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Abstract

Correcting Errors Due to Species Correlations in the Marginal Probability Density

Evolution Algorithm

by

Abiezer Tejeda, Master of Science

Utah State University, 2013

Major Professor: Dr. Chris Winstead
Department: Electrical and Computer Engineering

Synthetic biology is an emerging field that integrates and applies engineering design

methods to biological systems. Its aim is to make biology an “engineerable” science. Over

the years, biologists and engineers alike have abstracted biological systems into functional

models that behave similarly to electric circuits, thus the creation of the subfield of genetic

circuits. Mathematical models have been devised to simulate the behavior of genetic circuits

in silico. Most models can be classified into deterministic and stochastic models. The work

in this dissertation is for stochastic models.

Although ordinary differential equation (ODE) models are generally amenable to simu-

late genetic circuits, they wrongly assume that a system’s chemical species vary continuously

and deterministically, thus making erroneous predictions when applied to highly stochastic

systems. Stochastic methods have been created to take into account the variability, un-

predictability, and discrete nature of molecular populations. The most popular stochastic

method is the stochastic simulation algorithm (SSA). These methods provide a single path

of the overall pool of possible system’s behavior. A common practice is to take several inde-

pendent SSA simulations and take the average of the aggregate. This approach can perform
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well in low noise systems. However, it produces incorrect results when applied to networks

that can take multiple modes or that are highly stochastic.

Incremental SSA or iSSA is a set of algorithms that have been created to obtain ag-

gregate information from multiple SSA runs. The marginal probability density evolution

(MPDE) algorithm is a subset of iSSA which seeks to reveal the most likely “qualitative”

behavior of a genetic circuit by providing a marginal probability function or statistical enve-

lope for every species in the system, under the appropriate conditions. MPDE assumes that

species are statistically independent given the rest of the system. This assumption is satisfied

by some systems. However, most of the interesting biological systems, both synthetic and in

nature, have correlated species forming conservation laws. Species correlation imposes con-

straints in the system that are broken by MPDE. This work seeks to devise a mathematical

method and algorithm to correct conservation constraints errors in MPDE. Furthermore, it

aims to identify these constraints a priori and efficiently deliver a trustworthy result faithful

to the true behavior of the system.

(90 pages)



v

Public Abstract

Correcting Errors Due to Species Correlations in the Marginal Probability Density

Evolution Algorithm

by

Abiezer Tejeda, Master of Science

Utah State University, 2013

Major Professor: Dr. Chris Winstead
Department: Electrical and Computer Engineering

Synthetic biology is a fairly new science which is concerned about making biology easy

to engineer. It combines concepts from engineering and biology to try to design, simulate,

predict, and build synthetic living systems. In order to make this possible, computer-aided

design (CAD) tools are needed by designers to help design and simulate the system before

it is built in the lab. Over the years several distinct mathematical methods have been

created to model and simulate the behavior of biochemical networks. Ordinary differential

equations are among the oldest of these methods. Although differential equations have

been successfully applied to simple systems, they make erroneous assumptions that fail

to produce the correct results when applied to highly variable systems. For this reason,

stochastic models have been created to take into account the randomness or variability of

biochemical networks. The most popular of the stochastic models is commonly known as

Stochastic Simulation Algorithm (SSA). SSA can show a single path or result from the many

possible solutions or behaviors the system can take. In order to figure out what is the most

likely solution, researchers take multiple independent runs of SSA and take the average.

This technique can yield correct results only for systems that are not highly stochastic but

the technique fails when applied to highly random systems. For this reason the marginal
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probability density evolution (MPDE) algorithm was created to deliver a trustworthy and

robust result of the expected behavior of the system. Although MPDE works for many

simple models, it also has its limitations. MPDE fails when applied to systems that exhibit

conservation constraints. Conservation constraints are mathematical laws that are imposed

to the system. For instance, a conservation law might be that the sum of the molecules of

two biological species must remain constant at all times. This work seeks to refine MPDE by

creating an algorithm to take into account conservation laws present in the genetic circuit

model. A refined version of MPDE will be able to simulate a wider array of interesting

biological models while producing correct and robust results close to those observed in the

lab or in nature.
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Chapter 1

Introduction

Synthetic biology is an emerging science concerned about new ways to engineer bio-

logical systems. The subfield of genetic circuits consists of methods and tools for designing

functional behavior in organisms by inserting exogenous genetic instructions. One major

area of research for genetic circuits is to analyze and predict the behavior of synthetic gene

networks by means of computational tools [1]. However, the randomness of these circuits

makes in silico analysis cumbersome [2]. Moreover, due to complex protein interactions

and stochastic events, it is difficult to establish truly modular functional models for genetic

parts.

Mathematical models have been created to characterize, predict, and modify the be-

havior of genetically engineered networks. Chemical reaction networks can be transformed

into a set of first order differential equations (ODEs). Although ODE models are generally

amenable to modular descriptions, they wrongly assume that a system’s chemical species

vary deterministically and continuously, which often results in erroneous states [3]. Hence,

ODE models can make incorrect predictions when applied to highly stochastic systems, thus

requiring stochastic analysis for accurate and robust design of genetic circuits.

To arrive at a modular approach to stochastic genetic circuits, some researchers propose

using probability-transfer models [4]. Probabilistic models show some promise for modular

synthesis strategies in the forward design of genetic circuits. Nguyen et al. recently demon-

strated a modular probabilistic approach for synthesizing a “quorum trigger” circuit [5]. In

this example, the probabilistic model provided three main benefits: (1) Intuitive abstract

behavioral models of the circuit’s genetic components; (2) A coherent procedure for forward-

design based on modular logic parts; and (3) A framework for estimating the reliability of

the synthesized function.
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There are two basic questions researchers ask when analyzing biochemical reaction

systems. First, what is the typical behavior of the system? Second, how robust or how

confident can one be of that behavior? These are very important questions when designing

synthetic biological networks. The designer is interested in matching the intended behavior

with the actual system’s behavior. Popular stochastic simulation algorithms (SSA), such

as Gillespie’s SSA [6, 7] and τ -leaping [7, 8], provide a single path of the possible system’s

behavior. In highly stochastic genetic circuits this typical behavior may be concealed by

transient “noise.”

It is a common practice to execute several independent simulation runs and compute the

average over all time to understand the typical behavior of the system. An envelope is then

calculated in the form x̄±σ, where x̄ and σ are the average and standard deviation vectors,

respectively, computed over N SSA runs. The average, x̄, is considered to be the system’s

typical behavior, while the standard deviation, σ, is a confidence envelope indicating how

the system can deviate from the expected behavior.

The method of averaging performs well in low noise systems. However, most interesting

genetic circuits are highly stochastic and/or multi-stable, for which this method produces

an incorrect result. For instance, consider the lambda phage bistable switch [9, 10]. This

system can take two possible states. Assuming half of the runs fall into state 1 and half of

the runs fall into state 2, taking the average over all time would yield a fictitious “middle”

state that conceals the true behavior of the system.

In order to obtain aggregate information from multiple SSA runs, the iSSA method

was proposed by Winstead et al. [11]. In iSSA, N independent SSA runs are simulated

over a short time interval. Statistics are then gathered at the end of the time interval. A

new state is computed from those statistics and the algorithm is repeated for another time

increment until the simulation time is reached. iSSA can choose one of several methods to

compute the statistics. This work focuses in only one of the iSSA methods known as iSSA-

MPDE or MPDE for short, meaning Marginal Probability Density Evolution [11]. MPDE

allows the use of different SSA methods such as τ -leaping, Gibson-Brucks, etc. under certain
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conditions.

The aim of MPDE is to provide an alternative approach that can reveal the statistical

envelope for every species in the system, under the appropriate conditions. MPDE approxi-

mates chemical species as a set independent Gaussian random variables. At the start of each

SSA run, the initial molecule count of each species is computed using each species’ marginal

Gaussian distribution. When all N SSA runs are terminated, the marginal distributions are

estimated by computing the mean and variance of each species. MPDE follows the system’s

deviation as it evolves over time providing a confidence level of the system’s stochasticity

and robustness.

In its original presentation, MPDE relied on the assumption that, during a brief time-

interval, all species variations are pair-wise conditionally independent, given the system’s

total state. This assumption is not always accurate. In fact, some variables may be highly

dependent on each other, which may completely invalidate the simulation results. Previous

accounts of the MPDE method offered no means of testing for dependencies. This work

proposes a technique to identify some useful procedures for testing and resolving variable

dependencies in MPDE simulations.

The new approach introduces a Linear Gaussian Network (LGN) approximation during

brief time intervals of the stochastic simulation. A LGN considers the system as linear

for a very short interval of time as well as Gaussian distributed species. This approach

can be used to establish statistical independence among species in order to create modular

models. The approach can also be used to verify independence assumptions in circuits that

are synthesized from modular models.

In most cases, highly correlated species can be identified a priori by calculating conser-

vation constraints in the reaction network model. For the remaining independent variables,

it is helpful to approximate some, or all, of the system’s species as Gaussian-distributed

variables. Then, during a brief interval of time, the system may be treated as a LGN. Vari-

able dependencies appear as significant non-zero entries in an LGN’s information matrix,

which is computed as the pseudo-inverse of the covariance matrix. The information matrix
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can be computed periodically during simulation, and can be used to spot dependencies in

the reaction system (and hence to flag violations of modular independence assumptions).

In addition to the information matrix, dependencies among species of a reaction network

appear as linear relationships in the row space of the network stoichiometry matrix [12].

Stoichiometric analysis can allow us to identify conservation relations in the reaction model

even before simulation of the genetic circuit is initiated [13,14]. We propose the combination

of conservation constraints identification, as presented by Sauro and Ingalls [12], with MPDE

in such a way that conservation constraint failures are resolved.

Resolving conservation constraints in MPDE will make the algorithm more suitable

for simulating a wider array of interesting biological systems while providing true sample

trajectories and meaningful statistical analysis tools to the biological designer.

1.1 Contributions of Thesis

The first contribution of this thesis is the application of a systematic method to identify

correlated species within a biochemical model. Although this mathematical methods have

existed for hundreds of years, it is the first time they are used in iSSA-MPDE. The second

contribution is the creation of an algorithm that effectively partitions a biochemical net-

work into independent and dependent species. This partition is used to keep conservation

constraints intact during simulation. In addition to conservation constraints, other subtle

types of correlations may appear in a reaction network. A covariance matrix or information

matrix can be used to spot those correlations and Principal Component Analysis (PCA)

can be used to correct those. Finally, the major contribution of this work is a refined, more

robust overall MPDE algorithm that can operate on a wider array of interesting biological

systems.

These contributions can be summarized as follows:

• Conservation constraints resolution in MPDE;

• Systematic method to pinpoint correlated species withing a chemical network;
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• Run time verification of other subtle types of correlations by using a covariance or

information matrix within MPDE.

1.2 Overview of Thesis

This thesis is organized as follows: Chapter 2 presents the reader with the foundations

and building blocks necessary to have a rudimentary understanding of synthetic biology and

genetic circuits modeling. This chapter introduces basic theory of chemical reactions, cell

composition and the central dogma, a brief introduction to synthetic biolgy, and modeling

and construction of genetic circuits. Chapter 3 explains the most used mathematical meth-

ods to simulate genetic circuits such as ordinary differential equations (ODEs) and some

stochastic methods as well. Chapter 4 explains the new stochastic simulation method called

marginal probability density evolution (MPDE) and shows how species correlation (variable

dependencies) can be resolved using conservation constraints analysis. Chapter 5 presents

the results found by this investigation while Chapter 6 finalizes with a discussion of the

results and methods used in this work.
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Chapter 2

Background

This chapter introduces the basic concepts in biology and biochemistry required to

understand synthetic biology and genetic circuits. It is organized as follows: Section 2.1 gives

an overview of chemical reactions. Section 2.2 presents the basics of synthetic biology, while

genetic circuits are described in Section 2.3. Section 2.4 presents an overview genetic circuits

modeling techniques and, finally, Section 2.5 briefly describes the process of manufacturing

genetic circuits and the registry of standard biological parts (BioBricks).

2.1 Chemical Reactions

A chemical reaction is the process by which two or more substances, called reactants,

are converted into one or more different substances, called the products. At the most basic

level, chemical reactions combine atoms, the basic building blocks for all matter (living or

not), to form molecules and these molecules can also be combined to form more complex

compounds. There are three different types of atomic bonds: covalent, ionic, and hydrogen

bonds.

Chemical equations are used to represent chemical reactions mathematically or graphi-

cally. For instance, Equation (2.1) is a simple chemical equation for the formation of water.

