
DNAD, a Simple Tool for Automatic

Differentiation of Fortran Codes Using Dual

Numbers

Wenbin Yu a and Maxwell Blair b

aUtah State University, Logan, Utah 80322-4130
bAir Force Research Laboratory, Wright-Patterson AFB, Ohio 45433-7542

Abstract

DNAD (dual number automatic differentiation) is a simple, general-purpose tool to
automatically differentiate Fortran codes written in modern Fortran (F90/95/2003)
or legacy codes written in previous version of the Fortran language. It implements
the forward mode of automatic differentiation using the arithmetic of dual numbers
and the operator overloading feature of F90/95/2003. Very minimum changes of the
source codes are needed to compute the first derivatives of Fortran programs. The
advantages of DNAD in comparison to other existing similar computer codes are
its programming simplicity, extensibility, and computational efficiency. Specifically,
DNAD is more accurate and efficient than the popular complex-step approximation.
Several examples are used to demonstrate its applications and advantages.

PROGRAM SUMMARY

Program Title: DNAD

Journal Reference:

Catalogue identifier:

Licensing provisions: none

Programming language: F90/95/2003

Computer: all computers with a modern FORTRAN compiler

Operating system: all platforms with a modern FORTRAN compiler

Keywords: Automatic differentiation, Fortran, Sensitivity analysis

Classification: 4.12, 6.2

Nature of problem: Derivatives of outputs with respect to inputs of a Fortran code

are often needed in physics, chemistry, and engineering. The author of the analy-

sis code may no longer available and the user may not have deep knowledge of the

Email address: wenbin.yu@usu.edu (Wenbin Yu).
URL: http://www.mae.usu.edu/faculty/wenbin/ (Wenbin Yu).

Preprint submitted to Computer Physics Communications 5 February 2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@USU

https://core.ac.uk/display/32550058?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

code. Thus a simple tool is necessary to automatically differentiate the code through

very minimum change of the source codes. This can be achieved using dual number

arithmetic and operator overloading.

Solution method: A new data type is defined with the first scalar component holding

the function value and the second array component holding the first derivatives. All

the basic operations and functions are overloaded with the new definitions accord-

ing to dual number arithmetic. To differentiate an existing code, all real numbers

should be replaced with this new data type and the input/output of the code should

also be modified accordingly.

Restrictions: None imposed by the program.

Unusual features: None.

Running time: For each additional independent variable, DNAD takes less time than

than the running time of the original analysis code. However the actual running time

depends on the compiler, the computer, and the operations involved in the code to

be differentiated.

1 Introduction

In this age, most problems in physics, chemistry, and engineering are solved
using computer codes. It is a frequent occurrence that we need to compute
the derivatives of the outputs of the computer codes with respect to the in-
put parameters. A very typical example is the gradient-based optimization
commonly used in engineering design. Gradient-based methods use not only
the value of the objective and constraint functions but also their derivatives.
The success of these methods hinges on accurate and efficient evaluation of
the derivatives, commonly called sensitivity analysis in the literature of en-
gineering design. Sensitivity analysis is usually the most costly step in the
optimization cycle, and the optimization process often fails due to inaccurate
derivative calculations [1].

There are several methods proposed for evaluating derivatives [2] of outputs
of a computer code with respect to its inputs. Traditionally, finite differences
are used to evaluate the derivatives if the source codes are not accessible.
Basically, one perturbs each input and evaluates the difference of the outputs.
The “step-size dilemma” forces a choice between a step size small enough to
minimize the truncation error and a step size large enough to avoid significant
subtractive cancelation errors [3].

