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ABSTRACT 

Planning in Incomplete Domains 

 
by 

 
Jared Robertson, Master of Science 

Utah State University, 2012 
 
 

Major Professor: Dr. Daniel Bryce 
Department: Computer Science 

 
Engineering complete planning domain descriptions is often very costly because 

of human error or lack of domain knowledge. While many have studied knowledge 

acquisition, relatively few have studied the synthesis of plans when the domain model is 

incomplete (i.e., actions have incomplete preconditions or effects). Prior work has 

evaluated the correctness of plans synthesized by disregarding such incomplete features, 

but not how to synthesize plans by reasoning about the incompleteness. In this work, we 

describe several techniques for reasoning that takes into account action incompleteness to 

increase the number of interpretations under which the plans will succeed. Among the 

techniques, we show that representing explanations of plan failure with prime implicants 

provides a natural approach to comparing plans by counting prime implicants instead of 

models – leading to better scalability and comparable quality plans. 

We present and empirically evaluate a forward heuristic search planner, called 

DeFAULT, that synthesizes plans by propagating information about faults due to 

incompleteness both within the state space and the relaxed planning space. We compare 

DeFAULT with a control planner that uses the fast forward (FF) heuristic (measuring plan 



iv 

 

length and ignoring incompleteness). The results show that DeFAULT i) scales 

comparable to the planner using the FF heuristic (while finding better solutions), and ii) 

scales better when counting prime implicants than models. 

(71 pages) 
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PUBLIC ABSTRACT 

Planning in Incomplete Domains 
 
 

Automated planning in computer science consists of finding a sequence of actions 

leading from an initial state to a goal state. People who have expert knowledge of the 

specific problem domain work with experts in automated planning to define the domain 

states and actions. This knowledge engineering required to create complete and correct 

domain descriptions for planning problems is often very costly and difficult. Our goal 

with incomplete planning is to allow people to program domains without the need for 

planning experts. 

Throughout the process of instruction of intelligent systems, teachers can often 

leave out whole procedures and aspects of action descriptions. In such cases, the 

alternative to making domains complete is to plan around the incompleteness. That is, 

given knowledge of the possible action descriptions, we seek out plans that will succeed 

despite any incompleteness in the domain formulation. 

A state in a domain consists of a set of propositions that can be either true or false. 

Actions in a domain require specific propositions to be true for the action to occur. 

Actions then add and remove propositions from the state to create a subsequent state. A 

valid plan consists of a sequence of actions that, starting with the initial state, change to 

match the goal state. An incomplete domain contains the same qualities as a complete 

domain, with the additional abilities of actions to possibly require a proposition to be true 

to initiate the action, as well as possibly adding and possibly removing propositions in the 
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subsequent state. Actions that have possible preconditions and effects are referred to as 

incomplete actions. 

Because no prior work exists for the purpose of empirical comparisons, we 

compare our incomplete action planner, which we call DeFAULT, with a traditional 

planner that assumes all good possibilities and no bad possibilities will occur. DeFAULT 

finds much better quality plans than the traditional planner while maintaining similar 

speed.  
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INTRODUCTION 

The knowledge engineering required to create complete and correct domain 

descriptions for planning problems is often very costly and difficult [1, 2]. Machine 

learning techniques have been applied with some success [2, 3], but still suffer from 

impoverished data and limitations of the algorithms [1]. In particular, we are motivated 

by applications in instructable computing [4] wherein a domain expert teaches an 

intelligent system about a particular domain, but can often leave out whole procedures 

(plans) and aspects of action descriptions. In such cases, the alternative to making 

domains complete is to plan around the incompleteness. That is, given knowledge of the 

possible action descriptions, we seek out plans that will succeed despite any (or most) 

incompleteness in the domain formulation. 

While prior work [5] has categorized faults to a plan’s correctness and described 

plan quality metrics in terms of the faults (essentially single-fault diagnoses of plan 

failure [6, 7]), no prior work has sought to deliberately synthesize low-fault plans. 

Specifically, the authors of [5] (henceforth abbreviated, GL) identify four types of plan 

faults: open preconditions (due to incomplete preconditions), possible clobberers (due to 

incomplete delete effects), unlisted effects (due to incomplete add effects), and false 

preconditions. GL develop an algorithm that steps backward through the plan to identify 

the “critical faults” – those instances wherein incomplete domain features can cause plan 

failure. For example, a possible clobber is a critical fault when (if it is truly a delete 

effect) it threatens a precondition or goal. The number of critical faults is an important 

measure of plan quality/correctness, that, unfortunately, no known planners seek to 
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minimize (aside from our prior work [8] on single-fault planning, upon which this work 

is based). 

Consider the following action that is taken from a modified version of the 

International Planning Competition (IPC) [9] PARC printer domain: 

(:action HtmOverBlack-Move-A4 
 :parameters ( ?sheet - sheet_t ) 
 :precondition (and (clear) (Available HtmOverBlack-RSRC) 
                    (Sheetsize ?sheet A4) 
                    (Location ?sheet HtmOverBlack_Entry- 
                        EndCap_Exit)) 
 :effect (and (not (Available HtmOverBlack-RSRC)) 
              (Location ?sheet HtmOverBlack_Exit- 
                  Down_TopEntry) 
              (not (Location ?sheet HtmOverBlack_Entry- 
                  EndCap_Exit)) 
              (Available HtmOverBlack-RSRC)) 
 :poss-effect (and (not (clear)))) 

The action models a modular printer component that prints on a sheet of A4-sized 

paper. The action is incomplete because it has a possible effect that the component will 

become jammed (not (clear)). The intuition behind the action is that the 

component manufacturer did not provide complete specifications, and it is unknown if 

feeding an A4 sheet will cause a paper jam. Note that an incomplete action is different 

from a non-deterministic action because each application of the incomplete action has the 

same effect at runtime; however, it is not clear what the effect will be at planning time. 

The action incompleteness can cause plan failure, as in the case of our example, by 

threatening the precondition of a later action (e.g., the precondition (clear) is 

threatened in a second application of the HtmOverBlack-Move-A4 action). 
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Interpretations of Incompleteness 

A pessimistic approach to reasoning about incomplete actions might assume that 

possible delete effects will always occur. Plans found under this pessimistic interpretation 

will be correct despite any action incompleteness, but are likely to be few or nonexistent. 

In the PARC printer example, a pessimistic interpretation will likely lead to proving that 

no plan exists, even though it is possible that the action does not have the delete effect on 

(clear). Alternatively, an optimistic interpretation might assume that no possible 

delete effect occurs, in which case the planner can ignore that (clear) may be deleted. 

The optimistic interpretation is equally flawed because the action may actually delete 

(clear). Instead, we adopt a cautiously optimistic interpretation wherein, like the 

optimistic interpretation, we assume that possible delete effects do not occur, but we also 

temper our optimism. We compute an explanation for cases under which each proposition 

that is optimistically true might be false. For example, after applying the action above, we 

would assert that (clear) is true, subject to the assumption that (clear) is not a 

delete effect of the action. Under these cautiously optimistic semantics, we can determine 

which interpretations of incomplete actions will result in failed goal achievement by 

inspecting the assumptions under which the goals are false. Plans that fail under fewer 

interpretations are preferred. 

Failure Explanations and Counting 

We take three qualitatively different approaches to recording a failure explanation 

for each proposition established at different times by a plan. The first, our control, 
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amounts to the optimistic interpretation by recording no explanation for the failure to 

achieve a proposition. The second and third approaches represent failure explanations 

with propositional sentences, whose models correspond to interpretations of the 

incomplete actions. The second approach relies on intuitions from model-based diagnosis 

to represent each failure explanation by a set of diagnoses (each diagnosis is a 

conjunction of incomplete action features – i.e., a prime implicant). The third approach 

represents failure explanations by ordered binary decision diagrams (OBDDs). The 

second and third approaches provide a representation suitable for counting interpretations 

of the incomplete action features (i.e., propositional models) under which a proposition is 

achieved or not. The primary difference is that model counting with prime implicants is 

intractable [10], but polynomial in the size of an OBDD [11]. While we use each of the 

three approaches during plan synthesis to compare plans (in varying capacities), we use 

the third to provide a final assessment of a plan’s quality: the number of interpretations of 

the incomplete actions under which the plan fails. That is, we describe several heuristic 

techniques to speed-up plan synthesis that are based on a particular representation of the 

failure explanations, but compare the resulting plans with a single, non-heuristic method. 

For example, the first approach is entirely heuristic because it completely ignores 

failure explanations. In the second approach, we represent the failure explanations by 

prime implicants, and instead of counting models, we count the number of prime 

implicants. Counting prime implicants is a computationally inexpensive heuristic that 

assumes fewer diagnoses means fewer failed interpretations of the incomplete actions. 

