

Satellite Modular and Reconfigurable Thermal System (SMARTS)

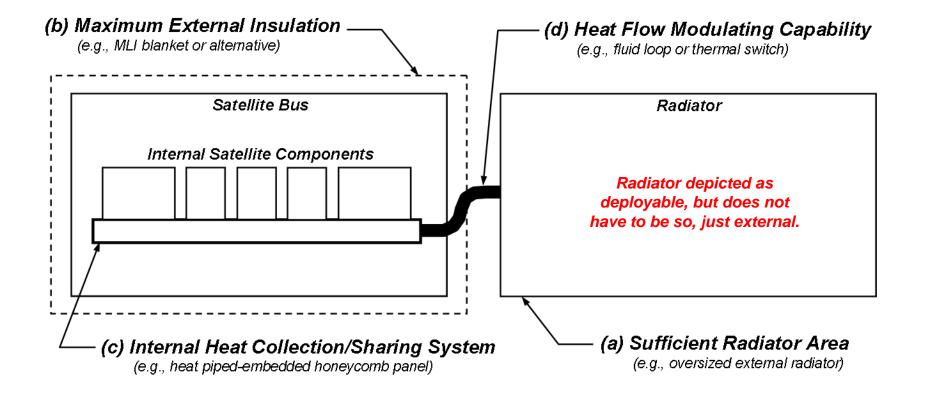
11-14 August 2008

D. Bugby (ATK Space Systems) W. Zimbeck (Technology Assessment & Transfer) E. Kroliczek (B&K Engineering) A. Williams (Air Force Research Laboratory)

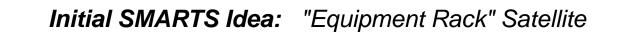
22nd Annual AIAA/USU Conference on Small Satellites

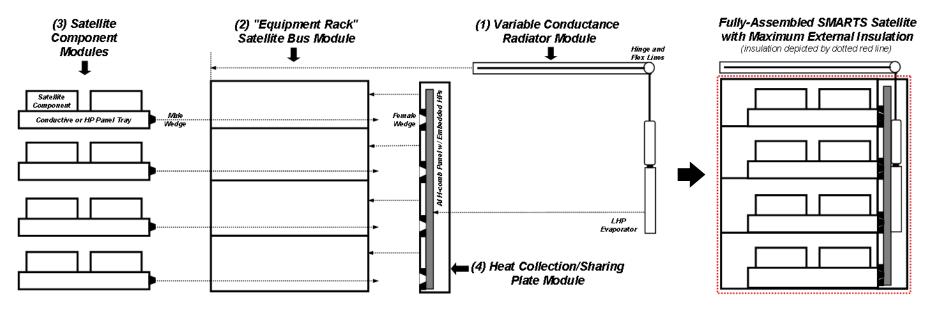
- SMARTS is an SBIR program funded by the AFRL Space Vehicles Directorate, Kirtland AFB, New Mexico
 - AFRL program manager:
 - Small business prime:
 - Small business PI:
 - Program status:

Mr. Andrew Williams Technology Assessment & Transfer (TA&T) Mr. Walter Zimbeck Phase II kickoff held on 7/25/08

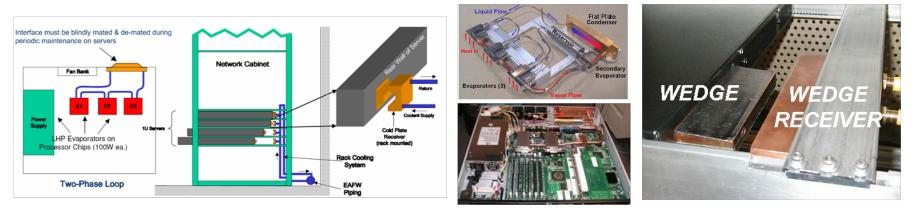

- SMARTS is a new thermal management approach to help achieve the three ORS tiers, including the Tier 2 goal of "six day" satellite
- Traditional approach -- <u>cold-biasing plus heater power, involving</u> <u>judicious MLI/coating coverage and component placement on/near</u> <u>radiators</u> -- not acceptable for RS: Due to: (1) lengthy design/test process; (2) significant heater power; and (3) inadaptability.
- **RS Need:** Thermal architecture that <u>intrinsically:</u> (a) minimizes design/test time and heater power; (b) enables quick assembly by eliminating the need for judicious MLI/coating coverage and component placement; and (c) assures on-orbit thermal control.

