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ABSTRACT 

Among applications of formation flying, several case scenarios for High Resolution Remote Sensing Satellite 

Constellations were proposed in the literature. For a radar interferometric system a pair of satellites has to be at two 

different positions that are separated by a distance of several hundred meters during measurement sequence.  The 

satellites can be either in the same orbit or in a part of approximately parallel orbits. During imaging the relative 

separation of the satellites has to be stable and precisely known. In the case of an optical payload, one satellite can 

hold the optical lens system and the other the imaging sensors. The satellites must fly one over the other or one 

behind the other at a close range. In the paper, several manoeuvres for Satellite Constellations are analysed and 

simulated with the respect to fuel consumption.  A linear model based on Hill-Clohessy-Wiltshire equations is 

solved analytically for the fuel consumption analysis. Linear models are optimised serving an approximate solution 

with respect to optimal fuel consumption respecting constraints, such as maximal disposable time and the instant of 

required formation position. Better results are obtained when orbit eccentricity is taken into account, as shown in the 

simulated examples. 

INTRODUCTION 

In Slovenia a new Centre of Excellence for Space 

Sciences and Technologies SPACE-SI has been 

established in 2010 with the main focus on nano and 

micro satellite technologies. The Research & Technical 

Development (RTD) goals of the SPACE-SI 

consortium consisting of academic institutions, high-

tech SMEs and large industrial and insurance 

companies are focused on nano and micro satellite 

technologies that are enabling high precision interactive 

remote sensing and precise maneuvering of small 

spacecrafts in formation flying missions. For the 

development of these technologies an advanced RTD 

infrastructure will be set up including a 

multidisciplinary laboratory for closed–loop 

investigations of materials, structures, micropropulsion 

systems, electronic components and visual based 

control algorithms in simulated space environments. 

The experimental techniques will be combined with 

virtual models for primal and sensitivity analyses of 

components, subsystems and platforms as well as for 

their characterisation by inverse numerical analyses and 

optimisation of their design with respect to performance 

and reliability. The development of a technology 

demonstration mission is envisaged for which synergies 

and potential partners are sought at the international 

level.  

Nano satellites such as the Cubesat family, for example, 

are also very popular and affordable means for training 

young scientists and engineers at universities with 

ambitious multidisciplinary goals in space RTD. 

Introduction of Commercial off-the-shelf (COTS) 

components has reduced the costs of small satellites to 

such a level that failure of a satellite system is no longer 

considered as catastrophe but rather as a manageable 

risk. This allows introduction of new creative 

paradigms permitting high risk – high benefit 

approaches in space system design and mission 

planning which are expected to accelerate technology 

development in unprecedented ways. The indicated 

transitions have opened opportunities for newcomers to 

the space arena, including RTD players from 

economically less powerful and aerospace developed 

regions. In a similar way one could define RTD 

challenges for other types of missions which offer great 

Science and technology (S&T) opportunities for the 

small satellite sector. This opens very large RTD areas 

where we have identified the most promising RTD 

targets with an additional added value, that will be 

achieved by harmonising individual RTD strategies of 

laboratories by focussing on a common 

multidisciplinary goal targeted on enabling technologies 

for advanced platform manoeuvring.  

In recent years there has been an increased interest in 

formation flying satellites and autonomous docking. 
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The formation flying satellites offer potentially greater 

science and operational capabilities than those 

attainable with a monolithic spacecraft. Not only the 

modules from a large and expensive monolithic satellite 

are distributed to a number of smaller and cheaper 

platforms, but even more importantly a whole spectrum 

of new missions (such as stereo vision) that could be 

performed by a group of satellites is made possible.  

Fundamentals of astrodynamics and a comprehensive 

treatment of dynamics of space systems including 

formation flying is provided in [1,2]. Simulation of 

spacecraft attitude and orbit dynamics with quaternions 

is given in [3]. Similar simulation in object-oriented 

program Modelica is presented in [4]. Dynamics of 

earth orbiting formations and linear models of 

formations based on Hill-Clohessy-Wiltshire (HCW) 

equations are given in [5,6], while geometry and control 

of satellite formations are described in [7]. Linear and 

non–linear models are also given in [8], where also 

impulse and continuous control, disturbances, period 

matching controllers and formation configurations are 

discussed. Architecture for spacecraft formation control 

is discussed in [9]. Satellite relative motion propagation 

and control in the presence of J2 perturbations is given 

in [10]; analysis of the perturbed J_2 for spacecraft 

formation flight and modified HCW equations are 

presented in [11] and relative orbital configurations in 

[12]. Development of guidance, navigation and control 

architecture and validation process enabling 

autonomous docking to a tumbling satellite is presented 

in [13]. Impulsive feedback control and corresponding 

manoeuvres are discussed in [14]. A geometrical 

method for the path prediction based on the state 

transition matrix and its comparison with HCW 

equations are given in [15]. Closed–loop control of 

spacecraft formations with an application is 

demonstrated in [16] while the results of autonomous 

docking experiments in the presence of anomalies are 

given in [17]. Adaptive control of satellite formation 

flying and global output feedback tracking control of 

spacecraft formation flying with parametric uncertainty 

are presented in [18] and [19] respectively. Fault 

detection and diagnosis for a multiple satellite 

formation flying system is given in [20]. Formation 

flying with global positioning system (GPS) is 

discussed in [21]. Control and autonomy algorithms for 

docking are presented in [22]. Dynamics and control of 

spacecraft formations in the presence of disturbances is 

given in [23]. An intelligent control concept for 

formation flying satellites with aim to optimize fuel 

consumption is presented in [24]. Vision-based 

navigation for formation flying is given in [25,26]  

In order to achieve the high autonomy and cooperation 

between the satellites, algorithms for autonomous 

docking and formation flying (Guidance, Navigation 

and Control – GN&C algorithms) have to be developed 

and tested. These algorithms will, in combination with 

on-line path planning and obstacle avoidance 

algorithms ensure safe autonomous docking and will 

enable the desired formation of the satellites for a 

specific task. 