The third method counts the actual number of failed action interpretations by representing 
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them as an OBDD (which can be exponential-sized) and performing OBDD model 

counting (which is polynomial in the OBDD size). We claim that counting diagnoses 

(prime implicants) is more computationally feasible than counting OBDD models and the 

resulting plans are of similar quality, and that ignoring incompleteness altogether leads to 

poor quality plans. 

Our claims are based upon GL’s focus on counting a plan’s critical risks as a 

measure of its quality. We observe that GL’s definition of critical risks is equivalent to 

computing single-fault diagnoses, which allows us to generalize their notions to multi-

fault diagnoses. Intuitively, the more diagnoses for plan failure, the fewer interpretations 

of the incomplete domain to achieve the goal. Naturally, a single-fault diagnosis covers 

more interpretations than a double- or triple-fault, so we count not just the number of 

diagnoses, but those of different cardinality. We stress that counting diagnoses is an 

approximation to counting models, but it nevertheless leads to more efficient planners 

that find comparable quality solutions. 

Planners 

We present a forward heuristic planner, called DeFAULT, that propagates failure 

explanations in the state space and relaxed planning problems. DeFAULT associates a set 

of explanations with each time step, i.e., each state in the search space or each planning 

graph layer in the relaxed planning problem. DeFAULT’s heuristic biases search toward 

plans that will fail in the fewest interpretations of the incomplete domain as possible. 

Because no prior work exists for the purpose of empirical comparisons, we not only 
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compare DeFAULT with a planner that uses the FF heuristic and ignores domain 

incompleteness, but we also attempt a more fair comparison with a conformant 

probabilistic planner. 

Our results indicate that DeFAULT can find much better quality plans than a 

planner that ignores incompleteness. In the following, we provide background on the 

representation of the planning problems studied, a discussion of languages used to 

capture incomplete actions, a formulation of failure explanations, a definition of 

diagnosis and model counting, a planner based on failure propagation, a relaxed planning 

heuristic for failure propagation, empirical evaluation, related work, and conclusion. 
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BACKGROUND AND REPRESENTATION 

Planning consists of finding a sequence of actions that will achieve a specified 

goal. Classical planning deals with domains that are fully observable, deterministic, 

finite, static, and discrete. This work concerns itself with complete and incomplete 

planning models. In the following, we define each model, the related action 

representations, and plan semantics. 

Complete Planning Domains 

Complete planning domains correspond to the classical planning model, 

expressed using STRIPS actions [13]. STRIPS is a formal language for specifying 

planning problems. 

Definition 1. A complete planning domain D defines the tuple ��, 	, 
��, 
�, 

where 

• P is a set of propositions - Boolean statements about the state of the domain 

• A is a set of complete action descriptions, where each a ∈ A defines 

o pre(a) ⊆ P, a set of preconditions - propositions that must be true in 

order for the action to occur 

o add(a) ∈ P, a set of add effects - propositions set to true in the 

subsequent state 

o del(a) ∈ P, a set of delete effects - propositions set to false in the 

subsequent state 

• add(a−1) ∈ P defines a set of initially true propositions 
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• pre(an) ∈ P defines the goal propositions - propositions that must be true for 

the plan to succeed 

Example 1.  For example, consider the following domain, which we will use as a 

running example: 

• � � ��, �, �, �� 
• � � ��, �, �� 

o pre��� � ��, ��, add��� � ���, del��� � �� 
o pre��� � ���, add��� � ���, del��� � ��� 
o pre��� � ��, ��, add��� � ���, del��� � �� 

• add����� � ��, �� 
• pre���� � ��� 
A plan π for D is a sequence of actions that when applied to the initial state, lead 

to a state wherein the goal is satisfied. 

Definition 2. A plan  � �
��, 
!, … , 
��, 
� in a complete domain D is a 

sequence of actions that corresponds to a sequence of states �
!, … , #�, where 

• $% � �&&����� 

• ��'��(� ⊆ $( *+� , � 0, … , . 

• $(/� � $(\&'1��(� 2 �&&��(� *+� , � 0, … , . 3 1 

We omit ��� and �� from the plans in our discussion when appropriate, with the 

understanding that each plan must use the initial and goal actions. 

For example, the plan (a, b, c) corresponds to the state sequence (s0 = {p, q}, s1 = 

{ p, q, r}, s2 = {q, r}, s3 = {q, r, g}), where the goal is satisfied in s3. 
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Incomplete Planning Domains 

Incomplete planning domains are identical to complete planning domains, with 

the exception that the actions are incompletely specified. Much like planning with 

incomplete state information [14], the action incompleteness is not completely 

unbounded. The preconditions and effects of each action can be any subset of the 

propositions P; the incompleteness is with regard to a lack of knowledge about which of 

the subsets correspond to each precondition and effect. To narrow the possibilities, we 

find it convenient to refer to the known, possible, and impossible preconditions and 

effects. For example, an action’s precondition must consist of the known preconditions, 

and it must not contain the impossible preconditions, but we do not know if it contains 

the possible preconditions. The union of the known, possible, and impossible 

preconditions must equal P; therefore, an action can represent any two, and we can infer 

the third. We choose to represent the known and possible, and discuss this choice in more 

detail in the following section. 

In the following, we discuss incomplete domains and extend the complete domain 

model with features for possible preconditions and effects. We note that an incomplete 

domain corresponds to a set of complete domains, each differing in terms of the inclusion 

of the possible features. 

 Definition 3. An incomplete planning domain 56  defines the tuple ��, 	6, 
7��, 
7�, 

where: 

• P is a set of propositions 

• �8 is a set of incomplete action descriptions, where each �9 : �8 defines 
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o ��'��9� ⊆ �, a set of known preconditions 

o ��'; ��9� ⊆ �, a set of possible preconditions 

o �&&��9� ⊆ �, a set of known add effects 

o �&&< ��9� ⊆, a set of possible add effects 

o &'1��9� ⊆, a set of known delete effects 

o &'1< ��9� ⊆, a set of possible delete effects 

• �9�� ⊆ � defines a set of initially true propositions 

• �9� ⊆ � defines the goal propositions 

Consider the following example of an incomplete domain: 

• � � ��, �, �, �� 
• �8 � ��9, �=, �̃� 

pre��9� � ��, ��, add��9� � ��, del��9� � ��, pre; ��9� � ���, add< ��9� � ���, del< ��9� � ��� 
pre?�=@ � ���, add?�=@ � ���, del?�=@ � ���, 
pre; ?�=@ � ��, add< ?�=@ � ��, del< ?�=@ � ��� 
pre��̃� � ���, add��̃� � ���, del��̃� � ��, pre; ��̃� � ���, add< ��̃� � ��, del< ��̃� � �� 

• add��9�� � ��, �� 
• pre��9�� � ��� 
A plan �9 for A6 is a sequence of actions that when applied, can lead to a state 

wherein the goal is satisfied (i.e., the final action’s preconditions are satisfied). This is 

opposed to a plan �for D, which does lead to a state wherein the goal is satisfied. 
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Definition 4. A plan  7 � �
7��, 
7!, … , 
7��
7� in an incomplete domain 56  is a 

sequence of actions, that corresponds to a sequence of states �#!, … , #�, where: 

• $% � �&&��9��� 

• ��'��9(� ⊆ sC for , � 0, … , . 

• $(/� � $(\&'1��9(� 2 �&&��9(� 2 �&&< ��9(� for , � 0, … , . 3 1 

For example, the plan ��9, �=, �̃� corresponds to the state sequence �$% �
��, ��, $� � ��, �, ��, $F � ��, ��, $G � ��, �, ���, where the goal is satisfied in $G. 

Definition 5. The set of incomplete domain features Ƒ�56� is comprised of the 

following propositions: 

• ��'; ��9, �� if � : ��'; ��9� and �9 : �8 
• �&&< ��9, �� if � : �&&< ��9� and �9 : �8 

• &'1< ��9, �� if � : &'1< ��9� and �9 : �8 

Each incomplete domain feature f : Ƒ can result in a different type of plan fault 

(aligning with GL’s original naming conventions): 

• Open precondition fault OP(�9, p): if pre; ��9, �� : Ƒ�A6� and �9 is applied to a 

state s where p is not true. 

• Unlisted effect fault UE��9, ��: if add< ��9, �� : Ƒ�A6� and after �9 is applied, p is 

a precondition for another action. 

