
Utah State University Utah State University

DigitalCommons@USU DigitalCommons@USU

All Graduate Theses and Dissertations Graduate Studies

5-2012

Planning in Incomplete Domains Planning in Incomplete Domains

Jared William Robertson

Follow this and additional works at: https://digitalcommons.usu.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Robertson, Jared William, "Planning in Incomplete Domains" (2012). All Graduate Theses and
Dissertations. 1435.
https://digitalcommons.usu.edu/etd/1435

This Thesis is brought to you for free and open access by
the Graduate Studies at DigitalCommons@USU. It has
been accepted for inclusion in All Graduate Theses and
Dissertations by an authorized administrator of
DigitalCommons@USU. For more information, please
contact digitalcommons@usu.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@USU

https://core.ac.uk/display/32550022?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd?utm_source=digitalcommons.usu.edu%2Fetd%2F1435&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.usu.edu%2Fetd%2F1435&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd/1435?utm_source=digitalcommons.usu.edu%2Fetd%2F1435&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/

PLANNING IN INCOMPLETE DOMAINS

by

Jared Robertson

A thesis submitted in partial fulfillment
of the requirements for the degree

of

MASTER OF SCIENCE

in

Computer Science

Approved:

Dr. Daniel Bryce
Major Professor

 Dr. Nicholas Flann
Committee Member

Dr. Vicki H. Allan
Committee Member

 Dr. Mark R. McLellan
Vice President for Research and
Dean of the School of Graduate Studies

UTAH STATE UNIVERSITY
Logan, Utah

2012

ii

Copyright © Jared Robertson 2012
All Rights Reserved

iii

ABSTRACT

Planning in Incomplete Domains

by

Jared Robertson, Master of Science

Utah State University, 2012

Major Professor: Dr. Daniel Bryce
Department: Computer Science

Engineering complete planning domain descriptions is often very costly because

of human error or lack of domain knowledge. While many have studied knowledge

acquisition, relatively few have studied the synthesis of plans when the domain model is

incomplete (i.e., actions have incomplete preconditions or effects). Prior work has

evaluated the correctness of plans synthesized by disregarding such incomplete features,

but not how to synthesize plans by reasoning about the incompleteness. In this work, we

describe several techniques for reasoning that takes into account action incompleteness to

increase the number of interpretations under which the plans will succeed. Among the

techniques, we show that representing explanations of plan failure with prime implicants

provides a natural approach to comparing plans by counting prime implicants instead of

models – leading to better scalability and comparable quality plans.

We present and empirically evaluate a forward heuristic search planner, called

DeFAULT, that synthesizes plans by propagating information about faults due to

incompleteness both within the state space and the relaxed planning space. We compare

DeFAULT with a control planner that uses the fast forward (FF) heuristic (measuring plan

iv

length and ignoring incompleteness). The results show that DeFAULT i) scales

comparable to the planner using the FF heuristic (while finding better solutions), and ii)

scales better when counting prime implicants than models.

(71 pages)

v

PUBLIC ABSTRACT

Planning in Incomplete Domains

Automated planning in computer science consists of finding a sequence of actions

leading from an initial state to a goal state. People who have expert knowledge of the

specific problem domain work with experts in automated planning to define the domain

states and actions. This knowledge engineering required to create complete and correct

domain descriptions for planning problems is often very costly and difficult. Our goal

with incomplete planning is to allow people to program domains without the need for

planning experts.

Throughout the process of instruction of intelligent systems, teachers can often

leave out whole procedures and aspects of action descriptions. In such cases, the

alternative to making domains complete is to plan around the incompleteness. That is,

given knowledge of the possible action descriptions, we seek out plans that will succeed

despite any incompleteness in the domain formulation.

A state in a domain consists of a set of propositions that can be either true or false.

Actions in a domain require specific propositions to be true for the action to occur.

Actions then add and remove propositions from the state to create a subsequent state. A

valid plan consists of a sequence of actions that, starting with the initial state, change to

match the goal state. An incomplete domain contains the same qualities as a complete

domain, with the additional abilities of actions to possibly require a proposition to be true

to initiate the action, as well as possibly adding and possibly removing propositions in the

vi

subsequent state. Actions that have possible preconditions and effects are referred to as

incomplete actions.

Because no prior work exists for the purpose of empirical comparisons, we

compare our incomplete action planner, which we call DeFAULT, with a traditional

planner that assumes all good possibilities and no bad possibilities will occur. DeFAULT

finds much better quality plans than the traditional planner while maintaining similar

speed.

vii

ACKNOWLEDGMENTS

I would like to thank the eternally patient Dr. Daniel Bryce for his encouragement

and mentoring. I never would have learned as much as I have without your vast

knowledge and guidance. I also thank my committee members for their willingness to

participate in this process.

I give special thanks to my family, especially - specifically my father and my

wife, for their encouragement, moral support, and patience.

This work was supported by the DARPA Bootstrapped Learning contract HR001-

07-C-0060.

Jared Robertson

viii

CONTENTS

ABSTRACT ... iii

PUBLIC ABSTRACT .. v

ACKNOWLEDGMENTS .. vii

LIST OF TABLES .. x

LIST OF FIGURES ... xi

LIST OF SYMBOLS, NOTATION, DEFINITIONS, ETC. .. xii

INTRODUCTION .. 1

Interpretations of Incompleteness ... 3
Failure Explanations and Counting ... 3
Planners ... 5

BACKGROUND AND REPRESENTATION ... 7

Complete Planning Domains ... 7
Incomplete Planning Domains .. 9

COMPARISON OF POSSIBLE ACTION FEATURES WITH LOCAL CLOSED
WORLDS .. 14

DIAGNOSING FAULTS IN PLANS FOR INCOMPLETE DOMAINS 17

Model-Based Diagnosis .. 18
Diagnosing Plan Faults in Incomplete Domains ... 20

Plan System Description.. 22
Truth Maintenance Systems .. 26

Counting Models and Diagnoses .. 29

ix

FORWARD STATE SPACE PLANNING WITH FAULTS ... 32

Fault Propagation .. 33
Forward State-Space Planning .. 37

PLANNING GRAPH FAULT PROPAGATION .. 38

Planning Graph Heuristics .. 38
Diagnoses .. 38
Heuristic Computation .. 40

EMPIRICAL EVALUATION .. 42

Domains .. 42
Results ... 46

Blind Navigation ... 46
Parc Printer .. 47
Bridges ... 48
Barter World .. 50
Pathways .. 53
Discussion.. 55

RELATED WORK ... 56

CONCLUSION ... 57

REFERENCES ... 58

x

LIST OF TABLES

Table Page

Examples of Comparing Representations ... 15

The Incomplete Plan System Description, SD��� .. 22

xi

LIST OF FIGURES

Figure Page

1 Fault labels and proof trees for the system description of plan �, �, � 25

2 Cumulative quality and time domparison in Blind Navigation domain 46

3 Cumulative quality and time comparison in Parc Printer domain 47

4 Cumulative quality and time comparison in all three versions of the Bridges domain 48

5 Cumulative quality and time comparison in Bridges1 domain ... 49

6 Cumulative quality and time comparison in Bridges2 domain ... 49

7 Cumulative quality and time comparison in Bridges3 domain ... 50

8 Cumulative quality and time comparison in all instances of Barter World domain 51

9 Cumulative quality and time comparison in 0.25 density Barter World domain 51

10 Cumulative quality and time comparison in 0.5 density Barter World domain 52

11 Cumulative quality and time comparison in 0.75 density Barter World domain 52

12 Cumulative quality and time comparison in 1.0 density Barter World domain 52

13 Cumulative quality and time comparison in Pathways domain .. 53

14 Cumulative quality and time comparison in 0.25 density Pathways domain 54

15 Cumulative quality and time comparison in 0.5 density Pathways domain 54

16 Cumulative quality and time comparison in 0.75 density Pathways domain 54

17 Cumulative quality and time comparison in 1.0 density Pathways domain 55

xii

LIST OF SYMBOLS, NOTATION, DEFINITIONS, ETC.

Definition 1 .. 7

Example 1 .. 8

Definition 2 .. 8

Definition 3 .. 9

Definition 4 .. 11

Definition 5 .. 11

Definition 6 .. 12

Theorem 7 .. 23

Example 2 .. 35

INTRODUCTION

The knowledge engineering required to create complete and correct domain

descriptions for planning problems is often very costly and difficult [1, 2]. Machine

learning techniques have been applied with some success [2, 3], but still suffer from

impoverished data and limitations of the algorithms [1]. In particular, we are motivated

by applications in instructable computing [4] wherein a domain expert teaches an

intelligent system about a particular domain, but can often leave out whole procedures

(plans) and aspects of action descriptions. In such cases, the alternative to making

domains complete is to plan around the incompleteness. That is, given knowledge of the

possible action descriptions, we seek out plans that will succeed despite any (or most)

incompleteness in the domain formulation.

While prior work [5] has categorized faults to a plan’s correctness and described

plan quality metrics in terms of the faults (essentially single-fault diagnoses of plan

failure [6, 7]), no prior work has sought to deliberately synthesize low-fault plans.