If the source codes are accessible, then one can use so-called automatic differen-
tiation (AD) [2] or complex-step approximation [4] to provide a more accurate
and robust evaluation of the derivatives. AD, also known as computational dif-
ferentiation or algorithmic differentiation, is a well-established method based

2

on a systematic application of the chain rule of differentiation to each opera-
tion in the program flow [2], which can be carried out in a forward mode or a
reverse mode. The forward mode can be easily implemented by a nonstandard
interpretation of the program in which the real numbers are replaced by so-
called dual numbers, the details of which are given in the next section. As far
as programming concerned, the forward mode is usually implemented using
two strategies: Source Code Transformation (SCT) and Operator Overloading
(OO) [5]. A complete list of SCT or OO tools for automatic differentiation
of Fortran codes can be found at www.autodiff.org. Using SCT, more source
codes are generated automatically based on the original source for evaluating
the derivatives. Although SCT can be implemented for all programming lan-
guage and it is easier for an optimized compilation of the code, the original
source code is greatly enlarged which makes it difficult to debug the extended
code. Furthermore, it is very difficult to develop the AD tool for automatic
generation of the additional source codes [6]. There are more than a dozen tools
that use SCT for Fortran codes, with ADIFOR [7] being the most known one.
OO is a more elegant approach if the source code is written in a language
supporting it. In OO, one defines a new structure containing dual numbers [5]
and overloads elementary mathematical operations to this new data structure.
The main changes to the source codes will be re-declaring real numbers with
the new data structure. It is noted that OO is not only applicable to source
codes written in a supporting language such as F90/95/2003 and C++ but
also applicable for the codes written in a language compatible with a support-
ing language, for example, codes written in F77. One just needs to compile
the operator overloaded source codes using an F90/95/2003 compiler. There
are several automatic differentiation tools for Fortran codes using OO, includ-
ing HSL AD02 [8], AUTO DERIV [9,10], and ADF95 [11]. There are certain
limitations with these tools. For example, HSL AD02 does not support the
array features of F90/95/2003. AUTO DERIV [9] was very slow, and even
the most recent release in [10] is still about ten times slower than analytic
derivative calculation. Analytic derivative calculation means that a Fortran
code containing the analytic expressions for the derivatives is used for compu-
tation. ADF95, although it is much faster than AUTO DERIV for the cases
tested in [11], is about six times slower than analytic derivative calculation.
Another limitation of these OO AD tools is that the independent variables
and dependent variables are specified inside the code, which implies that the
end user needs to modify the code and recompile the differentiated version
of the analysis code when the derivatives of different outputs are needed or
the independent variables are different. This requires the end user to know
the meaning of variables inside the code and to know how to compile the dif-
ferentiated codes. Furthermore, the fact that oftentimes the developer of the
differentiated version of the analysis code is not the end user who is going to
use the code discourages the use of such AD tools. For this very reason, it is
better to develop AD tools that can minimize and simplify the changes needed
by the end user to the source codes of the analysis codes.

3

The complex-step approximation method, publicized by Martins [1], was orig-
inally proposed as a better alternative to replace finite difference as it can
avoid the step-size dependency and the subtractive cancelation errors inher-
ent in finite difference techniques. An extremely small number can be assigned
to get a second-order approximation of the derivatives. Later, the complex-
step approximation was found to be similar to the automatic differentiation
[6], and it can be considered as an approximate implementation of automatic
differentiation using the existing complex data structure in some computer
languages. Because of its clear advantages over the finite difference method,
its easy implementation, and the fact that the end use of the differentiated
version of the code is independent of the source codes, the complex-step ap-
proximation method is popular in the aerospace design community. However,
some issues of complex-step approximation can only be resolved using auto-
matic differentiation [6].

SCOOT [12] is an experimental variant of OO that is specialized to sup-
port differentiation of vector calculus and derivatives of geometric variables
in C++. With SCOOT, any number of derivatives are computed in parallel
with machine accuracy. The method is validated to support the derivatives of
geometric variables in a linear aerodynamic application.

We have developed a simple general-purpose module, namely dual number
automatic differentiation (DNAD), using the arithmetic of dual numbers and
the OO feature of F90/95/2003 for automatic differentiation of Fortran codes.
In comparison to existing Fortran AD tools using OO, DNAD only requires
the end user to specify the number of independent variables. It is simple
and can be easily extended as needed. For the examples we have tested, it
is much more efficient than other tools. In comparison to the complex-step
approximation method popular in the aerospace design community, DNAD
is more efficient and accurate, and it avoids the pitfalls associated with the
complex-step approximation method as pointed out in [6].