• Possible clobberer fault PC��9, ��: if del< ��9, �� : Ƒ�A6� and after �9 is applied, p 

is not reestablished by another action and p is precondition. 
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In this sense, each type of incomplete domain features can cause a plan fault if said type 

can directly or indirectly prevent achievement of a subsequent action's precondition. 

Each subset of Ƒ corresponds to an interpretation of the incomplete domain. 

Definition 6. An interpretation Di of the incomplete domain 56  is defined with 

respect to a subset of the incomplete domain features JK ⊆ Ƒ so that: 

• �L � � 

• ��L � �� 

• ���L � ��� 

• For each �9 : �8 there exists an � : �L where 

o ��'��� � ��'��9� 2 ��|��'��9, �� : NL� 
o �&&��� � �&&��9� 2 ��|�&&��9, �� : NL� 
o &'1��� � &'1��9� 2 ��|&'1��9, �� : NL� 

We also refer to the set of incomplete features Ƒ��9� that are specific to an action 

�9 so that Ƒ��9� � Opre��9, ��Ppre��9, �� :   ?A6@Q 2 Oadd��9, ��Padd��9, �� :   ?A6@Q 

2 Odel��7, ��|del��7, �� :  ?A6@Q. 
For example, the complete domain example from the previous section is an interpretation 

of the incomplete domain above, where N% � �add��9, ��, pre��̃, ���. 
Definition 4 sets a loose requirement that plans with incomplete actions succeed 

under the most optimistic conditions: possible preconditions need not be satisfied, and the 

possible add effects (but not the possible delete effects) are assumed to occur when 

computing successor states. In this sense, we ensure that the plan is valid for the least 
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constraining (most optimistic) interpretation of the incomplete domain. As we show, we 

can determine the interpretations in which a plan is invalid and use the number of such 

failed interpretations as a plan quality metric.  



14 
 

COMPARISON OF POSSIBLE ACTION FEATURES                    

WITH LOCAL CLOSED WORLDS 

Definition 3 defines incomplete actions by sets of respective known and possible 

preconditions and effects. GL define incomplete actions similar to STRIPS actions 

(Definition 1) with additional local closed world statements of the form 

DoesNotRelyOn��9, �� (p is not a precondition of �9) or 

CompletePreconditions��9� (the preconditions of �9 are known). 

We note that these representations are equivalent if we consider the set of known, 

possible, and impossible preconditions (and similarly for effects) of actions. For example, 

CompletePreconditions��9� is equivalent to stating ��'; ��9� � �� (i.e., the set of 

possible preconditions is empty). Likewise, DoesNotRelyOn��9, �� is equivalent to 

stating � R ��'; ��9�, and that for all � : �, the lack of a statement 

DoesNotRelyOn��9, �� is equivalent to stating � : ��'; ��9� (i.e., impossible 

preconditions are not possible preconditions, and not impossible preconditions are 

possible preconditions). 

While the representations are equivalent, the obvious question is whether one is 

more succinct than the other. The answer largely depends on the problem being modeled. 

See Table 1 for examples. Notice that the sizes of the representations are equivalent when 

stating, for example, that an action has complete preconditions; we either record the fact 

that the preconditions are complete or that the set of possible preconditions is empty. The 

difference is with respect to stating, for example, that an individual proposition is not a  
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Table 1: Examples of Comparing Representations. 

 Definition 3 GL �9 has only the known 
preconditions �, �. 

pre��9� � ��, ��, pre; ��9� � ��  pre��9� � ��, ��, 
CompletePreconditions��9� �9 has possible 

precondition �, but S is 
neither a known nor a 
possible precondition 

pre��9� � ��, pre; ��9� � ��� ��'��9� � ��, 
DoesNotRelyOn��9, S� 

 

precondition of an action. Under our representation (Definition 3), the set of possible 

preconditions would not contain a proposition, and under the GL representation it must 

be stated that the proposition is not a precondition. However, if a proposition is a possible 

precondition to an action, we would record it as a possible precondition, and GL would 

record nothing. As such, the issue comes down to whether there are many possible or 

impossible preconditions and effects. Our representation is smaller with many impossible 

features, and GL is smaller with many possible features. 

While we describe actions in the grounded (propositional) form, another practical 

concern is that we use PDDL [15] action schemas to encode problems. Under the GL 

representation, extending PDDL action schemas to state impossible preconditions (or 

effects) could require additional action schema parameters that refer to constants in 

predicates that are not preconditions. If there are many impossible preconditions, the 

action schemas could mention many additional parameters, which would lead to 

difficulty when grounding the schemas. We intuit that possible action features are likely 

to share parameters with known action features and extending PDDL to support our 

representation would lead to fewer additional action schema parameters. Furthermore, if 
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there are many impossible features, our representation does not mention these features 

and therefore does not need to reference their parameters in the PDDL action schemas. 
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DIAGNOSING FAULTS IN PLANS FOR                           

INCOMPLETE DOMAINS 

An incomplete plan �9 must achieve the goals associated with optimistic semantics 

(i.e., possible preconditions need not be satisfied, possible delete effects can be ignored, 

and possible add effects will occur), but we would prefer that plans succeed under more 

pessimistic conditions. To quantify the extent to which our optimism is misleading, we 

introduce and expand upon GL’s definitions of risks, which we refer to as faults. A fault 

is a threat to the plan’s causal proof that is introduced because of our optimism/ignorance 

of the underlying domain description. For example, by assuming that possible delete 

effects do not occur, we introduce a fault when the possible delete effect does in fact 

delete a required subgoal. By assuming the optimistic semantics, we allow plans that we 

would not otherwise consider, but by computing the faults, we quantify the level to which 

the plan is susceptible to failure. The challenge to computing faults is that incomplete 

action features may have a delayed impact on the plan or no impact at all, and we must 

determine if they are faults (i.e., guarantee plan failure if the incompleteness manifests 

unfavorably). 

Instead of reviewing GL’s definitions, we take a new approach to develop the 

definitions of faults. We intuit that plans with faults are best analyzed within the 

framework of model-based diagnosis [6, 7], in other words, abductive reasoning using a 

model of the system. Among all of the techniques developed within model-based 

diagnosis [6], the most beneficial is a clear characterization of multiple-faults. In contrast, 

GL discusses only single-faults, which they call risks, and which do not explain plan 
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failures that may occur because of multiple, interacting incomplete domain features. For 

example, GL would consider a subgoal that is established by two different actions, each 

of which is subject to disjoint faults, as having no faults. However, by using multiple-

faults to explain failure to achieve the proposition, we see that the faults (at least one for 

each action) interact. Clearly, single-faults are important for identifying a single-point-of-

failure, but ignoring multiple-faults could lead to an overly optimistic assessment of a 

plan. In the following, we generalize GL’s notions of faults from singletons to sets, which 

we call diagnoses. 

Model-Based Diagnosis 

In defining the diagnoses of plan failure, we draw upon many well established 

techniques in model-based diagnosis (MBD) [6, 7]. Viewing the plan as a physical 

system, faults are sets of potentially faulty components that describe anomalous behavior, 

such as an action not having its preconditions satisfied or a goal not being achieved. 

There are two terms from MBD that enable us to describe which sets of faults 

may cause plan failure. The first term, a conflict set [6], is a set of faults in which if at 

least one of the faults occurs, it can explain the anomalous behavior. A conflict set is 

inherently disjunctive because any non-empty subset of the conflict set can explain the 

failure, and it is not required that all components are faulty. The second term, a diagnosis, 

is a set of system components in which every component must be faulty to explain the 

behavior. In contrast with a conflict set, a diagnosis is conjunctive – every component in 

the diagnosis must be faulty. However, there may be multiple diagnoses, and each 

diagnosis is a hypothesis explaining failure. Because of their respective disjunctive and 
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conjunctive semantics, conflict sets and diagnoses can be expressed by the prime 

implicants (conjunction of propositions that cannot by subsumed by another conjunction 

of propositions) of a propositional sentence capturing knowledge of the faulty system. 

The author of [7] (henceforth abbreviated, Reiter) formulates MBD within a 

system that is defined by a system description SD and system components COMP, taking 

the respective forms of first-order sentences and a finite set of constants. The system 

description includes a distinct unary predicate AB(·) that indicates abnormal behavior on 

the part of a system component. For example, the sentence ANDG(x) ∧ ¬AB(x) → out(x) 

= and (in1(x),in2(x)) indicates that an and-gate that is not abnormal will have its output 

equal to the logical and of its two inputs. Along with the system description, OBS is an 

observation of the system’s behavior. For example, OBS may contain the facts out(and1) 

= 0, in1(and1) = 1, in2(and1) = 1, which is anomalous. 

