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1) material with cohesive strength between 5-16 Mpa fails in 
 tension 
2) in a pervasively fractured crust - material with a cohesive
 strength of zero fails very near hydrostatic pressure 
3) encountering pressures during burial can result
 in natural hydrofractures

Comparison of Mechanical and Fracture Stratigraphy between Failed Seal Analogues
E.S. Petrie &  J.P. Evans -- Utah State University

4505 Old Main Hill - Logan, UT 84322-4505 USA
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Extensional fractures open by locally applied tectonic stress
or by internal �uid pressure (see Laubach, 1988).
Fracture Formation:
1) response to thermoelastic contraction during exhumation
2) due to tectonic stress
3) hydraulic fractures due to overpressure at depth
4) a combination 

Modeling stress history to maximum burial depth shows:
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METHODS

OUTCROP OBSERVATIONS

INTRODUCTION

Outcrop

Petrography

Theoretical

Measured stratigraphic sections -- detailed rock descriptions, identification of lithologic 
changes including grain size, bed thickness, & mineralogy
Scanlines - determine fracture distribution, morphology and interaction types
Rock strength and Permeability - field-derived compressive strength 
(N-type Schmidt hammer) and permeability (TinyPermII).

XRD- mineralogic composition comparison between host and fractured rocks
Thinsection - characterization of micro-structures and structural diagenesis

Burial History & Stress Evolution - burial histories merged with simple Mohr-Coulomb 
analysis to constrain Sv, SH, and Sh failure models through time
Mohr-Coulomb  - stress changes & failure modeled through time where: 
C=0 & C= 5; Sv=σ1=ρgz, ν=0.25, SH=Sh=σ2=σ3=(ν/ν-1)(Pp-Sv)+Pp (from Eaton, 1969)

The presence of discontinuties in seal lithologies affects their mechanical 
and hydro-geologic properties.  We examine the mechanical and fracture 
stratigraphy of failed Paleozoic and Mesozoic seal analogues in 
south-east Utah to understand the nature and distribution of fluid flow
pathways in various seal lithologies.  Outcrop surveys provide data for 
comparison between each locality to identify relationships between 
depositional composition, diagenesis, and loading history.  These data 
characterize the distribution and morphology of open mode fractures, with
changes in lithology and provide input for accurate quantitative
subsurface geomechanical and fluid flow models.

BURIAL HISTORY AND STRESS EVOLUTION: ORGAN ROCK SHALE
CONCLUSIONS
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INPUT DATA FOR GEOMECHANICAL MODELING

OUTCROP MECHANICAL STRATIGRAPHY: CARMEL FORMATION
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All localities show:
 evidence for mineralization and �uid �ow in the subsurface

 mineralogic di�erences between host rock and fracture �ll

 meso-scopic fault and fracture orientations which follow
 regional structural trends

 fracture spacing <0.25-0.5 fractures/meter 

 fracture densities and morphology which vary with lithology 
 and bed thickness 

Using a modi�ed rock mass ratings, 
(Bieniawski, 1989; Priest, 1993; Zhang, 2005),
combined with quantitative stratigraphic 
analysis of fracture density distribution
(Bertotti et al, 2007) we delineate
mechanostratigraphic units.

Mechano-stratigraphic units have similar:

 bed thickness

 fracture density

 �eld derived permeability

 �eld derived compressive strength
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Well-bore estimates of 
dynamic Young’s Modulus show 
meter scale variability.
(15-34 GPa)

Field-based fracture density and
compressive strength also show
meter scale variability

Stratigraphic variability and resulting changes in mechanical properties in�uence the variability 
of fracture morphology and density over the cm to m scale.

Understanding fracture morphology in di�erent seal types, across interfaces, and in various
structural settings is key to understanding how seals respond to hydraulic failure.

Calculated variability in elastic moduli correlates to the mechano-stratigraphic variability 
observed in outcrop --- the variations in elastic moduli will be modeled to quantify their e�ects.

Overpressure during burial (lithostatic loading) can induce open-mode tensile failure that can 
e�ect future seal integrity: Are most seals fractured then re-cemented/re-sealed in some way?

Variability in elastic moduli will 
be used in  future 
geomechanical modeling

Tamara Jeppson, & USU structural geology group. Field assistants: R. Wood, C. Barton, R. Petrie, S. Flores & D. Richey
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modi�ed from:  Hintze, et al., 2000 UGS Digital Geologic Map of Utah 
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