Traditional Spacecraft Thermal Design Approach

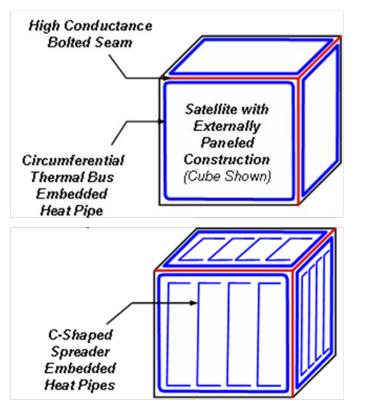

- Radiators sized for HOT CASE
- Heaters sized for COLD CASE
- Requires optimization of
 - component arrangement
 - MLI coverage
 - external coatings
- Limitations
 - lengthy design/test process
 - high survival heater power
 - limited design flexibility
 - not readily adaptable


RS Needs That Traditional Approach Cannot Provide

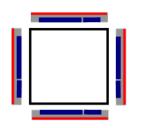
- **Thermal Adaptability** ... to meet the Tier 1 requirement for redeployment of existing assets in **minutes**
- **Rapid Deployability** ... to meet the Tier 2 requirement to build and deploy a new asset in **days**
- **Design Flexibility** ... to meet the Tier 3 requirement to incorporate new payloads in **months**



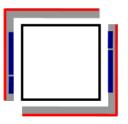
Above IDEA based on SBIR that developed a cooling system for SERVERS on NAVY SUBS/SHIPS

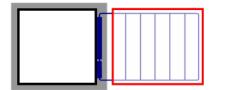

11-14 August 2008 AIAA/USU Smallsat Conf.

Concept

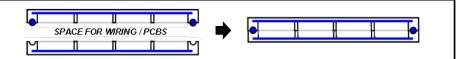


Revised SMARTS Idea: Externally Paneled Satellite

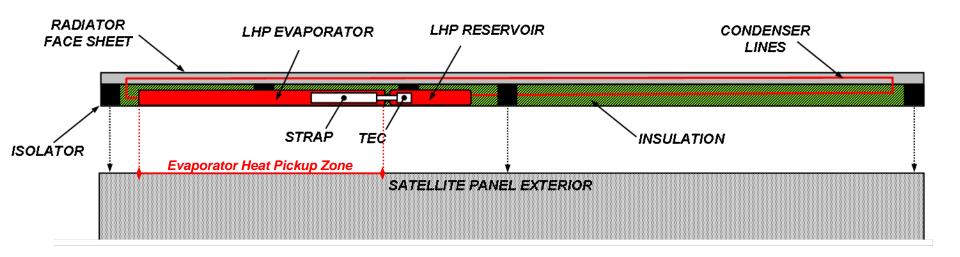

Isothermalization Features


Insulation/Radiators/Variable Conductance (Top View)

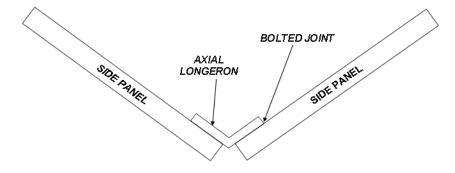
Single-Side Modules with LHP/Insulation/Radiator


Dual-Side Modules with LHP/Insulation/Radiator

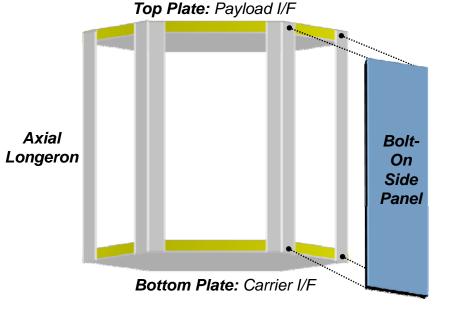
Deployable Module with LHP/Insulation/Radiator


One option for integrating heat pipes, wiring, PCBs into panels

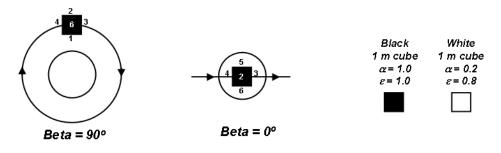
11-14 August 2008 AIAA/USU Smallsat Conf.