Reiter defines approaches to finding conflict sets and diagnoses that rely on 

refutation proofs. Showing that SD 2 OBS 2 {¬AB(c1), ..., ¬AB(cn)} is inconsistent means 

that c1, ..., cn functioning normally does not explain OBS. That is, {c1, ..., cn} is a conflict 

set, a subset of which is to blame for the observation, and at least one of the conflict set 

components is faulty. For example, SD 2 OBS 2{¬AB(and1)} is inconsistent, and {and1} 

is a conflict set. Reiter also shows that we can refine the conflict sets to include only 

those components that are mentioned in the refutation proof tree, so that if SD 2 OBS 

2{¬AB(c1), ...,¬AB(cn)} is inconsistent, but only if {¬AB(ci), ...,¬AB(cj)} ⊆ {¬AB(c1), 

...,¬AB(cn)} appear in the refutation proof, then {¬AB(ci), ...,¬AB(cj)} is a conflict set that 

subsumes {¬AB(c1), ...,¬AB(cn)}. 
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A generate-and-test approach is a possible, but naive, method to finding all conflict sets, 

as it is too inefficient for systems with large numbers of components. Additionally, upon 

finding all conflict sets one can compute all diagnoses. Reiter defines a diagnosis as a 

minimal hitting set on the collection of minimal conflict sets; a hitting set x on a 

collection of sets C is a set wherein for each set c : C, c ∩ x ≠ {}. A minimal hitting set x 

is a set wherein no proper subset x' ⊂ x is a hitting set. In our small example, {and1} is 

the only conflict set, making {and1} the only diagnosis. In a more complex scenario 

wherein the minimal conflict sets are {c1, c2} and {c1, c3}, the diagnoses are {c1} and {c2, 

c3}. 

Diagnosing Plan Faults in Incomplete Domains 

We describe a plan with a set of clauses SD��9� and introduce a hypothetical 

observation that the goal action cannot be executed, OBS = Va9�, to determine if a set of 

incomplete domain features is a conflict set. 

Recall that a conflict set is a set of components, of which some subset must be 

behaving abnormally to explain an anomalous observation. In diagnosing plan faults, a 

conflict set is comprised of incomplete domain features. However, there exists an 

asymmetry among the types of incomplete domain features because the absence of a 

possible add effect in the true domain can cause failure, but the presence of a possible 

precondition or possible delete effect can cause plan failure. As such, conflict sets (and 

diagnoses) refer to negative literals for possible add effects and positive literals for 

possible preconditions and delete effects. 
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In diagnosing plan faults, conflict sets and diagnoses are of the form 

W¬add< �a9,p�,…,¬add< ?a9′, p′@,pre; ?b=,q@,…,pre; Xb= ′,q′Y ,del< �c9,r�,…,del< ?c9′,r′@Z, indicating the 

absence of possible add effects or the presence of possible preconditions or delete effects 

causes plan faults. Thus, following the approach of Reiter, if a9-12SD�π9�2¬an 

2 Wadd< �a9,p�,…,add< ?a9′,p′@,¬pre; ?b=,q@,…,¬pre; Xb= ′,q′Y ,¬del< �c9,r�,…,¬del< ?c9′,r′@Z 

is inconsistent, then 

W¬add< �a9,p�,…,¬add< ?a9′,p′@,pre; ?b=,q@,…,pre; Xb= ′,q′Y ,del< �c9,r�,…del< ?c9′,r′@Z or a subset of it is 

a conflict set. 

We find it more convenient to formulate an equivalent inference task a9-12SD�π9�2 

Wadd< �a9,p�, … , add< ?a9′, p′@, Vpre; ?b=,q@, … , Vpre; Xb= ′, q′Y , Vdel< �c9,r�, … , Vdel< �c9′, r′�Z [an, and 

use a theorem prover that is based on modus ponens and negation as failure. In the 

following section, we make use of the intuitions developed in this section using modus 

ponens (we show that negation as failure can be made unnecessary) to motivate a 

forward-chaining state-space planner. 

The system description SD��9� consists of clauses that define the semantics of 

plans in incomplete domains, which includes conditions under which an action will have 

its preconditions satisfied and its effects will change the current state. This subsection i) 

presents the system description and maps it to the original definitions of plans for 

incomplete planning problems, ii) shows how the system description can be simplified 

without loss of generality, and iii) describes how an assumption-based truth maintenance 

system (ATMS) [6] can support more efficient diagnosis computation. 
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Plan System Description 

The system description SD��9� is listed in Table 2. The clauses include conditions 

under which actions are successfully executed, and conditions under which a proposition 

will be true as a result of applying an action. The clauses can be understood as stating: i) 

actions require their preconditions to be satisfied but also require the previous action to 

be successful, ii) add effects are proven if the action is proven, iii) possible add effects are 

proven if the action is executed and the possible add effect is actually an add effect, iv) 

propositions that are possibly deleted will in fact be true if they were previously true and 

either the action fails or they are in fact not deleted, and v) all non-deleted propositions 

are true if they were previously true. 

Table 2: The Plan System Description SD� 7�,. 
i) a9t+1 \ 

a9t ∧ ] ^ p
t+1_:`ab�c9def� g ∧ 

] ^ �p
t+1

h Vpre; ��9(/�, ��_:`ab; �c9def� g 

, � 31 … . 3 1 

ii) p
t+1

 \ a9t for all � : add��9(� 
iii)  p

t+1
 \ a9t ∧ add< ��9(, �� for all � : add< ��9(� 

iv) p
t+1

 \ p
t

∧ XVa9t h Vdel< ��9(, ��Y for all � : del< ��9(� 

v) p
t+1

 \ p
t
 for all � : �\?del��9(� 2 del< ��9(�@ 

 

The system description of the example plan ��9, �=, �̃� from example 1 is as 

follows: 
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a9-1 i p
0
 a90 ∧ p

1
i b=1 b=1 ∧ q

2
∧ r2 i c92 

a9-1 i q
0
 ¬b=1 ∧ q

1
i q

2
 b=1 ∧ Vpre; �c9,q� ∧ r2 i c92 

a9-1 ∧ p
0

∧ q
0

∧ r0 i a90 q
1

∧ Vdel< ?b=,q@ i q
2
 c92 i g

3
 

a9-1 ∧ p
0

∧ q
0

∧ Vpre; �a9,r�i a90 

b=1 i r2 q
2

i q
3
 

Va90 ∧ p
0

i p
1
 r1 i r2 r2 i r3 

p
0

∧ Vdel< �a9,p� i p
1
  c92 ∧ g

3
i a93 

a90 ∧ add< �a9,r� i r1   

q
0

i q
1
   

We note that the only non-definite clauses correspond to the cases wherein an 

action fails to execute and thus cannot possibly clobber the corresponding possibly 

deleted proposition (e.g., �9 possibly deletes p, and we include the clauseVa90 ∧ p
0

i p
1
). 

As we show below, we can simplify the system description to remove such clauses. For 

all other clauses, we can create definite clauses by replacing each negated literal ¬fi by a 

positive literal nfi. 

We establish the correctness of the system description with the following theorem 

that states that a plan is valid in an interpretation Di of an incomplete domain if and only 

if a�� 2 SD��9� 2 Fi entails an, where Fi � OfP* : NLQ 2 OVf|* R NLQ. 
Theorem 7:  a-1 2 SD� 7� 2 Fi [ a iff  7 is a plan interpretation of Di. 

Simplifying the system description for the domain interpretation where N% �
O�&&< ��9, ��, ��'; ��̃, ��Q, we obtain SD

%��9�: 

a9-1 i p
0
 a90 ∧ p

1
i b=1 b=1 ∧ q

2
∧ r2 i c92 
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a9-1 i q
0
 Vb=1 ∧ q

1
i q

2
 c2 i g

3
 

a9-1 ∧ p
0

∧ q
0

∧ r0 i a90 q
1

i q
2
 q

2
i q

3
 

a9-1 ∧ p
0

∧ q
0

i a90 b=1 i r2 r2 i r3 Va90 ∧ p
0

i p
1
 r1 i r2 c92 ∧ g

3
i a93 

p
0

i p
1
   

a90 i r1   

q
0

i q
1
   

Upon inspection, it is possible to see that a9-1 2 SD
L��9� [ a93. 