H2, O2, and H2O are referred to as the chemical species, where H2 and O2 are the reactants

or substrates and H2O is the product. The subscripts in H2 and O2 indicate that the hy-

drogen and oxygen molecules are composed of two atoms of the same type. The coefficients

in front of the hydrogen (H2), oxygen (O2), and water (H2O) molecules are referred to as

the stoichiometry of the reaction, indicating that two hydrogen molecules or dimers and one

oxygen dimer are used to produce two water molecules. Due to the conservation of matter,

the numbers along each side of the equation must be equal.
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2H2 +O2
k→ 2H2O (2.1)

The k above the arrow in Equation (2.1) is called the rate constant. This value is

a measure of how fast this reaction can occur. In practice this value is very difficult to

determine exactly for biochemical reactions. Nonetheless, it is used in several of the modeling

techniques that will be addressed in this work. In chemistry, the law of mass action explains

and predicts behaviors in the dynamic equilibrium of chemical reactions. One aspect of this

law concerns the kinetics of biochemical reactions, also called rate equations. This law states

that the rate of a reaction is determined by the rate constant and the molecule concentrations

of reactants raised to the power of their stoichiometry [3]. The rate equation corresponding

to Equation (2.1) is shown in Equation (2.2), where [H2] and [O2] refer to the concentrations

of hydrogen and oxygen, respectively. The 2 in front of the k means that two molecules of

water are formed for every reaction that occurs.

d[H2O]

dt
= 2k[H2]

2[O2] (2.2)

Chemical reactions can be divided into different groups according to the type of the

reaction. In this work only the most simple form of chemical reactions is considered: ele-

mentary reactions. An elementary reaction is the smallest division into which a chemical

reaction can be decomposed. There are no intermediate products in an elementary reaction.

Usually one or two molecules are involved, since the probability for three or more molecules

colliding at the same time is very unlikely. The most important types of elementary reactions

are unimolecular and bimolecular reactions. Only one molecule is involved in unimolecular

reactions while only two molecules participate in bimolecular reactions. These reactions can

be either synthesis, where two simple reactants combine to form a more complex molecule,

or decomposition, where a complex substance breaks down into its component molecules.

The general form of synthesis and decomposition reactions are shown in Equations (2.3) and

(2.4), respectively.
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A+B → AB (2.3)

AB → A+B (2.4)

2.1.1 DNA Replication

All genetic information is encoded by molecules called nucleic acids. There are two

types of nucleic acids: deoxyribonucleic acid or DNA and ribonucleic acid or RNA. Both

DNA and RNA contain multiple genes that encode and carry genetic information. DNA

molecules contain the copy of the cell’s genome and can carry thousands of genes to transmit

this information. In contrast, RNA molecules are shorter and are used to transport genetic

information to the cell machinery carrying only one or a few genes. DNA and RNA are

made of smaller subunits called nucleotides. There are four different types of nucleotides

in each nucleic acid and their arrangement determines the genetic information. Nucleotides

corresponding to DNA and RNA are called A, G, C, T and A, G, C, U, respectively.

Genetic information is passed from parents to children by means of parental DNA repli-

cation. DNA replication is the process by which a cell’s genome is duplicated. Though

it might seem simple, replication is a complex process that involves several specialized

molecules and proteins. However, DNA replication can be described as two distinct stages:

first, the two strands of parental DNA are separated; the second stage consists of making

new copies using the two single strands as templates [15].

In the first step of DNA replication, helicase, a special protein, unwinds the DNA

double helix. Next, DNA polimerase, an enzyme that helps in DNA synthesis, binds to

one strand of DNA and begins to copy in the 3’ to 5’ direction. The synthesized single-

stranded DNA is called the leading strand and is used for reforming the DNA double helix.

A second DNA polymerase is used to copy the other DNA strand from 5’ to 3’, which is the

direction in which DNA synthesis can only occur. Discontinuous segments of DNA called

okazaki fragments are synthesized by this second molecule and DNA ligase, another enzyme,
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stitches these fragments together into the lagging strand as shown in Figure 2.1.

2.1.2 Central Dogma: On Protein Synthesis

The central dogma or doctrine of the triad states that once genetic information has

been transformed into a protein, it cannot be converted back into its original state. That

is, the transfer of information from nucleic acid to nucleic acid or nucleic acid to protein is

possible, but conversion from protein to protein or protein to nucleic acid is impossible [16].

In other words, DNA can be synthesized from itself, RNA can also be synthesized from both

DNA and itself, and protein can be synthesized from DNA and RNA. However, protein can

never be converted back into DNA or RNA. This process is illustrated in Figure 2.2 and

Figure 2.3.

Synthesis of RNA from DNA occurs through a process called transcription. This process

is akin to DNA replication in that double-stranded DNA is unwound and single strands are

used as templates to produce RNA. The main enzyme that directs transcription is RNA

polymerase or RNAP. To start transcription, RNAP recognizes and binds to a specific site

in the beginning sequence of a gene called promoter. A promoter sequence is found on one

strand of DNA and indicates RNAP where to start transcription and in which direction it

should synthesize. Then, RNAP unwinds the double-stranded DNA and starts synthesis of

messenger RNA, mRNA, in a unidirectional manner. mRNA is also known as antisense or

template strand as it is a single strand complementary to one of the strands of DNA. The

other strand is known as the coding strand. Transcription terminates when RNAP reaches

a region known as the termination region. This process is done in two steps: first, the newly

formed mRNA is released from RNAP and, second, RNAP itself disengages from DNA.

Transcription factors are proteins that either enhance or inhibit the ability of RNAP to

initiate transcription. A transcription factor binds to the operator site, a DNA sequence near

the promoter, to help RNAP bind to the promoter and activate transcription or block RNAP

from attaching to the promoter thus inhibiting the initiation of transcription. Transcription

factors that enhance the ability of RNAP to bind to the promoter are called activators and

those that preclude it are known as repressors. Put in other way, an activator “turns on”
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Fig. 2.1: An overview of DNA replication (Courtesy of the National Center for Biotechnology
Information).

DNA RNA Protein

Fig. 2.2: Illustration of protein synthesis flow as stated by the doctrine of the triad or central
dogma. The flow of information follows the direction of the arrows.

Protein

RNA

DNA

Fig. 2.3: Picture illustrating how proteins cannot be converted back into DNA or RNA as
stated by the central dogma. The flow of information follows the direction of the arrows.
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transcription and a repressor “turns off” gene expression. When transcription is terminated,

protein synthesis starts by the process of translation.

Translation involves three important steps: initiation, elongation, and termination.

Each tRNA molecule has two sites called acceptor site and anti-codon site. The acceptor

site binds a particular triplet of nucleotides called codon and the anti-codon site binds a

sequence of three unpaired nucleotides called anti-codon. The codon that signals initiation of

translation is ATG which codes for the amino acid methionine. Not every protein starts with

methionine, though, since this amino acid is oftentimes removed in protein post-processing.

Next, elongation begins when a tRNA charged with methionine binds to the translation

start codon and the large subunit binds to both mRNA and the small subunit.

After elongation starts, ribosomes shift the first methionine charged tRNA from the A

site to the P site. The A site is occupied by a new charged tRNA molecule corresponding

to the codons of the mRNA and the two amino acids form a bond. The first tRNA is

released and ribosomes shift again so that the P site contains a tRNA with two amino acids.

A new charged tRNA binds to the A site and elongation continues on until a stop signal,

called stop codon, is reached. When the stop codon is found, the ribosome breaks apart

into its large and small subunits thus releasing both the new protein as well as the mRNA.

This new protein is then ready to undergo post-translational modification. The process of

transcription and translation is depicted in Figure 2.4.

2.2 Synthetic Biology

Scientists have been modifying biological organisms for many years. In the 1970s, a

new engineering discipline was introduced: genetic engineering, which permits the mod-

ification of an organism’s DNA or genome using recombinant DNA technology. In 1972,

Paul Berg developed and described a method that allowed the combination of duplex DNA

molecules [17]. Berg created the first recombinant DNA molecules when he combined DNA

from the monkey virus SV40 with that of the lambda phage virus. Despite the significant

advances genetic engineering has introduced in the biomedical sciences, biotechnology, and

key understanding of biological organisms, there are still limitations that have yet to be
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(a) Transcription

(b) Post−transcription

(c) Translation

RNA

mRNA

mRNARibosome

Active protein

Effector molecule

Protein folds
upon itself

Polypeptide

Nuclear

Membrane

DNA

Fig. 2.4: Illustration of protein synthesis depicting the process of transcription and transla-
tion along with post-translation processing. Double-stranded DNA is unwound and copied
to produce a single strand of RNA through the process of transcription. In post-transcription
processing, messenger RNA, or mRNA, is formed and transported out of the nuclear mem-
brane of the cell. Next, translation starts when ribosomes attach to mRNA to begin synthesis
of the polypeptide chain encoded in mRNA. This polypeptide chain folds upon itself to form
a protein that is active after an effector molecule binds to it.

overcome. Genetic engineering lacks the rigor of disciplines such as electrical engineering.

The emergent field of synthetic biology takes a step further from simple gene manipulations

to the construction of synthetic genomes or genetic circuits that can be inserted in organisms

to control cell behavior.

According to Drew Endy, professor at Stanford University, synthetic biology aims to

make biology easy to engineer. It accomplishes this goal by bringing together the expertise

of professionals from biology, chemistry, physics, and engineering [17]. Synthetic biology

also seeks to understand life, to introduce new functions in living organisms and make them

perform desired tasks, and ultimately, to build life from scratch. For over 30 years genetic

engineering has been based on the following three techniques:
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• Recombinant DNA - construction of artificial DNA through combinations;

• Polymerase Chain Reaction (PCR) - copy and amplification of DNA segments;

• DNA Sequencing - determining the order of nucleotides of a DNA segment.

As pointed out by Endy [18], synthetic biology extends genetic engineering by adding

the following three ideas:

• Standards - creation of repositories of parts and devices that can be easily assembled;

• Decoupling - division of complex problems into simpler problems to be worked inde-

pendently (i.e., separating design from construction);

• Abstraction - management of complexity by hiding information as depicted in Figure

2.5.

A useful way to explain this nascent field is by drawing an analogy with electrical

and computer engineering, as illustrated in Figure 2.6. Historically, electrical engineering

emerged from physics as electrical engineers were tinkering with circuits instead of studying

relativity or quantum mechanics. In the same way, synthetic biology has splintered off from

biology and bioengineering because instead of studying natural organisms, synthetic biolo-

gists are engineering new ones. This analogy goes beyond historical relationships, though.

In many ways synthetic biologists have based their field on electrical engineering and other

fields. Design of new behavior in biological organisms occurs at the top of the hierarchy in

Figure 2.6, but the implementation takes place from bottom up. The bottom layer of the hi-

erarchy is comprised of DNA, RNA, proteins, and metabolites such as lipids, carbohydrates,

amino acids, and nucleotides [19]. This layer is the counterpart to the physical layer of

resistors, capacitors, and transistors in electrical and computer engineering. The next layer

up is responsible for the regulation of information through biochemical reactions, equivalent

to logic gates in computer systems. Biological devices can then be assembled into modules

or complex pathways to function much like integrated circuits (IC) in computers. These

pathways can be interconnected and inserted in host cells to program their behavior like



14

Devices

Parts

DNA

Systems

Ring Oscillator

5’−TAATACGACTGGGAAGA−3’

Binding Proteins

Inverter

Fig. 2.5: Proposed abstraction hierarchy for the engineering of integrated biological systems.
In this figure “DNA” is the genetic material, “Parts” are specialized biological components
that perform certain functions, “devices” are combinations of “Parts,” and “Systems” are
any combinations of “Devices.” Each abstraction layer builds from the layer underneath it
except for that of “DNA.” Every layer hides detailed information of the layer below it to
make design easier for the engineer.

microcontrollers in a computer. In consequence, programmed cells can be made to function

together as a quorum to perform more sophisticated tasks similar to computer networks.

Synthetic biology promises great benefits for our society by potentially changing living

organisms in ways never seen before. However, as is the case with other disciplines, these

benefits do not come free of risks. Synthetic manipulation of biological systems can be

dangerous for human health and/or the environment [20]. For instance, DNA synthesis has

recently helped resurrect the 1918 influenza strain [21,22], and is also capable of producing

the smallpox virus from DNA sequence information available to the public [23]. In addition,

the development of this technology can be used by terrorists to fabricate bio-weapons to

attack populations. Clearly, safety regulations must be taken by government agencies around

the globe to ensure that the use of synthetic biology is confined as much as possible for the

development of products beneficial to any form of life of earth.