Insulation / Radiator / Variable Conductance: Single-Panel Module


Panel-to-Panel Coupling: Configuration / Conductance (Estimate)

Longeron Dimensions Longeron Conductance (6061 Al) Joint Heat Transfer Coef. Joint Surface Area Joint Conductance **Panel-to-Panel Conductance**


- = 0.5 cm x 5 cm x 100 cm
- = 1.5*0.5*100/5 = **15 W/K**
- $= 0.5 \text{ W/cm}^2 \text{ K}$
- = 100 cm x 2.5 cm
- = 0.5*100*2.5 = **125 W/K**
- = 1/(2/125 + 1/15) = 12 W/K

- 1 NADIR
- 2 ZENITH
- 3 VELOCITY
- 4 ANTI-VELOCITY
- 5 ANTI-SUN (FOR BETA90)
- 6 SUN POINTING (FOR BETA90)

Properties Used: q_{SOLAR} = 1354 W/m², albedo = 0.35, $q_{EARTH IR}$ = 225 W/m²

Cases Run:

(1) α =1.0, ϵ =1.0, Beta 90° nadir pointing (w/ 45° yaw to increase projected area by 1.4):

(2) α =1.0, ϵ =1.0, Beta 90° nadir pointing:

(3) α =1.0, ϵ =1.0, Beta 0° nadir pointing:

(4) α =0.2, ϵ =0.8, Beta 90° nadir pointing (w/ 45° yaw to increase projected area by 1.4):

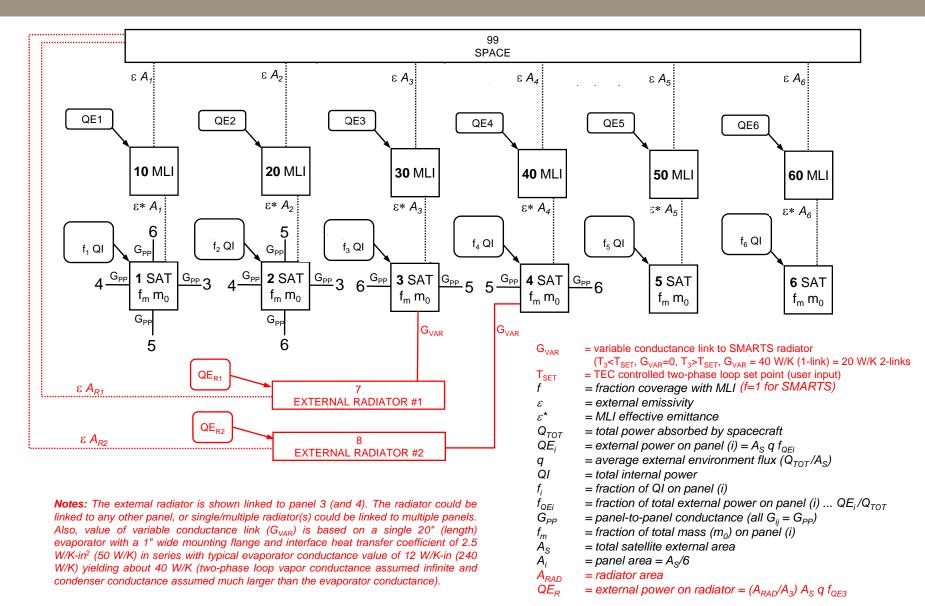
(5) α =0.2, ϵ =0.8, Beta 90° nadir pointing:

(6) α =0.2, ϵ =0.8, Beta 0° nadir pointing:

total energy absorbed 2459 W ~ 410 W/m² total energy absorbed 1894 W ~ 315 W/m² total energy absorbed 1840 W ~ 305 W/m² total energy absorbed 802 W ~ 135 W/m² total energy absorbed 690 W ~ 115 W/m² total energy absorbed 680 W ~ 115 W/m²

CONCLUSION: External environment/surface coating effects can be modeled by applying a heat flux of 100-400 W/m² to the cube exterior and multiplying that flux by the total cube area (A_s) and a panel-dependent heat load factor (f_{OE}). The Beta = 0° orbit has a time-varying heat load factor as shown. The Beta = 90° orbit has a steady, highly non-uniform heat load factor.

