View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by DigitalCommons@USU

Utah State University

Digital Commons@USU

All Graduate Theses and Dissertations Graduate Studies

5-2012

Planning in Incomplete Domains

Jared William Robertson

Follow this and additional works at: https://digitalcommons.usu.edu/etd

b Part of the Computer Sciences Commons

Recommended Citation

Robertson, Jared William, "Planning in Incomplete Domains" (2012). All Graduate Theses and
Dissertations. 1435.

https://digitalcommons.usu.edu/etd/1435

This Thesis is brought to you for free and open access by

the Graduate Studies at DigitalCommons@USU. It has

been accepted for inclusion in All Graduate Theses and A

Dissertations by an authorized administrator of /\])
DigitalCommons@USU. For more information, please IQ’ m UtahStateUniversity

contact digitalcommons@usu.edu. (= MERRILL-CAZIER LIBRARY

https://core.ac.uk/display/32550022?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd?utm_source=digitalcommons.usu.edu%2Fetd%2F1435&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.usu.edu%2Fetd%2F1435&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd/1435?utm_source=digitalcommons.usu.edu%2Fetd%2F1435&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/

Approved:

PLANNING IN INCOMPLETE DOMAINS

by
Jared Robertson
A thesis submitted in partial fulfillment
of the requirements for the degree
of
MASTER OF SCIENCE
in

Computer Science

Dr. Daniel Bryce
Major Professor

Dr. Vicki H. Allan
Committee Member

Dr. Nicholas Flann
Committee Member

Dr. Mark R. McLellan
Vice President for Research and
Dean of the School of Graduate Studies

UTAH STATE UNIVERSITY
Logan, Utah

2012

Copyright © Jared Robertson 2012
All Rights Reserved

i
ABSTRACT

Planning in Incomplete Domains

by

Jared Robertson, Master of Science

Utah State University, 2012

Major Professor: Dr. Daniel Bryce
Department: Computer Science

Engineering complete planning domain descriptisnsfien very costly because
of human error or lack of domain knowledge. Whilany have studied knowledge
acquisition, relatively few have studied the systh®f plans when the domain model is
incomplete (i.e., actions have incomplete precamaktor effects). Prior work has
evaluated the correctness of plans synthesizedasbggarding such incomplete features,
but not how to synthesize plans by reasoning ath@uincompleteness. In this work, we
describe several techniques for reasoning thastaite account action incompleteness to
increase the number of interpretations under wthetplans will succeed. Among the
techniques, we show that representing explanatbpkan failure with prime implicants
provides a natural approach to comparing plansolomting prime implicants instead of
models — leading to better scalability and complarghality plans.

We present and empirically evaluate a forward Istiarsearch planner, called
DeFAULT, that synthesizes plans by propagating informaaioout faults due to
incompleteness both within the state space antetaged planning space. We compare

DeFAULT with a control planner that uses the fast forw&ig) heuristic (measuring plan

length and ignoring incompleteness). The resultsvsthatDe FAULT i) scales
comparable to the planner using the FF heuristialé@finding better solutions), and ii)
scales better when counting prime implicants thadets.

(71 pages)

PUBLIC ABSTRACT

Planning in Incomplete Domains

Automated planning in computer science consistsxding a sequence of actions
leading from an initial state to a goal state. PFeagho have expert knowledge of the
specific problem domain work with experts in auté@daplanning to define the domain
states and actions. This knowledge engineeringnesjto create complete and correct
domain descriptions for planning problems is oftery costly and difficult. Our goal
with incomplete planning is to allow people to pram domains without the need for
planning experts.

Throughout the process of instruction of intelligeystems, teachers can often
leave out whole procedures and aspects of actiseriggions. In such cases, the
alternative to making domains complete is to plkauad the incompleteness. That is,
given knowledge of the possible action descriptioves seek out plans that will succeed
despite any incompleteness in the domain formulatio

A state in a domain consists of a set of propasstihat can be either true or false.
Actions in a domain require specific propositioo$e true for the action to occur.
Actions then add and remove propositions from th&edo create a subsequent state. A
valid plan consists of a sequence of actions #tatting with the initial state, change to
match the goal state. An incomplete domain conthiesame qualities as a complete
domain, with the additional abilities of actionspossibly require a proposition to be true

to initiate the action, as well as possibly addang possibly removing propositions in the

Vi
subsequent state. Actions that have possible pdgcams and effects are referred to as
incomplete actions.

Because no prior work exists for the purpose ofigng comparisons, we
compare our incomplete action planner, which we@aFAULT, with a traditional
planner that assumes all good possibilities anldatbpossibilities will occur. DeFAULT
finds much better quality plans than the traditigianner while maintaining similar

speed.

vii

ACKNOWLEDGMENTS

| would like to thank the eternally patient Dr. DalrBryce for his encouragement
and mentoring. | never would have learned as madhave without your vast
knowledge and guidance. | also thank my committeenbers for their willingness to
participate in this process.

| give special thanks to my family, especially esifically my father and my
wife, for their encouragement, moral support, aatigmce.

This work was supported by the DARPA Bootstrappedrhing contract HR001-
07-C-0060.

Jared Robertson

viii

CONTENTS
AB ST R A C T oo ettt e ettt e e e et e et e e e e e e e nnnr e e e e ena s iii
PUBLIC ABSTRACT .ot emmmm et e e e e e e eenmmn e e e e eenes %
ACKNOWLEDGMENTS ...ttt e e e e e e e eeea e aeaaaeeeees Vil
LIST OF TABLES ettt e et e e e e e e et e e e e e e eena e as X
LIST OF FIGURES ... e e e e e nnnaas Xi
LIST OF SYMBOLS, NOTATION, DEFINITIONS, ETC. ..o Xii
INTRODUGCTION ...ttt e e e e e e e e e e e e e e e n e e e 1
Interpretations of INCOMPIELENESSooi e 3
Failure Explanations and COUNTING o 3
PLANNEIS ..ttt e e e e e 5
BACKGROUND AND REPRESENTATIONccoiiiii e 7
Complete Planning DOMAINS........ccoooiiiis e e e s 7
Incomplete Planning DOMAINSuun e eeeeeeee e e eeeee e 9

COMPARISON OF POSSIBLE ACTION FEATURES WITH LOCALLOSED

WORLDS ...t e ettt e et e et e aeaeeaeaeeeee e e e e e nnnnnreeaaaaaaaeaaaaaaaaaas 14
DIAGNOSING FAULTS IN PLANS FOR INCOMPLETE DOMAINS..........ccccvvueee. 17
Model-Based DIAgNOSISccuuuuuuuuummii e e e e et eeeeeeetabtiiisa e e e e e e e e e e e aaaaaeeaaaaeeeees 18
Diagnosing Plan Faults in Incomplete DOMaiNS...........uuvueiiiiiniiineeeeeeeeeeeeeeiiiieees 20
Plan SyStemM DeSCHIPLION.uuuiiiiee e ettt e e e e e e e e e e eeeeeeeaaeaes 22
Truth MainteNanCe SYSIEIMScceveiviiiiiiiiiiee e e e eeeee e 26

Counting Models and DIiagNOSESuiiiiiceeeeeeiiieeieeeeeeee e eeeee e 29

FORWARD STATE SPACE PLANNING WITH FAULTSoceeiiiiiiiiieeee 32
Fault Propagationuuuiueeeiicceeeeieisss s e e e e e e e e e e e e e e s a e e e e e e e e e 33
Forward State-Space PIanNingcommmmeeeeerrnnmminianeeeeeeeeeseeresessssimnnnnnennn. 37

PLANNING GRAPH FAULT PROPAGATIONoiiiiiiiiciiiiiieeeeee e 38
Planning Graph HEUIISTICSccooviiiieiiiieeeeee et e e e e e e e nnaeee e e e e e eees 38
9=V | 10 =S 38
HeUriStiC COMPULALIONuuuuuiiiii s s e e e e e e e e e e e e e e e eeeeeeeebenen s as 40

EMPIRICAL EVALUATION ..ottt ettt e e e 42
300 0 =V LS PPPPPPPPPPPP 42
RESUILS ...ttt e e e e e e e e e e r e e e e e e e e e e e e e a e e 46

2] 11T I AN F= AV o F= o) o PSR 46
o T (ol o 1] 1] OSSP a7
2 1T [0 =SS 48
Barter WOII ... e e e e e e e e e eeaerneee 50
PatNWAYSo 53
Do U 7] o o 1SR 55
RELATED WORK ...ttt 4444 bbbttt e et e e e e e e e eneesabeeneeee e 56
{0]\ I8 15 []\ P 57

REFERENCES e 58

LIST OF TABLES
Table Page
Examples of Comparing Representations............ccevvvveviiiiiiiiiniieeeeeeeeeeeeeeeeveeeeeeee 15
The Incomplete Plan System Descripti®I(7T)covvvvveeveiiiiiiiiiiiieee e eeeeeeeeeeeeeee e 22

Figure

1

2

10

11

12

13

14

15

16

17

Xi

LIST OF FIGURES

Page
Fault labels and proof trees for the system dasam of plana, b, ¢ccccvvvvvvvirnnnnnns 25
Cumulative quality and time domparison in Blindwgation domainccceee.... 46
Cumulative gquality and time comparison in Paiater domaincccceevvvevvvennnns 1.4
Cumulative quality and time comparison in aledhversions of the Bridges domain 48

Cumulative quality and time comparison in Bridgeemain..............cccccccvvveeeeeenn. 49.
Cumulative quality and time comparison in Bridggdemain.......................cccoeeee. 49.
Cumulative quality and time comparison in Bridgj@emain..............cccccccvvvvvenenenn. 50.
Cumulative gquality and time comparison in altémees of Barter World domain 51
Cumulative quality and time comparison in 0.2Bgiy Barter World domain.............. 51
Cumulative quality and time comparison in 0.6giy Barter World domain................ 52
Cumulative quality and time comparison in 0.@&gity Barter World domain.............. 52
Cumulative quality and time comparison in 1.0giy Barter World domain................ 52
Cumulative quality and time comparison in Patyssdomain..............cceeeeeeeeeeeeennn. h3.
Cumulative quality and time comparison in 0.28gity Pathways domain 54
Cumulative quality and time comparison in 0.5giy Pathways domain 54
Cumulative quality and time comparison in 0.@&gity Pathways domain 54

Cumulative quality and time comparison in 1.0giy Pathways domain 55

Xii

LIST OF SYMBOLS, NOTATION, DEFINITIONS, ETC.

