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CHAPTER I 

INTRODUCTION 

Turbulence is a familiar phenomenon which gives rise to complicated 

problems in many branches of engineering. Hinze (1959. p. 1-2) has set forth 

the following definition for turbulence: II Turbulent fluid motion is an irregular 

condition of flow in which the various quantities show a random variation in 

time p nd space coordinates, so that statistically distinct average values can 

be discerned. II Osborne Reynolds (1894) was the first to introduce the notion 

of statistical mean values into the study of turbulence. He visualized tur­

bulent flow as the sum of mean and eddying motion. By introducing this sum 

of mean velocity and fluctuating velocity into the Navier-Stokes equations 

and with the aid of the continuity equation, he derived equations giving re­

lationships between the various components of the fluctuating velocity. It 

was soon realized that before any further results could be obtained from a 

theoretical analysis of Reynold;s equations of motion, a mechanism had to 

be postulated for the ihteraction of fluctuating v~locity components at dif­

ferent points in the turbulent field. Consequently, three decades after 

Reynold's: work, phenomenological theories of turbulence, such as the mo­

mentum-transfer theory of Prandtl (1926), the vorticity transport theory of 

Taylor (1932) and the similarity theory of Karman (1930) were introduced. 

Not only are they based on unrealistic physical models, but they do not 
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furnish any information beyond temporal-mean velocity distribution. A 

complete theory of turbulence should describe the mechanism of production 

of turbulence, its convection, diffusion, distribution, and eventual 

dissipation for any given boundary conditions. 

A step towards this obj ecti ve was undertaken by G. 1. Taylor (1921, 

1935, 1938) when he proposed a theory based on the statistical treatment of 

the random fluctuations of the properties of the turbulent velocity field 

as suming a stationary, homogeneous, isotropic turbulence . He introduced 

various concepts such as turbulence intensity, Lagrangian correlation co-

efficient, Eulerian time and double-velocity space-correlation coefficients, 

different scales of turbulence, and one-dimensional energY-6pectrum 

function. These parameters would constitute what has come to be called 

the structure of turbulence. He further · showed that the .knowledge of the 

turbulence intensity and the Lagrangian correlation function alone would be 

sufficient to determine the laws of diffusi.on, independent of any physical 

model for mixing. Renewed interest was created among research workers 

in this field by his pioneering efforts; and subsequently many theoretical 

investigations have been made by Karman and Howarth (1938), Robertson 

(1940), Batchelor (1948), Kampe de Fe'riat (1948), and others. Progress 

in hot-wire annemometry and electronic instrumentation has made it pos-

Sible to check the validity of the theory in flows of air in wind tunnels 

just downstream from screens which generate a homogeneous and near-

isotropic turbulence. The most notable studies made in this connection 

are thoseof Dryden (1938) and Simmons and Salter (1938). 
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Although the concept of isotropy is essential for mathematical sim-

plicity, it is not encountered in actuality. Nevertheless, the Fourier 

a~nalysis of the equations of motion leads to some important clues pertaining 

to the mechanism of the production and dissipation of turb~lent energy. From 

a Fourier transformation of the Reynolds equations there arise three distinct 

terms: (1) a term describing the production of turbulence and its convection 

and diffusion by the mean motion, (2) a term describing the interaction of 

eddies characterized by different wave numbers and the transfer of turbulent 

energy from one eddy to another of different wave number, and (3) a term 

describing the dissipation of turbulent energy by viscosity. From the form 

of these terms it can be inferred that the production term is important in the 

low wave-number region, the viscous dis sipation term is important in the 

high wave-number region and the second term accounts for the transfer of 

energy between wave numbers throughout the spectrum. 

Next the question arises regarding whether or not the transfer of 

turbulent energy and its dissipation by viscosity at high wave numbers 

is independent of the manner in which the turbulence is generated. An 

answer to this is found in Kolmogoroff ' s (1941) theory of local isotropy 

which states that the fine scale structure (high wave-number components) 
j, 

of actual turbulent shear flows at high Reynolds numbers is isotropic. The 

idea of local isotropy was put forward independently by Onsager (1945), 

and Obukoff (1941). Kolmogoroff derived spectral laws for the distribution 

of turbulent energy with wa ve number in the region of local isotropy or 
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equilibrium range. Various spectral laws for the equilibrium range have 

been put forward by Heisenberg (1948), Obukoff (1941), Karman (1948), 

Chandrasekhar (1949), Kov.e.sznay (1948), and Tachen (1953) to bring the 

theory into closer agr'eement with experimental results. 

As in the case of isotropic turbulence, dynamical equations either 

for the correlation function or for the spectrum function could not yet be 

developed for turbulent shear flows due to formidable mathematical dif-

ficulties. As a matter of fact, very little has been accomplished in the 

analytical study of the statistical theory of self-maintained shear turbu-

lence such as occurs in fully-developed turbulent flow in pipes and open 

channels, To overcome these mathematical difficulties, perhaps new 

physical hypotheses might be required. Meanwhile, however, considerable 

insight into the mechanics of turbulent shear flows could be obtained by 

extensive experimental studies of the distribution of the intensity of tur-

bulence, macr~, and microscales of turbulence, double-velocity correlations 

and energy spectrums, since these parameters constitute the structure of 

turbulent shear flows as well. Furthermore, such studies might lead to the 

formulation of new physical hypotheses concerning the actual mechanism 

of turbulence in shear flows. The fact that experimental methods and 

.d 
theoretical analysis are always complementary to each other in the search 

for understanding inthe ,physical sciences lends credence to this approach. 

Recently many experimental investigations have been made in 

turbulent shear flows. In the case of turbulent flow in a pipe, Romano 
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(1954) measured the energy-spectrum function, Brookshire (1961) measured 

intensity and microscale, and Jordan (1963) studied the distribution of 

microscale and macroscale. The investigations of Laufer (1951, 1954) on 

the structure of turbulent shear flows in pipes and two-dimensional 

channels are the first and the most exhaustive. All of the above studies 

were made in air flows using hot-wire anemometers as sensors. But no 

such systematic investigations have been made in the past into the struc­

ture of turbulent shear flows either in smooth or rough open channels, 

presumably because of a lack of a reliable liquid-turbulence measuring 

probe with the necessary sensitivity, response , · and strength. Some partial 

attempts have been made by Ippen (1957) and Clyde (1961), who used di-

aphragm types of pressure tranducers whose maximum frequency responses 

were low. 

In order to overcome this deficiency of experimental data on the 

structure of turbulent shear flows in open channels, this proj ect has been 

undertaken. For this investigation, a total-head tube with a barium titanate 

ceramic tranducer, as the sensor, was constructed, similar to the one 

developed by Eagleson et al. (1959). The device has a sufficiently high, 

as well as low, frequency response. Such a total-head probe was believed 

to have clear advantage over other types for measurements in unclear 

water even though it has the serious disadvantage of measuring only one 

of the three components of the fluctuating velocity vector. 



The objectives of this research are: 

1. To study the turbulence-energy distribution as a function of 

relative position and Reynolds number. 

2. To determine the existence of local isotropy in the wave­

number space and the applicability of the spectral laws of 

locally.i.sotropic turbulence. 

6 

3. To determine whether or not the pattern of the distribution of 

relative intensity of turbulence versus relative depth in the 

case of a rough boundary differs from the published results 

for smooth-boundary flows. 

4. To determine autocorrelation functions and obtain therefrom 

the distribution of the mean macroscale of turbulence as a 

function of relative depth and Reynolds number. 

5. To determine the distribution of microscale as a function of 

relati ve position and Reynolds number. 

6. To make an attempt to obtain some relationships between the 

statistical quantities describing nonisotropic flows. 

Literature pertinent to the structure of turbulence is examined crit­

ically as a basis for this experimental investigation. Also thebretidal 

studies concerning the shape of turbulence energy spectrum are reviewed 

and compared with the shape determined by experiment. 

A concluding discussion will point out the contributions of this re­

Search as well as the limitatiors imposed by the instrumentation used. In 
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the light of the experience gained during thi~ research, some suggestions 

for further investigations are offered in the closing chapter. 



CHAPTER II 

EQUATIONS OF MOTION AND ENERGY FOR TURBULENT 

FLOW IN TWO-DIMENSIONAL OPEN CHANNELS 

Osborne Reynolds (1894) was the first to make systematic ex-

8 

perimental and theoretical investigations of turbulent flow. He assumed 

that the Navier-Stokes equations describe the turbulent motion at every 

instant. He also suggested that the instantaneous velocity and pressure 

could each be expressed as the sum of their time average and fluctuation, 

i. e. : 

U. = U. + u. i = 1, 2, 3 (1 ) 
1 1 1 

where 

T 
1 S U . (t) dt U. = 

1 2T 1 

-T 

T 
1 S u. (t)dt = 0 u. = 

1 2T 1 

-T 

Similarly 

P = P + p (2) 

Reynolds substituted equations (1) and (2) into the Navier-Stokes 

equations for steady incompressible fluid flow and took time averages 

in the resulting equations term by term and obtained the following 

equations for the mean flow: 



au, 
1 

P U, Q 

J oX, 
J 

= 
a2 u, 

_a_ (P + -yh) + ~ 1 ax, ax, ax , 
1 J J 

- p ' 

a u ,u, 
1 J 

ax, 
J 

9 

(3) 

These equations differ from the Navier-8tokes equations only in the pres-

ence of additional terms involving velocity fluctuations. The term p u,u, 
1 J 

is usually referred to as the Reynolds-stress tensor. The Reynolds 

equations (3) could not be solved, as there are ten unknowns with only 

four equations including the continuity equation. The Reynolds stresses 

must be known before there is any hope of solving the equations of 

motion for turbulent flow. 

In steady unidirectional flow in an open channel, 

...,. 
U 1 (x

2
) U ' = 1 

U
2 

= 0 

U
3 = 0 

In fully-developed uniform turbulent flow the means of the squares 

of fluctuating velocities and means of the products of fluctuating 

velocities are functions of x
2 

alone. 

Therefore, equation (3) becomes 

(P + -yh) = 
(4) 



Equation (5) reduces to 

- - 2 
P + ')Ih + P u 2 = F (xl) 

= e 

Equation (4) becomes 

At x
2 

= 0, 

- ex 
2 

u
l 

= u
2 

= 0 and T = T 
o 

d U
l 

(T 0 - e x 2) = iJ. dx - P ul u2 
2 

This is the equation of motion for turbulent flow in an open channel. 
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(5) 

(6) 

(7) 

Multiplication of the equation (7) by the mean-velocity gradient 

leads to 

(7a) 

This is the mean-energy balance equation. The term at the left represents 

the ra.te per unit volume at which mechanical energy is lost by the me~n 
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flow; the first term at the right is the rate of energy dis sipation by the 

direct action of viscosity, and the second is the rate of turbulence pro-

duction. Klebanoff (1954) compared the production of turbulent energy 

and viscous dissipation for the region near the wall (0 < y* < 30) in 

his turbulent boundary layer studies and concluded that approximately 

40 per cent of the energy extracted from the mean flow is directly dis-

sipated by viscosity and, of the remaining 60 per cent which is converted 

into turbulent energy, 30 per cent is produced in the same region. From 

this it is evident that, in order to obtain a complete picture of turbulent-

energy balance, conditions near and within the laminar sublayer have to 

be known. This is a very difficult task from the experimental point of 

view. 

Further insight into the mechanism of turbulent action results 

from a study of energy equations which describe the energy balance for 

the turbulence at a given sect ion. These equations can be derived by 

utilization of the Reynolds technique of substituting mean and fluctuating 

components for the instantaneous values of velocity and pressure and by 

following his rules for taking averages. For more details reference may 

be made to books by Einze (1959), Rouse (1959), and Townsend (1956). 

Multiplying the Navier-Stokes equations by U,' the following 
1 

equation is obtained: 

au, 
1 

P U,U, a 
1 J x, 

J 

= 
a2u. 

u. a (P + 'Yh) + tJ. U : 1 
1 ax. 1 ax. ax. 

1 J J (8) 
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upon rearrangement, 

1 
a (u. u. u.) 

a (yh) 
a (pu.) 

1 1 J 
U. 

1 
P = - + 2 ax. 1 ax. ax. 

J 1 1 

2 
1 

a (u. u.) au. au. 
1 1 1 1 

~ - ~ ax. 2 ax. ax. ox. 
J J J J (9)" 

Introduction of the velocity and pres sure perturbations 

= u 
3 

-
p = p + p 

into equations (9) and utilization of the fact that the mean and fluctuating 

velocities are functions of x
2 

only, the following turbulence energy 

equation is obtained: 

d U
I 

d u
1 

u
2 - 1 d 222 

p u
I 

u
2 dX

2 
+ P U1 dX

2 
+-p 

dX
2 

u
2 

(u
I 

+ u
2 

+ u
3

) 
2 

d 
d

2 U -
(pua) ,+ ~ 111 

1 = ,),S 0 U 1 + dX
2 

2 
dX

2 

d
2 au au . 

1 2 2 2 
f'.( a/X ax.l) 2 ~-

(u
1 

+ u
2 + u

3
) 

dx
2 

J J ' (10) 
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In light of equation (4), equation (10) can be simplified to 

dU
1 

2 2 2 

(~)2 d [ u1 
+ u

2 
+ u

3 ) + U2pJ T = 'pu
2 

( + dX
2 

dX
2 

2 1-1 dx ' 
2 

1 d
2 

(U~ 2 2) f1(Ui
] G~) 

2 
1-1- + u

2 
+ u

3 + 2 ax. ax. (11 ) dX
2 

J . J 

Von Karman (1937) obtained this form for the case of turbulent flow 

between parallel plates in connection with the discussion of non- . 

isotropic flow in terms of the statistical theory of turbulence. The 

terms from left to right ha ve the following physical meaning: The 

first term corresponds to the rate of production of turbulent energy per 

unit volume by the action of the shearing stresses at a point. The second 

term represents the rate of convective diffusion by turbulence of the total 

turbulence energy. The third term stands for the rate of dissipation of 

energy by the action of the viscous shear stresses. The fourth term is 

the rate of energy diffusion by viscous forces. The fifth term expresses 

the rate of turbulent-energy dissipation into heat by the action of vis-

cosity. The diffusion terms vanish upon integration of equation (11) 

over the space. This means that the diffusion process acts only to 

transfer energy from one place to another and the energy is neither 

created nor destroyed , nor is there any net exchange in energy with 

another direction of diffusion. 
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In the absence of a statistical theory of shear turbulence, exten-

sive experimental studies were made by Laufer (1~ 51, 1954), Klebanoff and 

Diehl (1951), Klebanoff (1954), and Schubauer (1954) to sketch out ade-

quately the spatial budget of energy in nonhom.ogeneous shear flows which 

occur in turbulent boundary layers in pipes and channel flows. The basis 

used was that formed by the equations of the type (7a) and (11), incor-

porating the ideas of the Reynolds number, similarity, and self-preservation. 

For a high Reynolds number flow it was shown by Laufer (1951) that the 

second and third terms on the right s ide of equation (11) may be 

neglected. Hence, the equation (11) reduces to 

d 
= 

The term on the left side of the equation can be obtained directly from the 

measurements of T and from the mean-velocity profile. The determination 

of the dissipative derivatives is the most difficult task because of the im-

portance of the region near the wall. Since only five terms (first four and 

seventh) in the dissipation function can be measured in the vicinity of the 

wall, the remaining four were estimated by Laufer (1954) and Klebanoff 

(1954) using isotropic relationships .' From the known distributions of 

turbulence-energy production and dissipation, the distribution of diffusion 

of energy can easily be calculated from equation (12). Because of the 

limitations of the piezoelect ric probe, no attempt could be made to 



measure the distribut ions of the various terms in equation (1 2) in this 

investigation. 

1 5 

For later use, the salient points in the conclusions of the studies 

of Laufer and Klebanoff are summarized briefly: The flow section can be 

divided into three regions; the wall or inner region, intermediate region, 

and the outer region, or fully turbulent region. In the inner region various 

energy rates, production, diffus ion, and dissipation are of e c ual impor­

tance and show 'CI sharp maximum, within y* < 30. Klebanoff speculated 

that in a small region near the wall (y* < 20) the rate of dissipation is 

greater than the rate of production and the deficiency is compensated by 

an inward flow of energy toward the wall from the outer region, because 

of the action of the pressure forces. In the outer region the production is 

negligible, and the gain of energy resulting from the flux of kinetic energy 

by turbulent diffusion from the wall region compensates for the loss by 

dissipation. In the intermediate region (the major part of the section), 

turbulence-energy balance is furnished by production and dissipation only. 

If these conclusions were correct, 85 per cent of the total dissipation 

(viscous and turbulent) takes place in y* < 30, signifying the importance 

of the region near the wall. This qualitative picture of turbulence-energy 

balance could be vindicated only with detailed measurements in the wall 

region by improved instrumentation, even though the above conclusions 

are quite plausible. Some of the terms in the equation (1\2) will be used 

later to analyze the statistical characteristics of nonisotropic turbulent 

flow. 
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CHAPTER III 

STATISTICAL THEORY OF TURBULENCE 

The phenomenological theories of turbulence proved to be fruitful 

to describe momentum, mass, and heat transfer processes, not so much 

because they describe correctly the mechanism underlying turbulent trans­

port processes, but because they have resulted in useful and practical 

semi-empirical relationships" Neither Prandtl nor Taylor discusse 's in 

detail the mechanism by which the lumps of fluid adapt their transferable 

property to their new environments. Due to pressure fluctuations, the 

momentum of each lump of fluid does not remain constant during its 

travel over a distance equal to the mixing length as Prandtl assumed in 

his theory. The constanc¥ of vorticity during the travel of the lump over 

a distance as assumed by Taylor is true only in the two-dimensional case, 

and the extension of the theory to three-dimensions is too involved to be 

of much practical use. Even though von Karman was successful in sug­

gesting a similarity theory of turbulence independent of any physical 

model, his theory is restricted to the low~requency components of tur­

bulence only because he assumed that the turbulence mechanism is 

independent of viscosity except in the laminar sublayer. 

The statistical theory of turbulence introduced by Taylor (1921, 

1935) describes in a statistical way the character and properties of 



turbulence such as the intensity of turbulence, the scale of turbulence, 

and the eddy~iffusion coefficient by means of correlation coefficients 

and the energy spectrum of turbulence without speculating as to the 

mechanism of turbulence itself. Before treating the se parameters in 

greater detail, some discussion about how the behavior of a turbulent 

flow field could be represented mathematically and what kind of 

simplifying assumptions may be made is desirable. 
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There are two distinct ways of representing a turbulent flow field, 

namely Eulerian and Lagrangian. In the Eulerian representation, the var­

iation of statistical parameters at one or two fixed points in the turbulent 

flow field is considered. In the Lagrangian description, attention is 

focused on a single fluid particle and the variation of statistical para­

meters with time as the fluid particle travels through the flow field is 

considered. 