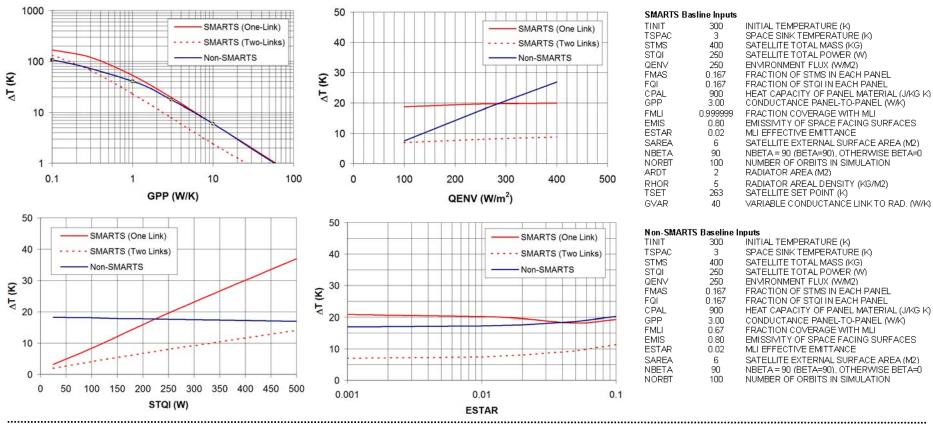
Cold:	$q_1 = 100 W/m^2$
Nominal (white):	$q_2 = 175 W/m^2$
Hot (white):	$q_3 = 250 W/m^2$
Hot (black):	$q_4 = 400 W/m^2$


Approach to Calculate Absorbed Power: $QE_i(t) = A_S q_i f_{OFi}(t)$ (i = cube face, j = environment case, A_s = total surface area)

Beta 0º (Case 6) Normalized	Heat Load o	n Each Face ((f _{OEi})
-----------------	--------------	-------------	---------------	---------------------

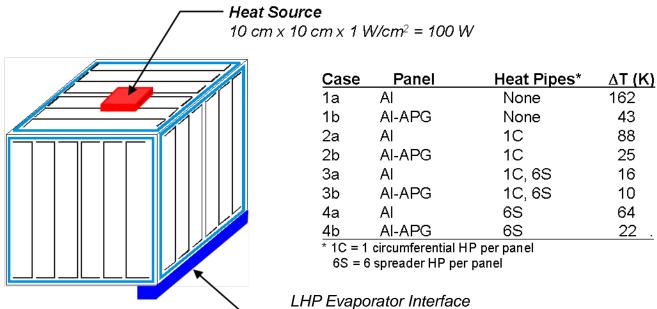
(1.0 = ʃ(1	f _{QE,1} + f _{QE,2}	+ f _{QE,3} + f _{QE,4} +	+ f _{QE,5} + f _{QE,6} .)d(t/τ) f _{qei}	$= QE_i/680$	W)
Time (sec)	f _{QE1}	f _{QE2}	f _{QE3}	f _{QE4}	f _{QE5}	f _{QE6}
0.0000E+00	0.38	0.40	0.14	0.14	0.14	0.14
4.4098E+02	0.36	0.34	0.13	0.33	0.13	0.13
8.8196E +02	0.31	0.20	0.11	0.46	0.12	0.12
1.3229E+03	0.25	0.00	0.09	0.49	0.09	0.09
1.5219E+03	0.34	0.00	0.09	0.48	0.09	0.09
1.5250E+03	0.25	0.00	0.09	0.09	0.09	0.09
1.7639E+03	0.25	0.00	0.09	0.09	0.09	0.09
2.2049E +03	0.25	0.00	0.09	0.09	0.09	0.09
2.6459E+03	0.25	0.00	0.09	0.09	0.09	0.09
3.0868E+03	0.25	0.00	0.09	0.09	0.09	0.09
3.5278E+03	0.25	0.00	0.09	0.09	0.09	0.09
3.7667E+03	0.25	0.00	0.09	0.09	0.09	0.09
3.7699E+03	0.34	0.00	0.48	0.09	0.09	0.09
3.9688E+03	0.25	0.00	0.49	0.09	0.09	0.09
4.4098E+03	0.31	0.20	0.46	0.11	0.12	0.12
4.8508E +03	0.36	0.34	0.33	0.13	0.14	0.13
5.2917E +03	0.38	0.40	0.14	0.14	0.14	0.14
Beta 90°	(Case 5) Normaliz	ed Heat	Load on l	Each Fac	e (f _{QEi})
	f _{QE1}	f_{QE2}	f _{QE3}	f _{QE4}	f _{QE5}	f _{QE6}
	0.244	0.000	0.091	0.090	0.090	0.484

Modeling



11-14 August 2008 AIAA/USU Smallsat Conf.