D= 1] o1 (o] o 1 TP PO PPPPPPPPPPTPPRN 7
= 11 4] 0] = 0 8
D= 1] 01 (o] o 1P PO PPPPPPPPPPTPPRN 8
D= 1] 01 (o] 1 TP PO PPPPPPPTPPN 9
DEFINITION 4 ...ttt e e e e e e e e e e e e 11
D= 1] 0110 I TP PP UPPPPPPPPPPPPPPRP 11
DEFINITION Bttt e e e e e e e e e e e e e e e e e 12
TREOIEIM 7.t eeeeeeeee e 23

EXAMPIE 2.ttt 35

INTRODUCTION

The knowledge engineering required to create commaled correct domain
descriptions for planning problems is often vergtoand difficult [1, 2]. Machine
learning techniques have been applied with someessd2, 3], but still suffer from
impoverished data and limitations of the algoritHdjs In particular, we are motivated
by applications in instructable computing [4] whara domain expert teaches an
intelligent system about a particular domain, taut often leave out whole procedures
(plans) and aspects of action descriptions. In sasks, the alternative to making
domains complete is to plan around the incomplet®nEhat is, given knowledge of the
possible action descriptions, we seek out planswilbsucceed despite any (or most)
incompleteness in the domain formulation.

While prior work [5] has categorized faults to angk correctness and described
plan quality metrics in terms of the faults (essdlytsingle-fault diagnoses of plan
failure [6, 7]), no prior work has sought to deligiely synthesize low-fault plans.
Specifically, the authors of [5] (henceforth abba¢ed, GL) identify four types of plan
faults: open preconditions (due to incomplete pnelit@ns), possible clobberers (due to
incomplete delete effects), unlisted effects (dumtomplete add effects), and false
preconditions. GL develop an algorithm that stegskivard through the plan to identify
the “critical faults” — those instances whereinamplete domain features can cause plan
failure. For example, a possible clobber is aaaltfault when (if it is truly a delete
effect) it threatens a precondition or goal. Thenber of critical faults is an important

measure of plan quality/correctness, that, unfatielly, no known planners seek to

2
minimize (aside from our prior work [8] on singlatiit planning, upon which this work
is based).

Consider the following action that is taken froomadified version of the

International Planning Competition (IPC) [9] PARGnper domain:

(:action Ht nOver Bl ack- Move- A4
- paraneters (?sheet - sheet t)
- precondition (and (clear) (Aval | abl e Ht mOver Bl ack- RSRC)
(Sheet si ze ?sheet A4)
(Location ?sheet HtnmOverBl ack_Entry-
EndCap_Exit))
ceffect (and (not (Avail abl e Ht mOver Bl ack- RSRC))
(Location ?sheet Ht nOverBl ack_Exit -
Down_TopEnt ry)
(not (Location ?sheet H nOverBl ack_Entry-
EndCap_Exit))
(Avai | abl e H nmOver Bl ack- RSRC))
: poss-effect (and (not (clear))))

The action models a modular printer componentghats on a sheet of A4-sized
paper. The action is incomplete because it hassilple effect that the component will
become jamme(inot (cl ear)). The intuition behind the action is that the
component manufacturer did not provide completeifipations, and it is unknown if
feeding an A4 sheet will cause a paper jam. Naedh incomplete action is different
from a non-deterministic action because each agpdic of the incomplete action has the
same effect at runtime; however, it is not cleaatthe effect will be at planning time.
The action incompleteness can cause plan failgra the case of our example, by
threatening the precondition of a later action.(dlge preconditioificl ear) is

threatened in a second application ofttheOver Bl ack- Move- A4 action).

Interpretations of Incompleteness

A pessimistic approach to reasoning about incoragetions might assume that
possible delete effects will always occur. Plansibunder this pessimistic interpretation
will be correct despite any action incompleteness are likely to be few or nonexistent.
In the PARC printer example, a pessimistic inteigdren will likely lead to proving that
no plan exists, even though it is possible thasitteon does not have the delete effect on
(cl ear) . Alternatively, an optimistic interpretation migisssume that no possible
delete effect occurs, in which case the plannergaore thal{ cl ear) may be deleted.
The optimistic interpretation is equally flawed base the action may actually delete
(cl ear) . Instead, we adopt a cautiously optimistic intetation wherein, like the
optimistic interpretation, we assume that possilelete effects do not occur, but we also
temper our optimism. We compute an explanatiorcéses under which each proposition
that is optimistically true might be false. For exae, after applying the action above, we
would assert thatcl ear) is true, subject to the assumption that ear) is not a
delete effect of the action. Under these cautioaplymistic semantics, we can determine
which interpretations of incomplete actions wikué in failed goal achievement by
inspecting the assumptions under which the goal$adse. Plans that fail under fewer

interpretations are preferred.

Failure Explanations and Counting

We take three qualitatively different approachesetmrding a failure explanation

for each proposition established at different tilogs plan. The first, our control,

amounts to the optimistic interpretation by recogdno explanation for the failure to
achieve a proposition. The second and third appesacepresent failure explanations
with propositional sentences, whose models correspm interpretations of the
incomplete actions. The second approach reliestoitions from model-based diagnosis
to represent each failure explanation by a setagfribses (each diagnosis is a
conjunction of incomplete action features — i.gyimne implicant). The third approach
represents failure explanations by ordered binagysibn diagrams (OBDDs). The
second and third approaches provide a represemt&iitable for counting interpretations
of the incomplete action features (i.e., propos#ianodels) under which a proposition is
achieved or not. The primary difference is that slasbunting with prime implicants is
intractable [10], but polynomial in the size of@BDD [11]. While we use each of the
three approaches during plan synthesis to compans fin varying capacities), we use
the third to provide a final assessment of a plguality: the number of interpretations of
the incomplete actions under which the plan fdilsat is, we describe several heuristic
techniques to speed-up plan synthesis that arel lmasa particular representation of the
failure explanations, but compare the resultingnphaith a single, non-heuristic method.
For example, the first approach is entirely heiarisecause it completely ignores
failure explanations. In the second approach, \weesent the failure explanations by
prime implicants, and instead of counting models,count the number of prime
implicants. Counting prime implicants is a compuatally inexpensive heuristic that
assumes fewer diagnoses means fewer failed intatjores of the incomplete actions.

The third method counts the actual number of fadletibn interpretations by representing

them as an OBDD (which can be exponential-sized)panforming OBDD model
counting (which is polynomial in the OBDD size). Wlaim that counting diagnoses
(prime implicants) is more computationally feasitilan counting OBDD models and the
resulting plans are of similar quality, and thatdagng incompleteness altogether leads to
poor quality plans.

Our claims are based upon GL'’s focus on countiptaa’s critical risks as a
measure of its quality. We observe that GL’s dé&bni of critical risks is equivalent to
computing single-fault diagnoses, which allowsagéneralize their notions to multi-
fault diagnoses. Intuitively, the more diagnosesplan failure, the fewer interpretations
of the incomplete domain to achieve the goal. Ndlyira single-fault diagnosis covers
more interpretations than a double- or triple-fasidt we count not just the number of
diagnoses, but those of different cardinality. Wess that counting diagnoses is an
approximation to counting models, but it nevertegleads to more efficient planners

that find comparable quality solutions.

Planners

We present a forward heuristic planner, calDedFAULT, that propagates failure
explanations in the state space and relaxed plgmoblemsDeFAULT associates a set
of explanations with each time step, i.e., eactestathe search space or each planning
graph layer in the relaxed planning problédaFAULT’s heuristic biases search toward
plans that will fail in the fewest interpretatioofsthe incomplete domain as possible.

Because no prior work exists for the purpose ofiengb comparisons, we not only

compareDeFAULT with a planner that uses the FF heuristic andrigmdomain
incompleteness, but we also attemptare fair comparison with a conformant
probabilistic planner.

Our results indicate th&eFAULT can find much better quality plans than a
planner that ignores incompleteness. In the folhgwive provide background on the
representation of the planning problems studietiseussion of languages used to
capture incomplete actions, a formulation of falexplanations, a definition of
diagnosis and model counting, a planner basedilumegpropagation, a relaxed planning

heuristic for failure propagation, empirical evdlaa, related work, and conclusion.

BACKGROUND AND REPRESENTATION

Planning consists of finding a sequence of actibaswill achieve a specified
goal. Classical planning deals with domains thatfally observable, deterministic,
finite, static, and discrete. This work concersglitwith complete and incomplete
planning models. In the following, we define eachd®l, the related action

representations, and plan semantics.

Complete Planning Domains

Complete planning domains correspond to the clalsglanning model,
expressed using STRIPS actions [13]. STRIPS ismdblanguage for specifying
planning problems.

Definition 1. A complete planning domain D definesthetuple (P, 4, a_4, a,),
where

e Pisaset of propositions - Boolean statements about the state of the domain

e Aisaset of complete action descriptions, where each a [A defines

0 pre(a) € P, aset of preconditions - propositions that must be truein
order for the action to occur

0 add(a) [J P, a set of add effects - propositions set to truein the
subsequent state

0 del(a) [P, aset of delete effects - propositions set to falsein the
subsequent state

e add(a-;) [! P definesa set of initially true propositions

e pre(a,) [P definesthe goal propositions - propositions that must be true for

the plan to succeed

Example 1. For example, consider the following domain, whiokwill use as a

running example:

P={pqrg}

A={a,b,c}
o pre(a) = {p,q},add(a) = {r},del(a) = {}
o pre(b) = {p},add(b) = {r},del(b) = {p}

o pre(c) ={g,r},add(c) = {g},del(c) = {}

add(a_,) = {p, q}

pre(a,) = {g}

A planz for D is a sequence of actions that when applied tinthal state, lead
to a state wherein the goal is satisfied.

Definition 2. Aplan = (a_4, ay, ..., @,_1, @) in acompletedomain D isa
seguence of actions that corresponds to a sequence of states (ay, ..., S,), where

o sy=add(a_q)

e pre(a;) Ss; fort=0,..,n

e S;.1=s/\del(a;) Uadd(a;) fort=0,..,n—1

We omita_; anda,, from the plans in our discussion when appropriatth the
understanding that each plan must use the initidigmal actions.

For example, the plam,b, ¢) corresponds to the state sequesse {p, q}, S1 =

{p,ar}, 2={qa,r}, ss={q, r, g}), where the goal is satisfied g,.