2.3 Genetic Circuits

DNA segments can be manipulated to bahave in logic ways and build programmed be-

havior in cellular networks. However, in order to program and rubustly control cell behavior
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Fig. 2.6: Analogy of hierarchy between synthetic biology and computer engineering. This
figure shows a conceptualization of the similarities between synthetic biology and computer
engineering. DNA, proteins and metabolites are put side-to-side with resistors, capacitors,
transistors, etc. Computing devices such as logic gates are compared to biochemical reac-
tions; modules and pathways, computers and cells, networks and cell populations describe
the close relationship these two fields share in common.

it is of utmost importance the creation of a library of well-defined components that serve

as the building blocks of more complex systems [24]. Several synthetic gene networks have

been designed and embedded in living matter such as toggle switches, logic gates, pattern-

forming circuits, oscillators, cellular sensors, and cell-to-cell communication systems [25].

When correctly assembled, certain genetic elements can be configured to implement logic

gates and circuits where chemical concentrations of DNA proteins and inducer molecules are

the input/output signals as opposed to a stream of ones and zeros. In this section common

logic gates are presented to serve as a basic description of simple genetic circuits.

2.3.1 Genetic Inverter

The simplest logic gate is the inverter. An example of the biochemical inverter is

illustrated in Figure 2.7. Here, the input signal is the TetR protein and the output is

the green fluorescent protein, GFP, shown schematically in Figure 2.7(a). The presence or

absence of TetR determines the two possible output states as shown in Figure 2.7(c). If

TetR is present, then GFP production is repressed. On the other hand, if TetR is absent,

GFP is transcribed and thus seen at the output of the inverter. Figure 2.7(b) shows the
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genetic schematic of this device.

When an odd number of inverters are connected in cascade they form an oscillator,

as shown in Figure 2.8(a). Oscillators are commonly used to synchronize the behavior

of a group of cells. For instance, circadian rhythms vary the concentrations of proteins

periodically within a cell [3]. The mechanisms that control the oscillations are unknown

to date. However, Elowitz and Leibler constructed the circuit in Figure 2.8(b) which they

called the repressilator, showing oscillatory fluorescent intensity [26].

2.3.2 Genetic NAND

Another widely used combinational logic gate is the NAND gate. This particular gate is

known as the universal gate because all other gates can be constructed with a set of NANDs.

Design and construction of the genetic NAND have been reported by several studies in the

literature [24, 27]. The schematic symbol used to represent the NAND gate is shown in

Figure 2.9(a). The two-input NAND gate consists of two separate inverters with different

inputs but with the same output, as illustrated in Figure 2.9(c). The output of the NAND

gate is always HIGH unless both input signals are present. This behavior is described by

the truth table in Figure 2.9(b).

2.3.3 Genetic Toggle Switch

A toggle switch is a circuit that exhibits two possible states. Also referred to as bistable

switch, the state of the genetic toggle switch can be either high or low. Gardner et al.

designed and constructed a synthetic, bistable gene-regulatory network in Escherichia coli,

���� ����
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GFPP1

TetR GFP
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1 0
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Fig. 2.7: Description of the genetic inverter: (a) schematic symbol, (b) genetic implementa-
tion, and (c) truth table.
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Fig. 2.8: Genetic ring oscillator. This oscillator is formed by cascading an odd number of
inverters: (a) Logic diagram, (b) Corresponding genetic implementation.
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Fig. 2.9: Genetic NAND gate: (a) Schematic symbol, (b) Truth table, (c) Genetic imple-
mentation.
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giving it the toggling behavior using two repressible promoters assembled in a mutually

inhibitory network [10], as shown in Figure 2.10.

2.4 Modeling Genetic Circuits

The purpose of research in systems/synthetic biology is basically to provide a wider

understanding about the behavior and workings of both natural and synthetic biological

systems [28]. Thorough knowledge of biological systems would translate into their successful

exploitation for agricultural, medical, energy, commercial, and other purposes. State of the

art technology in the biological sciences has allowed the construction of virtually any DNA

sequence. Nevertheless, prediction of the behavior of synthetic biological systems is not

easy to accomplish. Modeling the behavior of genetic circuits before they are synthesized

is an essential part synthetic biology. Similar to silicon chip fabrication, where modeling

tools are used to help guide design, genetic circuit fabrication can benefit from modeling

tools that can predict the dynamic characteristics of the behavior of proposed circuits [24].

The simulation tools can be used to design and verify functions of various circuit network

configurations, thus minimizing production time and effort as well as well as cost.

Reproduction of some properties displayed by a biological system is achieved by the

creation of mathematical and computational models that are then used to try to predict

their behavior. As outlined by Klipp et al. [28], the main reasons for modeling a biological

system include:

• Testing accuracy of the model. Does this model closely reflect known experimental

facts?

• Analysis of model to understand the parts of the system that contribute most to the

properties of interest.

• Hypothesis generation and testing to allow rapid analysis of the effects of manipulat-

ing experimental conditions in the model without performing complex and expensive

experiments.
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Fig. 2.10: Genetic toggle switch design. Repressor R1 represses transcription of promoter
Pr2 and is induced by Inducer 1. Repressor R2 inhibits transcription of promoter Pr1 and
is induced by Inducer 2. Green fluorescent protein (GFP) is used as the reporter protein.

• Testing and verifying what changes in the model would improve the consistency of its

behavior with the experimental observations.

In general, models are abstractions of reality represented using diagrams, laws, graphs,

plots, mathematical relationships, chemical formulae, and so on, that try to describe and

understand some external physical phenomena. In systems biology, models try to describe

the relationship between metabolites or signaling molecules that interact through chemical

reactions. These models are often composed of chemical reaction networks including math-

ematical equations describing the local behavior and the values of all parameters [29]. The

classical approach of modeling biochemical systems is by means of ordinary differential equa-

tions (ODE). In order to use ODEs one must know, first, the set of chemical reactions that

govern the system along with its effector molecules; second, the kinetic rate equations that

relate the rate of each reaction to the concentrations of its substrates, and finally, the pa-

rameterization of the model providing values for the parameters [29]. With this knowledge,

software tools can simulate and predict the time evolution of the system until it reaches a

steady state. This is accomplished by solving a system of ordinary differential equations to

which the system is recast.

Even though ODEs are well documented and easy to solve with several methods, there

are issues with this approach. First, ODE models assume that molecules in cell compart-

ments are well stirred and that the concentrations (number) of molecules is sufficiently large
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to ignore fluctuations. ODE models assume that the system varies continuously and de-

terministically, which is not true in the real scenario. Stochastic simulations are amenable

when the reactions in the system are considered to fire in a random manner as well a the

existence of a discrete number of molecules. Ordinary differential equation (ODE) models

and stochastic simulation methods will be discussed in depth in the following chapter.

2.5 BioBricks: Building Genetic Circuits

Development of standard components and processes has allowed mature engineering

disciplines to accomplish major advances. Synthetic biology can also benefit from the de-

velopment and implementation of standard components and practices. For this reason,

the BioBricks Foundation has been established to create a registry of standard biologi-

cal parts [30, 31]. These parts, commonly called BioBricks, include terminators, ribosome

binding sites, protein coding regions (i.e., genes), reporter genes, signaling parts, regulatory

sequences, gates, etc. A BioBrick illustration is shown in Figure 2.11(a). In order to be

functional, a BioBrick is inserted into a plamid DNA along with an antibiotic, as shown

in Figure 2.11(b). BioBricks can be assembled to form much more complex devices. The

assembly process is depicted in Figure 2.12. Each BioBrick has four domains: E and X

located upstream (before) the BioBrick, and S and P positioned after the BioBrick. The

first BioBrick, labeled upstream part in Figure 2.12, is cut with restriction enzymes that cut

domains E and S while the second BioBrick is cut at the E and X domains. The results are

then mixed and ligated (glued) into the destination plasmid, producing the final combined

BioBrick. More information on BioBrick standards, protocols, and assembly can be found

in parts registry website (http://www.partsregistry.org).
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Fig. 2.11: BioBrick examples.
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Fig. 2.12: Depiction of BioBrick assembly process. Courtesy of the BioBrick Foundation
http://www.partsregistry.org.
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Chapter 3

Math Methods and Algorithms for Simulation of Genetic

Circuits

After a model of a biological system has been constructed, it is often analyzed by

means of in silico (computer) simulations. The aim of computer aided simulations is to

make predictions of system behavior that has not yet been observed in a laboratory setting.

In silico simulations offer the benefit of unlimited controlability and observability allowing

the designer to gain deep insight about the biological system under consideration which

would be otherwise more difficult.

Different mathemcatical methods and computational algorithms have been developed

to analyze and simulate biological system models in silico. This chapter provides a brief

overview of the most relevant methods and algorithms utilized in genetic circuits modeling.

This chapter is organized as follows: Section 3.1 describes the classical chemical kinetics

ODE model and Section 3.2 presents several stochastics methods used to simulate biological

models.

3.1 Ordinary Differential Equation (ODE) Model

In 1864, Waage and Guldberg introduced the law of mass action, which was later trans-

lated by Abrash in 1986 [32]. As described in Section 2.1 on page 6, this law states that

the reaction rate is proportional to the concentration of reactants. Using the law of mass

action, a chemical reaction network can be translated into a system of ordinary differential

equations (ODE). These differential equations are commonly known as reaction rate equa-

tions. Traditional classical chemical kinetics (CCK) makes use of ODEs to represent system

dynamics. Since systems of ODEs are generally difficult to solve analytically, numerical

simulations are more than often used to determine the behavior of the chemical model.
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A CCK model follows the concentration of every species in the system. There are some

assumptions that must be satisfied in order for the CCK model to be valid. First, the CCK

model assumes that all reactions accur in a well-stirred volume. That is, the molecules are

evenly distributed. This assumption implies that spatial effects are neglected. Finally, the

CCK model assumes that reactions occur continuously and deterministically, meaning that

the number of molecules in the cell must be very large. These assumptions along with the

law of mass action are used to derive an ODE model that can describe the dynamics of

certain biochemical systems.

A chemical reaction system is composed of n chemical species {S1, ..., Sn} and m chem-

ical reaction channels {R1, ..., Rm}. Following the notation used by Myers [3], each reaction

can be written as

vr1jS1 + ...+ vrnjSn
kf
�
kr

vp1jS1 + ...+ vpnjSn, (3.1)

where vrij is the reactant stoichiometry coefficient for species Si in reaction Rj and vpij is

the product stoichiometry coefficient for species Si in reaction Rj . If species Si does not

participate in reaction Rj then the value of vrij or v
p
ij is zero. kf is the forward rate constant

while kr is the reverse rate constant. If reaction Rj is irreversible, then kr is 0.

The rate of a reaction Rj can be written mathematically as

Vj = kf

n∏
i=1

[Si]
vrij − kr

n∏
i=1

[Si]
vpij , (3.2)

where [Si] is the concentration of species Si. This equation is the mathematical representa-

tion of the law of mass action expressing that the rate of an irreversible (kr = 0) chemical

reaction is proportional to the product of the concentrations of the reactant molecules. If

the reaction is reversible, then the rate is also reduced by a value proportional to the product

of the concentrations of the product molecules. If the net change in species Si is denoted as

vij = vpij − vrij , then Equation (3.2) can be used to construct an ODE model as follows

d [Si]

dt
=

m∑
j=1

vijVj , 1 ≤ i ≤ n. (3.3)
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The ODE model in Equation (3.3) creates a differential equation for each species in the

reaction network as the sum of the rates of change of the species due to each reaction affecting

the species. Michaelis-Menten enzymatic reaction system [33] is a simple yet well-known

model that can be used as a working example. Figure 3.1(a) shows the chemical reaction

network for the Machaelis-Menten system. The corresponding reaction rate equations are

shown in Figure 3.1(b) and Figure 3.1(c) outlines the corresponding system of differential

equations (ODEs). A set of ODEs like that shown in Figure 3.1(c) is very hard if not

impossible to solve analytically. Several numerical methods can be used to approximate the

time evolution of such a sytem. The reader is advised to study methods such as the Euler’s

method, backward Euler method, Runge-Kutta, among others found in most college calculus

textbooks. Figure 3.2 shows the simulation results correspoding for the Michaelis-Menten

reaction network.

