging Mission Areas
 - Space Situational Awareness (SSA)
 - Space Control
 - NASA Space Exploration
 - Moon/Mars/Deep Space

The Crossroads


- Capital Asset and Small Satellite Co-Existence
- Complementary Missions
 - Servicing Missions
 - Adjunct/Support Payload Missions
- Space Threat Assessment
 - Space System Vulnerabilities
 - Space Force Protection
- Technology Demonstrators
 - Driven by Lower Cost Launch Options
 - Operationally Responsive Space
 - Operational Responsive Space Lift

Conclusions

- The Fall Has Not Occurred
 - Capital Assets Continue to Grow
- Indications Show that Small Sats Can and Will Play a Role in Supporting Important Mission Areas
 - Complementary Rather than Alternatively
 - New Missions Can and Will Influence The Crossroads

The Authors Await the Future
Of Small Satellites With Anticipation