Specifically, the authors of [5] (henceforth abbreviated, GL) identify four types of plan

faults: open preconditions (due to incomplete preconditions), possible clobberers (due to

incomplete delete effects), unlisted effects (due to incomplete add effects), and false

preconditions. GL develop an algorithm that steps backward through the plan to identify

the “critical faults” – those instances wherein incomplete domain features can cause plan

failure. For example, a possible clobber is a critical fault when (if it is truly a delete

effect) it threatens a precondition or goal. The number of critical faults is an important

measure of plan quality/correctness, that, unfortunately, no known planners seek to

2

minimize (aside from our prior work [8] on single-fault planning, upon which this work

is based).

Consider the following action that is taken from a modified version of the

International Planning Competition (IPC) [9] PARC printer domain:

(:action HtmOverBlack-Move-A4
 :parameters (?sheet - sheet_t)
 :precondition (and (clear) (Available HtmOverBlack-RSRC)
 (Sheetsize ?sheet A4)
 (Location ?sheet HtmOverBlack_Entry-
 EndCap_Exit))
 :effect (and (not (Available HtmOverBlack-RSRC))
 (Location ?sheet HtmOverBlack_Exit-
 Down_TopEntry)
 (not (Location ?sheet HtmOverBlack_Entry-
 EndCap_Exit))
 (Available HtmOverBlack-RSRC))
 :poss-effect (and (not (clear))))

The action models a modular printer component that prints on a sheet of A4-sized

paper. The action is incomplete because it has a possible effect that the component will

become jammed (not (clear)). The intuition behind the action is that the

component manufacturer did not provide complete specifications, and it is unknown if

feeding an A4 sheet will cause a paper jam. Note that an incomplete action is different

from a non-deterministic action because each application of the incomplete action has the

same effect at runtime; however, it is not clear what the effect will be at planning time.

The action incompleteness can cause plan failure, as in the case of our example, by

threatening the precondition of a later action (e.g., the precondition (clear) is

threatened in a second application of the HtmOverBlack-Move-A4 action).

3

Interpretations of Incompleteness

A pessimistic approach to reasoning about incomplete actions might assume that

possible delete effects will always occur. Plans found under this pessimistic interpretation

will be correct despite any action incompleteness, but are likely to be few or nonexistent.

In the PARC printer example, a pessimistic interpretation will likely lead to proving that

no plan exists, even though it is possible that the action does not have the delete effect on

(clear). Alternatively, an optimistic interpretation might assume that no possible

delete effect occurs, in which case the planner can ignore that (clear) may be deleted.

The optimistic interpretation is equally flawed because the action may actually delete

(clear). Instead, we adopt a cautiously optimistic interpretation wherein, like the

optimistic interpretation, we assume that possible delete effects do not occur, but we also

temper our optimism. We compute an explanation for cases under which each proposition

that is optimistically true might be false. For example, after applying the action above, we

would assert that (clear) is true, subject to the assumption that (clear) is not a

delete effect of the action. Under these cautiously optimistic semantics, we can determine

which interpretations of incomplete actions will result in failed goal achievement by

inspecting the assumptions under which the goals are false. Plans that fail under fewer

interpretations are preferred.

Failure Explanations and Counting

We take three qualitatively different approaches to recording a failure explanation

for each proposition established at different times by a plan. The first, our control,

4

amounts to the optimistic interpretation by recording no explanation for the failure to

achieve a proposition. The second and third approaches represent failure explanations

with propositional sentences, whose models correspond to interpretations of the

incomplete actions. The second approach relies on intuitions from model-based diagnosis

to represent each failure explanation by a set of diagnoses (each diagnosis is a

conjunction of incomplete action features – i.e., a prime implicant). The third approach

represents failure explanations by ordered binary decision diagrams (OBDDs). The

second and third approaches provide a representation suitable for counting interpretations

of the incomplete action features (i.e., propositional models) under which a proposition is

achieved or not. The primary difference is that model counting with prime implicants is

intractable [10], but polynomial in the size of an OBDD [11]. While we use each of the

three approaches during plan synthesis to compare plans (in varying capacities), we use

the third to provide a final assessment of a plan’s quality: the number of interpretations of

the incomplete actions under which the plan fails. That is, we describe several heuristic

techniques to speed-up plan synthesis that are based on a particular representation of the

failure explanations, but compare the resulting plans with a single, non-heuristic method.

For example, the first approach is entirely heuristic because it completely ignores

failure explanations. In the second approach, we represent the failure explanations by

prime implicants, and instead of counting models, we count the number of prime

implicants. Counting prime implicants is a computationally inexpensive heuristic that

assumes fewer diagnoses means fewer failed interpretations of the incomplete actions.

The third method counts the actual number of failed action interpretations by representing

5

them as an OBDD (which can be exponential-sized) and performing OBDD model

counting (which is polynomial in the OBDD size). We claim that counting diagnoses

(prime implicants) is more computationally feasible than counting OBDD models and the

resulting plans are of similar quality, and that ignoring incompleteness altogether leads to

poor quality plans.

Our claims are based upon GL’s focus on counting a plan’s critical risks as a

measure of its quality. We observe that GL’s definition of critical risks is equivalent to

computing single-fault diagnoses, which allows us to generalize their notions to multi-

fault diagnoses. Intuitively, the more diagnoses for plan failure, the fewer interpretations

of the incomplete domain to achieve the goal. Naturally, a single-fault diagnosis covers

more interpretations than a double- or triple-fault, so we count not just the number of

diagnoses, but those of different cardinality. We stress that counting diagnoses is an

approximation to counting models, but it nevertheless leads to more efficient planners

that find comparable quality solutions.

Planners

We present a forward heuristic planner, called DeFAULT, that propagates failure

explanations in the state space and relaxed planning problems. DeFAULT associates a set

of explanations with each time step, i.e., each state in the search space or each planning

graph layer in the relaxed planning problem. DeFAULT’s heuristic biases search toward

plans that will fail in the fewest interpretations of the incomplete domain as possible.

Because no prior work exists for the purpose of empirical comparisons, we not only

6

compare DeFAULT with a planner that uses the FF heuristic and ignores domain

incompleteness, but we also attempt a more fair comparison with a conformant

probabilistic planner.

Our results indicate that DeFAULT can find much better quality plans than a

planner that ignores incompleteness. In the following, we provide background on the

representation of the planning problems studied, a discussion of languages used to

capture incomplete actions, a formulation of failure explanations, a definition of

diagnosis and model counting, a planner based on failure propagation, a relaxed planning

heuristic for failure propagation, empirical evaluation, related work, and conclusion.

7

BACKGROUND AND REPRESENTATION

Planning consists of finding a sequence of actions that will achieve a specified

goal. Classical planning deals with domains that are fully observable, deterministic,

finite, static, and discrete. This work concerns itself with complete and incomplete

planning models. In the following, we define each model, the related action

representations, and plan semantics.

Complete Planning Domains

Complete planning domains correspond to the classical planning model,

expressed using STRIPS actions [13]. STRIPS is a formal language for specifying

planning problems.

Definition 1. A complete planning domain D defines the tuple ��, 	,
��,
�,

where

• P is a set of propositions - Boolean statements about the state of the domain

• A is a set of complete action descriptions, where each a ∈ A defines

o pre(a) ⊆ P, a set of preconditions - propositions that must be true in

order for the action to occur

o add(a) ∈ P, a set of add effects - propositions set to true in the

subsequent state

o del(a) ∈ P, a set of delete effects - propositions set to false in the

subsequent state

• add(a−1) ∈ P defines a set of initially true propositions

8

• pre(an) ∈ P defines the goal propositions - propositions that must be true for

the plan to succeed

Example 1. For example, consider the following domain, which we will use as a

running example:

• � � ��, �, �, ��
• � � ��, �, ��

o pre��� � ��, ��, add��� � ���, del��� � ��
o pre��� � ���, add��� � ���, del��� � ���
o pre��� � ��, ��, add��� � ���, del��� � ��

• add����� � ��, ��
• pre���� � ���
A plan π for D is a sequence of actions that when applied to the initial state, lead

to a state wherein the goal is satisfied.

Definition 2. A plan � �
��,
!, … ,
��,
� in a complete domain D is a

sequence of actions that corresponds to a sequence of states �
!, … , #�, where

• $% � �&&�����

• ��'��(� ⊆ $(*+� , � 0, … , .

• $(/� � $(\&'1��(� 2 �&&��(� *+� , � 0, … , . 3 1

We omit ��� and �� from the plans in our discussion when appropriate, with the

understanding that each plan must use the initial and goal actions.

For example, the plan (a, b, c) corresponds to the state sequence (s0 = {p, q}, s1 =

{ p, q, r}, s2 = {q, r}, s3 = {q, r, g}), where the goal is satisfied in s3.

9

Incomplete Planning Domains

Incomplete planning domains are identical to complete planning domains, with

the exception that the actions are incompletely specified. Much like planning with

incomplete state information [14], the action incompleteness is not completely

unbounded. The preconditions and effects of each action can be any subset of the

propositions P; the incompleteness is with regard to a lack of knowledge about which of

the subsets correspond to each precondition and effect. To narrow the possibilities, we

find it convenient to refer to the known, possible, and impossible preconditions and

effects. For example, an action’s precondition must consist of the known preconditions,

and it must not contain the impossible preconditions, but we do not know if it contains

the possible preconditions. The union of the known, possible, and impossible

preconditions must equal P; therefore, an action can represent any two, and we can infer

the third. We choose to represent the known and possible, and discuss this choice in more

detail in the following section.

In the following, we discuss incomplete domains and extend the complete domain

model with features for possible preconditions and effects. We note that an incomplete

domain corresponds to a set of complete domains, each differing in terms of the inclusion

of the possible features.