E + S
k1→ ES

ES
k−1→ E + S

ES
k2→ E + P

(a)

V1 = k1 [E] [S]

V2 = k−1 [ES]

V3 = k2 [ES]

(b)

d[E]

dt
= −k1[E][S] + (k−1 + k2)[ES]

d[S]

dt
= −k1[E][S] + k−1[ES]

d[ES]

dt
= k1[E][S]− (k−1 + k2)[ES]

d[P ]

dt
= k2[ES]

(c)

Fig. 3.1: Michaelis-Menten enzymatic reaction network ODE model. (a) Chemical reac-
tion network, (b) Reaction rates, and (c) ODE model for the Michaelis-Menten enzymatic
reaction system.
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Fig. 3.2: Michaelis-Menten ODE simulation results. All network parameters to produce this
results are outlined in Appendix A.1. This simulation was done using iBioSim, a CAD tool
under development by Dr. Chris Myers’ group at the University of Utah.

3.2 Stochastic Models

As was described in Section 3.1, a chemical reaction network can be written as a set of

first-order ordinary differential equations (ODEs). An ODE model is valid only under the

assumptions that molecule concentrations vary continuously and deterministically. However,

biochemical systems do not satisfy neither of these assumptions. In chemical systems formed

by living cells, there is a small number of molecules for each species. Thus, the system can

show a dynamical behavior that is discrete and stochastic as opposed to continuous and

deterministic [7, 34–36]. A chemical reaction is typically fired after two or more molecules

collide. Hence, anticipation of a chemical reaction is almost impossible to achieve unless one

is able to precisely track the position and velocity of the molecules. In consequence, stochas-

tic modeling methods are amenable and preferred to describe the dynamics of biochemical

systems.

The foundations of stochastic modeling start with the development of a stochastic chem-

ical kinetic (SCK) model, which has lead to the creation of the chemical master equation

(CME). Unfortunately, the CME cannot be solved either analytically nor numerically for

most systems. However, Monte Carlo simulation methods, such as the Stochastic Simula-

tion Algorithm (SSA), can generate numerical realizations of the chemical master equation.

Building on and improving SSA, several other methods have been created such as tau leap-
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ing, Gibson-Bruck’s next reaction method, among others [6,37]. This section will address the

foundations for stochastic modeling by briefly explaining the SCK, CME, and SSA models.

A SCK model is described as follows. Recall that a biochemical reaction network is

composed of n chemical species {S1, ..., Sn} and m chemical reactions {R1, ..., Rm}. The

system is assumed to be contained in a constant volume Ω, is well-stirred, and in thermal

equilibrium (constant temperature). Let Xi(t) denote the number of molecules of species Si

at time t. It follows that the state of the system at time t can be expressed in vector form

as X(t) = (X1(t), ..., Xn(t)). It is desirable to study the time evolution of the system, given

that the system was in some initial state X(t0) = x0.

The reaction channel is described mathematically by a two-dimensional array known

as the stoichiometric matrix. Each row of this matrix is formed by a state-change vector

Vj = (vij , ..., vnj), where vij is the molecular change of species Si due to reaction Rj . If

a reaction Rj occurs, then the sytem is updated to state x + vj . Each reaction channel

Rj is considered to be elemental, meaning that chemical reactions are eiher unimolecular or

bimolecular, taking vij values of 0,±1, and±2. Elemental reactions are considered to happen

essentially instantaneously. In addition to the stoichiometric matrix, each reaction channel

has associated with it a propensity function aj . The propensity function is defined such that

aj(x) is the probability that reaction Rj occurs somewhere in Ω in the next infinitesimal

time interval [t, t+ dt], given X(t) = x. In practice, this probability is found by multiplying

the number of possible reactant molecules by cj , a specific probability rate related to the

reaction rate constant k. This probabilistic definition of the propensity function has been

justified in physical theory by Gillespie [6].

For a unimolecular reaction Si → P , there exists some constant cj such that the propen-

sity aj(x) = cjxi, where xi is the number of molecules of species Si. The computation of cj

for this type of reaction requires consideration of quantum mechanics. If Rj is a bimolecular

reaction S1+S2 → P , there exists a different constant cj and the propensity function is given

by the multiplication of cj and the possible number of combinations of S1 and S2 molecules

that can react x1x2, aj(x) = cjx1x2. If x1 = x2 the possible number of combinations of is
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given by 1
2x1(x1− 1) and aj(x) = cj

1
2x1(x1− 1). It has been shown that for monomolecular

reactions cj is numerically equal to the reaction rate constant kj of conventional chemical

kinetics, while for bimolecular reactions cj is equal to kj/Ω for different reactant species and

2kj/Ω if the species are the same [38].

Using the probabilistic theory above, the probability P (x, t|x0, t0) that X(t) will be in

state x at time t given the initial state X(t0) = x0 can be formulated as

P (x, t+ dt|x0, t0) =P (x, t|x0, t0)

1−
M∑
j=1

aj(x)dt


+

M∑
j=1

P (x− vj , t|x0, t0)× aj(x− vj)dt,

(3.4)

where the first term on the right is the probability that the system is already in state x at

time t and no reaction occurs in the infinitesimal time interval [t, t+dt]; the second term on

the right is the probability that the system is vj away from state x and reaction Rj occurs

in the next time interval [t, t+ dt]. dt must be chosen to be sufficiently small such that only

one reaction can occur in the time period [t, t+ dt]. By subtracting P (x, t|x0, t0) from both

sides of Equation (3.4), dividing it by dt, and taking the limit dt → 0 [39] the Chemical

Master Equation is written as

∂P (x, t|x0, t0)

∂t
=

M∑
j=1

[aj(x− vj)P (x− vj , t|x0, t0)− aj(x)P (x, t|x0, t0)]. (3.5)

In theory, this differential equation determines completely and exactly the function

P (x, t|x0, t0). However, it cannot be solved analytically or numerically except for very few

simple systems because this equation represents a set of nearly as many coupled differential

equations as there are molecule combinations that exist in the system [40]. Since the CME

is not of much use to compute the probability density function P (x, t|x0, t0) of X(t), an-

other more feasible computational approach is needed. That leads us to the introduction of

Gillespie’s Stochastic Simulation Algorithm (SSA) in the following section.
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3.2.1 Gillespie’s Stochastic Simulation Algorithm (SSA)

Since the Chemical Master Equation (CME) cannot be solved either analytically or

numerically for most interesting biological systems, another formulation is required to be

able to simulate biochemical reaction networks in silico. One approach that has proven to

be effective is the simulation of trajectories or samples of X(t) versus time. Note that this

is not the same as numerically solving the CME, but just taking samples of that random

variable. Nevertheless, the same effect can be achieved by averaging the trajectories of many

realizations. In order to generate simulated trajectories of X(t), a new function p(τ, j|x, t) is

defined such that p(τ, j|x, t)dt is the probability that the next reaction to occur in the next

infinitesimal time interval [t+ τ, t+ τ +dt] is Rj assuming the current state is X(t) = x [38].

This newly formulated function is a joint probability density function for the two random

variables “time to the next reaction,” τ , and the “reaction index,” j.

An analytical expression can be derived for p(τ, j|x, t) by defining the function P0(τ,x, t)

as the probability that no reaction occurs in the time interval [t, t+τ ] given X(t) = x. Using

the laws of probabilities a new relationship can be obtained

p(τ, j|x, t)dt = P0(τ,x, t)× aj(x)dτ. (3.6)

Another implication from the laws of probability is

P0(τ + dτ |x, t) = P0(τ |x, t)× [1−
M∑
j′=1

aj(x)dt]. (3.7)

Using Equation (3.7) a differential equation can be written as

dP0(τ,x, t)
dτ

= −a0(x)P0(τ |x, t), (3.8)

where a0(x) =
∑M

j=1 aj(x). The solution to Equation (3.8) with initial condition P0(τ =

0|x, t) = 1 is

P0(τ |x, t) = exp[−a0(x)τ ]. (3.9)
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Combining Equations (3.9) and (3.6) and canceling dτ results in

p(τ, j|x, t) =exp[−a0(x)τ ]× aj(x)

=a0(x)exp[−a0(x)τ ]× aj(x)

a0(x)
.

(3.10)

Equation (3.10) is the root of the stochastic simulation algorithm (SSA). Using Monte

Carlo simulations, random samples can be generated for the joint probability function in

Equation (3.10) by drawing two random numbers r1 and r2 from the uniform distribution

and selecting τ and j according to the following equations

τ =
1

a0(x)
ln

(
1

r1

)
, (3.11)

j = smallest integer satisfying
j∑
j′

aj′(x) > r2a0(x). (3.12)

With the above theory, the SSA algorithm is formulated as shown in Figure 3.3. The

SSA and the CME are equivalent to each other; even though the CME is impractical and

intractable, the SSA is easy to implement. Trajectories produced from SSA simulations are

stochastic versions of results obtained using ODE methods. When SSA trajectories are close

enough to ODE results, then one can conclude that micro-scale fluctuations can be ignored.

However, when SSA trajectories deviate a lot from the ODE trajectory, then it follows that

micro-scale fluctuations cannot be ignored [40]. The problem with SSA is that it is very

computationally expensive making simulations run slow. The computational cost of SSA

is found in the computation of Equation (3.11). If the population of one or more reactant

species is very large, as it often is, a0(x) is very large, thus making the simulation time

step τ very small. Variations on SSA have been devised to make it more computationally

efficient [7, 8, 37].
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1. Initialize system state x = x0 and time t = t0.

2. Compute the propensity functions aj(x) at state x, and their sum a0(x):

aj(x) =

{
cjx1x2 x1 6= x2 (Bimolecular reactions)
cj

1
2x(x− 1) x1 = x2 (Monomolecular reactions)

a0(x) =

m∑
j=1

aj(x)

3. Draw two uniform random numbers r1 and r2.

4. Calculate the time to the next reaction τ according to Equation (3.11).

5. Determing the next reaction, Rj using Equation (3.12).

6. Update system state after reaction Rj : t = t+ τ and x = x + vj .

7. If t < Tsim, where Tsim is the simulation time, record state (x, t), and go back to
step 2.

8. End simulation.

Fig. 3.3: Gillespie’s Stochastic Simulation Algorithm (SSA).

3.2.2 iSSA: An Incremental Stochastic Algorithm

ODE methods have been shown to have some inadequacies when applied to highly

stochastic systems [7]. An intuitive approach to smooth out stochastic simulation results

is by taking the average of multiple independent SSA runs. Yet intuitive, this approach

is wrong. The designer wants to see a smooth path showing the “typical” behavior of the

system, but in many cases, this averaged result is erroneous because stochastic trajectories

do not align closely in time in independent simulations. To address this problem the iSSA

algorithm has been introduced [11]. iSSA performs independent SSA (or one of its variants)

runs in small time increments. At the end of each time interval, statistics are computed and

used to constrain the initial condition for the next interval. iSSA uses different techniques to

perform statistics. The most common ones presented by Winstead et al. [11] are themarginal

probability density evolution (MPDE) andmean path (MP). The results from iSSA simulation

correspond to real stochastic simulation runs while showing the designer functional details
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of the system. Our main focus in this thesis is MPDE which is described in depth in Chapter

4.

Marginal Probability Density Evolution (MPDE) is a method that tracks the statistical

evolution of every species in the reaction system. The aim of MPDE is to generate a marginal

probability distribution for each species as opposed to a scalar value obtain from traditional

SSA simulations or joint statistics from the CME. MPDE is intended to provide statistical

information in a way that is intuitively useful for the design of genetic circuits. As part of

iSSA, MPDE considers the system’s evolution in small increments of time. In other words,

the simulation time frame is partitioned into small time-slices. During each slice MPDE

approximates all species as a set of independent Gaussian-distributed random variables.

Molecule counts are randomly generated at the beginning of each time-increment using each

specie’s marginal Gaussian probability distribution. After the simulation is terminated,

statistics are calculated in the form of mean and variance. MPDE is able to follow the

statistical envelope as the system evolves over time, thus providing the designer with a

measure of robustness and stability. More details about MPDE is presented in Chapter 4.
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Chapter 4

Conservation Constraints Analysis

By definition, the marginal probability density evolution (MPDE) algorithm is a method

that computes and tracks a marginal probability distribution for each species in a reaction

network as opposed to single SSA runs. MPDE is aimed at providing intuitive statistical

information to potential bio-designers that need to know the expected behavior of highly

stochastic systems. In addition, MPDE provides the designer information about robustness

and stability of the system. MPDE is one of the internal methods used by iSSA [11] to

compute different statistics of stochastic simulations. In a nutshell, MPDE divides the sim-

ulation time in small time increments; during each increment, MaxRuns SSA (or any of its

flavors) runs are simulated. At the beginning of each time increment, MPDE approximates

all species as a set of independently distributed Gaussian random variables and molecule

counts are randomly generated from this distribution. Once the SSA runs are terminated

within the current time increment, statistics are computed in the form of mean and vari-

ance, a new starting state is generated from the Gaussian distribution, time is advanced

to the next time increment, and the process is repeated over until the maximum simula-

tion time timeLimit is reached. The steps of this algorithm are shown in Figure 4.1 along

with a depiction in Figure 4.2. Doing so, MPDE is able to follow a statistical envelope as

the simulation time evolves, while supplying the designer with a measure of confidence and

stability.