Incomplete Planning Domains

Incomplete planning domains are identical to cotepidanning domains, with
the exception that the actions are incompletelgifpe. Much like planning with
incomplete state information [14], the action ingeteness is not completely
unbounded. The preconditions and effects of eattbracan be any subset of the
propositionsP; the incompleteness is with regard to a lack avidedge about which of
the subsets correspond to each precondition ardteffo narrow the possibilities, we
find it convenient to refer to tHeown, possible, andimpossible preconditions and
effects. For example, an action’s precondition ntosisist of the known preconditions,
and it must not contain the impossible precondgjdout we do not know if it contains
the possible preconditions. The union of the knowassible, and impossible
preconditions must equBl therefore, an action can represent any two, amdam infer
the third. We choose to represent the known andilples and discuss this choice in more
detail in the following section.

In the following, we discuss incomplete domains arténd the complete domain
model with features for possible preconditions afidcts. We note that an incomplete
domain corresponds to a set of complete domaiieh, @differing in terms of the inclusion
of the possible features.

Definition 3. An incomplete planning domain D definesthetuple (P, 4,d_4, @,,),
where:

e Pisasetof propositions

e Aisaset of incomplete action descriptions, where each @ € A defines

(0]

o

pre(@) < P, a set of known preconditions
pre(a) < P, a set of possible preconditions
add(a) € P, a set of known add effects
add(@) <, a set of possible add effects
del(a) <, a set of known del ete effects

del(@) <, a set of possible delete effects

e d_, S P definesaset of initially true propositions

e d, S P definesthe goal propositions

Consider the following example of an incomplete dom

e P={pqrg}

e A=1{a,b,c}

pre(@) = {p,q}, add(@) ={}, del(@) ={},
pre(d) = {r}, add(@) = {r}, del(a) = {p}
pre(E) = {p}, add(E) = {r}, del(B) = {p},
pre(b) =, add(h) =0, del(h) = {q}
pre(¢) ={r}, add(¢) ={g}, del(®) ={},
pre(d) ={q}, add(®) ={}, del(®) ={}

e add(d,) = {p,q}

e pre(d,) = {g}

A plan7 for D is a sequence of actions that when apptiad)ead to a state

10

wherein the goal is satisfied (i.e., the final acts preconditions are satisfied). This is

opposed to a plamfor D, whichdoeslead to a state wherein the goal is satisfied.

11
Definition 4. A plan 7 = (@_4, @, ..., @,_1@,) in an incomplete domain D isa
seguence of actions, that corresponds to a sequence of states (sy, ..., S,), Where:
o sy=add(d-,)
o pre(d;) Ss fort=0,..,n

o Siq = S \del(d,) U add(d,) Uadd(d,)fort=0,..,n—1

For example, the pla#, b, &) corresponds to the state sequefyge=
{p,q},s1 ={p,q. 7}, s, ={q,r},s3 = {q,7, g}), where the goal is satisfied sp.

Definition 5. The set of incomplete domain features [1(D) is comprised of the
following propositions:

e pre(d,p)ifp € pre(d)andd € 4

e add(d,p)ifp € add(@) andd € A

o del(d,p)ifp €del(@)andd€ A

Each incomplete domain feature [can result in a different type of plan fault
(aligning with GL’s original naming conventions):
e Open precondition faubP(d, p): if pre(d,p) € [/(D) andd is applied to a
states wherep is not true.
e Unlisted effect faulUE(d, p): if add(d,p) € [/(D) and afted is appliedp is
a precondition for another action.
e Possible clobberer faulC(a, p): if del(d,p) € [/(D) and aftedd is appliedp

is not reestablished by another action pisl precondition.

12
In this sense, each type of incomplete domain featocan cause a plan fault if said type
can directly or indirectly prevent achievement aludsequent action's precondition.
Each subset of corresponds to an interpretation of the incompdet@ain.
Definition 6. An interpretation D' of the incomplete domain D is defined with

respect to a subset of the incomplete domain features F! € [1 so that:

e Foreachd € Athereexistsan a € A" where
o pre(a) = pre(@) U {p|pre(a,p) € F'}
0 add(a) = add(d) v {p|add(d,p) € F'}

0 del(a) = del(@) u {p|del(d,p) € F'}

We also refer to the set of incomplete featuré€g) that are specific to an action
a so that (&) = {pre(d,p)|pre(a,p) € (D)} u {add(@ p)|add(a p) € (D)}
u {del(@,p)|del(@,p) € (D)}.
For example, the complete domain example from theipus section is an interpretation
of the incomplete domain above, whéie= {add(a,), pre(¢,q)}.

Definition 4 sets a loose requirement that plartk wicomplete actions succeed
under the mostptimistic conditions: possible preconditions need not bisfead, and the
possible add effects (but not the possible delié¢ets) are assumed to occur when

computing successor states. In this sense, weeettgirthe plan is valid for the least

13
constraining (most optimistic) interpretation ogétimcomplete domain. As we show, we
can determine the interpretations in which a p&invalid and use the number of such

failed interpretations as a plan quality metric.

14
COMPARISON OF POSSIBLE ACTION FEATURES

WITH LOCAL CLOSED WORLDS

Definition 3 defines incomplete actions by setsespective known and possible
preconditions and effects. GL define incompletéoast similar to STRIPS actions
(Definition 1) with additional local closed worldiasements of the form
DoesNot Rel yOn(d, p) (p is not a precondition af) or
Conpl et ePrecondi ti ons(a) (the preconditions ai are known).

We note that these representations are equivdlest consider the set of known,
possible, and impossible preconditions (and sityilir effects) of actions. For example,
Conpl et ePrecondi t i ons(a) is equivalent to statingre(a) = {3} (i.e., the set of
possible preconditions is empty). LikewiSimesNot Rel yOn(d, p) is equivalent to
statingp ¢ pre(a), and that for aly € P, the lack of a statement
DoesNot Rel yOn(a, q) is equivalent to stating € pre(a) (i.e., impossible
preconditions are not possible preconditions, astdmpossible preconditions are
possible preconditions).

While the representations are equivalent, the als/guestion is whether one is
more succinct than the other. The answer larggbgéds on the problem being modeled.
See Table 1 for examples. Notice that the sizélseofepresentations are equivalent when
stating, for example, that an action has completegnditions; we either record the fact
that the preconditions are complete or that th@kpbssible preconditions is empty. The

difference is with respect to stating, for examphat an individual proposition is not a

15

Table 1: Examples of Comparing Representations.

Definition 3 GL
d has only the known | pre(@) = {p, q}, pre(@) = {p, q},
precondition%, q. pre(a) = {} CompletePreconditions(@)
d has possible pre(@) = {}, pre(@) = {},
preconditionr, butz is | pre(a) = {r} DoesNotRelyOn(d, z)
neither a known nor a
possible precondition

precondition of an action. Under our representatiaefinition 3), the set of possible
preconditions would not contain a proposition, ander the GL representation it must
be stated that the proposition is not a preconititowever, if a proposition is a possible
precondition to an action, we would record it gmasible precondition, and GL would
record nothing. As such, the issue comes down tetlven there are many possible or
impossible preconditions and effects. Our repredemt is smaller with many impossible
features, and GL is smaller with many possibleuiess.

While we describe actions in the grounded (propwsat) form, another practical
concern is that we use PDDL [15] action schemantmde problems. Under the GL
representation, extending PDDL action schemasate ghpossible preconditions (or
effects) could require additional action schemapeaters that refer to constants in
predicates that are not preconditions. If therenaaey impossible preconditions, the
action schemas could mention many additional pat@sievhich would lead to
difficulty when grounding the schemas. We intudttpossible action features are likely
to share parameters with known action featureseatehding PDDL to support our

representation would lead to fewer additional aciohema parameters. Furthermore, if

16
there are many impossible features, our representdbes not mention these features

and therefore does not need to reference theinpess in the PDDL action schemas.

17
DIAGNOSING FAULTS IN PLANS FOR

INCOMPLETE DOMAINS

An incomplete plarii must achieve the goals associated with optims&tnantics
(i.e., possible preconditions need not be satisfiedsible delete effects can be ignored,
and possible add effects will occur), but we wquiefer that plans succeed under more
pessimistic conditions. To quantify the extent taak our optimism is misleading, we
introduce and expand upon GL'’s definitions of riskkich we refer to as faults. fault
is a threat to the plan’s causal proof that isoadiced because of our optimism/ignorance
of the underlying domain description. For exampleassuming that possible delete
effects do not occur, we introduce a fault whengbssible delete effect does in fact
delete a required subgoal. By assuming the opiitrssimantics, we allow plans that we
would not otherwise consider, but by computingfthdts, we quantify the level to which
the plan is susceptible to failure. The challermedmputing faults is that incomplete
action features may have a delayed impact on e @i no impact at all, and we must
determine if they are faults (i.e., guarantee fdalare if the incompleteness manifests
unfavorably).

Instead of reviewing GL’s definitions, we take awnapproach to develop the
definitions of faults. We intuit that plans withulés are best analyzed within the
framework ofmodel-based diagnosis [6, 7], in other words, abductive reasoning using
model of the system. Among all of the techniquesgetigped within model-based
diagnosis [6], the most beneficial is a clear cbim@zation of multiple-faults. In contrast,

GL discusses only single-faults, which they calks, and which do not explain plan

18
failures that may occur because of multiple, inteéng incomplete domain features. For
example, GL would consider a subgoal that is eistadadl by two different actions, each
of which is subject to disjoint faults, as havirgfaults. However, by using multiple-
faults to explain failure to achieve the propositizve see that the faults (at least one for
each action) interact. Clearly, single-faults am@aortant for identifying a single-point-of-
failure, but ignoring multiple-faults could leadda overly optimistic assessment of a
plan. In the following, we generalize GL'’s notiaoisfaults from singletons to sets, which

we call diagnoses.

Model-Based Diagnosis

In defining the diagnoses of plan failure, we drgyon many well established
techniques in model-based diagnosis (MBD) [6, 1¢wng the plan as a physical
system, faults are sets of potentially faulty comgrds that describe anomalous behavior,
such as an action not having its preconditions®adi or a goal not being achieved.

There are two terms from MBD that enable us to desavhich sets of faults
may cause plan failure. The first terncamflict set [6], is a set of faults in which if at
least one of the faults occurs, it can explainaihemalous behavior. A conflict set is
inherently disjunctive because any non-empty sutiistite conflict set can explain the
failure, and it is not required that all componeants faulty. The second termdiagnosis,
is a set of system components in which every cormpomust be faulty to explain the
behavior. In contrast with a conflict set, a diagisas conjunctive — every component in
the diagnosis must be faulty. However, there mambkiple diagnoses, and each

diagnosis is a hypothesis explaining failure. Baeaof their respective disjunctive and

19
conjunctive semantics, conflict sets and diagnocaeshe expressed by the prime
implicants (conjunction of propositions that canbhgtsubsumed by another conjunction
of propositions) of a propositional sentence captuknowledge of the faulty system.

