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Outline

Reconfiguration Technologies and Motivation
Dispersions of Nanoparticles
Frequency Reconfiguration of Single Element
Small Array Behavior
– H-plane Array
– E-plane Array

Ongoing and Future Research



[AI-Charchafchi, 1995]

Some designs are difficult to reconfigure 
using SOA reconfiguration mechanisms…

Reconfiguration Technologies and Motivation

[Zhang, 2004]

[Piazza, 2008]

SOA Reconfiguration Mechanisms
– PIN diodes
– RF MEMS
– Varactors
– Tunable bulk/thin film materials

Integrating the State-of-the-Art (SOA)

[Huff, 2006]

– No bias/control ‘wires’
– Continuous tuning
– No electrostatic discharge 

sensitivity
– Multifunctional

[2,3]



EFCD Characterization
Utilizing Dynamic Material/Fluidic-Based Material Systems
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[4]

Maxwell-Garnett Mixing Rule
Good for dispersions of nanoparticles with 

different shapes and compositions Mondispersed Polydispersed

Barium Strontium Titanate (BSTO) 
Ba0.6Sr0.4TiO3

(εr ~ 1000, μr ~ 1, and tan(δe) ~ 0.01) 
Particle Diameter  <100nm 



Dielectrophoresis Force Models
Kinetic Behavior of Nanoparticles

Can also examine the frequency-dependent kinetic behavior of the nanoparticles to use in 
more advanced systems

Thin reservoir model Wide reservoir model

Simple electrode model



EFCD Integration in Antenna

[5]

Frequency Reconfiguration of Single Antenna Element

[Thorson, 2002]



Analytical Modeling

Material perturbation 
theory

The placement and orientation of the 
capillary depends on the dominant 

constitutive parameter and its 
corresponding modal field distribution. 

Where to place a network of pressure driven capillaries?

Radiating edge if 
dielectric 

Center if 
magnetic 

[6]



Physical Model 
Microstrip Patch: Experimental Model (3 GHz Design)

EFCD is 100 nm diameter colloidal Barium Strontium Titanate 
(Ba0.6Sr0.4TiO3) dispersed in low viscosity, low loss 

petroleum distillate (oil)

Dimensions (mm)



Results



Measured Results



Small Array Behavior (H-Plane) 
Microstrip Patch Array: Experimental Model (3 GHz Design)

3 capillary structures filled with identical volume fractions of magnetodielectric colloidal 
material in liquid to reconfigure the frequency of the patches on a PDMS dielectric

Dimensions (mm)



Small Array Behavior (E-Plane)
Microstrip Patch Array: Experimental Model (3 GHz Design)

Dimensions (mm)

3 capillary structures filled with identical volume fractions of magnetodielectric colloidal 
material in liquid to reconfigure the frequency of the patches on a PDMS dielectric



Antenna Design and Fabrication

Entire Reconfigurable Antenna Setup

System connected by tubing, valves and Y-splitters.
Inner capillary of antenna filled with oil.
EFCD material flows through outer capillaries of antenna.



H-Plane Array Simulation
Patch 2

Patch 1

Se = Edge to edge element spacing 15 mm

se



H-Plane Array Results
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E-Plane Array Simulation

se = Edge to edge element spacing 22 mm

Patch 2Patch 1

se



E-Plane Array Results
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φ = 90o

Freq. = 3 GHz

H-Plane Array Simulation
Patch 2

Patch 1

0 db

-10

-20

-30

Z

Y

2sin cos
21

1 2sin cos
2

eff

eff

N d

N
d

π θ
λ

π θ
λ

⎧ ⎫⎡ ⎤⎛ ⎞
⎪ ⎪+ Φ⎢ ⎥⎜ ⎟⎜ ⎟⎪ ⎪⎢ ⎥⎝ ⎠⎣ ⎦
⎨ ⎬

⎡ ⎤⎛ ⎞⎪ ⎪+ Φ⎢ ⎥⎜ ⎟⎪ ⎪⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎩ ⎭
eff

o rcm rcm

c
f

λ
μ ε

=

Increase in beam width
and decrease in gain

2
50

N
d mm

=
=X

Z

φ = 0o

Freq. = 3 GHz

Patch 1 and patch 2
in phase



φ = 90o

Freq. = 2.85 GHz
φ = 90o

Freq. = 3 GHz

H-Plane Array Simulation
Patch 2
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φ = 90o

Freq. = 2.75 GHz

H-Plane Array Simulation
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Patch 1

2sin cos
21

1 2sin cos
2

eff

eff

N d

N
d

π θ
λ

π θ
λ

⎧ ⎫⎡ ⎤⎛ ⎞
⎪ ⎪+ Φ⎢ ⎥⎜ ⎟⎜ ⎟⎪ ⎪⎢ ⎥⎝ ⎠⎣ ⎦
⎨ ⎬

⎡ ⎤⎛ ⎞⎪ ⎪+ Φ⎢ ⎥⎜ ⎟⎪ ⎪⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎩ ⎭
eff

o rcm rcm

c
f

λ
μ ε

=

Increase in beam width
and decrease in gain

0 db

-10

-20

-30

Z

Y
2

50
N
d mm

=
=

Z

X

φ = 0o

Freq. = 2.75 GHz

Patch 1 and patch 2
in phase



E-Plane Array Simulation
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Summary and Future Research

NASA KC-135 [8]

Dielectrophoresis
Design guidelines
Fabrication 

Single Element Reconfiguration
Analytical verification
300 MHz Frequency shift

Small Array Behavior
Orientation variation
H-plane 292.5 MHz Frequency 
shift
E-plane 230.6 MHz Frequency 
shift

Feasibility testing of system in 
dynamic/harsh environment 
Micro gravity testing
Pattern and polarization 
reconfiguration
Software defined radio

Polarization Reconfiguration
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