2 Dual Number Arithmetic

Dual number arithmetic can be readily illustrated through an example. Con-
sider the derivative of function f(x1, x2) = x1x2 + sin(x1). The variables x1

and x2 are independent variables. We wish to use dual number arithmetic to
compute the value for the output y = f(x1, x2) and the associated derivatives
∂f/∂x1 and ∂f/∂x2. A dual number is formed by two real numbers such that

< x1, x
′
1 >= x1 + x′

1d1 < x2, x
′
2 >= x2 + x′

2d2, (1)

4

where x′
1 and x′

2 are real numbers and d1 and d2 are two nilpotent symbols,
which are analogous to the imaginary unit i in the complex number arithmetic.
We let all powers of d1 and d2 higher than one and their products equal zero
in dual numbers, as opposed to i2 = −1 in complex numbers. Substituting
these new numbers into the first term of the function, we have

(x1 + x′
1d1)(x2 + x′

2d2) = x1x2 + x1x
′
2d2 + x2x

′
1d1 + x′

1x
′
2d1d2

= x1x2 + x1x
′
2d2 + x2x

′
1d1.

(2)

Note that here x′
1x

′
2d1d2 are dropped in the final expression of the above

equation, not because x′
1 and x′

2 are small but because d1 and d2 are nilpotent
symbols, and thus d1d2 = 0.

We can also evaluate the dual version of sin(x1) as follows:

sin(x1 + x′
1d1) = sin(x1) + cos(x1)x

′
1d1 −

sin(x1)

2
(x′

1d1)
2 + . . .

= sin(x1) + cos(x1)x
′
1d1.

(3)

Again, all the terms after cos(x1)x
′
1d1 are dropped, not because x′

1 is small
but because d1 is a nilpotent symbol, and thus d21 = d31 = . . . = 0.

The dual version of the function y = f(x1, x2) can be expressed as

< y, y′ > = x1x2 + x1x
′
2d2 + x2x

′
1d1 + sin(x1) + cos(x1)x

′
1d1

= x1x2 + sin(x1) + [x2 + cos(x1)] x
′
1d1 + x1x

′
2d2

=< f(x1, x2),
∂f

∂x1

x′
1d1 +

∂f

∂x2

x′
2d2 > .

(4)

Hence the derivative ∂f
∂x1

can be obtained by letting x′
1 = 1, x′

2 = 0, and ∂f
∂x2

can be obtained by letting x′
1 = 0, x′

2 = 1. If x1, x2 are independent variables,
x′
1, x

′
2 are commonly called seeds, and they can be arbitrary. However, we

choose them to be 1 so that the outputs will be the derivatives themselves.
This implies that we calculate derivatives with respect to each independent
input separately. In other words, the mathematical process is repeatedly run,
once for every independent variable. Nevertheless, it is possible to address
multiple independent variables simultaneously: we just need to replace the
second component of the dual number with an array with the size the same
as the number of independent variables to hold corresponding derivatives, as
will be shown in the next section.

The dual number arithmetic for a general function is as follows:

g(< u, u′ >,< v, v′ >) = ⟨g(u, v), g,uu′ + g,vv
′⟩ (5)

5

with g,u = ∂g
∂u

and g,v = ∂g
∂v
. With this general formula, we can easily derive

the following:

< u, u′ > + < v, v′ >=< u+ v, u′ + v′ > (6)

< u, u′ > − < v, v′ >=< u− v, u′ − v′ > (7)

< u, u′ > × < v, v′ >=< uv, u′v + uv′ > (8)

< u, u′ > / < v, v′ >=<
uv

v2
,
u′v − uv′

v2
> . (9)

Addition and subtraction are the same as in complex arithmetic. However,
multiplication and division operations by complex numbers involve more cal-
culations, as disclosed by the following formulas:

(u+ u′i)× (v + v′i) = (uv − u′v′) + i(u′v + uv′) (10)

(u+ u′i)/(v + v′i) =
uv − u′v′

v2 + v′2
+ i

u′v − uv′

v2 + v′2
. (11)

