
Utah State University Utah State University

DigitalCommons@USU DigitalCommons@USU

All Graduate Theses and Dissertations Graduate Studies

12-2012

Space Plug-and-Play Architecture Networking: A Self-Configuring Space Plug-and-Play Architecture Networking: A Self-Configuring

Heterogeneous Network Architecture Heterogeneous Network Architecture

Jacob Holt Christensen
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Christensen, Jacob Holt, "Space Plug-and-Play Architecture Networking: A Self-Configuring
Heterogeneous Network Architecture" (2012). All Graduate Theses and Dissertations. 1422.
https://digitalcommons.usu.edu/etd/1422

This Dissertation is brought to you for free and open
access by the Graduate Studies at
DigitalCommons@USU. It has been accepted for
inclusion in All Graduate Theses and Dissertations by an
authorized administrator of DigitalCommons@USU. For
more information, please contact
digitalcommons@usu.edu.

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd?utm_source=digitalcommons.usu.edu%2Fetd%2F1422&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.usu.edu%2Fetd%2F1422&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd/1422?utm_source=digitalcommons.usu.edu%2Fetd%2F1422&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/

SPACE PLUG-AND-PLAY ARCHITECTURE NETWORKING: A

SELF-CONFIGURING HETEROGENEOUS NETWORK ARCHITECTURE

by

Jacob Holt Christensen

A dissertation submitted in partial fulfillment
of the requirements for the degree

of

DOCTOR OF PHILOSOPHY

in

Computer Science

Approved:

Dr. Scott Cannon Dr. Stephen Clyde
Major Professor Committee Member

Dr. Vladimir Kulyukin Dr. Patric Patterson
Committee Member Committee Member

Dr. Dan Watson Dr. Mark R. McLellan
Committee Member Vice President for Research and

Dean of the School of Graduate Studies

UTAH STATE UNIVERSITY
Logan, Utah

2012

ii

Copyright c© Jacob Holt Christensen 2012

All Rights Reserved

iii

ABSTRACT

Space Plug-and-Play Architecture Networking: A Self-Configuring Heterogeneous Network

Architecture

by

Jacob Holt Christensen, Doctor of Philosophy

Utah State University, 2012

Major Professor: Dr. Scott Cannon
Department: Computer Science

The Space Plug-and-Play Architecture (SPA) networking approach outlined in this dis-

sertation is an improvement over the previous approach used by the Satellite Data Model

(SDM). The first improvement is the introduction of a SPA network model based on the

Open Systems Interconnection (OSI) model. Second, a new addressing and routing scheme

is presented, which places the burden of routing on the network infrastructure instead

of the network endpoints. These improvements have been implemented in a software in-

frastructure called the SPA Services Manager (SSM). The SSM was developed under an

International Organization for Standardization (ISO) 9001 certified development process,

the details of which are presented. A collection of network timing graphs that measure

latency and jitter of the SPA network is contained in this dissertation, as well as a runtime

memory footprint. The maturity of the development process and these initial performance

measurements demonstrate that the SSM is qualified for spaceflight.

(250 pages)

iv

PUBLIC ABSTRACT

Jacob Holt Christensen

In spacecraft engineering, the time and money involved in satellite construction is

largely spent on design and integration of custom hardware and software. These efforts are

duplicated for nearly every satellite with little to no reuse between spacecraft. There is

a huge potential for cost savings in removing the duplication of work. However, there is

a lack of standardization in the spaceflight community, causing soaring costs and delayed

schedules as each component of a spacecraft is individually designed and custom built.

The Air Force Research Laboratory (AFRL) has developed the Space Plug-and-Play

Architecture (SPA) to address this problem. SPA provides the ability to reuse spacecraft

hardware and software components by creating a standard set of protocols used to discover

and exchange data between spacecraft components. The first software infrastructure to

implement these protocols was called the Satellite Data Model (SDM). After several years

of research and development, SPA and the SDM were presented to a team of six industry

contractors. Their feedback was that SPA lacked a unified model and the SDM lacked an

elegant and scalable networking approach.

This dissertation presents a SPA network model based on the standard Open Systems

Interconnection (OSI) networking model and a new addressing and routing scheme for

the SPA network. In order to achieve this new networking approach, the standard SPA

networking protocols were redesigned and reimplemented in a new software infrastructure

called the SPA Services Manager (SSM). In the SSM, the burden of routing data is handled

by the network internals and not by the hardware or software endpoints.

v

ACKNOWLEDGMENTS

It has been said that no great work is done alone. I can attest to the truthfulness of

this statement. I would feel ungrateful if I did not acknowledge those who have helped me

reach this goal.

• The Space Dynamics Laboratory, for the PhD Fellowship and the use of the many

facilities.

• Jim Lyke, for funding the majority of my research, creating SPA, and letting me have

an impact.

• Dave Anderson, for sitting through all those APT meetings with me and being my

greatest champion with our customers.

• Mark Greenman, for mentoring me and building my confidence.

• Bryan Hansen, for always finding the flaws in my ideas before anyone else could and

for being a friend.

• Scott Cannon, for accepting me and pointing me in the right direction.

• Dad, for teaching me to not quit until the job is done (even if you have to work by

the light of the riding lawnmower’s headlights).

• Mom, for letting me stay up late and watch Star Trek and always encouraging me to

do my best.

• Dessie, Andrew, and Hannah for keeping my life in balance with bike rides, wrestling

matches, forts made out of blankets, and story time.

• Melinda, for believing in me, and always encouraging me to follow my dreams no

matter where they take her. No one has given more to this work than she.

vi

This material is based upon work supported by the United States Air Force under Con-

tract No. FA9453-08-C-0244. Any opinions, findings and conclusions or recommendations

expressed in this material are those of the author and do not necessarily reflect the views

of the United States Air Force.

Jacob H. Christensen

vii

CONTENTS

Page

ABSTRACT . iii

PUBLIC ABSTRACT . iv

ACKNOWLEDGMENTS . v

LIST OF TABLES . ix

LIST OF FIGURES . xi

ACRONYMS . xx

CHAPTER

1 INTRODUCTION . 1
1.1 Introduction . 1
1.2 Space Environment Design Constraints . 2
1.3 Self-Configuring Networks . 4
1.4 The Plug-and-Play Promise . 5
1.5 Space Plug-and-Play Architecture History 6
1.6 Research Scope . 8

2 RELATED WORK . 9
2.1 Introduction . 9
2.2 Historical Progress . 9
2.3 Onboard Spacecraft Networking . 10
2.4 Self-Configuring Onboard Spacecraft Networking 11
2.5 Summary . 18

3 SPA NETWORK ARCHITECTURE . 19
3.1 Introduction . 19
3.2 The SPA Stack . 20
3.3 The Physical Layer . 22
3.4 The Data Link Layer . 25
3.5 The Network Layer . 36
3.6 The Transport Layer . 45
3.7 The Application Layer . 51
3.8 Summary . 57

viii

4 IMPLEMENTATION . 58
4.1 Introduction . 58
4.2 Development Process . 59
4.3 Software Architecture . 68
4.4 Software Implementation . 84
4.5 Summary . 86

5 EXPERIMENTAL SETUP . 87
5.1 Introduction . 87
5.2 Performance Measures . 87
5.3 Tests Configurations . 89
5.4 Test Parameters . 91
5.5 Test Procedure and Data Collection . 92

6 RESULTS . 95
6.1 Introduction . 95
6.2 Measured Performance . 95
6.3 Selected Data and Aggregation . 97
6.4 Conclusion . 98

7 CONCLUSIONS . 99
7.1 Introduction . 99
7.2 Contributions . 99
7.3 Future Work . 100

REFERENCES . 101

APPENDICES . 116
Appendix A First Recorded Instance of the SPA Network 117
Appendix B Message Definitions . 119
Appendix C Comprehensive Results . 139
Appendix D Memory Usage . 222