The author of [7] (henceforth abbreviated, Reiternulates MBD within a
system that is defined by a system descripiDrand system componer@OVP, taking
the respective forms of first-order sentences afiite set of constants. The system
description includes a distinct unary predicaiBg-) that indicates abnormal behavior on
the part of a system component. For example, thieseecANDG(X) A -AB(X) — out (X)
=and { n1(x),i n2(x)) indicates that an and-gate that is not abnomibhave its output
equal to the logical and of its two inputs. Alonghwthe system descriptio@BS is an
observation of the system’s behavior. For exan(@BS may contain the factsut (and,)
=0,i nl(andy) = 1,i n2(and;) = 1, which is anomalous.

Reiter defines approaches to finding conflict setd diagnoses that rely on
refutation proofs. Showing th&D U OBS U {-~AB(cy), ..., /AB(C,)} is inconsistent means
thatcy, ...,C, functioning normally does not expla®BS. That is, £, ...,Cqn} is a conflict
set, a subset of which is to blame for the obsemmatnd at least one of the conflict set
components is faulty. For examp&b U OBS u{-AB(and,)} is inconsistent, andgnd;}
is a conflict set. Reiter also shows that we céineghe conflict sets to include only
those components that are mentioned in the refutatioof tree, so that 8D U OBS
U{=AB(cy), ...,7AB(Cy)} is inconsistent, but only if {AB(c), ...,/AB(c)} S {-AB(cy),
...,"AB(cn)} appear in the refutation proof, then4B(c), ...,-AB(c)} is a conflict set that

subsumes {AB(cy), ...,7AB(Cy)}.

20
A generate-and-test approach is a possible, buénaiethod to finding all conflict sets,
as it is too inefficient for systems with large nuens of components. Additionally, upon
finding all conflict sets one can compute all diages. Reiter defines a diagnosis as a
minimal hitting set on the collection of minimalrdbct sets; a hitting seton a
collection of set€ is a set wherein for each se€ C, c N x # {}. A minimal hitting setx
is a set wherein no proper subsget x is a hitting set. In our small examplenl;} is
the only conflict set, makingad;} the only diagnosis. In a more complex scenario

wherein the minimal conflict sets are;{c,} and {ci, cs}, the diagnoses arec{} and {c,,

Cs}.

Diagnosing Plan Faults in Incomplete Domains

We describe a plan with a set of clauSB$7) and introduce a hypothetical
observation that the goal action cannot be exec@B8 = -3,,, to determine if a set of
incomplete domain features is a conflict set.

Recall that a conflict set is a set of componeuitsyhich some subset must be
behaving abnormally to explain an anomalous obsiervan diagnosing plan faults, a
conflict set is comprised of incomplete domain deas. However, there exists an
asymmetry among the types of incomplete domainufeatbecause the absence of a
possible add effect in the true domain can caubedabut the presence of a possible
precondition or possible delete effect can cauae failure. As such, conflict sets (and
diagnoses) refer to negative literals for possiuld effects and positive literals for

possible preconditions and delete effects.

21

In diagnosing plan faults, conflict sets and diagg®are of the form
{ﬁaﬁc‘fd(ﬁ,p),...,ﬁaﬁ/d(ﬁv, p).pre(b,q),....pre (B',q') ,(Fl‘e/l(ﬁ,r),...,cﬂi\e/l(é',r')}, indicating the
absence of possible add effects or the presengessible preconditions or delete effects

causes plan faults. Thus, following the approacRaiter, ifa ,USD(ft)U—a,

U{add(@p).....add(3.p)., pre(b.q)..... pre (b.q) el @n).....~del (&)}

is inconsistent, then

{ﬂaﬁd(a,p),. ..,—add(3p),pre(b.,q),....pre (B’,q/) Jdel(&n),.. .&El(é,r’)} or a subset of it is
a conflict set.

We find it more convenient to formulate an equindieference task , USD(7)U

{aﬁd(ﬁ,p), " aﬁd(é/,p'), —pre(b,q), ..., ~pre (‘B’, q/) , =del (&), ..., ~del (S, r/)} Ea,, and
use a theorem prover that is based on modus pa@amehsegation as failure. In the
following section, we make use of the intuitionseleped in this section using modus
ponens (we show that negation as failure can beemadecessary) to motivate a
forward-chaining state-space planner.

The system descriptidBD(77) consists of clauses that define the semantics of
plans in incomplete domains, which includes condgiunder which an action will have
its preconditions satisfied and its effects wilaolge the current state. This subsection i)
presents the system description and maps it torthaal definitions of plans for
incomplete planning problems, ii) shows how thdeysdescription can be simplified
without loss of generality, and iii) describes hamassumption-based truth maintenance

system (ATMS) [6] can support more efficient diagnosisrguutation.

22

Plan System Description

The system descriptiddD(a) is listed in Table 2. The clauses include condgio
under which actions are successfully executed canditions under which a proposition
will be true as a result of applying an action. Thauses can be understood as stating: i)
actions require their preconditions to be satistietthl so require the previous action to
be successful, ii) add effects are proven if the action is provié) possible add effects are
proven if the action is executed and the possititeedfect is actually an add effect, iv)
propositions that are possibly deleted will in faettrue if they were previously true and
either the action fails or they are in fact notedietl, and v) all non-deleted propositions

are true if they were previously true.

Table 2: The Plan System Descript®D(7),.

) 8. <
a A /\ Py | A
pepre(dr+1) t=—-1.n—1
(pt+1 \% _lp-Fe(a:t+11 p)
pepre(de+1)

i) p,, < 7 for all p € add(d,)

i) p,, < &Aadd(@,p) for all p € add(d,)

V) p, « p, A (—.ét Y ﬂaél(dt,p)) for all p € del(d,)

V) Py < P for all p € P\(del(@,) U del(a,))

The system description of the example pléyb, &) from example 1 is as

follows:

23

a; = p, d)Ap, = b biAg AL >0,
a;—q, —b; Aq, = q, by A—pre(E.q) Ar, = &
) Ap,Aq, ATy~ & q, A =del(b,q) - q, ¢ =g
a1 ApyAq,A—pre(ar) b, -, qQ, = s

=3,
=8y Ap, = P, r —n I, =13
p, A —~del(@,p) - p, & Ag,

3y Aadd(a,r) - 1

qQo = 9

We note that the only non-definite clauses corredgo the cases wherein an
action fails to execute and thus cannot possildigleér the corresponding possibly
deleted proposition (e.gz, possibly deletep, and we include the clausg& A p, - p,).
As we show below, we can simplify the system desiom to remove such clauses. For
all other clauses, we can create definite claugeslacing each negated literal bj a
positive literal nf

We establish the correctness of the system desaripiith the following theorem
that states that a plan is valid in an interpretefi’ of an incomplete domain if and only
if a_y USD(#) U F' entails a whereF' = {f|f € Fi}u {~f]f & F'}.

Theorem 7: a, U SD(#) U F' k a, iff 7 isa plan interpretation of D'.

Simplifying the system description for the domaiteipretation wheré® =

{aﬁd(&, r),pre(c, q)}, we obtairSD° (#):

a; —p, ﬁoAp1—>51 Blqu/\rz—>Ez

24

i -q, -byAq, > q, c; = g,

a1 Ap,Aq, Aty — 8 q, 249, qd, = 4

a1 Ap,Aq, = b, -, =1

—dg Ap, = P, r =1 CrAg, =83
by — Py

g > 1]

QG

Upon inspection, it is possible to see that SD'(7) E 3;.

If we examine all subsets of the incomplete feaurgfor example
{p’?‘"“e (@,7),del(d,p),add(a,r), &EI(E, q), pre(¢, q)} where
a, USD(#) U {=pre(ar), ~del(a,p), add(ar), —del(b,q), ~pre(E,q)} a3, we can
determine the minimal conflict sets. In our example can derive the following minimal
conflict sets:

{p’i’e (@,r),del(d,p), EEI(E, q)}

{p’i’e (@,r),del(a,p),pre(é, q)}
From the conflict sets, we determine the followitiggnoses:

{pre(a,)}

{del(a,p)}

{&EI(E, q), pre(¢, q)}

The diagnoses are cases that will guarantee pilanefaif the first actioni can
fail because of an open precondition fault. Thesdactionb can fail because its

preconditionp is deleted byi due to a possible clobberer fault. The third acfiean fail

25
if its possible preconditioq is required (an open precondition fault) and theosd

actionb possibly deleteq (a possible clobberer fault).

— J;rp T g3 pre(a, r]y del(3, p)v

i“del(s p) del(3, p) del(b" Cl) .q) A 4

del(3, p) del(b, q)
>q1 3(o< >(3
+ del(b,q) / del(b,
B Co 3
pre(a, rjv del(3, p)v

S e) pre(a, r)v del(3, p) pre[a v (fel[a PV

—pre(d,r Pr’eta ,E , \\ (del(b.q) A prefc, q)3 Ca (b, o) A R)

e pre(a, r)y pre(a, n)v
Prega;r) add(a r) {del(3, p) pre(c q) (del(3, p) A —add(3, 1))
ﬂadd[a.r

pre(g.q)

pre(d. r)yv-add(3.r) ﬁadd(é.rnl

Figure 1: Fault labels and proof trees for theeystlescription of pla@?i, b, Z').

Figure 1 depicts several proof trees for the query

a_; U SD'(%) U {—pre(a,r), ~del(d,p), add (), ~del(b,q), ~pre(s,q)} F as. In Figure 1,
the nodes represent the literals used in the gaed/the directed hyper-edges denote
clauses. Edges connected by a curved arc denotgunction of the antecedents. The
propositional sentence annotations can be safatyrégl until we discuss the use of the
ATMS below. Figure 1 shows that multiple proofs,-and¢,are both proven by two
clauses, making a total of four distinct proofscltaroof relies on a different set of faults
not being present; therefore, if any subset ofalés materializes, the proof will fail —

these sets of faults correspond to the conflic: set

{p’i’e (G,r),del(d, p), EEI(E, q)}
{p’i’e (@,r),del(a,p),pre(é, q)}

{p’?‘"“e (a,7),del(d,p), ~add(a,r), &EI(E, q)}

26
{p’?‘"“e(&, r),del(d,p), ~add(a,r), pre(é, q)}
However, the last two conflict sets are not minitmetause they are subsumed by one of

the other conflict sets. The minimal conflict sats:
{p’i’e (@,r),del(d,p), &EI(E, q)}
{p’i’e (@,r),del(a,p), pre(é, q)}
which allows us to compute the following diagnogesimal hitting sets):
{pre(a,)}
{Jél(d, p)}

(@el(b,q), p7e(é, q))

Truth Maintenance Systems

The generate-and-test method of computing cordéts involves selecting all

possible sets of literals F denoting incompletétfiess and determining if_, U SD'(7%) U

F E a,. An alternative is to employ assumption-based truth maintenance system

(ATMS) [16], which is a way to represent beliefsgamptions) and their dependencies.
We do this so that we can simultaneously compuifgoakible proofs for all possible sets
F. The approach is to record a label for eachdlitdrat is proven to denote a set of
contexts relevant to that literal. In our scenathe, contexts denote sets of incomplete
domain features F that will prevent the proof d¢ifexal. In the following, we present the
definitions of the labels independent of any pattic representation, but we describe the
implementation of operations required for two altdive representations (prime

implicants or OBDDs) in the empirical evaluation.