If we examine all subsets of the incomplete features Ƒ, for example 

O��'; ��9, ��, &'1< ��9, ��, �&&< ��9, ��, &'1< ?�=, �@, ��'; ��̃, ��Q where 

a9-1 2 SD��9� 2 OVpre; �a9,r�, Vdel< �a9,p�, add< �a9,r�, Vdel< ?b=,q@, Vpre; �c9,q�Q [ a93, we can 

determine the minimal conflict sets. In our example, we can derive the following minimal 

conflict sets: 

O��'; ��9, ��, &'1< ��9, ��, &'1< ?�=, �@Q 
O��'; ��9, ��, &'1< ��9, ��, ��'; ��̃, ��Q 

From the conflict sets, we determine the following diagnoses: 

���'; ��9, ��� 
O&'1< ��9, ��Q 
O&'1< ?�=, �@, ��'; ��̃, ��Q 
The diagnoses are cases that will guarantee plan failure, if the first action �9 can 

fail because of an open precondition fault. The second action �= can fail because its 

precondition p is deleted by �9 due to a possible clobberer fault. The third action �̃ can fail 
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if its possible precondition q is required (an open precondition fault) and the second 

action �= possibly deletes q (a possible clobberer fault). 

 

 

Figure 1: Fault labels and proof trees for the system description of plan ?
7, j6, k9@. 
 

Figure 1 depicts several proof trees for the query 

a�� 2 SD
′��9� 2 OVpre; �a9,r�, Vdel< �a9,p�, add< �a9,r�, Vdel< ?b=,q@, Vpre; �c9,q�Q [ aG. In Figure 1, 

the nodes represent the literals used in the query, and the directed hyper-edges denote 

clauses. Edges connected by a curved arc denote a conjunction of the antecedents. The 

propositional sentence annotations can be safely ignored until we discuss the use of the 

ATMS below. Figure 1 shows that multiple proofs – rF and c9Fare both proven by two 

clauses, making a total of four distinct proofs. Each proof relies on a different set of faults 

not being present; therefore, if any subset of the faults materializes, the proof will fail – 

these sets of faults correspond to the conflict sets: 

O��'; ��9, ��, &'1< ��9, ��, &'1< ?�=, �@Q 
O��'; ��9, ��, &'1< ��9, ��, ��'; ��̃, ��Q 
O��'; ��9, ��, &'1< ��9, ��, V�&&< ��9, ��, &'1< ?�=, �@Q 
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 O��'; ��9, ��, &'1< ��9, ��, V�&&< ��9, ��, ��'; ��̃, ��Q 
However, the last two conflict sets are not minimal because they are subsumed by one of 

the other conflict sets. The minimal conflict sets are: 

O��'; ��9, ��, &'1< ��9, ��, &'1< ?�=, �@Q 
O��'; ��9, ��, &'1< ��9, ��, ��'; ��̃, ��Q 

which allows us to compute the following diagnoses (minimal hitting sets): 

���'; ��9, ��� 
O&'1< ��9, ��Q 
O&'1< ?�=, �@, ��'; ��̃, ��Q 

Truth Maintenance Systems 

The generate-and-test method of computing conflict sets involves selecting all 

possible sets of literals F denoting incomplete features and determining if a�� 2 SD
′��9� 2

F [ a�. An alternative is to employ an assumption-based truth maintenance system 

(ATMS) [16], which is a way to represent beliefs (assumptions) and their dependencies. 

We do this so that we can simultaneously compute all possible proofs for all possible sets 

F. The approach is to record a label for each literal that is proven to denote a set of 

contexts relevant to that literal. In our scenario, the contexts denote sets of incomplete 

domain features F that will prevent the proof of a literal. In the following, we present the 

definitions of the labels independent of any particular representation, but we describe the 

implementation of operations required for two alternative representations (prime 

implicants or OBDDs) in the empirical evaluation. 
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To represent and compute the contexts preventing the proof of each literal, we 

recall that each diagnosis is a conjunction of literals 

WVadd< �a9,p�, … , Vadd< ?a9′, p′@, pre; ?b=,q@, … , pre; Xb= ′, q′Y , del< �c9,r�, … , del< ?c9′, r′@Z where every 

conjunction must be true in order to cause failure. As such, a label denoting diagnoses 

can be represented as a disjunction of diagnoses. In the ATMS, we must label each 

possible premise with the diagnoses preventing its derivation. The possible premises 

include the initial action a��, and elements from the set 

Wadd< �a9,p�, … , add< ?a9′, p′@, Vpre; ?b=,q@, … , Vpre; Xb= ′, q′Y , Vdel< �c9,r�, … , Vdel< ?c9′, r′@Z, and the 

labels are defined as 

1�a��� �l 

1 Xadd< �a9,p�Y � Vadd< �a9,p� … 1 Xadd< ?a9′, p′@Y � Vadd< ?a9′, p′@ 

1 XVpre; ?b=,q@Y � pre; ?b=,q@ … 1 mVpre; Xb= ′, q′Yn � pre; Xb= ′, q′Y 

1 XVdel< �c9,r�Y � del< �c9,r� … 1 XVdel< ?c9′, r′@Y � del< �c9′, r′�. 

The label of the initial action is l (logical false) to denote that there is no 

diagnosis under which the initial action cannot be derived. The label of each literal 

denoting an incomplete domain feature is the negation of the literal to denote that the 

only diagnosis under which the literal is not proven is when the literal is not true initially. 

All other literals are proven by one or more clauses, and we associate with each 

clause o: q
1
, … , q

m
i p that proves p a sentence 1�o,p� � 1?q

1
@ h … h 1?q

m
@ to denote 

that the clause will fail to prove p in any case where at least one of (hence the 

disjunction) its antecedents is not proven. Multiple clauses h1, ..., hk may prove p, 
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allowing us to define 1�p� � 1�o�,p� ∧ … ∧ 1�oq,p� denoting that p will be unproven if all 

of (hence the conjunction) the clauses fail to prove p. 

Figure 1 depicts the labels associated with each literal by the propositional 

sentence underneath the literal. Consider the incomplete system label 1�c92�, that is proven 

by two clauses, oG: b=1, q
2
, r2, i c92 and or: b=1, Vf4, r2 i c92. The labels for each of the 

antecedents of the clauses are as follows: 

1?b=1@ � f0 h f1 

1?q
2
@ � f3 

1�r2� � f0 h �f1 ∧ f2� 

1�Vf4� � f4 

Allowing us to compute for each clause 

1�oG, c92� � 1?b=1@ h 1?q
2
@ h 1�r2� � �f0 h f1� h �f3� h ?f0 h �f1 ∧ f2�@ � f0 h f1 h f3 

1?or,c92@ � 1?b=1@ h 1�Vf4� h 1�r2� � �f0 h f1� h �f4� h ?f0 h �f1 ∧ f2�@ � f0 h f1 h f4 

and define 

1�c92� � 1�oG, c92� ∧ 1�or, c92� � �f0 h f1 h f3� ∧ �f0 h f1 h f4� � f0 h f1 h �f3 ∧ f4� 

By counting the models of the label 1�g
3
�, of the goal, it is possible to determine 

how many interpretations of the incomplete domain will fail to achieve the goal with the 

plan. In this example, there are 32 interpretations, and 26 will fail to achieve the goal. 
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Counting Models and Diagnoses 

The labels computed in the previous section identify those combinations of 

incomplete domain features that can prohibit a plan from satisfying the goals, i.e., the 

models of the labels are interpretations of the incomplete domain that will fail. From the 

labels, it is possible to compute exactly how many interpretations of the incomplete 

domain features lead to a successful or unsuccessful plan. Thus, counting the number of 

domains that will not successfully achieve the goals can be reduced to counting the 

models of the goal action label 1��9�� (a propositional sentence). The planner described in 

the next section is based on the idea of using an ATMS to represent plans, and many of 

its subroutines involve comparing propositional sentences. In comparing a propositional 

sentence Ƒ with another, we refer to its set of models M(Ƒ), its set of prime implicants 

PI(Ƒ), and its set of k-element prime implicants PIk(Ƒ). 

While counting models requires polynomial time when a propositional sentence is 

represented by an OBDD, it requires exponential time when represented by prime 

implicants. However, we note that the number of prime implicants can be indicative of 

the number of models, and simply counting the number of prime implicants can provide a 

heuristic measure. 

Referencing the example in the previous section, the three prime implicants 

f0 h f1 h �f3 ∧ f4� have 26 models, whereas the two prime implicants f0 h f1 have 24 

models: the number of prime implicants, in this case, is proportional to the number of 

models. While the relationship between prime implicants and models does not hold in 
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general, we can use the number of prime implicants to heuristically compare 

propositional sentences (estimating the number of models). 