Although the Lagrangian description has certain advantages over 

the Eulerian description in the development of theory of turbulent diffusion 

in particular, it has a s~rfous disadvantage in that the experimental deter­

mination of Lagrangian statistical quantities can only be obtained through 

a tedious process of data reduction, whereas Eulerian quantities can be 

determined directly by the modern electronic instruments. 

The statistical theory of real turbulent flows (shear flows) is very 

complicated and mathematically intractable. Therefore, in the develop­

ment of the theory, Taylor and subsequent investigators considered for 
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mathematical simplicity an idealized homogeneous and isotropic turbulent 

flow in the absence of mean motion. Homogeneous turbulence is character-

ized by the invariance of the statistical characteristics for any translation 

of the coordinate system in the space occupied by the fluid ~ If, in addition 

to homogeneity, the mean value of any function of the turbulent velocity 

components and their space derivatives is invariant with respect to 

rotation and reflection of the coordinate system, the turbulent .fi'eld is 

isotropic. Thus, from isotropy it follows that 

Const 

= 0 
(13) 

Isotropic turbulence is an idealized flow situation that can be realized 

even approximately only under controlled laboratory conditions. Homo-

geneity permits the sampling point to be chosen arbitrarily. Most of the 

real flows are nonisotropic; consequently, it is extremely difficult to 

realize homogeneity even in one direction, except in axisymmetric flow. 

For the more general case of nonisotropic turbulence, 

(14) 

Even though the statistical theory of nonisotropic or turbulent shear 



19 

flows has not been developed yet, the various statistical parameters and 

concepts applicable to isotropic turbulence are equally applicable to 

turbulent shear flows as well. 

In turbulence theory, the fluid motion is assumed to consist of 

the superposition upon a mean flow of eddies covering a range of sizes 

with distinguishable upper and lower limits. The upper size limit of 

the eddies is usually determined by and is of the order of magnitude of 

the dimension of the containing apparatus. The lower limit is determined 

by viscosity effects and decreases with increase in average velocity, 

other conditions remaining the same. As the eddy becomes smaller, the 

velocity gradient in the eddybe.ccnnes lar.g~·r; and thus the viscous shear 

becomes larger. This increase in viscous shear counteracts the eddying 

motion, thus further limiting the size of the smaller eddies. Even in the 

limit for moderate flow velocities, for example, air flows at speeds below 

about 200 ft/ sec and water flows up to still higher speeds if there is no 

cavitation (Corrison, 1961), the size of the smallest eddies is much 

greater than the mean free path of molecules so that fluid flow could 

still be treated as a continuum flow. 

Statistical Specification of Turbulent Fields 

The velocity vector u (x, t) in a turbulent flow field is a random 

function of position and time w!l0se values conform to probability dis­

tributions which are determined for any particular problem by the boundary 
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conditions and initial conditions. The values of I u l at various positions 

and instants of time are connected by means of joint-probability distribu-

tion functions as a consequence of the equations of motion and continuity. 

As pointed out by Townsend (1956) and Batchelor (1953), for the detailed 

statistical description of a turbulent field, a knowledge of the complete 

system of j oint-probability distributions of the values of the velocity lUi 

at I n l points of the space at the appropriate value of I t l is required, 

since it is supposed that the statistical properties of the turbulence field 

at different val ues of I t l are uniquely related by the equations of momen-

tum and continuity. From the viewpoint of the experimenter, the above 

statement is an admission that it will never be possible to describe com-

pletely the statistical properties of even the simplest turbulent flow. 

Nevertheless, some progress has been made in the development of the 

theory of turbulence using correlation and spectrum functions even though 

these functions give an incomplete description of turbulent motion. As 

Townsend points out, 

The central role that the correlation and spectrum functions 
play in current theory and experiment is due to their comparative 
simplicity and convenience of measurement. The correlation 
function is one of the infinite set of integral moments of the 
basic joint-probability distribution function, and attempts to 
use the correlation function as a complete description amount 
mathematically, to making a hypothesis concerning the nature 
of the complete probability distribution function and, physically, 
to making statements about the eddy structures that exist in 
fully developed turbulence. (Townsend, 1956, p. 12.) 
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Intensity of Turbulence 

Since the fluctuating component of velocity is a property of vital 

interest in the statistical treatment of turbulence, an average value of 

this fluctuating velocity which is non-zero must be defined. An average 

value of I u l that has received wide use is the root-mean-square. The 

reason for this popularity is that the root-mean-square (a measure of the 

spread of the probability-density curve of the random variable) of I u l is 

easy to measure with existing experimental equipment and the mean 

square of I u l occurs quite naturally in many of the equations governing 

the turbulent flow. The root-mean-square of the fluctuating velocity is 

also known as the intensity of turbulence and may be defined 

mathematically, 

= 1,2,3 
(15) 

This definition of turbulence intensity was first introduced by Dryden and 

Kuethe (1930). 

It should be noted that the average defined above is a statistical 

or ensemble average. From the viewpoint of the statistical theory of 

turbulence, it is the ensemble average that should be used; but it is 

usually not possible to measure the ensemble av~rage experimentally. 

For example, if the ensemble average value of the fluctuating velocity 

in a channel at a given time is to be measured, it would require that the 
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averaging process be made in an infinite number of identical channels in 

which the physical conditions are the same with the component of fluc-

tuating velocity being measured at the same time in all channels. This 

is, of course, experimentally impossible. The impossibility of measur-

ing ensemble averages has led to the extensive use of time average that 

could easily be measured by conventional measuring instruments. There-

fore, it is necessary to prove that a time average is identical with a 

statistical average for the experimental field (ergodic theorem). Un-

fortunately, no ergodic theorem has yet been proved in fluid dynamics, 

as pOinted out by Pai (1957). Since the experimental field of turbulence 

is such that the velocity at a fixed point is a stationary random function 

of time, applicabilit'y of ergodicity could be assumed reasonably; and 

thereby time average and statistical average are considered identical 

here as is customary in the turbulence literature. So time average of 

square root of variance may be written as: 

Ut = ( U~) 1/2 = [~t SLl~~ dt ] 1/2 

The relative intensity of turbulence is defined as 

J~ u. 
1 

U. 
1 

i. e. 
u l 

i 

U. 
1 

i=1,2,3 

(16) 

(1 7) 
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It should be noted that the turbulence intensity characterizes only the 

magnitude, but not the frequency, of the turbulence fluctuations. 

Double-Velocity Correlation Function 

The statistical theory of turbulence is not concerned with the 

joint-probability distribution functions themselves, but rather with the 

correlations between various velocity components. A large part of the 

theory is concerned with the properties of the covariance of the velocities 

at the two points or the double-velocity correlation. Von Karman and 

Howarth (1938) introduced the correlation-tensor function as a general-

ization of the particular correlation coefficients discussed by Taylor 

(1935). 

The velocity-correlation tensor for two points separated by space 

-+ 
vector r is 

-+ 
R .. (r) 

1J 
= u. (~ u. (; + ?) 

1 J 

It should be noted that since physical quantities under a mean-value 

(18) 

sign are taken at the same instant, explicit reference to time is omitted. 

-Von Karman first pointed out that R .. (r) forms a tensor 'of the second 
1J 

order. Under the assumption of isotropic turbulence in the absence of 

mean flow, von Karman and Howarth considered the special case where 

the line connecting the two points is parallel to one of the cartesian 

Coordinate axes and showed that all the components but two of the 



24 

correlation tensor vanish. /The two nonvanishing components are the 

longitudinal-and lateral-velocity correlations which depend only on the 

distance Irt between the two points. The longitudinal-velocity correla-

tion function and lateral-velocity correlation function first introduced by 

von Karman and Howarth (1938) are given by 

2 
u f(r) = (19) 
.... 

-r = (r, 0, 0) 

2 -u g (r) = R22 (r ) (20) 

These investigators also showed that f(r) and g(r) are not independent, 

but are related by the equation 

g(r) = f(r) + r
2 

df(r) 
dr 

which follows from the continuity condition. The correlation tensor 

(21 ) 

-R .. (r) can thus be expressed in terms of a single scalar function, either 
1J 

f(r) or g (r). The simpler two-point triple-velocity correlation is given by 

(22) 

Von Karman and Howarth (1938) showed that this forms a tensor of the 

third order, and under conditions of isotropy all but three of the compon-

ents of the triple-correlation tensor vanish. The nonvanishing components 
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h (r), k (r) , and q (r) are given by 

(J)3/2 
h{r) -= T 22, 1 (r) (23) 

(J)3/2 
k{r) - -= T 11, 1 (r) r = (r, 0, 0) (24) 

(-//2 
u 

2 
q (r) = -T 21, 1 (r) (25) 

For incompressible flow, from the continuity condition it follows that 

h (r), k (r), and q (r) are related by the relations 

k{r) = 2h{r) 

q (r) = - h (r) - ~ ah{r) 
Br 

(26) 

(27) 

-Thus it follows from the above relations that T .. k{r.) can be expressed 
1J, 

in terms of a single scalar function. Using the above relations and the 

Navier-Stokes equations of motion, von Karman and Howarth (1938) 

obtained the following dynamical equation for the propagation of the 

correlation function u 
2 

f (r): 

~ - 3/2 » 2f~ + 2 (u
2

) Bt\'u j 
2 = 2 vU I

ra2f + i £L] 
L8r2 r ar 

(28) 

This equation is the fundamental equation for studying the dynamical 

behavior of a homogeneous and isotropic turbulence. The only ca.se for 
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which the equation (28) can be said to have been completely solved is 

for turbulence in the final period of decay where the inertial term h(r) 

(the triple correlation) can be neglected. A satisfactory solution applic­

able to the maj or portion of the time history of turbulence has not been 

obtained. 

'I'he chief difficulty lies in obtaining a determinate set of dynamical 

equations. From the momentum and continuity equations and from equations 

invol ving moments (correlation functions) of the fluctuating velocity, com­

ponents of any order can be constructed. Each n-order equation so 

obtained involves the moments of order n + 1 as a direct consequence 

of the nonlinearity of the Navier-Stokes equations. The various methods 

of approximation proposed to make the infinite set of dynamical equations 

finite can be divided into two broad classes. In the first class, models 

of dynamical processes are postulated on physical grounds. The examples 

are the theories of Kolmogoroff (1941) and Heisenberg (1948), etc., which 

are treated later. The second class consists of schemes for systematic 

analytical approximations. 

So far, two different approaches have been taken in the second 

class. One of them consists of ignoring moments of 'n + I' order in 

equations for I n' order moments. This method was used by Deissler 

(1958, 1960) for the study of the decay of homogeneous turbulence at 

earlier times or at higher Reynolds numbers. It is not known whether 

this approximation yields satisfactory results for interesting cases of 

the very large Reynolds number. 
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Another approach is to introduce the hypothesis that the fourth-

order moments of the distribution of simultaneous velocity components 

are related to second-order moments as they would be for a normal prob-' 

ability distribution. Fourth-order moments can then be expressed in terms 

of second-order moments, and the set of moment equations is closed. 

proudman and Reid (1954) and Tatsumi (1957) have extensively discussed 

the decay process of isotropic three-dimensional turbulence on the basis 

of this hypothesis. The dynamical equations for two-dimensional iso-

tropic turbulence that follow from this hypothesis were derived by Ogura 

(19 62a). Ogura (1962a, b) sol ved numerically the dynamical equations for 

two- and three-dimensional turbulence for the whole time history of 

turbulence. The most distinct feature revealed by his calculation is that 

the energy spectrum becomes negative for medium-sized eddies. He 

tentatively concluded that the generation of unphysical negative energy 

is 111.0st likely the ' consequence of the quasi-normality hypothesis. 

Loitsianskii (1945) took from each term of equation (28) the 

fourth moment and showed that 

(29) 

is an invariant under the assumptions that 



and 

Lim 
r- 00 

The integral (29) is usually referred to as Loitsianskii's invariant. The 

interpretation given by Loitsianskii is that the integral gives the total 

amount of disturbance introduced by the turbulence generating system. 

Besides the correlation coefficients f (r) and g (r), the auto-

correlation coefficient RE (T) between the values of u
l 

at the same 
1 

point but different time stand t + T is important and is given by 

28 

(30) 

The correlation coefficient is a measure of the relatedness of the variable 

ul at the two times t and t + T As T tends to be zero, RE (T) 
1 

tends to be equal to one. As T . recomes larger, RE approaches 
1 

zero. This means that u
l 

(t) and u
l 

(t + T) are no longer correlated 

but they may not be independent. From a plot of RE (T) vs T, two 
1 

inferences could be drawn. First the rapidity with which the relatedness 

is lost with time delay is shown and, second, detection of a periodic 

signal hidden in the random velocity fluctuation is indicated by peaks 

in the plot at intervals of I T I equal to the period of the periodic signal. 
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Scales of Turbulence 
i 

The concept of a scale representative of a particular turbulence 

under consideration was used by Prandtl (1926) and Taylor (1915) in the 

mixing-length theories. However, their definition of the scale was based 

on the assumption that the fluid elements act like the molecules in a gas. 

Hence the scales so defined are fictitious and lack in physical reality. 

This fact led Taylor (1935) to inlcC!1duce a number of s.cales which charac-

terize various statistical aspects of turbulence. The macroscale and 

microsc ale gained widest acceptance. Taylor set forth the following 

definition for the scale of turbulence in the Eulerian system: 

It is clear that whatever we may mean by the diameter of an 
eddy a high degree of correlation must exist between the 
velocities at two points which are close together when com­
pared with this diameter. On the other hand, the correlation 
is likely to be splall between the velocity at two points sit­
uated many ed<;iy diameters apart. If, therefore, we imagine 
that the corre}ation R~2 between the values of u

1 
at two 

points distaI)t J ,.x2 apart in the direction of the x2 coordinate 
axis has been', cJ.~lermined for various values of x2 we may 
plot a curve of RX2 against x :

2 
and ~his curve will represent, 

from the statistical point of 'view, the distribution of u
1 

along 
the x

2 
axis. (Taylor, 1935, p. 426.) 

With these words he defined 

00 

(31 ) 

The length L is considered as a possible definition of the average 
x

2 

size of the eddies and is termed the integral scale or macroscale of 
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turbulence. Correspondingly, a length L may be defined by the 
xl 

relation: 

00 

(32) 

where R is the correlation coefficient between the values of the 
xl 

component u
l 

at two points separated by distance xl in the direction 

of xl-coordinate axis. Another macroscale using the autocorrelation 

coefficient may be defined as 

00 

o (33) 

Taylor (19 3 5) showed that R can be expanded in a series such that 
x

2 

2 4 2 
I 

X " 

(:U1
) 

I 
x

2 ( a ~l) 2 _ . R I 
)'2 

= - --- + --
x

2 
2 ! 

2 
4 ! 

2 . x . . aX
2 u

l 
2 u

l 
. 

If the above series is truncated at the second term then 

I 
R = I - 2.' x 2 . 

Hence, the curvature of the R versus x
2 

curve at x = 0 is a 
x 2 2 ( 

measure of 

(34) 

(35) 



This relationship can be expressed as 

( ~)2 = 
aX

2 . 

2 
2 u 

1 

Taylor intorduced the Eulerian microscale of turbulence, )., defined 

as 

= Lim 
x -0 

2 
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(36) 

(37) 

2 
Thus,)., is a measure of the rpdius of curvature of the R curve at 

x
2 

The general expression for the mean rate of turbulent-energy 

dissipation per unit mass (Goldstein, 1938, p. 222) is: 

au 2 au 2 2 

E = V [ 1 ) 2 (_2) + 2 (au3 ) 
2 (ax

l 
+ aX

2 
aX

3 

(38) 

which reduces to 

E = 7.5 
(39) 
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in case of incompressible isotropic turbulence, as first proved by Taylor 

(1935). Combination of equations (36), (37), and (39) gives 

E = 15 
(40) 

The IX. I value may now be regarded as a measure of the diameters of 

the smallest eddies which are responsible for the dissipation of energy. 

For this reason, X. is sometimes called dissipation scale or length. 

The theory proposed by Taylor does not predict the distribution 

of the scale of turbulence or the distribution of the intensity of turbulence 

for any type of flow. In fact there are no theories that will predict the 

distribution of the scale of turbulence. Therefore, experimental data 

must be relied upon to determine how the scale of turbu-Ience is distrib-

uted across a channel. Laufer (1951) has determined the distribution of 

the scale of turbulence in a two-dimensional channel flow of air, but 

there is no data available to show the distribution of the scale of 

turbulence in an open channel (either smooth or rough). 

Turbulence Energy Spectral Density Function 

A more de'tailed character of turbulence can be obtained by con-

sidering the distribution of the total kinetic energy of turbulence among 

eddies of different sizes, i. e., turbulence spectrum. It is convenient 

to consider the energy variation with either frequency or wave number. 
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Taylor (193 8) introduced the concept of spectrum into turbulence. Taylor's 

one-dimensional energy spectrum El (n) may be defined as 

00 

S E-\ (n) dn = u': or 

o 

00 

(41) 

2 . 
El (n}dn is the contribution to u

l 
over the frequencIes between nand 

n + dn. The normalized one-dimensional energy spectrum F 1 (n) or 

F 1 (k
1
) may be defined as 

00 00 

S PI (n)dn = 1 or S PI (kI)dki = 1 
o 0 (42) 

Taylor (193 8) showed that F 1 (n) and the normalized longitudinal correla-

tion function f(x
l
} are Fourier cosine transforms of each other, i. e. , 

(43) 

and 

F 1 (n) 

(44) 

From Equations (32) and (44), when n = 0 

(45) 

Therefore, the value of L can be obtained from the intercept of the 
xl 

F 1 (n) curve at n = 0 . 
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It could also be shown that the normalized autocorrelation function 

~1 
(T) and F 1 (n) are Fourier cosine transforms of each other, i. e. 

00 

RE (T) = S F 1 (n) Cos (2lT nT)tln 
1 (46) 

00 

F 1 (n) = 4 S RE (T) COS(2lT nT)~ T 
o 1 (47) 

Spectrum function is more intuitive than that of correlation function, and 

one of the advantages of working with the spectrum function is that 

various relations can be deduced without the restrictive assumptions 

of isotropy; the field need only be homogeneous. 