Various scenarios using formation flying were 

presented in the literature, such as high-resolution dual 

satellite optical remote sensing, radar interferomteric 

imaging and space debris observation 

High-resolution optical dual satellite imaging is also 

called fractionated spacecraft. Close formation flying of 

small satellites enables several opportunities for high 

resolution remote sensing, so it is expected that High 

Resolution Remote Sensing Satellite Constellations 

(HRRSSC) will become an attractive solution for Earth 

observation. In the case of an optical payload, one 

satellite can hold the optical lens system and the other 

the imaging sensors. The satellites must fly one over the 

other or one behind the other if a mirror at an angle of 

approximately 45° is used to reflect the beam to the 

sensors. To obtain a multispectral resolution in the 

order of few meters, both satellites should be placed 

close one to the other. When imaging both systems 

have to be precisely aligned and kept at a constant 

relative distance and orientation. The distance between 

the optical system and sensors has to be known in 

micrometer scale. 

For the radar interferometric system a pair of satellites 

has to be in two different orbits that are separated by a 

distance of several hundred meters (e.g. 100-200 m) 

during measurement sequence. The satellites can be 

either in the same orbit (along track) or in a part of 

approximately parallel orbits (across track). During 

imaging the relative separation of the satellites has to be 

stable and precisely known (in the range of millimeters) 

to enable interferometric processing and achieve good 

results. Synthetic Aperture Radar interferometry 

(InSAR) technique is an effective tool of topographic 

mapping and generation of global Digital Elevation 

Model (DEM) [28]. It utilizes phase information 

included in two SAR images obtained from two 

antennas. SAR systems can provide images in daylight 

or at night and in nearly all weather conditions. The 

DEM obtained with InSAR has fine spatial resolution 

and target elevation precision [29], [30]. Especially the 

application of monitoring natural hazards place very 

complicated requirements on DEM. It is believed that 

better knowledge of relative orbits may significantly 

contribute to the baseline estimation methods. 
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Space debris is the collection of objects in space that 

were used by previous missions and no longer serve any 

useful purpose. It is believed that this issue will become 

a serious problem in near future, as the orbits of these 

objects often overlap with trajectories of operational 

spacecraft, and represent a potential collision risk. In 

order to remove the debris, close observation is 

necessary where during one or several encirclings the 

debris may be modelled as a 3D object. In order to have 

diversified images, the relative orbit planes must be as 

different as possible.  

In this paper close formation will be discussed, i.e. the 

satellites will be considered to fly at distance less than a 

few hundred meters. In spacecraft formation flying 

mission design, the relative spacecraft position is more 

important than the knowledge of the absolute position 

of the formation [27. In addition, knowledge of the 

relative states of spacecraft in a formation is often far 

more accurate than knowledge of the formation’s 

absolute state. For these reasons, this paper will be 

focused on studies of the relative positions of two 

spacecraft, forming the formation. The satellites will be 

called leader and follower. Leader is supposed to be in 

the centre of the local vertical/local horizontal (LVLH), 

sometimes also called Radial/In-track/Cross-track 

(RIC), coordinate system. Its coordinates will be (0,0,0) 

all the times and its absolute position (orbit) will not be 

controlled. The leader may also be called target satellite 

since in some scenarios; it will represent the target to be 

observed or approached. Several manoeuvres will be 

analysed and simulated with the respect to fuel 

consumption. As fuel consumption is one of major 

constraints during a mission, linear mathematical 

models for formation flying will be developed next in 

an analytical form which enables fuel consumption 

estimation. In the next sections the derived models will 

be applied to different manoeuvres. The linear models 

are valid only for circular orbits without disturbances. 

An extension of linear models to orbits with small 

eccentricity is presented next. The paper concludes the 

presentation of simulation results. 

MANOEUVRES 

Formation flying can be performed by different 

manoeuvres which will be described in this section 

Parallel flying – In-track displacement. This forma-

tion, where both satellites fly in a constant In-track 

displacement, is also called Along track flying or 

Trailing formation. It is applicable to high-resolution 

optical dual satellite imaging (fractionated spacecraft), 

where the displacement is in the range of a few meters, 

and Radar interferometry, where the displacement is in 

the range of a few hundred meters. The problem with 

this constellation is to keep both satellites in a constant 

displacement and as shown later; this problem arises 

due to orbit eccentricity and disturbances. 

Parallel flying – Radial displacement. This forma-

tion, where both satellites fly in a constant Radial 

displacement, is applicable to high-resolution optical 

dual satellite imaging (fractionated spacecraft). It is also 

called Nadir observation constellation. The displa-

cement is in the range of a few meters. The problem 

with this constellation is to keep both satellites in a 

constant displacement and as shown later; this 

constellation can be held only with constant propulsion. 