27
To represent and compute the contexts preventmg@ribof of each literal, we

recall that each diagnosis is a conjunction ofdie
{—laﬂc‘i/d(ﬁ,p), - ﬂaﬁd/d(ﬁl,p'), pre(b,q), ..., pre (B', q') ,del(&p), ..., cTe/l(Gr, r)} where every

conjunction must be true in order to cause faildesuch, a label denoting diagnoses
can be represented as a disjunction of diagnasekselATMS, we must label each
possible premise with the diagnoses preventinddts/ation. The possible premises

include the initial actiom_;, and elements from the set
{aﬁd(ﬁ,p), ...,aﬁd/d(ﬁl,p'), —pre(b,q), ..., ~pre (B',q') ,—del (@), ...,ﬂa‘él(é',r')}, and the
labels are defined as
l(a_y) =1
l(aﬁd(ﬁ,p)) = —add(@,p) ...l (a d(ﬁ',p')) = ﬂaﬁa/d(ﬁv,p')
t(~pre(5.0)) = 5Te(b.a) - (-7 (B,q)) = 57e (6.4
l(—.&él(e,r)) = del &) ... 1 (ﬁaa(e’,r’)) = del(81).

The label of the initial action is (logical false) to denote that there is no
diagnosis under which the initial action cannotbeved. The label of each literal
denoting an incomplete domain feature is the negaif the literal to denote that the

only diagnosis under which the literal is not pnove when the literal is not true initially.

All other literals are proven by one or more clajsad we associate with each
clauseh:q,, ...,q_ — p that proves p a sentenkiés,p) = I(q,) v ...V [(q_) to denote
that the clause will fail to provein any case where at leaste of (hence the

disjunction) its antecedents is not proven. Mu#tiplauses$, ...,hg may prove p,

28
allowing us to definé(p) = l(hy,p) A ... A L(hy,p) denoting that p will be unprovenafl
of (hence the conjunction) the clauses fail to prove

Figure 1 depicts the labels associated with eaefaliby the propositional
sentence underneath the literal. Consider the iptatm system labé(c,), that is proven
by two clauseshs: by, q,, 15, = &, andh,: by, =fy, r; = &,. The labels for each of the
antecedents of the clauses are as follows:

I(b))=fvH

l(qz) =1f

l(r) =fov(fint)

I(=fy) =14
Allowing us to compute for each clause
I(hs3,&) = 1(b)) VI(q,) Vi) = HRVE)VEB) V(v (i AL)) =1 ViV
I(he&,) =1b) VI V) =K V) VEIV (VI AL))=fHVE Ve
and define
[(C) = U(hs,8) ANl(hy, &) = {gVE VE)A(fy VI V) =1 VIV (§;5AL)

By counting the models of the lallgt,), of the goal, it is possible to determine
how many interpretations of the incomplete domailhfail to achieve the goal with the

plan. In this example, there are 32 interpretatiansl 26 will fail to achieve the goal.

29

Counting Models and Diagnoses

The labels computed in the previous section idetiibse combinations of
incomplete domain features that can prohibit a flam satisfying the goals, i.e., the
models of the labels are interpretations of themmglete domain that will fail. From the
labels, it is possible to compute exactly how mautgrpretations of the incomplete
domain features lead to a successful or unsucdgsafu Thus, counting the number of
domains that will not successfully achieve the ga@aln be reduced to counting the
models of the goal action labKk,,) (a propositional sentence). The planner desciibed
the next section is based on the idea of usingBW&to represent plans, and many of
its subroutines involve comparing propositionaltsanes. In comparing a propositional
sentence | with another, we refer to its set of modl§ 1), its set of prime implicants
PI(0), and its set dk-element prime implicant8l ().

While counting models requires polynomial time wlaegpropositional sentence is
represented by an OBDD, it requires exponentiak tivhen represented by prime
implicants. However, we note that the number afngrimplicants can be indicative of
the number of models, and simply counting the nurobgrime implicants can provide a
heuristic measure.

Referencing the example in the previous sectianthhee prime implicants
fy v f; vV (f; A f;) have 26 models, whereas the two prime implic&nwsf; have 24
models: the number of prime implicants, in thiss;as proportional to the number of

models. While the relationship between prime ingiits and models does not hold in

30
general, we can use the number of prime implicenkeeuristically compare
propositional sentences (estimating the numberaifats).

Another observation is that having fewer prime iicgrhts of smaller cardinality
can result in fewer models. For example, btk f; andf, v (f3 A f,) have two prime
implicants, but the former has 24 models and ttierldas 20 models. Thus, when
comparing two propositional sentences, we can coapd; (¢)| and |PI; (), and if
equal, comparePl,(¢)| and |PI,(1)|, and so on, untilPI, (¢)| # |PI, ()| for some
k > 0; if kis the minimum cardinality whei@I, (¢)| < |PI,(¥)|, then we prefer]
(assuming] represents interpretations of incomplete actiohsrey a plan fails). Thus,
we define two preference relations on propositidoahulas representing plan failure:

e Model-basedp < M ¢ if |IM(¢)| < |IM ()|
e Diagnosis-basedp < PI ¢ if |PI;,(¢)| < |PIy(¥), k > 0, and |PL;(¢p)| =

|PL,(y)| forall j < k.

In the following, we dispense with the subscriptedation for preference
relations, assuming that the context dictates vérdtie propositional sentences are
compared by models or diagnoses.

Comparing the prime-implicants is much less expangian counting and
comparing the number of models, but we may be wrbleyertheless, we empirically
compare counting OBDD models to counting prime iogpits (of different cardinalities)
within our planner, and demonstrate significantioyements in planning time with little
sacrifice in plan quality when counting prime ingalnts. Throughout our discussion,

when we refer to counting models(of we assume that is represented by an OBDD,

31
and when we refer to counting the prime implicafits/, we assume that is already
represented by prime implicants. In other wordsagsume the representation that is
most natural for the type of counting in orderdgnare any additional cost of normal

form conversion.

32

FORWARD STATE SPACE PLANNING WITH FAULTS

We present a forward state space planner cBEGAULT that uses the
approaches developed in the previous section tolséar plans that have few faults or
few interpretations of the incomplete domain feasuthat result in plan failure. Recall
that having few faults and few failed interpretasare connected but rely on counting
different quantities (prime implicants or modelsspectively). We employ the optimistic
semantics for incomplete domain features and exbendtate description to capture
which incomplete domain features can cause fatlugehieve each state proposition; the
incomplete features are represented by OBDDs arepiinplicants, as in the previous
section. We note that computing and representiagtime implicants can be costly; we
address this by formulating our approach for atyti@ry, but fixed, bound on the prime
implicant cardinality. While the cardinality of daprime implicant is bounded, the
number of prime implicants per proposition is iegdity bounded, i.e., there is a finite
number of sets with cardinalikyor less. The impact of bounding the prime impltcan
cardinality is that we may under-approximate thebar of interpretations of the
incomplete domain in which the plan will fail.

Adapting the ATMS rules for propagating fault lab# the state space requires
some explanation. The most striking differencestlaaéwe do not have explicit action
literals in the state space and we do not speledyptan semantics by clauses, rather we
define the propagation in terms of the state atidmdescriptions. The lack of action
literals and clauses that connect action lite@khé goals requires that we track the

incomplete domain interpretations that cause pdare because an action is invalidated,

33
i.e., its preconditions are not satisfied. Theestgtace operations capture the same
semantics as the ATMS operations in that we ugerdison to combine faults affecting
conjunctive requirements, e.g., action precond#j@mnd use conjunction to combine

disjunctive requirements, e.g., causal supporpfopositions.

Fault Propagation

In the previous section, we describe how to reeatgidefine the failure
explanation (label) for a goal literal, i.e., th@positional models of the label reflect
which interpretations fail to achieve the goalthe following, we discuss rules for the
forward propagation of failure explanations to céimpnt our forward state-space
planner.

Initially, we use the explanatiah_(d_,) =L to denote that there are no failures

affecting the initial state. For all statgs,,t = 0, we define:

(de(p) Ande(ar) :p € add(a)
| d:) A (de(@) v ~add(@,,p)) :p € add(a,)
der1(p) = { T :p € del(a,)
| d.(p) v del(@,,p) .p € del(d,)
kdt(P) :otherwise

where the interpretations failing to successfulgaited, are defined:

de(d;) = de—1(@;—1) v \/ d.(p) v \/ (dt(P) A pre(dy, P))

pEpre(d) pepTe(Q)

In the above, note the correspondence to the ATMBamation rules. The

definition ofd;,;(p) refers to the combination of the assumptions aof A¥MS clauses,

34
one describing the persistencepand the other describing the action adginBelete
effects are false (failed to be true) under akiptetations, which corresponds to the lack
of clauses that can prove the proposition in tleipus section. Propositions given as
possible delete effects have their faults defireedray faults previously affecting the
proposition or a fault introduced when it is intfdeleted. Propositions not affected by
the action persist their faults, correspondinghmpiersistence clauses in the previous
section. Any interpretation in which one of theiag's preconditions are unsatisfied will
cause the action to fail, and any interpretatiowlch the most previous action or any
prior action fails will cause the plan to fail.

Finally, to count the number of interpretations @enahich a plan fails, we count
the models ofl(7) = d,,(a@,), which expresses the interpretations wherein dilyeo
actions did not have its preconditions satisfiethergoal was not satisfied. Recall that
we require valid plans to achieve the goal undermbtimistic semantics, so we are
guaranteed that pre(a,) € s,, the plan will succeed in at least one interpietadf the
incomplete domain.