Another observation is that having fewer prime implicants of smaller cardinality 

can result in fewer models. For example, both *% h *� and *% h �*G ∧ *r� have two prime 

implicants, but the former has 24 models and the latter has 20 models. Thus, when 

comparing two propositional sentences, we can compare |�s��t�| and |�s��u�, and if 

equal, compare |�sF�t�| and |�sF�u�|, and so on, until |�sq�t�| v |�sq�u�| for some 

w x 0; if k is the minimum cardinality where |�sq�t�| y |�sq�u�|, then we prefer Ƒ 

(assuming Ƒ represents interpretations of incomplete actions where a plan fails). Thus, 

we define two preference relations on propositional formulas representing plan failure: 

• Model-based: t z { u if |{�t�| y |{�u�| 
• Diagnosis-based: t z �s u if |�sq�t�| y |�sq�u�, w x 0, and |�s|�t�| �

P�s|�u�P for all } y w. 

In the following, we dispense with the subscripted notation for preference 

relations, assuming that the context dictates whether the propositional sentences are 

compared by models or diagnoses. 

Comparing the prime-implicants is much less expensive than counting and 

comparing the number of models, but we may be wrong. Nevertheless, we empirically 

compare counting OBDD models to counting prime implicants (of different cardinalities) 

within our planner, and demonstrate significant improvements in planning time with little 

sacrifice in plan quality when counting prime implicants. Throughout our discussion, 

when we refer to counting models of Ƒ, we assume that Ƒ is represented by an OBDD, 
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and when we refer to counting the prime implicants of Ƒ, we assume that Ƒ is already 

represented by prime implicants. In other words, we assume the representation that is 

most natural for the type of counting in order to ignore any additional cost of normal 

form conversion.  
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FORWARD STATE SPACE PLANNING WITH FAULTS 

We present a forward state space planner called DeFAULT that uses the 

approaches developed in the previous section to search for plans that have few faults or 

few interpretations of the incomplete domain features that result in plan failure. Recall 

that having few faults and few failed interpretations are connected but rely on counting 

different quantities (prime implicants or models, respectively). We employ the optimistic 

semantics for incomplete domain features and extend our state description to capture 

which incomplete domain features can cause failure to achieve each state proposition; the 

incomplete features are represented by OBDDs or prime implicants, as in the previous 

section. We note that computing and representing the prime implicants can be costly; we 

address this by formulating our approach for any arbitrary, but fixed, bound on the prime 

implicant cardinality. While the cardinality of each prime implicant is bounded, the 

number of prime implicants per proposition is indirectly bounded, i.e., there is a finite 

number of sets with cardinality k or less. The impact of bounding the prime implicant 

cardinality is that we may under-approximate the number of interpretations of the 

incomplete domain in which the plan will fail. 

Adapting the ATMS rules for propagating fault labels to the state space requires 

some explanation. The most striking differences are that we do not have explicit action 

literals in the state space and we do not specify the plan semantics by clauses, rather we 

define the propagation in terms of the state and action descriptions. The lack of action 

literals and clauses that connect action literals to the goals requires that we track the 

incomplete domain interpretations that cause plan failure because an action is invalidated, 
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i.e., its preconditions are not satisfied. The state space operations capture the same 

semantics as the ATMS operations in that we use disjunction to combine faults affecting 

conjunctive requirements, e.g., action preconditions, and use conjunction to combine 

disjunctive requirements, e.g., causal support for propositions. 

Fault Propagation 

In the previous section, we describe how to recursively define the failure 

explanation (label) for a goal literal, i.e., the propositional models of the label reflect 

which interpretations fail to achieve the goal. In the following, we discuss rules for the 

forward propagation of failure explanations to compliment our forward state-space 

planner. 

Initially, we use the explanation &����9��� �l to denote that there are no failures 

affecting the initial state. For all states $(/�, , ~ 0, we define: 

&(/���� �
��
�
�� &(��� ∧ &(��9(�                              : � : add��9(�   &(��� ∧ X&(��9(� h Vadd< ��9(, ��Y : � : add< ��9(�  �                                                        &(��� h del< ��9(, ��                          &(���                                                 

: � : del��9(�   : � : del< ��9(�   :otherwise       

� 

where the interpretations failing to successfully execute �9( are defined: 

&(��9(� � &(����9(��� h � &(��� h_:_���c9� � ?&(��� ∧ ��'; ��9(, ��@_:_��; �c9�  

In the above, note the correspondence to the ATMS propagation rules. The 

definition of &(/���� refers to the combination of the assumptions of two ATMS clauses, 
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one describing the persistence of p and the other describing the action adding p. Delete 

effects are false (failed to be true) under all interpretations, which corresponds to the lack 

of clauses that can prove the proposition in the previous section. Propositions given as 

possible delete effects have their faults defined as any faults previously affecting the 

proposition or a fault introduced when it is in fact deleted. Propositions not affected by 

the action persist their faults, corresponding to the persistence clauses in the previous 

section. Any interpretation in which one of the action’s preconditions are unsatisfied will 

cause the action to fail, and any interpretation in which the most previous action or any 

prior action fails will cause the plan to fail. 

Finally, to count the number of interpretations under which a plan fails, we count 

the models of &��9� � &���9��, which expresses the interpretations wherein any of the 

actions did not have its preconditions satisfied or the goal was not satisfied. Recall that 

we require valid plans to achieve the goal under the optimistic semantics, so we are 

guaranteed that if pre���� ⊆ $�, the plan will succeed in at least one interpretation of the 

incomplete domain. 

As an aside, it is possible to determine the interpretations that fail to successfully 

execute the plan up to and including time t by computing &(��9(�. We also note that as 

long as n is the earliest time that the goal is achieved, we are guaranteed that &(��9(� [
&��9�. That is, because �9� is required in the plan, the definition of &(��9(� for , �
0, … , . 3 1 may include failures due to relevant or irrelevant (not directly or indirectly 

causally supporting the goals) prior actions. 

We illustrate the fault propagation for the example plan, as follows. 
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Example 2. Consider the fault propagation required for our example plan 

�
7, j6, k9�. Initially, the explanation for the initial action is ����
7��� �l, and state 

#! � ��, �� is labeled as follows: 

&%��� �l 

&%��� �l 

&%��� � � 

&%��� � � 

After applying �9 to $%, we attain the state $� � ��, �, �� with the following explanations: 

&%��9� = &%��� h &%��� h ?&%��� ∧ pre; ��9, ��@ 

 = lhlh ?� ∧ pre; ��9, ��@ 

 = pre; ��9, �� 

&���� = &%��� h del< ��9, �� 

 = lh del< ��9, �� 

 = del< ��9, �� 

&���� = &%��� �l 

&���� = &%��� ∧ X&%��9� h V�&&< ��9, ��Y 

 = � ∧ Xpre; ��9, �� h Vadd< ��9, ��Y 

 = pre; ��9, �� h Vadd< ��9, �� 

&���� = &%��� � � 
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Applying �= to $� results in the state $F � ��, ��, with the explanations: 

&���� = &%��9� h &���� � pre; ��9, �� h del< ��9, �� 

&F��� = � 

&F��� = &���� h del< ��=, �� 

 = lh del< ��=, �� 

 = del< ��=, �� 

&F��� = &���� ∧ &���=� 

 = Xpre; ��9, �� h Vadd< ��9, ��Y ∧ Xpre; ��9, �� h del< ��9, ��Y 

 = pre; ��9, �� h XVadd< ��9, �� ∧ del< ��9, ��Y 

&F��� = &���� � � 

Finally, after applying �̃ to $F, we compute $G � ��, �, �� and the explanations: 

&F��̃� = &�?�=@ h &F��� h ?&F��� ∧ pre; ��̃, ��@ 

 = Xpre; ��9, �� h del< ��9, ��Y h mpre; ��9, �� h XVadd< ��9, �� ∧ del< ��9, ��Yn
h Xdel< ?�=, �@ ∧ pre; ��̃, ��Y 

 = pre; ��9, �� h del< ��9, �� h Xdel< ?�=, �@ ∧ pre; ��̃, ��Y 

&G��� = &F��� � � 

&G��� = &F��� � del< ��=, �� 

&G��� = &F��� � pre; ��9, �� h XVadd< ��9, �� ∧ del< ��9, ��Y 

&G��� = &F��� ∧ &F��̃� 
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 = pre; ��9, �� h del< ��9, �� h Xdel< ?�=, �@ ∧ pre; ��̃, ��Y 

The plan results in the following failure diagnosis: 

&��9� � &G��9G� � &G��� h &F��̃� � pre; ��9, �� h del< ��9, �� h Xdel< ?�=, �@ ∧ pre; ��̃, ��Y 

Forward State-Space Planning 

DeFAULT is a forward state-space planner that is based on Downward, and its 

greedy best first search algorithm. DeFAULT compares partial plans only in terms of 

their heuristic value (described in the next section). While DeFAULT does not compare 

the faults introduced by plan prefixes leading to states on the fringe of the search, these 

faults are used in the heuristic computation. 
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PLANNING GRAPH FAULT PROPAGATION 

Similar to propagating faults in a plan, we can propagate faults in the relaxed 

planning problem to compute a heuristic measure of the faults affecting goal 

achievement. We start with a brief description of heuristics in complete domains. 