Parallel flying – Cross-track displacement. This 

formation, where both satellites fly in a constant Cross-

track displacement, is applicable in Radar 

interferometry, where the displacement is in the range 

of a few hundred meters. The problem with this 

constellation is to keep both satellites in a constant 

displacement and as shown later; this constellation can 

be held only with constant propulsion. 

Circumvolution of the target in the x-y plane. In this 

manoeuver the follower flies around the target. This 

constellation is applicable to Space debris observation. 

As shown later, the circumvolution in the Radial-in-

track plane is on an ellipse; by adding a Cross-track 

movement, a circular motion can be obtained where the 

follower is encircling the target. 

Changing the In-track displacement. This manoeuvre 

is needed in order to change the formation. As shown 

later, the required fuel consumption is inverse 

proportional to the time needed for formation change. 

Changing the Radial displacement. This manoeuvre 

is needed in order to change the formation. As shown 

later, it can be done in two ways with different fuel 

consumption results. However it can-not be done as a 

pure single transition; the change of the radial position 

is inevitably accompanied by a change in the In-track 

displacement. The way of performing the scenario 

depends on the sequence of manoeuvres. One of 

possible sequence of manoeuvres is the transition to the 

nadir observation constellation 

Changing the Cross-track displacement. This 

manoeuvre is needed in order to change the formation. 

As shown later, the Cross-track motion is practically 

decoupled from the Radial and In-track motions. 

FORMATION FLYING MODELS 

The most common way to describe formation flying are 

the nonlinear Hill-Clohessy-Wiltshire (HCW) equa-

tions:  
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where x, y and z are the coordinates of the target 

satellite in the local vertical/local horizontal (LVLH), 

sometimes also called Radial/In-track/Cross-track 

(RIC), coordinate system and the movement of the first 

satellite is described by:  

2

2R
R R

R


   (2) 

2
R

R

R

R


     (3) 

These equations include the influence of the 

eccentricity and nonlinear differential gravitations. For 

close formation flying and small eccentricities these 

equations can be linearized with respect to x, y, z [8] 
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If the first satellite has a circular orbit (R=a), its angular 

acceleration is zero ( 0
R  ), then its mean motion can 

be expressed by 
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Eqns. (1) are an equation for accelerations. If the 

satellite is accelerated by propulsion in x,y and z 

directions with accelerations ax, ay, and az, respectively, 

the linear HCW equations, describing the movement of 

the target satellite with the respect to the main one, are 

obtained as the following linear system of equations:  
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For constant accelerations ax, ay, and az, this system of 

equations can be transformed into a homogenous one, 

using the following transformation 
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Using these transformations Eqns.(6) can be 

transformed into 

1 1 0

2

1 02

2

1 1 1

2 ( 3 ( ))

1
3 ( 2 ( ))

3

2 3 0

y

x y x

x n y na t t

n x a a t t a
n

x ny n x

   

     

   

 (10) 

1 1

1 1

3 2 ( 2 )

2 0

y y yy na n x a a

y nx

    

  
 (11) 

2

1 1 2

2

1 1

1
( )

0

z zz n z a a
n

z n z

   

  

 (12) 

 

Linear equations (10), (11), (12) have with respect to 

initial conditions 1 0 1 0 1 0 1 0 1 0 1 0( ), ( ), ( ), ( ), ( ), ( )x t x t y t y t z t z t  
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The solution of the non-homogenous system of 

equations(6) is then 
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In the sequel the influence of initial condition on a non-

propelled flight will be investigated. 

THE INFLUENCE OF INITIAL CONDITIONS ON 

THE RELATIVE ORBIT 

In this section the accelerations and all initial conditions 

but one will be set to zero, so the influence of a 

particular initial condition will be studied with respect 

to its application in different manoeuvres. 

Influence of 0( )x t  – Initial Radial displacement 

Linear equations (13)  for ax=ay=az=0 become: 
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For short time 
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so the satellites remain in constant relative position. 

Later the follower starts on oscillatory 

(amplitude 03 ( )x t  in the x and 06 ( )x t  in the y direction) 

drift of 012 ( )x t  meters per period in the negative 

direction of y. 

This is because of the follower being on a higher – 

slower orbit. 

By a constant acceleration 2

03 ( )xa n x t the satellites
 

can be held in the initial constellation. 

Influence of 0( )y t  – in track displacement 

Linear equations (14) become: 

( ) 0x t   

0( ) ( )

( ) 0

y t y t

z t




 (16) 

The follower follows the leader on the same orbit in the 

distance of initial displacement. 

Influence of 
0( )x t  – Initial velocity in the radial 

direction 

Linear equations (14) become: 
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The relative orbit is an ellipse with the centre point of 

02 ( ) /x t n . The y (In-track) semi axis of magnitude 

02 ( ) /x t n  is the major semi axis and is twice the length 

of the minor (Radial) semi axis. The ellipse is tangential 

to the x (Radial) axis at the starting point. 

 

Influence of 0( )y t  – Initial velocity in the In-Track 

direction 

Linear equations (14) become: 
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The relative movement at the satellites is a combination 

of an elliptical and linear (drifting) motion. The ellipse 

has the major semi axis of magnitude  04 ( ) /y t n  in the 

y  (in-track) direction and the minor semi-axis (half the 

major semi-axis) in the x (Radial) direction. It is 

tangential to the y  (in-track) axis. The linear (drifting) 

motion is in the negative direction of the velocity which 

is three times the initial velocity. This results in the  

follower having to reduce speed in order to catch the 

leader, which is counter intuitive.  The reason for this is 

that with the reduced velocity the follower transitions to 

a lower-faster orbit! 
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Influence of 0( )z t : 

Linear equations (14) become 
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The z  (Cross-track) motion is an oscillatory sinusoidal 

motion with the amplitude 
0( ).z t  

Influence of 0( )z t  

Linear equations (14) become 
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The z - Cross-track motion is an oscillatory sinusoidal 

motion with the amplitude 0( ) /z t n . 