CURRICULUM VITAE . 227

ix

LIST OF TABLES

Table Page

B.1 Message definition for the LocalHeader message 119

B.2 Message definition for the LocalHello message 120

B.3 Message definition for the LocalAck message 120

B.4 Message definition for the LocalRouteRequest message 120

B.5 Message definition for the LocalRoute message 121

B.6 Message definition for the OneArp message 122

B.7 Message definition for the OneHello message 122

B.8 Message definition for the OneAck message 122

B.9 Message definition for the UsbHello message 123

B.10 Message definition for the UsbAck message 123

B.11 Message definition for the SpwHeader message 124

B.12 Message definition for the SpwRouterProbe message 124

B.13 Message definition for the SpwEndpointPing message 125

B.14 Message definition for the SpwEndpointPingReply message 125

B.15 Message definition for the SpwConfigureTopologyDiscovery message 126

B.16 Message definition for the SpwRouteRequest message 126

B.17 Message definition for the SpwRoute message 127

B.18 Message definition for the SpaHeader message 128

B.19 Message definition for the SpaAck message 128

B.20 Message definition for the SpaXtedsRequest message 129

B.21 Message definition for the SpaXtedsReply message 129

x

B.22 Message definition for the SpaSubscriptionRequest message 130

B.23 Message definition for the SpaSubscriptionReply message 131

B.24 Message definition for the SpaQueryRequest message 131

B.25 Message definition for the SpaQueryReply message 132

B.26 Message definition for the SpaRequestAddressBlock message 133

B.27 Message definition for the SpaAssignAddressBlock message 133

B.28 Message definition for the SpaDistributeRoute message 134

B.29 Message definition for the SpaRequestLookupServiceProbe message 134

B.30 Message definition for the SpaData message 135

B.31 Message definition for the SpaServiceRequest message 135

B.32 Message definition for the SpaServiceReply message 136

B.33 Message definition for the SpaProbeRequest message 136

B.34 Message definition for the SpaProbeReply message 137

B.35 Message definition for the SpaCommand message 137

B.36 Message definition for the SpaAssignAddress message 138

xi

LIST OF FIGURES

Figure Page

3.1 Comparing SPA to the OSI model . 21

3.2 The SPA subnet hierarchy. 23

3.3 Probe protocol . 27

3.4 Local discovery protocol . 28

3.5 I2C address resolution protocol sequence diagram 31

3.6 SPA-1 round-robin . 32

3.7 I2C discovery protocol . 33

3.8 USB discovery protocol . 34

3.9 Reflecting a packet back to oneself in a SpaceWire network 35

3.10 SpW discovery protocol . 36

3.11 SPA logical address and subdivision of the subnet ID and component ID . 39

3.12 Bootstrapping the SPA address assignment process 41

3.13 A sample routing table . 43

3.14 Routing a message through a SPA network 45

3.15 Sample portion of simple xTEDS . 46

3.16 Registration protocol . 47

3.17 A very simple query . 48

3.18 Query protocol . 49

3.19 Subscription Protocol depicting direct subscription and subscription via the
Lookup Service . 50

3.20 xTEDS notification protocol . 52

xii

3.21 xTEDS command protocol . 52

3.22 xTEDS request protocol . 53

3.23 SPA component life cycle . 55

4.1 Example feature plan . 63

4.2 Example test network configuration . 67

4.3 Layered software architecture of the SSM 69

4.4 SpaThread class outline . 70

4.5 The family of Generics: Node, List, Queue, Vector, and Priority Queue . . 72

4.6 Generic message format for a SPA message 72

4.7 A portion of the SpaMessage inheritance hierarchy 73

4.8 The SPA physical communicators . 74

4.9 The SPA logical communicators . 74

4.10 Central Address Service class architecture 78

4.11 SPA-Local subnet manager class architecture 79

4.12 SPA-SpaceWire subnet manager class architecture 80

4.13 Lookup Service class architecture . 82

4.14 SPA API control flow . 83

4.15 SPA API public interface . 84

4.16 SPA API class architecture . 85

5.1 Graphical network configuration interface 88

5.2 Single router network configuration . 89

5.3 String of routers network configuration . 90

5.4 Split router network configuration . 90

5.5 Test network setup . 91

5.6 Characterizing each endpoint in each configuration 92

xiii

5.7 Complete network test message size rotations 93

5.8 Test procedure sequence . 94

6.1 All 100 byte message data points collected from endpoint 1 96

6.2 All 500 byte message data points collected from endpoint 1 96

6.3 All 1000 byte message data points collected from endpoint 1 97

C.1 Endpoint 1 - Summary of all three message sizes on one router 140

C.2 Endpoint 1 - Summary of all three message sizes on two routers 141

C.3 Endpoint 1 - Summary of all three message sizes on three routers 141

C.4 Endpoint 1 scatter plot - One router, message size: 100 bytes 142

C.5 Endpoint 1 histogram - One router, message size: 100 bytes 142

C.6 Endpoint 1 scatter plot - Two routers, message size: 100 bytes 143

C.7 Endpoint 1 histogram - Two routers, message size: 100 bytes 143

C.8 Endpoint 1 scatter plot - Three routers, message size: 100 bytes 144

C.9 Endpoint 1 histogram - Three routers, message size: 100 bytes 144

C.10 Endpoint 1 scatter plot - One router, message size: 500 bytes 145

C.11 Endpoint 1 histogram - One router, message size: 500 bytes 145

C.12 Endpoint 1 scatter plot - Two routers, message size: 500 bytes 146

C.13 Endpoint 1 histogram - Two routers, message size: 500 bytes 146

C.14 Endpoint 1 scatter plot - Three routers, message size: 500 bytes 147

C.15 Endpoint 1 histogram - Three routers, message size: 500 bytes 147

C.16 Endpoint 1 scatter plot - One router, message size: 1000 bytes 148

C.17 Endpoint 1 histogram - One router, message size: 1000 bytes 148

C.18 Endpoint 1 scatter plot - Two routers, message size: 1000 bytes 149

C.19 Endpoint 1 histogram - Two routers, message size: 1000 bytes 149

C.20 Endpoint 1 scatter plot - Two routers, message size: 1000 bytes 150

xiv

C.21 Endpoint 1 histogram - Three routers, message size: 1000 bytes 150

C.22 Endpoint 2 - Summary of all three message sizes on one router 151

C.23 Endpoint 2 - Summary of all three message sizes on two routers 151

C.24 Endpoint 2 - Summary of all three message sizes on three routers 152

C.25 Endpoint 2 scatter plot - One router, message size: 100 bytes 153

C.26 Endpoint 2 histogram - One router, message size: 100 bytes 153

C.27 Endpoint 2 scatter plot - Two routers, message size: 100 bytes 154

C.28 Endpoint 2 histogram - Two routers, message size: 100 bytes 154

C.29 Endpoint 2 scatter plot - Three routers, message size: 100 bytes 155

C.30 Endpoint 2 histogram - Three routers, message size: 100 bytes 155

C.31 Endpoint 2 scatter plot - One router, message size: 500 bytes 156

C.32 Endpoint 2 histogram - One router, message size: 500 bytes 156

C.33 Endpoint 2 scatter plot - Two routers, message size: 500 bytes 157

C.34 Endpoint 2 histogram - Two routers, message size: 500 bytes 157

C.35 Endpoint 2 scatter plot - Three routers, message size: 500 bytes 158

C.36 Endpoint 2 histogram - Three routers, message size: 500 bytes 158

C.37 Endpoint 2 scatter plot - One router, message size: 1000 bytes 159

C.38 Endpoint 2 histogram - One router, message size: 1000 bytes 159

C.39 Endpoint 2 scatter plot - Two routers, message size: 1000 bytes 160

C.40 Endpoint 2 histogram - Two routers, message size: 1000 bytes 160

C.41 Endpoint 2 scatter plot - Three routers, message size: 1000 bytes 161

C.42 Endpoint 2 histogram - Three routers, message size: 1000 bytes 161

C.43 Endpoint 3 - Summary of all three message sizes on one router 162

C.44 Endpoint 3 - Summary of all three message sizes on two routers 162

C.45 Endpoint 3 - Summary of all three message sizes on three routers 163

xv

C.46 Endpoint 3 scatter plot - One router, message size: 100 bytes 164

C.47 Endpoint 3 histogram - One router, message size: 100 bytes 164

C.48 Endpoint 3 scatter plot - Two routers, message size: 100 bytes 165

C.49 Endpoint 3 histogram - Two routers, message size: 100 bytes 165

C.50 Endpoint 3 scatter plot - Three routers, message size: 100 bytes 166

C.51 Endpoint 3 histogram - Three routers, message size: 100 bytes 166

C.52 Endpoint 3 scatter plot - One router, message size: 500 bytes 167

C.53 Endpoint 3 histogram - One router, message size: 500 bytes 167

C.54 Endpoint 3 scatter plot - Two routers, message size: 500 bytes 168

C.55 Endpoint 3 histogram - Two routers, message size: 500 bytes 168

C.56 Endpoint 3 scatter plot - Three routers, message size: 500 bytes 169

C.57 Endpoint 3 histogram - Three routers, message size: 500 bytes 169

C.58 Endpoint 3 scatter plot - One router, message size: 1000 bytes 170

C.59 Endpoint 3 histogram - One router, message size: 1000 bytes 170

C.60 Endpoint 3 scatter plot - Two routers, message size: 1000 bytes 171

C.61 Endpoint 3 histogram - Two routers, message size: 1000 bytes 171

C.62 Endpoint 3 scatter plot - Three routers, message size: 1000 bytes 172

C.63 Endpoint 3 histogram - Three routers, message size: 1000 bytes 172

C.64 Endpoint 4 - Summary of all three message sizes on one router 173

C.65 Endpoint 4 - Summary of all three message sizes on two routers 173

C.66 Endpoint 4 - Summary of all three message sizes on three routers 174

C.67 Endpoint 4 scatter plot - One router, message size: 100 bytes 175

C.68 Endpoint 4 histogram - One router, message size: 100 bytes 175

C.69 Endpoint 4 scatter plot - Two routers, message size: 100 bytes 176

C.70 Endpoint 4 histogram - Two routers, message size: 100 bytes 176

xvi

C.71 Endpoint 4 scatter plot - Three routers, message size: 100 bytes 177

C.72 Endpoint 4 histogram - Three routers, message size: 100 bytes 177

C.73 Endpoint 4 scatter plot - One router, message size: 500 bytes 178

C.74 Endpoint 4 histogram - One router, message size: 500 bytes 178

C.75 Endpoint 4 scatter plot - Two routers, message size: 500 bytes 179

C.76 Endpoint 4 histogram - Two routers, message size: 500 bytes 179

C.77 Endpoint 4 scatter plot - Three routers, message size: 500 bytes 180

C.78 Endpoint 4 histogram - Three routers, message size: 500 bytes 180

C.79 Endpoint 4 scatter plot - One router, message size: 1000 bytes 181

C.80 Endpoint 4 histogram - One router, message size: 1000 bytes 181

C.81 Endpoint 4 scatter plot - Two routers, message size: 1000 bytes 182

C.82 Endpoint 4 histogram - Two routers, message size: 1000 bytes 182

C.83 Endpoint 4 scatter plot - Three routers, message size: 1000 bytes 183

C.84 Endpoint 4 histogram - Three routers, message size: 1000 bytes 183

C.85 Endpoint 5 - Summary of all three message sizes on one router 184

C.86 Endpoint 5 - Summary of all three message sizes on two routers 184

C.87 Endpoint 5 - Summary of all three message sizes on three routers 185

C.88 Endpoint 5 scatter plot - One router, message size: 100 bytes 186

C.89 Endpoint 5 histogram - One router, message size: 100 bytes 186

C.90 Endpoint 5 scatter plot - Two routers, message size: 100 bytes 187

C.91 Endpoint 5 histogram - Two routers, message size: 100 bytes 187

C.92 Endpoint 5 scatter plot - Three routers, message size: 100 bytes 188

C.93 Endpoint 5 histogram - Three routers, message size: 100 bytes 188

C.94 Endpoint 5 scatter plot - One router, message size: 500 bytes 189

C.95 Endpoint 5 histogram - One router, message size: 500 bytes 189

xvii

C.96 Endpoint 5 scatter plot - Two routers, message size: 500 bytes 190

C.97 Endpoint 5 histogram - Two routers, message size: 500 bytes 190

C.98 Endpoint 5 scatter plot - Three routers, message size: 500 bytes 191

C.99 Endpoint 5 histogram - Three routers, message size: 500 bytes 191

C.100 Endpoint 5 scatter plot - One router, message size: 1000 bytes 192

C.101 Endpoint 5 histogram - One router, message size: 1000 bytes 192

C.102 Endpoint 5 scatter plot - Two routers, message size: 1000 bytes 193

C.103 Endpoint 5 histogram - Two routers, message size: 1000 bytes 193

C.104 Endpoint 5 scatter plot - Three routers, message size: 1000 bytes 194

C.105 Endpoint 5 histogram - Three routers, message size: 1000 bytes 194

C.106 Endpoint 6 - Summary of all three message sizes on one router 195

C.107 Endpoint 6 - Summary of all three message sizes on two routers 195

C.108 Endpoint 6 - Summary of all three message sizes on two routers 196

C.109 Endpoint 6 scatter plot - One router, message size: 100 bytes 197

C.110 Endpoint 6 histogram - One router, message size: 100 bytes 197

C.111 Endpoint 6 scatter plot - Two routers, message size: 100 bytes 198

C.112 Endpoint 6 histogram - Two routers, message size: 100 bytes 198

C.113 Endpoint 6 scatter plot - Three routers, message size: 100 bytes 199

C.114 Endpoint 6 histogram - Three routers, message size: 100 bytes 199

C.115 Endpoint 6 scatter plot - One router, message size: 500 bytes 200

C.116 Endpoint 6 histogram - One router, message size: 500 bytes 200

C.117 Endpoint 6 scatter plot - Two routers, message size: 500 bytes 201

C.118 Endpoint 6 histogram - Two routers, message size: 500 bytes 201

C.119 Endpoint 6 scatter plot - Three routers, message size: 500 bytes 202

C.120 Endpoint 6 histogram - Three routers, message size: 500 bytes 202

xviii

C.121 Endpoint 6 scatter plot - One router, message size: 1000 bytes 203

C.122 Endpoint 6 histogram - One router, message size: 1000 bytes 203

C.123 Endpoint 6 scatter plot - Two routers, message size: 1000 bytes 204

C.124 Endpoint 6 histogram - Two routers, message size: 1000 bytes 204

C.125 Endpoint 6 scatter plot - Three routers, message size: 1000 bytes 205

C.126 Endpoint 6 histogram - Three routers, message size: 1000 bytes 205

C.127 All endpoints scatter plot - One router, message size: 100 bytes 206

C.128 All endpoints histogram - One router, message size: 100 bytes 207

C.129 All endpoints scatter plot - One router, message size: 500 bytes 207

C.130 All endpoints histogram - One router, message size: 500 bytes 208

C.131 All endpoints scatter plot - One router, message size: 1000 bytes 208

C.132 All endpoints histogram - One router, message size: 1000 bytes 209

C.133 All endpoints scatter plot - One router, all message sizes 209

C.134 All endpoints scatter plot - String of three routers, message size: 100 bytes 210

C.135 All endpoints histogram - String of three routers, message size: 100 bytes . 210

C.136 All endpoints scatter plot - String of three routers, message size: 500 bytes 211

C.137 All endpoints histogram - String of three routers, message size: 500 bytes . 211

C.138 All endpoints scatter plot - String of three routers, message size: 1000 bytes 212

C.139 All endpoints histogram - String of three routers, message size: 1000 bytes 212

C.140 All endpoints scatter plot - String of three routers, all message sizes, config-
uration 1 . 213

C.141 All endpoints scatter plot - String of three routers, all message sizes, config-
uration 2 . 213

C.142 All endpoints scatter plot - String of three routers, all message sizes, config-
uration 3 . 214

C.143 All endpoints scatter plot - String of three routers, all message sizes, config-
uration 4 . 214

xix

C.144 All endpoints scatter plot - String of three routers, all message sizes, config-
uration 5 . 215

C.145 All endpoints scatter plot - String of three routers, all message sizes, config-
uration 6 . 215

C.146 All endpoints scatter plot - Split of three routers, message size: 100 bytes . 216

C.147 All endpoints histogram - Split of three routers, message size: 100 bytes . . 216

C.148 All endpoints scatter plot - Split of three routers, message size: 500 bytes . 217

C.149 All endpoints histogram - Split of three routers, message size: 500 bytes . . 217

C.150 All endpoints scatter plot - Split of three routers, message size: 1000 bytes 218

C.151 All endpoints histogram - Split of three routers, message size: 1000 bytes . 218

C.152 All endpoints scatter plot - Split of three routers, all message sizes, config-
uration 1 . 219

C.153 All endpoints scatter plot - Split of three routers, all message sizes, config-
uration 2 . 219

C.154 All endpoints scatter plot - Split of three routers, all message sizes, config-
uration 3 . 220

C.155 All endpoints scatter plot - Split of three routers, all message sizes, config-
uration 4 . 220

C.156 All endpoints scatter plot - Split of three routers, all message sizes, config-
uration 5 . 221

C.157 All endpoints scatter plot - Split of three routers, all message sizes, config-
uration 6 . 221

D.1 Entire SSM minimal memory footprint . 223

D.2 Central Address Service minimal memory footprint 223

D.3 Central Address Service memory usage, including SM-X address assignments 224

D.4 Lookup Service minimal memory footprint 224

D.5 Lookup Service memory usage during query processing 225

D.6 Lookup Service memory usage during registration and deregistration . . . 225

D.7 SPA-Local Manager minimal memory footprint 226

D.8 SPA-SpaceWire minimal memory footprint 226

xx

ACRONYMS

ACK Acknowledge

AFRL Air Force Research Laboratory

AFRL/RV Air Force Research Laboratory Space / Vehicles Directorate

AIAA American Institute of Aeronautics and Astronautics

API Application Programming Interface

APT Advanced Plug-and-Play Technology

ARP Address Resolution Protocol

ASIM Applied Sensor Interface Module

CCSDS Consultative Committee for Space Data Systems

CDH Command and Data Handling

CORBA Common Object Request Broker Architecture

CAS Central Address Service

CDC Communications Device Class

CDD Common Data Dictionary

CDT C++ Development Toolkit

CFS Core Flight System

CVS Concurrent Versions System

DLR German Aerospace Center

ESA European Space Agency

I2C Inter-Integrated Circuit

IP Internet Protocol

IEEE Institute of Electrical and Electronics Engineers

IPC Inter-Process Communication

ISO International Organization for Standardization

ITAR International Traffic in Arms Regulations

xxi

IV&V Independent Validation and Verification

JAXA Japan Aerospace Exploration Agency

LRO Lunar Reconnaissance Orbiter

LVDS Low Voltage Differential Signalling

MODAS Modular Avionics System

MSV Modular Space Vehicle

NASA National Aeronautics and Space Administration

NRE Non-Recurring Engineering

OSI Open Systems Interconnection

ORS Operationally Responsive Space

PAL Platform Abstraction Layer

PnP Plug-and-Play

RST Responsive Space Testbed

RKA Russian Federal Space Agency

SCM Software Configuration Management

SDD Software Design Description

SDP Software Development Plan

SDL Space Dynamics Laboratory

SDM Satellite Data Model

SEU Single Event Upset

SHA Secure Hash Algorithm

SM Subnet Manager

SM-1 SPA-1 Subnet Manager

SM-L SPA-Local Subnet Manager

SM-S SPA-S Subnet Manager

SM-U SPA-U Subnet Manager

SOIS Spacecraft Onboard Interface Services

SPA Space Plug-and-Play Architecture

xxii

SpW SpaceWire

SRS Software Requirements Specification

SSM SPA Services Manager

STL Standard Template Library

TEDS Transducer Electronic Data Sheet

UDP User Datagram Protocol

USB Universal Serial Bus

UUID Universally Unique Identifier

XML Extensible Markup Language

xTEDS Extensible Transducer Electronic Data Sheet

1

CHAPTER 1

INTRODUCTION

1.1 Introduction

Building a satellite is a tricky thing to do. A traditional satellite takes from 2 to

10 years to build on a budget from $10 million to $8.7 billion (the current cost of NASA’s

James Webb Space Telescope [89]). The time and money involved in satellite construction is

largely spent on design and integration of custom hardware and software. These efforts are

duplicated for nearly every satellite with little to no reuse between spacecraft. The reason

for this is the custom nature of the hardware and software. New hardware typically does

not use a standard logical interface, therefore new software is required to communicate with

it. There is a lack of standardization in the spaceflight community, which causes soaring

costs and long schedules as nearly every component of a spacecraft is individually designed

and custom built [109].

The spaceflight hardware and software markets are very small compared to other in-

dustries. Most spaceflight hardware and software are built and used only once and are very

different from typical terrestrial hardware and software in that the intended environments

are dramatically different. The space environment poses different challenges to hardware

designers from radiation effects to electrostatic charging to micro-meteoroid impacts. Sim-

ilarly, spaceflight software is different than terrestrial software [55]. Radiation effects can

cause single event upsets (SEU) and permanent latch ups forcing spaceflight software to

be more robust in order to handle these types of errors that do not occur in terrestrial

software. These radiation effects constrain the processing power of spaceflight processors

making efficiency and performance a software issue.

A self-configuring network of sensors, processing units, and flight software could greatly

2

reduce the efforts required to build a spacecraft by reducing duplicated engineering efforts.

Standard interfaces could replace custom proprietary interfaces in both hardware and soft-

ware. A dramatic reduction in time and money could be achieved if hardware and software

components were reused across a broad range of satellites.

The Air Force Research Laboratory (AFRL) is looking for ways to reduce the time

and money required to build a satellite by using concepts from the modern desktop PC

and implementing them in a spacecraft environment. This effort led to the creation of

the Space Plug-and-Play Architecture (SPA) [96]. SPA uses well known physical bus and

network technologies to create a network for all spacecraft hardware and software. As it

was originally developed, SPA lacked a strong network model to guide the addition and

development of new networking technologies. SPA did not have any concept of a layered

network architecture and the networking approach had devolved into a piecemeal solution.

This dissertation defines a network model based on the Open Systems Interconnection

(OSI) model [74] and a layered network approach that fits within the conceptual architecture

of the proposed model. The goal of this approach is to provide a network architecture that

is transport agnostic and does not place the burden of routing on the network endpoints. To

be clear, this dissertation’s contribution to SPA is the creation of the SPA network model

and the design of its data link and network layers.

1.2 Space Environment Design Constraints

If a typical engineer was asked to build a large robot that was required to function

under water, the engineer would immediately understand some of the very basic design

constraints. For example, everything would have to be waterproof, the structure would

have to be able to handle extreme pressure, and there would be little need for cooling.

If the same engineer was asked to build a robot that could fly, again, the engineer would

understand the very basic design constraints. The robot would need some mechanism

to provide lift, the structure would have be capable of handling impact, and it would

all have to be very lightweight. However, when the same engineer is asked to build a

spacecraft, there are no natural experiences that this engineer can draw from to help in the

3

understanding of the space environment. Only engineers that have specifically studied the

space environment really understand the constraints that space imposes on the design on

electronics and associated software. One possible explanation for this innate understanding

of the water or air environment compared to the space environment is the simple experiences

the engineer has had in water or air. The engineer has most likely been swimming and has

probably flown a kite. However, it is highly unlikely the engineer has ever been in an

environment that is even remotely close to the space environment.

The space environment is a very harsh environment for hardware and, by extension,

software. The effects of the space environment can be broken down into five categories:

vacuum, neutral, plasma, radiation, and micrometeoroid orbital debris [140]. Of these five

categories, the radiation environment has the largest effect on space flight micro-electronics

and software. “Very energetic (MeV - GeV) charged particles can be found in the trapped

radiation belts, solar flare protons, and galactic cosmic rays. The total dose effects of

this high-energy radiation can degrade microelectronic devices, solar arrays, and sensors.

A single energetic particle can also cause single-event phenomena within microelectronic

devices which can temporarily disrupt or permanently damage components” [88]. Single-

event phenomena are perhaps the more upsetting to spaceflight software. Highly charged

radiation particles pass through almost any matter wrecking havoc along the way. When a

charged particle passes through a transistor, it can either add or subtract energy, which can

cause a bit to flip in memory, or in the processor itself. With the potential for random bit

flips, spaceflight software has to be engineered differently from the ground up. Examples

of this are handling error cases that normally cannot be reached, always checking for valid

input, and running the same code segment multiple times to verify it produces the same

result each time.

Spaceflight software is generally unique, built to be reliable, robust, power efficient,

and, where possible, rooted in past space successes [121]. Spaceflight software has many

constraints placed on the techniques and technologies that can be used. For example, space-

flight software written in C++ is generally not allowed to use dynamic memory allocation,

4

templates, or the Standard Template Library (STL). It has not been until the last 10 years

that operating systems have started to become accepted on spacecraft. This change has

largely been precipitated by the success of the twin Mars rovers, Spirit and Opportunity,

which run the VxWorks operating system [30].

Because of the design constraints of the space environment, the space community is

highly critical of software. Using terrestrial software onboard a spacecraft is discouraged

and looked upon very negatively. Spaceflight software only gets one chance to run correctly

and failures are highly publicized [54]. Software built for spaceflight must undergo a very

rigorous verification and validation process that most terrestrial software projects never see.

The work done in for this dissertation was held to these higher standards.

1.3 Self-Configuring Networks

When each component of a spacecraft has a custom and proprietary interface a lot of

time and money is spent integrating all the components together. This includes a hardware

effort to develop wiring manifolds, electrical protocols, and even connectors. It also includes

a software effort to develop drivers for the custom hardware. Since the hardware and

software are new developments, they must both be thoroughly tested. This testing is not

just on each single component, but also as components are assembled into a subsystem,

each subsystem has to be retested, and then again as the whole system is assembled. This

explosion in testing leads to cost growth all because a single component manufacturer uses

a non-standard interface.

A self-configuring network is a network that automates the configuration process and

removes the need for human expertise, instead replacing it with a well-defined protocol that

informs the network hosts of all the information needed to build the routing infrastructure

[84]. This infrastructure includes routing tables, logical addresses, and physical addresses.

A typical self-configuring network approach contains two phases; the first is a discovery

phase where components are found by either probing the network or by the components

reporting to a well-known network location. The second phase is registration, when the

newly discovered components get assigned a logical address and the information about the

5

components, including the logical address and routing table updates, are propagated to the

rest of the network. A robust self-configuring network will maximize the ability to discover

new components and minimize the amount of registration information and the distance that

it has to be sent in the network.

Spacecraft development stands to greatly benefit from a self-configuring network. It

could provide a significant reduction in the time and cost of integrating new components

onto a spacecraft. For a spacecraft to use a self-configuring network each component man-

ufacturer has to use a common communication technology and speak a standard network

protocol. The common communication technology does not have to be reinvented. However,

in existing communication technologies that are accepted and used in modern spacecraft,

there is not a one size fits all solution. A self-configuring network for a spacecraft system

should allow for a heterogeneity of communication technology. While many communication

technologies do provide self-configuration mechanisms there still exists a need for a unifying

network protocol that can combine the heterogeneous communication technologies into a

single spacecraft-wide network. This standard unifying network protocol is the core of the

self-configuring heterogeneous network.

1.4 The Plug-and-Play Promise

A plug-and-play (PnP) network takes the self-configuring network one step further.

The network’s self-configuration addresses the “plug” part of a PnP system. The “play”

part is not only setting up communication paths between components, but also allowing

the components to find other components that can fulfill their data and processing needs.

A self-configuring network can easily be used to build a PnP system by extending the

registration phase of self-configuration. Each component provides a description of their

data products and processing capabilities to a central indexing service. Components can

then issue queries to this service to find the network address of another component. Part

of the standard network protocol can then include a standard command and data exchange

scheme that will allow any component connected to the PnP network to communicate with

all other components on the same network. With this addition of a simple central indexing

6

service the self-configuring network has become a plug-and-play network.

An onboard PnP spacecraft network enables many possibilities for time and cost sav-

ings. Hardware can be built in parallel without having to wait for other components to

be completed. Software can be developed to command and control the spacecraft without

having to wait for custom drivers or even specifications of the hardware that will actually

perform the control. The PnP network can also provide the spacecraft with new capa-

bilities such as some inherent fault tolerance. An example of inherent fault tolerance can

occur when a query for data or a capability returns multiple results. If one source fails, the

querying component can use one of the other sources.

The biggest promise of a plug-and-play onboard spacecraft network is the cost savings

during spacecraft development. These savings are to be found by the eliminating the non-

recurring engineering (NRE) costs that occur when every spacecraft component is a one-off

solution, reducing the amount of time required for assembly, integration and test (AI&T),

and minimizing the amount of independent validation and verification (IV&V) required

for new components. In summary, a PnP spacecraft takes less time and money to build

because:

• the initial engineering of communication protocols has already been done

• the spacecraft is easier to assemble and test

• the quality assurance process takes less time

All three of these benefits come directly from software and hardware reuse in the

spacecraft architecture, design, and implementation.

1.5 Space Plug-and-Play Architecture History

The Space Plug-and-Play Architecture (SPA) was first introduced in 2005 as Space

Plug-and-Play Avionics at the AIAA 3rd Responsive Space Conference. “The SPA effort

sought to achieve a PnP technology capable of rapidly forming a system, even dynamically,

exploiting machine-negotiated interfaces to, in effect, self organize that system. Recognizing

7

this as a goal, it is clear that the random citation of standards would not be enough. Rather,

it was necessary for SPA to follow a different tact, one that drew from the considerable base

of terrestrial standards in a way to enforce the vision of PnP needed to make Opera-

tionally Responsive Space (ORS) a reality. Though interconnect standards, including USB,

SpaceWire, and Ethernet have been chosen, they are themselves not sufficient to achieve

PnP. It has been found necessary to supplement the commercial interconnections with other

provisions for power and synchronization. More importantly, a software infrastructure was

developed to make possible a deeper idea for PnP, one not just capable of supporting

automatic component identification, but one capable of device independent interchange,

robustness, and flexibility to meet the diverse needs of ORS mission concepts” [96].

From 2005 to 2008 the SPA software infrastructure, called the Satellite Data Model

(SDM), was developed at Utah State University by Dr. Scott R. Cannon et al. In May of

2008 I joined Dr. Cannon’s team and helped maintain the SDM as it was being prepared to

fly on PnPSat [23], AFRL’s first plug-and-play satellite [114]. PnPSat was the first choice

to launch on third Space Exploration Technologies’ Falcon 1 rocket [129]. However, PnPSat

was not ready in time to catch its ride to space. The PnPSat program was canceled due to

trouble during final integration and test. For their next PnP satellite effort AFRL decided

to involve industry contractors to help refine the SPA technology. In October 2009 six

industry contractors were selected for AFRL’s Advanced PnP Technologies (APT) program.

