#### **Utah State University**

### DigitalCommons@USU

**Posters** 

**Getaway Special (GAS)** 

2006

## SUSpECTS- State of Utah Space, Environment & Contamnation Study- MISSE VI

Jeff Ducea

Josh Hodgesa

Jacob Geddesa

Andrew Aumana

Sarah Bartona

JR Dennison Utah State Univesity

See next page for additional authors

Follow this and additional works at: https://digitalcommons.usu.edu/gas\_post



Part of the Physics Commons

#### **Recommended Citation**

Ducea, Jeff; Hodgesa, Josh; Geddesa, Jacob; Aumana, Andrew; Bartona, Sarah; Dennison, JR; Thomsonc, Clint; Burnsc, J. W.; Pearsonc, L.; Davis, L.; Hydec, R. S.; and Dyerd, James S., "SUSpECTS- State of Utah Space, Environment & Contamnation Study- MISSE VI" (2006). Posters. Paper 14. https://digitalcommons.usu.edu/gas\_post/14

This Poster is brought to you for free and open access by the Getaway Special (GAS) at DigitalCommons@USU. It has been accepted for inclusion in Posters by an authorized administrator of DigitalCommons@USU. For more information, please contact digitalcommons@usu.edu.



| Authors<br>Jeff Ducea, Josh Hodgesa, Jacob Geddesa, Andrew Aumana, Sarah Bartona, JR Dennison, Clin<br>Thomsonc, J. W. Burnsc, L. Pearsonc, L. Davis, R. S. Hydec, and James S. Dyerd |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                                                                                                                                                                                       |  |  |  |  |
|                                                                                                                                                                                       |  |  |  |  |
|                                                                                                                                                                                       |  |  |  |  |
|                                                                                                                                                                                       |  |  |  |  |
|                                                                                                                                                                                       |  |  |  |  |
|                                                                                                                                                                                       |  |  |  |  |
|                                                                                                                                                                                       |  |  |  |  |
|                                                                                                                                                                                       |  |  |  |  |
|                                                                                                                                                                                       |  |  |  |  |
|                                                                                                                                                                                       |  |  |  |  |
|                                                                                                                                                                                       |  |  |  |  |
|                                                                                                                                                                                       |  |  |  |  |
|                                                                                                                                                                                       |  |  |  |  |
|                                                                                                                                                                                       |  |  |  |  |
|                                                                                                                                                                                       |  |  |  |  |
|                                                                                                                                                                                       |  |  |  |  |
|                                                                                                                                                                                       |  |  |  |  |
|                                                                                                                                                                                       |  |  |  |  |



get away special

# UtahState















ATK THIOKOL INC.

# SUSPECTS-State of Utah Space Environment & Contamination Study-MISSE VI

#### Principle Investigators:

Jeff Ducea, Josh Hodgesa, Jacob Geddesa, Andrew Aumana, Sarah Bartona, J.R. Dennisona, Clint Thomsonc, J.W. Burnsc, L. Pearsonc, L. Davis, R.S. Hydec, James S. Dyerd

a Gef-Away-Special Program, Physics Department, Utah State University, UMC 4415, Logan, UT, USA 84322-4415,

Phone: 435.797.2857, Fax: 435.797.2492 coordinator@c.usu.edu

b Physics Department, Utah State University, SER 250 UMC 4415, Logan, UT, USA 84322-4415, Phone: 435.797.2946, Fax: 435.797.2492, JR. Dennison@utu.edu

Health Management Focus Group, ATK Thiokol, P.O. Box 707, M/S 245C, Brigham City, UT, USA 84302-0707, Phone: 435.893.3562, Fax: 435.863.2443, Lee Rearran@atk.cs.

ination Control/Materials Chemistry Group, Space Dynamics Laboratory, 1695 North Research Park Way, North Logan, UT, USA 84341, Phone: 435.797.4386, JimDyer@

#### Abstract

A study of the effects of prolonged exposure to the space environment and of charge-enhanced contamination on the electron emission and resistivity of spacecraft materials, the State of Utah Space Environment & Contamination Study (SUSPECTS), is planned for flight aboard the MISSE-6 payload. The Materials International Space Station Experiment (MISSE VI) program is designed to characterize the performance of candidate new space materials over the course of approximately four to eight month exposure periods on-orbit on the International Space Station, with a target flight date of mid-200s. The study is conducted by the Utah State University Materials Physics Group, in cooperation with the USU Get-Away Special Program, AIX Thiokol, and USU Space Dynamics Lab. While preliminary ground-based studies have shown that contamination can lead to actastrophic charging effects under certain circumstances, little direct information is presently available on the effects of sample deterioration and contamination on emission properties for materials flown in space.