In view of the three-dimensional character of turbulence, it is 

obvious that the energy-spectrum function must also have a three-

dimensional character. Therefore, ft should be noted that Taylor's 

spectrum function is a one-dimensional section of what is in fact the 

three-dimensional spectrum function. It should also be pointed out 

that even though the one-dimensional spectrum function is very con-

venient for experimental measurements, it is not too convenient for 

theoretical study. Heisenberg (1948), therefore, introduced a three-

dimensional-space spectrum function E (k); while Batchelor (1953) and 

Kampe de F6riet (1940) introduced a spectrum tensor E . . (k). For this 
1) 

purpose the relation between correlation tensor R .. (r) and energy-
1) 

spectrum tensor E .. (k), is to be studied. They are related by the 
1) 

following three-dimensional Fourier transform pair: 
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-. 
ik r -= R .. (;) S E .. Ck) dk 

1J 1J e (48) 

--... 
S 

ike -E .. (k) = 1/8TT3 R .. (7.) d r 
1J 1J e 

(49) 

where k is a wave-number vector and dr: = dr
l

' dr-
2

' dr-
3 

and dk = 

dk
l

' dk
2

' dk3 . Physical significance can be attached to the quantity 

E .. (k) by substituting ; = 0 in equation (48), 
1J 

R .. (0) = u. (~ u. (~ 
1J 1 J 

= S E .. (k) d k 
1J (50) 

Tn~refore, -E .. (k) 
1J 

represents a density in wave-number space of contri-

butions to u, (~) u. (~). Thus it describes how the energy associated with 
1 J 

each velocity component is distributed over the various wave.numbers ~n a 

harmonic resolution of the velocity field. It is this physical significance 

-that makes E .. (k) the most important single quantity describing the fielc;l 
1J 

of turbulence. 

Correlation and spectrum functions of a single scalar variable can 

... -be obtained by averaging R .. (r) and E .. (k) over all directions of the 
1J 1J - -vector arguments rand k: 

T .. (r) = 1 S R .. (r) d A (r) 
1J 4TTr2 1J (51 ) 

and 
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'M. . (k) = S E .. (k) d A (k) 
1) 1) (52) 

where d A is an element of area on a sphere with a radius equal to the 

magnitude of the vector. These scalars are related by Fourier Sine ' 

transforms from equations (50) and (52) 

00 

1/2 R .. (0) 
11 

= 1/2 u. (;Z) u. (~ 
1 1 =S 1/2 \]£. (k) d k 

11 (53) 
o 

The quantity 1/2 'i (k) is the contribution to the turbulent kinetic energy 

in the wa ve .. number range k to k + dk and will be called E (k) , the 

three-dimensional energy spectral-density function of Heisenberg and 

hence 

E (k) = 1/2 'lI .. (k) 
11 (54) 

00 

S E (k) d k = 1/2 u. 6Z) u. (~ 
1 1 

(55) 

o 

Batchelor (1953) has shown that for the case of isotropic turbulence 

E1 (k1) is related to E (k) by 

00 k 2 
ill) 

E1 (k1) = 1/2 S (1 --t ) dk 
k 

k k ' 
1 (56) 

or 

E(k) 
(57) 
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Equation (56) can be used to transform the quantity E (k) established from 

theory to a quantity E1 (k
1

) that can be measured in the laboratory, if the 

turbulent field established in the laboratory is isotropic. Conversely, 

equation (57) can be used to transform laboratory data into a form that can 

shed light on the mechanism of energy transfer. 

The dynamic equation of energy spectrum can be obtained by taking 

a Fourier transform of the von Karman- Howarth equation (28) as shown by 

Lin (1947). 

a~ E (k) = W(k) (58) 

or 
k k 

a~ S E(k) dk 
o 

= S W(k) dk 
o (59) 

The left-hand side of this equation represents the change of total kinetic 

energy of turbulence. The first term on the right represents the interaction 

of eddies of different wave-numbers, thereby transferring energy by inertial 

effects to or from the eddies in the wave number region 0 to k and, 

therefore, W(k) is referred to as the transfer-spectrum function. The 

second term on the right can be shown to represent the dissipation of 

turbulence energy into heat. The weighting factor k
2 

in the integral in 

equation (59) clearly shows that the dissipation of energy is practically 

all associated with high wave-number components which contain c;i neg-

ligible amount of energy. This deduction has a very important bearing on 

later developments of the theory of energy spectrum. 
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Knowledge of the spectrum function E (k) is sufficient to des cribe 

the turbulent field completely; and, therefore, determination of E (k) is 

one of the basic problems in the study of turbulence, To determine E (k) 

either equation (58) or (59) may be used. The complete solution of equation 

(58) could not be obtained as the form of the transfer-spectrum function 

W(k) is unknown. There have been two approaches to overcome this 

difficulty. In the first approach-similarity-equation (58) is discarded 

and some conclusions about the functional form of ::8 (k) are drawn from 

more basic physical principles, namely dimensional considerations. The 

contributions of Kolmogoroff (1941), On'Sager (1945), von Karman and Lin 

(1949) belong to this approach . 

In the second approach, (physical transfer theories) an explicit 

functional form for W(k) is assumed which .makes possible the solution 

of the dynamical equation (58). This second approach was used by 

Obukoff (1941), Kovasznay (1948), Heisenberg (1948), Chandrasekhar 

(1949), Tachen (1953), and von Karman (1948). Among the two approaches, 

only those studies concerning the determination of the energy-spectrum 

function in the equilibrium range will be briefly considered in a later 

section. 

Kolmogoroffi s Theory of Local Isotropy 

The following model for turbulent-energy production and dissipation 

at high Reynolds numbers was suggested by Kolmogoroff (1941): The mech­

anism of turbulence production from the instability of the mean flow is 
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determined by the boundary conditions. Pulsations of small wave number 

produced from the instability of the mean flow give rise to pulsations of 

higher wave number because of the inertial forces, and these in turn break 

down into pulsations of much higher wave number. Turbulence energy 

cascades from the region of low wave numbers to a region of high wave 

numbers. This cascading of turbulent energy continues until wave num-

bers of pulsations are so high that not all the energy is transferred to 

the next higher order, but part is dissipated into heat by viscous forces. 

Kolmogoroff reasoned that, at high Reynolds numbers, the range between 

wave numbers of pulsations charact eristic of mean flow and those dis-

sipating all their energy by viscosity is large. In this case, the region 

of pulsations of high wave numbers should be far enough removed in the 

cascading process from the production region to be independent of the 

production mechanism. Therefore, in any turbulent field at high Reynolds 

number, a domain Q can be defined which is small enough that it will 

possess local isotropy. The domain Q will contain pulsations of high 

wave number describing a motion that is isotropic and steady-state. 

The fundamental quantities upon which the structure of the motion 

in the domain Q may depend are the mean dissipation of energy per unit 

time per unit mass of the fluid E {which determines the intensity of the 

energy flow in the cascading phenomenon) and the kinematic viscosity 

I I 
V • These considerations led Kolmogoroff to make his first hypothesis: 

.. At sufficiently high Reynolds number there is a range of high wave 



40 

numbers where the turbulence is statistically in equilibrium and the 

probability distributions defining the turbulence are uniquely determined 

by the quantities, e and v." (Hinze, 1959, p . 184 . ) 

When this equilibrium range is sufficiently wide, it is further 

argued that the lower wave-number components in the equilibrium range 

will contribute so little to the total viscous dissipation that a subrange 

will exist in which the properties will be det ermined solely by E • 

This concept provides Kolmogoroff's second hypothesis: .. At the lower 

wave number end of the equilibrium range there is an inertial subrange 

in which the probability distribution defining turbulence is uniquely 

determined bYe. II (Hinze, 1959, P. 186.) 

The concept of local isotropy has exerted profound influence 

and served as the starting point for many later investigations. One of 

the most important problems of turbulent shear flows is the estimation 

of the rate of turbulence-energy dissipation. 

The theoretical equation for the rate of turbulence-energy dis­

sipation (second term on the right side of the equations (12) ) per unit 

volume of fluid could not be availed of for practical computations as all 

the nine terms contained in it cannot be measured. But for isotropic 

turbulence, the expression for the rate of turbulence-energy dissipation 

per unit mass given by equation (40) is very simple to make use of as it 

is fairly easy to measure velocity fluctuation and the associated micro­

scale. Hence if the existence of local isotropy in the domain of turbulent 
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shear flows is proved, usage of the expression for I E I in isotropic 

turbulence for estimation of the rate of energy dissipation in noniso-

tropic turbulence would be justified. Besides, the concept of local 

isotropy facilitates the application of the results of studies in isotropic 

turbulence to the phenomena in actual turbulence (nonisotropic turbulence) 

that are determined mainly by the fine scale structure where local 

isotropy prevails. 

Spectral Laws of Locally Isotropic Turbulence 

Similarity hypothesis 

The concept of Kolmogoroff and his two hypotheses can be used to 

determine the energY-ciistribution function E (k) in locally-isotropic tur-

bulence. According to Kilmogoroff' s first hypothesis, the structure of 

the equilibrium range at the end of high wa ve numbers is determined by 

£ and v. If the structure is expressed in terms of the energy-spectrum 

function E (k), similarity considerations lead to a spectrum function of 

the form 

(60) 

3 1/4 
where 11 = (v / E) and cp is a universal dimensionless function of 

11k . 

From Kolmogoroff' s second hypothesis at the high Reynolds number 

equation (60) must reduce to a form independent of viscosity. From 

similarity conditions it follows that 
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E(k) = a € 2/3 k -5/3 (61 ) 

where a is an absolute constant. This is called ' lmogoroff's spectrum 

law. From equations (56) and (61), the longitudinal one-dimensional 

spectrum function takes the form 

18 2/3 -5/3 
E 1 (k 1 ) = 55 ,u E k 1 

, 2/3 k -5/3 
= a E 1 (62) 

where 
18 

a' = 55 a . 

Laboratory data obtained at high Reynolds numbers should, there-

fore, give a straight line with slope - 5/3 when plotted on logarithmic 

paper if KOlmogoroff's hypotheses are correct. 

Physical transfer theories 

The basic assumption made in the development of physical-transfer 

theories is that W(k) is determined by E (k) only. The specific form of 

relationship between W(k) and E(k) depends on the particular mechanism 

of energy transfer considered. Among the physical-transfer theories the 

most successful one is the eddy-viscosity transfer theory due to Heisenberg 

(1948). 

While considering the rate of dissipation of energy by eddies with 

wa ve numbers les s than a particular k, Heisenberg distinguished between 

the energy directly dissipated in the form of molecular motion and thermal 

energy and the energy transferred in the form of kinetic energy to all 

eddies with wave numbers exceeding the specified k. He argued that 
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the mechanism governing the transfer of energy is similar to the one 

governing the viscous dissipation provided the molecular viscosity is 

replaced by a suitable eddy viscosity. Therefore, the expression for 

the energy transfer is 

k 

5 W(k) dk = 

o 

k 

- 2 v t (k) S k 
2 

E (k) d k 

o (63) 

Heisenberg further assumed that vt(k) can be expressed as an integral 

over the spectrum in the form 

where kH is a numerical constant of order unity. Substitution of 

equation (63) in equation (59) leads to 

For the equilibrium range, 

k 00 

.-£. 5 E(k) d k~ .-£.5 E(k) d k = - E at at 
o 0 

k 

= - 2 v 5 k 
2 

E (k) d k 

o 

Combination _of' equat{ons .(65) 'and. (66) results in 

00 k 

E = 2 [ v ~ kH 5 JE~~) d k ] 5 k 2 
E(k) d k 

k 0 

(64) 

(65) 

(66) 

(67) 
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Bass (1949) and, independently, Chandrasekhar (1949) obtained an exact 

solution of (67) in the form 

2/3 
E(k) = (98~-) -5/3 

k 
3 

[ 
8 v 

1 + --
3 k2 

H E 

4 J- 4
/

3 
k ' 

(68) 

In the region where the effect of viscosity is negligible, equation (68) 

reduces to 

E(k) = (~)2/3 k -5/3 
9k

H (69) 

which is identical with Kolmogoroff's spectrum law in the inertial subrange. 

For large values of 'k' where viscosity plays an important part equation 

(68) reduces to 

( 

E kH ) 2 -7 
E(k) = -2- k 

·2v ' (70) 

Equations (69) and (70) can be transformed to equations for the longitudinal 

one-dimensional spectrum function by substituting in equation (56) to give 

for the low wavenumber region and the high wave-number region, respectively, 

E1 (k1) 
9 (~) 2/3 -5/3 

= k1 55 9k
H (71 ) 

and 

E1 (k1) _1 (~)2 -7 
= k1 

63 2v2 (72) 
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By substitution of equation (68) into equation (56) the longitudinal one-

dimensional spectrum function for the entire region is obtained. 

00 -4/3 00 

E1 (k
1

) = 1/2 S Mk -8/3 [ 1 +_ P k 
4 

] dk - 1/2 k~ S Mk -14/3 

where 

kl k1 

-4/3 
[1 + Pk 

4 
] d k 

p = 
8 2/3 

and M = (_e) 
9k

H 

(73) 

(74) 

Equation (73) can only be sol ved over the entire range by graphical inte-

gration once P and M have been determined. 

Kovasznay (1948) postulated that the contribution to W(k) comes 

from a narrow wavGflumber band in the immediate vicinity of k. Since, 

under these circumstances, W(k) can only be a function of E (k) and k, 

it follows from dimensional arguments that 

k 

S W(k) dk = 

o 

- a [E(k) ] 3/2 k 5/2 
(75) 

where a is an absolute constant. 

Substituting (75) in (59) he sol ved for E (k) and obtained 

2 1/3 5/3 [ 2/3 r.:
d 

\4/3 ] 2 
E (k) = ( ~1 0 ) k - . 1 - T \.. ) 

(76) 
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where kd = [ e/v
3 ] 114 

Obukhoff (1941) assumed that the energy transfer across the wave 

numer ~_k~ is analogous to the energy transfer from the main motion to 

the turbulent motion through the turbulent shear stresses; and it follows, 

therefore, 

k k 00 

S W(k) dk = 

o 

a [2 S k 
2 

E (k) d k ] 1/2 S E (k) d k 

o k (77) 

where a is an absolute constant. 

Substituting (77) in equation (59) he obtained a solution for E(k) 

h ' h d k- 5/3 , h' '1 b w IC re uces to const. x In t e Inertia su range. 

Von Karman (1948) visualized that the tLansfer function W(k) may 

be interpreted as the difference between the energy supplied by the eddies 

wi th wa ve numbers les s than 'k' and the energy transferred to the smaller 

eddies with wave numbers greater than 'k'. On this basis he defined 

k 00 

W (k) = 2 a [E f3 k 'Y S E i3' k 'Y' d k - E i3' k 'Y' S E i3 k 'Y d k ] 

o k (78) 

which includes, as special cases, the assumptions made by Obukoff, 

Kovasznay, and Heisenberg and obtained 

E (k) = E (k '/21 7/6 
e __ 

where k is a function of time. 
e 

(k/k ) 
4 

e 

(79) 
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Homogeneous Shear Turbulence 

Most of the research in turbulence so far has dealt with the case 

of infinite homogeneous isotropic turbulence fields. Extensions to specific 

isotropic turbulence fields were made by Batchelor (1946) and Chandrasekhar. 

(1950 a, b). They studied axisymmetric turbulence, a field of turbulence 

with const ant mean velocity where the average value of any function of 

the velocities and of their deri vati ves is invariant with respect to rotations 

and reflections about a fixed axis. However, in many practical problems 

in fluid mechanics such as in turbulent boundary layers, pipe flow, and 

channel flows, the fields of turbulence are nonhomogeneous with mean 

velocity gradients. No theoretical studies of nonhomogeneous turbulent 

shear flows have been made to date. But in the recent years some 

theoretical studies of homogeneous turbulence with a uniform trans verse 

velocity gradient have been made by Tachen (1953), Burgers and Mitchner 

(1953), Reis (1952), Deissler (1961, 1962), Fox (1964), and Lumley (1964). 

Even though the homogeneous turbulent shear flow is a hypothetical one, 

it will be a better representation of the actual turbulence than the one 

considered before. 

The development of the theory of homogeneous shear turbulence 

has often followed the ideas developed in the theory of homogeneous 

isotropic turbulence. Analogous to Heisenberg ~ theory, there exist the 

nearly identical theories of Tachen (1953), Reis (1952), and Burgers and 

Mitchner (1953). Analogous to the work of Proudman and Reid (1954), 
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there is the work of Craya (1957). DeisslerJ ~ (1961) work in shear 

turbulence follows similar lines to his ·work in homogeneous decaying 

turbulence. The following treatment briefly outlines the significant 

results of these studies of homogeneous shear turbulence. 

Most of the investigators of homogeneous shear turbulence 

obtained general two-point correlation equations by use of the Na vier-

Stokes equations. After taking the Fourier transform of each term in the 

correlation equations and introducing suitable substitutions, the invest-

igators obtained the following dynamic equation for the energy spectrum: 

k d U k 

.2.. S E (k, t) d k + d~ S E (k, t) at x
2 o 0 

k k 

= S F(k, t) d k - 2 v S E(k, t)k
2

dk 

o 0 
(80) 

In the case of stationary shear flow, the equation for the energy spectrum 

is 

k - 00 k 
dU 

• = 2 v S E (k) k 
2 

d k - dx 1 S E (k) d k - S F (k) d k 

o 2 k 0 (81 ) 

On the basis of this eq uation, a few solutions for E(k) were obtained 

that are valid in the range of large wave numbers. 

In obtaining a solution of the equation (81), Tachen (1953) con­
dU 

sidered two cases: 1. The vorticity -d 1 of the main motion is small 
x

2 
compared with the vorticity of the turbulence in the wa ve-number range 

under consideration. 2. The vorticity of the main motion is comparable 
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to the vorticity of the turbulence in the wave~umber range under consider­

ation. Utilizing the concepts of Boussinesq and Heisenberg, he expressed 

the second term (representing the interaction between the mean flow and 

its fluctuating part) and the third term (representing turbulent transfer) on 

the right hand side of the equation (81) in terms of the energy-spectrum 

function E (k). Then he sol ved the equation (81 )for not too large II k" 

and for v'ery "large " "'k" and obtained for case one 

E (k) ex:: k - 5/3 
(82) 

and 

(83) 

These spectral laws were obtained by Heisenberg for the nonviscous sub­

range and viscous subrange in isotropic turbulence respectively. Burgers 

and Mitchner (1953) obtained the same solution as (82) assuming that the 

second term on the right side of equation (81) can be neglected. 

