A Precise Attitude Determination and Control Strategy for Small Astrometry Satellite "Nano-JASMINE"

Department of Aeronautics and Astronautics The Univ. of Tokyo, Japan *Takayuki Hosonuma Adviser: Dr. Takaya Inamori, Prof. Shinichi Nakasuka*

- * Overview of Nano-JASMINE
- * Two unique solution for precise attitude control
 - * Compensation of magnetic attitude disturbance
 - * Precise spin rate estimation using mission telescope
- * Conclusion

Overview of Nano-JASMINE(NJ)

* <u>Nano</u> <u>Japan</u> <u>AS</u>trometry <u>M</u>ission for <u>IN</u>frared <u>Exploration</u>

- * Space astrometry (update star catalogue)
 - * Perform all-sky survey in infrared during two years
 - * Estimate positions of stars to an accuracy of three milli-arc second (mas) from observation data
- * Verification of observation systems for upcoming large satellites, JASMINE

* Nano-JASMINE will be launched in 2013

Positions of stars are measured by utilizing stellar parallax

Overview of Nano-JASMINE(NJ)

Item	value	8. 0 8 1
Size	$508 \times 508 \times 512 \text{ mm}^2$	
Mass	35 kg	
Orbit	Sun-synchronous Orbit	
Mission	Infrared astrometry	
Focal length	1.67 m	
Diameter	5 cm	
Detector	CCD in TDI method	
Attitude rate requirement	4×10^{-7} rad/s (TDI scanning direction)	
	2×10^{-6} rad/s (The other direction)	
Sensor	Sun sensor, Magnetometer, FOG, STT	
Actuator	RW. MTO. Magnetic Canceler	740[

Sevier attitude requirement for small satellite

Precise attitude control is required

Precise attitude control strategy

* Two requirements for precise attitude control

Precise attitude control

Compensate and reduce attitude disturbance

Attitude disturbance compensation and precise spin rate estimation are essential for precise control (Estimate spin rate precisely for precise feed back control

For these two requirements, two unique methods are adopted in the NJ mission

Unique attitude control methods in NJ

* Magnetic disturbance compensation method

* Attitude stability of small satellites are easy to disturbed

easy to

disturb

Low

battery

- * Because of small inertial moment of the satellite
- * Dominant disturbance is magnetic disturbance
- * Spin rate estimation method using mission telescope
 - * Conventional high-accuracy sensors are difficult to use
 - * Because of limited capacity of the satellite on power generation
 - * Using mission component is power saving

- * Overview of Nano-JASMINE
- * Two unique solutions for precise attitude control
 - * Compensation of magnetic attitude disturbance
 - * Precise spin rate estimation using mission telescope
- * Conclusion

Attitude disturbances in the NJ mission

- * Main attitude disturbances
 - Gravity gradient disturbance
 - * Solar pressure disturbance
 - * Magnetic disturbance
 - * Air pressure disturbance

Disturbances	Magnitude (Nm)
Magnetic	$5.0 imes10^{-6^*}$
Gravity gradient	$1.0 imes 10^{-9}$
Air pressure	1.6×10^{-9}
Solor pressure	$1.0 imes 10^{-9}$
	* Residual Magnetic Moment : 0.1 Am ²

Source of Residual Magnetic Moments

Satellite design for RMM suppression

Estimation and cancelation of RMM

Verification examination with SCLT

- * Overview of Nano-JASMINE
- * Two unique solution for precise attitude control
 - * Compensation of magnetic attitude disturbance
 - * Precise spin estimation using mission telescope
- * Conclusion

Precise spin rate estimation

- * Spin rate estimation using mission telescope
 - Each star image is picked up and extracted from a view field of mission telescope

 blur of a star image is caused by satellite spin rate

Satellite spin rate is estimated from the star images

Assessing the blur of the images

Calculate Line Spread Function (LSF) for each axis from the luminosity of a star image

$$LSF_{x}(x) = \left(\sum_{y=0}^{25} (\text{luminacity}(x, y))\right)$$
$$LSF_{y}(x) = \left(\sum_{x=0}^{15} (\text{luminacity}(x, y))\right)$$

Compute variance of LSF

$$\sigma^{2} = \left(\sum_{x=0}^{Max} (x^{2}LSF(x))\right) - \mu^{2}$$

$$\mu = \sum_{x=0}^{Max} (xLSF(x))$$

Variance - spin rate relationship

* Relationship between the variance and satellite spin rate

Verification using FM telescope

- * Experimental results
 - Variances are calculated from star images obtained from FM telescope
 - * As light source, LED is utilized
 - * Difference in the value of the variance at $\omega = 0$ comes from the size of the light sources

Verification examination with SCLT

19

- * Verification with SCLT
 - After 4000 sec:
 spin rate is estimated
 with the star images
 - Before 4000 sec:
 spin rate is measured with the combination of STT and FOG

Star image based estimation is more accurate than conventional method

- * Overview of Nano-JASMINE
- * Two unique solution for precise attitude control
 - * Compensation of magnetic attitude disturbance
 - * Precise spin rate estimation using mission telescope
- * Conclusion

Conclusion

* Propose Two attitude control methods for NJ

- * Magnetic disturbance compensation
 - RMM suppression with satellite design and feedback/feedfoward control
- * Precise spin rate estimation
 - Spin rate estimation with
 star images from mission telescope
- * These methods are useful to small satellites for precise attitude control

RMM is suppressed to hundredth part of original value

Estimation accuracy is adequate for the NJ mission

Thank you for listening

Appendix

Time-variable RMM

* Two additional relationships to solve the star color issue

Verification using FM telescope

- * Experiment using flight model (FM) of telescope
 - * Verify the relationship between the spin rate and variety
 - * Utilizing TDI motion instead of the satellite motion
 - * Signals on the CCD are transported to the neighbor CCD by a definite time span (TDI rate) Light source
 - * The TDI rate is adjustable

Blurring of the star images can be simulated by adjusting exposure span of the light source

