Utah State University
DigitalCommons@USU

Graduate Student Posters

Browse all Graduate Research

12-2011

Fracture behavior across interfaces in seal lithologies

Elizabeth S. Petrie Utah State University

James P. Evans Utah State University

Tamara Jeppson Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/graduate_posters

Recommended Citation

Petrie, Elizabeth S.; Evans, James P.; and Jeppson, Tamara, "Fracture behavior across interfaces in seal lithologies" (2011). AGU 2011 Fall Meeting, San Francisco, California. *Graduate Student Posters*. Paper 13.

https://digitalcommons.usu.edu/graduate_posters/13

This Presentation is brought to you for free and open access by the Browse all Graduate Research at DigitalCommons@USU. It has been accepted for inclusion in Graduate Student Posters by an authorized administrator of DigitalCommons@USU. For more information, please contact digitalcommons@usu.edu.

Fracture behavior across interfaces in seal lithologies

AGU-2011

Elizabeth Petrie, James Evans, Tamara Jeppson

Objectives

- Field observations used to characterize the variability in fracture patterns across lithologic boundaries
 - provide a comparison between two different seal lithologies, structural settings and interface types
 - natural analogs of failed seals and potential sequestration reservoir seal pairs
- Dynamic elastic moduli estimates from wire line logs
 - variability in dynamic elastic moduli within seal facies
 - tie subsurface to outcrop observations
- Provide data for modeling the mechanical response of seals and existing discontinuities to increased pressure

Comparison of two reservoir seal pairs

Jurassic Carmel Formation

- Seal to the underlying Navajo Sandstone
- Mixed siliciclastic carbonate system
- Deposition in near shore marine to sabkha setting

Mechanical stratigraphy

- Bed thickness 0.25 3 m
- Higher fracture density in thin beds
- Compressive strength range 15-65
- Permeability range> 0.01 D to 0.1 D

Fracture Orientations

- Open fractures, veins & small offset normal faults in Carmel
 Fm. have dominant <u>NNE</u> orientation
- Open joints in Navajo sst, have dominant <u>NNW</u> orientation fault deformation bands have <u>NNE</u> orientation

Fracture formation at depth

13 cm

xpl 10x field of view 2.5 mm

xpl 4x field of view 4 mm

В

А

Elastic moduli from wire line logs

Gamma Ray	V _p / V _s	Cross plot					
GR<50, Carmel	1.9	А					
150>GR>5 0	1.8	В					
GR<50, Navajo	1.6	С					
GR>150	1.5						

- Dipole sonic logs not available for all wells must derive shear velocity from compressional velocity
- UtahState
- Empirical based on relationships established by previous workers and verified using dipole sonic logs from two wells

Subsurface to outcrop correlation

- Well-bore based estimates of dynamic Young's Modulus show meter scale variability (15-34 Gpa)
- Field-based fracture density and compressive strength also show meter scale variability
- How important is this variability to seal failure and subsurface fluid flow?

Organ Rock Shale

- Seal to the underlying Cedar Mesa Sandstone
- Coarsening up-ward interbedded siltstones & mudstones

Deposited in near shore marine lowlands, braided streams & tidal flats

0.375 0.75

280

Modified from: Willis et al, UGS; Glen Canyon NRA

Fracture character & distribution

- Fracture trend parallels fault and joint trend in reservoir
- Alteration halo and mineralization suggests fluid flow along fractures
- Fracture density increases with proximity to faults and in coarse-grained lithology

Outcrop observations

Deformation bands in the fault damage zone often considered barriers to flow via reduced permeability

Daylight

Calcite mineralization indicates

- dilation bands
- reactivation of cataclastic bands & mineralization

UV light

Outcrop observations

. 10

_120

_110

_100

90

Aeolian marker Aeolian marker

_120 Outcrop observations _110 Fractures density increases in 90 coarser-grained & thickly bedded units 80 _70 60 _ 50 40 30 20 . 10

- Variability in lithologies and bed thickness
- Continuation, deflection and termination of fractures at lithologic interfaces
- Lower fracture density in fine grained lithologies

Carmel Formation

- Highest fracture densities in thinly bedded units
- Mineralized and altered fractures throughout
- Permeability ranges 0.01 to 0.1D
- Schmidt hammer rebound values range 20-70

Organ Rock Shale

- Higher fracture densities adjacent to fault
- Alteration halos and mineralized fractures adjacent to faults
- Permeability from 0.001 to 0.06D
- Schmidt hammer rebound values range 10-40

Conclusions

- Stratigraphic variability and resulting changes in mechanical properties influence the variability in fracture morphology and density
 - Penetration, termination or deflection at interfaces
- Understanding variability in fracture morphology in different seal types, interface types, and structural settings is key to understanding hydraulic seal failure

Acknowledgements and Questions

Jim Evans, Tamara Jeppson and USU structural geology group Field assistants: R. Wood, C. Barton, R. Petrie DOE Grant # DE-FC26-0xNT4 FE0001786 GDL Foundation Fellowship SMT Kingdom Software – University Grant Sirovision Software – University Grant

REFORAMT TO compare constrast

- Variability in bed thickness 0.25 – 10 m
- Higher fracture density in thin beds
- Altered fractures associated with faults
- Higher fracture density adjacent to faults and in hanging wall
- Fracture termination at high permeability aeolian marker bed
- Variability in permeability from 0.02 D to 0.06 D

Shear Velocity Calculations

- Covert digitized sonic log travel times to velocity
- Vertical resolution limited by frequency and distance between transmitter and receiver ~ 2 ft or 61 cm
 Utah D-7

Modifie	Modified from Davatzes, 2003 and Pevear, 1997									Potential timing of fracture development at study sites								
	Geologic Time Scale Ma	Gen Stra	eralized tigraphy	Subsidence Paradox Basin Uncompahgre Highlands	 Moab Fault Active	Little Grand Wash F Active	Oil and Gas Generation	Bleaching events	Sevier Orogeny	Laramide Orogeny	San Rafael Swell	Colorado Plateau u	Salt Movement	Volcanic activity Lacolith intrusion	Organ Rock Formation	Carmel Formation	Entrada Formation	Tununk Member Mancos Shale
	Tertiary					I					I	15Ma	ı I	Ι				Ι
	Cretaceous		Mesaverde Mancos Dakota				1											
I	– – – 145 – – Jurassic		Cedar Mountain Morrison Entrada Carmel Navajo													?		
ſ	200· -		Kayenta Wingate Chinle										-		?			
1	255		Moenkopi Black Box Dolomite White Rim Organ Posk		ļ								 - -					
	Permian 300		Cedar Mesa – – – – – – Honaker Trail		- 4-								-					;
			Paradox															