Combined initial conditions 

Since the model is linear, the combined initial 

conditions result in a linear combination of movements.  

APPLICATION OF THE LINEAR MODEL TO 

DIFFERENT MANOEUVRES 

Along track flying – trailing formation 

With this scenario both satellites fly in constant In-track 

displacement D. The required initial conditions for this 

scenario are: 
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(21) 

With the linear model this constellation remains 

unchanged.  
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(22) 

The required fuel consumption is 0.  

Changing the In-track displacement y 

This scenario foresees the transition of the follower 

between two points along the orbit. The starting and 

final points are 
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As in the previous, also this manoeuvre will be in the x-

y plane; the z component will remain 0. From the linear 

model it is obvious that the manoeuvre which satisfies 

the requirements is the application of
0( )y t . With the 

manoeuvre duration equal to a multiple of the period 
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equations (18) become 
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yielding 
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When the transition is finished, the relative velocities in 

the x (Radial) and y (In-track) directions are  
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To bring the follower to a stop his velocity must be 0, 

meaning that the same velocity change as in the 

beginning of the manoeuvre must be applied at its end 

in the opposite direction. This means that the total fuel 

consumption to mane the satellite along track is 

2

3

Y
FC

TN
    1,2,3.N 

 
(28) 

It can be seen that the fuel consumption can be 

arbitrarily reduced by prolonging the transition time. 

With the proposed scenario the transition time can be 

chosen arbitrarily but it must be a multiple of the orbit 

period. It must be pointed out that the proposed 

transition is a minimal fuel consumption transition.  

There are of course also other transitions possible, 

however with considerable higher fuel consumption. 

Changing the x (Radial) position 

This manoeuvre changes the height of an orbit by radial 

displacement x, starting at origin and will also remain 

entirely in the x-y plane. The starting and final points 

are 
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0

0

0

( ) 0

( ) 0

0( )

x t

y t

z t

   
   

   
     

, 

( )

( ) 0

0( )

f

f

f

x t X

y t

z t

   
   

   
      

 (29) 

According to the linear model (Eqs. 14) there are two 

possibilities to do such a manoeuvre. With both 

possibilities the manoeuvre will be divided into two 

parts. 

1. Applying the initial velocity in the x (Radial) 

direction 

Eqs. (17) become 

0

1 1 0

( )
( ) sin ( )f f

x t
x t n t t X

n
    

1 1 0

2 (0)
( ) (cos ( ) 1)f f

x
y t n t t

n
    (30) 

Choosing the final time for the first transition of the 

manoeuvre 

1 0
4

f

T
t t   (31) 

1( )fx t  becomes 

0

1 0

( )
( ) ( )f

x t
x t X x t nX

n
     (32) 

This equation determines the required initial velocity in 

the Radial direction. In track displacement 1( )fy t  is 

then 

0

1

2 ( )
( ) 2f

x t
y t X

n
     (33) 

which means that the change in the x (Radial) direction 

also results in the change in the y (In-track) 

displacement, which has to be compensated as shown 

next. 

First the satellite has to be stopped at this intermediate 

position (0 in the radial direction and -2X in the In-track 

direction). The velocity in this point due to the 

preceding transition is  

1( ) cos
2

fx t X n nX


   

 

1( ) 2sin 0
2

fy t


  

 

(34) 

and has to be compensated what means that the same 

impulse (magnitude and direction) as at the start of the 

manoeuvre has to be applied. 

To compensate, the In-track displacement for the 

manoeuvre described earlier, has to be applied for 

( )fY y t . The initial velocity in the In-track direction 

must be 

3 3

Y n
y X

TN N
    (35) 

After N periods the same velocity change has to be 

applied in the opposite direction. The total fuel 

consumption (TFC) is then 

2

2 2

1 1

3 (3 )

( ) ( )
3 3

(1 1 )
N N

n n
TFC nX nX X X

N N

nX
 

 
    

   

 (36) 

Choosing one period ( 1)N   for the second part of the 

manoeuvre, the fastest transition from the starting point 

to the end point given in Eq. (29) lasts 1.25 periods and 

consumes 2.1578 nX of fuel. 

2. Applying the initial velocity in the y (In-track) 

direction 

Eqns. (18) become 

1 0 0

2
( ) ( )(1 cos ( ))f fx t y t n t t X

n
   

 

1 0 0 0

4
( ) ( )( sin ( ) 3( ))f fy t y t n t t t t

n
     (37) 

Choosing the final time for the first transition of the 

manoeuvre 

1 0
2

f

T
t t 

 

(38) 

1( )fx t  becomes 

1 0 0

4
( ) ( ) ( )

4
f

n
x t X y t y t X

n
     (39) 

This equation determines the required initial velocity in 

the Radial direction. In-track displacement 1( )fy t  is 

then 

1 0

3 3
( ) ( )

2 4
f

T
y t y t X

 
   (40) 
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Again the change in the x (Radial) displacement causes 

the change in the y (In-track) displacement, which has 

to be compensated. First the satellite has to be stopped 

at the intermediate position ( 1 0fx  ,
1

3

4
fy X


 ). 