As an aside, it is possible to determine the imeggtions that fail to successfully
execute the plan up to and including titiey computingd,(d;). We also note that as
long asn is the earliest time that the goal is achievedareeguaranteed thdt(a,) =
d(f). That is, becaus@, is required in the plan, the definition @f(a,) for t =
0,...,n — 1 may include failures due to relevant or irrelevamt directly or indirectly
causally supporting the goals) prior actions.

We illustrate the fault propagation for the examgkmn, as follows.

35

Example 2. Consider the fault propagation required for oumepke plan
(@, b, ©). Initially, the explanation for the initial actidad_;(@_,) =1, and state
so = {p, q} is labeled as follows:

do(p) =L

do(q) =1

do(r) =T

do(g) =T

After applyinga to sy, we attain the statg = {p, q, r} with the following explanations:

do(@ = do(p) Vdo(q)V (do(r) Apre(ar))

= 1v1iv (T Apre(dr))

= pre(a,r)
di(p) = do(p)V del(@,p)
= 1vdel(d p)
= del(@,p)
di(q) = do(q) =1
di(r) = do(r) A(do(@) v ~add(a,r))

- TA (ﬁe(d, r) V =add(d, r))

= pre(d,r)Vv ﬂaEd(d,)

d1(9) do(9) =T

36

Applying b to s, results in the statg, = {q, r}, with the explanations:

d;(b)
d,(p)

d,(q)

dy(7)

d,(g)

do(@) v di(p) = pre(a,r) v del(d, p)

.

d1(q) v del(b, q)

Lv del(b, q)

del(b, q)

d,(r) Ady(D)

(ﬁi"e(d,) V —add(a, r)) A (ﬁFe(d,) v del(d, p))
pre(a,) v (—add(a,r) A del(a, p))

di(g)=T

Finally, after applying tos,, we compute; = {q,r, g} and the explanations:

d>(0)

ds;(p)
ds(q)

ds(r)

ds;(9)

dl(E) vdy(r)Vv (dz(Q) A pre(E, CI))

(7e(@) v del(a,p)) v (ﬁ"’e(&, r) v (~add(@r) A aa(a,p)))
Y (&EI(B, q) A pre(é, q))

pre(a,r) v del(a,p) v (del(b, q) A pre(é, q))
d(p) =T

d,(q) = del(b, q)

d,(r) = pre(d,r) v (ﬁaﬁd(d,) A del(d, p))

d,(g) A dy(€)

37

pre(a,r) v del(a,p) v ((Tél(l?, q) A pre(é, q))
The plan results in the following failure diagnosis
d(7) = d3(@s) = da(g) v dy(¢) = pre(a,) v del(a, p) v (del(b, q) A pTe(é, q))
Forward State-Space Planning

DeFAULT is a forward state-space planner that is basddoowmward, and its
greedy best first search algorithbe FAULT compares partial plans only in terms of
their heuristic value (described in the next segti®Vhile DeFAULT does not compare
the faults introduced by plan prefixes leadingtties on the fringe of the search, these

faults are used in the heuristic computation.

38

PLANNING GRAPH FAULT PROPAGATION

Similar to propagating faults in a plan, we cangagate faults in the relaxed
planning problem to compute a heuristic measutbefaults affecting goal

achievement. We start with a brief description ediftistics in complete domains.

Planning Graph Heuristics

A relaxed planning graph is a layered graph of sktertices
(P:, A¢, ooy At4ms Prym+1)- The planning graph built w.r.t. a statedefinesP, =
S, Arer = {alpre(a) € Piiy,a € AU A(P)}, andP;y 1 = {pla € Aiyi, p € add(a)},
fork =0, ..., m. The setA(P) includes noop actions for each proposition, shelh t
A(P) = {a,|p € P,pre(a,) = add(a,) = p,del(a,) = @}. A simple heuristich* for
the number of actions to achieve the go@l(a,,) froms; is equivalent to the minimum
level k where the goal propositions are reactigd= ming.gep,,, K- ThehfF heuristic
[17] solves this relaxed planning problem by chogsactions fromi,,.,,, to support the
goals inP; .1, and recursively for each chosen action’s preda, counting the

number of chosen actions.
Diagnoses

When planning in incomplete domains, we would tixeninimize the number of
interpretations of the incomplete domain under Whie plan fails. A heuristic should
measure and attempt to minimize the number ofdaneerpretations in the estimated

suffix of a plan. As in the state space, we propagdormation about failed

39
interpretations in the planning graph to estimheeguality of a plan completion starting
in the current state.

Propagating faults in the planning graph resemglepagating faults over the
plan. The primary difference is how we reconcile taults for a proposition when the
proposition has multiple sources of support. Ieeel of the relaxed planning graph,
there are potentially many sources of support feragosition, and we simply select the
supporter with the preferred set of faults, eidnéewer number of models or preferred set
of prime implicants. The chosen supporting actaenotedi, ., (p), determines the
faults affecting a propositiomat levet + k + 1.

A relaxed planning graph with propagated faults iayered graph of sets of
vertices of the forn{P;, A;, ..., Ay, Prym+1)- The relaxed planning graph built w.r.t. a
states, definesP, = 5, A, = {a|pre(@) < P,y, @ € AU A(P)} and
P,,, = {pla € 4., p € add(&) v add(a@)}, for k = 0, ..., m. Much like the successor
function used to compute next states, the relalathpg graph assumes an optimistic
semantics for action effects by adding possibleeftitts to proposition layers, but, as
we explain below, it associates faults with thesiade adds. Each propositiprhas
associated faults, denotég(p). Each action also has associated faults, denhtgda).
The faultsd, (p) affecting a proposition are defined by its supiparactiond, ., (p),

such thatd,(p) = d,(p), and fork = 0,1, ...d;x+1(P) =

at+k(at+k(p)) A /\ at+k(at+k(p)) Vv =add(d.4, (), p)
p€add(a¢4k(p)) p€add(d¢s+(p))

40

and the faults affecting an action are definedngyfawlts for the action's preconditions,

di@=| \/ d® |v| \/ dx® npre@p)
pepre(a) pepre(a)

Propositions in the planning graph initially hatie same faults associated with
them as in stat& and are defined by, (-). Every action in every lev&lof the planning
graph can be invalidated by any fault affectingitsconditions, or by open precondition
faults. Beyond the initial level, faults affectiagproposition include faults that invalidate
its supporting actions or are associated with tedieffects supporting the proposition.

We note that the rules for propagating faults @ pkanning graph differ from the
rules for propagating faults in the state spac¢hdnstate space, the action failure
explanations include explanations for any prioraactailing. In the relaxed planning
problem, the action failure explanations includé/@xplanations affecting the action’s
preconditions, and not prior actions. In the rethganning problem, it is not clear which
actions will be executed prior to achieving a psipon because many actions may be

used to achieve other propositions at the samediepe

Heuristic Computation

We terminate the relaxed planning graph expanditimedevelt + k + 1 when
one of the following conditions is met: i) the phamg graph reaches a fix-point where the
labels do not changé,.(p) = d,..+1(p) for all p, or i) the goals have been reached at

t+k+1—c (clevels after the goals are first reached) &ediked point has not yet

41

been reached. The heurishit” measures the number of interpretations thatdai¢ach
the goals in the last level such that! = |M(V geprea,) de+m+1(9))|, wherem + 1 is
the last level of the planning graph. Similafy’stores the set of prime implicants
Vgepre(an) d.+m+1(9), and uses the preference relation for prime iraplis to compare
search nodes. The ¥ heuristic makes use of the chosen supportingradia. , (p) for
each proposition that requires support in the edgxan, and, hence, measures the
number of actions used while attempting to mininfeadt. De FAULT uses both

heuristics, treating~FF as the primary heuristic and usihty or h~*! to break ties.

42

EMPIRICAL EVALUATION

The empirical evaluation is divided into three s@td: the domains used for the
experiments, the test setup used, and a discugktbe results. We compaie FAULT
with a control planner that uses the same seagdritim and implementation, but uses
the FF heuristic to guide search. We attemptedibutot compare with the PFF [18]
CPP planner because of some unresolved stabsgiingss The questions that we sought to
answer include:

e Can a classical planner (that ignores action indetapess) find reasonable
guality solutions in incomplete domains?

e How well does a planner that counts failure expi@mamodels scale?

e Can a planner that counts prime implicants in failexplanations scale well and
find high quality solutions?

e Does bounding the size of prime implicants lealdtier planner performance

without harming plan quality?

Domains

We use five domains in the evaluation: a modifiath®ays, Bridges, Blind
Navigator, a modified PARC Printer, and BarterWotidPathways, we derived multiple
instances by randomly injecting incomplete domaatdres, with probabilities 0.0, 0.01,
0.25, 0.5, 0.75, and 1.0 for each type of fault fmmeékach action. In the other domains,
we injected incomplete domain features with a pbdtig of 0.5. All results are the

average of ten random instances of each problem Pathways domain from the

43
international planning competition involves actidhat model chemical reactions in
signal transduction pathways. Pathways is a ndyuradomplete domain wherein the
lack of knowledge of the reactions is quite comrhenause they are an active research
topic in biology. We introduced each type of incdet@ness to model incomplete
knowledge of products required, created, or desttdyy reactions.

The Bridges domains consist of a traversable gnd,the task is to find different
treasure at each corner of the grid. There are teesions in which each subsequent
version has an additional type of incompletenes8ridgesl, a bridge might be required
to cross between some grid locations and can aqpese precondition faults. In Bridges2,
many of the bridges may have a troll living undathehat will take all the treasure
accumulated, and cause a possible clobberer faridges3, some of the corners may
give additional treasures, causing unlisted efieaalts.

In Blind Navigator we must navigate from one coroka grid to the opposite
corner. Unfortunately, when traveling from one sgua the next, there is a possibility of
getting lost (a possible clobberer fault). In orttereorient oneself, it is possible to
observe two types of landmarks that are eitherlighlowly observable. A highly
observable landmark supports certain localizatiowl, a lowly observable landmaray
support localization (an unlisted effect fault).

The PARC Printer domain from the international piag competition involves
planning paths for sheets of paper through a mogwiater. A source of domain

incompleteness is that a module accepts only oepegoer sizes, but its documentation is

44
incomplete. Thus, paper size becomes a possibtemadéion to actions using the
module.

The Barter World domain involves navigating a gaidl bartering items to travel
between locations. Items are available at diffelecations and may be required to travel
between other locations. The domain is incompletabse some of the actions that
acquire certain items are not always known to leeessful (unlisted effects), and
traveling between some locations may require aeitams (possible preconditions) and
may result in the loss of an item (possible deléftbg instances involve different size

grids and number of items.

