SSC07-VI-4

Nano-JASMINE: A Small Infrared Astrometry Satellite

21st Annual AIAA/USU Conference on Small Satellites 14th/August/2007

Intelligent Space Systems Laboratory, University of Tokyo Nobutada Sako, Yoichi Hatsutori, Takashi Tanaka, Takaya Inamori, Shinichi Nakasuka

Nano-JASMINE Project

- Global infrared astrometry satellite developed by Intelligent Space Systems Laboratory, The University of Tokyo and National Astronomical Observatory of Japan.
- ISSL: New bus technology development
 NAO: Technical demonstrations of JASMINE
 To be launched in 2009 (TBD).

Astrometry

To measure following six parameters of stars
Position on the celestial globe
Distance (annual parallax)
Crossing velocity (proper motion)
Line of sight velocity

Observation Method[1]

- The satellite has two fields of view in 99.5 degree.
- The images are combined by a beam combiner and projected on a CCD.

Observation Method[2]

- The satellite spins to scan stars on a great circle.
- The spin axis changes its direction slowly and cover the entire sphere over half year.

Nano-JASMINE Missions

- Astrometry data acquisition
- Demonstration of a beam combiner
- Demonstration of a newly developed CCD
- Demonstration of precise attitude and thermal control
- Integrated satellite simulator development

Astrometry data acquisition

- Nano-JASMINE will be the second astrometry satellite after HIPPRCOS by ESA.
- 3 [mas] measurement accuracy at 7.5 magnitude stars.

Demonstration of a Beam Combiner

- This component guarantees measurement accuracy.
- Surface accuracy and angle stability is the point.

The beam combiner part (EM)

Demonstration of a Newly Developed CCD

New image detector for JASMINE Full depleted CCD Z band (0.9µm) Used in time delayed integration (TDI) mode

TDI Mode

- TDI is used for suppression of read out noise and continuous observation.
- Output isn't a one shot image but column data is continuously generated.

Demonstration of Precise Attitude and Thermal Control

 Precise control is required to catch up with large satellite achievement.
 1[arcsecond] attitude control
 1[mK] thermal control

Integrated Satellite Simulator Development

Satellite simulator to confirm design feasibility.
 CCD output by calculating one photon behavior from a star.
 Satellite attitude dynamics.

Design transfer tool for JASMINE project.

Development environment

CCD output

Satellite Specifications

Mission Infrared Astrometry

Size 50[cm cubic]

Mass 14[kg]

without separation mechanism

Attitude Control Three axis stabilization

Communication S-band/100[kbps]

Mission Life Two [years]

Orbit Sun-synchronous Orbit

Functional Block Diagram

Mission Sequence

Telescope

Telescope is developed by NAO.

specification

Beam combiner

Main Mirror(φ5cm)

Telescope Type	Korsch
Diameter	5[cm]
Focal Length	1.66[m]
Detector	z-band:1K× 1K
Num of Detector	1
1pixel size	15[µ m]
FOV	0.53[°]×0.53[°]
Airy Disk	4[pixels]
Mirror Material	Aluminium
Structure Material	Aluminium
Exposure Time	8.8[s]

Engineering Model

Attitude Control Requirements[1]

Short period stabilization

- CCD image blur prevention.
- 1[pixel] disturbance per detector transit time 8.8[sec]: It is equivalent to 740[mas] / 8.8[sec].

Middle period stabilization

- The spin axis follows the orbit rotation and scans the celestial sphere.
- 0.05[deg] per orbit period 100[min].

Long period stabilization

- □ The spin axis precession maneuver to improve measurement.
- □ 10[deg] per few days.

Attitude Control Requirements[2]

The short term stabilization requirement is strict for current nano-satellite technology.

Attitude Control Technology[1]

- Customize FOG for about 3 [arcsec] measurement.
- Magnetic shield against residual magnetic moment.

Prototype FOG

Attitude Control Technology[2] Telescope output is used as a fine attitude sensor.

□ Point spread function distortion is measured.

Evaluation by using the simulator

Thermal Control Requirements

Beam combiner angle stability □1[mas] per two orbit periods. $\Box \rightarrow 1$ [mK] temperature stability. Telescope frame temperature \Box 1[K] for focus. CCD unit -50[°C] or lower for infrared detection.

Thermal Control

- Orbit uncertainty is the hurdle.
- Telescope part is thermally isolated from the other area.

FEM Analysis

Temperature change is calculated by FEM.STM test is also planned.

Ground Station

ISSL station (under construction)

Mizusawa station

Schedule

Date	Events
Apr./ 2003	First meeting between NAO and ISSL Small astrometry satellite is examined.
2003	50kg class infrared astrometry satellite "ASAGAO" conceptual design
2004	10kg class infrared astrometry satellite "Nano-Jasmine" conceptual design
Apr./ 2005	Nano-JASMINE is authorized as a project
Sep./ 2005	Prototype of satellite simulator
Nov./ 2006	PDR
2009	Launch of Nano-JASMINE (TBD)
2011	End of obeservation (TBD)
2014	Launch of JASMINE

Conclusions

 Nano-JASMINE, a small infrared global astrometry satellite, is developed by ISSL/UT and NAO.

It is small but have enough ability for current space science.

Thank you very much.

- Contact point
 - □ jasmine@space.t.u-tokyo.ac.jp
- WEB site
 - http://www.space.t.u-tokyo.ac.jp