Figure 4.3(a) shows the results of simulating a toggle switch with SSA. A toggle switch

is a bistable system which is characterized by having two distinct states that are commonly

referred to as ON/OFF or HIGH/LOW. The model for this switch was introduced by Wil-

helm [41]. These results show how the method of averaging in Figure 4.3(b)is not able to

produce the expected behavior of a system that exhibits bi-stability. On the other hand,
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the true behavior of the switch is captured when simulated with MPDE, as observed in the

top curve (labeled MPDE) of Figure 4.3(b). Moreover, MPDE provides the designer infor-

mation about what is the most likely state this switch can be at steady state. In its original

formulation MPDE can only be applied to a narrow array of reaction network models. In

order to yield proper results, MPDE relies on the assumption that species are conditionally

independently given the rest of the system and that they are distributed as Gaussian ran-

dom variables. Many of the important models found both in nature and in the lab have

tightly correlated species which prevent MPDE from producing the expected results. These

correlations will be thoroughly explained in Section 4.2.

Moreover, abstraction methods used to reduce the number of effective reactions and im-

prove computational complexity impose strong correlations among groups of species. These

correlations arise from conservation laws that constrain the state of one or more species to

vary in terms of other species in the system. In consequence, when applied to large and

abstracted systems, MPDE may yield distorted results by violating conservation constraints

when the system is approximated with an LGN. In addition to linear conservation con-

straints there might appear other subtle types of correlations even after correcting errors

due to conservation laws. These correlations can be identified and corrected by means of a

“correlation matrix” and principal component analysis (PCA), respectively. When applied

to a data set consisting of interrelated variables, PCA aims to reduce the dimensionality

of the data while keeping most of the variation in the data set. This reduction in dimen-

sion is achieved by transforming the original data set into a new set of variables, principal

components, which are uncorrelated and ordered such that the first few retain most of the

variation present in the original variables [42]. Although this work does not treat species

correlations other than linear conservation relationships, Section 4.3 describes how PCA can

be integrated with MPDE to resolve more subtle relationships among the molecular species.

By resolving linear conservation constraints and using PCA as a run-time verification

tool, limitations in MPDE can be greatly reduced, allowing the algorithm to be applied

to a wider array of interesting models [43]. The following sections explains the theory
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behind linear conservation constraints analysis and how it is used with MPDE to keep

linear relationships intact during simulation.

1. Initialize t′ = 0, µ = 0, σ2 = 0, and x′ = x0.

2. Initialize limit = t′ + increment, run = 1.

3. Initialize t = t′, and x = x′ +N (µ,σ2).

4. Execute steps 1− 7 of Gillespie SSA algorithm depicted in Figure 3.3 on Page 30.

5. If run < MaxRuns, record x(limit), increment runs = runs + 1, and go back to
step 4.

6. If t < Tsim, set t′ = limit, x′ = x(limit).

7. Set µ = mean(x), σ = var(x).

8. Record µ,σ and go back to step 2.

Fig. 4.1: Marginal Probability Density Evolution (MPDE) algorithm.

tau tau tau tau tau

T0 Tsim

SSA SSA SSA SSASSA

bla

Fig. 4.2: Graphical depiction of the MPDE algorithm steps. Initially, a starting system
state x0 is chosen. Simulation time Tsim is divided into time increments inside which N
SSA runs are executed. Statistics are computed at the end of each time increment and used
to generate a new state used as the initial state for the next time increment. This process
is repeated until the maximum simulation time in reached.
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Fig. 4.3: Results of simulations of the toggle switch: (a) Ten independent SSA runs of the
bistable (toggle) switch, (b) Simulation with MPDE using 100 runs and τ = 0.5 and average
of 200 independent SSA runs. The parameters and network description for this model
is found in http://www.ebi.ac.uk/biomodels-main/publmodels under ID BIOMD0000000233.
This simulation data was obtained using iBioSim.
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4.1 Linear Conservation Constraints

In this section we show how conserved species can be identified by performing some

transformations on the stoichiometric matrix. Using this algorithm, the conservation con-

straint failure of MPDE can be resolved, thus making MPDE a more robust and efficient

method for simulating synthetic genetic circuits.

4.1.1 The Stoichiometry Matrix

The stoichiometric matrix embodies the network topology of any biochemical network

[12]. Stoichiometric analysis is not a new study in the field of Systems Biology. Several

researchers, like Schuster et al. [44], have published pioneering work in the literature since the

early 1960s. Any biochemical reaction network can be represented mathematically using the

stoichiometry matrix. If a given reaction network is composed of m species and n reactions,

then its stoichiometric matrix is a matrix of dimensions mxn. Each row corresponds to a

species and each column represents a chemical reaction. In this work N is used to denote

the stoichiometric matrix.

A stoichiometric matrix is shown below. Entry aij , called stoichiometric coefficient,

indicates whether species Si is affected by reaction Rj or not. The sign of aij indicates

whether it is a reactant or a product. The magnitude reveals the amount of substance that

is lost or gained in that particular reaction. This matrix is time-invariant and is solely

concerned with the molecular amounts transfered between species according to the chemical

reactions that govern the biochemical network [12].

Nm,n =



a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n
...

...
. . .

...

am,1 am,2 · · · am,n


Consider the biochemical network shown in Figure 4.4. In this system, the reaction

network is given by chemical reactions (4.1) and (4.2). In both reactions, the stoichiometric

coefficients are equal to 1. In reaction (4.1), S2 is the reactant species and S1 is the product.
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The stoichiometric matrix for this simple model can be formed as follows: let species S1

correspond to row 1, species S2 to row 2, reaction R1 in column 1, and reaction R2 in

column 2. The stoichiometric matrix is given by

N =

 1 −1

−1 1

 .
Notice that reactants have negative signs and products are accompanied by positive

signs. At this point, one might ask how can conserved moieties be extracted from the

stoichiometric matrix? Section 4.1.2 explains how this relationships can be spotted using

the stoichiometric matrix and matrix algebra.

S1← S2 (4.1)

S1→ S2 (4.2)

4.1.2 Identifying Conservation Laws

Conserved cycles in a chemical reaction network appear as linear dependencies in the row

dimensions of the stoichiometric matrix [12, 45]. In systems where conservation constraints

exist, the sum of the conserved species must be constant. For instance, the rate of appearance

of S1 is equal to the rate of disappearance of S2 in the system depicted in Figure 4.4.

Mathematically, this condition is given by

dS1
dt

+
dS2
dt

= 0. (4.3)

When conservation relationships like Equation (4.3) are present in a biochemical net-

work, there will be linearly dependent rows in the stoichiometric matrix. Therefore, the

rank r will be less than the number of rows of the stoichiometric matrix. That is,

r = rank(N) ≤ m.
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S1 S2

Fig. 4.4: Simple reaction network exhibiting conservation constraints.

Following the notation used by Reder [45] and Sauro and Ingalls [12], we can divide N

into NR and N0, the set of independent and dependent species, respectively. The concentra-

tions of the independent metabolites, NR, can be used to calculate those of the dependent

species N0. Thus, N can be expressed as

N =

NR

N0

 . (4.4)

Since N0 is a function of NR, there exists a matrix L0 satisfying

N0 = L0NR. (4.5)

This matrix is called the link-zero matrix. Equations (4.4) and (4.5) can be combined

to yield

N =

 NR

L0NR

 . (4.6)

Equation (4.6) can be further reduced by combining L0 with an identity matrix I and

taking NR as a common factor outside of the brackets, as shown below,

N =

 I

L0

NR = LNR, (4.7)

where L = [I L0]T is called the link matrix. For systems in which conservation relationships

do not exist, N = NR, thus L = I.

The system equation can be written as dS/dt = Nv. It describes the time evolution of

the reaction network and characterizes the kinetics of each individual reaction [12]. In this
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equation, v is the n-dimensional rate vector. Each rate in v is expressed as a function of

the species concentrations. S is the species amounts vector. Similar to the stoichiometric

matrix, S can be partitioned as Si and Sd, which are the independent and dependent species,

respectively. We also call S the system state at time t.

System’s equations can also be written in matrix form as

dS

dt
=

dSi/dt

dSd/dt

 =

 I

L0

NRv. (4.8)

When Equation (4.8) is expanded, we obtain two separate equations

dSi

dt
= NRv, (4.9)

dSd

dt
= L0NRv. (4.10)

Combining Equations (4.9) and (4.10) we can re-express (4.10) as

dSd

dt
= L0

dSi

dt
. (4.11)

Integrating and rearranging (4.11) yields

Sd(t)− L0Si(t) = Sd(0)− L0Si(0), (4.12)

which can be compacted to

[−L0 I]

Si(t)
Sd(t)

 = T. (4.13)

In Equation (4.13), T = Sd(0) − L0Si(0) is a constant vector which depends only on

the initial conditions imposed of the system. If we let [−L0 I] = Γ, it can be expressed as
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ΓS = T. (4.14)

Γ is called the conservation matrix. The rows of this matrix are related to the conserved

cycles in the reaction network. Hence, the number of rows indicate the number of conserved

species in the system. The nonzero elements of each row tell which species contribute to the

corresponding conserved cycle.

There are several ways for computing the conservation matrix. Among existing methods

are the right null space, Gauss-Jordan elimination, singular value decomposition (SVD), and

reduced row echelon form [12]. Which method to choose depends on the network size and

application. In this work we will address only one method to compute Γ. Any method used

to calculate the conservation matrix involves the computation of either L0 or L, whether it

is directly or not. For additional reading and information on the other methods refer to the

work by Reder [45].

4.1.3 Computation of Γ Using the Null Space of N

Equation (4.5) can be expressed as

[−L0 I]

NR

N0

 = 0, (4.15)

subsequently,

ΓN = 0. (4.16)

The conservation matrix Γ can thus be found by computing the null space of N . Equa-

tion (4.16) can be expressed as NTΓT = 0. Therefore, Γ can be computed as the right

null space of NT. In a program like MATLAB this would be found by typing the command

transpose(null(transpose(N),‘r’)). It must be noted that in order to get correct

output, N must be reordered as [NR N0]T. The link and link-zero matrices can then be

extracted from Γ. For in depth study and analysis of linear algebra theory, the reader is
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advised and encouraged to survey math college textbooks available in local or university

libraries as well as in free sources available in the Internet. A very good introductory linear

algebra textbook is “Introduction to Linear Algebra” by MIT professor Gilbert Strang [46].

4.2 Resolving Conservation Constraints in iSSA-MPDE

The Marginal Probability Density Evolution (MPDE) algorithm approximates the sys-

tem using a linear gaussian network (LGN). This assumption relies on the following condi-

tion.

Conditional Independence: the changes in any two species Si, Sj must be statistically

independent given the rest of the system’s state at the start of each time-window.

This condition can be easily verified using the covariance and information matrices. By

assuming that the system is approximated by a LGN, the conservation constraints imposed

on the network are violated. Therefore, the algorithm is no longer able to provide meaningful

statistics that describe the intrinsic behavior of the system.

For example, consider the system shown in Figure 4.5. In this system promoter states

are modeled as two separate species. P and P* represent unbound and bound promoter,

respectively. The conservation law can be written as

P + P∗ = 1. (4.17)

Equation (4.17) states that, at any given time t, the sum of the two promoter states

must be constant. A simple way to solve the failure in MPDE for this system would be to

generate P according to its statistics. P* is then determined using the conservation law in

Equation (4.17).

T

P P*

Fig. 4.5: Promoter states modeled as two separate species.
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Though it is a very simple way to solve the issue, the conservation constraints are not

always as clear and easy to determine. More complex and bigger systems might contain

conservation relationships that are hard to see with the naked eye. In addition, it is not

robust and might be tedious for genetic circuit designers.

The method introduced in Section 4.1.2 can be combined with MPDE to resolve the

conservation constraints failure in a more robust and efficient way. Conservation laws can

be determined automatically and resolved at run time. The refined algorithm version of

MPDE, which is called MPDE-Conservation, is shown in Figure 4.6.