Test Setup anBeFAULT Implementation

The tests were run on a machine running Linux &ithGhz Xeon processor, a
memory limit of 2GB, and a time limit of 20 minutper run. All code (aside from
POND) was written in Java and run on the 1.6 JVithB>e FAULT and the control
planner shared the same greedy best first seapknmentation that uses deferred
heuristic evaluation and a dual-queue for prefeared non-preferred operators [19].
Both planners also used the same planning grapleimgmtation. The planners were
compared by the proportion of interpretations @f thcomplete domain that achieve the
goal and total planning time in seconds. The glothe following section depict these
results, using the cumulative percentage of sutledsmain interpretations and
planning time to identify the performance overpathblems in a domain. Those planners
that solve more problems can be easily identifed] their overall relative plan quality

and efficiency are evident by the cumulative plots.

45

TheDeFAULT planner was implemented in Java, and each ofdhigurations
of the planner shared common source code, witlexbeption of their respective
techniques for fault propagation in the state sackeheuristic computation.

The first configuration, which we refer to BeFAULT-FF, does not compute
fault information, making it largely a classicadpher that uses the FF heuristic. The one
aspect of th®e FAULT-FF configuration that is not common to classical pkens is how
it assumes the optimistic semantics for the inceteptlomain (ignoring possible
preconditions and delete effects, but assumingilplesadd effects will occur).

The second configuration, based on the prime irapticepresentation of fault
diagnoses, is simply referred tolesFAULT-k, wherek is the bound on the cardinality of
the prime implicants. We use valueskdfom one to three. The implementation of the
prime implicant fault computations is largely styfatiforward, i.e., does not employ any
non-trivial optimizations. The required conjunctiand disjunction operations combine
the conjunctive clauses in the standard way, ambve clauses that are subsumed or
exceed the cardinality bound.

Based on counting models (domain interpretatiahg)third configuration is
calledDeFAULT-AII to highlight the fact that it does not approximidie representation
of the faulty domain interpretations. Its repreaéinn of the interpretations makes use of

the JDD package for OBDDs to implement conjunctatisjunction, and model counting.

46

Results

We first discuss the results in each domain, aed ttonclude this section with a
discussion of the trends seen across the domaisgveral of the domains, we discuss
alternative versions of the domain that includeeasingly more incompleteness
(measured by the number of incomplete featuresll lof the results plots, the legend

refers to a configuration of the plannérdenotingDe FAULT-X (as described above).

Blind Navigation
Figure 2 shows that tHee FAULT-FF configuration finds plans of comparable

guality to the configurations that reason aboubmpleteness only in the smallest

instances (instances 1-10, which are 2x2 grids).

Each additional ten instances increase the graltsiax4, 8x8, and 16x16. The

DeFAULT-FF, andDeFAULT-1, -2, or -3 configurations cannot solve instarimgger

than 8x8, due to the importance of reasoning alb@oimpleteness in this domain. It

blindnav Success blindnav Time

600000
500000 +
400000 +
300000 -
200000 +
100000

i
i
i
i
5

Cumm. Time (s)

0
0 5 10 15 20 25 30 35 40
Problems

0 1 1 L L ! ! L
0 5 10 15 20 25 30 35 40
Problems

Cumm. % Successful Domains

FF =m 1 mm 2 mm 3 All v FF wm 1 mm 2 3 m All

Figure 2: Cumulative quality and time comparisomiimd Navigation domain.

47
appears that approximating the failed interpretegtiof the domain does not harm the

quality of plans, but it does limit the scalability

Parc Printer

Figure 3 shows reasoning about incompletenessiR#nc Printer domain is
important to finding high quality plans, but notcessarily important to finding plans.
TheDeFAULT-FF configuration scales well, but finds the worstlgyalans. The
DeFAULT-1, -2, and -3 configurations find the highest gygllans (which are identical
guality), but do not scale as wellBsFAULT-AIl. The difference between model
counting and prime implicant counting in this domaiay be attributed to the potentially
efficient OBDD representation of the failed domaiterpretations, but fortuitous prime

implicant representation that helps identify othmatter plans.

2 parcprinter Success parcprinter Time
g 4 g 12e+07 T T T T =L
8 "4 T 1e+07 |
2 35 F o L
7 3| E 8e+06
g 25+ = 6et06 r
g 2¢ £
? 15} = 4e+06
= 17 O 2e+06 |
£ 054
= 0 | | | \ \ | 0 . . . L
3 0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
Problems Problems
FF mm 1 nm 2 3 All u FF mm 1 um 2 KT All

Figure 3: Cumulative quality and time comparisofParc Printer domain.

48

Bridges
Figure 4 shows results for all three versions efdomain combined, and Figures

5, 6, and 7 show the results for the respectivsiors of the domain. Common to all
versions of the domaile FAULT-FF finds the poorest quality plans, but surprisingly
not overly superior in terms of planning time amdigpems solved. In all versions of the
domain, theDeFAULT-1 configuration solves the most problems, andhethird version
of the domain it has the best overall planning timiewever, considering more faulty
interpretations, either by usiid@FAULT-1, -2, orAll, does improve plan quality at the
expense of scalability and planning time. Interegti, the trends remain the same across
the versions of the domain, wilbe FAULT-FF performing progressively worse as we

include different types of incomplete domain featur

2] bridges Success bridges Time
©
g 70 “eﬁl\l\l\‘\‘m“ ‘ ;g:gé L
9 gg r \‘\WN\W““\'"m‘\lm“ll:“\ B @ 80+06 |
2 50 ¢ o — © 7e+06 f
40 | - — £ 6e+06 |
2 F 5e+06 |
g 307 £ 4e+06 |
< By E 3e+06 |
o >
= 0l O 2e+06
£ 1e+06 | Fi &
£ 0 \ \ , , 0
a 0 50 100 150 200 250 0 50 100 150 200 250
Problems Problems
FF =m 1 mm 2 mm 3 wm All 1 FF mm 1 mm 2 3w All

Figure 4: Cumulative quality and time comparisomlirthree version of the Bridges
domain.

bridges1 Success

bridges1 Time

49

Figure 6: Cumulative quality and time comparisomiidges2 Domain.

g
8 30 25000 : : :
(o] Al 3
9 25 l\l‘lll‘.l‘ul'ilIIII\III\I‘llwI\‘\‘ b @ 20000 | é‘i g
2 et | o H
7 20 - E 15000 t £
§ bl 1 £ 10000 :
& 10+ 4 B I 1
2 5| | 3 |
3 0 10 20 30 40 50 60 0 10 20 30 40 50 60
Problems Problems
FF == 1 um 2 3 mm All wan FF wm 1 um 2 mu 3 mm All
Figure 5: Cumulative quality and time comparisomdgesl Domain.
& bridges2 Success bridges2 Time
g 25 P 25000 w
9 20 o { @ 20000 f §
-.E_’ o O TR R % E
§ 15 ¢ 1 E 15000 r H 1
;—,; 10 ¢ 1 E 10000 | H 1
R 5 1 3 5000 s]
E o ‘ ‘ ‘ ‘ ‘ 0 ——
a3 0 10 20 30 40 50 60 0 10 20 30 40 50 60
Problems Problems
FF =m 1 wm 2 3 All v FF mm 1 2 3w All un

50

& bridges3 Success bridges3 Time
£ 20 : : : : : 1e+07 : : :
S 18+t s . __ 9e+06 -
O 16 e » 8e+06
2 14 o o 7e+06 |
P 12t E 6e+06 t
810+ F 5¢+06
5 8 £ 4e+06 |
w 6t g 3e+06
R 4y 3 2e+06 \
2 2 1e+06 o
E 0 ‘ ‘ ‘ ‘ ‘ 0 -L
S 0 20 40 60 80 100 120 0 20 40 60 80 100 120
Problems Problems
FF == 1 um 2 mm 3 mm All wn FF wm 1 mm 2 mu 3 m All
Figure 7: cumulative quality and time comparisoBirdges3 Domain.
Barter World

Figure 8 shows the combined results for four versiof the Barter World
domain, which are shown individually in Figuresl9, 11, and 12, which respectively set
the probability of the domain generator introdudimgomplete features to 0.25, 0.5, 0.75,
and 1.0.

The trend identified by Figure 8 is that failingrelmson about incompleteness
permits greater scalability but poor quality plaasd as the reasoning about
incompleteness strengthens, so does the plany(alit at the expense of scalability).

As the number of incomplete features grows acragps€s 9 to 12, we see the same
trend exacerbated: weaker reasoning about incoemnass scales better, and stronger

reasoning finds better quality plans.

51

2 barterworld Success barterworld Time
g 140 — : 1.2e+07 : : :
8 120 + ol 1 — i
8 o 5 1e+07 o
3 100 ot "= 12 gei06 .
2 L 1 £ &
8 80 L 6e+06 ~ G
g 60 - 7 £ 5 AN
2 40 | g e08 i
= o0k I O 2e+06 o EE
E 0 L L L | i i i 0 et
3 0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
Problems Problems
FF wm 1 nm 2 3 All FF wm 1 wm 2 3 All v

Figure 8: Cumulative quality and time comparisomlinnstances of Barter World

comain.
@ barterworld_0.25 Success
E T 1e+06
8 - L 900000
vt 800000
2 ;a\ww‘\“‘ gome?™ | o 700000 t
2 W | £ 600000 |
o — 500000 f
g 1 £ 400000 |
0 g 300000
x | S 200000 ¢
£ 100000 ¢
E L 1 0
3 0 20 40 60 80 100 120
Problems
FF wm 1 wm 2 mm 3 All v

barterworld_0.25 Time

FF w=

Problems

2 mm 3 All v

1 nm

Figure 9: Cumulative quality and time compariso®.iB5 density Barter World comain.

52

2 barterworld_0.5 Success barterworld_0.5 Time
g 35 ' ' 'slw‘wumw 4e+06
o LU L il
- |
2 | E 25e+06 |]
8 F 2e+06 | f
E E 1.5e+06 - . 1
- - ot o
© il &) e o
; 500000 | g
3 80 100 120 0 20 40 60 80 100 120
Problems Problems
FF wm 1 mm 2w 3w All v FF wm 1 wm 2 3 All v

Figure 10: Cumulative quality and time compariso®.i5 density Barter World domain.

