

REPTile: A Miniaturized Detector for a Cubesat Mission to Measure Relativistic Particles in Near-Earth Space

Quintin Schiller and Abhishek Mahendrakumar

Advisor: Prof. Xinlin Li

University of Colorado at Boulder

Department of Aerospace Engineering Sciences

August 11, 2010

LASP

The Radiation Belts

Dynamic system - potentially fatal to spacecraft and astronauts April 5, 2010 - Intelsat Galaxy 15 "ZombieSat" fails due to unexpected particle flux increase ~\$300M loss

Unanswered Questions: Source, Loss, Transport Mechanisms

LASP

Conjunctive Science

In-situ measurements: Radiation Belt Storm Probes (RBSP) via the Relativistic Electron and Proton Telescope (REPT)

Conjunctive Science

Colorado Student Space Weather Experiment (CSSWE)

LLASP

Conjunctive Science

Concurrent particle measurements

LLASP

REPTile

LASP

Relativistic **E**lectron and **P**roton **T**elescope **i**ntegrated **l**ittle **e**xperiment

REPTile Simulations and Electronics – Schiller and Mahendrakumar

LASP

REPTile

Relativistic **E**lectron and **P**roton **T**elescope **i**ntegrated **l**ittle **e**xperiment

REPTile Simulations and Electronics – Schiller and Mahendrakumar

Connecting the Dots

8/11/2010

8

LLASP

Connecting the Dots

LASP

Simulating Science Environment

Simulating Science Environment

Simulating Science Environment CLASP

REPTile Simulations and Electronics – Schiller and Mahendrakumar

L'LASP

Simulating Signal

LASP

Simulating Signal

Simulating Science Environment

Instrument Performance

CSSWE Science Objectives				
	Detector 1	Detector 2	Detector 3	Detector 4
Electrons	0.5-1.5 MeV	1.5-2.2 MeV	2.2-2.9 MeV	>2.9 MeV
Protons	10-18 MeV	18-25 MeV	25-30 MeV	30-40 MeV

8/11/2010

REPTile Simulations and Electronics – Schiller and Mahendrakumar

CIAS

Electronics Saturation

LLASP

LLASP

Electronics Noise

LASP

Signal Chain

Conclusions

Challenges	Solutions
Mass and Volume Constraints	Rigorous Design Analysis
Particle Behavior	Detailed Performance Simulations
Low Amplitude Signal	Novel Electronics Board Design
Operational Speed	Detailed Count Rate Analyses

Acknowledgements Past and present CSSWE team LASP engineers

REPTile Simulations and Electronics – Schiller and Mahendrakumar

20

LI ASP

quintin.schiller@colorado.edu mahendra@colorado.edu

REPTile Engineering Model

THANK YOU

QUESTIONS

Simulating Noise

Balance Shielding and Noise Minimize Mass Maximize Signal Maintain Signal/Noise > 2

Light Outer Shielding Aluminum **Heavy Inner Shielding** Tungsten

Balance b/w Mass and Signal

Binning Logic

	D1	D2	D3	D4
bin1:	1	0	0	0
bin2:	1	1	0	0
bin3:	1	1	1	0
bin4:	1	1	1	1

Example: bin3 particle				
	D1	D2	D3	D4
bin3:	1	1	1	0

LLASP

Example: bin3 electron				
	D1	D2	D3	D4
bin3:	100	100	100	000

Example: bin3 proton					
	D1	D2	D3	D4	
bin3:	111	111	111	000	

25

Simulating Science Environment

LASP

Saturation

LLASP

LASP

REPTile

REPTile Assembly

LASP

Electronics Top-level Requirements

8/11/10

LASP

Electronics

tes L'LASP

Simulating Count Rates

GEANT4 – A Statistical Toolkit

Worldwide collaboration spearheaded by physicists at CERN

All aspects of particle simulation included

Applications include any field where particles interact with matter; high energy physics, space science, radiation physics, nuclear medicine¹

LHC experiments such as ATLAS

The Space Energetic Particle Transport and Interaction Modeling for ESA Science Studies (SEPTIMESS) project ¹geant4.web.cern.ch

36

Simulating Count Rates

- C = Count Rate [#/s] I = Environmental Particle Flux $\gamma = Geometric Factor$ $\alpha = Detector Efficiency$ E = Incident Particle Energy
- i = Detector Index

• Geant4

LIAS

Simulating Count Rates

- E = Incident Particle Energy
- I = Environmental Particle Flux
- γ = Geometric Factor
- α = Detector Efficiency

Detector Efficiency

Signal vs. Noise

8/11/10

Testing Plan: Detectors

L'HSP

Testing Detectors

Detector tray needed for storage and testing Radioactive electron sources Radioactive alpha sources Cosmic rays Vacuum tests Thermal tests

LLASP **REPTile Assembly** DODDDDD

42

Simulating Count Rates

- E = Incident Particle Energy
- **I** = Environmental Particle Flux

LIAS

- γ = Geometric Factor
- α = Detector Efficiency

Environmental Flux

Simulating Count Rates

- E = Incident Particle Energy
- I = Environmental Particle Flux
- γ = Geometric Factor
- α = Detector Efficiency

Geometric Factor

Derived from the Howell's Radiation Transfer Configuration Factors

www.me.utexas.edu/~howell/index.html

LLASP

Signal vs. Noise

a) Signal protons

b) Shield penetrating protons

LASP

L'LASP

ACS Analysis

Electron Trajectories

50 MeV 10 MeV 54 30 MeV 10 MeV 1 MoV 23 100 keV 10 keV 12 1 keV 28 18 12 13 348

Proton Trajectories

L'LASP

Testing Electronics

Test electronics module by module Test interface between modules Progress from digital end towards analog end Interface the electronics with the detector