In case two, Tachen argued that there will be violent interactions 

between the vorticities of the two motions and violent resonance may 

occur. It is reasonable to expect that it will occur in the non-viscous 

subrange where II k" is not large. As the result of resonance, the pro­

dUction function predominates the viscous dissipation function and eddy 

transfer function; hence the first and third terms on the right side of the 

equation (81) were neglected by him to obtain a solution for E (k) 

E (k) ex: k -1 

as 

(84) 
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The corresponding longitudinal one-dimensional spectrum function takes 

the form 

(85) 

Tachen further showed that strong interaction between the main motion 

and the turbulence can occur only in the u~ component of turbulence as 

the turbulence production by the main motion occurs only in that component 

in homogeneous parallel shear flow. 
. -1 

Hence II k II spectral law can be 

expected only for the energy spectrum of the longitudinal component of 

turbulence. 

Reis (1952) obtained a solution of equation (81) assuming Heisen-

berg's expression for the turbulent-transfer term, and making a hypothesis 

on the form of the term for the interaction between main flow and turbulence. 

For large wave numbers, his solution is similar to the one obtained by Bass 

and Chandrasekhar (refer to equation 68) for the case of isotropic turbulence. 

Thus k -5/3 and k -7 spectral laws are again obtained by him. However, 

from his analysis he found a fundamental difference between isotropic and 

shear turbulence in the equilibrium range: The greater the mean velocity 

gradient, the larger will be the amount of energy in the equilibrium range, 

whereas in isotropic turbulence the amount of energy in this range is 

negligible and the range of validity of the k -5/3 law will extend further 

to higher wave-numbers. These results may be attributed to this: As the 

mean-velocity gradient increases, the characteristic time of the mean flow 



decreases; and it will approach the reaction times of the small eddies, 

resulting in a greater interaction between the mean flow and the small 

eddies in the equilibrium range. 

Deissler' s (1961) analysis is based on the general two-point 

equations for the velocity correlations and for the pressure-velocity 

correlations. He assumed the turbulence to be weak enough for triple 

correlations to be negligible compared to double ones. He derived the 

corresponding equation for the rate of change of the spectral tensor 

E
ij

. For the case of initially isotropic turbulence, solutions for E
22

, 

E
12

, E .. components of E .. were obtained by Deissler and solutions 
11 1J 
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for the remaining components were obtained by Fox (1964). They utilized 

these solutions to obtain a complete description of the redistribution of 

turbulent energy u. u. among its directional components 
1 1 

the effects of mean transverse velocity gradient as the turbulence decays. 

Their study leads to the following description of the sequence of turbulent-

energy processes. The turbulent-€nergy production by the mean-velocity 

2 
gradient occurs only in the u

l 
component of the energy and predominantly · 

in the low wave-;1umber or larg~ddy region. The pressure forces which 

depend on the velocity gradient transfer the energy into other components. 

In doing this, the pressure forces increase the anisotropy of the turbulence; 

and, in particular, they oppose local isotropy in the high wave-number 

region. But the triple correlations which are neglected by them can also 

affect the pressure forces at high Reynolds numbers and may tend to 
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increase isotropy. Hence, their results cannot be taken as definitive, 

but they may serve as a warning to use caution in assuming local isotropy 

in boundary-layer flows especially very near to boundaries. 

The two approaches above do not provide the detailed mechanism 

of the transfer of energy from one wa ve number to another. Improvement 

in the study can be made by considering not only the equations for the 

two-point double correlations, but also the equations for three-point 

trip~e correlations. Closure of this system of equations can be made 

by the application of the quasi-gaussian hypothesis. Craya (1957) 

adopted this procedure and derived the dynamical equations for the 

energy-spectral tensors. These equations are too complicated to obtain 

any solution. 

Lumley (19 64) derived spectrap-energy equations for wall turbulence, 

that is, turbulence which obeys similarity relations and in which the only 

characteristic length is the distance to the wall. He made use of those 

equations for qualitative study of the spectral budget of energy. The 

picture of spectra1-energy budget obtained as a, result of his study was 

summarized by Lumley and Panofsky in lucid terms and is quoted here: 

Energy removed from the mean motion by working of the Reynolds 
stresses against gradients of the mean velocity is fed in at lower 
wave numbers. The spectrum is anisotropic here. Distortion of 
the eddies by the mean strain rate serves to transfer energy from 
the lower to the higher end of the anisotropic part; inertig forces 
or vortex stretching, due to the fluctuating velocity gradients 
serve to transfer energy from the low wav~number anisotropic 
range to higher wave numbers. As the wave number increases, 
under the influence of pressure forces, the spectrum becomes 



more isotropic and feeding falls off. For sufficiently large 
Reynolds number, there is a range of wave numbers in which 
no significant feeding or dissipation is taking place, only 
inertial transfer; finally, at sufficiently high wave numbers, 
dissipation takes place. The spectrum in the ranges in which 
only inertial transfer and dissipation take place may be 
regarded as isotropic. (Lumley and Panofsky, 1964, p. 82.) 

Relationships Between Statistical Quantities of 

Turb~lent Shear Flows 

In the previous sections, several statistical quantities which 

constitute the structure of turbulent shear flows have been considered. 

Not only do they depend on the position of the sampling point and the 

Reynolds number. of flow, but they must be related to the representative 
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mean values of flow as well. If they could be related to easily measurable 

mean quantities such as the relative depth of flow, the resulting relation-

ships could form a basis for the application of the statistical theory of 

turbulence to practical problems. 

The rate of energy dissipation per unit volume in turbulent shear 

flows may be expressed on the basis of the analogy with the case of 

isotropic turbulent flow, as 

E 
o 

= const. p v 

Provided that ~ and u~ are proportional to ui the expres sion for 

turbulence energy per unit volume is given by 

(86) 
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E = 1/2 p ( u~ + u; + u~)= Canst. p u~ 
(87) 

This turbulent energy is dissipated by the action of viscosity in the time 

00 

of decay defined by S RL (T) dT. where RL (T) is the Lagrangian 

o VI . VI 
correlation coefficient of a turbulent fluid particle velocities at an interval 

of time T. The time of decay is related to the Eulerian system such .hat 

L 
xI 

a­
u l 

1 

The rate of turbulent-energy dissipation is given by 

E I == Const. 

(88) 

(89) 

A combination of equations "(86) and (89) leads to the following relation~ 

== Const 

(90) 

The experiments of Laufer (:19 S1, 1954) proved that the dissipation 

of turbulence is nearly balanced with the production rate of turbulence in 
x

2 
the range of approximately (0 < h ~ 1/2) and with the diffusion rate . in 

the outer region (0. 8 < Y/h ~ 1). In addition, the turbulence intensities 

referred to the friction-velocity u* are functions of x Ih. On the basis 

of this conclusion, the macroscale of turbulence relative to the flow depth 
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can be expressed as a function of relative depth as indicated by Hino 

(:1~ 60). 

The rate of production of energy in steady unidirectional flow is 

given by 

T 

(91) 

The rate of dissipation of turbulent energy can be expressed as 

(92) 

Reference to equation (11) reveals that the rate of diffusion of turbulent 

energy is given by (the first term on right~aI)d side). 

C 
( 2 + 2 2) 

d u2 '~I ;2 + u3 ] 
= dx~ 

3 2 
pu* d 

u' u 
1 2 

= C
2 -

h d(X2/h) 3 
u* (93) 

In light of the isotropic character in the .outer region, the diffusion rate 

as well as the dis sipation rate should nearly be constant in this range; 

and, therefore, equation (93) can be rewritten as 

Qiffus'ion rate = 
h (94) 
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If equation (92) is equated to equations (91) and (94) 

o < x 2!h < 0.5 

0.8 < x 2/ h < 1 

(95) 

This relation is analogous to the experimental result, obtained by 

Nikuradse (Schlichting, 1960, p. 51}) from his measurements on artificially 

roughened pipes in that the variation of the mixing length with the wall 

distance (i!R) is independent of Reynolds number and wall roughness and 
x 

is a function of R2 only, provided the flow is fully-developed turbulent 

flow. The validity of the above approximate relationship will be test ed 

in Chapter VI, making use of the experimental data obtained. 
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CHAPTER IV 

EXPERIMENTAL APPARATUS AND PROCEDURE 

Description of Apparatus 

Flow system 

The flow system used in this study ~ a flume which is 3 feet 

wide, 2 feet deep, and 24 feet in length (see Figure 1). The slope of the 

flume is adj ustable from 0 to 4 per cent. At the head end of the flume a 

head tank equipped with a diffusion partition receives the discharge from 

the reservoir directly through a 1. 0 foot-diameter pipe which is provided 

with a regulating valve near the head tank. Discharges up to 5 c. f. s. 

were possible and were measured by an electromagnetic flow-meter. 

The entrance to the experimental flume was provided with a rounded 

inlet which was designed to provide a smooth transition from the relatively 

quiet conditions in the head tank to the flow of the main channel. At the 

entrance to the flume, a sluice gate wa s provided for regulating the flow 

in the flume in addition to the valve on the supply pipeline. In the en­

trance to the flume, a series of screens were placed across the head tank 

for suppressing surface waves and eliminating secondary currents. At 

high flows, secondary rollers appeared in the entrance section. These 

were suppressed by manipulating the sluice gate. During the investigation, 

there was no evidence of the persistence of such disturbances if ever 
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present beyond a few feet from the entrance to the flume. As further 

insurance to guarantee homogeneity, the sampling point was chosen at 

a distance of 15 feet and 7. 25 inches from the entrance to the flume. 

The discharge from the flume was allow~d to fall freely into a 

channel which drained into Logan River. Since the water depths were 

normally small and the flume bottom extremely rough, the influence of 

the draw-down curve was not felt more than 6 feet up-stream of the end 

of the fl ume. 
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The bottom of the flume was covered with expanded metal screens 

in order to provide a uniformly rough surface for the generation of turbu­

lence. These screens are illustrated in Figure 2 and ha ve diamond shaped 

openings. The minor diagonals of the meshes measure 13/8 inch and 5/16 

inch while the respective major diagonals measure 27/8 inch and 5/8 

inch. The screens were attached to the bottom of the flume using marsh 

adhesive and Silastic RTV-731. Care was taken to eliminate bulges or 

dips in the height of the meshes and to prevent unusual wave patterns 

which might interfere with the statistical homogeneity in the turbulence 

in the axial direction. 

The simplest nonisotropic turbulent flow is the axisymmetric flow 

in a pipe in which the turbulent field is nonhomogeneous in one direction 

only. In the case of uniform turbulent flow in the flume, the turbulent 

field is nonhomogeneous in two directions., namely;, perpendicular to the 

mean flow and transverse to the mean flow. As the ratio of the breadth 
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Series A Series C 

Figure 2. Flume bed roughness meshes. 

Figure 3. ExperiPlental flume and staging--General view. 
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of the flume to the maximum depth of flow worked within the investigation 

is more than 12, it could be reasonably assumed that the flow, u-sed 'in the 

flume was essentially two-dimensional. The simple geometry of two­

dimensional channel flow allows an integration of Reynolds equations; and 

the turbulent shearing stress can then be related directly to the shearing 

stres s on the bottom, which in turn can be determined from the slope of 

the mean-velocity profile at the bottom d the flume. Another advantage 

of choosing fully-developed channel flow as an experimental flow system 

in this study is that, in contrast with the flow behind screen grids, the 

rre an-tlow conditions are steady. Furthermore, no decay of mean or 

fluctuating quantities exists in the direction of the flow because the 

turbulence generated by the bottom roughness of the flume was in equi­

librium with turbulence decay. The position of the sampling point in the 

transverse direction was chosen in the center of the flume. 

The Reynolds number of the flow was calculated using depth of 

flow as the characteristic length. The depth of flow was measured from 

the effective bed which was arbitrarily chosen at a height equal to half 

of the thicknesstof the mesh measured from the bed of the flume. 

The location of the test section ranged from 12 feet 0 inches to 

19 feet 0 inches downstream from the entrance of the flume. The variation 

of depth of flow in that reach wa s not more than 5 per cent. 

In order to isolate the tranducer from the oscillations of the flume, 

a separate staging acros s the flume was erected; and the t randucer probe 



was mounted on the frame, which was resting on the staging, which 

rested on the floor. The det ails are shown in Figure 3. 

Tranducer probe 

A radially-polarized hollow cylindrical barium titanate ceramic, 
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1/16 inch in. outside diameter and 0.033 inch in inside diameter and 1/2 

inch in length purchased from Gulton Industries, Inc., Metuchen, New 

Jersey, was used as the pick-up. It was supplied with a very thin 

waterproof coating of silicone varnish. It was provided with electrical 

leads already soldered to the inner and outer faces. The inside lead is 

32 gauge stranded, insulated copper wire with outside diameter not 

greater than O. 030 inch and length 18 inches. The lead on the outer 

face is a gold foil tab 1/16 inch wide, 1 inch long, and O. 0015 inch 

thick. 

The details of the various parts of the probe are shown in Figure 

4. The following steps were followed in its construction: The rear portion 

of the tip connector was tinned with sil ver solder, and while it was still 

hot the connector was screwed tightly into a 1/8-inch stainless-steel 

tube. This provided a good physical and electrical connection between 

the two parts. The tranducer was then glued to the exposed end of the 

tip connect0t.' with a very thin layer of hard drying II Epoxy glue. II The 

inner lead of the tranducer was carried back through the tube to a 

II Glenite C5-RllI miniature cable connector. The gold foil tab was 

fastened to the flat on the tip connector with a small amount of silver 
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conducting paint. The tip connector and the tube thus form the ground 

lead from the ceramic and also provide electrical shielding for the inner 

lead. 
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Then the brass diaphragm was punched from O. 001 inch shim stock 

and very carefully soldered to the tip cover. The outer surface of the 

ceramic was then coated with a layer of II Kerr' Syringe Elasticon. II Its 

purpose is to fill the space between the ceramic and tip cover, thus 

giving lateral support to the ceramic element and at the same time pro­

viding a certain degree of vibration isolation. Before the elasticon could 

set, the tip cover was slipped over the tranducer and pushed onto the tip 

conf-1ector. The' length of the tip cover had been previously adj usted such 

that when pushed on as far as possible a slight deflection of the dia­

phragm by the ceramic was effected. This ensured good contact between 

the diaphragm and the ceramic. The j oint between the tip cover and the 

main portion of the tube was then sealed with epoxy cement. This com­

pleted the assembly of the tip section. To provipe additional strength to 

the tube, a brass strip was soldered along the forward edge of the main 

portion of the tube. The final shape of the tranducer probe is shown in 

Figure 5 along with ceramic crystal. 

Since the barium titanate crystal has a very low capacitance, the 

external cable must also have a low capacitance in order to achieve high 

Sensitivity. For this reason Amphenol No. 621-685 shielded cable was 

used to connect the tranducer electrodes and the II Glenite C5-Rl miniature 
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cable connect or" at the other end. In order to increase the low-frequency 

response of the tranducer probe, a Glenite cathode follower Model F-407 

with an input impedance of at least 100 megohms was connected to the 

miniature cable connector. A Glenite C22-5 low noise cable was used to 

connect the cathode follower and the input provided on the power panel 

of the po~er supply to the cathode follower. 

Electronic instrumentation 

DISA random signal indicator and correlator. Figures 6 and 7 

show the electronic system used to measure the response of the tranducer 

probe to the turbulent fluctuations. The particulars of each one of the 

units are furnished below. 

The DISA random-signal indicator and correlator type 55AO 6 shown 

in Figure 6 could be used to measure the two root-m-ean-square voltages 

of the two input signals, "A" and II B", the time derivative of signal "A" 

as well as the root-mean-square value of the sum and difference of the 

signals "A" and "B" irrespective of their wave form. The principle of 

its operation would be clear by looking at the block diagram of the internal 

circuit shown in Appendix D. The input signals A and B are applied 

to identical preamplifiers via separate calibrated attenuators. The am­

plified signals are applied to the output terminals A and B and to a 

summing amplifier whose output provides the amplified A + B signal. 

Preamplifiers A and B consist of the amplifier proper followed by an 

isolating amplifier. The isolating amplifier in amplifier B is also 
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Figure 5. Photograph of the final shape of the tranducer probe. 

Figure 6. A general view of the in~trum~ntation set-up. 
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Spectrum analyzer. The energy spectrum was obtained with the aid 

of wave.and noise-spectrum analyzer Model 303 of Quan-Tech which ana­

lyzes a.n input .. signal present in the frequency range of 30 cycles to 100 

K. C. It is provided with four selectable constant band widths of 10, 30, 

100 and 1000 C. P. S. Band-widths of 10 and 30 cycles enable accurate 

measurement in the low-frequency range. All measurements were made 

with 30 C. P. S. band-width as it was found to result in easier reading of . 

the analyzer output. It is also provided with two selectable time constants 

. 01 sec (fast) and 1 sec (slow). Slow position was used throughout the 

measurements since it made the reading of the instrument easier. The 

R. M. S. voltmeter is calibrated in various scales as selected by the milli­

volt full scale switch. The instrument is equipped with two input terminals 

Xl and Xl 0, and it '.is'.also provided w"ith ' aL meter multiplier which is to be 

set to a range higher than the signals to be measured. In the measurements 

reported here, input X 1 and meter multiplier 10 were used. To obtain 

an absolute voltage measurement the reading in milli-volts should be 

multiplied by 10 with gain control full clockwise. 

Data indicator and recorder. Visual observation of the signal and 

noise at various points in the circuit was made with Dumont Type 766 tran­

sistorized dual trace oscilloscope. It was provided with a Dumont Type 

450A polaroid camera which was used for photographing the signal traces 

on the oscilloscope screen. Some typical oscilloscope pictures of total­

head fluctuations are shown in Figure 8. 



Figure 8. 
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Scale: 
1 volt per centimeter 

10 milliseconds per centimet er 

Typical oscilloscope pictures of turbulent total head 
fluctuatiDns at RN = 7.25 x 104 -- Series A. 
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Variable time-d.elay network. Type 802 J Decade variable delay­

line supplied by AD-YU Electronics, Inc., was used in conjunction with 

the correlator to obtain autocorrelations. It is capable of delaying the 

signal from 21-lS to 200,000 I-lS. It is provided with four switches; and 

when all of them are set at maximum, total delay is obtained. The cutoff 

frequency . at 3 db varies with the amount of delay cor 'fesponding to the 

maximum setting of each one of the switches. 