 Definition 3. An incomplete planning domain 56 defines the tuple ��, 	6,
7��,
7�,

where:

• P is a set of propositions

• �8 is a set of incomplete action descriptions, where each �9 : �8 defines

10

o ��'��9� ⊆ �, a set of known preconditions

o ��'; ��9� ⊆ �, a set of possible preconditions

o �&&��9� ⊆ �, a set of known add effects

o �&&< ��9� ⊆, a set of possible add effects

o &'1��9� ⊆, a set of known delete effects

o &'1< ��9� ⊆, a set of possible delete effects

• �9�� ⊆ � defines a set of initially true propositions

• �9� ⊆ � defines the goal propositions

Consider the following example of an incomplete domain:

• � � ��, �, �, ��
• �8 � ��9, �=, �̃�

pre��9� � ��, ��, add��9� � ��, del��9� � ��, pre; ��9� � ���, add< ��9� � ���, del< ��9� � ���
pre?�=@ � ���, add?�=@ � ���, del?�=@ � ���,
pre; ?�=@ � ��, add< ?�=@ � ��, del< ?�=@ � ���
pre��̃� � ���, add��̃� � ���, del��̃� � ��, pre; ��̃� � ���, add< ��̃� � ��, del< ��̃� � ��

• add��9�� � ��, ��
• pre��9�� � ���
A plan �9 for A6 is a sequence of actions that when applied, can lead to a state

wherein the goal is satisfied (i.e., the final action’s preconditions are satisfied). This is

opposed to a plan �for D, which does lead to a state wherein the goal is satisfied.

11

Definition 4. A plan 7 � �
7��,
7!, … ,
7��
7� in an incomplete domain 56 is a

sequence of actions, that corresponds to a sequence of states �#!, … , #�, where:

• $% � �&&��9���

• ��'��9(� ⊆ sC for , � 0, … , .

• $(/� � $(\&'1��9(� 2 �&&��9(� 2 �&&< ��9(� for , � 0, … , . 3 1

For example, the plan ��9, �=, �̃� corresponds to the state sequence �$% �
��, ��, $� � ��, �, ��, $F � ��, ��, $G � ��, �, ���, where the goal is satisfied in $G.

Definition 5. The set of incomplete domain features Ƒ�56� is comprised of the

following propositions:

• ��'; ��9, �� if � : ��'; ��9� and �9 : �8
• �&&< ��9, �� if � : �&&< ��9� and �9 : �8

• &'1< ��9, �� if � : &'1< ��9� and �9 : �8

Each incomplete domain feature f : Ƒ can result in a different type of plan fault

(aligning with GL’s original naming conventions):

• Open precondition fault OP(�9, p): if pre; ��9, �� : Ƒ�A6� and �9 is applied to a

state s where p is not true.

• Unlisted effect fault UE��9, ��: if add< ��9, �� : Ƒ�A6� and after �9 is applied, p is

a precondition for another action.

• Possible clobberer fault PC��9, ��: if del< ��9, �� : Ƒ�A6� and after �9 is applied, p

is not reestablished by another action and p is precondition.

12

In this sense, each type of incomplete domain features can cause a plan fault if said type

can directly or indirectly prevent achievement of a subsequent action's precondition.

Each subset of Ƒ corresponds to an interpretation of the incomplete domain.

Definition 6. An interpretation Di of the incomplete domain 56 is defined with

respect to a subset of the incomplete domain features JK ⊆ Ƒ so that:

• �L � �

• ��L � ��

• ���L � ���

• For each �9 : �8 there exists an � : �L where

o ��'��� � ��'��9� 2 ��|��'��9, �� : NL�
o �&&��� � �&&��9� 2 ��|�&&��9, �� : NL�
o &'1��� � &'1��9� 2 ��|&'1��9, �� : NL�

We also refer to the set of incomplete features Ƒ��9� that are specific to an action

�9 so that Ƒ��9� � Opre��9, ��Ppre��9, �� : ?A6@Q 2 Oadd��9, ��Padd��9, �� : ?A6@Q

2 Odel��7, ��|del��7, �� : ?A6@Q.
For example, the complete domain example from the previous section is an interpretation

of the incomplete domain above, where N% � �add��9, ��, pre��̃, ���.
Definition 4 sets a loose requirement that plans with incomplete actions succeed

under the most optimistic conditions: possible preconditions need not be satisfied, and the

possible add effects (but not the possible delete effects) are assumed to occur when

computing successor states. In this sense, we ensure that the plan is valid for the least

13

constraining (most optimistic) interpretation of the incomplete domain. As we show, we

can determine the interpretations in which a plan is invalid and use the number of such

failed interpretations as a plan quality metric.

14

COMPARISON OF POSSIBLE ACTION FEATURES

WITH LOCAL CLOSED WORLDS

Definition 3 defines incomplete actions by sets of respective known and possible

preconditions and effects. GL define incomplete actions similar to STRIPS actions

(Definition 1) with additional local closed world statements of the form

DoesNotRelyOn��9, �� (p is not a precondition of �9) or

CompletePreconditions��9� (the preconditions of �9 are known).

We note that these representations are equivalent if we consider the set of known,

possible, and impossible preconditions (and similarly for effects) of actions. For example,

CompletePreconditions��9� is equivalent to stating ��'; ��9� � �� (i.e., the set of

possible preconditions is empty). Likewise, DoesNotRelyOn��9, �� is equivalent to

stating � R ��'; ��9�, and that for all � : �, the lack of a statement

DoesNotRelyOn��9, �� is equivalent to stating � : ��'; ��9� (i.e., impossible

preconditions are not possible preconditions, and not impossible preconditions are

possible preconditions).

While the representations are equivalent, the obvious question is whether one is

more succinct than the other. The answer largely depends on the problem being modeled.

See Table 1 for examples. Notice that the sizes of the representations are equivalent when

stating, for example, that an action has complete preconditions; we either record the fact

that the preconditions are complete or that the set of possible preconditions is empty. The

difference is with respect to stating, for example, that an individual proposition is not a

15

Table 1: Examples of Comparing Representations.

 Definition 3 GL �9 has only the known
preconditions �, �.

pre��9� � ��, ��, pre; ��9� � �� pre��9� � ��, ��,
CompletePreconditions��9� �9 has possible

precondition �, but S is
neither a known nor a
possible precondition

pre��9� � ��, pre; ��9� � ��� ��'��9� � ��,
DoesNotRelyOn��9, S�

precondition of an action. Under our representation (Definition 3), the set of possible

preconditions would not contain a proposition, and under the GL representation it must

be stated that the proposition is not a precondition. However, if a proposition is a possible

precondition to an action, we would record it as a possible precondition, and GL would

record nothing. As such, the issue comes down to whether there are many possible or

impossible preconditions and effects. Our representation is smaller with many impossible

features, and GL is smaller with many possible features.

While we describe actions in the grounded (propositional) form, another practical

concern is that we use PDDL [15] action schemas to encode problems. Under the GL

representation, extending PDDL action schemas to state impossible preconditions (or

effects) could require additional action schema parameters that refer to constants in

predicates that are not preconditions. If there are many impossible preconditions, the

action schemas could mention many additional parameters, which would lead to

difficulty when grounding the schemas. We intuit that possible action features are likely

to share parameters with known action features and extending PDDL to support our

representation would lead to fewer additional action schema parameters. Furthermore, if

16

there are many impossible features, our representation does not mention these features

and therefore does not need to reference their parameters in the PDDL action schemas.

17

DIAGNOSING FAULTS IN PLANS FOR

INCOMPLETE DOMAINS

An incomplete plan �9 must achieve the goals associated with optimistic semantics

(i.e., possible preconditions need not be satisfied, possible delete effects can be ignored,

and possible add effects will occur), but we would prefer that plans succeed under more

pessimistic conditions. To quantify the extent to which our optimism is misleading, we

introduce and expand upon GL’s definitions of risks, which we refer to as faults. A fault

is a threat to the plan’s causal proof that is introduced because of our optimism/ignorance

of the underlying domain description. For example, by assuming that possible delete

effects do not occur, we introduce a fault when the possible delete effect does in fact

delete a required subgoal. By assuming the optimistic semantics, we allow plans that we

would not otherwise consider, but by computing the faults, we quantify the level to which

the plan is susceptible to failure. The challenge to computing faults is that incomplete

action features may have a delayed impact on the plan or no impact at all, and we must

determine if they are faults (i.e., guarantee plan failure if the incompleteness manifests

unfavorably).

Instead of reviewing GL’s definitions, we take a new approach to develop the

definitions of faults. We intuit that plans with faults are best analyzed within the

framework of model-based diagnosis [6, 7], in other words, abductive reasoning using a

model of the system. Among all of the techniques developed within model-based

diagnosis [6], the most beneficial is a clear characterization of multiple-faults. In contrast,

GL discusses only single-faults, which they call risks, and which do not explain plan

18

failures that may occur because of multiple, interacting incomplete domain features. For

example, GL would consider a subgoal that is established by two different actions, each

of which is subject to disjoint faults, as having no faults. However, by using multiple-

faults to explain failure to achieve the proposition, we see that the faults (at least one for

each action) interact. Clearly, single-faults are important for identifying a single-point-of-

failure, but ignoring multiple-faults could lead to an overly optimistic assessment of a

plan. In the following, we generalize GL’s notions of faults from singletons to sets, which

we call diagnoses.