These six contractors (Comtech AeroAstro, Broad Reach Engineering, Miltec Corporation,

Northrop Grumman, SEAKR Engineering Inc., and Sierra Nevada Corporation) were tasked

with refining the SPA concepts for future commercialization of the SPA technology.

When the six APT contractors started using the SDM there quickly arose a concern

with the networking scheme. The scheme worked by using IP addresses as logical addresses

for the network. The IP address was parsed into different sections with different semantic

meanings. When a processor received a packet with an address, it looked at certain bits in

the address and decided where to forward the packet. It then changed the contents of the

address for the next hop in the network. This caused confusion because the algorithm for

8

changing the address was different depending on how far the packet had to travel, which

bus technologies it had to traverse, and where it had come from. This problem was caused

by the lack of a strong architectural model for the SPA network. New bus technologies were

added to the network in an ad-hoc and evolutionary manner without following any sort of

design.

There were many teleconferences where the six APT contractors would debate the need

to change the networking scheme and the desired strategy for doing so. It was after one such

teleconference that I decided I could solve this problem. After several days I had refined my

ideas into a 190 slide PowerPoint presentation. In June of 2010 I traveled to Albuquerque,

New Mexico and presented my ideas to the APT group (see Appendix A). This was the

first time that a concrete idea had been put in front of the group, and it spawned a lot

of competing ideas. Over the following month a debate ensued. In the end the debate

was brought to a vote by the APT committee. Several other proposals were considered,

however, in the end my idea was selected by the committee and approved by AFRL.

1.6 Research Scope

After the APT committee selected my idea as the SPA Networking standard, I was

given the opportunity to develop a working implementation. This dissertation presents

the body of research demonstrating that I have created a network infrastructure that is

transport agnostic and does not place the burden of routing on the network endpoints. I

present a SPA model which organizes the network into a layered architecture that loosely

follows the OSI model [74]. The designs for the data link and network layers are presented.

In order to give the data link and network layers context, the other layers of the network are

also presented. It covers the related work, design, implementation, experimental setup, and

some testing results from the SPA network implementation. The focus of this dissertation is

not the implementation, but instead the network model, addressing, and routing approach.

However, one contribution of this work is the working implementation of a self-configuring

heterogeneous network suitable for spacecraft flight and operation.

9

CHAPTER 2

RELATED WORK

2.1 Introduction

There is a large volume of research related to self-configuring networks. There is also a

significant amount of research and real world implementations of heterogeneous networking

(i.e. the Internet). There is a much smaller amount of research related to the application of

these two technologies on a spacecraft system. The research in the area of self-configuring

heterogeneous spacecraft networks largely covers the requirements of the spacecraft system

itself. Due to the space industry’s aversion to risk and the cost of launching a spacecraft,

it is difficult to find an actual flight with any technology that is considered to still be in a

research phase. This creates a classic chicken and egg problem. It is difficult to fly research

and it is difficult to move out of the research phase without flight heritage. This creates

a research environment where it is very difficult to make progress. While there are several

organizations that have researched self-configuring spacecraft networking, only three are

still continuing the research. This chapter gives a summary of the state of the research in

applying these two technologies to spacecraft systems.

2.2 Historical Progress

The concept of using a modular spacecraft design to reduce cost is not new. Modularity

has been researched in every part of spacecraft design including the physical structure [69].

The Multimission Modular Spacecraft standard was developed by NASA as early as 1978

[31]. The Multimission Modular Spacecraft [57] standard was used for six spacecraft from

1980 to 1992. In 1995 IEEE published the IEEE 1355-1995 standard for Heterogeneous

Interconnect [71]. In 2003, IEEE 1355 was reworked for spaceflight application, which gave

10

birth to SpaceWire [53, 56]. In 1997 IEEE published the IEEE 1451.2-1997 standard for

Transducer Electronic Data Sheets (TEDS) which allows a device to describe its capabilities

and data products [72]. In the early 2000’s software architectures for configuring transducer

networks and creating modular spacecraft started to appear [104,119]. In 2005 one of these

new ideas was for a plug-and-play spacecraft using the USB and SpaceWire standards to

create an onboard spacecraft plug-and-play network. This was the beginning of the Space

Plug-and-Play Architecture [96].

2.3 Onboard Spacecraft Networking

Spacecraft systems do not typically use any kind of network technology, instead uti-

lizing point to point data connections between components. This is due to the inherent

lack of determinism in network technology compared to the solid determinism of point to

point connections. Over the last decade there has been an increase in the research for

onboard spacecraft networking. The first widely adopted network technology developed

for spacecraft use was SpaceWire [3, 115]. SpaceWire is a version of the IEEE 1355 stan-

dard that has been enhanced to use low voltage differential signalling (LVDS), which is

more reliable in the space environment. SpaceWire also uses path-based wormhole routing,

which makes it acceptable for real-time use [116]. The first draft of the SpaceWire standard

was released in 2003 [56] by the European Space Agency (ESA) through their European

Cooperation on Space Standardization (ECSS) group. SpaceWire has seen wide adoption

from the United States National Aeronautics and Space Administration (NASA), the Japan

Aerospace Exploration Agency (JAXA), and the Russian Federal Space Agency (RKA). In

the later half of the 2000’s the literature starts to mention SpaceWire for plug-and-play

applications [52, 105]. Today SpaceWire is still under active development and is used on

many spacecraft [58,117].

Research was started on using Ethernet onboard a spacecraft [145], but due to the

maturity and adoption of SpaceWire, which has a higher bandwidth and better real-time

performance, the research did not progress. Ethernet for spaceflight applications is still in

a research phase.

11

2.4 Self-Configuring Onboard Spacecraft Networking

Several organizations have participated in the research of self-configuring heterogeneous

networking for spacecraft systems. These organizations can be divided into three groups:

academia, industry, and government. Academia is focused on the educational aspects of

developing a spacecraft. Industry is focused on getting contracts from government organi-

zations. It is in the government sector that we find the pursuit (and the money) to develop

the capabilities that are needed to achieve actual progress in the research.

2.4.1 Academia

Academia has proposed several approaches and architectures for self-configuring on-

board spacecraft networks. In 2005 the Adaptive Network Architecture [138] was proposed

as a software architecture designed for real-time operations of multiple spacecraft grouped in

a constellation or formation. In 2006 it was extended to serve as a mechanism for managing

onboard science processing [139]. The modifications allowed for runtime reconfiguration and

redeployment of software components across a set of processors. This work was discontinued

after the presentation of the 2006 paper [139].

In 2010 the SpaceCraft Area Network (SCAN) was introduced [111,112]. SCAN uses a

collection of hardware switches [120] to translate between different communication protocols.

SCAN uses the Realtime Onboard Dependable Operating System (RODOS) [110] as its

underlying software architecture for message passing and data publishing and subscription.

There is very little information in the literature about RODOS as it is a proprietary system

from the German Aerospace Center (DLR).

In 2011 a new plug-and-play architecture was proposed [122] that focuses on plug-and-

play at the satellite subsystem level. It uses microcontrollers to implement the intelligence

required for self configuration. In order to accomplish self discovery, standardized interface

IDs are used. When the onboard computer receives an interface ID, it knows which subsys-

tem it is communicating with and what data it provides as well as what commands it can

receive. This approach is similar to how USB uses its device classes to create plug-and-play.

It should be noted that after 2006 the only research being done by academia takes place

12

outside of the United States. The majority of the research being done in the US is related

to AFRL’s Space Plug-and-Play Architecture (SPA). Due to the large amount of research

and resulting literature, SPA is discussed in section 2.4.3. This split between the domestic

and foreign research was caused in 2008 when the US Congress decided that the SPA effort

fell under the International Traffic in Arms Regulations (ITAR) restrictions, and could not

be shared outside the United States.

2.4.2 Industry

The industry call for spacecraft hardware and software interface standardization started

as early as 1996 [34]. Research for self-configuring onboard spacecraft networks started five

years later in a paper published at the IEEE Aerospace Conference [67]. In this paper the

author called for a network based approach instead of the individual wiring harnesses. The

author also suggested using the IEEE-1451 TEDS standard to achieve a small measure of

self-configuration. This paper can be seen as a founding paper for the work done in this

dissertation.

In 2003 a paper was presented on self-configuring networks for satellite avionics at the

GOMACTech conference [51]. This paper called out the need for more self-configuration in

the increasing research of onboard spacecraft networking. However, it was short on details

to accomplish the self-configuration.

In 2004 the SCOUT program was presented [125] as a development program to create

a modular multimission spacecraft architecture. SCOUT proposed the term “Plug-and-

Sense” and defined it as the ability to create “smart” systems by expanding the electrical

and functional connectivity advantage to include physical properties, orientation, location,

and synergistic aspects of a device. This allowed SCOUT modules to convey extra meta data

to the spacecraft system such as dimensions, mass properties, position in the spacecraft,

and dynamic attributes. In addition a SCOUT module was able to transfer necessary

software drivers, functional code modules, or even new software frameworks to the rest of

the spacecraft system. The architecture developed in the SCOUT program was presented

again in 2005 [76] under the name of SMARTBus as the name of the overall architecture

13

and Astrologic as the name of the communication layer’s software implementation [103].

AstroLogic used User Datagram Protocol (UDP) communication over local loopback, Inter-

Integrated Circuit (I2C), and serial physical connections. Instead of using a self-discover

and self-configuration approach, SMARTBus uses statically assigned Internet Protocol (IP)

ports to address subsystems in the system. All messages exchanged in the system were

done in Extensible Markup Language (XML). Development of SMARTBus and Astrologic

has not been seen in the literature since 2006. Many of the concepts and design principles

found in SMARTBus and Astrologic have been considered, augmented, and implemented

in the SPA Network architecture.

In 2007 the Space Plug-and-play Architecture (SPA) became the dominate platform

and almost all other US industry research united behind the SPA effort. The few exceptions

are the research efforts that are being continued by NASA and its contractors.

2.4.3 Government

All of the research done by academia and industry can trace its motivation and funding

back to the government sector. Typically, a government customer has an idea and seeds re-

search money to industry and academia to do the research. All of the industry and academic

research has been adopted by government and distilled down to 3 efforts lead by the US

National Aeronautics and Space Administration (NASA), the Consultative Committee for

Space Data Systems (CCSDS) group, and the US Air Force Research Laboratory (AFRL).

Core Flight System

NASA started research on plug-and-play spacecraft systems as early as 1997 [38]. The

Essential Services Node (ESN) is a multi-chip module that uses the standard MIL-STD-

1553B and MIL-STD-1773 data link protocols to interface with the other spacecraft sub-

systems and bus. The ESN reads commands and data from the spacecraft instruments

or subsystems, processes the information, and sends it to the command and data handling

(CDH) system. It also receives commands from the CDH system, processes the information,

and sends it to an instrument or a subsystem. The ESN is a hardware unit that provides

14

the plug-and-play capability to the spacecraft system.

In 1999 the the Space Object Technology Group (SOTG) was created. The purpose of

SOTG is to establish industry standards for object-oriented software to be used in the space

industry to enable plug-and-play interoperability among software such as orbital analysis,

mission planning, maneuver planning and scheduling tools [1]. The reference plug-and-play

architecture that came out of the SOTG efforts was intended to be deployed on the Common

Object Request Broker Architecture (CORBA) [35,66]. The spaceflight community felt that

CORBA was too much for a spacecraft to handle [41]. The SOTG was disbanded in the

early 2000’s.

By 2005 NASA had started working on the Core Flight System (CFS) [148–151]. The

Core Flight System is a mission independent, platform independent, flight software environ-

ment integrating a reusable core flight executive. The CFS provides a inter-task message

router called the software bus. The software bus allows software to communicate with other

software tasks on a flight processor. A software task is not a separate thread or a separate

process, but instead a part of the same process and same thread that is executing a different

conceptual task. This is a common architecture in spaceflight software. The software bus

allows tasks to post messages to a named pipe. Other tasks can then take messages from the

same named pipe. This software bus accomplished “software plug-and-play” because the

code to communicate between tasks did not have to be re-developed. To integrate hardware

devices CFS requires device drivers to be developed for each hardware device attached to

the spacecraft. A software application is then developed to communicate with one or more

hardware devices and make the devices data available on the software bus. In 2009, CFS

was flown on the Lunar Reconnaissance Orbiter (LRO) [4]. In 2010 a group from the Ap-

plied Physics Laboratory at John Hopkins University based their proposed plug-and-play

architecture on NASA’s Core Flight System (CFS).

A 2006 paper [64] again proposes using CORBA to create a plug-and-play software

environment allowing additions and subtractions of data sources and command recipients.

This works was performed on a drilling station using modern personal computers as the

15

computing platform. Again, it has been shown that CORBA is too processor intensive for

typical spaceflight processors [41].

Most recently in 2011, a group out of NASA’s Jet Propulsion Laboratory has put

together a plug-and-play environmental monitoring spacecraft subsystem [118].

Spacecraft Onboard Interface Services

The Consultative Committee for Space Data Systems (CCSDS) was founded in 1982

by the major space agencies of the world. The CCSDS is a multi-national forum for the

development of communications and data systems standards for spaceflight. In the mid

2000s the CCSDS started to work on standardization of spacecraft onboard interfaces. By

2007 the group had created a new architecture called Spacecraft Onboard Interface Services

(SOIS). The CCSDS report concerning SOIS [42:p. 99] states

The SOIS approach is to standardise the interfaces between items of spacecraft

equipment by specifying well-defined standard service interfaces and protocols

which allow standardised access to sensors, actuators, and generic spacecraft

functions, allowing spacecraft applications to be developed independently of the

mechanisms that provide these services. Applications are thus insulated from

the specifics of a particular spacecraft implementation and may be reused across

different spacecraft platforms with little regard of implementation details. Ser-

vice interface standardisation allows hardware interfaces to be accessed by flight

software such that core spacecraft software may be reused on different under-

lying communications infrastructures with little or no change. The standard

services could be implemented using a standard Application Programming In-

terface (API) that would enable portability and re-use of application software,

and of service implementations.

One part of the SOIS architecture is the Device Enumeration Service which is intended

to be used to support future plug-and-play applications. This service is still to be defined.

In December 2011 I was invited to the CCSDS SOIS meeting to help define the Device

16

Enumeration Service. Since SOIS is an architecture and not an implementation, the CSSDS

SOIS group wanted to make the plug-and-play architecture compliant with AFRL’s Space

Plug-and-play Architecture (SPA) so that both groups could unite and move forward in the

face of space industry budget cuts.

Space Plug-and-play Architecture

The Air Force Research Laboratory started researching self-configuring networks to

support the Operationally Responsive Space (ORS) effort. Although early ideas that led to

the creation of the Space Plug-and-play Architecture (SPA) can be found in 2001 [40,90,98],

and 2004 [86, 113], SPA first appears in the literature by name in 2005 at the Responsive

Space conference [96]. These efforts were led by Dr. James Lyke of AFRL’s Space Vehicles

division and Dr. Scott Cannon of the Utah State University Computer Science Department

[94,97]. Also in 2005 a plug-and-play testbed was created at Kirtland Air Force Base called

the Responsive Space Testbed (RST) [135]. The RST would become the center of SPA

research and activity for the next 7 years.

In 2006, the Satellite Data Model was introduced [39, 136, 137]. The Satellite Data

Model is the underlying software system that enables the self-configuration and self-discover

of the spacecraft systems. Since its introduction the SDM has been used on several cubesats

and on two international spacecraft [36, 37, 85]. It is upon the work of the Satellite Data

Model that this dissertation builds.

The AFRL’s Space Vehicles Directorate (AFRL/RV) made Responsive Space one of its

six core thrusts and the TacSat-3 mission integrated a small SPA experiment onboard [146].

Due to the large amount of funding and time being spent on SPA, many progress report style

papers and Air Force news articles were published [68,91,128]. There was also a first attempt

at standardizing SPA in a set of documents published by the AIAA, however, this effort

did not produce the needed documentation [130]. One of the areas where standardization

was attempted and has never fully been solved is the Common Data Dictionary (CDD) or

SPA Ontology [87,131].

SPA has been proposed for use in advanced spacecraft concepts [92], such as satellite

17

constellations [100], PC-like satellite construction [77], and the metric for an advanced

modularity measurement for spacecraft system [134]. One advanced spacecraft concept was

the first fully SPA spacecraft, PnPSat-1 [23,60,62,63,65,101]. PnPSat-1 was never launched

due, in part, to problems with the SDM’s networking approach. This is one of the reasons

that led to the creation of the Advanced Plug-and-play Technology (APT) program, which

was tasked with maturing the SPA technology. The PnPSat-2 technology testbed was also

created to perform advanced characterization of the SPA network [61]. Another advanced

spacecraft concept that has been demonstrated with SPA is the automatic generation of

device firmware and flight software from the electronic data sheet used by SPA [47,48].

The literature contains several papers about the various SPA subnet types. SPA-

SpaceWire was first published in 2007 [106]. SPA-Optical was first published in 2010 [59].

SPA-1 based on the I2C standard was also first published in 2010 [95, 142]. SPA-1 was

selected for the TrailBlazer cubesat mission [81,83]. SPA-1 was also selected as an interface

for a laboratory experiment sent to the International Space Station [75]. SPA-USB and SPA-

SpaceWire were flown on the TacSat-3 satellite as an experimental bus technology [102].

The interface for hardware devices and a SPA network can be encapsulated into the

device itself [99]. For legacy devices that do not already have this capability a sensor

interface called the Appliqué Sensor Interface Module (ASIM) was developed [127] and has

gone through several iterations [33]. ASIMs have been developed for SPA-1, SPA-U, SPA-

S, and SPA-Optical [107, 126, 144]. Along with the hardware development, the software

development has been seen in the literature. Dr. Ken Center and Mr. Robert Vick have

published multiple papers on the tools, software strategy, and complexity of developing SPA

software modules [43–45,143].

SPA has been adapted for the CubeSat platform [108,123]. Several CubeSats have been

developed using SPA [81–83]. In 2010, a SPA training course was developed around CubeSat

technologies. Over 500 individuals representing more than 100 companies, universities, and

government agencies have participated in this training [79,80].

In 2010, the Advanced Plug-and-play Technology (APT) program was initiated. The

18

APT program was a group of six industry contractor teams given the assignment to move

SPA from an AFRL-funded research project to an industry adopted spacecraft standard.

It was during this program that the events outlined in section 1.5 took place. One of the

outcomes from the APT program was the SPA Standards [6,7,9,10,28] which were released

in draft form in February 2011. There has already been literature published on the SPA

network architecture as it is presented in this dissertation [49,50]. The reader will note that

the primary author of these papers is the same author as this dissertation.

2.5 Summary

In summary, there are three primary platforms that have come out of the last 20 years

of research. NASA’s Core Flight System, CCSDS’s SOIS architecture, and AFRL’s Space

Plug-and-play Architecture. Of these three platforms, SPA has been the most published

and perhaps the best funded. In all the research that has been done on SPA, the most

difficult problems have never been technical. Dr. James Lyke described the most difficult

challenge best when he said, “Coming up with the satellite architecture was pretty hard,

but convincing a risk-averse aerospace industry to even consider our approach has been

even harder” [93].