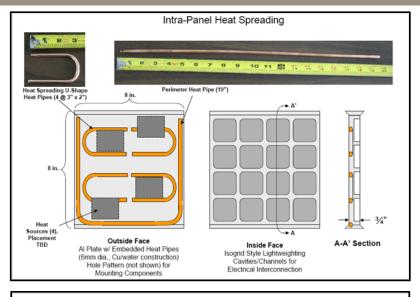
SMARTS Approach vs. Traditional Approach (Non-SMARTS)

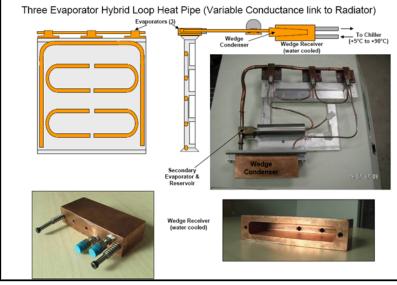

Comparison of Prospective "Universal" ORS Thermal Designs ... Thermal Design Goal: 263 K < T < 313 K

		HOT		COL	D (No he	aters)	COI	D (Su	rv. hea	aters)	NOM	INAL (4	00 kg)	NOM	IINAL (4	10 kg)
CASE	β90, 50	0 W, q _{ENV} 2	50 W/m ²	β90, 25	β90, 25 W, q _{ENV} 100 W/m ² β90, 25 W, q _{ENV} 100 W/m ²		βZero, 250 W, q <u>ενν</u> 175 W/m ²		βZero, 250 W, q _{ENV} 175 W/m ²							
	TMAX	TMIN	∆T*	TMAX	TMIN	∆T*	TMAX	Тыя	∆ T*	Qsurv	TMAX	TMIN	∆ T*	TMAX	TMIN	∆T*
SMARTS	313	290	24	263	263	0.4	263	263	0.4	0	291	274	16	295	268	27
n-SMARTS	314	291	23	227	216	11	272	262	10	575	271	262	9	283	253	30

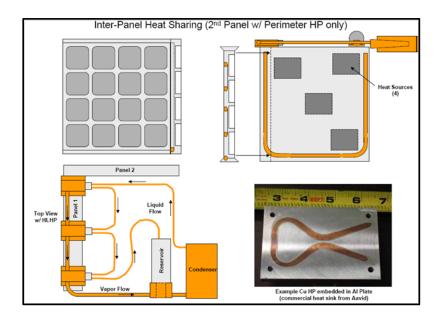
11-14 August 2008 AIAA/USU Smallsat Conf.

Results

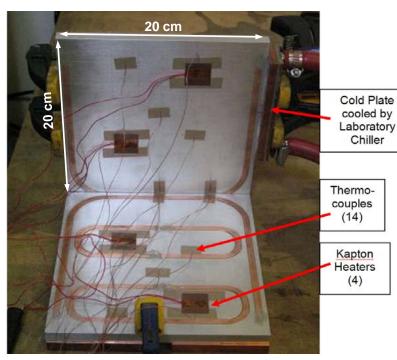

Boundary Node at 273 K


Case	Panel Construction	Heat Pipe Configuration on Panel
1a	Al isogrid	no heat pipes
1b	Al-APG isogrid	no heat pipes
2a	Al isogrid	1 circumferential thermal bus heat pipe
2b	Al-APG isogrid	1 circumferential thermal bus heat pipe
3a	Al isogrid	1 circumferential thermal bus heat pipe, 6 spreader heat pipes
3b	Al-APG isogrid	1 circumferential thermal bus heat pipe, 6 spreader heat pipes
4a	Al isogrid	6 spreader heat pipes
4b	Al-APG isogrid	6 spreader heat pipes

Testing


... SMARTS Phase I testing -- initial plan

Demonstrate SMARTS intra-panel and inter-panel isothermalization and variable conductance to external sink using existing water heat pipes/loop.