Model-Based Diagnosis

In defining the diagnoses of plan failure, we draw upon many well established

techniques in model-based diagnosis (MBD) [6, 7]. Viewing the plan as a physical

system, faults are sets of potentially faulty components that describe anomalous behavior,

such as an action not having its preconditions satisfied or a goal not being achieved.

There are two terms from MBD that enable us to describe which sets of faults

may cause plan failure. The first term, a conflict set [6], is a set of faults in which if at

least one of the faults occurs, it can explain the anomalous behavior. A conflict set is

inherently disjunctive because any non-empty subset of the conflict set can explain the

failure, and it is not required that all components are faulty. The second term, a diagnosis,

is a set of system components in which every component must be faulty to explain the

behavior. In contrast with a conflict set, a diagnosis is conjunctive – every component in

the diagnosis must be faulty. However, there may be multiple diagnoses, and each

diagnosis is a hypothesis explaining failure. Because of their respective disjunctive and

19

conjunctive semantics, conflict sets and diagnoses can be expressed by the prime

implicants (conjunction of propositions that cannot by subsumed by another conjunction

of propositions) of a propositional sentence capturing knowledge of the faulty system.

The author of [7] (henceforth abbreviated, Reiter) formulates MBD within a

system that is defined by a system description SD and system components COMP, taking

the respective forms of first-order sentences and a finite set of constants. The system

description includes a distinct unary predicate AB(·) that indicates abnormal behavior on

the part of a system component. For example, the sentence ANDG(x) ∧ ¬AB(x) → out(x)

= and (in1(x),in2(x)) indicates that an and-gate that is not abnormal will have its output

equal to the logical and of its two inputs. Along with the system description, OBS is an

observation of the system’s behavior. For example, OBS may contain the facts out(and1)

= 0, in1(and1) = 1, in2(and1) = 1, which is anomalous.

Reiter defines approaches to finding conflict sets and diagnoses that rely on

refutation proofs. Showing that SD 2 OBS 2 {¬AB(c1), ..., ¬AB(cn)} is inconsistent means

that c1, ..., cn functioning normally does not explain OBS. That is, {c1, ..., cn} is a conflict

set, a subset of which is to blame for the observation, and at least one of the conflict set

components is faulty. For example, SD 2 OBS 2{¬AB(and1)} is inconsistent, and {and1}

is a conflict set. Reiter also shows that we can refine the conflict sets to include only

those components that are mentioned in the refutation proof tree, so that if SD 2 OBS

2{¬AB(c1), ...,¬AB(cn)} is inconsistent, but only if {¬AB(ci), ...,¬AB(cj)} ⊆ {¬AB(c1),

...,¬AB(cn)} appear in the refutation proof, then {¬AB(ci), ...,¬AB(cj)} is a conflict set that

subsumes {¬AB(c1), ...,¬AB(cn)}.

20

A generate-and-test approach is a possible, but naive, method to finding all conflict sets,

as it is too inefficient for systems with large numbers of components. Additionally, upon

finding all conflict sets one can compute all diagnoses. Reiter defines a diagnosis as a

minimal hitting set on the collection of minimal conflict sets; a hitting set x on a

collection of sets C is a set wherein for each set c : C, c ∩ x ≠ {}. A minimal hitting set x

is a set wherein no proper subset x' ⊂ x is a hitting set. In our small example, {and1} is

the only conflict set, making {and1} the only diagnosis. In a more complex scenario

wherein the minimal conflict sets are {c1, c2} and {c1, c3}, the diagnoses are {c1} and {c2,

c3}.

Diagnosing Plan Faults in Incomplete Domains

We describe a plan with a set of clauses SD��9� and introduce a hypothetical

observation that the goal action cannot be executed, OBS = Va9�, to determine if a set of

incomplete domain features is a conflict set.

Recall that a conflict set is a set of components, of which some subset must be

behaving abnormally to explain an anomalous observation. In diagnosing plan faults, a

conflict set is comprised of incomplete domain features. However, there exists an

asymmetry among the types of incomplete domain features because the absence of a

possible add effect in the true domain can cause failure, but the presence of a possible

precondition or possible delete effect can cause plan failure. As such, conflict sets (and

diagnoses) refer to negative literals for possible add effects and positive literals for

possible preconditions and delete effects.

21

In diagnosing plan faults, conflict sets and diagnoses are of the form

W¬add< �a9,p�,…,¬add< ?a9′, p′@,pre; ?b=,q@,…,pre; Xb= ′,q′Y ,del< �c9,r�,…,del< ?c9′,r′@Z, indicating the

absence of possible add effects or the presence of possible preconditions or delete effects

causes plan faults. Thus, following the approach of Reiter, if a9-12SD�π9�2¬an

2 Wadd< �a9,p�,…,add< ?a9′,p′@,¬pre; ?b=,q@,…,¬pre; Xb= ′,q′Y ,¬del< �c9,r�,…,¬del< ?c9′,r′@Z

is inconsistent, then

W¬add< �a9,p�,…,¬add< ?a9′,p′@,pre; ?b=,q@,…,pre; Xb= ′,q′Y ,del< �c9,r�,…del< ?c9′,r′@Z or a subset of it is

a conflict set.

We find it more convenient to formulate an equivalent inference task a9-12SD�π9�2

Wadd< �a9,p�, … , add< ?a9′, p′@, Vpre; ?b=,q@, … , Vpre; Xb= ′, q′Y , Vdel< �c9,r�, … , Vdel< �c9′, r′�Z [an, and

use a theorem prover that is based on modus ponens and negation as failure. In the

following section, we make use of the intuitions developed in this section using modus

ponens (we show that negation as failure can be made unnecessary) to motivate a

forward-chaining state-space planner.

The system description SD��9� consists of clauses that define the semantics of

plans in incomplete domains, which includes conditions under which an action will have

its preconditions satisfied and its effects will change the current state. This subsection i)

presents the system description and maps it to the original definitions of plans for

incomplete planning problems, ii) shows how the system description can be simplified

without loss of generality, and iii) describes how an assumption-based truth maintenance

system (ATMS) [6] can support more efficient diagnosis computation.

22

Plan System Description

The system description SD��9� is listed in Table 2. The clauses include conditions

under which actions are successfully executed, and conditions under which a proposition

will be true as a result of applying an action. The clauses can be understood as stating: i)

actions require their preconditions to be satisfied but also require the previous action to

be successful, ii) add effects are proven if the action is proven, iii) possible add effects are

proven if the action is executed and the possible add effect is actually an add effect, iv)

propositions that are possibly deleted will in fact be true if they were previously true and

either the action fails or they are in fact not deleted, and v) all non-deleted propositions

are true if they were previously true.

Table 2: The Plan System Description SD� 7�,.
i) a9t+1 \

a9t ∧] ^ p
t+1_:`ab�c9def� g ∧

] ^ �p
t+1

h Vpre; ��9(/�, ��_:`ab; �c9def� g

, � 31 … . 3 1

ii) p
t+1

 \ a9t for all � : add��9(�
iii) p

t+1
 \ a9t ∧ add< ��9(, �� for all � : add< ��9(�

iv) p
t+1

 \ p
t

∧ XVa9t h Vdel< ��9(, ��Y for all � : del< ��9(�

v) p
t+1

 \ p
t
 for all � : �\?del��9(� 2 del< ��9(�@

The system description of the example plan ��9, �=, �̃� from example 1 is as

follows:

23

a9-1 i p
0
 a90 ∧ p

1
i b=1 b=1 ∧ q

2
∧ r2 i c92

a9-1 i q
0
 ¬b=1 ∧ q

1
i q

2
 b=1 ∧ Vpre; �c9,q� ∧ r2 i c92

a9-1 ∧ p
0

∧ q
0

∧ r0 i a90 q
1

∧ Vdel< ?b=,q@ i q
2
 c92 i g

3

a9-1 ∧ p
0

∧ q
0

∧ Vpre; �a9,r�i a90

b=1 i r2 q
2

i q
3

Va90 ∧ p
0

i p
1
 r1 i r2 r2 i r3

p
0

∧ Vdel< �a9,p� i p
1
 c92 ∧ g

3
i a93

a90 ∧ add< �a9,r� i r1

q
0

i q
1

We note that the only non-definite clauses correspond to the cases wherein an

action fails to execute and thus cannot possibly clobber the corresponding possibly

deleted proposition (e.g., �9 possibly deletes p, and we include the clauseVa90 ∧ p
0

i p
1
).

As we show below, we can simplify the system description to remove such clauses. For

all other clauses, we can create definite clauses by replacing each negated literal ¬fi by a

positive literal nfi.

We establish the correctness of the system description with the following theorem

that states that a plan is valid in an interpretation Di of an incomplete domain if and only

if a�� 2 SD��9� 2 Fi entails an, where Fi � OfP* : NLQ 2 OVf|* R NLQ.
Theorem 7: a-1 2 SD� 7� 2 Fi [a iff 7 is a plan interpretation of Di.