Clearly, complex multiplication, Eq. (10), has one more multiplication oper-
ation u′v′ and one more minus operation uv − u′v′ than multiplication using
dual number arithmetic in Eq (8). Complex division, Eq. (11), has two more
multiplication operations u′v′, v′2, one more minus operation uv − u′v′, and
one more add operation v2+v′2 than division using dual number arithmetic in
Eq (9). Multiplication and division of complex numbers will be numerically the
same as that of dual numbers if the seeds u′ and v′ used in the complex arith-
metic are extremely small numbers. For more sophisticated functions such as
trigonometric functions, exponential functions, logarithmic functions, and oth-
ers, the calculations of the complex-step approximation method will be more
involved than with dual numbers. For example, complex arithmetic defines
the arcsin function as

arcsin(u+ u′i) = −i log(iu− u′ +
√
1 + u′2 − u2 − 2iuu′) (12)

while dual number arithmetic defines it as

arcsin(< u, u′ >) =< arcsin(u),
u′

√
1− u2

> (13)

Certainly, the computation of the complex arithmetic will be much more in-
volved than that of dual number arithmetic. In fact, for the arcsin function
with extremely small imaginary parts, subtractive cancelation error will oc-
cur, as we shall see later. This has been realized in [6], and some of the com-
plex functions are replaced with a definition similar to that of dual number
arithmetic. Dual number automatic differentiation (DNAD) has the following
advantages compared to complex-step approximation.

• DNAD is more efficient as the number of calculations of dual numbers in-

6

volved in computing derivatives is never more than and mostly less than
that for complex numbers.

• DNAD will be more accurate as complex-step approximation is only valid
for extremely small imaginary parts. For some functions and operations, if
it is impossible to redefine them the same as in dual number arithmetic,
some cancelation and truncation errors might occur.

• DNAD can deal with multiple independent variables at the same time, while
complex-step approximation can only compute sensitivities with respect to
one variable.

A more serious disadvantage of complex-step approximation is that it is not
just as simple as replacing all real numbers with complex numbers; overload-
ing (redefining) some intrinsic functions/operators such as ABS, conditional
operators, is also needed, as the original definition in complex arithmetic is
not valid for computing derivatives. It is hard to know, a priori, which func-
tions/operations need to be redefined, and hard to identify, as compilers will
not flag such functions/operations because they are perfectly legal complex op-
erations. However, the compiler will flag every undefined operation for DNAD
as dual number is a data type new to the compiler. The only disadvantage us-
ing dual numbers is that we need to overload all the operations and functions
to this new data type while complex-step approximation only needs to overload
part of these for some languages such as Fortran having complex arithmetic as
one of intrinsic data types. However, as long as a general-purpose module or
class is written, the efforts for differentiating an existing code will be similar.
Of course, for computer languages which do not have the complex number as
an intrinsic data type, such advantage of complex-step approximation does
not exist. And also the development effort of DNAD is not that significant, as
shown in the next section.

3 Implementation of Dual Number Automatic Differentiation

To use dual number arithmetic for automatic differentiation, we need to first
define a new data type DUAL NUM as follows:

TYPE, PUBLIC:: DUAL_NUM

REAL(DBL_AD)::x_ad_

REAL(DBL_AD)::xp_ad_(NDV_AD)

END TYPE DUAL_NUM

where DBL AD is an integer parameter indicating the precision used for the
code, NDV AD is an integer parameter indicating the number of independent
variables, x ad is the function value and xp ad is the corresponding first

7

derivatives (the second component of the dual number data type). What one
needs to do next is to overload the functions and operations needed for com-
puting such as relational operators, arithmetic operators and functions. To
define a function of a dual number, say F (< u, u′ >), we just need to assign
the function evaluated at the first component of the input dual number, F (u),
to the first component of the output dual number, and the derivative of the
function with respect to the independent variable u multiplying the second
component of the input dual number u′, ∂F (u)

∂u
u′, to the second component of

the output dual number. For example, one can overload the sine function as
follows:

INTERFACE SIN

MODULE PROCEDURE SIN_D

END INTERFACE

ELEMENTAL FUNCTION SIN_D(u) RESULT(res)

