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 Higher Order Symmetries of the KdV Equation

Synopsis
 Recursion operators for the higher order symmetries (or generalized symmetries) of 
integrable equations such as the KdV equation are usually defined in terms of the formal 
inverse of the total derivative operator Dx. In this worksheet we shall:

 construct the operator using the HorizontalHomotopy command in the JetCalculus 
package;

 construct the recursion operator R Q  = Dxx Q  C 
2
3

 uQ C
1
3

 uxDx
K1 Q  for the higher 

order symmetries of the KdV equation (Here Q is the characteristic function for the 
symmetry); 
use this recursion operator to generate the first 5 higher order symmetries of the KdV 
equation; and
check that these higher order symmetries all commute.

The Program InverseTotalDiff 

Load in the required packages.

with(DifferentialGeometry): with(JetCalculus):

The DG software supports 2 different notational conventions for coordinates on jet spaces.
It is convenient here to use to the Preferences command to change to JetNotation2. 

Preferences("JetNotation", "JetNotation2");
"JetNotation1"

The following calling sequence to DGsetup creates the 1st order jet space with 1 
independent variable and 1 dependent variable u. Our jet notation is 
u = u 0 , ux  = u 1 , uxx  = u 2 , ....

DGsetup([x], [u], Jet, 1); 
frame name: Jet

In our subsequent calculations we shall require higher order derivatives of u. The order of 
the jet space will automatically be increased as needed.
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The command TotalDiff calculates the total derivative of a function on jet space, for 
example

f := x*u[1]*u[2]^3;
f d x u1 u2

3

g := TotalDiff(f, x);
g d u1 u2

3 C x u2
4 C 3 x u1 u2

2 u3

k := TotalDiff(u[2], [2]);
k d u4

To re-construct the function from the function g = Dxf, we use to make a type (1,0) 
differential bi-form and apply the horizontal homotopy operator from the variational 
bicomplex.

HorizontalHomotopy(g*Dx);
x u1 u2

3

Here is a 2-line program to calculate the inverse of the total derivative. (Click on this box 
and then enter control-E (PC) or command-E(Mac) to execute this code).

InverseTotalDiff(g);
x u1 u2

3

The Recursion Operators for the KdV Equation and Its Higher Order 
Symmetries

Define the KdV recursion operator using the InverseTotalDiff command from the previous 
section. (The sort command is used on the nex line to insure that the highest order term in 
the generalized symmetry appears last).

KdVRecursion := Q -> sort(expand(TotalDiff(Q, [2]) + 2/3*u[0]
*Q + 1/3*u[1]*InverseTotalDiff(Q)));

KdVRecursion d Q 1 sort expand JetCalculus:KTotalDiff Q, 2 C
2 u0 Q

3

C
u1 InverseTotalDiff Q

3

Define the first order characteristic Q0 for the KdV equation (corresponding to the 
translational symmetry) and generate the higher symmetries using the recursion operator. 

Q0 := u[1];
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Q0 d u1

The 3rd order generalized symmetry is just the KdV flow itself:

Q1 := KdVRecursion(Q0);

Q1 d u0 u1 C u3

The 5rd order generalized symmetry is:

Q2 := KdVRecursion(Q1);

Q2 d
5
6

 u0
2 u1 C

5
3

 u0 u3 C
10
3

 u1 u2 C u5

The 7th order generalized symmetry is:

Q3 := KdVRecursion(Q2);

Q3 d
35
54

 u0
3 u1 C
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 u0
2 u3 C

70
9

 u0 u1 u2 C
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18

 u1
3 C

7
3

 u0 u5 C 7 u1 u4 C
35
3

 u2 u3

C u7

The 9th order generalized symmetry is:

Q4 := sort(KdVRecursion(Q3));

Q4 d
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 u0
4 u1 C
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 u0
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 u0
2 u1 u2 C

35
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 u0 u1
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7
2

 u0
2 u5 C 21 u0 u1 u4

C 35 u0 u2 u3 C
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 u1 u2
2 C 3 u0 u7 C 12 u1 u6 C 28 u2 u5 C 42 u3 u4

C u9

Commutators of the Higher Order Symmeties
The command GeneralizedLieBracket can be used to show that the flows generated by 
the higher order symmetries all commute. Here are the evolutionary vector fields defined 
by the higher order symmetries calculated in the previous section.

F := evalDG([Q0*D_u[0], Q1*D_u[0], Q2*D_u[0], Q3*D_u[0], 
Q4*D_u[0]]);

F d u1 D_u0, u0 u1 C u3  D_u0,
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 u0 u5 C 7 u1 u4 C
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 u2 u3



• • 

Jet > Jet > 

(3.2)(3.2)

• • 

Jet > Jet > 

• • 

(3.4)(3.4)

(3.3)(3.3)

(2.2)(2.2)

M > M > 

• • 

(3.1)(3.1)

Jet > Jet > 

C u7  D_u0,
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The flows F[1] and F[2] commute:

 GeneralizedLieBracket(F[1], F[2]);
0 D_x

We can use the Matrix command to calculate all the commutators:

interface(typesetting=standard);
extended

Matrix(5, 5, (i,j) -> GeneralizedLieBracket(F[i], F[j]));
0 D_x 0 D_x 0 D_x 0 D_x 0 D_x

0 D_x 0 D_x 0 D_x 0 D_x 0 D_x

0 D_x 0 D_x 0 D_x 0 D_x 0 D_x

0 D_x 0 D_x 0 D_x 0 D_x 0 D_x

0 D_x 0 D_x 0 D_x 0 D_x 0 D_x

Commands Illustrated
 JetCalculus, GeneralizedLieBracket, HorizontalHomotopy, TotalDiff

Related Commands
EulerLagrange, EvolutionaryVector, Prolong, Noether

References
P. J. Olver, Applications of Lie Groups to Differential Equations (2nd edition) pages 312
-315.
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