Simplifying the system description for the domain interpretation where N% �
O�&&< ��9, ��, ��'; ��̃, ��Q, we obtain SD

%��9�:

a9-1 i p
0
 a90 ∧ p

1
i b=1 b=1 ∧ q

2
∧ r2 i c92

24

a9-1 i q
0
 Vb=1 ∧ q

1
i q

2
 c2 i g

3

a9-1 ∧ p
0

∧ q
0

∧ r0 i a90 q
1

i q
2
 q

2
i q

3

a9-1 ∧ p
0

∧ q
0

i a90 b=1 i r2 r2 i r3 Va90 ∧ p
0

i p
1
 r1 i r2 c92 ∧ g

3
i a93

p
0

i p
1

a90 i r1

q
0

i q
1

Upon inspection, it is possible to see that a9-1 2 SD
L��9� [a93.

If we examine all subsets of the incomplete features Ƒ, for example

O��'; ��9, ��, &'1< ��9, ��, �&&< ��9, ��, &'1< ?�=, �@, ��'; ��̃, ��Q where

a9-1 2 SD��9� 2 OVpre; �a9,r�, Vdel< �a9,p�, add< �a9,r�, Vdel< ?b=,q@, Vpre; �c9,q�Q [a93, we can

determine the minimal conflict sets. In our example, we can derive the following minimal

conflict sets:

O��'; ��9, ��, &'1< ��9, ��, &'1< ?�=, �@Q
O��'; ��9, ��, &'1< ��9, ��, ��'; ��̃, ��Q

From the conflict sets, we determine the following diagnoses:

���'; ��9, ���
O&'1< ��9, ��Q
O&'1< ?�=, �@, ��'; ��̃, ��Q
The diagnoses are cases that will guarantee plan failure, if the first action �9 can

fail because of an open precondition fault. The second action �= can fail because its

precondition p is deleted by �9 due to a possible clobberer fault. The third action �̃ can fail

25

if its possible precondition q is required (an open precondition fault) and the second

action �= possibly deletes q (a possible clobberer fault).

Figure 1: Fault labels and proof trees for the system description of plan ?
7, j6, k9@.

Figure 1 depicts several proof trees for the query

a�� 2 SD
′��9� 2 OVpre; �a9,r�, Vdel< �a9,p�, add< �a9,r�, Vdel< ?b=,q@, Vpre; �c9,q�Q [aG. In Figure 1,

the nodes represent the literals used in the query, and the directed hyper-edges denote

clauses. Edges connected by a curved arc denote a conjunction of the antecedents. The

propositional sentence annotations can be safely ignored until we discuss the use of the

ATMS below. Figure 1 shows that multiple proofs – rF and c9Fare both proven by two

clauses, making a total of four distinct proofs. Each proof relies on a different set of faults

not being present; therefore, if any subset of the faults materializes, the proof will fail –

these sets of faults correspond to the conflict sets:

O��'; ��9, ��, &'1< ��9, ��, &'1< ?�=, �@Q
O��'; ��9, ��, &'1< ��9, ��, ��'; ��̃, ��Q
O��'; ��9, ��, &'1< ��9, ��, V�&&< ��9, ��, &'1< ?�=, �@Q

26
 O��'; ��9, ��, &'1< ��9, ��, V�&&< ��9, ��, ��'; ��̃, ��Q
However, the last two conflict sets are not minimal because they are subsumed by one of

the other conflict sets. The minimal conflict sets are:

O��'; ��9, ��, &'1< ��9, ��, &'1< ?�=, �@Q
O��'; ��9, ��, &'1< ��9, ��, ��'; ��̃, ��Q

which allows us to compute the following diagnoses (minimal hitting sets):

���'; ��9, ���
O&'1< ��9, ��Q
O&'1< ?�=, �@, ��'; ��̃, ��Q

Truth Maintenance Systems

The generate-and-test method of computing conflict sets involves selecting all

possible sets of literals F denoting incomplete features and determining if a�� 2 SD
′��9� 2

F [a�. An alternative is to employ an assumption-based truth maintenance system

(ATMS) [16], which is a way to represent beliefs (assumptions) and their dependencies.

We do this so that we can simultaneously compute all possible proofs for all possible sets

F. The approach is to record a label for each literal that is proven to denote a set of

contexts relevant to that literal. In our scenario, the contexts denote sets of incomplete

domain features F that will prevent the proof of a literal. In the following, we present the

definitions of the labels independent of any particular representation, but we describe the

implementation of operations required for two alternative representations (prime

implicants or OBDDs) in the empirical evaluation.

27

To represent and compute the contexts preventing the proof of each literal, we

recall that each diagnosis is a conjunction of literals

WVadd< �a9,p�, … , Vadd< ?a9′, p′@, pre; ?b=,q@, … , pre; Xb= ′, q′Y , del< �c9,r�, … , del< ?c9′, r′@Z where every

conjunction must be true in order to cause failure. As such, a label denoting diagnoses

can be represented as a disjunction of diagnoses. In the ATMS, we must label each

possible premise with the diagnoses preventing its derivation. The possible premises

include the initial action a��, and elements from the set

Wadd< �a9,p�, … , add< ?a9′, p′@, Vpre; ?b=,q@, … , Vpre; Xb= ′, q′Y , Vdel< �c9,r�, … , Vdel< ?c9′, r′@Z, and the

labels are defined as

1�a��� �l

1 Xadd< �a9,p�Y � Vadd< �a9,p� … 1 Xadd< ?a9′, p′@Y � Vadd< ?a9′, p′@

1 XVpre; ?b=,q@Y � pre; ?b=,q@ … 1 mVpre; Xb= ′, q′Yn � pre; Xb= ′, q′Y

1 XVdel< �c9,r�Y � del< �c9,r� … 1 XVdel< ?c9′, r′@Y � del< �c9′, r′�.

The label of the initial action is l (logical false) to denote that there is no

diagnosis under which the initial action cannot be derived. The label of each literal

denoting an incomplete domain feature is the negation of the literal to denote that the

only diagnosis under which the literal is not proven is when the literal is not true initially.

All other literals are proven by one or more clauses, and we associate with each

clause o: q
1
, … , q

m
i p that proves p a sentence 1�o,p� � 1?q

1
@ h … h 1?q

m
@ to denote

that the clause will fail to prove p in any case where at least one of (hence the

disjunction) its antecedents is not proven. Multiple clauses h1, ..., hk may prove p,

28

allowing us to define 1�p� � 1�o�,p� ∧ … ∧ 1�oq,p� denoting that p will be unproven if all

of (hence the conjunction) the clauses fail to prove p.

Figure 1 depicts the labels associated with each literal by the propositional

sentence underneath the literal. Consider the incomplete system label 1�c92�, that is proven

by two clauses, oG: b=1, q
2
, r2, i c92 and or: b=1, Vf4, r2 i c92. The labels for each of the

antecedents of the clauses are as follows:

1?b=1@ � f0 h f1

1?q
2
@ � f3

1�r2� � f0 h �f1 ∧ f2�

1�Vf4� � f4

Allowing us to compute for each clause

1�oG, c92� � 1?b=1@ h 1?q
2
@ h 1�r2� � �f0 h f1� h �f3� h ?f0 h �f1 ∧ f2�@ � f0 h f1 h f3

1?or,c92@ � 1?b=1@ h 1�Vf4� h 1�r2� � �f0 h f1� h �f4� h ?f0 h �f1 ∧ f2�@ � f0 h f1 h f4

and define

1�c92� � 1�oG, c92� ∧ 1�or, c92� � �f0 h f1 h f3� ∧ �f0 h f1 h f4� � f0 h f1 h �f3 ∧ f4�

By counting the models of the label 1�g
3
�, of the goal, it is possible to determine

how many interpretations of the incomplete domain will fail to achieve the goal with the

plan. In this example, there are 32 interpretations, and 26 will fail to achieve the goal.

29

Counting Models and Diagnoses

The labels computed in the previous section identify those combinations of

incomplete domain features that can prohibit a plan from satisfying the goals, i.e., the

models of the labels are interpretations of the incomplete domain that will fail. From the

labels, it is possible to compute exactly how many interpretations of the incomplete

domain features lead to a successful or unsuccessful plan. Thus, counting the number of

domains that will not successfully achieve the goals can be reduced to counting the

models of the goal action label 1��9�� (a propositional sentence). The planner described in

the next section is based on the idea of using an ATMS to represent plans, and many of

its subroutines involve comparing propositional sentences. In comparing a propositional

sentence Ƒ with another, we refer to its set of models M(Ƒ), its set of prime implicants

PI(Ƒ), and its set of k-element prime implicants PIk(Ƒ).

While counting models requires polynomial time when a propositional sentence is

represented by an OBDD, it requires exponential time when represented by prime

implicants. However, we note that the number of prime implicants can be indicative of

the number of models, and simply counting the number of prime implicants can provide a

heuristic measure.

Referencing the example in the previous section, the three prime implicants

f0 h f1 h �f3 ∧ f4� have 26 models, whereas the two prime implicants f0 h f1 have 24

models: the number of prime implicants, in this case, is proportional to the number of

models. While the relationship between prime implicants and models does not hold in

30

general, we can use the number of prime implicants to heuristically compare

propositional sentences (estimating the number of models).

Another observation is that having fewer prime implicants of smaller cardinality

can result in fewer models. For example, both *% h *� and *% h �*G ∧ *r� have two prime

implicants, but the former has 24 models and the latter has 20 models. Thus, when

comparing two propositional sentences, we can compare |�s��t�| and |�s��u�, and if

equal, compare |�sF�t�| and |�sF�u�|, and so on, until |�sq�t�| v |�sq�u�| for some

w x 0; if k is the minimum cardinality where |�sq�t�| y |�sq�u�|, then we prefer Ƒ

(assuming Ƒ represents interpretations of incomplete actions where a plan fails). Thus,

we define two preference relations on propositional formulas representing plan failure:

• Model-based: t z { u if |{�t�| y |{�u�|
• Diagnosis-based: t z �s u if |�sq�t�| y |�sq�u�, w x 0, and |�s|�t�| �

P�s|�u�P for all } y w.