TYPE (DUAL_NUM), INTENT(IN)::u

TYPE (DUAL_NUM)::res

REAL (DBL_AD):: tmp

res%x_ad_ = SIN(u%x_ad_)

tmp=COS(u%x_ad_)

res%xp_ad_= u%xp_ad_*tmp

END FUNCTION SIN_D

All the other functions can be defined similarly. Note that, if there are multi-
ple independent variables, the additional effort for computing the derivatives
is just a simple multiplication. The current version of DNAD has all the com-
mon relational operators, arithmetic operators and functions defined. And if it
happens that some functions/operations are not defined, DNAD can be easily
extended to include such definitions. For example, in the process of differenti-
ating an F77 code for turbulence modeling, it was found that xy with both x
and y as real numbers cannot be overloaded by the original release of DNAD
[13,14], as raising a dual number to a dual-number power is not defined; but
we can easily insert the following segment code into the DNAD module for its
definition:

INTERFACE OPERATOR(**)

MODULE PROCEDURE POW_D

END INTERFACE

ELEMENTAL FUNCTION POW_D(u,v) RESULT(res)

TYPE (DUAL_NUM), INTENT(IN)::u

TYPE (DUAL_NUM), INTENT(IN)::v

8

REAL(DBL_AD)::uf,vf

TYPE (DUAL_NUM)::res

uf=u%x_ad_

vf=v%x_ad_

res%x_ad_ =uf**vf

res%xp_ad_=res%x_ad_*(vf/uf*u%xp_ad_+LOG(uf)*v%xp_ad_)

END FUNCTION POW_D

as we know that < u, u′ ><v,v′>=
⟨
uv, uv

(
v
u
u′ + log(u)v′

)⟩
.

4 How to Use DNAD

To use DNAD to automatically differentiate an existing Fortran code, one
needs to carry out the following steps.

• Specify the number of independent variables. For example, if there are two
independent variables, we need to set INTEGER(2), PUBLIC,PARAMETER::

NDV AD=2.
• Replace all the declarations of real numbers in the existing code with new
declarations of the dual numbers. If the real number is also initialized
along with the declaration, the initialization should be changed correspond-
ingly. For example, REAL(8),PARAMETER:: ONE=1.0D0 should be changed
to TYPE(DUAL NUM), PARAMETER:: ONE=DUAL NUM(1.0D0,(/0.D0,0.0D0/)).

• Insert Use Dual Num Auto Diff right after Module, Function, Subroutine
statements.

• Change IO commands correspondingly. If the code uses free formatting read
and write, no changes are needed. The developer of the differentiated code
only needs to instruct the end user to insert 1 after the real number repre-
senting the independent variable and 0 after all other real numbers in the
inputs. In the outputs, the number right after the function value indicates
the derivative of this function with respect to the given independent design
variable. The number of numbers inserted after the real numbers in the
inputs and the number of derivatives in the outputs is NDV AD.

• Recompile all the source codes and link with the DNAD module to generate
the executable.

5 Examples

In this section, we are going to use a few examples to demonstrate the appli-
cations and advantages of DNAD.

9

The first example is to differentiate the following simple Fortran code for
computing the area of a circle.

PROGRAM CircleArea

REAL(8):: PI=4.0D0*ATAN(1.0D0)

REAL(8)::radius, area

READ(*,*) radius

Area=PI*radius**2

WRITE(*,*) "AREA=", Area

END PROGRAM CircleArea

The differentiated version using DNAD is as follows:

PROGRAM CircleArea

USE Dual_Num_Auto_Diff

TYPE (DUAL_NUM)::PI=DUAL_NUM(4.0D0*ATAN(1.0D0),(/0.D0/))

TYPE (DUAL_NUM)::radius,area

READ(*,*) radius

Area=PI*radius**2

WRITE(*,*) "AREA=",Area

END PROGRAM CircleArea

where all the changes happen on the second, third and fourth lines. Change
NDV AD to be 1, recompile the code and link with the DNAD module. One
also needs to make a simple change to the inputs: add one more real number
into any real number as its seed. For example, for the above program, to
calculate the area of a circle with radius 5.0 and the derivative of the area
with respect to radius, we just need to input 5.0, 1.0. The output will be
AREA= 78.5398163397448 31.4159265358979, where the first output is the
function value and the second is the corresponding derivative.

The second example is to evaluate the derivative of arcsin(x) at x=0.5 to
demonstrate the loss of accuracy of complex-step approximation.