The velocity at this point is 

1

2 2
( ) ( ) sin( ) 0

4 2
f

n T
x t X n

n T


      

1

7
( ) (4cos 3)

4 4
f

n n
y t X X     (41) 

and has to be compensated. However in the same 

moment the next manoeuvre for compensating the In-

track displacement of 
3

4
Y X


  has to be initiated by 

changing the velocity in the same (y) direction. 

For this the velocity change of  

3 4 8

Y n
X X

TN TN N


    (42) 

has to be applied. The total velocity change at the 

intermediate point is then 

1

7 1 7
( ) ( )

4 8 8 4
f

n n
y t x x nX

N N
       (43) 

After N periods the velocity change /(8 )nX N  has to be 

applied in the opposite direction. 

The total fuel consumption is then  

1 7 1
2

4 8 4 8

n
TFC X nX nX

N N
      (44) 

and is independent of N, which means that one period 

(fastest transition) chosen for the second part of the  

manoeuvre without any loss of fuel. It is obvious that 

this second manoeuvre consumes less fuel than the first 

one, but is a bit slower (1.5 period instead of 1.25). 

Transition to the nadir observation constellation 

Nadir constellation is defined by the 

endpoint ( ) , ( ) 0f fx t x y t  . This constellation is 

suitable to continuously observe the nadir point. 

According to the results of the previous point there are 

again two possibilities to achieve this translation.  

According to the first manoeuvre the starting point and 

applied velocity changes must be  

0 0

0 0

( ) 0 ( ) 2

( ) ( ) 0

x t y t X

x t nX y t

 

 
 (45) 

After a quarter a period 0( / 4)ft t T   the required 

position is obtained with the relative velocity to the 

main satellite 

( ) ( ) 0f fx t nX y t   (46) 

and has to be compensated in order to stop the relative 

movement. The total fuel consumption is then 

2TFC nX  (47) 

The same end point is also obtained with the same fuel 

consumption from initial point 

0 0

0 0

( ) 0 ( ) 2

( ) ( ) 0

x t y t X

x t nX y t

  

  
 (48) 

and a transition on time of three quarters of a 

period 0 3 / 4ft t T  . 

According to the second manoeuvre the starting point 

and applied velocity changes are 

0 0

0 0

3
( ) 0 ( )

4

( ) 0 ( )
4

x t y t X

n
x t y t X


 

   

(49) 

After one half of the period 0 / 2ft t T   the required 

position is reached with the relative velocity to the main 

satellite. 

7
( ) 0 ( )

4
f f

n
x t y t X    (50) 

and has to be compensated in order to stop the relative 

movement. The total fuel consumption using this 

scenario is again 

2TFC nX  (51) 

The total fuel consumption for both possibilities is the 

same, the initial point however a bit different (2.00X 

and 2.36X respectively). With the first possibility the 

final positions above (positive X) and below (negative 

X) can be reached from the initial point, which is before 

or behind the target, with the second scenario however, 

the final position above (positive X), can be reached 

only from the initial position before the target, while the 

final position below the target can be reached from the 
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initial position behind it. As described earlier in Eq. 

(15), the follower starts to drift from this constellation. 

This drift is not negligible; in a typical observation time 

of 100s, satellite period 6000s and X=10m, the follower 

would drif for 16.43cm in the Radial and 1.15cm in the 

In-track direction. This drift can be compensated by a 

small acceleration 2

03 ( )xa n x t =6.58mm/s
2
. Using 

impulsive cold gas thruster propulsion with typical 

1v  mm/s2 this means a impulse every 7.6s causing 

a zigzag motion of the follower with the amplitude of 

0.95mm in the Radial direction. 

Changing the z In-track position. 

This manoeuvre changes the z (In-track) position of the 

follower. From liner equations (6) it is obvious that the 

Cross-track movement is decoupled from the Radial-In-

track motions. However even with the non-linear 

equations (1) the coupling is negligible. The starting 

and final points are 

0

0

0

( ) 0

( ) 0

0( )

x t

y t

z t

   
   

   
     

, 

( ) 0

( ) 0

( )

f

f

f

x t

y t

Zz t

   
   

   
      

 (52) 

According to Eq. (14) this can be done in several ways, 

depending on the time required for transition. Minimal 

fuel consumption is, if the final time is chosen to be  

1 0
4

f

T
t t 

 

(53) 

( )fz t  becomes 

0

0

( )
( ) ( )f

z t
z t Z z t nZ

n
     (54) 

This equation determines the required initial velocity in 

the Cross-track direction. At the destination position, 

the follower has zero velocity in the Cross-track 

direction, so no fuel is needed to stop it. However to 

keep the follower in this constellation, an acceleration 

in the Cross-track direction is needed. According to Eq. 

(14), tis is 

2

2 2

1 1
z z zZ Z a a a n Z

n n

 
     
 

 (55)
 

Circumvolution of the target in the x-y plane 

The starting constellation for this manoeuvre is the y 

(In-track) displacement of the satellites of the 

magnitude A, which should correspond to the semi-

major axis of the circumvolution ellipse. If the satellites 

are not in this constellation, a preliminary manoeuvre 

should be performed first to bring them into the 

required constellation configuration. 