In the following, we dispense with the subscripted notation for preference

relations, assuming that the context dictates whether the propositional sentences are

compared by models or diagnoses.

Comparing the prime-implicants is much less expensive than counting and

comparing the number of models, but we may be wrong. Nevertheless, we empirically

compare counting OBDD models to counting prime implicants (of different cardinalities)

within our planner, and demonstrate significant improvements in planning time with little

sacrifice in plan quality when counting prime implicants. Throughout our discussion,

when we refer to counting models of Ƒ, we assume that Ƒ is represented by an OBDD,

31

and when we refer to counting the prime implicants of Ƒ, we assume that Ƒ is already

represented by prime implicants. In other words, we assume the representation that is

most natural for the type of counting in order to ignore any additional cost of normal

form conversion.

32

FORWARD STATE SPACE PLANNING WITH FAULTS

We present a forward state space planner called DeFAULT that uses the

approaches developed in the previous section to search for plans that have few faults or

few interpretations of the incomplete domain features that result in plan failure. Recall

that having few faults and few failed interpretations are connected but rely on counting

different quantities (prime implicants or models, respectively). We employ the optimistic

semantics for incomplete domain features and extend our state description to capture

which incomplete domain features can cause failure to achieve each state proposition; the

incomplete features are represented by OBDDs or prime implicants, as in the previous

section. We note that computing and representing the prime implicants can be costly; we

address this by formulating our approach for any arbitrary, but fixed, bound on the prime

implicant cardinality. While the cardinality of each prime implicant is bounded, the

number of prime implicants per proposition is indirectly bounded, i.e., there is a finite

number of sets with cardinality k or less. The impact of bounding the prime implicant

cardinality is that we may under-approximate the number of interpretations of the

incomplete domain in which the plan will fail.

Adapting the ATMS rules for propagating fault labels to the state space requires

some explanation. The most striking differences are that we do not have explicit action

literals in the state space and we do not specify the plan semantics by clauses, rather we

define the propagation in terms of the state and action descriptions. The lack of action

literals and clauses that connect action literals to the goals requires that we track the

incomplete domain interpretations that cause plan failure because an action is invalidated,

33

i.e., its preconditions are not satisfied. The state space operations capture the same

semantics as the ATMS operations in that we use disjunction to combine faults affecting

conjunctive requirements, e.g., action preconditions, and use conjunction to combine

disjunctive requirements, e.g., causal support for propositions.

Fault Propagation

In the previous section, we describe how to recursively define the failure

explanation (label) for a goal literal, i.e., the propositional models of the label reflect

which interpretations fail to achieve the goal. In the following, we discuss rules for the

forward propagation of failure explanations to compliment our forward state-space

planner.

Initially, we use the explanation &����9��� �l to denote that there are no failures

affecting the initial state. For all states $(/�, , ~ 0, we define:

&(/���� �
��
�
�� &(��� ∧ &(��9(� : � : add��9(� &(��� ∧ X&(��9(� h Vadd< ��9(, ��Y : � : add< ��9(� � &(��� h del< ��9(, �� &(���

: � : del��9(� : � : del< ��9(� :otherwise

�

where the interpretations failing to successfully execute �9(are defined:

&(��9(� � &(����9(��� h � &(��� h_:_���c9� � ?&(��� ∧ ��'; ��9(, ��@_:_��; �c9�

In the above, note the correspondence to the ATMS propagation rules. The

definition of &(/���� refers to the combination of the assumptions of two ATMS clauses,

34

one describing the persistence of p and the other describing the action adding p. Delete

effects are false (failed to be true) under all interpretations, which corresponds to the lack

of clauses that can prove the proposition in the previous section. Propositions given as

possible delete effects have their faults defined as any faults previously affecting the

proposition or a fault introduced when it is in fact deleted. Propositions not affected by

the action persist their faults, corresponding to the persistence clauses in the previous

section. Any interpretation in which one of the action’s preconditions are unsatisfied will

cause the action to fail, and any interpretation in which the most previous action or any

prior action fails will cause the plan to fail.

Finally, to count the number of interpretations under which a plan fails, we count

the models of &��9� � &���9��, which expresses the interpretations wherein any of the

actions did not have its preconditions satisfied or the goal was not satisfied. Recall that

we require valid plans to achieve the goal under the optimistic semantics, so we are

guaranteed that if pre���� ⊆ $�, the plan will succeed in at least one interpretation of the

incomplete domain.

As an aside, it is possible to determine the interpretations that fail to successfully

execute the plan up to and including time t by computing &(��9(�. We also note that as

long as n is the earliest time that the goal is achieved, we are guaranteed that &(��9(� [
&��9�. That is, because �9� is required in the plan, the definition of &(��9(� for , �
0, … , . 3 1 may include failures due to relevant or irrelevant (not directly or indirectly

causally supporting the goals) prior actions.

We illustrate the fault propagation for the example plan, as follows.

35

Example 2. Consider the fault propagation required for our example plan

�
7, j6, k9�. Initially, the explanation for the initial action is ����
7��� �l, and state

#! � ��, �� is labeled as follows:

&%��� �l

&%��� �l

&%��� � �

&%��� � �

After applying �9 to $%, we attain the state $� � ��, �, �� with the following explanations:

&%��9� = &%��� h &%��� h ?&%��� ∧ pre; ��9, ��@

 = lhlh ?� ∧ pre; ��9, ��@

 = pre; ��9, ��

&���� = &%��� h del< ��9, ��

 = lh del< ��9, ��

 = del< ��9, ��

&���� = &%��� �l

&���� = &%��� ∧ X&%��9� h V�&&< ��9, ��Y

 = � ∧ Xpre; ��9, �� h Vadd< ��9, ��Y

 = pre; ��9, �� h Vadd< ��9, ��

&���� = &%��� � �

36

Applying �= to $� results in the state $F � ��, ��, with the explanations:

&���� = &%��9� h &���� � pre; ��9, �� h del< ��9, ��

&F��� = �

&F��� = &���� h del< ��=, ��

 = lh del< ��=, ��

 = del< ��=, ��

&F��� = &���� ∧ &���=�

 = Xpre; ��9, �� h Vadd< ��9, ��Y ∧ Xpre; ��9, �� h del< ��9, ��Y

 = pre; ��9, �� h XVadd< ��9, �� ∧ del< ��9, ��Y

&F��� = &���� � �

Finally, after applying �̃ to $F, we compute $G � ��, �, �� and the explanations:

&F��̃� = &�?�=@ h &F��� h ?&F��� ∧ pre; ��̃, ��@

 = Xpre; ��9, �� h del< ��9, ��Y h mpre; ��9, �� h XVadd< ��9, �� ∧ del< ��9, ��Yn
h Xdel< ?�=, �@ ∧ pre; ��̃, ��Y

 = pre; ��9, �� h del< ��9, �� h Xdel< ?�=, �@ ∧ pre; ��̃, ��Y

&G��� = &F��� � �

&G��� = &F��� � del< ��=, ��

&G��� = &F��� � pre; ��9, �� h XVadd< ��9, �� ∧ del< ��9, ��Y

&G��� = &F��� ∧ &F��̃�

37

 = pre; ��9, �� h del< ��9, �� h Xdel< ?�=, �@ ∧ pre; ��̃, ��Y

The plan results in the following failure diagnosis:

&��9� � &G��9G� � &G��� h &F��̃� � pre; ��9, �� h del< ��9, �� h Xdel< ?�=, �@ ∧ pre; ��̃, ��Y

Forward State-Space Planning

DeFAULT is a forward state-space planner that is based on Downward, and its

greedy best first search algorithm. DeFAULT compares partial plans only in terms of

their heuristic value (described in the next section). While DeFAULT does not compare

the faults introduced by plan prefixes leading to states on the fringe of the search, these

faults are used in the heuristic computation.

38

PLANNING GRAPH FAULT PROPAGATION

Similar to propagating faults in a plan, we can propagate faults in the relaxed

planning problem to compute a heuristic measure of the faults affecting goal

achievement. We start with a brief description of heuristics in complete domains.

Planning Graph Heuristics

A relaxed planning graph is a layered graph of sets of vertices

��(, �(, … , �(/�, �(/�/��. The planning graph built w.r.t. a state $(defines �(�
$(, �(/q � ��|��'��� ⊆ �(/q, � : � 2 �����, and �(/q/� � ��|� : �(/q, � : add����,
for w � 0, … , �. The set ���� includes noop actions for each proposition, such that

���� � O�_P� : �, pre?�_@ � add?�_@ � �, del?�_@ � �Q. A simple heuristic, o/ for

the number of actions to achieve the goal pre���� from $(is equivalent to the minimum

level k where the goal propositions are reached, o/ � min�:�⊆��e� w. The o�� heuristic

[17] solves this relaxed planning problem by choosing actions from �(/� to support the

goals in �(/�/�, and recursively for each chosen action’s preconditions, counting the

number of chosen actions.