19

CHAPTER 3

SPA NETWORK ARCHITECTURE

3.1 Introduction

In a PnP system, machine-negotiated interfaces are used to enable components to

interoperate. The PnP process of electronic self-discovery and self-configuration eliminates

the need to develop specialized hardware and software interfaces for each spacecraft. The

Space Plug-and-Play Architecture (SPA) supports a method of constructing arbitrarily

complex arrangements of components, and is a networked data exchange model. One of the

premises of SPA is that there is no distinction between a hardware device that supports a

data interface and a software application that does the same.

A typical spacecraft system involves many different components that vary in bandwidth

demand. Sensors that require a very low data rate may reside on a simple two-wire interface

such as I2C. Complex sensors, such as an advanced imager, that require a much high data

rate may reside on a SpaceWire or optical interface. A spacecraft system is also likely

to have a number of components of intermediate performance, with a data rate greater

than the simpler sensors, but lower than high-performance payloads. A SPA system needs

to be able to support multiple types of interconnection networks, for both hardware and

software components, that are dramatically different in their addressing schemes and routing

capabilities.

The SPA networking infrastructure is a transport agnostic approach which allows a SPA

component to communicate with any other SPA component without a prior knowledge of

where the component is physically located on the network or what type of interconnection

network it uses. This approach has been reviewed and accepted by the SPA standards

committee. The SPA network provides interoperability across existing heterogeneous inter-

20

connection networks and a methodology for adding any number of future network technolo-

gies without affecting existing SPA components. This chapter presents the SPA network

architecture in relation to the standard five layers of the Open System Interconnect (OSI)

model [74].

3.2 The SPA Stack

The OSI model is a layered model of abstraction levels for communications [74]. The

OSI model is a broadly recognized and industry standard means of providing an ordered,

flexible, and extensible communications system architecture. Each layer of the OSI net-

working model encapsulates and addresses a different aspect of the communication system

requirements.

Use of a layered architecture provides many benefits. In a layered architecture, each

layer provides services to higher level layers and receives services from the layer below. The

modularity of the layers promotes ease of understanding the architecture. The design of

each layer can be addressed individually, reducing the complexity of the associated com-

munication system. Each layer can be developed independently, can be tested at the layer

boundaries, and is easier to maintain. Since the responsibilities of the layer are well cate-

gorized, swapping out a layer with an alternate implementation has minimal or no impact

on other layers.

A simplified form of the OSI abstraction layers can be composed into a hierarchy

of five abstraction levels, where the application layer includes the traditional session and

presentation layers as well. Similar levels of abstraction have been applied to the design of

the SPA architecture. The layers in the architecture model for SPA are the physical, data

link, network, transport, and application levels (see Figure 3.1).

In the OSI model, the physical layer defines the electrical and physical specifications

for devices and the relationship between a device and a transmission medium. The physical

layer provides for conversion between the physical transmission medium and digital data,

the establishment and termination of connections, and provides for flow control and con-

tention resolution. The physical layer of the SPA model defines standards for the physical

21

Figure 3.1. Comparing SPA to the OSI model

interconnect between devices in a specific physical subnet type, and includes designs for

local UDP sockets, SpaceWire, I2C, and USB.

The data link layer provides the means to transfer data between the network partici-

pants, including discovery of physical addressing, and for correction of errors that may occur

in the physical layer. The SPA model provides these capabilities utilizing subnet-specific

protocols, denoted generically as SPA-X with the X indicating the physical subnet type

(i.e. SPA-U for the SPA USB subnet). The data link layer is responsible for making up any

shortfalls in the physical layer’s ability for self-discovery or asynchronous communication.

The network layer provides for the transfer of variable length data messages from a

source host on one network to a destination host on a different network. The network layer

provides routing, and utilizes a logical addressing scheme. Where required, fragmentation

and reassembly of messages occurs at this layer. The network layer handles the convergence

of messaging traffic from subnet-specific transfer to network independent messaging. The

network layer also handles reliability requirements such as message acknowledgement and

retransmission. The SPA model provides these capabilities through the use of the SPA

Logical Messaging protocols. More information on the data link and network layers can be

22

found in the SPA Logical Standard [7].

The transport layer enables the connection and discovery between network endpoints.

In the SPA model, the discovery and connection is made between clients and services based

upon specifications of the endpoint interfaces in an XML specification known as the xTEDS.

All network component’s xTEDS are collected and indexed in a central lookup service.

Network components can issue queries to the lookup service to discover other components

in the network.

The application layer is the layer which interacts directly with the software applications

that implement a communicating component. In the SPA model, network components can

be software applications executing on a general processor resource or a device on the net-

work. The communication and interoperation is independent of the nature of the resource,

and consumers of services and data are unaware of physical type or physical network location

of their producers.

3.3 The Physical Layer

A SPA network is composed of several different communication technologies. Each of

these are referred to as a SPA subnet. The SPA standards currently support four different

subnets. They are: I2C, USB, SpaceWire, and local UDP sockets. In order to understand

the overall approach of a SPA network it is important to understand the requirements for a

SPA subnet and how each networking technology measures up to those requirements. Each

subnet has different capabilities and none of them meet all of the requirements for a SPA

subnet; therefore, each must be augmented in its own way.

It has often been asked why there are so many different SPA subnets. The answer to

that question is best explained by Figure 3.2. A single SPA subnet is not the solution to

all problems. An example of this is a simple temperature sensor. A systems engineer would

not appreciate the power requirements of the SpaceWire interface that would be required to

have that single temperature reside on the SpaceWire network. There would also be a huge

waste of bandwidth. An I2C bus would be sufficient and has lower power requirements. The

inverse of this could be a high-resolution imaging device that has many gigabytes of data to

23

Figure 3.2. The SPA subnet hierarchy.

transfer. Even though the low power requirements of the I2C may be attractive, the higher

bandwidth of a SpaceWire interface would be more desirable. A system engineer should

choose the SPA subnet that consumes the least amount of power and still meets bandwidth

requirements.

There are two primary capabilities that are required of all SPA subnets:

1. Discover currently attached components

2. Send and receive messages asynchronously

When a subnet is not capable of preforming one of these two tasks, it has to be augmented

in the data link layer. These necessary augmentations are described in Section 3.4. The

rest of this section compares I2C, USB, SpaceWire, and local UDP sockets and discusses

how they compare to the required capabilities enumerated above.

3.3.1 I2C

I2C [2] (Inter-Integrated Circuit) (generically referred to as “two-wire interface”) is a

multi-master, serial, single-ended bus invented by Philips. An I2C physical address is a

7-bit address. Being a two-wire bus creates a single broadcast domain. This means all

24

devices on the bus receive all communications from all other devices. Each communication

is preceded by the seven bit address of the device that is being spoken to. Only the device

which the corresponding address responds to the communication. I2C does not have the

native capability to discover the devices on the bus. Due to the master-slave communication

paradigm, an I2C bus does not allow asynchronous sending and receiving of messages. This

makes the I2C bus the least capable subnet and requires the greatest augmentation of its

capabilities.

3.3.2 USB

USB [16] is a two-wire bus network that is found on many terrestrial systems including

PCs, mobile devices, consumer electronics, and even automobiles. USB was developed by

by Ajay Bhatt while working for Intel. USB is a master-slave bus, in which communication

is managed by a host controller. USB devices cannot initiate data transfers, but instead

only respond to requests given by the host controller. As with I2C, the master-slave nature

of USB inhibits devices from asynchronous sending and receiving of messages. However,

standard USB host controllers implement a round-robin polling loop that allows this to be

overcome. This same round-robin polling loop allows USB to discover the devices that are

currently attached to the bus.

3.3.3 SpaceWire

SpaceWire [3] is a communication network designed specifically for spacecraft. It is

coordinated by the European Space Agency (ESA) in collaboration with international space

agencies including NASA, JAXA and RKA. A SpaceWire network consists of nodes that are

connected through low-cost, low-latency, full-duplex, point-to-point serial links, and packet-

switching wormhole routers. Because of the full-duplex serial links, SpaceWire components

can send and receive message asynchronously. However, SpaceWire uses path-based routing,

and a physical address is determined by the path between two components on the network.

The physical address used to send data from one component to another is dependent on

the topology of the network and is unique from each components perspective. This makes

25

discovery of the components that are attached to a SpaceWire network very difficult.

3.3.4 Inter-Process Communication Using UDP Sockets

The last subnet type discussed in this section is not like the others. Applications

running on a processor are treated as though they live in a sub-network. This subnet is the

inter-process communication (IPC) network. In SPA, the IPC network uses sockets [133] as

the transmission media. Sockets were chosen for their portability, pervasiveness, and ease

of use. Because there are no physical wires to communicate on, the sockets can send and

receive messages asynchronously quite easily. Each socket is assigned a port to communicate

on. The port functions as a 16-bit address for the software process. This creates a possibility

of 65536 possible addresses making it difficult for an application to detect which ports are

used by a SPA software process.

3.4 The Data Link Layer

The purpose of the data link layer is to provide the means to transfer data between

the network participants. To enable data transfer, this layer includes network discovery at

a physical addressing level. In a SPA network, facilitation of data transfer and discovery

is handled by components known as SPA subnet managers. The subnet managers are the

routing elements in the SPA network architecture. They are responsible for making up any

shortfalls in the physical layers ability for self discovery or asynchronous communication.

3.4.1 SPA Subnet Managers

Each physical network type requires a certain degree of management in order to per-

form physical address discovery and asynchronous communication as required by the SPA

network. This management is handled by software components known as SPA subnet man-

agers. A SPA subnet manager has several key responsibilities at the data link layer in a

SPA network. It is responsible for discovering the components within its subnet, routing

messages in and out of its subnet, and monitoring the health and state of those discovered

components. Each SPA subnet being managed by a SPA subnet manager is associated with

26

a different physical transport medium: SPA-Local uses UDP sockets, SPA-U uses USB,

SPA-1 uses I2C, and SPA-S uses SpaceWire. This set is expandable as different physical

transport networks are brought into SPA. It is also important to note that because a SPA

subnet manager is a software process, it is capable of communicating on both the SPA-Local

subnet of the processor on which it executes as well as on the physical transport subnet

that it manages.

A SPA subnet manager is responsible for discovering the components that reside on the

subnet it manages. The discovery protocols differ for each subnet type due to the different

capabilities each provides. An example of these differences can be seen when comparing

SPA-Local and SPA-1. A software component utilizing UDP sockets can proactively alert

the SPA-Local subnet manager of its presence on the subnet when it starts execution. In

contrast, a device on an I2C bus is a slave and cannot initiate communication with the SPA-1

subnet manger. Therefore, a SPA-1 device must wait to be discovered by the SPA-1 subnet

manager. The SPA subnet manager is responsible for bridging the gap between its subnets

inherent discovery capability and the discovery requirements for a SPA subnet. In order

to bridge this gap, subnet specific data link layer discovery protocols are defined. These

protocols contain physical address information to enable discovery. Because the protocols

contain physical address information they never leave their respective subnets. This makes

sense because a socket based subnet does not care about SpaceWire routing paths.

Another responsibility of the SPA subnet manager that is related to discovery is mon-

itoring for components when they become unavailable. This is accomplished through a

simple heartbeat mechanism, where the subnet manager sends a SpaProbeRequest (Table

B.33) message to each component in its managed subnet and expects a SpaProbeReply (Ta-

ble B.34) message in return. If the SpaProbeReply does not come back after several retries,

the subnet manager assumes the component is no longer available and takes the necessary

steps to remove the component from the network. This simple protocol is outlined in Figure

3.3.

The SPA subnet manager is also responsible for enabling asynchronous communication

27

Spa ComponentSpa Component

SpaProbeRequest

SpaProbeReply

Figure 3.3. Probe protocol

in its managed subnet. Not every subnet possesses the inherent capability to send and

receive messages asynchronously. Again this can be seen by contrasting SPA-Local and

SPA-1. UDP sockets can send packets at anytime to any other local UDP socket, with no

need to wait for permission from any kind of master or host. However, I2C is a master-slave

bus and therefore a slave device cannot initiate communication, but must instead wait for

the master to initiate communication. Again it is the SPA subnet manger’s responsibility

to bridge the gap between the subnet’s inherent message transmission capability and the

message transmission requirements for a SPA subnet.

The following sections discuss the native discovery and message transmission capabil-

ities of each SPA subnet and the strategy the associated subnet manager uses to augment

the inherent capabilities of the subnet.

3.4.2 SPA-Local

The SPA-Local subnet consists of applications running on a single processing node in

the network. A distinct SPA-Local subnet exists for each processing node in the network.

These applications consist of user software, SPA subnet managers, and any other software

process that participates on the SPA network. A SPA-Local subnet utilizes sockets as

28

SPA-Local Subnet
ManagerSPA-L Component

LocalHello

LocalAck

Figure 3.4. Local discovery protocol

an IPC mechanism to allow applications running on the same processor to communicate

with each other. More information on SPA-Local can be found in the SPA Local Subnet

Adaptation Standard [6].

Discovery

The SPA-Local discovery protocol (Figure 3.4) consists of two messages in a simple

request-reply type of protocol. The SPA-Local component sends a LocalHello message

(Table B.2) to the SPA-Local subnet manager. The SPA-Local subnet manager replies

with a LocalAck (Table B.3). Once the LocalAck has been received, the SPA-Local subnet

manager has discovered the SPA-Local component. Until the LocalAck has been received

the SPA-Local component continues to resend the LocalHello. The SPA-Local discovery

protocol is unique because it is the only discovery protocol where the component actually

notifies the subnet manager of its presence. This is done because of the nature of a local

socket. The SPA-Local subnet manager listens on the well-known port of 3500 and the

SPA-Local components get their port numbers randomly assigned by the operating system.

Hence, the SPA-Local components are able to find the SPA-Local subnet manager easier

than the SPA-Local subnet manager can find the SPA-Local components.

29

Asynchronous Messaging

Because the SPA-Local network uses sockets for a communication medium, it is fully

capable of sending and receiving messages asynchronously and requires no augmentation by

the SPA-Local subnet manager.

3.4.3 SPA-1

A SPA-1 subnet consists of devices connected to an I2C bus attached to a processing

node in the SPA network. As previously discussed, I2C components are addressed with a

seven-bit address, which must be unique on the bus. A seven-bit address allows for 128

unique addresses. Because of the small address space, attaching multiple devices produced

by different vendors does not provide a guarantee that all the I2C addresses are unique.

Because there is no bus arbitration for slaves on I2C, if two components attempt to utilize

the same address, their data will become mixed and corrupted as both attempt to transmit

on the bus at the same time. Generally, avoiding duplicated slave addresses is accomplished

by either modifying the firmware configuration of a device or by applying power or ground

to a set of address select pins on the device. This type of manual bus configuration does

not meet the SPA requirements for self-configuration. To solve this problem, SPA-1 defines

an Address Resolution Protocol (ARP) which functions on standard I2C. This allows the

SPA-1 components on an I2C bus to self-organize their physical address space.

Address Resolution Protocol

When transmitting data on an I2C bus, each byte is acknowledged with a 9th bit,

known as the ACK bit. The SPA-1 Address Resolution Protocol (ARP) works by taking

advantage of this ACK bit. Each SPA-1 component starts at the common address of 0x11

and tries to become the bus master and send a OneArp (Table B.6) message to that address.

The discovery address contains the SPA-1 components UUID. Due to I2C master arbitration

each component will drop out when they detect that the bits they are placing on the bus are

being overridden by another device and switch to slave mode. Once in slave mode the device

will acknowledge the discovery message with the I2C ACK bit. If an ACK bit is detected,

30

then the component knows there is another device on that address and therefore increments

its own address. This continues until the component does not get an ACK bit, at which

point it knows that no other SPA-1 component is on that address and it claims the address as

its own. After several iterations, the SPA-1 components self-organize the I2C address space

with all components having unique addresses beginning at 0x11 and completely filling the

address space above that. This efficient use of the address space ensures that a maximum

number of components may exist on the network. This organized physical address space

makes it very simple to for the discovery algorithm to find all components in the I2C address

space. Note that the SPA-1 subnet manager does not need to participate in the ARP process

since it acts as a master on the bus and has no need of a slave address.

A sequence diagram of this algorithm performed by three SPA-1 components is shown in

Figure 3.5 and pseudocode for the SPA-1 Address Resolution Protocol is given in Algorithm

3.1.

Algorithm 3.1: SPA-1 address resolution protocol

1 currentAddress := 0x11;
2 foundAddress := false;
3 while !foundAddress do
4 result := sendAsMaster(currentAddress, OneArp);
5 if result != lostArbitration then
6 if result == NACK then
7 foundAddress := true;
8 else
9 currentAddress++;

10 end

11 else
12 ACK message;
13 end

14 end

Asynchronous Messaging

The SPA-1 discovery process is easiest understood by first discussing the asynchronous

message transmission strategy. I2C is a master-slave bus, where only the master can initiate

communication. To give the appearance of asynchronous message transmission, the SPA-1

31

A B C

0x11

ACK

0x12
0x11

ACK

0x12

ACK

0x13

0x11

Increment
Address

Increment
Address

Increment
Address

ACK

Figure 3.5. I2C address resolution protocol sequence diagram

subnet manager takes advantage of the organized I2C address space and a simple round

robin loop (Figure 3.6). Starting at the first address of 0x11, the SPA-1 subnet manager

does a read followed by a write. The read action allows the SPA-1 component to write

256 bytes to the SPA-1 subnet manager. If the component has more data to write than

that, it will be read during the next iteration of the round-robin loop. During the write

action, the SPA-1 subnet manager writes any data addressed to the SPA-1 component to

that component. The SPA-1 subnet manager continues to perform the read/write cycle

while incrementing through the address space. Once the SPA-1 subnet manager completes

the read/write cycle for the last known discovered SPA-1 component, it is ready to perform

the discovery step.

32

A
0x11

Read

SPA-1 Subnet
Manager

B
0x12

C
0x13

Write
Read
Write

Read
Write

0x14, Read

Figure 3.6. SPA-1 round-robin

Discovery

At the end of the round-robin communication loop, the SPA-1 subnet manager is ready

to perform discovery again. This is accomplished by simply trying to send a OneHello mes-

sage to the address one increment above the address of the last known discovered component.

In the event that a new SPA-1 component was added to the I2C bus, it would start at ad-

dress 0x11 and increment its way to the next available address, ending up with the address

just after the last known SPA-1 component. If a new component is discovered, the discovery

step is repeated in the round-robin loop. If a new component is not discovered, then the

round-robin loop is restarted. This discovery step can be seen at the end of the round-robin

loop in Figure 3.6. The SPA-1 discovery protocol itself is a simple request-reply protocol

shown in Figure 3.7.

3.4.4 SPA-U

A SPA-U subnet consists of the set of components and hubs of a USB network attached

to a processing node. USB uses a two wire serial bus network similar to I2C. Most mod-

ern operating systems including Windows, Linux, and VxWorks, already have have USB

self-discovery support built in. SPA-U components are required to implement the USB

communications device class (CDC), which is commonly used for asynchronous bulk data

transfer, and use a vendor ID of 0xfffe and product ID of 0x1110. This vendor and product

33

SPA-1 Subnet
ManagerSPA-1 Component

OneHello

OneAck

Figure 3.7. I2C discovery protocol

ID are used by the SPA-U driver installed on the operating system to recognize when a

SPA-U component is attached to the USB subnet. This common support makes discovery

on the SPA-U subnet very simple.