Care was taken to have impedance matching at the input and output 

terminals of the delay line. The signal source of the delaY]¥1e was input 

.1.1 All of correlator. As the source impedance was higher than the input im­

pedance of delay line, a variable resistor was connected parallel to the 

input terminal of the delay unit. The output terminal of the delay line was 

connected to input .11 BI.' of correlator with a resistor of 2200n connected 

parallel. As the input voltage requirement of the correlator is low, it was 

not found necessary to amplify the output of the qeHry line' before the signal 

was fed to input JI B" of Itbe-Correlator. 

Auxiliary instruments. The Glenite cathode follower Model F-407 

was used for opupling the tranducer probe with the input of the Tektronix 

preamplifier Type 122 in order to achieve maximum power transfer by match­

ing the high output impedance of the probe with the high input impedance of 

the cathode follower probe which was kept very near the tranducer probe to 

minimize the shunt capacitance for maximum sensitivity. The output of 

the cathode-follower probe was connected to the input on the power panel 
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with a low~oise Glenite C22-5 cable. 8ingle-ended output on the power 

panel was connected to the input of the preamplifier. Most of the time 

the preamplifier gain was set at 1000. The low-frequency and high-

frequency response selectors on the preamplifiers were set at 8 c. p. s.-

and 10K. C., respectively, as it was found expedient from the consider-

ations of the range Gfrrequencies of fluctuations present in the flow 

system and the noise contributed by selected band width of frequency 

components. 

All the connections between the units were made with Belden type 

8254 RG-62/U and Amphenol No. 621-685 shielded cables with 80-235 

or BNC connectors in order to minimize noise. Preamplifiers were provided 

with a separate power supply. All the units had power suppl:iea 'Jr:om~ r-eg-

ulated power source. Extreme precautions were taken to ground the 

measuring system properly to eliminate, as much as possible, the 60-

cycle noise and to reduce the noise as much as pos sible from various 

other source s. 

Details of procedure 

Measurement of average velocity. In order to determine the rates 

of energy dissipation and mean-friction velocity in the experimental chan-

nel, it was es sential to determine the slope of the total-energy line (8 ) 
e 

within the test section. To obtain '8 " mean-velocity distributions at 
e 

the two ends of the test section were to be measured. Besides, at all 

locations where measurements were made with the tranducer probe for 
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intensity of turbulence, energy-spectrum, microscale, and autocorrelations, 

local mean velocities were also to be determined. 

Dwy'er pit 0t : tubes or total-head tubes were used to meas ure mean 

velocities. These tubes have an outside diameter of 1/8 inch and aninside 

diameter of O. 047 inch. Literature concerning the effect of turbulence on 

total-head .tube readings was reviewed by, Hinze (1959); but in the absence 

of an accurate procedure to account for the effect, it was neglected in this 

study. In order to compute the local mean velocity at a point, it is essen-

tial to know the difference between the total and static heads. The inner 

and outer tubings of the total-head tube were connected to an inclined man-

ometer board. Water was used as the manometer fluid. For every position 

of total-head tube at least five to ten minutes were allowed for manometer 

liquid levels to reach steadiness before readings were taken. For calculat-

ing mean-velocity distributions, at least 15 to 20 measurements were taken 

at each section .. 

Meas urement of a.u1ocorrelation coefficient. 

The signal II All from the Tektronix amplifier output terminal was 

connected to the input II All of the correlator. The input terminal of the 

external variable time--delay network wa s connected to the input II All of the 

correlator. The signal from the output terminal of the time~elay network, , 

designated signal II BII was connected to input II BII of the correlator. 

Input II All and input II BII of the correlator were connected to the 

oscilloscope. With zero time delay, both signals II A" and II B" on the . 
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oscilloscope trace were identically the same. To measure the correlation 

coefficient, the instantaneous sum and difference of the two time-dependent 

signals II All and II 811 were first derived. The ratio of the root-mean-square 

of the sum and difference signals was then measured by means of .an f. _m. s. 

ratio-meter. It could be shown that the measured ratio is an unique fun-

ction of the correlation coefficient if the r. m. s. value of the signals II All 

and II BII had been made equal. This equalization was performed in the 

variable-gain pre-amplifiers. Then from the precalibrated scale for the 

correlation coefficient, the value of the correlation coefficient was obtained. 

At zero time delay, the value of the correlation coefficient was found to be 

nearly one, as it should be. The same procedure was repeated for increasing 

time delays until the delayed signal II BII was attenuated to such an 

extent that the stgnal ttace was distorted considerably. 

Measurement of spatial correlation coefficients 

Besides the autocotrelation coefficient, attempts were made to 

measure R .. , 
Xl ul 

and R ' . by .simultaneous meas urement of the 
x3 ul 

turbulent fluctuations at two different points located along xl' x 2' and 

X3 axes using two tranducer probes No. 3 and No.2. The signals from 

the two probes were amplified by two Tektronix preamplifiers, and the 

output terminals of the preamplifiers were connected to the two inputs 

II A" and II BII of the correlator. 

To measure R _, one probe was placed very closely behind the 
x l

u
1 

other; and it was found that the probe located downstream was affected by 



75 

the wake of the other. To overcome this difficulty too downstream probe 

was placed slightly to one side of the other with a longitudinal spacing 

of 1/8 inch. The correlation coefficient obtained was O. 5. At a distance 

of 1/4 inch the correlation became negative; and at distances more than 

that, correlation remained negative. 

Similarlj) to measure R ,the two probes were placed adjacent 
x

3
u

1 

to each other with zero spacing; and the correlation coefficient found was 

O. 6. When the spacing was increased to 3/8 inch, the correlation 

became negative; and at increas eq-" spacings the correlation coefficient 

remained negative. Simila{ readings occurred with the measurement 

of R 
x

2
u

1 
As sufficient data could not be obtained for plotting correlation 

curves for each one of these spatial correlation coefficients, no further 

measurements were made. It was concluded that much finer tranducer 

probes, such as a hot-film anemmometer, were needed to measure, 

successfully, spatial correlations. 

Measurement of longitudinal microscale of turbulence 

A method suggested by Townsend (1947) was used to measure X­
xI 

It has been found experimentally by Townsend that the mean square of the 

time deri vati ve agrees closely with the mean square of the space deri vati ve 

in the direction of the mean motion,; that is 

( ~)2 ~ U2(~)2 at 1 aX
I (96) 
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The microscale X. is defined by equations (36) and C3 7), namelYt 
xl 

_1_ ..L 
'\ 2 = 2 
I\. 2u

l xl 
(97) 

( 
aUl )2 ( aUl )2 

There is a definite relationship between aX
2 

and aX
l 

as shown 

by TaY,lor (1935), such that 

(98) 

Combining equations (96), (97), and (98) 

1 1 1 . aUl 2 
~ ..-- ( at) 

X.
2 2 ~ 

xl 
u

l U
l 

(99) 

or 

2 
X. = U

l 
u

l 
xl CaUl 2 

" at) (loa) 

The differentiater, incorporated in the t.andom-signal indicator and 

correlatoT. (See Figure 6), provides the product of the time derivative 

of the amplifier output signal and a selective time constant itT. It The 

RMS ratiometer of the correlator now measures the root-mean-square 

value of the ratio "r" of the input signal from the amplifier output 

terminal to its time deri v "ati ve multiplied by T • Then the numerical 

value of the microscale is computed from the following relation: 



~ = U
l

. ,.. . r 
xl 

Measurement of turbulence-energy spectrum 
and intensity of turbulence 

(101) 

Every time the spectrum analyzer was used for making energy-

spectrum measurements, nulling was done and the calibration of the 

r. m. s. voltmeter of the analyzer was checked. The details of the 

calibration of the analyzer are outlined in Appendix C. 

Measurements of energy spectrum and turbulence intensity were 
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made in the following four steps: (1) measurement of the Fourier compon-

ent of turbulence intensity, (2) measurement of corresponding noise output, 

(3) measurement of total output for turbulence intensity, (4) measurement 

of corresponding noise output. In steps 2 and 4, the probe was sealed 

from contact with pressure fluctuations in the flow. In step 1, the signal 

from the amplifier output terminal was fed into the input terminal of the 

analyzer. The frequency dial was I tuned to 20 c. p. s. and the reading 

was taken from the r. m. s. voltmeter of the analyzer when the output 

stayed steady at least for 5 minutes. This procedure was repeated at 

different tunings of the frequency dial until the output of the analyzer was 

negligibly small. Exactly the same data-taking procedure was used in 

step 2. 

In steps 3 and 4, the spectrum analyzer was by-passed, and total 

outputs for turbulence intensity and noise were measured with the r. m. s. 

voltmeter of. . the :~taildom-s.lg.na-r inciTcator and · correlator. 
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The entire above procedure was repeated for every position of the 

probe for a particular flow condition. 
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CHAPTER V 

DATA PROCESSING 

Sample calculations are presented to illustrate the procedure used 

in processing of the experimental data to evaluate the relative intensity of 

turbulence, one-dimensional energy spectral-depsity function, longitudinal 

average macroscale of turbulence, and longitudinal microscale of turbulence. 

Relative Intensity of Turbulence 

The total signal V
T 

obtained with the uncovered tranducer probe 

consists of real turbulence si9nal V
R

. and noise V
N

. arising from the 

structural vibration of the probe, accoustical noise in the surroundings, 

thermal noise, microphonics, etc. 

(102) 

Squaring both sides of the equation (102) and taking time averages, 

(103) 

Since the turbulence signal and the noise signal are two independent 

random signals, they are not correlated and hence 

(104) 
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Therefore, equation (103) reduces to 

(105) 

Equation (105) provides a convenient method of resolving the true signal 

from the noise. 

The following example for the calculation of the intensity of 

turbulence is based on the readings of the tranducer probe at a relative 

height of x
2

/ h = O. 065 in the run of Series B at RN = 8. 3 x 10
4

. 

V'T = 1. 40 volt at a gain of 1000 

VN = O. 52 volt at a gain of 1000 

As shown in Appendix B, the sensitivity of tranducer probe No. 3 is 14 .. 0 

millivolts per p. s. i. of pressure ,change. This is equal to 6.066 milli-

volts per foot of head change. Including 1000 times amplification, it 

becomes 6.066 volts per foot of head change. Designating the r. m. s. 

voltmeter reading due to true turbulence signal as Vk' the above sensi­

tivity combined with equation (2) in Appendix A gives 

U
1 6. 066 - u l = VI 

g 1 R (106) 

Using equation (105) and the above values of VI T and VN, the 

corresponding value of Vk is given by 

V R = 1. 30 volt 



and 

U
1 

= 9. 75 ft/sec 

substituting. the above values in equation (106), 

6. 066 
32. 2 x 9. 75 ui = 1. 30 

u' = 
1 

1.30 
1.838 = 0.707 ft/sec 

One-Dimensional Energy Spectral Density Function 

From equation (3) in Appendix A, 

2 2 
C

2 tf 
1 

d V
R = d u1 2 

g 

or 

2 
2 

2 
d u

1 = 
g 

d V
R 2~2 

C U
1 

Similarly, 

2 
2 2--

d u
1 

(n) = 
g 

d V
R 

(n) 
C2~ 

The wave number is related to the frequency by the expression, 

81 

(107) 

(108) 

(109) 

(110) 
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(Ill) 

Equation (109) may also be written in the form, 

where 

:::: 

2 
9 

(112) 

2 
A V

R 
(k

1
) :::: mean square of the output of the wave analyzer in 

volts resulting from turbulence fluctuations contained 

within the band width provided by the analyzer at 

wave number 1<1 corresponding to the frequency ·s iet 

on the wave analyzer 

:::: turbulence energy of fluctuations contained in the 

band width at kl corresponding to frequency set 

on the wave analyzer. 

Dividing equa tion n 12) by eq ua tion (Ill), 

2 2 -
g A V

R 
(k

1
) U

1 

C2~ x 2 iT A n 

2 2 
g A V

R 
(k

l
) 

C
2

U 2iT An 
1 

The selected nominal band width :::: 30 c. p. s. 

(113) 



Actual band width established by the analyzer (see Appendix C) 

= 59 . 0 c. p. s. The common factor in equation (113) 

2 
= --g'-----

2 
C 2TT~n 

= = o. 076 
6.066

2 :x 2 TT x 59.0 

The following example for the calculation of El (k
1

) is based upon the 

spectrum measurements at x
2

/ h = O. 065 in the run of Series B at RN 
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= 8. 3 x 10.
4 

at nominal frequency 160 c. p. s. set on the wave analyzer. 

The actual frequency is identically the same as the nominal 

frequency (See Appendix C). The local mean velocity U 1 = 7. 53 ftl sec. 

The corresponding wa ve number from equation (110) is 

I 

k == 2 TT X 1 60 == 133. 5 ft- 1 
1 7. 53 

From measurements, A v~ (k
l
) == 0.0507 volts 

2 
. Substituting the above 

values in equation (113) one obtains 

= 0.076 x 0.0507 
7. 53 

== 7. 6 x: 5. 0 7 :: 1 0 - 4 
7.53 

-4 3 2 
== 5.10 X. 10 ft Isec 

Longitudinal Average Macroscale of Turbulence 

The average macroscale of turbulence is given by the equation (33) 

00 

(,-) d,-



Frenkiel (1958) suggested that when the correlation curve is such that 

the negative correlation coefficients exist, it will then be necessary 

to measure the coefficients RE (T) up to values of T sufficiently 
1 

large to allow determination of L with sufficient accuracy. There-
xl 

fore, equation (33) may be rewritten 

(114) 

where T represents the smallest value of T at which the auto­
c 

correlation curve intersects the axis of T • 

The area under the autocorrelation curve up to the intersection 

point was obtained with a planimeter. 

At x
2

/ h = 0.179 for run of Series B at RN 

TC 

S RE (T) d T = 4. 32 milliseconds 
o 1 

U
l 

= 9.05 ft/sec. 

L ~ 9.05 x 30.5 x. 4.32 = 1.19 cm. 
xl 

Longitudinal Microscale of Turbulence 

From equation (101) 

}... = U
l

. T • r 
xl 

4 
= 8.3 x 10 
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0.179 in run of Series B at RN = 8.3 x 1.0
4 

U
l 

= 9.05 ft/sec 

T = O. 5 milliseconds 

r = 2. 00 

A. = 9. 05 x. 30. 5 x O. 5 x 2. 0 = O. 2 7 6 em . 
xl 



CHAPTER VI 

RESULTS AND DISCUSSION 

Distribution of Relative Intensity of Turbulence 

For all the series of tests, the boundary-layer growth in the 

flume has been calculated using the empirical equation of Halbronn 

(1954), and it i~ found that at the sampling section the boundary-layer 

thickness already reached the depth of flow. It is· als:o found that the 

flow in the channel corresponded to fully rough-wall condition (u*k ;, 
s.. v 

> 70) for all the runs with the artificial roughness on the bed. The 

most serious difficulty encountered in performing tests in open-channel 
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flow is to keep the relative roughness constant. It should be noted that 

the relative roughness in an open-channel, unlike the case of pipe flow, 

varies with the depth of flow. Hence, variation in the Reynolds number 

of flow keeping the relative roughness constant has to be attained by 

varying the slope to increase the velocity. But with the expanded metal 

mesh glued to the bed of the flume, this could not be achieved while 

keeping the flow uniform. Thus, attempts to keep the depth of flow 

constant for all the runs in a series were dropped as it was considered 

that attainment of uniform-flow conditions was a more important objective. 

Therefore, even though the relative roughness would be a more pertinent 

parameter, the absolute roughness size I k' • 
s 

(Nikuradse ' s equivalent 
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sand-grain roughness), which remains constant for the runs in a particular 

series, is chosen in place of relative roughness. 

The distribution of relative intensities of turbulence in the open­

channel is shown in Figures 9 to 11 for three different series (i. e., for 

three different bed-roughness conditions) at three Reynolds numbers. Fig­

ures 9 and 11 refer to fully-deyeloped turbulent-flow conditions while 

Figure 10 corresponds to transition regime of flow. Not more than one 

measurement could be taken in the region of the law of the wall or the 

constant-stress layer whose thickness varies from 1/5 to 1/7 of the 

thickness of the boundary- -layer or the depth of flow in this case. All 

three figures show that the relative intensity of turbulence decreases 

over the entire depth of flow as the Reynolds number increases. This 

result is in agreement with Laufer's (1951) measurements in air flow in 

a two-dimensional, smooth-surfaced channel. It could also be seen 

from these figures that the relative intensity of turbulence increases 

from the outer region of flow towards the bed of the channel. This in­

creasf3 is much more pronounced near the bed in the two dases with 

artificial roughnes s on the bed of the channel (Figures 9 and 11) indicat­

ing that the effect of roughness i,s more prominent near the bed than in 

the region far from the bed. In all cases, there is a tendency for the 

relati ve intensity of turbulence to approach a constant value towards 

the surface indicating that the influence of the variation of the Reynolds 

number is negligible near the surface. From Laufer's (1951) measurements, 
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it is known that the relative intensity of turbulence reaches a maximum 

value at the edge of the laminar sublayer in two-dimensional channel flow 

over a smooth surface. From the results presented in Figures 9 to 11, it 

appears that in the case of rough open-channel flow in which the viscous 

sublayer is completely disrupted at u*k: / > 55, the maximum value of 
s v 

relative intensity of turbulence is reached somewhere in the constant.· 

stress · ·layer, i. e., in the region where the production of turbulence is 

maximum. It may be pointed out that the variation in relative roughness 

in Figures 9 and 11 for series A and C is so small that perhaps h/ks 

may be considered constant. 

The distribution of the relative intensities of turbulence as a fun-

ction of the relative depth with the relative roughness as parameter at 

two Reynolds numbers· is shown in Figures 12 and 13. It should be strongly 

emphasized that the two roughnesses are not geometrically similar, and 

it is assumed that the cumulative effect of each roughness mesh can be 

represented by the calculated equivalent sand-grain roughness size "]<1 :". 
S 

Even though the variation in the values of h/k is not high, it appears 
s 

from the figure~ that the relative intensity of turbulence increases over 

the entire depth with the decrease in the values of h/k . The trend of 
s 

the variation in the relative intensity of turbulence as a function of the 

depth of flow is not affected by the roughness at all even though its 

influence on the rate of variation of ul /U 1 near the bed is quite 

appreciable. 
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One-Dimensional Energy-Spectrum Function 

.§pergy spectra in the outer region of flow 

The one-dimensional energy spectra of the longitudinal turbulence­

velocity component in the turbulent shear flow in an open channel in the 

outer region and near the bed are presented in Figures 14 through 22. The 

spectra are all reasonabl V: well fitted by a - 5/3 power law in k1 over a 

considerable range as predicted by Kolmogoroff' s theory (See Chapter III 

and equation (62)). This implies that the existence of the region of 

locally-isotropic turbulence independent of viscosity (inertial subrange) 

therefore is plausible. It should be strongly emphasized that the straight 

line fitting of the energy-spectra data having a slope of - 5/3 is not by 

itself an irrefutable evidence of the existence of the inertial subrange. 