Diagnoses

When planning in incomplete domains, we would like to minimize the number of

interpretations of the incomplete domain under which the plan fails. A heuristic should

measure and attempt to minimize the number of failed interpretations in the estimated

suffix of a plan. As in the state space, we propagate information about failed

39

interpretations in the planning graph to estimate the quality of a plan completion starting

in the current state.

Propagating faults in the planning graph resembles propagating faults over the

plan. The primary difference is how we reconcile the faults for a proposition when the

proposition has multiple sources of support. In a level of the relaxed planning graph,

there are potentially many sources of support for a proposition, and we simply select the

supporter with the preferred set of faults, either a fewer number of models or preferred set

of prime implicants. The chosen supporting action, denoted ��(/q���, determines the

faults affecting a proposition p at level, � w � 1.

A relaxed planning graph with propagated faults is a layered graph of sets of

vertices of the form ?��(, ��(, … , ��(/�, ��(/�/�@. The relaxed planning graph built w.r.t. a

state $̃(defines ��% � $̃(, ��(/q � O�Ppre��9� ⊆ ��(/q, �9 : �8 2 ����Q and

��(/� � O�P�9 : ��(, � : add��9� 2 add< ��9�Q, for w � 0, … , �. Much like the successor

function used to compute next states, the relaxed planning graph assumes an optimistic

semantics for action effects by adding possible add effects to proposition layers, but, as

we explain below, it associates faults with the possible adds. Each proposition p has

associated faults, denoted &�(���. Each action also has associated faults, denoted &�(/q��9�.

The faults &�(��� affecting a proposition are defined by its supporting action ��(/q���,

such that &�(��� � &(���, and for w � 0,1, … &�(/q/���� �

] ^ &�(/q?��(/q���@_:���?c�de��_�@ g ∧] ^ &�(/q?��(/q���@ h Vadd< ���(/q���, ��
:���< ?c�de���@ g

40

and the faults affecting an action are defined by the faults for the action's preconditions,

&�(/q��9� �] � &�(/q���_:`ab�c9� g h] � &�(/q��� ∧ pre; ��9, ��_:`ab; �c9� g

Propositions in the planning graph initially have the same faults associated with

them as in state $̃(and are defined by &((·). Every action in every level k of the planning

graph can be invalidated by any fault affecting its preconditions, or by open precondition

faults. Beyond the initial level, faults affecting a proposition include faults that invalidate

its supporting actions or are associated with unlisted effects supporting the proposition.

We note that the rules for propagating faults in the planning graph differ from the

rules for propagating faults in the state space. In the state space, the action failure

explanations include explanations for any prior action failing. In the relaxed planning

problem, the action failure explanations include only explanations affecting the action’s

preconditions, and not prior actions. In the relaxed planning problem, it is not clear which

actions will be executed prior to achieving a proposition because many actions may be

used to achieve other propositions at the same time step.

Heuristic Computation

We terminate the relaxed planning graph expansion at the level , � w � 1 when

one of the following conditions is met: i) the planning graph reaches a fix-point where the

labels do not change, &�(/q��� � &�(/q/���� for all p, or ii) the goals have been reached at

, � w � 1 3 � (c levels after the goals are first reached) and the fixed point has not yet

41

been reached. The heuristic o~� measures the number of interpretations that fail to reach

the goals in the last level such that o~� � P{?� &�(/�/�����:`ab�c9 � @P, where � � 1 is

the last level of the planning graph. Similarly, o~¡¢stores the set of prime implicants

� &�(/�/�����:`ab�c9 � , and uses the preference relation for prime implicants to compare

search nodes. The o~�� heuristic makes use of the chosen supporting actions ��(/q��� for

each proposition that requires support in the relaxed plan, and, hence, measures the

number of actions used while attempting to minimize fault. DeFAULT uses both

heuristics, treating o~�� as the primary heuristic and using o~� or o~¡¢ to break ties.

42

EMPIRICAL EVALUATION

The empirical evaluation is divided into three sections: the domains used for the

experiments, the test setup used, and a discussion of the results. We compare DeFAULT

with a control planner that uses the same search algorithm and implementation, but uses

the FF heuristic to guide search. We attempted but do not compare with the PFF [18]

CPP planner because of some unresolved stability issues. The questions that we sought to

answer include:

• Can a classical planner (that ignores action incompleteness) find reasonable

quality solutions in incomplete domains?

• How well does a planner that counts failure explanation models scale?

• Can a planner that counts prime implicants in failure explanations scale well and

find high quality solutions?

• Does bounding the size of prime implicants lead to better planner performance

without harming plan quality?

Domains

We use five domains in the evaluation: a modified Pathways, Bridges, Blind

Navigator, a modified PARC Printer, and BarterWorld. In Pathways, we derived multiple

instances by randomly injecting incomplete domain features, with probabilities 0.0, 0.01,

0.25, 0.5, 0.75, and 1.0 for each type of fault and for each action. In the other domains,

we injected incomplete domain features with a probability of 0.5. All results are the

average of ten random instances of each problem. The Pathways domain from the

43

international planning competition involves actions that model chemical reactions in

signal transduction pathways. Pathways is a naturally incomplete domain wherein the

lack of knowledge of the reactions is quite common because they are an active research

topic in biology. We introduced each type of incompleteness to model incomplete

knowledge of products required, created, or destroyed by reactions.

The Bridges domains consist of a traversable grid, and the task is to find different

treasure at each corner of the grid. There are three versions in which each subsequent

version has an additional type of incompleteness. In Bridges1, a bridge might be required

to cross between some grid locations and can cause open precondition faults. In Bridges2,

many of the bridges may have a troll living underneath that will take all the treasure

accumulated, and cause a possible clobberer fault. In Bridges3, some of the corners may

give additional treasures, causing unlisted effect faults.

In Blind Navigator we must navigate from one corner of a grid to the opposite

corner. Unfortunately, when traveling from one square to the next, there is a possibility of

getting lost (a possible clobberer fault). In order to reorient oneself, it is possible to

observe two types of landmarks that are either highly or lowly observable. A highly

observable landmark supports certain localization, and a lowly observable landmark may

support localization (an unlisted effect fault).

The PARC Printer domain from the international planning competition involves

planning paths for sheets of paper through a modular printer. A source of domain

incompleteness is that a module accepts only certain paper sizes, but its documentation is

44

incomplete. Thus, paper size becomes a possible precondition to actions using the

module.

The Barter World domain involves navigating a grid and bartering items to travel

between locations. Items are available at different locations and may be required to travel

between other locations. The domain is incomplete because some of the actions that

acquire certain items are not always known to be successful (unlisted effects), and

traveling between some locations may require certain items (possible preconditions) and

may result in the loss of an item (possible delete). The instances involve different size

grids and number of items.

Test Setup and DeFAULT Implementation

The tests were run on a machine running Linux with a 3 Ghz Xeon processor, a

memory limit of 2GB, and a time limit of 20 minutes per run. All code (aside from

POND) was written in Java and run on the 1.6 JVM. Both DeFAULT and the control

planner shared the same greedy best first search implementation that uses deferred

heuristic evaluation and a dual-queue for preferred and non-preferred operators [19].

Both planners also used the same planning graph implementation. The planners were

compared by the proportion of interpretations of the incomplete domain that achieve the

goal and total planning time in seconds. The plots in the following section depict these

results, using the cumulative percentage of successful domain interpretations and

planning time to identify the performance over all problems in a domain. Those planners

that solve more problems can be easily identified, and their overall relative plan quality

and efficiency are evident by the cumulative plots.

45

The DeFAULT planner was implemented in Java, and each of the configurations

of the planner shared common source code, with the exception of their respective

techniques for fault propagation in the state space and heuristic computation.

The first configuration, which we refer to as DeFAULT-FF, does not compute

fault information, making it largely a classical planner that uses the FF heuristic. The one

aspect of the DeFAULT-FF configuration that is not common to classical planners is how

it assumes the optimistic semantics for the incomplete domain (ignoring possible

preconditions and delete effects, but assuming possible add effects will occur).

The second configuration, based on the prime implicant representation of fault

diagnoses, is simply referred to as DeFAULT-k, where k is the bound on the cardinality of

the prime implicants. We use values of k from one to three. The implementation of the

prime implicant fault computations is largely straightforward, i.e., does not employ any

non-trivial optimizations. The required conjunction and disjunction operations combine

the conjunctive clauses in the standard way, and remove clauses that are subsumed or

exceed the cardinality bound.

Based on counting models (domain interpretations), the third configuration is

called DeFAULT-All to highlight the fact that it does not approximate the representation

of the faulty domain interpretations. Its representation of the interpretations makes use of

the JDD package for OBDDs to implement conjunction, disjunction, and model counting.

46

Results

We first discuss the results in each domain, and then conclude this section with a

discussion of the trends seen across the domains. In several of the domains, we discuss

alternative versions of the domain that include increasingly more incompleteness

(measured by the number of incomplete features). In all of the results plots, the legend

refers to a configuration of the planner X, denoting DeFAULT-X (as described above).

Blind Navigation

Figure 2 shows that the DeFAULT-FF configuration finds plans of comparable

quality to the configurations that reason about incompleteness only in the smallest

instances (instances 1-10, which are 2x2 grids).

Each additional ten instances increase the grid size to 4x4, 8x8, and 16x16. The

DeFAULT-FF, and DeFAULT-1, -2, or -3 configurations cannot solve instances bigger

than 8x8, due to the importance of reasoning about incompleteness in this domain. It

Figure 2: Cumulative quality and time comparison in Blind Navigation domain.