This enhanced MPDE algorithm was successfully tested using the VKBL circadian

rhythm model [47] (see Appendix A.2). This circuit is known to oscillate with semi-random

period. When multiple independent Gillespie’s simulation stochastic algorithm (SSA) are

averaged together, the oscillatory behavior is washed out. When raw MPDE is used, the

statistics are not meaningful and the system does not oscillate. This happens because

the conditional independence assumption is violated due to the presence of conservation

constraints in the network. However, when the circuit is applied to the enhanced MPDE,

the system oscillates and the statistics are meaningful. MPDE is substantially improved

upon by identifying and resolving conservation constraints upfront. This new method can

now process circuits in which conservation constraints due to species correlations are present

without corrupting the results, thus making the algorithm much more robust, stable, and

reliable.

4.3 MPDE and Principal Component Analysis (PCA)

Even after resolving linear conservation constraints in MPDE, there can appear other

subtle (nonlinear) relationships among the chemical species that may or may not affect

performance of MPDE. These types of correlations can be spotted at run time by computing

the covariance matrix of the molecular species. The covariance matrix is a matrix whose

(i, j)th element is the covariance between the ith and jth species when i 6= j, and the

variance of the jth species when i = j. This matrix is ideally diagonal when no correlations

are present in the variables. Once the covariance matrix is computed, it can be used by the
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1. Identify conservation constraints in the system.

2. At time t, each independent species xi is represented by
a mean value and a variance.

3. Use equation (4.12) to compute Sd from Si.

4. Repeat the following steps N times:

(a) For each species xi, generate a random value based on its mean, variance and
statistical type.

(b) Run the SSA algorithm until τ seconds has elapsed.
(τ is the time-window).

(c) Record the mean and variance of each xi
at the end of the time-window.

5. Continue until the desired simulation time is reached.

Fig. 4.6: MPDE algorithm with conservation constraints resolution.

PCA algorithm to resolve correlations among the chemical species. It is very interesting to

note that linear relationships between the variables can be seen from the covariance matrix

when there are zeros in the elements of the main diagonal [42]. However, it is preferable to

resolve linear relationships using conservation analysis before applying PCA for performance

reasons as will be explained later.

Principal component analysis is a method that aims to reduce the dimensionality of a

data set consisting of interrelated variables. In order to achieve this, PCA transforms the

data space into an smaller number of effective variables, called principal components, that

are uncorrelated and retain most of the variations present in the original variables. Adopting

the notation used by Jolliffe [42], the first step in PCA is to find a linear function of the form

αT
1 x of maximum variance, where x is a vector of m random variables (chemical species)

and α1 is a vector of m constants α11, α12,...,α1m , such that

αT
1 x =

m∑
j=1

α1jxj .

Then, look for a second function αT
2 x having maximum variance and uncorrelated to

αT
1 x. Do this until the kth function αT

k x is found such that it is uncorrelated with αT
1 x,
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αT
2 x,..., αT

k−1x. The kth function αT
k x is the kth principal component (PC). Even though

up tom principal components can be found, it is hoped, in general, that most of the variation

will be retained by p� m PCs.

Having defined the principal components, it is now when knowing the covariance matrix

aids in computing the PCs. Let Σ denote the covariance matrix of the data set. it turns out

that the kth PC is given by

zk = αT
k x,

where αk is an eigenvector of Σ corresponding to its kth largest eigenvalue. Define z as the

vector whose kth element is zk. Then

z = ATx,

where A is the orthogonal matrix whose kth column, αk, is the kth eigenvector of Σ corre-

sponding to its kth eigenvalue.

PCA can be easily implemented in mathematical engines like MATLAB. For instance,

the following steps can be taken to compute the principal components in MATLAB, assuming

X is a matrix whose columns are the data variables.

C = cov(X);

[V L] = eig(C);

% take only the first few vectors of ’V’ correponding to the largest

% eigenvalues ’L’ and put them as columns in matrix ’A’.

Z = A’X;

PCA can be potentially used within MPDE to resolve correlations between chemical

species in a similar way to conservation constraints analysis. The main difference is that the

set of “independent” species would be the principal components (PCs) and those would be

used to run MPDE at the beginning of every time increment. Then, at the end of the time

increment, data is transformed back into its original state to have corrected, uncorrelated
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data. For more information about PCA, the reader is encouraged to read the book of

Jolliffe titled Principal Component Analysis [42]. This is a great resource containing detailed

explanations and lots of references on the theory and application of PCA.

PCA is a good “general” method to uncorrelate data as well as to reduce (or compress

if you will) dimensionality. However, whenever possible, conservation constraint analysis is

preferred because its simplicity and robustness as well. Conservation constraint analysis is

less computationally complex, thus faster than PCA. If after applying MPDE-conservation

there still remain correlations among the species that cause MPDE to fail, then PCA would

come in handy to resolve the bad correlations. The extent to which conservation analysis is

able to keep MPDE from breaking linearly correlated species can be “measured” by comput-

ing the cross-correlation coefficients at run time. These coefficients, also known as Pearson’s

correlation, are the most familiar measure of independence between two data vectors. They

can be arranged in a correlation matrix as shown below in Σ1 through Σ5. The correlation

matrix can be expressed as a function of the species’ covariances in the following equation

Corr(X,Y ) =
Cov(X,Y )

σxσy
.
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Σ1 =



1.00 −0.09 −1.00 0.53

−0.09 1.00 0.09 −0.89

−1.00 0.09 1.00 −0.53

0.53 −0.89 −0.53 1.00



Σ2 =



1.00 0.25 −1.00 0.32

0.25 1.00 −0.25 −0.83

−1.00 −0.25 1.00 −0.32

0.32 −0.83 −0.32 1.00



Σ3 =



1.00 0.30 −1.00 −0.03

0.30 1.00 −0.30 −0.96

−1.00 −0.30 1.00 0.03

−0.03 −0.96 0.03 1.00



Σ4 =



1.00 −0.09 −1.00 0.67

−0.09 1.00 0.09 −0.79

−1.00 0.09 1.00 −0.67

0.67 −0.79 −0.67 1.00



Σ5 =



1.00 −0.04 −1.00 0.37

−0.04 1.00 0.04 −0.94

−1.00 0.04 1.00 −0.37

0.37 −0.94 −0.37 1.00



ΣMPDE =



1.00 0.05 −0.05 0.07

0.05 1.00 −0.76 0.80

−0.05 −0.76 1.00 −0.87

0.07 0.80 −0.87 1.00


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The correlation matrix is symmetric and can be thought of as a normalization of the

covariance matrix where values are constrained to the interval [−1, 1]. The cross-correlation

coefficient will be equal to 1 for a positive linear relationship (when both quantities increase

together); for negative linear relationships the correlation will be −1, while 0 for totally

uncorrelated data. Thus, for a set of completely independent vectors the correlation matrix

will be equal to the identity matrix. Matrices Σ1 through Σ5 show how MPDE-conservation

is able to maintain the correlated species intact without breaking any conservation constraint

in the system. These species are (E,ES) and (S,P) in entries (1,3) and (2,4), respectively. On

the other hand, ΣMPDE , MPDE correlation matrix, shows that MPDE breaks the negative

linear relationship between species E and ES (entries (1,3) and (3,1)).

Figure 4.7(a) depicts the time evolution of the absolute value of the cross-correlation

between species (E,ES). MPDE-conservation successfully maintains this conservation law

throughout the entire simulation time. Next, Figure 4.7(b) plots the correlations of species

(S,P), which are the other set of species linearly related in the system. Though not purely

linear, MPDE-conservation is not only able to identify it, but also retain it at all times.

There are other minor correlations among other pair species, as shown in Figure 4.8(a) and

Figure 4.8(b). However, they do not affect the capability of MPDE-conservation to deliver

the expected results. Figure 4.9(a) depicts the time evolution of correlation values for species

(E,S), while Figure 4.9(b) shows the corresponding plot for species (S,ES), indicating that the

relationship between this set of species is almost purely uncorrelated. Finally, we plotted the

average of the cross-correlation coefficients for every pair of species in Figure 4.10. It shows

that the linear correlations are consistent for those species that the conservation analysis

method identified as independent and dependent. The two highest values (1.0 and 0.82)

correspond to the linearly related species, while the rest correspond to the “independent”

set of species.

To further explain and understand PCA and its role along side MPDE, let us show the

following examples using the Michaelis-Menten system. Simulation data of a stochastic run

of the Michaelis-Menten enzymatic system was used to show how linearly correlated two of
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Fig. 4.7: Illustration of the time evolution of the cross-correlation between pair of species of
the Michaelis-Menten system: (a) Cross-correlation between species E and ES, (b) Cross-
correlation between species S and P.
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Fig. 4.8: Illustration of the time evolution of the cross-correlation between pair of species
of the Michaelis-Menten system: (a) Cross-correlation between species E and P, (b) Cross-
correlation between species ES and P.
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Fig. 4.9: Illustration of the time evolution of the cross-correlation between pair of species
of the Michaelis-Menten system: (a) Cross-correlation between species E and S, (b) Cross-
correlation between species S and ES.
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Fig. 4.10: This picture depicts the simulation time average of the absolute value of species
cross-correlations for the Michaelis-Menten System.

the species are and how the PCs show similar variation to that of the original data. First,

consider the covariance matrix, Σ, below. This symmetric matrix shows the variances of

the species along the main diagonal, whereas the non-diagonal elements show the covari-

ances between pairs of species. For illustration, the eigenvalues and eigenvectors, Λ and A,

respectively, are shown below. The principal components are computed using the last two

eigenvectors in A, which are the ones that correspond to the largest two eigenvalues in Λ.

Figure 4.11 plots the time evolution of the trace of the covariance matrices computed at the

end of each time increment in the MPDE-conservation algorithm. The fact that this figure

settles at a small value indicates that the individual variances of the species are very small.

Figure 4.12 depicts a scatter plot of the linearly correlated species. After applying PCA,

the principal components are plotted in Figure 4.13(a) which resemble the shape of species

S and ES of the original data shown in Figure 4.13(b). These findings reinforce the idea

that PCA can indeed be used as an alternate method in case persistent correlations remain

after applying MPDE-conservation.
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Σ =



16.66 −16.66 88.30 −71.64

−16.66 16.66 −88.30 71.64

88.30 −88.30 732.05 −643.75

−71.64 71.64 −643.75 572.11



Λ =



−9.55× 10−14 0 0 0

0 3.31× 10−16 0 0

0 0 16.65 0

0 0 0 13.21× 102



A =



0.32 0.71 −0.63 −0.08

−0.32 0.71 0.63 0.08

−0.63 −0.00 −0.21 −0.74

−0.63 0.00 −0.41 0.65


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Fig. 4.11: This figure depicts the time evolution of the trace of the covariance matrix for a
run of the Michaelis-Menten model with MPDE-conservation.
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Fig. 4.12: This plot depicts the linear relationship or “correlation” of the species in the
Michaelis-Menten reaction system. This information is easily obtained from the covariance
matrix, Σ, above. (a) Scatter plot of the correlation between species E and ES, (b) Scatter
plot showing the correlation between species P and S.
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Fig. 4.13: Comparison between the simulation data of the Michaelis-Menten reaction system
and the Principal Components obtained from PCA showing that the variation of the PCs
is very similar to the original data from the ODE simulation. (a) Plot of the Principal
Components (PCs) against time, (b) ODE simulation plot of the Michaelis-Menten system.
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Chapter 5

Results

The Marginal Probability Density Evolution (MPDE) has been implemented within

iBioSim and MPDE with conservation constraint resolution has been implemented in C/C++.

Several example models have been applied to test the performance and accuracy of MPDE

to compare it with that of SSA. Models such as the VKBL circadian rhythm [47], 1 and the

Michaelis-Menten enzymatic reaction system [33], were taken as starting models because of

their detailed description and documentation in the literature. The remaining of this chapter

is organized as follows: all simulation results pertaining to the Michaelis-Menten enzymatic

reaction network is presented in Section 5.1 and the aforementioned VKBL circadian rhythm

is explored in Section 5.2.

5.1 Michaelis-Menten

The first model considered is the Michaelis-Menten reaction system. The chemical re-

action network for this system is described in Appendix A.1 and depicted in Figure 5.1.