0

0

0

( ) 0

( )

( ) 0

x t

y t A

z t





               

0

0

0

( ) 0

( ) 0

( ) 0

x t

y t

z t







 (56) 

Then a velocity change in the x (Radial) direction is 

performed. According to Eq. (17) the required velocity 

change is 

0 0

2
( ) ( )

2

An
A x t x t

n
    (57) 

If the follower is behind the target, the velocity change 

must be performed in the negative x (Radial) direction 

and if the follower is in front of the target, the velocity 

change must be performed in the positive x direction. 

Linear equations (14) now become 

0

0 0

( )
( ) sin ( ) sin ( )

2

x t A
x t n t t n t t

n
     

0

0 0

2 ( )
( ) cos ( ) cos ( )

x t
y t n t t A n t t

n
     (58) 

The target satellite is in the centre of the ellipse with the 

semi-major axis A and the semi-minor axis A/2. 

Encircling the target 

Encircling the target on a circle with radius A can be 

achieved by the combination of the circumvolution on 

an ellipse as described in the previous point and an 

additional linear motion in the z (cross-track) direction. 

If an additional velocity change in the z direction of 

magnitude 
0( ) 3x t  is applied, the z movement 

becomes 

0

0 0

3 ( ) 3
( ) sin ( ) sin ( )

2

x t
z t n t t A n t t

n
     (59) 

The distance of the follower from the origin (target) is 

now 

2 2 2( ) ( ) ( ) ( )r t x t y t z t A     (60) 

The combined movement is thus on a circle with the 

radius A on a plane which has an inclination of 30
0
 to 

the y-z plane. If the velocity change in the z direction is 

performed in the negative direction, the movement is on 

a circle in the plane with the inclination of -30
0 

to the y-

z plane. 
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ORBIT DEVIATIONS DUE TO ECCENTRICITY 

Nonlinear HWC equations are valid for Keplerian orbits 

without any disturbances, their linearized version (6) 

for circular (eccentricity 0  ) orbits only. In this 

section the influence of non-zero eccentricity will be 

investigated by the method of small deviations 

(perturbations). First a linear model of equations of the 

target satellite movement (Eqs. 2, 3) will be obtained 

for small   by linearization of orbit deviations from the 

circular orbit. Next the influence of these deviations on 

relative position of a satellite will be investigated. 

The distance of the leading satellite to the Earth centre 

point and the time derivative of its true anomaly will be 

linearized around the semi major axis of the motion 

ellipse a and around its mean motion n respectively, so 

they can be expressed as 

R a R   

n    (61) 

which applied to Eqs. (2) and (3) and using Taylor 

series yields 

,,
0,0,

, ,
0, 0,

2 2
( )

2 2
( ) ( )

2

R aR a
RR

nn

R a R a
R R

n n

R R

R R

R R
R R

R R RR

n
AR

a



 

 
 



 





 
 
 


     



 
     



 

 (62) 

and 

2 2

2 2
, ,

2

2
,

2 2

2 3

( ) ( )

( )

2
2 ( )

R a R a
n n

R a
n

R R R
R R

R R
R R

an an n R
a a

 



 
  






 


 
 





     




   


      

 (63) 

respectively. Applying the well-known equation for the 

mean motion 

2

3
n

a


  (64) 

Eqs. (62) and (63) become 

2n
R

a
       (65) 

22 3R R na n R       (66) 

and represent a linear model for the deviations R  

and  . Next initial conditions for ,R R   and   

will be developed. It is supposed that the time starts 

( 0)t   when the leader (target) satellite passes the 

perigee and so its true anomaly (0)  is zero and its 

distance to the Earth mass point is 

(0) (1 )R a f a      (67) 

where f is distance from the centre of the ellipse to the 

focus. From this equation follows 

(0)R a    (68) 

At the perigee R has its minimum, so 

0R R    (69) 

Using well known equations for the true ( ) mean (M) 

and eccentric (E) anomaly 

sinM n t E E     (70) 

21

1 cos
d dE

E









  

(71) 

we get for 0t   that (0) (0) 0E    and 

(1 cos ) (1 )
dM dE dE

n E
dt dt dt

       (72) 

and consequently 

2

2

(0) 1
(0)

(1 )

d
n

dt

 





 


 (73) 

Using (61) and expanding (73) into Taylor series we get 

2
2

2

1 5
(0) (0) ( 1) 2 ...

2(1 )
n n n n


   




       



 (74) 

Equations (65) and (66) have an analytical solution, 

which will be derived next using the derived initial 

conditions. The integration of Eq. (65) yields 
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2
( (0)) (0)

2 2
( ) 2

n
R R

a

n n
R a n R

a a

 

 

       

       

 (75) 

Eq. (66) now becomes 

2 22
2 ( ) 3

n
R na R n R n R

a
          (76) 

and its solution with respect to initial conditions (68) 

and (69) is 

( ) cosR t a nt  
 (77) 

The deviation of the time derivative of the true anomaly 

from the mean motion now becomes 

2
( ) ( cos ) 2 cos

n
t a nt n nt

a
        (78) 

Equations (77) and (78) represent the analytical solution 

of the linear deviation model (65), (66) with respect to 

derived initial conditions. Due to changing radius of the 

orbit and changing radial velocity, also the linear 

velocity of the main satellite is changed and will be 

elaborated next.  

The orbital velocity of the main satellite is  

( ) ( ) ( ) (1 cos ) (1 2 cos )

(1 cos )

v t R t t a nt n nt

an nt

  



     

 
 (79) 

where the term with 
2  was neglected. Introducing 

0( ) ( ) ( )v t v t v t 
 (80) 

The nominal velocity v0 and the deviation of the 

velocity are 

0 ( )

( ) cos

v t an
a

v t an nt





 

 

 (81) 

Next the influence of all above given deviations on the 

deviations of relative distance of satellites will be 

investigated. 

