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G. Moderately dipping semi-brittle shear zone to the presence of a fault inferred from the borehole data (see Barton and Zoback, 1992; Figure 6).
H. Indurated shear zone at 3402.8 m md.

Our methods included mesoscopic scale core logging, microstructurla analyses, X-Ray difrraction mineralogy,
whole-rock geochemistry, and re-analyses of borehole geophysical data.
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