This model describes the velocity of enzymatic reactions by relating the rate with the con-

centration of a substrate. Figure 3.2 on Page 25 shows the ODE simulation results for the

Michaelis-Menten system. For a simple system like this, ODE models work well. However,

it has been widely argued, as stated in Chapter 3, that ODE models assume that the system

varies deterministically and continuously. This assumption might be valid when there are

large amounts of molecules and the cell volume is well-stirred. The fact is that most systems

are discrete and stochastic, meaning that there is a small amount of molecules and chemical

reactions occur at random. Therefore, stochastic models are required to better capture the

true behavior of biochemical networks.
1The SBML file and network description for this model can be found in biomodels database under ID

BIOMD0000000101 (http://www.ebi.ac.uk/biomodels-main/publmodels).
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Fig. 5.1: Michaelis-Menten schematic diagram as drawn in iBioSim. Species are represented
by curved rectangles while reactions are drawn as small circles labeled Rj . Arrows leaving
from a species and arriving in a reaction Rj indicate that species Rj is a reactant in this
particular reaction. Arrows arriving at a species Si indicate that reaction Rj affects species
Si. Also, reactions are affected by modifier species. This case is represented by a line
connecting the modifier species and the reaction it participates in.

Figure 5.2(a) shows the results after simulating the Michaelis-Menten system using

Gillespie’s Stochastic Simulation Algorithm (SSA). One can notice that the behavior is very

similar to that of the ODE results. Indeed, for a very large amount of molecules these two

simulations will be nearly identical. SSA simulations produce a single path or sample from

the probability density function described by the chemical master equation (CME). Very

often designers are interested in answering two fundamental questions: what is the “typical”

behavior of the systems and how robust is it? A simple and intuitive approach is to take the

average of multiple independent runs of SSA as shown in Figure 5.2(b). For simple systems

like this averaging yields accurate results. However, most interesting biological systems in

nature, as well as synthetically engineered, exhibit a high degree of stochasticity. For highly

stochastic models simply aggregating tends to distort the intrinsic behavior of the biological

system and this effect will be shown in the subsequent sections.

This model was also simulated using MPDE and the result is shown in Figure 5.3(a).

Though not very accurate, MPDE is able to capture the intrinsic behavior of the enzymatic

network. The inaccuracies in the MPDE simulations are due violations of some conservation

constraints.

To illustrate the effect of conservation constraints on MPDE, let us first consider the
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enzymatic reaction system of Michaelis-Menten in Appendix A.1. This model contain a

couple of weakly correlated species and the conservation law is given by [E]+ [ES] = K and

[S] + [P ] = K + [E], where K is some initial condition (molecule amount). When MPDE

is applied to this model the result is close to the expected behavior, but it deviates a little

and is not as smooth and clean as a single SSA run or average of multiple SSA runs, as

shown in Figure 5.3(a). Broken conservation laws force MPDE to deviate from the true

behavior of the system. However, these constraints are resolved when the refined version

of MPDE, MPDE-conservation, is applied to the system. Figure 5.3(b) depicts the results

corresponding to MPDE-conservation, yielding a smooth path that is true to the expected

behavior of the enzymatic network.

5.2 VKBL Circadian Rhythm

The VKBL oscillator is a minimal model of a circadian rhythm based on positive and

negative feedback networks [47]. It is composed primarily of two genes, an activator A and

a repressor R. A acts as a positive element in transcription by binding to the A and R

promoters to increase transcription rates. On the other hand, repressor R acts as a negative

element by inhibiting the activator. The schematic for this circuit is shown in Figure 5.4

and the corresponding reaction network is discussed in Appendix A.2.

When simulated with both deterministic (ODE) and stochastic (SSA) models, this

system exhibits an oscillatory behavior (See Vilar et al. [47] for ODE simulations). In the

deterministic model2, every oscillation is identical to the previous one, whereas the stochastic

model shows variability both in the number of molecules and the period of oscillation, as

seen in Figure 5.5(a). These variations correspond to inherent fluctuations of the biochemical

network.

Under certain conditions or, more specifically, for some values of parameters, both

the stochastic and deterministic approaches produce similar results. However, Vilar et al.

[47] have found that parameters that indicate a stable steady state using the deterministic
2All deterministic simulations referred to in this section have been referenced to the work of Vilar et

al. [47].
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approach continue to produce sustained oscillations when simulated with SSA. Therefore,

the presence of noise can change the behavior of the system revealing marked qualitative

differences that cannot be observed by deterministic means [47].

As pointed out before, single SSA runs cannot reveal the clean average “signal” hidden

under noise. The common approach to filter out the noise component is by averaging multiple

independent stochastic simulations. However, as shown in Figure 5.5(b), the method of

averaging may wash out the true behavior of highly stochastic systems. The proposed

solution is to use MPDE [11]. Nevertheless, even MPDE fails when there are conservation

constraints in a biochemical network like the VKBL oscillator. Figure 5.6(a) illustrates the

effect of conservation constraints violation in MPDE, where all oscillations are concealed

but just the first.

The core of MPDE relies on the assumption that any pair of species in the system are

conditionally independent given the rest of the system. Nonetheless, if dependencies appear

among the species, MPDE may perform poorly and even yield incorrect results. The matter

of fact is that most interesting biological systems in nature as well as man made contain

tightly correlated species. In addition, an increasing number of computational methods use

forms of abstraction to accelerate the computation time by reducing the effective number

of chemical reactions. When systems are abstracted in this way, dependencies may be

introduced [43]. Therefore, MPDE is not attractive to simulate systems that have been

abstracted [48, 49]. Hence, a method is required to correct errors caused by MPDE when

conservation constraints appear. The technique presented in Chapter 4 successfully resolves

these types of errors by identifying dependent species from independent species. After

moieties have been properly separated, MPDE is run only for the independent species,

which can then be used to compute the states of the dependent species. Figure 5.6(b)

shows how MPDE-conservation successfully maintains conservation laws intact, producing

the expected behavior of this oscillatory network.
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Fig. 5.2: Results of simulating the Michaelis-Menten enzymatic reaction system using SSA.
(a) Depiction of a single SSA path, (b) Shows the result of averaging 100 independent SSA
simulation runs. The parameters used to produce these simulations are given in Appendix
A.1. Simulated using iBioSim.
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Fig. 5.3: Results of simulating the Michaelis-Menten enzymatic reaction using MPDE.
(a) Simulation obtained using MPDE, (b) Results of simulating the model with MPDE-
conservation. The parameters used to produce this figures were: τ = 0.1 and runs = 200.
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Fig. 5.4: VKBL schematic diagram as drawn in iBioSim. Species are represented by curved
rectangles while reactions are drawn as small circles labeled Rj . Arrows leaving from a
species and arriving in a reaction Rj indicate that species Rj is a reactant in this particular
reaction. Arrows arriving at a species Si indicate that reaction Rj affects species Si. Also,
reactions are affected by modifier species. This case is represented by a line connecting the
modifier species and the reaction it participates in.
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Fig. 5.5: Stochastic simulations of the VKBL circadian rhythm: (a) Single SSA run for
300 seconds, (b) Average of 100 SSA runs illustrating how this approach can wash out the
expected behavior of highly stochastic and/or oscillatory networks. These simulations were
performed using the VKBL model from the biomodels database in iBioSim.
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Fig. 5.6: Stochastic simulations using MPDE and MPDE-conservation. (a) MPDE results
illustrating the effects of conservation constraints. Conservation constraints impose bio-
chemical laws among the chemical species that are broken by MPDE. (b) Results of MPDE-
conservation showing successful results when conservation laws are taken into account in
MPDE.



65

Chapter 6

Discussion

While the results show that MPDE is a promising algorithm to simulate genetic cir-

cuits, there are areas in which in can be further improved. First, MPDE uses SSA as its

core algorithm. Modifying MPDE to use more efficient methods such as tau-leaping would

increase its computational efficiency. Efficient SSA variants often contain restrictions that

would be passed on to MPDE. It would be beneficial to investigate ways to combine differ-

ent simulation methods at run time to accelerate MPDE computational time. In addition,

making the time increment adaptive might increase the efficiency of MPDE as well.

Second, MPDE relies on the assumption that species are conditionally independent.

This independence approximation has proven to be accurate for detailed reaction networks.

However, when abstraction methods are employed, highly correlated species may appear.

Further research should be done to lift the conditional independence restriction and find

a method to generate more accurate molecule counts for every species without violating

conservation constraints. In the same line, the way the conservation constraints identification

algorithm is currently implemented can be written in a more efficient manner. Presently,

both MPDE and MPDE-Conservation are implemented separately. These two methods can

be combined such that if conservation laws do not exist in the system, then MPDE is run

without having to verify and periodically check that conservation constraints are met. On

the other hand, if there are conservation relationships in the reaction network, then MPDE-

Conservation is used for the simulation.

In addition to linear relationships, there may appear other subtle correlations among

the molecular species that are not detected by conservation constraint analysis. These

correlations can be identified by computing the covariance matrix at the beginning of each

time increment in MPDE. If there exists any correlations, Principal Component Analysis
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(PCA) can be used to transform the space into an effective number of uncorrelated species,

the principal components, that hold most of the variations of the system. The principal

components are used to run the simulation until the end of the time increment, at which time

the space is transformed back into its original species, thus having corrected the correlations.

The drawback with this method, as opposed to conservation analysis, is the computational

burden of having to find the covariance matrix and running PCA for every time increment.

Whereas conservation analysis is done only once, at the beginning of the simulation, and

uses a simple equation to compute the dependent species from the independent species, thus

making it the preferred method. All in all, PCA would be great tool to be used if, after doing

conservation analysis, there still remain correlations that make even MPDE-conservation fail.

Furthermore, there are genetic circuits that can exhibit bi-stability, like the toggle

switch presented by Wilhelm [41], or multi-stability. For such systems, MPDE is only able

to follow a single path, which turns out to be the most likely path. It would be useful

to extend MPDE’s capability to identify bifurcations and compute the probability of each

possible path. Finally, the capabilities of MPDE can be exploited and further improved if

it is implemented in a tool such as iBioSim. 1

To finalize this work, there are two major limitations about MPDE with conservation

constraint resolution listed below. The first one, simulation time, is inherent to the structure

of the algorithm and very little can be done about it. The second limitation can be further

explored by using PCA to detect and correct nonlinear correlations among the species.

Nonetheless, it will add some overhead time, thus making the algorithm slower.

• Slightly slower than MPDE and much more slower than SSA;

• Only linear relationships can be corrected.

1See http://www.async.ece.utah.edu/iBioSim/.



67

References

[1] T. Danino, O. Mondragón-Palomino, L. Tsimring, and J. Hasty, “A synchronized
quorum of genetic clocks,” Nature, vol. 463, no. 7279, pp. 326–30, Jan.
2010. [Online]. Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?
artid=2838179\&tool=pmcentrez\&rendertype=abstract

[2] H. Kuwahara and I. Mura, “An efficient and exact stochastic simulation method to
analyze rare events in biochemical systems,” Journal of Chemical Physics, vol. 129,
no. 16, 2008.

[3] C. J. Myers, Engineering Genetic Circuits, Salt Lake City, UT, 2009.
[Online]. Available: http://books.google.com/books?hl=en\&amp;lr=\&amp;id=
UoCq4FeTeHkC\&amp;oi=fnd\&amp;pg=PR13\&amp;dq=Engineering+Genetic+
Circuits\&amp;ots=tNA\_R1ab7V\&amp;sig=y7GSh8yfyj8B9YhtBF9mMR2rz\_U

[4] B. D. Fett, “Synthesizing Stochasticity in Biochemical Systems,” Ph.D. dissertation,
University of Minnesota, MN, 2010.

[5] N.-p. Nguyen, C. Myers, H. Kuwahara, C. Winstead, and J. Keener, “Design
and analysis of a robust genetic Muller C-element.” Journal of Theoretical
Biology, vol. 264, no. 2, pp. 174–87, May 2010. [Online]. Available: http:
//www.ncbi.nlm.nih.gov/pubmed/19914258

[6] D. T. Gillespie, “Stochastic simulation of chemical kinetics,” Annual review of physical
chemistry, 2007. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.147.8267\&amp;rep=rep1\&amp;type=pdf

[7] H. E. Samad, M. Khammash, H. El Samad, L. Petzold, and D. Gillespie, “Stochastic
modelling of gene regulatory networks,” International Journal of Robust and Nonlinear
Control, vol. 15, no. 15, pp. 691–711, Oct. 2005. [Online]. Available: http://doi.wiley.
com/10.1002/rnc.1018http://onlinelibrary.wiley.com/doi/10.1002/rnc.1018/abstract

[8] D. T. Gillespie, “Approximate accelerated stochastic simulation of chemically reacting
systems,” Journal of Chemical Physics, vol. 115, no. 4, pp. 1716–1733, 2001.