There are a few other tests which the energy-spectra data should satisfy 

besides, before one could conclude the presence of local isotropy in 

wave-number space. 

The shear spectrum is a direct t est of local isotropy (See Hinze, 

1959, p. 502). Corrison (1949) used the technique of measuring the var­

iation of shear correlation coefficient with frequency to verify local isotropy 

in free-turbulent shear flow in a round jet. In this case the monotonic de­

crease of the shear correlation coefficient with frequency is a clear 

indication of the presence of local isotropy. Another method of checking 

local isotropy is to derive the spectrum function E1 (k
1

) from the measured 

E2 (k
1

) using the relation for isotropic turbulence given by Hinze (1959) 
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(115) 

and compare with the measured values of El (k
1
). The agreement between 

the two is a good indication of local isotropy. Unfortunately, as the tran-

ducer probe is not sensitive to lateral turbulent-velocity fluctuations, 

these checks could not be applied to the energy spectra data under consider-

ation. Another difficulty common to studies of energy.-spectrum in all kinds 

of turbulent shear flow fields, irrespective of the instrumentation useq,f is 

that experimentaltests of theoretical predictions on spectrum shape is made 

difficult because the spectral theories are constructed in terms of the 

three-dimensional spectrum, which cannot be measured. Comparison with 

experimental data is not possible in shear flow since the relationship be-

tween :E (k) and El (k
1

) is not known, but it is known for isotropic tur­

bulence (See equations (56) and (57)). Hence one has to be content 

that in some unknown manner the one-dimensional spectrum is still an 

integral part of the three-dimensional spectrum. 

Pond, et al. (1963) deduced a formula for estimating roughly the 

lower ~imit of isotropy on the basis of the argument that when the rate of 

strain to which any volume of fluid is subj ected is chiefly due to turbulence 

only, isotropy can be expected: 

(116) 
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The transition wave numbers obtained from energy spectra in the outer 

region of flow satisfy well the above relation. A convenient criterion 

for the probable existence of inertial subrange according to Laufer (1954) 

is that the turbulence should be ,fq:lly developed and the turbulence 

u' x.x 
, b ( 1 1 Reynolds numl er 

v 
= I). ) should be greater than 200, and 

Xl ~ 

according to Corrison (1. 9 58) and Hinze (1959y' Rx. should be greater 
x

2 

than 500 and 200 respectively. The values of Rx. calculated are 

Xl 

within a range of 196 to 374. The best confirmation of the - 5/3 law 

of the inertial subrange comes from Grant et al. (1962) who measured 

the ererB.{ spectra in a tidal channel at a Reynolds number of 10
8

, (b ased 

on depth of floW) a value which is inconceivable to obtain, in laboratory 

experimentS. The value of the Kolmogoroff' s universal constant Ci in 

equation (61) is found to be between 1. 375 and 1. 530 on the basis of 

their spectral measurements. It should be noted that the constant Ci 

should be independent of the field of turbulence or the nature of flow 

involved. Hence this fact could be taken advantage of to verify the 

existence of local isotropy by estimating the value of a from the energy_ 

spectra data furnished in Fi gures 14 through 22 and comparing the calcu-

lated values with the values quoted above . This will be done in a later 

section, and up to then the conclusion about the verification of the exist-

ence of local isotropy will be deferred. 
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The wave number at which the transition between local isotropy 

and anisotropy occurs for each depth of flow at a given position is in­

dependent of the Reynolds number according to the mechanism of generation, 

transfer, and dissipation of turbulent energy in wave number space as 

suggested by Kolmogoroff. As explained in the section on "Kolmogoroff' s 

theory of local isotropy" (See Chapter III), the pulsations produced from 

the mean flow are of the order of the size of the characteristic dimension 

of the boundaries of flow, in this case, the depth of flow. The size of 

these pulsations characteristic of the production mechanism will not 

change, therefore, with the Reynolds number. Local isotropy occurs 

in that region of pulsations that is far enough removed in. the cascading 

proces s so as to be independent of the production mechanism. Since, 

for a given depth, the region characteristic of production mechanism is 

independent of the Reynolds number, the point of transition to the region 

independent of the production mechanism (region of local isotropy in wave­

number space) should also be independent of the Reynolds number. From 

the above analysis, the size of the pulsations characteristic of the pro­

duction mechanism varies directly with the depth of flow. The wave 

number of these pulsations varies inversely as the depth of flow. The 

wave number at which the transition between locally-isotropic turbulence 

and anisotropic turbulence occurs should also vary inversely as the depth 

of flow. The transition wave numbers obtained from Figures 14, 15, and 

16 for spectra at x
2
/ii. = O. 716 are plotted against the inverse of the 
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corresponding depths in Figure 23, which shows agreement between theory 

and experimental results. 

Energy spectra near the bed 

Th~ plots of the longitudinal one-dimensional spectra near the bed 

of the channel are also presented in Figures 14 through 22. Over a wide 

range in kl the data fits well the - 5/3 power spectral law. But as dis­

cussed before in Chapter III, Tachen (1953) showed that near the wall, 

due to the presence of considerable mean-lJelocity gradient, the inter-

actions between the vorticities of the main motion and turbulence cause 

violent resonance. This results in the predominance of the production of 

turbulence energy over the dis sipation and transfer of energy and leads 

to a spectral "law El (k
1

) cx:k -1 in the wave number region where El (k
1

) 

k - 5/3 1 11' t h h .. f h . .. ex: 1 aw norma y eXlS s w en t e vOrtICIty 0 t e maIn motlon IS 

small compared to the vorticity of the turbulence. Energy spectral data 

of Laufer (1954) obtained in pipe flow at RN = 5 x 10
5 

and of KletXinoff 

4 
and Diel (1952) obtained in boundary-layer flow at RN = U~o/v = 7.5 x 10 

-1 
demonstrate the k law. Since measurements could not be made in this 

work as close to the wall (or bed) as in the case of their measurements to 

-1 
attain the required conditions, it is suspected that the evidence of k 

law of Tachen is absent in this data. Besides, it should be pOinted out 

that the transition wave numbers obtained from the plots of energy 

Spectral data near the bed of the channel do not satisfy the criterion for 

the lower limit of local isotropy furnished by the equation (116). In 
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addition the approximate analytical studies of Deissler (1961) and Fox 

(1964) (See Chapter III) indicate that the pressure forces which depend 

on the mean velocity gradient oppose the local isotropy in the high wave 

number region. In the light of these considerations, it is considered un-

likely that local isotropy would exist in shear flows in open channels 

near the bed in spite of the evidence of the - 5/3 power law. 

The spectra also indicate that the contribution t o t he turbulence 

energy in the low wave number range as well as in the high wave number 

range, increases as the bed is approached. This is in agreement with 

the distribution of the relative intensity of turbulence. This result also 

compares well with Laufer's (1954); but is at variance with Klebanoff's 

(1954) results of spectrum measurements in boundary-layer flow, which 

reveal that the contribution to the turbulence energy in the low wave 

number range decreases as the wall is approached. This difference may 

be attributed to intermittency usually observed in wall boundary-layer 

flows. 

Dissipation spectra 

The total rate of turbulent energy dis sipation per unit mas s in 

isotropic turbulence is given by Hinze (1959): 

00 

E = 

00 

= 15 v_ S k~ El (k1l dk1 
o (117) 

The fUnctions of k
2

E(k) and k~El (k
1

) are referred to as dissipation 

sPectra and describe the distribution in wave number of the rate of decay 
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of turbulent energy to heat. Typical linear plots of one-dimensional dis-

.: sipation spectra are shown in Figures 24 to 27. Some scatter in the plotted 

data between wave numbers 200 and 500 may be due to experimental errors. 

In drawing Figure 24, the general trend observed in Figures 25 to 27 has 

been followed as a guide. These curves do not differ much in form from 

those measured by Grant et al. (1959, 1962) in mscovery :Passage and 

tidal channle, Gibson (1962, 1963) in a round jet, and Pond et al. (1963) 

in atmospheric boundary-layer in spite of the difference in the Reynolds 

number of flow and of turbulence. These linear plots of dissipation spectra 

are used to determine the total rate of dissipation assuming that the turbu:- . 

lence is isotropic over the range of wave numbers contributing to the integral 

\ 

in the equation (II 7). Since th~ contribution to the integral of the wave 

numbers below the transition wave number (wave number corresponding to 

lower-limit of local isotropy) is small compared to the total value of the 

integral, this assumption is justified. The range of values of E obtained 

is 1. 22 x 10
2 

to 4. 65 x 10
2 -3 -1 

ergs cm sec 

The universal constant a l in Kilmogoroff' s spectral law (See equa-

tion (62)) for inertial subrange is calculated for each run from the known 

values of E determined as explained above and from the corresponding 

values of El (k
1 

) equivalent to the intercepts at kl = 10 of the best fitting 

line of slope - 5/3 on the logarithmic plots of energy spectral data in 

Figures 14 to 22. The average value obtained in this work for a' is 

compared in the table below with those found by the other authors: 
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Table 1. Comparison of the values of Kolmogoroff l s universal constant 
a' evaluated by different investigators. 

Author 

Grant et al. (1962) 

Gibson and 
Schwartz (1963) 

Laufer (1954) 

Present work 

Flow 

Tidal channel 

Grid turbulence 

Pipe 

Rough open channel 
4 

8.3 x 10 

a 0.
1 

1.44 0.472 

2.70 0.885 

1.96 0.642 

3.24 1.006 

The values quoted above are a verage ones. The table indicates 

that the value of a' varies by a factor of 2. If one bears in mind the 

different conditions (such as type of flow, grossly different kinematic dis-

sipation rates varying by a factor of one hundred or more) under which the 

data of Table 1 were obtained and the different equipment used and assoc-

iated experimental difficulties, the four values of 0.1 reported above are 

perhaps reasonably consistent and appear to bear out the Kolmogoroff 

theory for an inertial subrange. In the light of this conclusion, as wel~ 

as from various other considerations discussed in the previous two sub-

sections, it is believed that there is sufficient evidence for the validity 

of Kolmogoroff l s theory of local isotropy in the outer region of fully-

developed turbulent shear flow in the rough open chann~l. 

It may be of interest to mention the importance of the knowledge of 

the validity of Kdmogoroff's theory of local isotropy for a particular region 

in a specified field of turbulent shear flow and approximate value of a' . 
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An observation of E1 (k
1

) at one value of k1 permits one to evaluate 

E, the most important single measurement in a turbulent field. Average 

Reynolds stress and eddy viscosity can be calculated from 'EI and 

mean-velocity distribution provided production and dissipation of energy 

balance, a hypothesis quite well confirmed for 'regions not too close to 

boundary_ 

Test of simplified form of Heisenberg's equation 

Of all the physical transfer theories that are considered in 

Chapter III, Heisenberg's theory received the best attention as it is 

based on a more sound physical basis. Hence his theory has been 

singled out to be tested by the data presented in Figures 14 to 22. In 

the region of universal equilibrium range, the turbulence energy distribu­

tion function should be a function of E , v, and k. Beyond the respec­

tive transition wave numbers, the spectral data of runs in Series A and 

C in the outer reg.ibn of flow should be representable by one equation. 

The difficulty of transforming the equation of Heisenberg (equation (68)) 

to the corresponding equation for the longitudinal one-dimensional 

spectrum function is pointed out in Chapter III. The two extreme cases 

resulting from this equation are given by 'equations (69) and (70). The 

corresponding longitudinal one-dimensional spectrum equations are 

given by (71) and (72) . The simplified form of Heisenberg's equation 

for one-dimensional spectrum function is given by 



TIT 

= 9 (~!..]/3 k -5/3[1 (9 x 63 )31-4.; ~ ~ 3 . k 4 J-4/3 

E 1 (k1) 55 9 k I 1 + 55 3 ~ 1 
H 

(118) 

This has the form of equa~ion (68) with the extremes given by equations 

(71) and (72). This simplified Heisenberg\ s equation will be testec;i to 

verify whether this could represent the entire region of universal 

equilibrium range. 

Equation (118) could be written as 

(119) 

By rearranging equation (119) 

1 + 2.73 k 4 
2 1 

E kH 
(120) 

The plot of the left-hand side of equation (120) against k{ should give 

a straight line with an intercept of unity. Such sample plots are shown 

in Figures 28 and 29. It is seen from these figures that the straight line 

correlation predicted by equation (120) is obtained. Hence it could be 

considered that the transition region between inertial subrange and the 

viscous subrange is correctly represented by the simplified form of 

Heisenberg's equation. 
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Autocorrelation Curves 

Sample autocorrelation curves are shown in Figures 30 to 33. 

They are primarily used for calculating the average size of macroscale 

of turbulence as explained in Chapter V. Besides this use, a few in­

ferences could also be drawn from these curves. At zero time delay 

the value of the autocorrelation coefficient is almost one (allowing for 

the error in the reading due to the inertia of the indicator needle). As 

the time delay increases, the autocorrelation coefficient reduces rapidly 

until it becomes- zero. As the time delay further increases, the A. C. C. 

becomes negative indicating that the fluctuating quantities are negatively 

correlated. At long time delay the A. C. C. assumes again positive values 

as shown in Figures 30 to 33, indicating that the fluctuating quantities 

are positively correlated at the corresponding time delays. At further 

increase in time delay, the A. C. C. again assumes negative values. 

The measurement of A. C. C. had to be terminated at the time delays 

noted on the curves as the delayed signal was completely distorted; this 

is due to the characteristic performance of the variable time-delay net­

work whose cutoff frequency at 3db band-width point decreases as the 

time delay increases. It should be mentioned, however, that this feature 

of time-delay network does not materially affect the meas urement of the 

autocorrelation function as the high frequencies make little contribution 

to auto co.r.r~ifrtti.k:lUH function at large time delays. 
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It may be mentioned that the curves are drawn through the mean 

position of the plotted points. It could be inferred from the plots that the 

rapidity with which the autocorrelation curve falls off increases with de­

creasing values of x
2

/ h of the sampling locations, indicating that the 

correlation decays faster near the bed. The indication of the presence 

of periodicity is faintly exhibited in Figures 30 and 31, whereas it is 

more plainly seen in Figures 32 and 33. The period of the cyclic 

phenomena is shown on e,ach of the curves. The cyclic phenomenon 

present in the random signal is thought to come from the following sources: 

First, structural vibrations induced in the probe by the impact of the flow, 

second, 60 c ,p ... s .. ' ,hum picked up by exposed connections, by micro­

phonics, and by the time delay network at long time delays. The difference 

in periodicity of the cyclic phenomenon present in the random signal varies 

for different values of RN is due to variations in ktibration inducing forces. 

Unfortunately, as in the case of the evaluation of intensity of turbulence 

and energy, spectral density function, allowance for the noise present in 

the random signal could not be accounted for in obtaining the correlation 

function. Hence it is considered that the tranducer probe is not ideally 

suited for measuring autocorrelation function and scale of turbulence. 

Macroscale of Turbulence 

In general the macroscale is dependent on the boundary dimensions 

of flow. In the case of turbulent shear flow bounded by a solid surface, 
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the macroscale is comparable with the scale of the variation of the mean 

flow, i. e . , depth in an open-channel flow. No effort was made to keep 

the depth of flow constant in varying the value of Reynold ~ s number of flow 

for different series of runs. Therefore, it is considered expedient to pre-

sent the distribution of the average macroscale L over the depth of 
xl 

flow in the form of dimensionless plot , using the depth of flow as re-

peating parameter. Such plots are s hown in Figures 34 a nd 35. 

of the 

It is interesting to note that for all the six runs the general shape 

L 

h 

x 
I 

versus 
Xz h curve is the same. 

L 
Xl 

The value of T decreases 

with increasing rate as the bed of the channel is approached, and it in-

creases with increasing distance from the bed until a maximum value is 

reached; and thereafter once again its value decreases as the water sur-

face of the channel is approached. Unfortunately, due to the limitations 

of the size of the tranducer probe, mea surements could not be made much 

closer than O. 1 of an inch to the bed of the channel; and due to the 

accoustic properties of the probe, mea s urement could not be extended 

very near to the surface of flow in the channel. Notwithstanding these 

limitations imposed on the measurements, it is pos sible to deduce impor-

tant conclusions from these plots. 
L 

x 
In Figure 34, ii-.l values for various Reynolds numbers and rel-

ative roughnesses are plotted against x:Z/h ' All these runs correspond 

to fully-developed turbulent regime of flow as in each case the value of 
k u 

( s '* ) the roughness Reynolds number -v-' far exceeds 75 Allowing for 
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slight scatter due to errors from various source s, ~ t' could be concluded 

from this figure that all the points fall on the same curve. Thus the 

variation of the macroscale with the depth of flow ( LXI /h)' in the 

case of fully-developed turbulent flow, is a function of the relative 

depth of flow (x
2
/ii) only and is independent of the Reynolds number 

and relative roughnes s of the bed of the channel. This is a significant 

result . The same conclusion has been proved in the last section of 

Chapter III, using the results of Laufer's (1951, 1954) studies of turbu-

lence energy balance and adopting an equation for the rate of turbulence 

energy dissipation in shear flow similar to the one applicable to isotropic 

turbulent flow. The result is given in the equation (95). It may be inter-

esting to compare the above result with an analogous conclusion reached 

by Nikuradse from his measurements on pipes artificially roughened with 

the sand of different grain size. That is that the variation of the mixing 

length with the wall distance (l/R) is independent of the Reynolds num-

ber and wall roughnesses and is a function of only x
2
/

R
. Reference may 

be made to Schlichting (1960) for Nikuradse' s findings. But it should be 

noticed that the macroscale tends to decrease as the water surface is 

approached, whereas the mixing length 111" increases with increasing 

distance from the wall indefinitely. 