Approximately 145 samples will be mounted on panels on both the ram and wake sides of the ISS. They have been carefully chosen to provide needed information of different ongoing studies and a broad cross-section of prototypical materials used on the exteriors of spacecardts. Characterization measurements include optical and electron microscopy, reflection spectroscopy, resistivity and Auger electron spectroscopy. In addition, studies of the service life of composite and ceramic materials of the AIX Thermat Protection Systems and Lightweight Structure Systems will evaluate chemical and mechanical properties as a function of depth from the AO and UV exposure surface. This poster will chronicle the design, construction, and assembly of the sample holders and also the characterization of each of the material samples.



Individual investigators prepare separate sample pallets.



Pallets integrated into PECs.

#### **MISSE VI Timeline**

Aug 2005—Sample selection completed Oct 2005—Preliminary design review of sample pallets Dec 2005—Sample Pallets integrated into PEC's Apr 2006—PEC's completed and tested for flight readiness

Late-2006—Launch on Space Shuttle for ISS deployment 6-9 months—Return of samples from space

#### MISSE VI OBJECTIVES:

The purpose of MISSE is to characterize the performance of new prospective spacecraft materials when subjected to the synergistic effects of the space environment.

#### SUSPECTS OBJECTIVES:

- 1. Basic research extends our understanding of the materials/space environment interactions.
- 2. Specific knowledge is gain for critical materials in several on-going proiects of the team members
- 3. Valuable collaborations between team members is fostered.
- 4. Analysis capabilities and flight experience are developed that will prove useful not only for follow-up funding for post-flight analysis of the SUSpECTS sample set, but for other joint ventures involving reliability and aging of materials in the space environment.



MISSE I and MISSIE II are shown on the Inter-

national Space Station. The actual Passive

used to house our experiments on MISSE VI.





Above (L to R): Josh Hodges , Jeff Duce, and Sarah Burton, all USU students, preparing material samples Below (L-R): Clean Table, a composite material sample, a gold sample



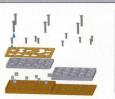




#### Sample Selection Objectives


- Ongoing seven-year study of the electron emission and resistivity properties of spacecraft materials.
- First extensive tests of space environment exposure and contamination on electron emission properties.
- Basic materials and key contaminants of ISS solar arrays and structure. Materials used in ISS Floating Potential Measurement Unit plasma probe
- Critical thermal control and optical materials for SDL payloads.
- Composite and ceramic materials of the ATK Thermal Protection Systems (TPS) and the ATK Lightweight Structure Systems (LSS).




LEFT: The STAR 12GV rocket motor served as the third stage of the U.S. Navy/MDA Terrier Lightweight Exogtmospheric Projectile (LEAP) experiments. The motor first flew in March 1995. The stage has TVC capability, head-end flight destruct ordnance, and utilizes a graphite epoxy composite case. ATK developed the motor design and component technology between 1992-1995.

ATK Thiokol will test materials degredation in the space environment for key materials for their flight Thermal Protection System and ATK Liahtweight Structures System. The Samples will be microtomed to evaluate the depth gradients of chemical and mechanical changes due to environments with atomic oxygen, ultraviolet light (UV), vacuum conditions and thermal conditions.

USU Space Dynamics Lab (SDL) will test contamination, charging and degredation of key materials for the GIFTS satellite that contains optical elements sensitive to contamination and charging



Above: USU SDI's **Imaging Fourier Transform** Spectrometer (GIFTS).