[9] J. Hasty, F. Isaacs, M. Dolnik, D. McMillen, and J. J. Collins, “Designer gene
networks: Towards fundamental cellular control,” pp. 207–220, 2001. [Online].
Available: http://scitation.aip.org/getpdf/servlet/GetPDFServlet?filetype=pdf\&id=
CHAOEH000011000001000207000001\&idtype=cvips\&prog=normal\&doi=10.1063/
1.1345702

[10] T. S. Gardner, C. R. Cantor, and J. J. Collins, “Construction of a genetic toggle
switch in Escherichia coli.” Nature, vol. 403, no. 6767, pp. 339–42, Jan. 2000. [Online].
Available: http://www.ncbi.nlm.nih.gov/pubmed/10659857



68

[11] C. Winstead, C. Madsen, and C. Myers, “iSSA : An Incremental Stochastic Simulation
Algorithm for genetic circuits,” in International Symposium on Circuits and Systems
(ISCAS). Paris, France: Proceedings of 2010 IEEE, 2010, pp. 553–556. [Online].
Available: http://ieeexplore.ieee.org/xpls/abs\_all.jsp?arnumber=5537539\&tag=1

[12] H. M. Sauro and B. Ingalls, “Conservation analysis in biochemical networks:
computational issues for software writers.” Biophysical chemistry, vol. 109, no. 1, pp.
1–15, Apr. 2004. [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/15059656

[13] S. S. C. Hilgetag and J. H. W. D. A. Fell, “Reaction routes in biochemical reaction
systems: Algebraic properties, validated calculation procedure and example from nu-
cleotide metabolism,” vol. 181, pp. 153–181, 2002.

[14] J.-h. S. Hofmeyr, “Metabolic control analysis in a nutshell,” Differentiation, no. ii, pp.
291–300.

[15] D. P. Clark, Molecular Biology: Understanding the Genetic Revolution. Oxford, UK:
Elsevier, 2005.

[16] F. H. C. Crick, “On Protein Synthesis,” Symp Soc Exp Biol., vol. 12, pp. 138–63, 1958.

[17] V. Vinson and E. Pennisi, “The allure of synthetic biology,” Science, vol. 333, no.
6047, pp. 1235–1319, 2011. [Online]. Available: http://www.sciencemag.org/journals

[18] D. Endy, “Foundations for engineering biology.” Nature, vol. 438, no. 7067, pp. 449–53,
Nov. 2005. [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/16306983

[19] E. Andrianantoandro, S. Basu, D. K. Karig, and R. Weiss, “Synthetic biology:
new engineering rules for an emerging discipline.” Molecular systems biology, vol. 2,
p. 2006.0028, Jan. 2006. [Online]. Available: http://www.pubmedcentral.nih.gov/
articlerender.fcgi?artid=1681505\&tool=pmcentrez\&rendertype=abstract

[20] European Commission and N. H.-l. E. Group, “Synthetic Biology Applying Engineering
to Biology,” European Comission, Brussels, Tech. Rep., 2005.

[21] T. M. Tumpey, C. F. Basler, P. V. Aguilar, H. Zeng, A. Solórzano, D. E. Swayne,
N. J. Cox, J. M. Katz, J. K. Taubenberger, P. Palese, and A. García-Sastre,
“Characterization of the reconstructed 1918 Spanish influenza pandemic virus.” Science
(New York, N.Y.), vol. 310, no. 5745, pp. 77–80, Oct. 2005. [Online]. Available:
http://www.ncbi.nlm.nih.gov/pubmed/16210530

[22] J. Kaiser, “Resurrected influenza virus yields secrets of deadly 1918 pandemic,” Science
Magazine, vol. 310, 2005. [Online]. Available: http://www.sciencemag.org/content/
310/5745/77.abstract

[23] C. J. Venter, “Gene synthesis technology: State of the Science National
Science Advisory Board on Biosecurity (conference).” [Online]. Available: http:
//www.webconferences.com/nihnsabb/july\_1\_2005.html



69

[24] R. Weiss, S. Basu, S. Hooshangi, A. Kalmbach, D. Karig, R. Mehreja, and I. Netravali,
“Genetic circuit building blocks for cellular computation, communications, and signal
processing,” Natural Computing, vol. 2, no. 1, pp. 47–84, 2003. [Online]. Available:
http://www.springerlink.com/index/H885L73711912672.pdf

[25] J. W. Chin, “Modular approaches to expanding the functions of living matter,”
Nature Chemical Biology, vol. 2, no. 6, pp. 304–11, Jun. 2006. [Online]. Available:
http://www.ncbi.nlm.nih.gov/pubmed/16710339

[26] M. B. Elowitz and S. Leibler, “A synthetic oscillatory network of transcriptional
regulators.” Nature, vol. 403, no. 6767, pp. 335–8, Jan. 2000. [Online]. Available:
http://www.ncbi.nlm.nih.gov/pubmed/10659856

[27] H. T. Baytekin and E. U. Akkaya, “A molecular NAND gate based on Watson-Crick
base pairing.” Organic Letters, vol. 2, no. 12, pp. 1725–1727, 2000.

[28] E. Klipp, R. Herwig, A. Kowald, C. Wierling, and H. Lehrach, Systems Biology in
Practice: Concepts, Implementation and Application. Berlin, Germany: Wiley, 2005.

[29] D. B. Kell and J. D. Knowles, “The role of modeling in systems biology,” in System
Modeling in Cell Biology: From Concepts to Nuts and Bolts, Z. Szallansi, J. Stelling,
and Vipul Periwal, Eds. Cambridge, MA: MIT Press, 2006.

[30] “Parts Registry.” [Online]. Available: http://partsregistry.org/Main\_Page

[31] “BioBricks Foundation.” [Online]. Available: http://biobricks.org/

[32] P. Waage, C. M. Guldberg, and H. I. Abrash, “Studies concerning affinity,” Journal of
Chemical Education, vol. 63, no. 12, pp. 1044–1047, 1986.

[33] R. S. Goody and K. A. Johnson, “The original Michaelis constant: translation of the
1913 MichaelisâĂŞMenten paper,” Biochemistry, vol. 50, no. 39, pp. 8264–8269, 2011.

[34] M. B. Elowitz, A. J. Levine, E. D. Siggia, and P. S. Swain, “Stochastic gene expression
in a single cell.” Science (New York, N.Y.), vol. 297, no. 5584, pp. 1183–6, Aug. 2002.
[Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/12183631

[35] A. Arkin, J. Ross, and H. H. Mcadams, “Stochastic kinetic analysis of developmental
pathway bifurcation in phage lambda-infected e-coli cells,” Genetics, vol. 149, pp. 1633–
1648, 1998.

[36] H. H. McAdams and A. Arkin, “It’s a noisy business! Genetic regulation at the
nanomolar scale,” Trends in Genetics: TIG, vol. 15, no. 2, pp. 65–9, Feb. 1999.
[Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/10098409

[37] M. A. Gibson and J. Bruck, “Efficient exact stochastic simulation of chemical systems
with many species and many channels,” Physical Chemistry, vol. 105, pp. 1876–1889,
1999.

[38] D. T. Gillespie, “A general method for numerically simulating the stochastic time evo-
lution of coupled chemical reactions,” Journal of Computational Physics, vol. 22, pp.
403–434, 1976.



70

[39] D. McQuarry, “Stochastic approach to chemical kinetics,” Journal of Applied Probabil-
ity, vol. 4, pp. 413–478, 1967.

[40] D. T. Gillespie and L. R. Petzold, “Numerical simulation for biochemical kinetics,”
in System Modeling in Cellular Biology, Z. Szallasi, J. Stelling, and V. Periwal, Eds.
London, England: MIT Press, 2006, ch. 16, pp. 331–353.

[41] T. Wilhelm, “The smallest chemical reaction system with bistability.” BMC systems
biology, vol. 3, p. 90, Jan. 2009. [Online]. Available: http://www.pubmedcentral.nih.
gov/articlerender.fcgi?artid=2749052\&tool=pmcentrez\&rendertype=abstract

[42] I. T. Jolliffe, Principal Component Analysis, 2nd ed. New York, NY: Springer, 2002.

[43] H. Kuwahara, C. Madsen, I. Mura, C. Myers, A. Tejeda, and C. Winstead,
“Efficient stochastic simulation to analyze targeted properties of biological systems,”
in Stochastic Control, C. Myers, Ed. Sciyo, ch. 25. [Online]. Available: sciyo.com

[44] S. Schuster, T. Pfeiffer, F. Moldenhauer, I. Koch, and T. Dandekar, “Exploring the
pathway structure of metabolism: decomposition into subnetworks and application to
Mycoplasma pneumoniae,” Bioinformatics, vol. 18, no. 2, pp. 351–361, 2002.

[45] C. Reder, “Metabolic control theory: a structural approach.” Journal of
theoretical biology, vol. 135, no. 2, pp. 175–201, Nov. 1988. [Online]. Available:
http://www.ncbi.nlm.nih.gov/pubmed/3267767

[46] G. Strang, Introduction to Linear Algebra, 3rd ed. Wellesley, MA: Wellesley-
Cambridge, 2009.

[47] J. M. G. Vilar, H. Y. Kueh, N. Barkai, and S. Leibler, “Mechanisms of
noise-resistance in genetic oscillators.” Proceedings of the National Academy of
Sciences of the United States of America, vol. 99, no. 9, pp. 5988–92,
Apr. 2002. [Online]. Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?
artid=122889\&tool=pmcentrez\&rendertype=abstract

[48] H. Kuwahara, C. Myers, M. Samoilov, N. Barker, and A. Arkin, “Automated Abstrac-
tion Methodology for Genetic Regulatory Networks,” Transactions on Computational
Systems Biology, no. IV, pp. 150–175, 2006.

[49] H. Kuwahara, C. J. Myers, and M. S. Samoilov, “Temperature control of fimbriation
circuit switch in uropathogenic escherichia coli: quantitative analysis via automated
model abstraction,” PLoS Computational Biology, vol. 6, no. 3, p. e1000723,
Mar. 2010. [Online]. Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?
artid=2845655\&tool=pmcentrez\&rendertype=abstract



71

Appendices



72

Appendix A

Chemical Reaction Network Models

A.1 Michaelis-Menten Enzymatic Reaction Network

Table A.1: Michaelis-Menten Reaction Network.

Reaction Rate Constant

E + S
k1→ ES k1 = 0.005

ES
k2→ E + S k2 = 0.1

ES
k3→ E + P k3 = 1

Table A.2: Reaction rate constants for the Michaelis-Menten model in Table A.1.

Species Amount
E 50
S 100
ES 0
P 0

N =


E S ES P

R1 −1 −1 1 0
R2 1 1 −1 0
R3 1 0 −1 0


Fig. A.1: Stoichiometry matrix for the Michaelis-Menten model.
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A.2 VKBL Circadian Rhythm Reaction Network Model

Table A.3: VKBL circadian rhythm model reaction network.

Reaction Rate Constant

DA
k1→ DA+MA k1 = 50

DAp
k2→ DAp+MA k2 = 500

DR
k3→ DR+MR k3 = 0.01

DRp
k4→ DRp+MR k4 = 50

MA
k5→ A+MA k5 = 50

MR
k6→ R+MR k6 = 5

A+DA
k7→ DAp k7 = 1

A+R
k8→ C k8 = 2

A+DR
k9→ DRp k9 = 1

A
k10→ ∅ k10 = 1

C
k11→ R k11 = 1

MA
k12→ ∅ k12 = 10

MR
k13→ ∅ k13 = 0.5

R
k14→ ∅ k14 = 0.2

DAp
k15→ A+DA k15 = 50

DRp
k16→ A+DR k16 = 100

Table A.4: Reaction rate constants for the VKBL model in Table A.3.

Species Amount
A 0
C 0
DA 1
DAp 0
DR 1
DRp 0
MA 0
MR 0
R 0
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N =



A C DA DAp DR DRp MA MR R

R1 0 0 0 0 0 0 1 0 0
R2 0 0 0 0 0 0 1 0 0
R3 0 0 0 0 0 0 0 1 0
R4 0 0 0 0 0 0 0 1 0
R5 1 0 0 0 0 0 0 0 0
R6 0 0 0 0 0 0 0 0 1
R7 −1 0 −1 1 0 0 0 0 0
R8 −1 1 0 0 0 0 0 0 −1
R9 −1 0 0 0 −1 1 0 0 0
R10 −1 0 0 0 0 0 0 0 0
R11 0 −1 0 0 0 0 0 0 1
R12 0 0 0 0 0 0 −1 0 0
R13 0 0 0 0 0 0 0 −1 0
R14 0 0 0 0 0 0 0 0 −1
R15 1 0 1 −1 0 0 0 0 0
R16 1 0 0 0 1 −1 0 0 0


Fig. A.2: Stoichiometry matrix for the VKBL model.
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