PROGRAM TestComplex

USE complexify

USE Dual_Num_Auto_Diff

REAL(8)::x

COMPLEX(8)::xc

TYPE(DUAL_NUM)::xd

x=0.5D0

WRITE(*,*)ASIN(x),1.0D0/SQRT(1.0D0-x*x)

10

xd=DUAL_NUM(0.5D0,(/1.0D0/))

WRITE(*,*)ASIN(xd)

xc=(0.5D0,1.0D-20)

WRITE(*,*)ASIN(xc)

END PROGRAM

where complexify is the module for computing sensitivities using complex-
step approximation, directly downloaded from Prof. Martins website [15]. The
code is compiled using gfortran 4.7.0 with -O3 -static option. The outputs
are

0.52359877559829893 1.1547005383792517

0.52359877559829893 1.1547005383792517

(0.52359879016876221, 1.1547005142714115E − 020)

Clearly, DNAD computes the derivatives the same as the analytical expression
up to machine precision, while the result of complex-step approximation is only
accurate up to the seventh digit after the decimal point. The derivative of the
complex-step approximation is the imaginary part of the result divided by the
small imaginary part of the independent variable (1.0D-20 for this case).

The third example is used to compare the efficiency of different AD tools.

PROGRAM TestSpeed

IMPLICIT NONE

INTEGER::i

REAL(8)::x,y,z,ftot,f

INTEGER::nloops=50000000

REAL:: start_time, end_time

call CPU_TIME(start_time)

x=1.0D0; y=2.0D0; z=3.0D0

ftot=0.0D0

DO i=1,nloops

f=x*y-x*SIN(y)*LOG(i*z)

ftot= (ftot- f)/EXP(z)

ENDDO

CALL CPU_TIME(end_time)

WRITE(*,*) ftot, end_time-start_time,"seconds"

11

Table 1
Running time of the sample code differentiated by different AD tools (s)

AD Tools 1 variable (x) 2 variables (x, y) 3 variables (x, y, z)

DNAD 1.732 1.747 1.966

Complex 2.901 5.772 8.954

AUTO DRIV 9.968 12.854 15.226

ADF95 9.750 15.475 15.553

END PROGRAM

The computing times (seconds) for the code differentiated by complex-step
approximation [15], DNAD, AUTO DERIV [10], and ADF95 [11] are reported
in Table 1. The tests are performed on a Dell Latitude laptop with 2.70 GHz
Intel Core i7-2620 CPU, running on a Windows 7 operating system. The code
is compiled with gfortran 4.7.0 with options -O3 -static. To allow maximum
optimization, the automatic differentiation module and the differentiated code
are put into the same file for compiling. What is surprising is that the original
undifferentiated code runs for 1.981 seconds, which seems impossible as the
DNAD differentiated codes run even faster. Theoretically, the differentiated
codes require more calculations than the original code. After consulting the
gfortran developers, this mystery can be explained by the fact the compiler
optimizes the differentiated codes in a different and more efficient way because
the type DUAL NUM is a new data type. We can clearly observe that DNAD
is several times more efficient than other AD tools for this example. It is
noted that DNAD, AUTO DERIV, and ADF95 provide the same results up to
double precision while complex-step approximation is slightly inaccurate. For
unknown reasons, HSL AD02 [8] cannot provide correct results for the function
value and the derivatives of this code. Hence, its running time is not reported.
It is also pointed out here that, although it was shown that ADF95 is more
efficient than AUTO DERIV for the examples tested in [11], the performance
of both codes is similar for this example, and AUTO DERIV is even faster
than ADF95 for this problem with two independent variables. It is not clear
to us why there is a large jump between one variable and two variables for
ADF95. We tested the differentiated code in several different computers, and
the same phenomenon was observed. This reveals that the relative efficiency of
automatic differentiation tools is not only computer and compiler dependent
but also problem dependent. Interested readers are recommended to test the
AD tools themselves to find the best one to differentiate their own codes. The
reason for this significant advantage of DNAD with respect to other tools is
its simple data and code structures, which enable gfortran to compile more
optimized differentiated codes.