47

appears that approximating the failed interpretations of the domain does not harm the

quality of plans, but it does limit the scalability.

Parc Printer

Figure 3 shows reasoning about incompleteness in the Parc Printer domain is

important to finding high quality plans, but not necessarily important to finding plans.

The DeFAULT-FF configuration scales well, but finds the worst quality plans. The

DeFAULT-1, -2, and -3 configurations find the highest quality plans (which are identical

quality), but do not scale as well as DeFAULT-All. The difference between model

counting and prime implicant counting in this domain may be attributed to the potentially

efficient OBDD representation of the failed domain interpretations, but fortuitous prime

implicant representation that helps identify other, better plans.

Figure 3: Cumulative quality and time comparison in Parc Printer domain.

48

Bridges

Figure 4 shows results for all three versions of the domain combined, and Figures

5, 6, and 7 show the results for the respective versions of the domain. Common to all

versions of the domain, DeFAULT-FF finds the poorest quality plans, but surprisingly is

not overly superior in terms of planning time and problems solved. In all versions of the

domain, the DeFAULT-1 configuration solves the most problems, and in the third version

of the domain it has the best overall planning time. However, considering more faulty

interpretations, either by using DeFAULT-1, -2, or All, does improve plan quality at the

expense of scalability and planning time. Interestingly, the trends remain the same across

the versions of the domain, with DeFAULT-FF performing progressively worse as we

include different types of incomplete domain features.

Figure 4: Cumulative quality and time comparison in all three version of the Bridges
domain.

49

Figure 5: Cumulative quality and time comparison in Bridges1 Domain.

Figure 6: Cumulative quality and time comparison in Bridges2 Domain.

50

Figure 7: cumulative quality and time comparison in Bridges3 Domain.

Barter World

Figure 8 shows the combined results for four versions of the Barter World

domain, which are shown individually in Figures 9, 10, 11, and 12, which respectively set

the probability of the domain generator introducing incomplete features to 0.25, 0.5, 0.75,

and 1.0.

The trend identified by Figure 8 is that failing to reason about incompleteness

permits greater scalability but poor quality plans, and as the reasoning about

incompleteness strengthens, so does the plan quality (but at the expense of scalability).

As the number of incomplete features grows across Figures 9 to 12, we see the same

trend exacerbated: weaker reasoning about incompleteness scales better, and stronger

reasoning finds better quality plans.

51

Figure 8: Cumulative quality and time comparison in all instances of Barter World
comain.

Figure 9: Cumulative quality and time comparison in 0.25 density Barter World comain.

52

Figure 10: Cumulative quality and time comparison in 0.5 density Barter World domain.

Figure 11: Cumulative quality and time comparison in 0.75 density Barter World domain.

Figure 12: Cumulative quality and time comparison in 1.0 density Barter World Domain.

53

Pathways

Figure 13 shows the combined results for four versions of the Pathways domain

that set the probability of generating incomplete domain features to 0.25, 0.5, 0.75, and

1.0. The results for each of the settings are shown individually in Figures 14, 15, 16, and

17.

The combined results demonstrate that the techniques for reasoning about

incompleteness find similar quality plans, but the weaker the technique, the lower its

planning time. As the probability of including incomplete features increases, the stronger

reasoning about incompleteness does not scale as well, but the quality of the plans found

by the techniques is similar.

Figure 13: Cumulative quality and time comparison in Pathways domain.

54

Figure 14: Cumulative quality and time comparison in 0.25 density Pathways domain.

Figure 15: Cumulative quality and time comparison in 0.5 density Pathways domain.

Figure 16: Cumulative cuality and time comparison in 0.75 density Pathways domain.

55

Figure 17: Cumulative quality and time comparison in 1.0 density Pathways domain.

Discussion

As the strength of the reasoning about incompleteness increases from ignoring

incompleteness to tracking increasingly higher cardinality prime implicants, to tracking

all interpretations of an incomplete domain, we tend to see increasing plan quality, in

terms of the number of domain interpretations that will successfully execute the plan and

achieve the goal. We also see scalability decrease as a result. Reasoning about prime

implicants tends to be a useful middle-ground whereby plans have good quality, and

planner scalability is best.

56

RELATED WORK

Planning with faults is noticeably similar to planning with incomplete information

[12], wherein action descriptions instead of states are incomplete. As we have shown,

incomplete domains can be translated to CPP domains, and planners such as POND and

PFF [18] are applicable. However, while the translation is theoretically feasible, practical

issues regarding numeric precision prohibit effective use of existing planners.

Our investigation is an instantiation of model-lite planning [1]. Constraint-based

hierarchical task networks are an alternative, pointed out by [1], which avoid specifying

all preconditions and effects through methods and constraints that correspond to

underlying, implicit causal links.

As previously stated, this work is a natural extension of the [5] model for

evaluating plans in incomplete domains. Our methods for computing faults are slightly

different in that we compute faults in the forward direction and are more specific about

which faults occur. In addition to calculating faults of partial plans, we have also

presented a relaxed planning heuristic informed by fault.

Prior work of [20] also addresses planning with incomplete models, but focuses

on online planning and execution to learn the model, similar to model-based

reinforcement learning. We differ in that we assume no feedback from the environment

and attempt to find the best plan possible offline. However, the plans found by DeFAULT

have the potential to guide either knowledge engineers or experimentation.

57

CONCLUSION

We have presented the first work to address planning in incomplete domains as a

heuristic search to find mostly-correct plans. Our planner, DeFAULT, i) performs forward

search while maintaining sets of plan faults, and ii) estimates the future faults incurred by

propagating faults on planning graphs. We have shown that, compared to a planner that

essentially ignores aspects of the incomplete domain, DeFAULT is able to scale

reasonably well and find much better quality plans. We have also shown that representing

explanations of plan failure with prime implicants leads to better scalability than a

complete representation using OBDDs and counting models.

58

REFERENCES

[1] Kambhampati, S. Model-lite planning for the web age masses. In Proceedings of
22nd National Conference on AI, 2007.

[2] Wu, K., Yang, Q., and Jiang, Y. ARMS: An automatic knowledge engineering
tool for learning action models for AI planning. Knowledge Engineering Review
22, 2 (2007), 135–152.

[3] Piergiorgio Bertoli, P., Adi Botea, A., and Simone Fratini, Report of the board of
judges. In Third International Competition on Knowledge Engineering for
Planning and Scheduling, 2009.

[4] Mailler, R., Bryce, D., Shen, J., and Orielly, C. Mable: A framework for natural
instruction. In Proceedings of the 8th International Joint Conference on
Autonomous Agents and Multiagent Systems, 2009.

[5] Garland, A. and Lesh, N. Plan evaluation with incomplete action descriptions. In
Proceedings of 18th National Conference on Artificial Intelligence, 2002.

[6] de Kleer, J. and Williams, B.C. Diagnosing multiple faults. Artificial Intelligence
32, 1 (1987), 97– 130.

[7] Reiter, R. A theory of diagnosis from first principles. Artificial Intelligence 32, 1
(1987), 57–95.

[8] Robertson, J. and Bryce, D. Reachability heuristics for planning in incomplete
domains. In Proceedings of the ICAPS Workshop on Heuristics for Domain
Independent Planning, 2009.

[9] Gerevini, A., Bonet, B., and Givan, R. Report of the committee. In Fifth
International Planning Competition, 2006.

[10] DRoth, D. On the hardness of approximate reasoning. Artificial Intelligence 82 1-
2 (Apr. 1996), 273–302.

[11] Darwiche A. and Marquis, P. A knowledge compilation map. Journal of
Artificial Intelligence Research 17 (2002), 229–264.

59

[12] D. Bryce, S. Kambhampati, and D.E. Smith. Sequential monte carlo in
probabilistic planning reachability heuristics. AIJ, 172(6-7):685–715, 2008.

[13] Fikes, R. and Nilsson, N.J. STRIPS: A new approach to the application of
theorem proving to problem solving. In Proceedings of Assoc. for the
Advancement of Artificial Intelligence, 1971, 608–620.

[14] Bryce, D., Kambhampati, S., and Smith, S.E. Planning graph heuristics for belief
space search. Journal of Artificial Intelligence Research 26 (2006), 35–99.

[15] McDermott, D. Pddl-the planning domain definition language. Technical report,
CVC TR-98-003, Yale University Computer Science Department, 1998.Available
at: www.cs.yale.edu/homes/dvm.

[16] de Kleer, J. An assumption-based tms. Artificial Intelligence 28, 2 (1986), 127–
162, 1986.

[17] Hoffmann, J. and Nebel, B. The FF planning system: Fast plan generation
through heuristic search. Journal of Artificial Intelligence Research 14 (2001),
253–302.

[18] Domshlak, C. and Hoffmann, J. Fast probabilistic planning through weighted
model counting. In Proceedings of International Conference on Automated
Planning and Scheduling, 2006.

[19] Malte Helmert, M. The fast downward planning system. Journal of Artificial
Intelligence Research 26 (2006),191–246.

[20] Chang, A. and Amir, E. Goal achievement in partially known, partially
observable domains. In Proceedings of International Conference on Automated
Planning and Scheduling, 2006.

	Planning in Incomplete Domains
	Recommended Citation

	Microsoft Word - 190890_supp_undefined_83D7D4F4-4AC0-11E2-9437-70242E1BA5B1.docx