#### **SUSpECTS Material Samples List**

|     | Material                                          | Source          | T          |
|-----|---------------------------------------------------|-----------------|------------|
| C01 | COIC AS/N720 Oxide Ceramic Matrix Composite (CMC) | ATK             | T          |
|     | COIC S200 Nonoxide CMC                            | ATK             | 1-         |
| C03 | Thiokol Carbon-Carbon Composite #1                | ATK             | TO VICE    |
| C04 | Thiokol Carbon-Carbon Composite #2                | ATK             | 1          |
| C05 | Thiokol Fiber Filled Carbon-Carbon Composite      | ATK             | 2          |
| C06 | Thiokol Carbon-Phenolic Composite                 | ATK             |            |
| C07 | Thiokol Graphite Epoxy Foil - No Hole             | ATK             | 5          |
| C08 | Thiokol Graphite Epoxy Foil - With Hole           | ATK             | 2          |
| C09 | COIC S400 Nonoxide CMC                            | ATK             | 1          |
| C10 | COIC S200H Nonoxide CMC                           | ATK             | 1          |
| C11 | COIC S300 Nonoxide CMC                            | ATK             | 1          |
| 101 | Kapton on Aluminum                                | Sheldahl        | T          |
| 102 | Teflon on Aluminum                                | Sheldahl        | 1          |
| 103 | Mylar on Aluminum                                 | Sheldahl        | 1.         |
| 104 | Nylon 6/6                                         | McMaster-Carr   | 1          |
| 106 | SiO <sub>2</sub> (Fused Quartz)                   | UQG Optics      | 1          |
| 107 | Al <sub>2</sub> O <sub>3</sub> (Sapphire)         | UQG Optics      | 13         |
| 111 | Germanium on Kapton                               | Sheldahl        | 3          |
| 112 | Anodized Aluminum (Chromic Acid Etch)             | NASA / MSFC     | 1          |
| 113 | Anodized Aluminum (Sulferic Acid Etch)            | NASA / MSFC     | Alded      |
| 115 | UV Ce-doped Cover Glass                           | OCLI            | ō          |
| 117 | FR4 Printed Circuit Board Material                | CRRES NASA      | Y          |
| 118 | CV-1147 RTV on Copper                             | Boeing          | 2          |
| 119 | DC93-500 RTV on Copper                            | Boeing          | Oral       |
| 128 | Borosilicate Glass                                | UQG Optics      | 0          |
| T01 | Gold (99.99% Purity)                              | ESPI            | ā          |
| T02 | Aluminum (99.999% Purity)                         | ESPI            | 100        |
|     | 316 Stainless Steel                               | McMaster        | ]c         |
|     |                                                   | Gold Plating    | OHIVEISILY |
|     | OFHC Copper (99.9% Purity)                        | McMaster        | 1          |
|     | Silver (99.???% Purity)                           | United Material | U          |
|     | Inconnel on Silver on Teflon on ITO               | Sheldahl        | 2          |
|     | g-C (Graphitic Amorphous Carbon) on Copper        | Arizona Carbon  |            |
|     | Aquadag on Copper                                 | LADD Research   | ]          |
|     | 100XC Black Kapton                                | Sheldahl        | ]          |
|     | Thick Film Black                                  | Sheldahl        |            |
|     | ITO on Teflon on Silver on Inconel                | Sheldahl        | L          |
|     | White Paint (Zinc Oxide Thermal Control Paint)    |                 | שטר        |
| 27  | Composite (GIFTS Carbon Composite)                | SDL             | F          |



#### Ground-Based Studies of Electron Emission & Spacecraft Charging









- Knowledge of satellite-plasma environment interactions are used to design experiments.
- Ground-based measurements then provide materials database and understanding of fundamental interactions Enhanced database and understanding gid in simulation of spacecraft charging by incorporation into NASCAP 2K

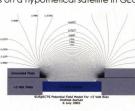
#### **Charge Enhanced Contamination**

panel that was

damaged in a

charaina event

1/3 of all dam-


age is caused

by the space



Left: Studies at USU have shown that very thin layers of contamination—even a few monolayers—can potentially cause significant changes in electron emission properties that can dramatically affect the charging of satellites. The graph shows the differential charging of clean Au and 2-3 monolayers carboncontaminated Au surfaces on a hypothetical satellite in GEO or-







Above: SDL's Floating Potential Measurement Unit (FPMU) is a tool to study how the International Space. Station charges as it flies through space.

Above: GAS students are modeling electronic fields and particle trajectories of the biased wake-side samples. A side view shows the equipotential lines on a single sample charged to +5 volts. This charging attracts ions that can dam-



Black Kapton