Planning Graph Heuristics 

A relaxed planning graph is a layered graph of sets of vertices 

��(, �( , … , �(/�, �(/�/��. The planning graph built w.r.t. a state $( defines �( �
$(, �(/q � ��|��'��� ⊆ �(/q, � : � 2 �����, and �(/q/� � ��|� : �(/q, � : add����, 
for w � 0, … , �. The set ���� includes noop actions for each proposition, such that 

���� � O�_P� : �, pre?�_@ � add?�_@ � �, del?�_@ � �Q. A simple heuristic, o/ for 

the number of actions to achieve the goal pre���� from $( is equivalent to the minimum 

level k where the goal propositions are reached, o/ � min�:�⊆��e� w. The o�� heuristic 

[17] solves this relaxed planning problem by choosing actions from �(/� to support the 

goals in �(/�/�, and recursively for each chosen action’s preconditions, counting the 

number of chosen actions. 

Diagnoses 

When planning in incomplete domains, we would like to minimize the number of 

interpretations of the incomplete domain under which the plan fails. A heuristic should 

measure and attempt to minimize the number of failed interpretations in the estimated 

suffix of a plan. As in the state space, we propagate information about failed 
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interpretations in the planning graph to estimate the quality of a plan completion starting 

in the current state. 

Propagating faults in the planning graph resembles propagating faults over the 

plan. The primary difference is how we reconcile the faults for a proposition when the 

proposition has multiple sources of support. In a level of the relaxed planning graph, 

there are potentially many sources of support for a proposition, and we simply select the 

supporter with the preferred set of faults, either a fewer number of models or preferred set 

of prime implicants. The chosen supporting action, denoted ��(/q���, determines the 

faults affecting a proposition p at level, � w � 1. 

A relaxed planning graph with propagated faults is a layered graph of sets of 

vertices of the form ?��(, ��(, … , ��(/�, ��(/�/�@. The relaxed planning graph built w.r.t. a 

state $̃( defines ��% � $̃(, ��(/q � O�Ppre��9� ⊆ ��(/q, �9 : �8 2 ����Q and  

��(/� � O�P�9 : ��(, � : add��9� 2 add< ��9�Q, for w � 0, … , �. Much like the successor 

function used to compute next states, the relaxed planning graph assumes an optimistic 

semantics for action effects by adding possible add effects to proposition layers, but, as 

we explain below, it associates faults with the possible adds. Each proposition p has 

associated faults, denoted &�(���. Each action also has associated faults, denoted &�(/q��9�. 

The faults &�(��� affecting a proposition are defined by its supporting action ��(/q���, 

such that &�(��� � &(���, and for w � 0,1, … &�(/q/���� � 

] ^ &�(/q?��(/q���@_:���?c�de��_�@ g ∧ ] ^ &�(/q?��(/q���@ h Vadd< ���(/q���, ��
_:���< ?c�de��_�@ g 
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and the faults affecting an action are defined by the faults for the action's preconditions,  

&�(/q��9� � ] � &�(/q���_:`ab�c9� g h ] � &�(/q��� ∧ pre; ��9, ��_:`ab; �c9� g 

Propositions in the planning graph initially have the same faults associated with 

them as in state $̃( and are defined by &((·). Every action in every level k of the planning 

graph can be invalidated by any fault affecting its preconditions, or by open precondition 

faults. Beyond the initial level, faults affecting a proposition include faults that invalidate 

its supporting actions or are associated with unlisted effects supporting the proposition. 

We note that the rules for propagating faults in the planning graph differ from the 

rules for propagating faults in the state space. In the state space, the action failure 

explanations include explanations for any prior action failing. In the relaxed planning 

problem, the action failure explanations include only explanations affecting the action’s 

preconditions, and not prior actions. In the relaxed planning problem, it is not clear which 

actions will be executed prior to achieving a proposition because many actions may be 

used to achieve other propositions at the same time step. 

Heuristic Computation 

We terminate the relaxed planning graph expansion at the level , � w � 1 when 

one of the following conditions is met: i) the planning graph reaches a fix-point where the 

labels do not change, &�(/q��� � &�(/q/���� for all p, or ii) the goals have been reached at 

, � w � 1 3 � (c levels after the goals are first reached) and the fixed point has not yet 
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been reached. The heuristic o~� measures the number of interpretations that fail to reach 

the goals in the last level such that o~� � P{?� &�(/�/�����:`ab�c9 � @P, where � � 1 is 

the last level of the planning graph. Similarly, o~¡¢stores the set of prime implicants 

� &�(/�/�����:`ab�c9 � , and uses the preference relation for prime implicants to compare 

search nodes. The o~�� heuristic makes use of the chosen supporting actions ��(/q��� for 

each proposition that requires support in the relaxed plan, and, hence, measures the 

number of actions used while attempting to minimize fault. DeFAULT uses both 

heuristics, treating o~�� as the primary heuristic and using o~� or o~¡¢ to break ties. 
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EMPIRICAL EVALUATION  

The empirical evaluation is divided into three sections: the domains used for the 

experiments, the test setup used, and a discussion of the results. We compare DeFAULT 

with a control planner that uses the same search algorithm and implementation, but uses 

the FF heuristic to guide search. We attempted but do not compare with the PFF [18] 

CPP planner because of some unresolved stability issues. The questions that we sought to 

answer include:  

• Can a classical planner (that ignores action incompleteness) find reasonable 

quality solutions in incomplete domains? 

• How well does a planner that counts failure explanation models scale? 

• Can a planner that counts prime implicants in failure explanations scale well and 

find high quality solutions? 

• Does bounding the size of prime implicants lead to better planner performance 

without harming plan quality? 

Domains 

We use five domains in the evaluation: a modified Pathways, Bridges, Blind 

Navigator, a modified PARC Printer, and BarterWorld. In Pathways, we derived multiple 

instances by randomly injecting incomplete domain features, with probabilities 0.0, 0.01, 

0.25, 0.5, 0.75, and 1.0 for each type of fault and for each action. In the other domains, 

we injected incomplete domain features with a probability of  0.5. All results are the 

average of ten random instances of each problem. The Pathways domain from the 
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international planning competition involves actions that model chemical reactions in 

signal transduction pathways. Pathways is a naturally incomplete domain wherein the 

lack of knowledge of the reactions is quite common because they are an active research 

topic in biology. We introduced each type of incompleteness to model incomplete 

knowledge of products required, created, or destroyed by reactions. 

The Bridges domains consist of a traversable grid, and the task is to find different 

treasure at each corner of the grid. There are three versions in which each subsequent 

version has an additional type of incompleteness. In Bridges1, a bridge might be required 

to cross between some grid locations and can cause open precondition faults. In Bridges2, 

many of the bridges may have a troll living underneath that will take all the treasure 

accumulated, and cause a possible clobberer fault. In Bridges3, some of the corners may 

give additional treasures, causing unlisted effect faults. 

In Blind Navigator we must navigate from one corner of a grid to the opposite 

corner. Unfortunately, when traveling from one square to the next, there is a possibility of 

getting lost (a possible clobberer fault). In order to reorient oneself, it is possible to 

observe two types of landmarks that are either highly or lowly observable. A highly 

observable landmark supports certain localization, and a lowly observable landmark may 

support localization (an unlisted effect fault). 

The PARC Printer domain from the international planning competition involves 

planning paths for sheets of paper through a modular printer. A source of domain 

incompleteness is that a module accepts only certain paper sizes, but its documentation is 
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incomplete. Thus, paper size becomes a possible precondition to actions using the 

module. 

The Barter World domain involves navigating a grid and bartering items to travel 

between locations. Items are available at different locations and may be required to travel 

between other locations. The domain is incomplete because some of the actions that 

acquire certain items are not always known to be successful (unlisted effects), and 

traveling between some locations may require certain items (possible preconditions) and 

may result in the loss of an item (possible delete). The instances involve different size 

grids and number of items. 

Test Setup and DeFAULT Implementation 

The tests were run on a machine running Linux with a 3 Ghz Xeon processor, a 

memory limit of 2GB, and a time limit of 20 minutes per run. All code (aside from 

POND) was written in Java and run on the 1.6 JVM. Both DeFAULT and the control 

planner shared the same greedy best first search implementation that uses deferred 

heuristic evaluation and a dual-queue for preferred and non-preferred operators [19]. 