THE INFLUENCE OF ECCENTRICITY ON THE 

RADIAL AND IN-TRACK DISTANCES 

The deviations of the Radial and In-track distances 

between satellites from the distance at circular orbit 

(denoted x  and y  respectively) due to non-zero 

eccentricity is caused by the In-track distance y and by 

the radial distance x.  

Due to the In-track distance y, the satellites are flying 

along the same track however they pass the same point 

(e.g. perigee) with a time shift of t  

( ) ( )
( )

( ) ( )

y t y t
t t

R t t a n
  


 (82) 

The orbit eccentricity causes that the distance of both 

satellites from the Earth point mass is not the same all 

the time; it changes due to the time shift according to 

( )
( ) sin sin( )

R t y
x t t a n nt y nt

t an
 


     


 (83) 

Besides also due to different velocities of the satellites 

the distance between the satellites changes as follows 

( )
( ) cos ( ) cosy

y t
y t v t an nt y t nt

an
       (84) 

As shown in previous section, at different manoeuvres 

the follower goes to a higher (slower), or lower (faster) 

orbit. The velocity on a circular orbit is defined in Eq. 

(81), so the change in of the velocity due to different 

orbit (radius) is  

0

3

1 1
( )

2 2

v
n

a a a a

  
    

 
 (85) 

As system is linearized, this implies  

1
cos

2

v
n nt

a
 


    


 (86) 

The influence of the semi-major axis on the deviation of 

the distances between satellites is  

0

sin

t

xy v
dt nt

a a


 
  

 
 (87) 

and the deviation of the distance between the satellites 

becomes now 

( ) ( ) ( ) sinx

x

y
y t x t x t nt

a



   


 (88) 

The deviation of the distance becomes now 

( )

( ) sin ( ) cos

y t

x t nt y t nt C 

 

   
 (89) 
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THE INFLUENCE OF ECCENTRICITY ON 

CROSS-TRACK DISTANCES 

The cross-track deviations due to orbit eccentricity will 

be derived by the method of perturbations. The relative 

movement of the main satellite in the LVLH co-

ordinate system of the target is for circular orbit without 

propulsion and disturbances described by Eq. (6) 

02  cc znz   (90) 

Where cz
 
means the z component for circular orbit. 

The initial conditions are the velocity changes )( 0tz
 
in 

cross-track direction on the main satellite flying along-

track with the target ).0)(( 0 tzc  

The analytical solution to this undisturbed flight is  

)(sin
)(

)( 0
0 ttn

n

tz
tz c

c 


 (91) 

By the method of perturbations, the deviation from this 

solution is described by 

)()( 1 tztz   (92) 

where  is a small eccentricity. The z component now 

becomes 

)()()()()( 1 tztztztztz cc 
 

(93) 

Nonlinear Eq (4) for the z component can be writen as 

33
(1 3 cos )z z nt z

R a

 
       (94) 

and can be using Eq (93) and neglecting terms with 
2 written as  

2

1 1

2 2 2

1

(1 3 cos )( )

3 cos

c c

c

z z n nt z z

n z n z n z nt

  



     

      (95) 

According to the method of perturbations the this 

equation is split into two equations – the original 

equation for 0   and a new one for z1 which is 

obtained by collecting the terms with  : 

2 2

1 1 3 cos .cz n z n z nt    (96) 

In this equation cz is solution of the non-disturbed 

(circular orbit) differential equation (90) with 

corresponding initial conditions. The initial conditions 

for the non-homogenous Eq (96) are 

0)( 01 tz ,          0)( 01 tz  (97) 

The analytical solution of Eq (96) with initial 

conditions (97) is 

1 0 0 0 0

0 0

3 1
( ) ( )sin( ) ( )sin( ( ))

2

1
( )sin (2 )

2

z t z t nt z t n t t
n n

z t n t t
n

   

 

 (98) 

If the manoeuvre starts at perigee )0( 0 t the 

deviation z becomes 

)sin2sin
2

1
(

)0(
ntnt

n

z
z 



 (99) 

If the manoeuvre starts at apogee, )( 0 nt  the 

derivation z changes its sign. 

If the manoeuvre starts at mean anomaly 2
 

or 

23 , the derivation becomes 

)2cos(cos
)( 20  ntnt

n

tz
z


 (100) 

THE INFLUENCE OF ECCENTRICITY ON 

DIFFERENT MANOEUVRES 

In this ection the influence of eccentricity on different 

manoeuvres will be investigated  

Along track flying-trailing formations 

Applying Eq. (22) to (83) and (89) yields 

( ) sinx t D nt   (101) 

( ) cosy t D nt 
 

(102) 

The follower is not flying in constant displacement to 

the main, as it is in a circular orbit. Rather, it is 

encircling this position on a circle with radius, D  . The 

smallest distance between satellites is at apogee, the 

largest at perigee. 
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Circumvolution of a point (main) on the track. 