Discovery

USB has wide support in most operating system including Windows, Linux, and Vx-

Works. The operating system provides a mechanism for registering a program to handle

USB plug-in events. The SPA-U subnet manager registers for the plug-in events from de-

vices with the vendor ID of 0xfffe and product ID 0x1110. When this event is handled by

the SPA-U subnet manager, a callback function is invoked. When this function is invoked,

a file descriptor is part of the argument list. This file descriptor is a handle that can be used

to perform standard read and write operations to the SPA-U component. Verification is

still performed by sending a UsbHello (Table B.9) to the SPA-U component and expecting

a UsbAck (Table B.10) in return (Figure 3.8).

Asynchronous Messaging

The USB communications device class is used for SPA-U components because it is

34

SPA-U Subnet
ManagerSPA-U Component

UsbHello

UsbAck

Figure 3.8. USB discovery protocol

commonly used to perform asynchronous bulk data transfer. The SPA-U subnet manager

can perform read and writes to the SPA-U component asynchronously and the underlying

USB support of the operating system handles the complexity the actual communication

with the USB device.

3.4.5 SPA-S

A SPA-S subnet uses SpaceWire (SpW) as its underlying transport medium. A SPA-S

subnet consists of SPA-S components interconnected through a series of routers, which are

connected to at least one or more processing nodes. SpaceWire is used to interconnect

processing nodes because it is fully routable and has suitable bandwidth. Each SpaceWire

network is viewed as a single subnet. If multiple processing nodes are connected to a

SpaceWire network, each node will run a SPA-S subnet manager. In this scenario, all

the SPA-S subnet managers are viewed as a single distributed subnet manager, with one

functioning as the primary subnet manager, and the rest functioning as secondary subnet

managers. The only difference between the primary and secondary subnet managers is that

the primary subnet manager is responsible for assigning logical addresses and the secondary

subnet managers are not. Each SPA-S subnet manager must complete discovery on the

subnet. This is due to the SpaceWire routing paths being unique from each perspective in

35

the network.

Discovery

A flooding algorithm is used to perform discovery on a SPA-S subnet. The basic

idea behind the algorithm is to utilize the properties of the path-based routing scheme to

discover routers. The SPA-S subnet manager accomplishes this by reflecting packets back

to itself. An example of this process can be seen in Figure 3.9 where the SPA-S subnet

manager sends a packet back to itself through the network by sending the packet with the

path of {2,1,1}. The packet leaves the first SpW router out port 2, then leaves the second

SpW router out port 1, thus returning to the first router, and then leaving the first router

out port 1, returning the packet back to the SPA-S subnet manager. When the SPA-S

subnet manager receives the returned packet it knows that it has discovered a SpW router

with the forward path of {2}. Because the SPA-S subnet manager does not know which

ports have actual connections on them, the discovery algorithm will try every possible path

combination and only the packets with real connections make it back. After finding a router,

communication is attempted with all possible ports on that router to discover connections to

other routers. To discover SPA-S components on the SpaceWire network the SPA-S subnet

manager sends SpwEndpointPing (Table B.13) messages to each possible port on the newly

discovered router. When a SPA-S component receives the SpwEndpointPing, it will reply

with a SpwEndPointPingReply (Table B.14). This simple request-reply protocol is the

SPA-S
Subnet

Manager

SpW
Router1

{2,1,1}

SpW
Router2 1

{2,1,1}

Figure 3.9. Reflecting a packet back to oneself in a SpaceWire network

36

SPA-SpW Subnet
ManagerSPA-S Component

SpwEndpointPingReply

SpwEndpointPing

Figure 3.10. SpW discovery protocol

discovery protocol for the SPA-S subnet. A sequence diagram for the discovery protocol is

shown in Figure 3.10 and the pseudocode for the complete router and SPA-S component

discovery is given in Algorithm 3.2.

The SPA-S subnet manager also plays a special role in discovering processors on the

SPA network. When a SPA-S subnet manager is assigned an address it tries to discover a

SPA-Local subnet manager on its processor by sending a LocalRoute (Table B.5) message

with the AckRequired field set to true. If there is a SPA-Local subnet manager present, it

will respond to the LocalRoute message with a LocalAck (Table B.3) message. If the SPA-S

subnet manager receives the LocalAck, it requests a new address block from the Central

Address Service for the newly discovered SPA-Local subnet manager. It is through this

process that discovery passes onto other processes from the SPA-S subnet.

Asynchronous Messaging

SpaceWire networks are fully capable of sending and receiving messages asynchronously

and require no augmentation by the SPA-S subnet manager.

3.5 The Network Layer

The network layer of the the SPA network model is responsible for logical addressing

37

Algorithm 3.2: SPA-S SpaceWire topology discovery algorithm

1 begin function init
2 for i from 1 to 31 do
3 send SpwRouterProbe to (i);
4 end

5 end

6 begin function handleReceivedMessages {SpwMessage message}
7 switch message.Opcode do
8 case SpwRouterProbe
9 knownForwardPath := message.ForwardPath;

10 knownReturnPath := message.ReturnPath;

11 for proposedForwardPath from 1 to 31 do
12 for proposedReturnPath from 1 to 31 do
13 send SpwRouterProbe to (knownForwardPath +

proposedForwardPath + proposedReturnPath +
knownReturnPath);

14 end

15 end

16 for proposedForwardPath from 1 to 31 do
17 send SpwEndpointPing to (knownForwardPath +

proposedForwardPath);

18 end

19 endsw

20 case SpwEndpointPingReply
21 RoutingTable.add(UUID, message.ForwardPath, message.ReturnPath);
22 send SpaAssignAddress to (message.ReturnPath);

23 endsw

24 endsw

25 end

and message routing. It is the network layers responsibility to aggregate all of the different

SPA subnets into a single, unified, and transport agnostic network. The data link layer

abstracts the differences between the different transport mediums. This allows the network

layer to be transport agnostic. The SPA logical address is a transport agnostic address that

SPA components can use to address components anywhere in the SPA network regardless

of the SPA subnet in which they reside. However, message routing still requires physical

communication with the underlying SPA subnets. The translation between the transport

38

agnostic SPA logical address and the physical addresses required to route the message

is encapsulated into a routing table. The routing tables are stored in the SPA subnet

managers, making the SPA subnet managers the routing entities in the SPA network. This

section will explain the format of the SPA logical address, how it is generated and assigned,

and how it is used in conjunction with the routing table to route messages in a SPA network.

3.5.1 SPA Logical Address

The first step in combining each SPA subnet into a single SPA network is to define a

SPA logical address that can be used to address any component in the SPA network. The

definition of the SPA logical address has a reaching impact on the SPA network and many

different schemes were considered. To understand the SPA logical address and its design, it

is important to understand the underlying design decisions and goals that were considered.

1. The SPA logical address is transport agnostic. The SPA logical address does not

have any connection to a physical address. This is important because the SPA logical

address is carried across all SPA subnets and it does not make sense to carry a subnet’s

physical address into another subnet. An example of this would be trying to address

an envelope with an email address; it just does not make sense.

2. The SPA logical address is not large. If the SPA logical address is large, it creates

overhead on message size because the majority of SPA message traffic is less than 100

bytes. Initially the idea of using the component Universally Unique Identifier (UUID)

was considered, however, at a size of 16 bytes the SPA message header would have

been larger than 32 bytes when carrying the source and destination address. On a

message payload of 100 bytes this would have created an overhead of 33% just to

address the message. The size of the SPA logical address was chosen in consideration

of the impact to message overhead.

3. The SPA logical address does not change while traversing the network. In the old SPA

network approach, the address fields of a SPA message were changed and updated as

the message traveled through the network. This caused confusion when trying to

39

Subnet ID
2 bytes

Component ID
2 bytes

SPA Logical Address
4 bytes

Figure 3.11. SPA logical address and subdivision of the subnet ID and component ID

trace message traffic. It also forced extra knowledge of the SPA network topology

to be spread around so the address could be interpreted correctly at each hop in the

network. A consistent and immutable logical address greatly simplifies the amount

of knowledge that each routing element must have in order to route the message

correctly. It also makes tracing message traffic much simpler.

4. The SPA logical address requires no extra information to route a message. Again, in

the old SPA network approach, the address sometimes required the routing element to

inspect part of the internals of the message in order to determine where the message

should be sent. The SPA logical address is the only thing that is needed to route a

message through the network.

Given these considerations, the SPA logical address is a 4 byte field with two parts. The

upper 2 bytes of the address are the SPA subnet ID, and the lower 2 bytes of the address

are the component ID (Figure 3.11). This two field approach lends itself to representing

SPA logical addresses in an ordered-pair notation (i.e. (3,2)). The two fields in the SPA

logical address reflect the how the address is assigned.

3.5.2 Logical Address Assignment and the Central Address Service

SPA logical address assignment is coordinated by a Central Address Service (CAS)

40

and the SPA subnet managers. SPA subnet managers are discovered much like any other

SPA component. When a SPA subnet manager is discovered, the SPA subnet manager

that discovered it requests a block of addresses from the Central Address Service for the

newly discovered SPA subnet manager. Once the newly discovered SPA subnet manager

has received its address block, it can freely make SPA logical address assignments to SPA

components in its subnet without having to coordinate those addresses with any other

subnet manager.

SPA logical address is divided into two fields: the subnet ID and the component ID.

The subnet ID is unique for each SPA subnet manager in the network. The Central Address

Service was designed to coordinate subnet IDs. The role of the Central Address Service is

to assign subnet IDs to SPA subnet managers. An address block comes in the form of a

SPA logical address that has a 0 for the component ID (i.e. (1,0), (2,0), (3,0), etc.). This

means that a SPA logical address with a 0 for a component ID belongs to a SPA subnet

manager. The Central Address Service keeps a simple count and assigns address blocks by

incrementing the count after each new address block is assigned.

The entire address assignment process is bootstrapped when the Central Address Ser-

vice is discovered by a SPA-Local subnet manager. This happens like all other SPA-Local

components with the Central Address Service sending a LocalHello (Table B.2) to the SPA-

Local subnet manager. The ComponentType field of the LocalHello is set to distinguish the

sender as the Central Address Service. When the SPA-Local subnet manager sees that it has

discovered the Central Address Service, it sends a SpaRequestAddressBlock (Table B.26)

message to the Central Address Service, which sends a SpaAssignAddressBlock (Table B.27)

message in return. One important thing to note about the SPA-Local subnet is that all

SPA subnet managers are SPA-Local components. This means that SPA subnet managers

also send a LocalHello (Table B.2) to the SPA-Local subnet manager on the processor on

which they reside. The ComponentType field of the LocalHello (Table B.2) message allows

the SPA subnet manager to tell the SPA-Local subnet manager they are subnet managers.

When the SPA-Local subnet manager finds a new SPA subnet manager it does not assign

41

Central Address
Service

SPA-Local
Subnet Manager

Newly Discovered
Subnet Manager

LocalHello

LocalAck

LocalHello

LocalAck

SpaRequestAddressBlock

SpaAssignAddressBlock

SpaRequestAddressBlock

SpaAssignAddressBlock

SpaAssignAddressBlock

Figure 3.12. Bootstrapping the SPA address assignment process

an address from within in its address block, but instead requests a new address block on

behalf of the newly discovered SPA subnet manager by sending a SpaRequestAddressBlock

(Table B.26) to the Central Address Service. This is done because the new SPA subnet

manager does not know how to speak to the Central Address Service yet. The SPA-Local

subnet manager then forwards the SpaAssignAddressBlock (Table B.27) to the newly dis-

covered SPA subnet manager. After the new SPA subnet manger has received its address

block, the SPA-Local subnet manager sends it the logical address of all other known SPA

core components using a SpaDistributeRoute (Table B.28) message. A sequence diagram

for the bootstrap of the address assignment process is given in Figure 3.12.

Once a SPA subnet manager has received an address block it can freely make SPA log-

ical address assignments from that block. SPA logical address assignment is accomplished

42

by sending a SpaAssignAddress (Table B.36) message to each SPA component. Each ad-

dress assignment is sequentially assigned. The SPA subnet manager that has been assigned

the address block (4,0) would assign the address (4,1) to the first discovered component

in its subnet. The subsequent address assignments would be (4,2), (4,3), (4,4), . . . , etc.

Figure 3.14 shows an example network with SPA logical address assignments and a routing

path. Because of the two 2 byte subnet ID and the 2 byte component ID, a SPA net-

work can contain a maximum of 65536 different subnets, each containing 65536 individual

components.

3.5.3 Routing Tables and Routing

SPA subnet managers also act as routing entities in the SPA network. Each subnet

manager is responsible for maintaining a routing table. The routing table contains the

information necessary to translate a logical address into the appropriate physical address

to move a message on to its final destination. A routing table contains two different sets of

entries. The first set contains entries for all of the other SPA subnet managers in the SPA

network. The second set contains entries for all of the components attached to the subnet

manager’s subnet. When a message is received by a SPA subnet manager, it follows the

routing algorithm shown in Algorithm 3.3.

Algorithm 3.3: SPA routing algorithm

1 if dest[subnetId][0] == myLogicalAddress then
2 send to component on my subnet;
3 else
4 send to subnet manager at dest[subnetId][0];
5 end

In order for the routing table to contain all the needed entries, when a SPA subnet

manager finds another SPA subnet manager, it sends a SpaDistributeRoute (Table B.28)

message to all other known SPA subnet managers telling them, “If you want to talk to

this new subnet manager, talk to me.” This behavior generates an entry for every subnet

manger in the routing table, creating a route from any subnet manager to every other subnet

43

Figure 3.13. A sample routing table

manager. Each routing table entry contains four items: 1) a SPA logical address, 2) the

component’s UUID, 3) the physical address type, and 4) the actual physical address. An

example of a routing table is shown in Figure 3.13. The first four entries are the individual

components on the manager’s subnet. It is apparent that this routing table belongs to

a SPA-S subnet manager. It can also be seen that the SpaceWire network only has one

router. This is evident by the fact that the SpaceWire routes stored in the routing table

only have a single byte for the SpaceWire path. The remaining routes in the routing table

are for the Central Address Service and the other SPA subnet managers. From the routes

for the addresses (4,0) and (5,0) it is apparent that these subnet managers are not on the

same processing node as this SPA-S subnet manager. In fact, if the reader looks closely, it

can be seen that this is the routing table for the SM-S with the address (3,0) from Figure

3.14.

When routing messages between different SPA subnet types, each SPA subnet manager

must have a way to communicate with each other. Because each SPA subnet manager is

a software process, the SPA-Local subnet is used as the common language for all SPA

subnet managers. Each SPA subnet manager speaks two protocols: SPA-Local and their

own SPA subnet protocol. This allows a message originating from the SPA-1 subnet to get

44

to the SPA-S subnet by traversing the SPA-Local subnet. A SPA subnet manager could

function on a different subnet than SPA-Local. An example of this would be if a SPA-S

component hosted a SPA-U network. The SPA-U subnet manager would still have to be

capable of speaking a protocol other than SPA-U, which in this case would be SPA-S instead

of SPA-Local. While this is technologically possible, it has not been done in practice.

Figure 3.14 shows an example of a SPA network. The large blue squares represent

processing nodes. The small colored squares represent SPA core components, including:

the Central Address Service, two SPA-Local subnet managers, a SPA-1 subnet manger, a

SPA-U subnet manger, and a primary and secondary SPA-S subnet manger. The colored

triangles represent SPA components on their respective SPA subnets. There are five distinct

subnets on this SPA network with each subnet using a different color: red, green, orange,

purple, and blue.

As an example of how routing works in a SPA network, the SPA-1 component with

address (2,2) is going to send a message to the SPA-U component with address (5,1). First,

the SPA-1 component sets the message destination to (5,1) and the message source to (2,2).

However, since it cannot initiate communication with the SPA-1 subnet manager, it has to

wait for its turn in the round-robin polling loop. Once it has been contacted, it sends the

message to the SPA-1 subnet manager. The SPA-1 subnet manager sees the destination

subnet ID is 5 and looks up in its routing table the physical address for a message destined to

the SPA subnet manager with the subnet ID of 5. It sends the message to the SPA-S subnet

manager with the address (3,0). The SPA-S subnet manager looks up the next address in

the path and sends the message through the SpaceWire network to the secondary SPA-S

subnet manager with address (3,3). The secondary SPA-S subnet manager with address

(3,3) looks up the next address and sends the message to the SPA-U subnet manager over

the SPA-Local network. The SPA-U subnet manager sees that the message is destined for

a component on its subnet and sends the message to its final destination, the component

with address (5,1).

45

Figure 3.14. Routing a message through a SPA network

3.6 The Transport Layer

The purpose of the transport layer is to enable end-to-end connectivity and discov-

ery between SPA components. In a SPA network, this involves resolving a component’s

data dependencies with those items currently available in the network. This is accom-

plished through registering descriptive data sheets embedded within each component with

a centralized repository and then issuing queries to that repository to locate the desired

dependency.

3.6.1 xTEDS

Each component on a SPA network describes itself and its capabilities through an em-

bedded document known as an eXtsible Transducer Electronic DataSheet (xTEDS). xTEDS

extend the concepts of the IEEE 1451 TEDS [72] standard by not only including identifi-

cation, calibration, and manufacturer information, but also by describing the component’s

data inputs and outputs. All of this information is stored in XML format. Using XML

allows the xTEDS to be human-readable, but also easily machine-parseable. Any xTEDS

document can also be verified for correctness by validating it against the xTEDS XML

schema definition [28]. The purpose of these xTEDS in a SPA network is to allow com-

ponents to dynamically discover their data needs or dependencies. Figure 3.15 contains a

portion of an xTEDS. Also associated with the xTEDS is an UUID. The xTEDS UUID,

46

Figure 3.15. Sample portion of simple xTEDS

or XUUID, is a type one Secure Hash Algorithm (SHA-1) hash of the xTEDS truncated to

128 bits. It is used to uniquely identify an xTEDS without having to send the xTEDS over

the network.

3.6.2 Lookup Service

The Lookup Service is a critical component on a SPA network and acts as a repository

and query engine for all xTEDS on the network. After a component has successfully been

discovered and assigned a logical address, it must then register with the Lookup Service.

This process involves having the SPA subnet manager that discovered the component inform

the Lookup Service of the discovery by sending a SpaRequestLookupServiceProbe message

(Table B.29)to the Lookup Service. Upon receiving the SpaRequestLookupServiceProbe,

the Lookup Service sends a SpaProbeRequest message (Table B.33) to the SPA component,

which responds with a SpaProbeReply message (Table B.34). From the SpaProbeReply,

the Lookup Service inspects the component’s xTEDS UUID, or XUUID, to check if it has

already cataloged a copy of the components xTEDS. The Lookup Service will then decide

if that component’s xTEDS should be requested. This allows the Lookup Service to not

request an xTEDS it already has in its repository, saving network bandwidth and processing

time. An xTEDS might already be present if multiple components present the same xTEDS

to the system or if the xTEDS was cached from a previous run. If the XUUID is unknown

to the Lookup Service, then it sends a SpaXtedsRequest message (Table B.20) to the SPA

47

Subnet Manager SPA ComponentLookup Service

SpaRequestLookupServiceProbe

SpaProbeRequest

SpaProbeReply

SpaXtedsRequest

SpaXtedsReply

Continues only if the xTEDS
 is not already known.

