Frequency Reconfiguration of a Small Array Enabled by Functionalized Dispersions of Colloidal Materials

¹S. Goldberger, ²F. Drummond, ¹R. Anderson, ¹J. Barrera, ²A. Bolon, ²S. Davis, ²J. Edelen, ¹J. Marshall, ²C. Peters, ¹D. Umana, and ¹G. H. Huff

¹Electromagnetics and Microwave Laboratory, Department of Electrical and Computer Engineering Texas A&M University, College Station, TX 77843-3128 ²Department of Aerospace Engineering Texas A&M University, College Station, TX 77843-3118 Email: ghuff@tamu.edu

This work was sponsored in part by AFOSR grant # FA9550-08-1-0329 and the NASA funded Space Engineering Institute at Texas A&M University

UNIVERSITY

Project Team and Acknowledgements

Magda Lagoudas Stephen A. Long Jacob McDonald Bolutife P. Ajayi

Back Center: Joel Barrera Third Row: Justin Marshall and Cameron Peters Second Row: Rachel Anderson, Amy Bolon, and Stephen Davis Front Row: Sean Goldberger, David Umana, Jamie Edelen, and Frank Drummond

Dr. Patrick Fink

Dr. Tim Kennedy

Dr. Phong Ngo

Outline

- Reconfiguration Technologies and Motivation
- Dispersions of Nanoparticles
- Frequency Reconfiguration of Single Element
- Small Array Behavior
 - H-plane Array
 - E-plane Array
- Ongoing and Future Research

Reconfiguration Technologies and Motivation

Integrating the State-of-the-Art (SOA)

- SOA Reconfiguration Mechanisms
 - PIN diodes
 - RF MEMS
 - Varactors
 - Tunable bulk/thin film materials

[Zhang, 2004]

Some designs are difficult to reconfigure using SOA reconfiguration mechanisms...

- No bias/control 'wires'
- Continuous tuning
- No electrostatic discharge sensitivity
- Multifunctional

EFCD Characterization

Utilizing Dynamic Material/Fluidic-Based Material Systems Maxwell-Garnett Mixing Rule

Dielectrophoresis Force Models

Kinetic Behavior of Nanoparticles

EFCD Integration in Antenna

Frequency Reconfiguration of Single Antenna Element

Analytical Modeling

The placement and orientation of the capillary depends on the dominant constitutive parameter and its corresponding modal field distribution.

Physical Model

Microstrip Patch: Experimental Model (3 GHz Design)

Dimensions (mm)	d	L	W	h
	3.0	43.5	50.0	4.0

EFCD is 100 nm diameter colloidal Barium Strontium Titanate (Ba_{0.6}Sr_{0.4}TiO₃) dispersed in low viscosity, low loss petroleum distillate (oil)

Results

Measured Results

Small Array Behavior (H-Plane)

Microstrip Patch Array: Experimental Model (3 GHz Design)

3 capillary structures filled with identical volume fractions of magnetodielectric *colloidal material* in *liquid* to reconfigure the frequency of the patches on a PDMS dielectric

L1

3.0

Small Array Behavior (E-Plane)

Microstrip Patch Array: Experimental Model (3 GHz Design)

3 capillary structures filled with identical volume fractions of magnetodielectric colloidal material in liquid to reconfigure the frequency of the patches on a PDMS dielectric

Dimensions (mm)

Antenna Design and Fabrication

Entire Reconfigurable Antenna Setup

- System connected by tubing, valves and Y-splitters.
- Inner capillary of antenna filled with oil.
- *EFCD* material flows through outer capillaries of antenna.

NASA

H-Plane Array Results

ĀŇ

 s_e = Edge to edge element spacing 22 mm

NAS

E-Plane Array Results

Summary and Future Research

Dielectrophoresis

- Design guidelines
- Fabrication

Single Element Reconfiguration

- Analytical verification
- 300 MHz Frequency shift

Small Array Behavior

- Orientation variation
- H-plane 292.5 MHz Frequency shift
- E-plane 230.6 MHz Frequency shift

×

Feed

NASA KC-135

Polarization Reconfiguration

Bias 2

Gap 1

Bias 1

Gaps for Dispersions Gaps for Dispersions

Gap 3

Bias 3

- Feasibility testing of system in dynamic/harsh environment
- Micro gravity testing
- Pattern and polarization reconfiguration
- Software defined radio

References

- [1] Destination360 (2009) Destination360.com. [Online]. www.destination360.com/north-america/us/alaska/aurora-borealis
- [2] N. Rager. (2009, March) The University of Chicago News Office. [Online]. http://www-news.uchicago.edu/releases/06/images/061016.clotting.jpg
- [3] D. Mayerich. (2009, March) Quantumkingdom.com. [Online]. http://www.quantumkingdom.com/Research/olfactory_vascular.jpg
- [4] A. Sihvola, *Electromagnetic Mixing Formulas and Applications*. Washington D. C., USA: Institution of Engineering and Technology, 1999.
- [5] D. Kindersley. (2009, Februrary) Dorling Kindersley Books. [Online]. http://www.dorlingkindersley-uk.co.uk/nf/ClipArt/Image/0,239033_1582309_239069,00.html
- [6] R. F. Harrington, *Time-Harmonic Electromagnetic Fields*, 4th ed., D. G. Dudley, Ed. New York, USA: Wiley-Interscience, 2001.
- [7] C. A. Balanis, Antenna Theory: Analysis and Design, Third ed. Hoboken: John Wiley & Sons, Inc., 2005.
- [8] K. Cowing. (2006, Oct.) SpaceRef.com. [Online]. www.spaceref.com/news/viewnews.html?id=1159
- [9] Ansoft, HFSS[©] v11.1, Pittsburgh, PA 15219
- [10] National Instruments, Labview[©] v8.6, Austin, TX 78759
- [11] TPL, Inc., Nanosperse[™] 484 Wetting & Dispersion, Albuquerque, NM.
- [12] TPL, Inc., NanOxide[™] HBS 1000 Barium Strontium Titanate Powder, Albuquerque, NM.
- [13] WD-40, 3in1 Oil[©], San Diego, CA.

Frequency Reconfiguration of a Small Array Enabled by Functionalized Dispersions of Colloidal Materials

¹S. Goldberger, ²F. Drummond, ¹R. Anderson, ¹J. Barrera, ²A. Bolon, ²S. Davis, ²J. Edelen, ¹J. Marshall, ²C. Peters, ¹D. Umana, and ¹G. H. Huff

¹Electromagnetics and Microwave Laboratory, Department of Electrical and Computer Engineering Texas A&M University, College Station, TX 77843-3128 ²Department of Aerospace Engineering Texas A&M University, College Station, TX 77843-3118 Email: ghuff@tamu.edu

This work was sponsored in part by AFOSR grant # FA9550-08-1-0329 and the NASA funded Space Engineering Institute at Texas A&M University

UNIVERSITY