The variation of the values of L with the relative depth of 
x 1 / h 

flow in the transition regime of flow is shown in Figure 35. Figure 34 is 

in direct contrast with the Figure 35, as it should be. It is evident from 
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this Figure 35 that L is a function of the Reynolds number and, 
xl i ii 

perhaps, relative roughness. It is also clear that at lower Reynolds 

numbers the values of L are much higher. This indicates that 
x l / h 

the turbulence has a larger scale at lower Reynolds numbers as might 

be expected from ideas on the origin of turbulence. 

As there is much similarity among open-channel flows and 

boundary-layer flows and pipe flows, an effort is made to explain the 

trend of the variation of the macro-scale over the depth of flow making 

use of the results of turbulence energy balance studies of Klebanoff 

(1954) and Laufer (1954) in boundary-layer flow and pipe flow respect-

i vely. Reference may be made to Chapter II, where the salient features 

of the results of their studies are presented briefly. From the out er 

region of flow in the open-channel where turbulence production is 

negligible and diffusion is predominant, the macroscale of turbulence 

increases until the intermediate region is reached. In this region the 

rate of turbulence energy production is significant, and the energy bal-

ance is provided by production and dissipation only. This increase in 

macroscale in the intermediate region may be attributed to the increase 

in energy production. But as the bed of the channel is approached, even 

though the energy production becomes markedly predominant, the viscous 

effects tend to break the larger eddies into smaller ones. The viscous 

action increases rapidly in the wall region (y* < 30), which accounts 

for the sharp decrease in the macroscale of turbulence. It may be pointed 
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out that in most of the runs only one measurement of the macroscale 

could be taken in the wall region. From this analysis it appears that 

the region of maximum macroscale is where the effect of viscosity is 

small and turbulence generation is significant enough. 

It should be pOinted out that the macroscale measured in this 

investigation is only average macroscale at different positions over 

the depth. In order to measure the actual macroscale at any position, 

it is necessary to obtain the longitudinal spatial correlation curve. As 

explained in Chapter IV, efforts to obtain R (xl) were not success-
xlul 

ful with the tranducer probes used. Difficulties in getting R (xl) 
xlul 

curve even with hot-wire or film ', anemometer are pOinted out by Hinze 

(1959). For this reason, perhaps, Laufer (1951) in his detailed inves-

tigation of turbulent flow in a two-dimensional channel measured only 

the distributions of L 
x

2 
and derived the distribution of L , 

xl 

assuming that L 
xl 

is twice the value of L 
x3 

which is strictly true 

only in isotropic turbulence. Even though Jordan (1963) made an intensive 

study of the distribution of the scale of turbulence in a pipe, he confined 

his study only to L . 
x

2 
Hence the results of the distribution of the average macroscale of 

turbulence obtained in this ,study can be compared only to Laufer's work 

with caution. He obtained distribution of L in a two-dimensional 
xl 

channel, 5 inches wide and 60 inches tall . The 5-inch width was 

directed along the x
2 

axis, His Reynolds numbers were based on the 
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half-width of the channel and the maximum velocity. The trend of the 

variation of L acros s the width of his channel and over the depth in 
xl 

the open channel is significantly similar. The maximum value of L 
xl 

in his channel occurs at x2/d ~ O. 5 (d corresponds to half width), whereas 

in this work it occurs approximately at x
2/h 

= O. 54. It 'could also be 

noted th~t at corresponding Reynolds numbers in the transition regime 

, k u-* 
( 5 < ~ < 70) the ratio of the maximum value of LXI tq character-

istic linear dimension (in his case a 5-inch width) is nearly the same in 

a two-dimensional channel as well as in an open channel, irrespective of 

the medium of fluid. It should also be noted that the maximum value of 

L in the fully-developed turbulent regime is less than in the transition 
xl 

regime, even if the ~ in both cases were the same, suggesting that 

roughness decreases the value of L 
xl 

Microscale of Turbulence 

The distribution of the longitudinal micros cale of turbulenceJ also 

called dissipation length ~ ~ as a function of the relative depth of flow 
~. 

with relative roughnes s as a parameter at three Reynolds numbers, is 

presented in Figures 36 to 38. The trend of the variation of ~ seems 
xl 

to be unaffected by the relative roughness. The dis sipation length ~ 
xl 

increases from the water surface until it attains a maximum value, and 

thereafter it decreases rapidly as the bed of the channel is further ap-

proached. In the case of higher values of h/k , the microscale of 
s 
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turbulence X. reaches a maximum value nearer to the wall than for the 
xl 

cases with lower values of h/k for all the three Reynolds numbers. It 
s 

could also be inferred that the microscale of turbulence X. decreases 
Xl 

considerably with the decrease in the values of ii/k . These results 
s 

could be explained in terms of what is known about turbulence energy 

balance ,in boundary layer flows from the studies of Klebanoff (See 

Chapter lI) and the relation between the dissipation length X. ,the 
~l 

rate of energy dis sipation and the mean square value of the velocity 

fluctuation that could be considered to be similar to the equation (40). 

In the outer region of flow near the surface, the p.roduction of , 

turbulence is negligible and whatever amount of energy is diffused from 
~ 

I 
the wall region into this region is dis sipated. As E ex: 2' X. 

X. Xl 
in the 

Xl 
2 

outer region is small due to small values of u
l 

and E. In the wall 

region both production and dissipation reach maximum values and are of 

equal importance except in a very thin layer near the wall (i. e., y* < 20). 

No specific quantitative correlation is known between the production of 

turbulence and turbulent velocity fluctuation u
l

. It is suspected that 

the mean square velocity fluctuation at a point is a few orders less in 

magnitude than the rate of generation of turbulence. Hence it follows 
2 

u
l 

from E ex: -- that X. should reduce in magnitude as the wall is 
X. 2 Xl 

Xl 
approached. In the intermediate region both production and dis sipation 

of turbulence are considerable but are of equal magnitude~ Hence X. 
Xl 
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has to have maximum value somewhere in the intermediate region. Not 

only are there no turbulence-energy-balance studies in open channel flows, 

but there are also no similar studies even in turbulent boundary-layer 

flows past rough surfaces. Hence it is very difficult to speculate on the 

relative magnitudes of production, diffusion and dissipation of turbulence 

in differ~nt zones of rough open channels. Since the value of ~ is 

bound to increase for decreasing values of h/k , it is inferred that 
s 

~ is smaller over the entire section, for smaller values of h/k, at 
xl s 

all the three Reynolds numbers. It is suspected that the intermediate 

region is displaced a little towards the surface by the presence of bed 

roughness which explains"l'perhaps~why the maximum value of ~ occurs 
xl 

farther from the wall at low values of h/k . 
s 

In Figures 39 to 41 the variation of the longitudinal microscale 

of turbulence as a function of the relative depth from the bed is presented 

with Reynolds number as a parameter at three different relative roughnesses. 

It should be pointed out again that the relative roughness could not be kept 

absolutely constant for flows at different Reynolds numbers but the variation 

in h/k for Series A and C is small. It indicates from Figure 39 that 
s 

the dis sipation length ~ remains constant over the relative depth of 
xl 

flow for the range of Reynolds numbers 5.22 x :10
4 

to 8.30 x 10
4 

. 

But for the little scatter either due to the nonconstancy in h/k or ex­
s 

perimental errors, one arrives at the same conclusion from the Figures 

40 and 41. The only explanation that could be offered is that the range 
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of Reynolds numbers investigated is too small to show marked distinct 

trends. 

Similar distributions of the dissipation length were obtained by 

Laufer (1951) in a 5-inch wide, two-dimensional channel and by Jordan 

(1963) and Brookshire (1961) in a 5-inch diameter pipe with the maximum 

occurring at different distances from the wall. The ranges of values of 

the dissipation length X. from Laufer's two-dime nsional channel in-
xl 

vestigation and Jordan's and Brookshire's investigations in a pipe are 

0.198 cms to 0.685 cms and 0.127 cms to 0.456 cms respectively. 

The range of values of X. from this investigation is 0 . 120 cms to 
xl 

O. 51 cms. It may be m~ntioned that Laufer's values were obtained at 

lower Reynolds numbers, and it might explain the reason for his slightly 

higher values of X. • The range of Reynolds numbers in this investigation 
Xl 

[La. comparable to that of Jordan and Brookshire. 

It should be strongly emphasized that the tranducer probe cannot 

be accurately sensitive to eddies smaller than the diameter of the barium 

titanate crystal (1/16 inch). Hence the actual lower limit of X. could 
Xl 

not be ascertained accurately but only the average value of the lower 

limit of X. is obtained. The important influence of roughness is to 
Xl 

extend further the lower limit of X. 
Xl 



142 

Correlation of Turbulence Properties 

In the last section of Chapter III, two important relations 

(equations (90) and (95)) connecting the statistical properties of turbu-

lence are presented, and it is indicated that such relationships may be 

of som~ use in solving practical problems. The left-hand side of the 

equation (90) is actually a dimensionless grouping of the three statis-

tical characteristics of turbulence and fluid property. This dimension-

less grouping should have a constant value at different positions over 

the depth of flow at any given value ~ ' of Reynolds number: and relative 

roughness. In Table 2, the calculated values of t.. .. e equation (90) are 

presented for four different Reynolds numbers and relative roughnesses . 

The values of the expression in the last three columns are reasonably 

constant if one keeps in mind the experimental errors involved in deter-

mining especially the values of L and A. and the approximate 
xl Xl 

assumptions made in deriving that equation. In the first two columns 

the values are spread more, and the cause could be attributed to 

experimental errors only. 

Regarding e quation (95), it has already been proved experimentally 

(See Figure 34) that L is a function of relative depth of flow only in 
Xl Iii 

the case of fully-developed turbulent flow. Laufer (1954) showed that 

ui/u* is a function of relative depth only in the outer region of flow. 



Table 2. Values of the dimensionless quantity in equation (90) at various relative depths, 
Reynolds numbers, a.nd relative roughnesses . 

- - ~- - - --- - -

Series A Series B Series B Series B \ Series C 
4 4 4 

.-
4 

RN = 5.22 x 10 RN = 8. 3 x 10 RN = 5.22 x 10 RN = 4. 06 x 10 ~ = 8.3xl0 
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s s s s s 

~ 2 I ~ 2 u' ~ 2 u l ~ 2 u"i ~2 u' u
1 x

2 ~ 
x

2 xl 1 x
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h vL Fi vL 11 vL h vL Fi vL 
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04 452 117.0 O. 530 72 . 60 

O. 663 76.80 O. 705 64. 70 O. 530 110.8 O. 546 61 . 60 
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These :.experimental results could form a basis for the approximate 

estimation of L ,A. ,u
l
' and perhaps E for a given boundary shear 

xl xl 

flow problem. The mean flow quantities such as Reynolds number of flow, 

shear velocity, relative roughness, and relative depth can easily be 

estimated. If the shear flow problem, for example, is a flow in an 

energy dissipator, then at " any relative depth of flow (preferably in the 

outer region of flow) the corresponding value of L can be found from 
xl 

the Figure 34, since the flow in energy dissipators is usually fully-

developed turbulent flow. At the same relative depth, u:s'fmg; Laufer's 

plot, the value of ui ca n be obtained from the known value of the shear 

velocity. If the tabulated values of the expression on the left-hand side 

of the equation (gO) are available for extensive range of Reynolds numbers 

and relative roughnesses, the value corresponding to the known values of 

RN and ii/k s for the problem at hand can be evaluated by interpolation. 

u l

l 
are already known, the value of A. can be determined. If 

xl 

the value of E is required in the outer region of flow, where local 

isotropy can be expected to exist, it could be evaluated using thl- equation 

(40) as the knowledge of every quantity in that equation can be determined 

as explained above. 
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CHAPTER VII 

CONCLUSIONS 

From the experimental investigation and the subsequent inter-

pretation and discussion of results, the following conclusions can be 

made concerning the structure of shear turbulence in rough open channels. 

1. The relative intensity of turbulence over the entire depth of 

flow decreases with increase in RN at a constant bed rough­

ness and increases with decrease in the value of ii/k at a 
s 

constant value of R
N

. It seems to attain a maximum value 

in the constant stress layer where the production of turbulence 

is also maximum. 

2. The influence of roughness on the relative intensity of tur-

bulence is markedly pronounced near the bed, and the trend 

in the variation of ul / U 1 is not affected by roughness. 

3. In the outer region of fully-developed turbulent flow in the 

rough open channel, the wave number at which the transition 

between locally isotropic turbulence and anisotropic turbulence 

occurs, is independent of the Reynolds' number, but varies 

inversely \vith the depth of flow. This is in complete agree-

ment with the picture of the mechanism of the generation, 

transfer, and dissipation of turbulent energy as proposed by 
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Kolmogoroff. It has been verified that both the inertial and 

viscous subranges of the universal equilibrium range (local 

isotropy) can be expected to exist in the energy spectrum of 

turbulence in the wave number space. 

4. The longitudinal one-dimensional energy spectrum function 

(equation 118) for the entire region of universal equilibrium 

range, obtained by combining equations (9 9) and (70) for the 

two extremes (inertial subrange and viscous subrange), a 

simplified form of Heisenberg equation (68), describes sat­

isfactorily the transition between inertial and viscous 

subranges. 

5. It is concluded that local isotropy cannot exist in the wave 

number space in turbulent shear flow in the open channel 

near the bed due to the presence of steep mean velocity 

gradients. 

6. The contribution to turbulence energy in the entire wa ve num­

ber range increases as the bed of the channel is approached. 

7. The concept of local isotropy is inadequate for obtaining the 

distribution of the rate of dissipation of turbulent energy in 

turbulent shear flow even though it could be made use of in 

the outer region to evaluate the local rate of energy 

dis sipation. 
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8. The rapidity with which the autocorrelation falls off increases 

with decreasing values of the relative depth measured from the 

bed at the sampling locations . Thus the correlation decays 

faster near the bed. 

9. The longitudinal average macroscale of turbulence decreases 

IO. 

as the bed of the channel is approached and it increases with 

increasing distance from the bed until a maximum value is 

reached; and thereafter it begins to decrease as the water 

surface is approached. The macroscale is maximum in the 

intermediate region where the viscous action is negligible 

and turbulence generation is considerable; it is approximately 

located at x
2

/ h = O. 54. 

In the case of fully-developed turbulent flow, L /ii 
xl 

is a 

function of relative depth of flow (x
2

/ h) only, and independent 

of Reynolds' number and relative roughness of the bed of the 

channel. In the transition regime of flow, L Ih is a function x . 
1. 

of Reynolds' number as well as relative roughness and the tur-

bulence has larger scale (L ) at lower Reynolds numbers. 
xl 

11. The longitudinal microscale of turbulence, A. ,increases from 
. ~l . 

the liquid surface until it attains a maximum value at a relative 

distance from the bed around x
2

/ h = O. 55 and then it decreases 

rapidly as the bed of the channel is further approached. The 

position of the maximum value of A shifts towards the 
xl 



12. 

surface as the relative roughness ii/k decreases. The 
s 

influence of roughnes s on the shape of the distribution of 

~ is negligible . 
Xl 

At a constant value of R
N

, the value of ~ decreases 
Xl 
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over the entire depth of flow as the relative roughness ii/k 
s 

decreases. Then ~ remains constant over the relative 
Xl 

depth of flow for the range of Reynolds numbers in this in-

vestigation at a constant relative roughnes s ii/k . 
s 

I 3. Equation (90) is proved to be valid for a set of values of RN 

and ii/k . A procedure for estimating important statistical 
s 

characteristics of turbulence such as L ,~ ,u
I
' and ~ 

Xl Xl 

in fully-developed turbulent shear flow in channels on the 

basis of the knowledge of mean flow quantities like R
N

, u*' 

h/ks' and x 2/ii is suggested. 

I 4. The presence of artificial roughness on the bed of the channel 

has an indirect influence on the structure of turbulence in 

open-channel flows by transforming the flow into fully-

developed turbulent flow at a lower Reynolds number. 

1 5. Due to the acoustical properties of the tranducer probe, it is 

considered that it is not ideally suited for measuring auto-

correlation function and s cales of turbulence. 
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CHAPTER VIII 

SUGGESTIONS FOR FURTHER RESEARCH 

As pOinted out in Chapters IV and VI, due to the limitations of the 

tranducer probe, complete information on t he structure of shear turbulence 

in open-channels could not be obtained. On the basis of the experience 

gained in this investigation, it is believed that improvements can be made 

in organizing measurement of data . Besides, prior to this work, there 

have been very few turbulence measurements in open channels and no 

measurements in rough open channels so far as the author knows . Hence, 

it is felt that there is sufficent need to pursue this study much more inten­

s~ely as well as extensively. With this view in mind, a few suggestions 

are offered below to extend the present author's research with the hope 

that they may be of some use to someone else. 

1. Measuremen't$ should be made of relative intensity of turbulence 

over a wider range of values of RN ·with h0
s 

as a parameter 

and over a wider range of h/ks with RN as a parameter, 

keeping the geometrical similarity of the roughness constant, 

2. Attempts should be made to make measurements within the 

constant stres'S.· layer extending to the laminar sublayer 

possibly using a device such as the hot-film a nemometer 

with highly viscous fluid and uniform sand-grain roughness 
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on the bed. At present no mean or turbulence energy balance 

studies have been made either in the vicinity of a rough wall 

or in open channels. This study may also be used to sub­

stantiate or refute the speculation that turbulence energy 

moves from the outer region to the inner region by the action 

of pressure forces which compensate for greater dissipation 

within the region of y* < 20. 

3. It is necessary to use a device such as the hot-film annemom­

eter (which can measure lateral velocity fluctuations) if 

further turbulence measurements are to yield a more complete 

picture of the structure of shear turbulence. 

a. As no conclusive studies have been made yet about the 

validity of Kolmogoroff's concept of local isotropy for 

spectra of lateral velocity fluctuations, it will be of 

great interest to obtain cross-spectra. Besides, such 

data can be made use of in conj unction with equation (115) 

in applying a further check on the existence of local 

isotropy in spectra of longitudinal velocity fluctuations. 

Furthermore, measurements of spectra of shear stress and 

shear correlation coefficient can be made and can also be 

used as additional checks on the occurrence of local 

isotropy in spectra of u
l' 



i Sl 

b. Measurements of s pace correlations and their associated 

macroscale s and microscales could not be made in this 

study. It ma y be pointed out that measurements of Rx (xl) 
u

l 
and associated L have not been made in any kind of 

x l 

wall shear fl ow. No turbulence study is complete with-

out mea s uring the s e quantities. 

4. It may be intere s ting to measure the di s t r ibution of A. over 
xl 

the relative depth taking h/k as a parameter over a range 
s 

of constant values of RN and to repeat the same taking RN 

as a parameter over a range of constant values of h/k , 
s 

keeping the geometry of bed roughness similar. 