Figure 3.16. Registration protocol

component and receives a copy of the xTEDS in a SpaXtedsReply message (Table B.21).

Figure 3.16 shows a sequence diagram for the registration protocol.

3.6.3 Query1

Any component in the system may issue queries to the Lookup Service to find data or

components to satisfy their dependencies by sending a SpaQueryRequest message (Table

B.24). These queries are issued using the common terms defined in the SPA ontology [9] and

associating a desired value with those terms. These terms are represented as XML attributes

in the xTEDS. If the values associated with the attributes are numeric, the query may use

standard arithmetic operations to specify desired ranges for certain quantities. An example

would be precision >= 2 (Figure 3.17). This query would return any value in the system

with a precision greater than or equal to two. When multiple specifications are present

1Queries are one area in the transport layer where the author did make changes. The author created
a new query syntax in XML that allows the components to query any field in the xTEDS using matching,
logic, and arithmetic operations. This is an update from using regular expressions.

48

Figure 3.17. A very simple query

in a query, they combine conjunctively, so the result is the intersection of the results that

would be returned if each specification were present individually. A very specific query will

return fewer results, whereas a more generic query will return more results. The Lookup

Service responds to queries by sending a SpaQueryReply message (Table B.25). A query

reply contains the SPA logical address and other information for a SPA component whose

xTEDS matches the query. If there are multiple matches, then multiple responses are sent.

An empty SpaQueryReply message is sent last to signify the end of the responses. This

protocol is shown in Figure 3.18.

It is possible that a SPA component could issue a query before the needed component

has registered its xTEDS. In order to eliminate these race conditions among registrations,

queries can also be made for future registrations. This allows the component that issued

the query to be notified of any future additions to the network that may better meet its

needs. Queries can also be made for cancellations where the SPA component issuing the

query will be notified if a SPA component associated with an xTEDS that had previously

matched a query is de-registered from the system. This happens if a component is turned

off or damaged. A detailed description of the SpaQuery syntax can be found in [7].

Each SpaQueryReply (Table B.25) message contains the logical address of the compo-

nent, the byte-level format of the provided message, and the section of xTEDS that defines

the message. This information allows the issuer of the query to make an intelligent selection

of which source to utilize. At this point, the issuer of the query has sufficient information

to issue the selected commands to the component or request a subscription to the provided

data.

49

Lookup ServiceSpa Component

SpaQueryRequest

SpaQueryReplies

Figure 3.18. Query protocol

3.6.4 Publish/Subscribe

Data transfer within a SPA network is done primary using the publish/subscribe

paradigm. After issuing a query and selecting a data provider, components may issue

subscription requests by sending a SpaSubscriptionRequest message (Table B.22) to the

provider of that message. Along with requesting a subscription to a piece of data, the

requester may also request a specific lease period for which the subscription will remain

valid. Lease periods provide a degree of fault tolerance, as the subscriber can detect a failed

data provider and select a different data source to subscribe to. The subscriber should

renew this subscription before the lease period expires to ensure continued data flow. If a

component produces the data at a rate higher than the subscriber desires, the subscriber

may also specify a delivery rate divisor to indicate that it should only publish one of ev-

ery N messages to the subscriber. Data producers or publishers can reject any requested

subscription to their data based on priority, resources, or data availability. The data pro-

ducer alerts the subscriber to the acceptance or rejection of their subscription by sending a

SpaSubscriptionReply message (Table B.23) to the subscriber.

Subscriptions can also be performed through the Lookup Service. In this scenario, the

SpaSubscriptionRequest is sent to the Lookup Service. The Lookup Service then forwards

50

Spa ComponentSpa Component

SpaSubscriptionRequest

SpaSubscriptionReply

Lookup Service

SpaSubscriptionRequest

SpaSubscriptionRequest

SpaSubscriptionReply

Direct
Subscription

Subscription
via
Lookup Service

Figure 3.19. Subscription Protocol depicting direct subscription and subscription via the
Lookup Service

the request to the SPA component. The SpaSubscriptionReply is returned to the Lookup

Service and then redirected to the original subscriber. The benefit of subscription via the

Lookup Service is when the producing SPA component disconnects from the network (i.e.

powered off or damaged) the Lookup Service will automatically notify all subscribers that

the component is gone. The Lookup Service can only do this if it is aware of the subscription.

If a SPA component subscribes via the Lookup Service, the data still flows directly from

producer to consumer and the Lookup Service is not in the loop. The subscription protocol

can be seen in Figure 3.19.

3.6.5 xTEDS Message Protocols

The xTEDS schema definition [28] outlines the proper syntax for a SPA component’s

51

eXtensible Electronic Data Sheet. The schema defines three types of message formats: 1)

Notification, 2) Command, and 3) Request. The xTEDS defines the contents of each type

of message. In this section, each message type is explained and the sequence diagram for

each type is given. A more detailed description of xTEDS and their associated protocols

can be found in the SPA Logical and SPA Ontology specifications [7, 9].

Notification

The xTEDS Notification message is used for data products that can accept subscrip-

tions. It is subscribed to using the SpaSubscriptionRequest message (Table B.22). The

SPA component that is being subscribed to responds with a SpaSubscriptionReply mes-

sage (Table B.23). The reply will alert the subscriber if the subscription was accepted or

rejected. The data producer can reject a subscription based on priority, resources, or data

availability. If the subscription was accepted, then the data products are delivered in a

SpaData message (Table B.30). The notification protocol can be seen in Figure 3.20.

Command

The xTEDS Command message is used to send commands to a SPA component. A

xTEDS command is sent to a SPA component by sending a SpaCommand message (Table

B.35). The command message has no reply. Sometimes the xTEDS Command message is

used to just push data to a SPA component. The command protocol can be seen in Figure

3.21.

Request

The xTEDS Request message is used to send a command that requires a reply. The

command is sent using the SpaServiceRequest message (Table B.31) and the reply is received

as a SpaServiceReply message (Table B.32). The request protocol can be seen in Figure

3.22.

3.7 The Application Layer

52

Spa ComponentSpa Component

SpaData
SpaData
SpaData

.

.

.

SpaSubscriptionRequest

SpaSubscriptionReply

Figure 3.20. xTEDS notification protocol

Spa ComponentSpa Component

SpaCommand

Figure 3.21. xTEDS command protocol

53

Spa ComponentSpa Component

SpaServiceRequest

SpaServiceReply

Figure 3.22. xTEDS request protocol

All the layers of the SPA model culminate in the application layer. The application

layer supports SPA components interoperating in a plug-and-play manner. This section will

describe the life cycle of a SPA component. The SPA components have been discovered,

assigned a logical address, registered with the Lookup Service, queried for their data needs,

made their subscriptions, and can now perform the function they were designed to accom-

plish. In the SPA model, a SPA component is an endpoint whose interface conforms to the

SPA standards. SPA components can be software applications executing on a general pro-

cessor resource, or a hardware device physically attached to the network. These may include

applications for guidance, navigation and control, power management, payload management

and operation, system health and status, etc. The communication and interoperation of the

SPA components is independent of the nature of the components. Consumers of data and

services are unaware of the physical type or physical network location of their producers.

A core concept of SPA is that components register their capabilities with the Lookup

Service when they are added to the system. Once this information is captured, any com-

ponent with a data need may query the Lookup Service for available sources and receive

matches to that query. A SPA component may contact any or all matching components

directly and subscribe to the data that it provides or utilize its data services. To make all

of this possible, a SPA component goes through a five-phase life cycle. The phases in the

54

life cycle are:

1. Component discovery

2. Component registration

3. Data source query

4. Data subscription

5. Normal operations

3.7.1 Discovery

Component discovery is the process by which a component is found and assigned a

logical address on the network. Discovery has previously been discussed as part of the Data

Link layer in section 3.4 and SPA logical address assignment was previously discussed as

part of the Network layer in section 3.5. Each subnet discovers the SPA components on

its subnet using the process (probing, listening, etc.) appropriate for the subnet topology

and transport medium. Upon assignment of a logical address, a component is ready to

participate in a SPA network and transitions to the registration phase.

3.7.2 Registration

In the component registration phase, the component informs the Lookup Service of its

available interfaces. These interfaces include commands available to configure and control

the component, available data products for subscription, and services which include a re-

quest and response from the component. This interface description is called an eXtensible

Electronic Data Sheet or xTEDS. It is provided to the Lookup Service and any other SPA

component that requests it. Upon completion of registration with the Lookup Service, the

SPA component and its xTEDS are now available to be found by other SPA components

that query for compatible services. xTEDS and component registration were previously

discussed as part of the Transport layer in section 3.6.

55

Discovery

Query

Registration

Subscription

Normal
Operation

SPA-Local
Manager

SPA-Local
Application

Lookup
Service

SPA-S
Manager

SPA-S
Device

LocalHello SpwEndpointPing
SpwEndpointPingReplyLocalAck

SpaAssignAddress SpaAssignAddress

SpaRequestLsProbe
SpaProbeRequest

SpaRequestLsProbe

SpaProbeRequest
SpaProbeReply

SpaProbeReply
SpaXtedsRequest

SpaXtedsReply

SpaXtedsRequest
SpaXtedsReply

SpaQueryRequest
SpaQueryReply

SpaSubscriptionRequest
SpaSubscriptionReply

SpaData
SpaData
SpaData

.

.

.

.

Figure 3.23. SPA component life cycle

56

3.7.3 Query

After registration, the component enters the query phase and searches for SPA com-

ponents that can meet its service and data requirements. By following the query protocol

outlined in Figure 3.18, a component issues a query to the Lookup Service and receives

responses. The query does not search for components physical location. Instead a query

searches by the type of service, the name of the component, the name of the interface, or

for specific data. The query mechanism uses an XML schema very similar to that used for

the xTEDS. The Lookup Service returns a response to the query, including a list of SPA

logical addresses for the components that provide the requested data services. In addition,

the query may remain in effect in the Lookup Service so that any matches to the query

that become available after the initial query response will also be forwarded to the querying

component. Some components may only be producers of data. Not all components are

required to issue queries. For example, a controller of a set of temperature monitors may

only publish data to subscribers and not require issuance of any queries to locate other

services. Simple hardware devices typically fall into this category. Once query responses

have been received, SPA components are ready to select and subscribe to services. Queries

were previously discussed as part of the Transport layer in section 3.6.

3.7.4 Subscription

After receiving a list of query matches, a SPA component can select and subscribe to

data and service providers. A SPA component can utilize whichever selection algorithm

that is most appropriate. It is left up to the SPA component developer to decide how to

select a best query response. The SPA component can request the use of the service of

the providing component in an ad hoc manner, or it may use SPA protocols to establish

a subscription to the service or data for a period of time. Similarly, a SPA component

that provides data services may receive requests for those services, as well as subscriptions.

The SPA component can decide whether the request or subscription will be honored and

alert the requester. Subscription was previously discussed as part of the Transport layer in

section 3.6.

57

3.7.5 Normal Operation

After establishment of subscriptions, the component is prepared to enter normal op-

erations. Services that are required by a SPA component have been matched to providers

and requests and subscriptions received from other SPA components can now be serviced.

It is at this point that the system is considered stable and each SPA component performs

the function it was created for. However, as a dynamic system, providers may become un-

available. The subscription protocols and Lookup Service provide for notification if a data

provider drops out of the network. This can be caused by a SPA component being powered

off or damaged. Similarly, a SPA component may be powered on late and become available.

SPA components which have queried previously for services that a newly registered compo-

nent provides will be notified and can respond if the new source is better than an existing

provider or fulfills an unmet need.

3.8 Summary

The SPA networking approach described in this chapter provides a unified methodol-

ogy for self-discovery and self-configuration of heterogeneous PnP networks. The network

infrastructure is transport agnostic and does not place the burden of network routing on

the SPA components. It provides a method for components to publish and subscribe to

resources and interoperate regardless of their physical location on the system or the type

of interconnection network they use. It allows spacecraft component providers to design

and develop SPA-compliant components without any prior knowledge of how or where their

component will be utilized in the system. It also provides a well-defined methodology for

adding new and future network technologies without affecting existing SPA components.

Support for a new or future interconnection network can be added by simply including the

appropriate subnet manager software module at the data link layer. Likewise, removing

support for an interconnection network that is not needed simply requires removing the

appropriate subnet manager software module. The current SSM implementation supports

SPA Local (SPA-L) and SpaceWire (SPA-S) subnets. Efforts are currently underway to

incorporate the SPA-1 (I2C) and SPA-U (USB) subnets as well.

58

CHAPTER 4

IMPLEMENTATION

4.1 Introduction

An important outcome of this research is an actual working implementation of the SPA

network architecture. A working implementation is an important product to demonstrate

that the ideas presented in this research are actually possible. In a simulation it is too easy

to produce an implementation that will not work on real hardware in a real system. An

example of this can be found in timing. In a typical simulation every node in the network

runs in a lock step manner, while in reality the network nodes all run independent and totally

asynchronous. A real world implementation demonstrates that the proposed protocols and

messages function in a real system. This chapter presents a successful implementation of

the SPA Network as an operational system.

The SPA Services Manager (SSM) is an AFRL-funded implementation of the AIAA

SPA standards including the SPA networking architecture presented in chapter 3. The

SSM was developed at the Space Dynamics Laboratory (SDL) using an ISO 9001 certified

spaceflight software development process. The SSM provides the core services required

in order to support self-configuration on a heterogeneous network, including a mechanism

for SPA hardware and software components to publish their data and capabilities with

the system. SPA components capabilities are described in an XML document called an

extensible Transducer Electronic Data Sheet (xTEDS). As part of the self-discovery and

self-configuration process, a component provides its xTEDS to the SSM. The SSM parses

and stores the information contained in the xTEDS. After this process is complete, any

component can query the SSM for data or capabilities that it needs. The SSM sends a list

of components that can provide the needed data and capabilities. The requesting component

59

can then subscribe to the required data or capability from the providing SPA component

of its choice, regardless of where it is physically located or what type of interconnection

network it uses.

Spaceflight software is held to a high standard when it comes to implementation. There

are rarely second chances when your software is installed on a rocket and shot into space.

Part of the purpose of this chapter is to demonstrate that the SSM is not a student project,

but is a professional-grade, and flight-ready implementation. In no way should this dis-

sertation be used as evidence that the SSM should not be flown on a spacecraft. This

chapter presents the ISO 9001 certified development process used to implement the SSM,

the high level SSM software architecture, some important implementation details, and the

environment that is used to test the SSM.

4.2 Development Process

The SSM was developed at the Space Dynamics Laboratory (SDL) using an ISO 9001

certified flight software development process. The aerospace community has been locked

into the the traditional waterfall approach to software development for the last couple of

decades. A normal software project life cycle goes through the standard phases of planning,

requirements, design, implementation, test, and finishes in a maintenance phase. There is

a growing movement to incorporate newer agile methodologies into the traditional process

[141]. SDL has done this by including common agile practices into the implementation phase

of the traditional waterfall model. A dramatic departure from the traditional approach is

not acceptable because the new approach still has to fit with the rest of the spacecraft

development process which still follows the traditional approach. The agile practices that

have been added to the implementation phase include feature driven development, judicious

use of pair programming, code inspections and peer reviews, software unit testing, and a

continuous integration approach to software verification and validation.

4.2.1 Planning

During the SSM planning phase, important trades in the software development process

60

were studied out, and goals were set. These goals and decisions are captured in the SSM

Software Development Plan (SDP) [13]. The key topics from the SDP are issue tracking

and reporting, software configuration management, and quality assurance.

Deficiency Tracking and Reporting

As with all software projects, defects are often found by users. It is important to

provide a method for users to report the software defects to the development team. It is

equally important after a report has been made that the user can track the status of the

software defect. This process improves the overall quality of the software. Defect tracking

is one of the hallmarks of a good software team [132]. If the defect list is not written

down, defects are quickly (and sometimes conveniently) forgotten. If the defect list is not

accessible by all developers and all users then its usefulness is limited. Defect tracking and

reporting helps to improve the quality of the software and the satisfaction of the customer.

The SSM uses Redmine [22] to track software defects and report status of the defects.

Redmine is an open source tool designed for this purpose. The Redmine instance for the

SSM can be found at https://pnpsoftware.sdl.usu.edu/redmine. Redmine enables users to

enter new bugs with the software and then see their status. One benefit of this process is

the increased communication between developer and user. According to Eric S. Raymond’s

version of Linus’ Law, “given enough eyeballs, all bugs are shallow” [124]. In spaceflight

software there is no room for a software defect. Defect tracking and reporting is essential

to eliminating software defects.

Software Configuration Management

Software configuration management (SCM) is the task of tracking and controlling

changes in the source code. SCM enables the integration of several developer’s code into a

single working code base. SCM is important because it ensures that no code is lost during

development, there is always a path back to a stable state, and team members can work in-

dependently without fear of overwriting each other’s code. SCM is so common today, that

there are entire companies built on just hosting code and performing SCM (i.e. github,

https://pnpsoftware.sdl.usu.edu/redmine

61

sourceforge). It is a sign of process immaturity if there is no SCM in place on a software

project.

A software project’s SCM strategy is closely related to the SCM tool that is used for

the project. Many SCM tools exist at the time of this writing (i.e. Subversion, git, CVS,

Mercurial, Bazaar). The SSM uses git for software configuration management. Git uses a

distributed model for source management. Each software developer has a local copy of the

source repository. Any repository can be synchronized with any other repository. Typically

there is one repository designated as the single point of synchronization. This creates a

single point of integration for the entire code base while still maintaining the capability

to synchronize across peers [46]. The SSM Software Configuration Management Plan [11]

describes how git is used for the SSM project.

Quality Assurance

Software quality must be built in during development. Quality is not something that

can be achieved after the code has been written. It is important to have a software quality

assurance plan that gives the software developers good metrics and methods for measuring

software quality, declares appropriate responsibilities, and outlines the use of proper tools.

Good metrics and methods are hard to define, but should still be sought out. The SSM

uses a standard metric of code coverage to provide a measure of how much effort has been

put into quality assurance. Responsibilities are given to each developer so that each person

knows their roles and tasks. Tools usage is outlined and standardized so that everyone

collects the same metric the same way. All these items and more are defined in the SSM

Software Quality Assurance Plan [14].

4.2.2 Requirements

The SPA Standards documents were produced by the Advanced Plug-and-play Technol-

ogy (APT) program. The APT program consisted of six industry contractor teams divided

into different committees. Each committee produced a standards document for their area

of SPA. The standards that contain software specific requirements include Logical Inter-

62

face [7], Network [8], Local Subnet Adaptation [6], SpaceWire Subnet Adaptation [10], and

Ontology [9]. Each of these documents includes a section with a list of requirements for

a SPA implementation. The SSM draws its requirements from these documents. The re-

quirements were captured in a Software Requirements Specification (SRS) [5] that follows

the IEEE SRS recommended practices [70].