Both planners also used the same planning graph implementation. The planners were 

compared by the proportion of interpretations of the incomplete domain that achieve the 

goal and total planning time in seconds. The plots in the following section depict these 

results, using the cumulative percentage of successful domain interpretations and 

planning time to identify the performance over all problems in a domain. Those planners 

that solve more problems can be easily identified, and their overall relative plan quality 

and efficiency are evident by the cumulative plots. 
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The DeFAULT planner was implemented in Java, and each of the configurations 

of the planner shared common source code, with the exception of their respective 

techniques for fault propagation in the state space and heuristic computation. 

The first configuration, which we refer to as DeFAULT-FF, does not compute 

fault information, making it largely a classical planner that uses the FF heuristic. The one 

aspect of the DeFAULT-FF configuration that is not common to classical planners is how 

it assumes the optimistic semantics for the incomplete domain (ignoring possible 

preconditions and delete effects, but assuming possible add effects will occur). 

The second configuration, based on the prime implicant representation of fault 

diagnoses, is simply referred to as DeFAULT-k, where k is the bound on the cardinality of 

the prime implicants. We use values of k from one to three. The implementation of the 

prime implicant fault computations is largely straightforward, i.e., does not employ any 

non-trivial optimizations. The required conjunction and disjunction operations combine 

the conjunctive clauses in the standard way, and remove clauses that are subsumed or 

exceed the cardinality bound. 

Based on counting models (domain interpretations), the third configuration is 

called DeFAULT-All to highlight the fact that it does not approximate the representation 

of the faulty domain interpretations. Its representation of the interpretations makes use of 

the JDD package for OBDDs to implement conjunction, disjunction, and model counting. 
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Results 

We first discuss the results in each domain, and then conclude this section with a 

discussion of the trends seen across the domains. In several of the domains, we discuss 

alternative versions of the domain that include increasingly more incompleteness 

(measured by the number of incomplete features). In all of the results plots, the legend 

refers to a configuration of the planner X, denoting DeFAULT-X (as described above). 

Blind Navigation 

Figure 2 shows that the DeFAULT-FF configuration finds plans of comparable 

quality to the configurations that reason about incompleteness only in the smallest 

instances (instances 1-10, which are 2x2 grids). 

Each additional ten instances increase the grid size to 4x4, 8x8, and 16x16. The 

DeFAULT-FF, and DeFAULT-1, -2, or -3 configurations cannot solve instances bigger 

than 8x8, due to the importance of reasoning about incompleteness in this domain. It 

 

Figure 2: Cumulative quality and time comparison in Blind Navigation domain. 
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appears that approximating the failed interpretations of the domain does not harm the 

quality of plans, but it does limit the scalability. 

Parc Printer 

Figure 3 shows reasoning about incompleteness in the Parc Printer domain is 

important to finding high quality plans, but not necessarily important to finding plans. 

The DeFAULT-FF configuration scales well, but finds the worst quality plans. The 

DeFAULT-1, -2, and -3 configurations find the highest quality plans (which are identical 

quality), but do not scale as well as DeFAULT-All. The difference between model 

counting and prime implicant counting in this domain may be attributed to the potentially 

efficient OBDD representation of the failed domain interpretations, but fortuitous prime 

implicant representation that helps identify other, better plans. 

 

 

Figure 3: Cumulative quality and time comparison in Parc Printer domain. 
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Bridges 

Figure 4 shows results for all three versions of the domain combined, and Figures 

5, 6, and 7 show the results for the respective versions of the domain. Common to all 

versions of the domain, DeFAULT-FF finds the poorest quality plans, but surprisingly is 

not overly superior in terms of planning time and problems solved. In all versions of the 

domain, the DeFAULT-1 configuration solves the most problems, and in the third version 

of the domain it has the best overall planning time. However, considering more faulty 

interpretations, either by using DeFAULT-1, -2, or All, does improve plan quality at the 

expense of scalability and planning time. Interestingly, the trends remain the same across 

the versions of the domain, with DeFAULT-FF performing progressively worse as we 

include different types of incomplete domain features. 

 

 

 

Figure 4: Cumulative quality and time comparison in all three version of the Bridges 
domain. 
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Figure 5: Cumulative quality and time comparison in Bridges1 Domain. 

 

 

 

 

Figure 6: Cumulative quality and time comparison in Bridges2 Domain. 
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Figure 7: cumulative quality and time comparison in Bridges3 Domain. 

Barter World 

Figure 8 shows the combined results for four versions of the Barter World 

domain, which are shown individually in Figures 9, 10, 11, and 12, which respectively set 

the probability of the domain generator introducing incomplete features to 0.25, 0.5, 0.75, 

and 1.0. 

The trend identified by Figure 8 is that failing to reason about incompleteness 

permits greater scalability but poor quality plans, and as the reasoning about 

incompleteness strengthens, so does the plan quality (but at the expense of scalability). 

As the number of incomplete features grows across Figures 9 to 12, we see the same 

trend exacerbated: weaker reasoning about incompleteness scales better, and stronger 

reasoning finds better quality plans. 
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Figure 8: Cumulative quality and time comparison in all instances of Barter World 
comain. 

 

 

 

 

Figure 9: Cumulative quality and time comparison in 0.25 density Barter World comain. 
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Figure 10: Cumulative quality and time comparison in 0.5 density Barter World domain. 

 

Figure 11: Cumulative quality and time comparison in 0.75 density Barter World domain. 

 

Figure 12: Cumulative quality and time comparison in 1.0 density Barter World Domain. 
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Pathways 

Figure 13 shows the combined results for four versions of the Pathways domain 

that set the probability of generating incomplete domain features to 0.25, 0.5, 0.75, and 

1.0. The results for each of the settings are shown individually in Figures 14, 15, 16, and 

17. 

The combined results demonstrate that the techniques for reasoning about 

incompleteness find similar quality plans, but the weaker the technique, the lower its 

planning time. As the probability of including incomplete features increases, the stronger 

reasoning about incompleteness does not scale as well, but the quality of the plans found 

by the techniques is similar. 

 

 

Figure 13: Cumulative quality and time comparison in Pathways domain. 
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Figure 14: Cumulative quality and time comparison in 0.25 density Pathways domain. 

 

Figure 15: Cumulative quality and time comparison in 0.5 density Pathways domain. 

 

Figure 16: Cumulative cuality and time comparison in 0.75 density Pathways domain. 
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Figure 17: Cumulative quality and time comparison in 1.0 density Pathways domain. 

Discussion 

As the strength of the reasoning about incompleteness increases from ignoring 

incompleteness to tracking increasingly higher cardinality prime implicants, to tracking 

all interpretations of an incomplete domain, we tend to see increasing plan quality, in 

terms of the number of domain interpretations that will successfully execute the plan and 

achieve the goal. We also see scalability decrease as a result. Reasoning about prime 

implicants tends to be a useful middle-ground whereby plans have good quality, and 

planner scalability is best. 
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RELATED WORK 

Planning with faults is noticeably similar to planning with incomplete information 

[12], wherein action descriptions instead of states are incomplete. As we have shown, 

incomplete domains can be translated to CPP domains, and planners such as POND and 

PFF [18] are applicable. However, while the translation is theoretically feasible, practical 

issues regarding numeric precision prohibit effective use of existing planners. 

Our investigation is an instantiation of model-lite planning [1]. Constraint-based 

hierarchical task networks are an alternative, pointed out by [1], which avoid specifying 

all preconditions and effects through methods and constraints that correspond to 

underlying, implicit causal links. 

As previously stated, this work is a natural extension of the [5] model for 

evaluating plans in incomplete domains. Our methods for computing faults are slightly 

different in that we compute faults in the forward direction and are more specific about 

which faults occur. In addition to calculating faults of partial plans, we have also 

presented a relaxed planning heuristic informed by fault. 

Prior work of [20] also addresses planning with incomplete models, but focuses 

on online planning and execution to learn the model, similar to model-based 

reinforcement learning. We differ in that we assume no feedback from the environment 

and attempt to find the best plan possible offline. However, the plans found by DeFAULT 

have the potential to guide either knowledge engineers or experimentation. 
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CONCLUSION 

We have presented the first work to address planning in incomplete domains as a 

heuristic search to find mostly-correct plans. Our planner, DeFAULT, i) performs forward 

search while maintaining sets of plan faults, and ii) estimates the future faults incurred by 

propagating faults on planning graphs. We have shown that, compared to a planner that 

essentially ignores aspects of the incomplete domain, DeFAULT is able to scale 

reasonably well and find much better quality plans. We have also shown that representing 

explanations of plan failure with prime implicants leads to better scalability than a 

complete representation using OBDDs and counting models. 
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