S. It will be useful to chec k the validity of the equation (90) 

over a wider range of RN and il./k s . 

6. The possibility of replacing the Lagrangian correlation with 

Eulerian space- time correlation is worth investigating. If 

such a substitution were possible, it paves the way for the 

direct determination of the Lagrangian correlation coefficient 

and associated mean scale s of the eddies participating in the 

diffusion process . Thi s simplif ied procedure for the determin-

ation of the Lagrang ian s cale s of eddie s could be used to 

determine a fun ctional ex pression for the diffusion coefficient 

in turbulent shear fl ow on the bas i s of Kolmogoroff's theory and 

to evaluate the ex tent of influence of the relative roughness of 

the bed on the d iffusion coeffi cient. 
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C 

LIST OF SYMBOLS AND DEFINITIONS 

Definition 

Cros s sectional area 

Constants in the equation (91) 

Tranducer probe sensitivity in millivolts per 
pound per square inch of pressure change 

C
1 

Constant in the equation (88) 

C
2 

Constant in the equation (89) 

E 

E(k) 

-E . . (k) 
1, J 

E1 (n) 

E1 Jk1) 

e 

F 1 (N) 

::::: 

Turbulent kinetic energy per unit volume of 
fluid 

Heisenberg':-s turbulence energy spectral 
dens ity function 

Spectrum tensor of turbulence kinetic energy 

Longitudinal one-dimensional turbulence energy 
spectrum function in frequency domain 

Longitudinal one-dimensional turbulence energy 
spectrum function in wa ve number domain 

__ 8_ (P + 'Yh) 
8x

1 
Normalized longitudinal one-dimensional tur­
bulence energy- spectrum function in frequency 
domain 

Normalized longitudinal one-dimens ional 
turbulence energy- spectrum function in 
wa ve number domain 

f(x
1

), fen) Coefficient of spatial longitudinal-velocity 
correlation 
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Dimension 

(L 
2 
IT) 

(T) 

(L) 

(N) 



g 

g(r) 

H 

H 

Acceleration due to gravity 

Coefficient of spatial lateral velocity 
correIa tion 

Instantaneous value of total head 

Mean value of total head 

H' . Deviation of instantaneous total head from 

h 

h' 

its mean value 

Mean depth of flow 

Deviation of the instantaneous depth from 
the mean value 

her) Coefficient of spatial triple velocity 
correlation 

i,j,k 

K 

-k 

k. 
1 

k 
e 

Subscripts in index notation and refer to 
cartesian coordinates. They take on values 
of 1, 2 and 3 

Von Karman' s Universal constant in the 
equation (" 87) 

Wa ve number vector 

Component of wave number vector 

2..:n Longitudinal component of · wa ve number 
U

l 
vector 

Wa ve number range of energy containing 
eddies 

Wa ve number range of main di s s ipation 

Effective band width established by the 
analyzer in wa ve number 

kH Numerical constant of order unity in equation (64) 

1.61 

(N) 

(L) 

(L) 

(L) 

(L) 

(L) 

(L) 

(l/L) 

(l/L) 

(l/L) 

(l/L) 

(l/L) 

(l/L) 



k 
s 

Nikuradse ' s equivalent sand-grain roughness 

k (r) Coefficient of spatial triple velocity correlation 

L 

M 

n 

Loitsianskii ' s invariant 

Eulerian average integral or macroscale of 
turbulence in xl direction 

Eulerian average integral or macroscale of 
turbulence in x 2 direction 

Eulerian average integral or macroscale of 
turbulence in x3 direction 

Coefficient in the equation (74) 

Frequency in cycles per second 

~n Effective band width established by the 
analyzer in cycles per second 

p 

P. 
1 

-p 

p 

q(r) 

-R .. (r) 
1J 

RE (T) 
1 

Coefficient defined by the equation (74) 

Instantaneous pressure 

Temporal mean pressure 

Deviation of the instantaneous pressure from 
its mean 

Coefficient of spatial triple velocity correlation 

Double-velocity correlation tensor 

Coefficient of Euleriantime correlation of 
longitudinal fluctuation velocity 

Coefficient of spatial lateral velocity correlation 

Coefficient of Lagrangian longitudinal velocity 
correIa tion 

(L) 

(L) 

(L) 

(L) 

c;~j 
(l/T) 

(l/T) 

(T2) 

(F /L 2) 

(F /L 2) 

(N) 

(N) 

(N) 
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R 
x u 

1 1 

R 
x

2
u

1 

R 
x

3
u

I 

R 
AX

I 

R 
AX

2 

r 

r 

= 

= 

Coefficient of spatial correlation of longitudinal 
velocity u separated by a distance x 

1 1 

Coefficient of spatial correlation of longitudinal 
velocity u

l 
separated by a distance x

2 
. 

Coefficient of spatial correlation of longitudinal 
velocity u

l 
separated by a distance x3 . 

UIIA Iv 
xl 

u
l
l A Iv 

x
2 

Ratio of root mean square value of u
l 

to the 
product of the r.m· s value of its time derivative 
and a selective time constant in the equation (97) 

Separation between two points in the longitudinal 
direction 

- -
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(L) 

Rll (r), R22 (r) Longitudinal and lateral components of second 2 
order velocity correlation tensor (L 

2 
IT ) 

S 
o 

T 

T" (r) 
1J 

-T" . k (r) 1J, 

U, (t) 
1 

U, 
1 

u, (t) 
1 

Slope of the channel bed 

Averaging time 

Scalar function obtained by a veraging the 
correlation tensor over all the directions in 
space 

Tl~i.rd order two point velocity correlation tensor 

Averaging time of u, 
1 

Instantaneous velocity at a point and at time t 

Temporal mean velocity at a point 

Deviation of the in'stantaneous velocity from 
its mean value 

Components of U i along xl' x
2 

and 

(N) 

(T) 

(T) 

(LIT) 

(LIT) 

(LIT) 

(LIT) 



ul ' u2' u
3 

ut,u'l 

2 
u 

u* 

V' 
T 

V' 
R 

V' N 

V
T 

V
R 

VN 

W{k) 

-x 

y* = 

a 

a' 

(3, (3' 
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Components of u
i 

along xl' x
2 

and x3 axes (L/T) 

R'Oot-mean-square of velocity fluctuation 

Mean square value of velocity fluctuation 

Friction velocity 

Root -mean-square value of the total tranducer 
probe output in volts 

, Root-mean-square value of the real turbulence 
signal of the probe 

Root-mean-square value of the noise 

Instantaneous value of the total tranducer probe 
output in volts 

Instantaneous value of the real turbulence 
signal of the probe 

Instantaneous value of the noise 

Transfer function giving the amount of energy 
from wave numbers less than k flowing to those 
greater than k 

Position vector 

Cartesian coordinate axes 

v 

Absolute constant in the equations (61) and (75) 

Absolute constant in the equation (62) 

Constants in the equation (78) 

Constants in the equation (78) 

(L/T) 

(L/T) 

(volts) 

(volts) 

(volts) 

(volts) 

(volts) 

(volts) 

(L) 

(L) 



E o 

E 

E 

E (k, t) 

p 

T 

T 

T 

T 
o 

T 

T 
C 

'k. (k) 
1J 

Unit weight of fluid 

Eulerian microscale or dis sipation length 

Eulerian microscale or dis sipation length 
along xl axis 

Eulerian micros cale or dis s ipation length 
along x

2 
axis 

Rate of turbulent energy dissipation per unit 
volume of fluid 

Rate of turbulent energy dissipation per unit 
volume of flow 

Rate of turbulent energy dissipation per unit 
mass 

= 2rrk2 [2(E1, 2) A.V - (Kl a:~2i )AV ] 

Density of fluid 

Time interval 

Preselected time constant in determining 
microscale with the correlator 

Turbulent shear stress at a point in the flow 

Shear stres s at the bed 

Time delay 

Time corresponding to the point on time axis at 
which autocorrelation curve intersects T -axis 

Dynamic viscosity of fluid 

Scalar function obtained by a veraging the 
spectrum tensor over all directions in wave 
number space 

i6S 

(L) 

(L) 

(L) 

(T) 

(T) 

(M/LT2) 

(M/LT2) 

(T) 

(T) 

(MILT) 



v 

v t (k) 

Kolmogoroff's length scale in the viscous 
subrange 

Kinematic viscosity 

Heisenberg's turbulence viscosity associated 
with wave number 'k ' 
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(L) 

(L 
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(L 
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. Appendix A 

Theory of operation of the tranducer probe 

The instantaneous total head acting at the tip of the probe can be 

expressed as 

(
p n) + (U

12g
+ ul )2 H = H + HI = (h + hi) + W + {jif 

(1 ) 

-W(lere H, P and U 1 are the mean values an-d HI, p, and u
l 

are the 

turbulent fluctuations about the temporal means. Since the tranducer 

used is insensitive to the mean quantities because of its low frequency 

response as shown by Perkins and Eagleson (1959) and Eagleson et al. 

(1961), H does not contribute to the probe output. Therefore, the 

effective total head to which the probe responds is given by 

(2) 

In this study the fluctuations of depth hi are negligibly small. Experi-

mental studies of Townsend (1947) and Roshko (1954) indicate that the 

ratio ui/Ul is substantially less than 0.1 except in the immediate 

2 
vicinity of flow boundary. C~~sequent1y the term u

l
/2g may be 

'U
l 

u
l 

neglected in comparison to 
g 

As indicated by Ippen (1957) the 

2 
terms p/W and u

l
/2g are of the same order of magnitude and are 
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generally out of phase. Therefore, p/W can also be neglected. Hence 

the effective fluctuating head acting at the tip of the probe may be 

approxima ted by 

HI = 
(3) 

The probe -responds to the above fluctuating head, and t he time history 

of total head would appear much the same as that for longitudinal fluc-

tuating velocity component with the only difference being the scale factor 

U
1
/g. Great care should be exercised in interpreting the results if the 

analysis of the signal indicates a very high turbulence level (i. e. , 

ul > 0.1 U
1
). Ippen et ale (1955) estimated an error of 11 percent in 

determination of u l 

I 
when ul /U 1 = O. 1 and an error of 22 percent 

when ul!U
1 

= 0.2 . 

If VI is the tranducer output in volts due to HI acting on the 
R 

probe, and C is the calibration constant in volts per foot of head 

··u u l 

"- VI C 
1 1 = 

R g (4) 

Hence 

g VI 
u l R = 1 C U

1 (5) 

This equation was used for calculating u l

I 
from the measurements of the 

r. m. s . voltmeter of the random signal indicator and correlator to which 

the signal from the amplifier output terminal was fed. 
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Care should be taken in interpreting the turbulence data obtained 

with the tranducer probe because not only the probe responds indiscrimi­

nately to pressure fluctuations of ' acoustical origin, but also to free or 

forced yibrations. Besides, the natural frequency of the probe itself 

might interfere with the energy_spectrum measurements in indicating an 

abrupt peak at the natural frequency irrespective of the turbulence 

characteristics being measured. As the s pectrum measurements were 

made in this study at frequencies much below the resonant frequency 

(80 K. C. ), peaks were not observed in the spectrum measurements , 
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Appendix B 

Calibration of the tranducer probe 

Frequency response. The details pertaining to the computation of 

the low frequency relative response of the tranducer probe can be found in 

the publications of Perkins and Eagleson (1959) and Rueter and Bolt (1955). 

The experimental set up used for the determination of fow frequency re­

sponse of the probe is shown in Figure 42. At a constant amplitude a 

series of tests was run at frequencies from 2 to 16. 7 c. p. s. It was 

found that by 14 c. p. s. the sensitivity of the probe had reached a con­

stant limiting value. This value was assigned to represent a relative 

response of 1. 0 and the relative response at lower frequencies was 

computed from the experimental data. The plot of relative response 

against frequency is shown in Figure 43. The estimated low frequency 

response curve is superimposed on the measured points. The agreement 

between estimated and measured low frequency response of the probe is 

seen to be good. This result indicates that the probe may be used to 

measure fluctuations of as low frequency as 4 c. p. s. with sufficient 

accuracy. 

The high frequency response of the probe in water could not be 

determined due to the limitation imposed by the mechanical system to 

generate high frequency pressure fluctuations in the pressure chamber. 

Neubert (1963) pointed out that the useful frequency range of a pd.ezo­

elect ric tranducer is one-fifth of the frequency interval between zero and 
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the lowest resonant frequency if a magnification error of 4 per cent in 

its output is tolerated. The lowest resonant frequency of th~ tranducer 

in water is 80, 000 c. p. s. Therefore, its useful frequency range is much 

above the frequencies of turbulent fluctuations which the probe was re­

quired to measure. However, the high frequency response of the probe 

was measured in air in an anechoic chamber up to 1000 c. p. s. The 

response was found to be flat up to that frequency. 

Sensitivity. As the stiffness of the tip diaphragm of the probe 

is extremely small, its effect on the attenuation of the stres s which is 

actually induced in the ceramic crystal can easily be neglected. Using 

the physical properties of the crystal furnished by the manufacturer and 

neglecting the stiffness of the diaphragm, the sensitivity of the probe 

was calculated to be 19. 15 millivolts per p. s. i. 

Unlike the frequency response, the dynamic sensitivity of the 

tranducer is only a function of its physical properties such as the relative 

dielectric constant of the crystal material, the absolute dielectric constant 

of the free space between its faces, Young's modulus of elasticity and the 

piezoelectric coefficient. Thus it makes no difference in what kind of 

fluid medium the sensitivity of the probe is determined. As the pressures 

can be generated at very high frequencies by ordinary loud speakers and 

these pressures can be accurately measured in an anechoic chamber with 

standard laboratory microphones, it was decided to determine the sensitivity 

of the probe in the anechoic chamber of the electrical engineering department. 
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The block diagram of the experimental arrangement used in the 

anechoic chamber is shown in Figure 44. The standard precision micro­

phone and the probe were mounted before the speaker system at the same 

distance and elevation side by side. At a particular frequency a sinus­

oidally varying sound pressure wave was generated using audiogenerator 

and speaker system. The signals from both the microphone and probe 

were fed to the inputs of the two channel oscilloscope for visual inspec­

tion of 1:he response of the probe and microphone. The output of the 

microphone was measured with vacuum tube voltmeter and the output of 

the ,tranducer probe was measured with r. m. s. voltmeter of the random 

signal indicator and correlator which was used in turbulence measurements. 

At a constant frequency the amplitude was varied over a range cor­

responding to preselected readings of microphone output expressed in db 

of pressure level and the corresponding outputs of the probe were measured 

simultaneously. The same procedure was repeated by isolating the probe 

from contact with the pressure fluctuations in order to measure the noise 

due to hum and possible structural vibration. The two steps outlined 

above were repeated at different frequencies to make sure the high 

frequency response of the probe is flat. 

From the readings of the microphone output, absolute values of 

the pressure changes acted on the probe were calculated in p. s. i. 

Correspono.ing actual outputs of the probe, after allowance for noise, 

were calculated in millivolts at a preamplifier gain of 100. Plots of 
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pressure change in p. s. i. against probe output in millivolts at a gain 

of 100 are shown in Figures 45 and 46 for probes 2 and 3. The sensi­

tivity of the probes 2 and 3 are respectively 16. 5 millivolts and 14.0 

millivolts per p. s. i. pressure change respectively. Their estimated 

sensitivity is 19.15 millivolts per p. s. i. pressure change. The dif­

ference -between the estimated and measured sensitivity of the probes 

is small compared to what Perkins and Eagleson (1959) obtained and this 

improvement is believed to have been achieved by avoiding depolarization 

of the ceramic crystal by heat generated in using silver soldering to seal 

the j oint between the tip cover and main portion of the tube. The small 

difference, however, could be accounted for neglecting the stiffness of 

the tip diaphragm and the discrepancy between the actual dimensions and 

properties of the ceramic crystal and the values used in computation as 

furnished by the manufacturer. The sensitivity of the probes was also 

determined in the water medium using the experimental setup shown in 

Figure 42, and the results compared well with the values obtained in air 

medium as expected. 
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Appendix C 

Calibration of the spectrum analyzer 

The harmonic wave analyzer used to measure the spectrum of 

turbulence was a Quan-Tech Model 303 . To calibrate the frequency 

180 

dial of the wave analyzer, Hewlett-Packard's Electronic Counter Model 

5228 was used as a reference. After nulling was done by adjusting the 

zero beat following the steps outlined in the operation manual a signal 

from the audiooscillator was fed to the inputs of the analyzer and the 

electronic counter. Then the frequency dial of the analyzer was adj usted 

until the analyzer output was a maximum as meas ured with the r ~ . m .. $ .. 

voltmeter of the analyzer. The frequency corresponding to the maximum 

output of the analyzer and the frequency read by the electronic counter 

were noted. This procedure was repeated for different frequencies. In 

all cases the frequencies read on the frequency dial of the analyzer were 

identically the same as the frequencies read on the electronic counter 

indicating that the frequency dial of the analyzer is 'in complete 

adj ustment. 

The ~ r. :m. s. voltmeter in the wa ve analyzer was calibrated by a 

similar procedure. A signal from the audiooscillator was fed to the wave 

analyzer input with the analyzer frequency dial set to give maximum out­

put. The 7analyzer output was measured with the vacuum-tube voltmeter. 

This procedure was repeated for different values of the input voltage and 



181 

frequency. It was found that the readings of the r.. m .. S ·,. voltmeter and 

the vacuum-tube voltmeter were identically the same indfcating the 'r, ar .. s .. 

voltmeter of the analyzer reads accurately enough. 

Spectrum measurements were made with the wave analyzer with a 

fixed nominal band width of 30 c . p. s. The e ffective band width is 

defined ,as the rectangular band width having the same area as the area 

under the experimentally determined band shape. To determine the band 

shape, a signal from the audiooscillator was fed to the input of the 

analyzer with the analyzer frequency dial set to a preselected value; 

say 500 c. p. s. The gain control of the analyzer was adjusted until the 

r .. in .. s. voltmeter read a maximum which was then taken as a reference 

value. Then the frequency dial of the analyzer was adjusted such that 

the r .. m; .. $. voltmeter read O. 8, O. 6 . .. O. 01 times the reference 

value. The corresponding frequencies were read on the electronic counter. 

A plot of the output of the analyzer versus the frequency was drawn and 

shown in Figure 47. A rectangle having the same area as the area under 

the curve is fitted and the width of the rectangle,or in other words, the 

effective band width was found to be 59. 00 c. p. s . 
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