4.2.3 Design

The design of the SSM had the benefit of reimplementing the older Satellite Data

Model (SDM). The developers that had maintained the SDM were the same developers

that worked on the SSM. Many of the good parts of the SDM design were reused, while

the worst parts were redesigned. After an initial design, the SSM was rapidly prototyped

to further refine the design. The design was captured in a Software Design Description

(SDD) [12] that follows the IEEE SDP recommended practices [73]. A high-level overview

of the software design is presented in section 4.3.

4.2.4 Implementation

Agile practices were used during the SSM’s implementation phase. These practices

include feature driven development, judicious use of pair programming, software unit test-

ing, code inspections and peer reviews, and a continuous integration approach to software

verification and validation.

Feature Driven Development

Software projects are broken down into a collection of requirements and features that

meet these requirements. The features are then tracked through design, implementation,

peer review, and test phases. Each feature is assigned to a software developer. The developer

is responsible for reporting status on feature they have been assigned. All requirements are

met when all features have been completed. The overall status of the project can then be

thought of as sum of the status of each of the features. Features are grouped together to

create a software release. Several releases are planned out in advance and the customer is

63

Figure 4.1. Example feature plan

involved in selecting the features for each release.

During the implementation of the SSM, a web-based project management tool called

Redmine [22] was used to plan releases. Redmine is also used as an issue tracker. In the

SSM project there are three issue types: Bug, Feature, and Improvement. The issues are

grouped together into versions and planned out on a roadmap. An example roadmap for

the SSM 0.9.5 release can be seen in Figure 4.1. Again, several releases are planned out in

advance and the customer has full access to the Redmine site. This allows the customer to

use Redmine to participate in the planning process.

Judicious Use of Pair Programming

Pair programming has been a controversial idea since it was introduced [32], [147].

During the SSM implementation sections of the code were developed using pair program-

ming. The majority of code can easily be written by a single developer with little fear of

grievous mistakes. This code is quickly validated through the use of code review. However,

there are certain sections of the code that are especially complex and benefit greatly from

having two software developers write it at the same time. One example of this is the xTEDS

indexing system in the Lookup Service. The author and Bryan Hansen sat down together

and wrote the indexer. It is a very complicated data structure with an array of hash tables

64

that contain polymorphic nodes which contain more hash tables or linked lists containing

other linked lists or another layer of hash tables. Although development spanned several

days, the code worked correctly on the first test run. This can be attributed to the many

bugs which were caught during pair programming. Just because it is good for some code,

does not mean pair programming is good for all code. Pair programming was judiciously

used during the development of the SSM.

Software Unit Testing

Unit testing is the practice of exercising an individual unit of code to ensure it functions

correctly. A software unit can be defined at almost any level. In the SSM the basic unit

is a class, however, entire applications are also tested in integration-level unit tests. The

software developer writes unit tests before, during, or after a unit of code is written. The

practice of writing tests before and during code development is known as Test Driven

Development [25]. The developed code and its associated unit tests are committed to the

source code repository at the same time.

Code coverage is a common software development metric for how thoroughly the code

has been tested. Code coverage is a function of the number of lines executed during the

test execution over the total number of lines in the code base. The SSM has a standing

goal of 80% code coverage. As of this moment, the code coverage is at 93%. High code

coverage is important because it helps detect dependency failures in the code base. If a

software developer changes the functionality of a piece of code and another part of the

system depends on that functionality, the unit tests will detect a failure in the unchanged

code. This gives the developers high confidence that the entire system is functioning as

intended.

The SSM uses the Google C++ unit testing framework [20]. Unit tests are written at

the method, class, and system level. The collection of unit tests are executed in the Linux,

Windows, and VxWorks environments.

65

Code Inspection and Peer Reviews

When a software feature and its associated tests are completed, they undergo a peer

review process. During a peer review one or more software developers who did not produce

the software feature review the implemented code. Emphasis is placed on finding perfor-

mance and functional defects, as well as more minor issues such as code style and sufficient

commenting. No code is committed to the software configuration management repository

until it has been reviewed by at least one other software developer. This process increases

the stability of the overall code base. In general is causes all developers to be held to a

higher standard when they are developing code because others will actually see their code.

It also has a bonus side effect of sharing the collective knowledge of the project architecture

and implementation details with all who are involved in the code review. It has been my

experience on this project that code reviews have the greatest impact on the quality of code

that is produced. I personally feel that the quality of code I produce has improved greatly

because of the peer code reviews.

To facilitate a painless and efficient peer code review process, the SSM development

team uses a web based tool called Code Collaborator which was developed by SmartBear

[17]. Traditionally peer code review has been done by getting a group of developers in a

meeting while the code author scrolls through the code and tries to explain what has been

developed and how existing code has been changed. Code Collaborator enables software

developers to participate in peer code review without having to be in the same physical

location. The review process becomes asynchronous and distributed. When a developer

posts code for review they can select reviewers from their team. Those team members

receive an email alerting them to the new review. A reviewer logs in to Code Collaborator

and can view the code online. Code Collaborator shows diffs so the reviewer only has to

review code that has been changed. The reviewer can make comments and even mark

defects in the code. Once the reviewer has finished an email is sent to the code author who

can then address the comments and defects. The SSM development team has found that

this distributed and asynchronous approach to peer code review has improved the efficiency

66

of the review process.

Continuous Integration

Unit testing is of great value to software developers while developing a large system.

However, the utility of the unit tests is only found in the execution of said tests. Continu-

ous integration is the practice of applying quality checks throughout the software develop-

ment life cycle. This differs from the traditional practice of applying quality control after

completing development. Continuous integration is a common practice in agile software

development.

A continuous integration server is used to build the software each time code is com-

mitted to the software repository and on a nightly basis. The continuous integration server

then executes the body of unit tests and collects other code health statistics. In the event an

unhealthy code base (broken or unstable) is detected, emails are sent to the entire software

development team. The cause of the unhealthy code base is immediately investigated and

corrected.

The SSM uses Jenkins [27] as its continuous integration server. Jenkins is an extensible

open source continuous integration server. There are many plugins available for Jenkins.

When Jenkins runs the SSM project it performs the unit tests and runs Valgrind [26]

to collects information about the memory usage, including memory leaks, read or write

errors, and invalid memory accesses. Jenkins runs a static analysis tool called cppcheck

[18] which looks for common bugs that compilers do not detect such as out of bounds

checking, exception safety, memory leaks, obsolete functions, unused code, and uninitialized

variables. Jenkins also compiles the source code documentation using Doxygen [19]. During

the Doxygen documentation build, Jenkins validates that there are no errors or warnings

in the Doxygen comments.

In the event that any one of the checks that Jenkins performs reports a warning, the

build is reported as unstable. If one of the checks fails, the build is reported as broken. When

a build is unstable or failed, the responsible software developer can examine the Jenkins

build log output and correct the code. Due to the continuous nature of Jenkins, most of

67

Windows
PC

Linux
PC

SDL's MODAS
Flight Processor

Spw
Router

Spw
Router

SPA-S
ASIM

SPA-S
ASIM

SPA-S
ASIM

SPA-S
ASIM

SPA-S
ASIM

Figure 4.2. Example test network configuration

the quality control checks have been automated. This enables the software development

team to focus on code production and stability instead of spending a lot of time trying to

integrate and debug new code.

4.2.5 System Test

The test plan for the SSM is outlined in a Software Test Plan [15]. SSM system

testing was performed at the Space Dynamics Laboratory using a Windows PC, a Linux

PC, and SDL’s Modular Avionics System (MODAS) [21]. SpaceWire endpoints consisted

of a collection of 8051 base SPA-S sensor simulators. A example test network configuration

can be seen in Figure 4.2. During a system test, the network is configured with the Central

Address Service, Lookup Service, a data producer, and a data consumer application. The

test is executed multiple times with different configurations of where each component resides

in the network. The test is successful when the data flows from sensor simulators and data

producer to the data consumer. The focus of these tests are to validate that discovery,

registration, query, subscription, and data delivery all function correctly regardless of the

network configuration. These tests are not intended to evaluate network characterization,

but instead their focus is on functionality.

68

4.2.6 Maintenance

SSM releases are tagged with their appropriate release version and Jenkins build num-

ber, and then posted to the Redmine site [24]. Users can post bug reports and see status

of reported bugs, as well as planned release dates for the version that contain the bug fixes.

Each bug report goes through an inspection process to reproduce the bug. Once the bug

has been reproduced, a unit test is written that captures the reproduction. Initially this

unit test is failing. When the bug is fixed, the unit test passes. This test is then added

to the body of unit tests and protects the code base from introduction of the same bug.

After the bug is corrected, the unit test and the fixed code goes through the peer review

and continuous integration processes before the bug is marked as resolved.

Other code improvements are also part of the maintenance process including refactoring

existing code to use new techniques and algorithms, or updating functionality of already

completed features to be easier to use or access. These types of improvements also go

through a code review, unit test, and continuous integration process. Code improvements

are also recorded in software releases and can be seen in the Roadmap (Figure 4.1) on the

SSM Redmine site [24].

4.3 Software Architecture

Each core component in the SSM was implemented in an object-oriented, modular

fashion. A layered software architecture was used to abstract and encapsulate the code into

functional modular units in order to decrease coupling and increase internal class cohesion.

The layers of the software architecture include a platform abstraction layer, a collection of

common utilities, several core components, and a SPA Application Programming Interface

(API). A layered software architecture diagram can be seen in Figure 4.3.

4.3.1 Platform Abstraction Layer

The Platform Abstraction Layer (PAL) abstracts operating system and architecture

differences from all higher-level code. Because of the PAL design, all code modifications

needed to port the SSM codebase to a specific operating system and architecture will only

69

Figure 4.3. Layered software architecture of the SSM

take place inside the PAL. When the SSM was first ported from Linux to VxWorks, it took

a total of 20 minutes and no files were modified outside the PAL. When porting from Linux

to Windows, a single software engineer made the port in a couple of days as parts of the

PAL had to be adapted for a non-Posix compliant operating system. However, no files were

modified outside of the PAL.

The PAL is a set of classes that encapsulate common operating system and architec-

ture specific functionality and implementations. The public interface to these classes will

be common across all architectures, while the underlying implementation can vary widely

from one platform to the next. An example of an object in the PAL is the SpaThread

class, which handles threading abstraction. SpaThead exposes methods for the common

threading operations of start, stop, join, and detach. The SpaThread class internally has

two implementations, one of which is selected via compile time #ifdef statements. For

Linux and VxWorks there is an implementation using the pthread library and the other

implementation uses the standard Windows threading API. A class outline for SpaThread

can be seen in Figure 4.4.

70

Figure 4.4. SpaThread class outline

4.3.2 Common Utilities

The collection of common utility classes are reused by the SPA core components and

the SPA API. The idea is to store reoccurring functional needs into classes that are easy to

use. This enables rapid development of SPA capable software. This section presents some

of the common utilities that are most used and encapsulate vital SPA functionality.

Generic Node, List, Queue, Vector, and Priority Queue

Normally a C++ code base will use the Standard Template Library (STL) for common

data structures such as list, queue, vector, and a priority queue. However, the STL is

avoided in spaceflight software because of the lack of heritage. It is seen as a risk because

of its dynamic memory allocation. Because these basic data structures are common to all

software and the inability to use the the existing STL implementations, the SSM provides

an implementation of each of these data structures.

The GenericNode is used as the common data object in all of the generic data struc-

tures. It is used by subclassing and then adding the private data members that need to be

stored. The subclass is also required to implement the assignment, equality, and less than

71

operators. The GenericNode provides a getNext function that is used in the linked lists

that backs the GenericList and GenericQueue data structures.

The GenericList encapsulates a linked list of GenericNodes. Common list operations

like getting an iterator, inserting, removing, sorting, etc are all exposed through the Gener-

icList class. A list class derives from GenericList to inherit this functionality. Using inher-

itance limits the linked list logic to one central location to increase maintainability.

The GenericQueue also encapsulates a linked list of GenericNode derived objects. The

common enqueue and dequeue operations are defined in the base class. GenericQueue and

its derived classes are inherently thread-safe as all operations are explicitly locked.

The GenericVector uses an underlying array for its implementation. GenericVector will

automatically resize itself when the array starts to reach capacity. The default allocation

strategy doubles the size of the array each time it is resized. This is the same as the STL’s

vector class and is a typical allocation strategy for a vector.

The GenericPriorityQueue uses a GenericVector as a data store and implements a min

heap. This was found to be the fastest implementation and is close to the speed of the STL

priority queue class. Class diagrams for the entire Generic family can be seen in Figure 4.5.

Message Classes

The SSM middleware uses a message passing paradigm, where components communi-

cate by sending distinct messages to each other. Each message includes a standard header,

a payload, and a standard footer (Figure 4.6). Each message is encapsulated in its own

class. A base class called SpaMessage implements the standard header and footer. A new

message can then be created by subclassing SpaMessage and implementing the payload

portion of the message. A portion of the SpaMessage class hierarchy can be seen in Figure

4.7. Each message object implements the marshal and unmarshal functions. The marshal

function will take the object and turn it into a byte array, ready for transmission on the

network. The unmarshal function takes a byte array and populates all of the private data

members of the object.

72

Figure 4.5. The family of Generics: Node, List, Queue, Vector, and Priority Queue

Standard
Header

Payload

Standard

Footer

Figure 4.6. Generic message format for a SPA message

73

Figure 4.7. A portion of the SpaMessage inheritance hierarchy

Threading and Inter-thread Communication

Threading is common in the SSM. It is used to monitor I/O channels and logging.

All communication channels have a dedicated blocking thread for sending and a thread

for receiving messages. This approach ensures that messages are not dropped due to full

I/O buffers. Thread safe message queues are used for all inter-thread communication. The

main application thread pulls incoming messages from the listener thread’s message queue

and appends outgoing message to the sender thread’s message queue. When logging, the

main thread simply appends the log message to the logger thread’s message queue. This

approach allows the main thread of an application to process incoming messages and send

new messages out without interruption. Each thread is either blocking on an I/O interface

or on a thread safe queue. This keeps processor utilization low even though there are an

average of 4 to 6 threads in each application.

Communicators

The communicator classes were designed to encapsulate all communication on the SPA

network. There are two types of communicator classes: 1) PhysicalCommunicators (Fig-

ure 4.8), and 2) SpaCommunicators (Figure 4.9). PhysicalCommunicators encapsulate the

sending and receiving of byte arrays on a SPA subnet. There is one PhysicalCommuni-

cator for each SPA subnet type. The SpaCommunicators encapsulate the logical send-

ing, receiving, and routing of SpaMessages. A SpaCommunicator contains at least one

PhysicalCommunicator. Each derived SpaCommunicator serves a special purpose. The

SpaApplicationCommunicator is designed to facilitate communication from an applications

74

Figure 4.8. The SPA physical communicators

Figure 4.9. The SPA logical communicators

perspective. The SpaNetworkCommunicator encapsulates two SpaPhysicalCommunicators

to allow for subnet-to-subnet routing to occur at a lower level and freeing the SSM core

components from this processing. Last, the SpaApiCommunicator is specially designed to

facilitate communication on the SPA network from within the API.

Routing Table

The RoutingTable class is used by all SSM Core Components. It provides translation

between a SPA logical address and the physical address needed to transmit the message

to the next component along the path to the final destination. For efficiency purposes,

the RoutingTable is implemented as a hash table. The hash function is specifically crafted

to minimize collisions in the hash table and thereby keep lookups to constant or near-

constant time. This optimization is done through a knowledge of the size of address blocks

distributed by the Central Address Service. The routing table hash function will not have a

75

collision until there are more than 16 components in a single subnet, or there are more than

TABLE SIZE subnets on the SPA network. The RoutingTable hash function is as follows:

UInt16 hash (UInt32 addr)

{

UInt16 r e s u l t = 0 ;

r e s u l t = (((addr >> 16) ∗ OFFSET) ;

r e s u l t += (addr & 0x0000FFFF)) & (TABLE SIZE − 1) ;

return r e s u l t ;

}

Memory Pool

Allocating dynamic memory throughout run-time on a space system is a risk because

any memory leaks can lead to the eventual failure of the software system and could cause

an entire space craft failure. The SSM uses memory pools to control dynamic allocations.

A memory pool makes an initial memory allocation as an application starts and does not

allocate any more memory during the lifetime of the application. The application’s memory

allocations are then directed to the memory pool instead of the operating system. Memory

allocations for the memory pool come in a block size, which is configured for each memory

pool. This discourages segmentation within the pool. These memory pool allocations are

faster than standard operating system allocations because the program does not have to

make a system call and switch into kernel mode to allocate the memory. This increased

performance is an added bonus to the benefit of never being able to allocate more memory

than the memory pool has already allocated. Memory pools are a standard design artifact

in spaceflight software.

The SSM implementation includes a MemoryPool class which encapsulates a single

memory pool. It is responsible for allocating, deallocating, and managing a single memory

block size. The allocation and deallocation functions are not called directly by the user,

but rather the global new/delete C++ operations are overloaded to use a memory pool.

76

Users will replace calls to new with new(MemoryPool* pPool) and calls to new[] with

new[](MemoryPool* pPool). An example to allocate a 1024 buffer from a memory pool:

UInt8∗ pBuf = new(pMyPool) [1 0 2 4] ;

Deleting memory allocated from a MemoryPool remains syntactically unchanged from stan-

dard C++.

Applications often allocate memory of varying sizes throughout their execution. In

a single memory pool with a small sized block, this can cause segmentation and under-

utilization. The MemoryPoolController class controls multiple MemoryPools, each having

a different size and block size. The MemoryPoolController can automatically determine

which MemoryPool will best fit the requested allocation. As with the MemoryPool, to al-

locate memory from a MemoryPoolController the global new/delete operations have been

overloaded. Users replace calls to new with new(MemoryPoolController* pPoolCon-

troller) and calls to new[] with new[](MemoryPoolController* pPoolController).

An example to allocate a 1024-byte buffer from a memory pool controller:

UInt8∗ pBuf = new(pMyPoolControl ler) [1 0 2 4] ;

Deleting memory allocated from a MemoryPoolController remains syntactically unchanged

from standard C++. Appendix D contains a further discussion on SSM memory usage that

is outside the scope of this dissertation, but still remains relevant as reference material.

Logger

The SSM implementation includes a Logger class utility. The Logger is used to write

formatted, time-stamped log message to stdout and/or to file. It is implemented as a sin-

gleton per application. The Logger supports seven levels of logging: FATAL, ERROR,

WARN, INFO, DEBUG, TRACE, USER. During an application’s execution, command

line parameters can be used to enable any or all levels and the Logger output destina-

tion. Global macros are defined in the Logger class which enable easy use of the Logger.

These macros are: LOG FATAL, LOG ERROR, LOG WARN, LOG INFO, LOG DEBUG,

77

LOG TRACE, and LOG USER. These macros use variadic variable statements so that pro-

cessing is not done to build the log message strings if that log level is not enabled. The

Logger also uses its own thread. Each logging macro simply constructs the log message,

and then enqueues the message onto a thread safe queue. The Logger thread is blocking on

the queue and writes the log messages to the enabled destinations. Between the variadic

macros and the separate thread for I/O, the Logger has been designed to cause a minimal

impact on the performance of any application that uses the Logger.