Applying Eqs. (16), (17) to (82) and (89) we 

get

 0

0 0

0

0 0

2 ( )
( ) cos ( 1) sin

2 ( )2
cos ( )sin sin

x t
x t n t t y nt

n

x tx
n t t nt y nt

n n






 
       

 

 
     

 

 (103) 

0

0

0

0 0

( )
( ) sin ( ) sin

2 ( )
(cos ( ) 1) cos

x t
y t n t t nt

n

x t
n t t y nt

n





 
      

 

 
    
 

 

(104) 

If the manoeuvre starts at perigee 0( 0)t   and the 

follower is encircling the target 0( ( ) (0) 2)x t y n , 

these equations become 

(0)
( ) sin 2

2

y
x t nt


 

 
(0)

( ) (3cos2 1)
4

y
y t nt


    (105) 

This makes the trajectory of the movement of the 

follower around main thicker (bigger in the x direction). 

The influence at the second harmonic is most 

expressive at the apogee. 

If the same manoeuvre starts at apogee, the equations 

remain the same, but ( )y t  changes its sign. The 

influence of second harmonic is most expressive at 

perigee. 

If the same manoeuvre starts at mean anomaly of 2 , 

the equations for deviations become 

0 sin 2
2

y
x nt


  

 
03

sin 2
y

y nt
n

   (106) 

The trajectory becomes longer (bigger in the y 

direction). The influence of second harmonic is most 

expressive at the mean anomaly of 3 2 . 

If the same manoeuvre starts at mean anomaly of 

3 2, equations for x and y remain the same, but 

y changes its sign. The influence of second harmonic 

is most expressive at the mean anomaly of 4 . 

RESULTS OF SIMULATIONS 

Fig.1. represents one of the possible scenarios.  

-120 -100 -80 -60 -40 -20 0 20 40
-20

-15

-10

-5

0

5

10

15

In-track [m]

R
ad

ia
l [

m
]

 

 

Circular

 =0.0042

 

Figure. 1: One of the possible scenarios 

The follower starts 100 m behind the target. The linear 

and nonlinear models for eccentricity 0.0042 were 

applied. With the nonlinear model all manoeuvres 

started at apogee. The results for the circular orbit are 

shown in solid red; the results for the eccentric model in 

dotted blue. Two nearing approaches to 20 m behind 

the target were simulated. At the first one, a velocity 

change of 4.44mm/s in the negative In-track direction 

was applied and the follower achieved the desired 

position after one period; at the second one a three 

times smaller velocity change (-1.48mm/s) brought the 

follower into the same position after three periods. At 

this point the follower was stopped in the In-track 

direction and a velocity change of 10.47mm/s was 

applied in the negative Radial direction. This caused a 

circumvolution of the follower around the target on an 

ellipse with a semi-major axis of 20m and a semi-minor 

axis of 10m. A detail (transition from nearing approach  
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Figure. 2: A detail of Fig.1. 

to circumvolution) of this scenario is shown in Fig.2. in 

the same (In-track – Radial) projection as Fig.1. 
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It can be seen that the deviation of the position of the 

follower from the position determined by linear 

(circular orbit) model due to eccentricity of 0.0042 is 

0.67m. After one revolution of the follower around the 

target, a velocity change of 18.15mm/s was performed 

into the negative Cross-track direction. The resulting 

motion is the encircling of the target on a circle with the 

radius of 20m on an orbit with the relative inclination of 

30
0
 to the Cross-track - In-track plane. After one 

encircling a double velocity change of 36.3mm/s was 

performed to the positive Cross-track direction. This 

manoeuver resulted in an encircling of the target on an 

orbit which was inclined symmetrically with respect to 

the first encircling. Fig.3. represents the Cross-track – 

Radial projection of the whole scenario. 

In Figs. (4) (5) and (6) respectively, the In-track,  

Radial and Cross-track deviations due to orbit 

eccentricity are given. Red curve represents simulated  
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Figure. 3: Cross-track – Radial projection 
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Figure. 4: In-track deviations due to eccentricity 
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Figure. 5: Radial deviations due to eccentricity 

data (nonlinear model) while blue dotted line represents 

the results of the theoretical model given previously in 

this paper.    

This approach, which is the original contribution of this 

paper, has proven its applicability, since it can predict 

the correction of velocity changes due to the true ano- 
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Figure. 6: Cross-track deviations due to eccentricity 

maly of the satellite on an eccentric orbit. The 

predictions for all manoeuvres, except for the re-

positioning of the satellite on the In-track, are very 

good. The repositioning the satellite on the In-track 

needs improvement and optimization, which will be 

performed in the future. 

Fig. (7) represents the In-track, Radial and Cross-track 

deviations due to the J2 disturbance. It can be seen that 

the influence of the J2 is in the millimetre range and is 

far less than the influence of the eccentricity, even if 

this is very small. 
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Figure. 7:Deviations due to J2 disturbances 

Conclusion 

Various scenarios suitable for formation flying 

applications, such as radar interferometric constellation, 

high-resolution optical dual satellite imaging- 

fractionated spacecraft and space debris observation 

were studied with respect to suitable manoeuvres. 

Required manoeuvres are: parallel flying – in-track, 

radial and cross-track displacement, circumvolution of 

the target in the radial – in-track plane and encircling 

the target on a circle 

The scenarios were investigated by mathematical 

models. First a linear model based on HCW equations 

was applied with respect to required fuel consumption. 

Then a linearization of the deviations due to orbit 

eccentricity was performed by the method of 

perturbations. This is the main contribution of this 

paper. The validity of derived models was tested by the 

simulation of a nonlinear model. It was also established 

that the influence of the J2 perturbation is much smaller 

than the influence of eccentricity. It was established that 

the derived models are quite satisfactory for all 

manoeuvres but the in-track repositioning of the 

satellite, which will be performed and optimized in the 

future.  
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