To test the performance of the AD tools for computing derivatives with respect

12

to a relatively large number of independent variables, we slightly modified the
previous sample code we used for obtaining results in Table 1 by changing all
the input variables and function variables x, y, z, ftot, f to be arrays of
10, and also reduced nloops ten times so that the original code runs for 1.977
seconds, similar to the previous code. The code used for this test is entitled
TestSpeed2 and is shown below:

PROGRAM TestSpeed2

IMPLICIT NONE

INTEGER, PARAMETER::N=10

INTEGER::i,j

REAL(8)::x(N),y(N),z(N),ftot(N),f(N)

INTEGER::nloops=5000000

REAL:: start_time, end_time

call CPU_TIME(start_time)

x=1.0D0; y=2.0D0; z=3.0D0

ftot=0.0D0

DO j=1,N

DO i=1,nloops

f(j)=x(j)*y(j)-x(j)*sin(y(j))*log(i*z(j))

ftot(j)= (ftot(j)- f(j))/exp(z(j))

ENDDO

ENDDO

CALL CPU_TIME(end_time)

WRITE(*,*) end_time-start_time,"seconds"

DO i=1,N

WRITE(*,*)ftot(i)

ENDDO

END PROGRAM TestSpeed2

This code can be correctly differentiated using DNAD, ADF95 [11], and complex-
step approximation [15]; and their running times with respect to different num-
bers of independent variables are plotted in Fig. 1. Note that 3 variables

implies we use x(1), y(1), z(1), 6 variables implies we use x(1), y(1),

z(1), x(2), y(2), z(2), and so on We can observe from the plot that
the running time of complex-step approximation is linearly proportional to
the number of independent variables, and that this approach is less effi-
cient in comparison to both DNAD and ADF95, particularly, when there is
a large number of independent variables. DNAD is much more efficient than
both complex-step approximation and ADF95 when the number of indepen-

13

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

0 3 6 9 12 15 18 21 24 27 30

Number of Variables

R
u
n
n
in

g
 T

im
e
 (

s
e
c
o
n
d
s
) DNAD

ADF95

Complex

Fig. 1. Running time of a sample code differentiated by DNAD and ADF95 with
respect to number of independent variables

dent variables is small, which confirms what we have observed in Table 1.
Even if the number of independent variables becomes relatively large, DNAD
only takes about 60% of the time ADF95 takes. Neither HSL AD02 [8] nor
AUTO DERIV [10] can correctly differentiate this code. Hence, their running
time is not available.

DNAD has been used to differentiate several engineering analysis codes includ-
ing GEBT [16], a general-purpose nonlinear composite beam analysis code,
VABS [17], an internationally known cross-sectional analysis code for modeling
composite blades, VAMUCH [18], a general-purpose, multiphysics microme-
chanics code, JET [13,14], a computational fluid dynamics code accompanying
a popular turbulence modeling textbook, and ZEUS [19], an industrial CFD-
based aerodynamic solver. These codes are used in real-world settings, and
they contain thousands of lines of F77/90/95/2003 codes along with several
supporting libraries including BLAS, LAPACK, ARPACK, and HSL libraries.
Very small efforts, usually a couple of hours, are needed to differentiate these
codes. Very satisfactory results have been obtained as far as efficiency and
accuracy are concerned.

6 Conclusion

Exploiting the operator overload feature of F90/95/2003, we have developed
DNAD as a simple, general-purpose, automatic differentiation tool for Fortran

14

codes. It is based on dual number arithmetic and achieves the same accuracy
as analytic differentiation. In comparison to existing Fortran AD tools, DNAD
minimizes the changes to the source codes and is more efficient than existing
tools. In comparison to the complex-step approximation method, DNAD is
more efficient and accurate, and does not require more changes to existing
source codes. DNAD has been used to differentiate several analysis codes used
in the real world, and very satisfactory results have been obtained.

7 Acknowledgements

The development of DNAD is supported, in part, by the Chief Scientist In-
novative Research Fund at AFRL/RB WPAFB. The views and conclusions
contained herein are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsement, either expressed
or implied, of the funding agency.

References

[1] J. R. R. A. Martins. A Coupled-Adjoint Method for High-Fidelity Aero-
Structural Optimization. PhD thesis, Aerospace Engineering, Stanford
University, October 2002.