@ barterworld_0.75 Success barterworld_0.75 Time
8 14 wulnennn ! 5e+06 '
g 12 ¢ umm\ﬂ""#ﬂ‘ s J _ 4.5e+06 ¢ &
= & — @ 4e+06 ¢ F -
2 10 " § 1 o 35e+06 | o
2 gl 5 I E 3e+06 | Y
8 3 F 25e+06 - P
S 67 | E 20406 | I
0 4L " g 1.5e+06 r Foal SFHE" q
B O 1e+06 | 3 Ol .
£ 24] 500000 | anggvl:,m.\.ﬁ .
£ 0 : . : : ; D eo————iliisisii Ol |
8 0 20 40 60 80 100 120 0 20 40 60 80 100 120
Problems Problems
FF mm 1 2w 3 All FF wm 1 mm 2 3 All o

Figure 11: Cumulative quality and time compariso®.i75 density Barter World domain.

@ barterworld_1.0 Success barterworld_1.0 Time
g 0.9 i " i ; 1.2e+06
o 08¢ 1 & 1e+06 |]
2 077 1 2 800000 |]
2 06 L y £
S o = 600000]
5 A3 1 E
® 04l | % 400000 r §
= 03 - | O 200000 | o F
E g 2 ‘) ‘ ‘) 0 N i m\\\l\\\\\l‘“\‘\l\ﬂw\\\m“lllllllllllﬂﬁ
8 T 2 4 6 8 10 12 0 2 4 6 8 10 12
Problems Problems
FF wm 1 um 2 3 mm All v FF wm 1 mm 2 3 All o

Figure 12: Cumulative quality and time comparisori i0 density Barter World Domain.

53

Pathways
Figure 13 shows the combined results for four waisiof the Pathways domain

that set the probability of generating incompletendin features to 0.25, 0.5, 0.75, and

1.0. The results for each of the settings are shadinidually in Figures 14, 15, 16, and

17.
The combined results demonstrate that the techsiffueeasoning about

incompleteness find similar quality plans, but wWesker the technique, the lower its

planning time. As the probability of including inoplete features increases, the stronger

reasoning about incompleteness does not scaleladutehe quality of the plans found

by the techniques is similar.

pathways Success pathways Time

(%2}
=
g 250 . w w . w . . w 8e+06
8 oo | | Te+08 |
S = 6e+06 s
2 150 ¢ E 5e+06 5
8 o0 F 40406 i
2 i E 3e+06 F %
=2 50 L i 8 2e+06 + ;‘g‘
’ 16406 | :
E ol - 0 -
3 0 100 200 300 400 500 600 700 800 900 0 100 200 300 400 500 600 700 800 900
Problems Problems
FF =m 1 nm 2 mu 3 mm All wn FF wm 1 mm 2 mu 3 m All

Figure 13: Cumulative quality and time comparisofathways domain.

Cumm. % Successful Domains Cumm. % Successful Domains

Cumm. % Successful Domains

54

pathways_0.25 Success pathways_0.25 Time
30 . ‘ : 1.6e+06
25 i] = 1.4e+06 + g
o 1.2e+06 :
i T B 1e+06 |]
18 1 = 800000 1
£ L i
10 L _ £ 600000
S 400000 r 1
5% T 9 200000 | ,]
0 : ‘ L L . d : 0 : L : :
0 20 40 60 80 100 120 140 160 0 20 40 60 80 100 120 140 160
Problems Problems
FF mm 1 2w 3 All FF wm 1 mm 2 3 All o

Figure 14: Cumulative quality and time compariso®.25 density Pathways domain.

pathways_0.5 Success pathways_0.5 Time
25 T 1e+06 . . .
900000
20 et 1 @ 800000 |
o 700000 |
15 1 £ 600000 f
~ 500000 |
10 7 £ 400000 ¢
£ 300000 |
5 13 200000 |
100000 |]
0 e 0 e
0 20 40 60 80 100 120 140 160 0 20 40 60 80 100 120 140 160
Problems Problems
FF wm 1 wm 2 mm 3 All i FF == 1 nm 2 3 All 1

Figure 15: Cumulative quality and time compariso®.5 density Pathways domain.

pathways 0.75 Success pathways_0.75 Time

7 w w 3.5e+06 . —
6 BRI RV | 2 3e+06 | |
5 15 25e+06 |]
4 { E 2ev08 | ;]
3 | g 15e+06 - -']
2 | E 1e+06 | ']
1 1 © 500000 _-_g__/ |
oLb— .. 0 — .

0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120140160180

Problems Problems
FF wm 1 wm 2 mm 3 wm All wm FF wm 1 mm 2 3 All o

Figure 16: Cumulative cuality and time compariso®.i75 density Pathways domain.

55

2 pathways_1.0 Success pathways 1.0 Time
P —— 3.56+06
= M)
S s —~ 3e+06 |
2 4 o 2.5e+06 |
2]
- £ 2ev06
S £ 1.5e+06 |
2
2 E 1e+06
= 1 © 500000
£0 \ \ | \) 0 n | | .
8 0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100120140160180200
Problems Problems
FF =m 1 mm 2 3w All wmn FF wm 1 mm 2 3 All o

Figure 17: Cumulative quality and time comparisori 0 density Pathways domain.

Discussion

As the strength of the reasoning about incomplet®irecreases from ignoring
incompleteness to tracking increasingly higher icenidy prime implicants, to tracking
all interpretations of an incomplete domain, wedtémsee increasing plan quality, in
terms of the number of domain interpretations Wilitsuccessfully execute the plan and
achieve the goal. We also see scalability decraaseresult. Reasoning about prime
implicants tends to be a useful middle-ground whedans have good quality, and

planner scalability is best.

56

RELATED WORK

Planning with faults is noticeably similar to plamg with incomplete information
[12], wherein action descriptions instead of statesincomplete. As we have shown,
incomplete domains can be translated to CPP doreamasplanners such as POND and
PFF [18] are applicable. However, while the tratsfais theoretically feasible, practical
issues regarding numeric precision prohibit effectise of existing planners.

Our investigation is an instantiation of model-j@nning [1]. Constraint-based
hierarchical task networks are an alternative, fgoiout by [1], which avoid specifying
all preconditions and effects through methods amstraints that correspond to
underlying, implicit causal links.

As previously stated, this work is a natural exiem®f the [5] model for
evaluating plans in incomplete domains. Our metHodsomputing faults are slightly
different in that we compute faults in the forwaicection and are more specific about
which faults occur. In addition to calculating fesubf partial plans, we have also
presented a relaxed planning heuristic informedhlit.

Prior work of [20] also addresses planning withoimplete models, but focuses
on online planning and execution to learn the maslelilar to model-based
reinforcement learning. We differ in that we assuradeedback from the environment
and attempt to find the best plan possible offliHewever, the plans found IBe FAULT

have the potential to guide either knowledge erggmer experimentation.

57

CONCLUSION

We have presented the first work to address planimimcomplete domains as a
heuristic search to find mostly-correct plans. @lanner,DeFAULT, i) performs forward
search while maintaining sets of plan faults, apdstimates the future faults incurred by
propagating faults on planning graphs. We have shtvat, compared to a planner that
essentially ignores aspects of the incomplete dojeiFAULT is able to scale
reasonably well and find much better quality plaie have also shown that representing
explanations of plan failure with prime implicahdads to better scalability than a

complete representation using OBDDs and countindeiso

58

REFERENCES

[1] Kambhampati, S. Model-lite planning for the wadpe masses. Proceedings of
22" National Conference on Al, 2007.

[2] Wu, K., Yang, Q., and Jiang, Y. ARMS: An autdin&nowledge engineering
tool for learning action models for Al plannirignowl edge Engineering Review
22, 2 (2007), 135-152.

[3] Piergiorgio Bertoli, P., Adi Botea, A., and Saime Fratini, Report of the board of
judges. InThird International Competition on Knowledge Engineering for
Planning and Scheduling, 2009.

[4] Mailler, R., Bryce, D., Shen, J., and Oriely, Mable: A framework for natural
instruction. InProceedings of the 8" International Joint Conference on
Autonomous Agents and Multiagent Systems, 2009.

[5] Garland, A. and Lesh, N. Plan evaluation withamplete action descriptions. In
Proceedings of 18" National Conference on Artificial Intelligence, 2002.

[6] de Kleer, J. and Williams, B.C. Diagnosing niplk faults.Artificial Intelligence
32,1 (1987), 97— 130.

[7] Reiter, R. A theory of diagnosis from first paples.Artificial Intelligence 32, 1
(1987), 57-95.

[8] Robertson, J. and Bryce, D. Reachability heiogsfor planning in incomplete
domains. InProceedings of the ICAPS Workshop on Heuristics for Domain
Independent Planning, 2009.

[9] Gerevini, A., Bonet, B., and Givan, R. Repdrtlee committee. Irrifth
International Planning Competition, 2006.

[10] DRoth, D. On the hardness of approximate reegpArtificial Intelligence 82 1-
2 (Apr. 1996), 273-302.

[11] Darwiche A. and Marquis, P. A knowledge colapon map.Journal of
Artificial Intelligence Research 17 (2002), 229-264.

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

59

D. Bryce, S. Kambhampati, and D.E. Smith. Sedial monte carlo in
probabilistic planning reachability heuristiéd.J, 172(6-7):685—-715, 2008.

Fikes, R. and Nilsson, N.J. STRIPS: A new apgh to the application of
theorem proving to problem solving. Rnoceedings of Assoc. for the
Advancement of Artificial Intelligence, 1971, 608—-620.

Bryce, D., Kambhampati, S., and Smith, S.EanRing graph heuristics for belief
space searclournal of Artificial Intelligence Research 26 (2006), 35-99.

McDermott, D. PddI-the planning domain defimit language. Technical report,
CVC TR-98-003, Yale University Computer Science &g&ment, 1998.Available
at: www.cs.yale.edu/homes/dvm.

de Kleer, J. An assumption-based taificial Intelligence 28, 2 (1986), 127—
162, 1986.

Hoffmann, J. and Nebel, B. The FF planningeys Fast plan generation
through heuristic searcBournal of Artificial Intelligence Research 14 (2001),
253-302.

Domshlak, C. and Hoffmann, J. Fast probaliiptanning through weighted
model counting. IfProceedings of International Conference on Automated
Planning and Scheduling, 2006.

Malte Helmert, M. The fast downward planningtm.Journal of Artificial
Intelligence Research 26 (2006),191-246.

Chang, A. and Amir, E. Goal achievement intiadly known, partially
observable domains. FProceedings of International Conference on Automated
Planning and Scheduling, 2006.

	Planning in Incomplete Domains
	Recommended Citation

	Microsoft Word - 190890_supp_undefined_83D7D4F4-4AC0-11E2-9437-70242E1BA5B1.docx