11-14 August 2008 AIAA/USU Smallsat Conf.

Phase I testing de-scoped to dual heat pipe panel simulation (two-phase water loop eliminated from test bed).

Steady-State Results (Htrs. @ 1 W/cm²) G_{PP} = 20 W/K, A = 50 cm², h = 0.4 W/cm² K

20 cm x 20 cm Al Isogrid Panels (Lightweighting on Reverse Side Not Shown)

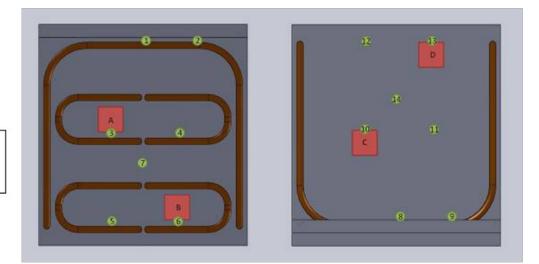
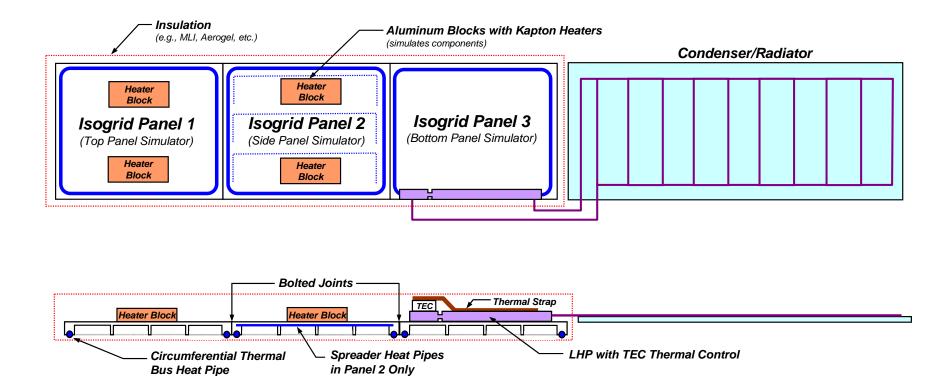


Table 7. Steady-state temperatures (°C) with only heaters A and B (Plate 1) powered at 5.3 W.


	Plate 1, 1W/cm ²	Plate 2, 1W/cm ²	Plate 1, 0W/cm ²	Plate 2, 0W/cm ²
TC Position #1/#8	23.22	22.81	20.59	20.54
TC Position #2/#9	23.51	22.57	20.63	20.46
TC Position #3/#10	25.24	22.47	21.09	20.58
TC Position #4/#11	29.68	21.51	21.21	20.48
TC Position #5/#12	33.20	22.43	20.88	20.77
TC Position #6/#13	24.96	22.11	20.88	20.59
TC Position #7/#14	26.17	22.65	20.95	20.60
Chiller set temperature	was 20°C			

Only heaters A and B were powered $-2 \cdot 5.3$ W = 10.6 W

Externally-Paneled Satellite Variable Conductance Test Bed

Conclusions ... viability of SMARTS for RS thermal control

- SMARTS is a new thermal management approach to help achieve the three ORS tiers, including the Tier 2 goal of developing a "six day" satellite
- SMARTS thermal design principles (1) modestly oversized radiators, (2) maximum external insulation, (3) internal isothermalization, and (4) variable conductance link to space – are implemented as follows:
 - inter-panel heat transfer
 - each panel has a single circumferential "thermal bus" heat pipe
 - panels bolted together along seams (should provide sufficient conductance)
 - one or more heat removal links to variable conductance subsystem
 - intra-panel heat transfer
 - several panel-embedded "spreader" heat pipes
 - enhanced thermal conductivity material such as AI-APG
 - insulation, variable conductance, and radiator area
 - combinations of body-mounted or deployable radiator modules.
- SMARTS Phase I has analytically demonstrated the superiority of the approach (for RS) over the traditional satellite thermal design approach
- SMARTS Phase II will provide laboratory test verification of the above
- SMARTS thermal design principles will, in the very near term, be incorporated into future ATK small satellites