[2] A. Griewank. Evaluating Derivatives: Principles and Techniques of Algorithmic
Differentiation. SIAM, Philadelphia, 2000.

[3] J. R. R. A. Martins, P. Sturdza, and J. J. Alonso. The connection between
the complex-step derivative approximation and algorithmic differentiation. In
Proceedings of the 39th Aerospace Sciences Meeting, Reno, NV, Jan. 2001. AIAA
Paper 2001-0921.

[4] J. R. R. A. Martins, I. M. Kroo, and J. J. Alonso. An automated method
for sensitivity analysis using complex variables. In Proceedings of the 38th
Aerospace Sciences Meeting, Reno, NV, Jan. 2000. AIAA Paper 2000-0689.

[5] Automatic differentiation. Technical Report http://en.wikipedia.org/

wiki/Automatic_differentiation, Wikipedia, 2009.

[6] J. R. R. A. Martins, P. Sturdza, and J. J. Alonso. The complex-step derivative
approximation. ACM Transactions on Mathematical Software, 29:245– 262,
2003.

[7] C. Bischof, A. Carle, P. Khademi, and A. Mauer. ADIFOR 2.0: Automatic
differentiation of Fortran 77 programs. IEEE Computational Science &
Engineering, 3:18– 32, 1996.

15

[8] J. D. Pryce and J. K. Reid. ADO1, a Fortran 90 code for automatic
differentiation. Technical Report ftp://matisa.cc.rl.ac.uk/pub/reports/
prRAL98057.ps.gz, Rutherford Appleton Laboratory, 1998.

[9] S. Stamatiadis, R. Prosmiti, and S. C. Farantos. auto deriv: Tool
for automatic differentiation of a fortran code. Computer Physics
Communications, 127:343– 355, 2000.

[10] S. Stamatiadis and S. C. Farantos. auto deriv: Tool for automatic
differentiation of a fortran code. Computer Physics Communications, 181:1818–
1819, 2010.

[11] C. W. Straka. ADF95: Tool for automatic differentiation of a Fortran code
designed for large numbers of independent variables. Computer Physics
Communications, 168:123– 139, 2005.

[12] M. Blair. SCOOT: sensitivity class with operator overloaded types. In
Proceedings of the 51st AIAA AIAA/ASME/ASCE/AHS/ASC Structures,
Structural Dynamics and Materials Conference, Orlando, Florida, April. 2010.
AIAA Paper 2010-2918.

[13] R. E. Spall and W. Yu. Imbedded dual-number automatic differentiation for cfd
sensitivity analysis. In Proceedings of the Fluids Engineering Division Summer
Conference, San Juan, Puerto Rico, July, 08-12 2012.

[14] R. E. Spall and W. Yu. Imbedded dual-number automatic differentiation for
cfd sensitivity analysis. Journal of Fluids Engineering, Jan. 2012. in press.

[15] J. R. R. A. Martins. Complex-step approximation. Technical Report http:

//mdolab.engin.umich.edu/sites/default/files/complexify.f90.txt,
University of Michigan, 2012.

[16] Wenbin Yu and M. Blair. GEBT: a general-purpose tool for non-linear analysis
of composite beams. In Proceedings of the 51st AIAA/ASME/ASCE/AHS/ASC
Structures, Structural Dynamics and Materials Conference, Orlando, Florida,
April. 2010. AIAA Paper 2010-3019.

[17] W. Yu, D. H. Hodges, V. V. Volovoi, and C. E. S. Cesnik. On Timoshenko-
like modeling of initially curved and twisted composite beams. International
Journal of Solids and Structures, 39(19):5101 – 5121, 2002.

[18] W. Yu and T. Tang. Variational asymptotic method for unit cell homogenization
of periodically heterogeneous materials. International Journal of Solids and
Structures, 44:3738–3755, 2007.

[19] Z. Wang, P.C.and Sarhaddi D Zhang, Z.and Chen, and W. Yu. Enabling
sensitivity analysis capability for a cfd-based unsteady aerodynamic/aeroelastic
solver. In Proceedings of the 53rd Structures, Structural Dynamics, and
Materials Conference, Honolulu, Hawaii, Apr. 23-26 2010.

16