4.3.3 Core Components

The SSM core components are those that are required for the system to function

correctly. They include the Central Address Service, SPA-Local Subnet Manager, the SPA-

SpaceWire Subnet Manager, and the Lookup Service. Other SPA subnet managers would

go in this list if they are implemented and used in the SPA network. The following sections

outline a brief design and provide a high level UML diagram for each SPA core component.

Central Address Service

The Central Address Service is responsible for making address block assignments for

SPA subnet managers. The Central Address Service is responsible for ensuring there are

no duplicate address blocks assigned. The Central Address Service does this by using a

SpaLocalComminicator for communicating on the SPA-Local subnet and a routing table

to store address assignment information. The Central Address Service is the simplest core

component in the system.

SPA-Local Subnet Manager

The SPA-Local Manager (SM-L) is the software process which manages SPA-Local

subnets. It handles discovery, subnet component address assignments, and registration for

SPA-Local components. It also acts as the routing entity for SPA-Local components and

routes messages within its subnet. The SPA-Local Manager also performs component mon-

itoring. The SPA-Local Manager uses a RoutingTable to track address assignments as well

78

Figure 4.10. Central Address Service class architecture

as routes to other SPA subnet managers. A SpaNetworkCommunicator is used to auto-

matically handle the routing of SPA messages. This SpaNetworkCommunicator only uses

a single SpaLocalCommunicator because the SPA-Local Manager does not communicate

with any other SPA subnet. A list implementation called the ComponentList is used to

store information for each component on the SPA-Local subnet over which this SPA-Local

Manager is in charge. This list includes information about the state of health of each com-

ponent, such as the last time a heartbeat was received from the component. The final class

used by the SPA-Local Manager is the DiscoveryQueue. The DiscoveryQueue is common

among SPA subnet mangers. It is used when a new SPA component has been discovered,

but the subnet manager has not yet received an address block. Each newly discovered SPA

component is enqueued into the DiscoveryQueue. When the SPA subnet manager receives

its address block, then the DiscoveryQueue is processed and address assignments are made

for each discovered SPA component.

SPA-SpaceWire Subnet Manager

The SPA-SpaceWire Manager (SM-S) is the software process which manages SPA-

SpaceWire subnets. It handles discovery, subnet address assignment, and registration for

SPA-SpaceWire components. It also acts as the routing entity for SPA messages between

a SPA-Local subnet and a SPA-SpaceWire subnet. The SPA-SpaceWire Manager uses a

RoutingTable to track address assignments as well as routes to other SPA subnet man-

79

Figure 4.11. SPA-Local subnet manager class architecture

agers. A SpaNetworkCommunicator is used to automatically handle the routing of SPA

messages. This SpaNetworkCommunicator uses a SpaLocalCommunicator and a SpaS-

paceWireCommunicator because the SPA-SpaceWire Manager communicates with both the

SPA-SpaceWire subnet and the SPA-Local subnet. A list implementation called the Compo-

nentList is used to store information for each SPA-SpaceWire component on the subnet. A

second ComponentList is used to store information for any other SPA-SpaceWire Manager

that are attached to the same SPA-SpaceWire subnet. This list includes information about

the state of health of each component, such as the last time a heartbeat was received from

the component. The final class used by the SPA-SpaceWire Manager is the DiscoveryQueue.

The DiscoveryQueue is common among SPA subnet mangers. It is used when a new SPA

component has been discovered, but the subnet manager has not yet received an address

block. Each newly discovered SPA component is enqueued into the DiscoveryQueue. When

the SPA subnet manager receives its address block, then the DiscoveryQueue is processed

and address assignments are made for each discovered SPA component.

80

Figure 4.12. SPA-SpaceWire subnet manager class architecture

Lookup Service

The Lookup Service is the software process that collects and indexes the xTEDS of

every SPA component on the SPA network. There is no requirement for where the Lookup

Service runs on the SPA network, however only one Lookup Service is allowed to run on

a SPA network. The Lookup Service is the most complex application in SSM due to its

xTEDS indexing and query functionality. Queries are executed on xTEDS once they have

been collected and indexed by the Lookup Service. Queries can be stored and run on each

new xTEDS or when an xTEDS is canceled. If a new xTEDS is registered and it matches

a stored query, the component that issued the query will receive a new query result. When

an xTEDS is canceled all stored cancellation queries are run against the canceling xTEDS

and query results are sent to each component. Query results for a cancellation query are

marked as such so the SPA components know that the xTEDS has been removed from the

Lookup Service.

The software architecture of the Lookup Service can be divided into three logical groups:

1) xTEDS, 2) Communication, and 3) miscellaneous. The xTEDS group is the collection

of objects that make up the xTEDS parsing and indexing, the Communication group is

81

the SpaApplicationCommunicator and a SpaLocalCommunicator, and the miscellaneous

group is a collection of data structures used to store registered component information,

subscriptions, and queries.

xTEDS The xTEDS handling in the Lookup Service consists of two main objects,

1) the XtedsParser, and 2) the XtedsRepository. The XtedsParser takes an XML version

of an xTEDS and deserializes it into an object. The Xteds object is then passed to the

XtedsRepository, which indexes every element and attribute and their objects into a large

hash table. This hash table is then used during queries to find xTEDS that match the

query.

Communication The Lookup Service uses the SpaApplicationCommunicator for

sending and receiving SPA messages on the SPA network. The SpaApplicationCommu-

nicator handles the discovery and registration process automatically, so that no extra code

has to be added to the Lookup Service to accomplish these tasks. The SpaApplicationCom-

municator also contains a RoutingTable used to send messages along optimal paths. The

SpaApplicationCommunicator internally uses a SpaLocalCommunicator to do the actual

socket-based communication.

Miscellaneous The miscellaneous group consists of the RegisteredComponentList,

SubscriptionTable, and QueryList. The RegisteredComponentList is used to store the cur-

rent state of each component that has registered its xTEDS. When a component has dereg-

istered its xTEDS, the xTEDS is not removed from the XtedsRepository. Instead the com-

ponent’s information is updated in the RegisteredComponentList to show that the xTEDS

is now inactive. All query results are checked again the RegisteredComponentList before

being finalized.

The SubscriptionTable stores the subscription information that the Lookup Service is

currently managing. In the SpaSubscriptionRequest (Table B.22) message there is a field

marked for subscription manager. This gives the Lookup Service knowledge of subscription

82

Figure 4.13. Lookup Service class architecture

relationships in the network. In the event that a component deregisters its xTEDS, the

Lookup Service checks the SubscriptionTable for any components that were currently sub-

scribed to the deregistering component and sends them an alert that the component is no

longer available.

The QueryList is responsible for storing persistent queries registered with the Lookup

Service. This list is used when xTEDS are registered or deregistered. The QueryList

contains FUTURE and CANCELLATION queries. When new xTEDS are registered, the

FUTURE queries are executed on the newly registered xTEDS. When an xTEDS is dereg-

istered, all CANCELLATION queries are executed against it. Appropriate SpaQueryReply

(Table B.25) messages are sent out of the owner to the stored persistent query.

4.3.4 SPA Application Programming Interface

The SSM Application Programming Interface (API) is designed to be a high-level

framework to simplify the development of SPA software components. The simplification is

done through abstracting all the SPA messaging and protocols within the API and allowing

the programmer to write code to only interface at the xTEDS level. It is important to

note that while it is called the SSM API, it actually functions more like a framework. The

83

Figure 4.14. SPA API control flow

key difference being that when using an API your application maintains control of the

application’s life cycle and execution flow and only loses control when invoking functions

in the API. In a framework, it is the framework that maintains control of the application’s

life cycle and execution flow and it only surrenders control to your function at distinct

hook-in points. The SSM API works by deriving a class from the SpaApplication class and

implementing several functions. These functions are invoked by the API when it is ready

to execute them. The API also provides the user with a simple set of functions to use for

setting up their application to issue queries, send commands, produce data periodically,

etc. Again, program execution control is maintained by the API and only passed back to

the user in callbacks. This control flow is shown in Figure 4.14. The public interface of the

SpaApplication class is shown in Figure 4.15.

The SSM API architecture is similar to most of the other SSM applications. It uses

a SpaApiCommunicator, SubscriptionManager, XtedsMsgTable, and TimerTable. The

SpaApiCommunicator functions like the other PhysicalCommunicators by handling com-

munication with the SPA-Local subnet. The API itself handles discovery, logical address

assignment, and xTEDS registration. The XtedsMsgTable provides a mapping from xTEDS

84

Figure 4.15. SPA API public interface

message to callbacks that are invoked when the SPA message containing the xTEDS mes-

sages arrive. The TimerTable stores the individual timers that the derived user application

uses to performs its own local processing. An overview of the SSM API class architecture

is shown in Figure 4.16.

4.4 Software Implementation

The SSM is an actual implementation and not just a software design. This section

gives a few details about the software implementation that are not part of the software

architecture.

4.4.1 Programming Language

The SSM is implemented using object oriented ANSI standard C++. It was written

using the 2003 version of the C++ language.

85

Figure 4.16. SPA API class architecture

4.4.2 Open Source Libraries

The SSM uses two open source libraries in its implementation. The first is RapidXml

[78]. RapidXml is used in the XtedsParser class to perform the syntactic XML parsing.

RapidXml does not perform the semantic parsing the xTEDS. RapidXml is a fast and

portable in-situ parser written in ANSI standard C++. RapidXml’s parsing speed is ap-

proximately the same as that of the strlen() function executed on the same data. The entire

library is contained in a single header file. RapidXml also uses memory pools for its memory

allocation.

The second open source library used in the SSM implementation is the Google C++

Testing Framework (Gtest) [20]. Gtest is used in the SSM unit tests. Roughly 45% of the

SSM codebase is unit tests. Gtest is based on the xUnit architecture [29] and supports

automatic test discovery, a rich set of assertions, user-defined assertions, death tests, fatal

and non-fatal failures, value- and type-parametrized tests, various options for running the

tests, and XML test report generation.

86

4.4.3 Operating System Support

Using the Platform Abstraction Layer (Section 4.3.1), the SSM natively supports three

different platforms 1) Linux, 2) Windows, and 3) VxWorks 6.7.

4.4.4 Development Environment

On Linux, SSM uses a Makefile to manage the build process. Software developers

have their choice of text editor. The SSM was primarily developed on Linux using both

the Eclipse C++ Development Toolkit (CDT) and QT Creator as text editors. For Win-

dows, SSM comes with Visual Studio 2008 projects. VxWorks development is done using

WindRiver Workbench 3.1.

4.5 Summary

The SSM has been developed using an ISO-9001 approved software development process

and is ready for flight. The SSM currently consists of 80,831 lines of code: 43,465 (54%) are

executable code and 37,366 (46%) are test code. Currently the Operationally Responsive

Space (ORS) office is using the SSM for its Modular Space Vehicle (MSV) bus. MSV is

being designed and built by Northrop Grumman Aerospace Systems. MSV is currently

scheduled for launch on the ORS-2 mission in May of 2013.

87

CHAPTER 5

EXPERIMENTAL SETUP

5.1 Introduction

This chapter outlines the experimental setup used to characterize, measure perfor-

mance, and evaluate spaceflight suitability of the SPA network as described in Chapters 3

and 4. In order to facilitate network characterization and capturing performance data, a

simulation environment was set up at the Space Dynamics Laboratory (SDL). The simula-

tion environment consists of a collection of endpoints and a Windows 7 PC connected to a

SpaceWire router. The Windows 7 machine runs a graphical SPA application that is used

to configure the other network endpoints. A screen shot of the graphical test application

can be see in Figure 5.1. Examples of this configuration can be seen in Figures 5.2, 5.3,

and 5.4. The Windows based test graphical SPA application enables the dynamic config-

uration of the test endpoints. The endpoint simulators can be configured to produce data

at a specific size and rate. A test agent also running the PC is configured to collect a set

number of messages before ending the test. Once the test has ended the test agent reports

the resulting data to the test application, which then does post processing on the data and

displays graphs. This testing architecture enables the test agent application run anywhere

in the network, such as on a flight processor.

5.2 Performance Measures

In characterizing the SPA network the metrics that are being collected are latency,

jitter, and packet loss percentage.

Latency is the time that it takes for a message to traverse the network from the source

to destination. Latency is measured by synchronizing time on both the endpoints and the

88

Figure 5.1. Graphical network configuration interface

processor, then placing a time stamp in the data just before it is transmitted on the network

and then taking a time stamp just after it is received at the destination.

latency = received time − sent time

Jitter is the variability over time of the packet latency across the network. Jitter

is found by performing a statistical analysis of packet latencies and finding the standard

deviation.

σ =

√∑
(x− x̄)2

N

Packet loss percentage is the number of packets lost from of the total number

sent. Packet loss percentage is a simple computation of one subtract the number of packets

received over the total packets sent.

89

Figure 5.2. Single router network configuration

packet loss = 1− packets received

packets sent

5.3 Tests Configurations

Three different network configurations are used with each configuration intended to

exercise a different typical network scenario. The first configuration is the single router

configuration (Figure 5.2). In the single router configuration the test PC and six endpoints

are all connected to a single router. This is a base case network configuration to provide a

comparison with the other network configurations.

The second network configuration is the string of routers configuration (Figure 5.3). In

this configuration three routers are connected in a serial fashion. The test PC is connected

to the first router and two endpoint are connect to each router including the first. In order

for the data from the data from endpoints 5 & 6 to reach the test PC, it must traverse

through each of the other routers. This network configuration tests the effects of serially

connect routers.

90

Figure 5.3. String of routers network configuration

Figure 5.4. Split router network configuration

The third and last network configuration is the split router network configuration (Fig-

ure 5.4). In this configuration the test PC is attached to the first router. Two other routers

are connected to the first router on different ports. Two endpoints are connected to each of

the three routers. This network configuration tests the effects of a diverging path in router

connections.

91

Figure 5.5. Test network setup

5.4 Test Parameters

Each endpoint is characterized by running a series of individual tests on the network.

Three tests are conducted by sending 100, 500, and 1000 byte messages at a data rate of

10 hertz and collecting 5000 messages. Each of these three tests is run on a single, double,

and triple router configuration (Figure 5.6). These tests serve as a measure of optimal

performance.

The effect of the network topology is measure by using the all the endpoints in the

configurations given in section 5.3. First all endpoints produce the same size of message,

again using the 100, 500, and 1000 byte messages. Finally, during the complete network

tests, two endpoints produce 100 byte messages, two endpoints produce 500 byte messages,

and two endpoints produce 1000 byte messages. These assignments are then rotated among

92

Figure 5.6. Characterizing each endpoint in each configuration

the endpoints to test the message size production at each location in the network (Figure

5.7). All messages are sent using a 10 hertz production rate and sample sizes of 5000

messages are collected.

5.5 Test Procedure and Data Collection

After a network is powered on and each application is started and configured, the net-

work is configured by entering the test parameters into the graphical test SPA application.

After the test is then started, the TestAgent application has an idle period where it ignores

all incoming messages. After it reaches the end of its idle period it starts to record data.

This is done to allow the SPA network time to get up to speed in its data production. Data

is collected for a fixed number of messages and then the test agent unsubscribes from the

endpoints and alerts the graphical test SPA application that it is done collecting data. The

93

Figure 5.7. Complete network test message size rotations

graphical application then requests all the data from the TestAgent. After receiving all the

test data, the graphical test application post processes the data. All of the test metrics are

calculated and graphs are generated. The test was designed to run this way so that the

graphical test application would not interfere with the network while the test was running.

Only the endpoints and the test agent participate during the network test. A sequence

diagram of the test procedures can be see in Figure 5.8.

94

Graphical Test
Application

Test
Agent

Endpoints

 Set Data Rate & Size

Begin Test

Subscribe

Data

Data

.

.

.

Request Test Data

Test Complete
Unsubscribe

Test Data

Figure 5.8. Test procedure sequence

95

CHAPTER 6

RESULTS

6.1 Introduction

It is not the intention of this dissertation to characterize and measure the SPA net-

work performance, however, some data was collected to demonstrate that the network is

sufficiently performant for use on a spacecraft. This chapter presents the results from the

SSM implementation, as described in Chapter 4, using the experimental setup detailed in

Chapter 5. It has been found that message latency is dependent on three factors, ordered

from greatest to smallest impact:

1. message size

2. the number of endpoints and their data production

3. network topology

A selection of the collected data is presented and discussed, and the comprehensive set

of data is available in Appendix C.

6.2 Measured Performance

In the tests that ran with all the endpoints it was found that a 100 byte message has

a latency of 4.5 milliseconds and a jitter of 100 microseconds. A 500 byte message has a

latency of 13.06 milliseconds and a jitter of 100 microseconds. A 1000 byte message has a

latency of 24.22 milliseconds and a jitter of 100 microseconds. The packet loss percentage

during the tests was zero.

96

Figure 6.1. All 100 byte message data points collected from endpoint 1

Figure 6.2. All 500 byte message data points collected from endpoint 1

97

Figure 6.3. All 1000 byte message data points collected from endpoint 1

6.3 Selected Data and Aggregation

Figures 6.1, 6.2, and 6.3 represent the aggregation of all the 100, 500, and 1000 byte

message latency data collected from endpoint 1. These three graphs provide a summary of

the findings from the experiments with each test represented in a different color. It is to be

noted in Figure 6.1, that the majority of the 100 byte message latencies is just below the

4.5 millisecond mark. The message latencies recorded around 5 milliseconds and above are

from the network experiments with other endpoints sending 500 and 1000 byte messages.

The increased latency caused by the other network traffic has a greater impact in the 500

and 1000 byte aggregated latency scatter plots shown in Figures 6.2 and 6.3.

It can be seen that the majority of message latencies are statistically equal to the data

collected during the original characterization of the endpoint (see Section 5.4). The bands

that are clearly outside the normal distribution are collected from the tests with all of the

endpoints connected to the network. Those that have the most delay are from the tests

where the endpoints in the network are producing messages with a size of 1000 bytes. This

98

causes the longest wait for the network links to become available.

6.4 Conclusion

According to the data that has been collected, it has been found that message latency

is dependent on three factors, ordered from greatest to least impact:

1. message size

2. the number of endpoints and their data production

3. network topology

In all of the experiments the effects of factors 1 and 2 are apparent, however, factor 3,

the effect of the network topology seems so insignificant that there is little evidence of it.

As for the effect of message size, it is logical that longer messages take longer to send. It is

also logical that the number of endpoints on the network cause increased message latency

due to higher wait times for network links to become available. As for the lack of evidence

of the delay caused by increasing the complexity of the network topology, it is hypothesized

that this effect is minimal due to the worm hole nature of SpaceWire routers. Essentially,

once a link is established, the only added delay is that of the propagation of an electron on

the added length of physical wire. High precision equipment would be required to measure

these effects and determine the correctness of this hypothesis.

99

CHAPTER 7

CONCLUSIONS

7.1 Introduction

The research and work presented in this dissertation provides the basis for a complete

self-configuring heterogeneous network suitable for spaceflight. The SPA network model

presented here has been demonstrated in a working implementation called the SPA Ser-

vices Manager (SSM). While the SSM is a working implementation there are still many

improvements that can be made to the SPA network. As the concepts and designs are

further developed, this dissertation provides a strong model to guide the evolution of the

SPA network.

7.2 Contributions

I set out to create a SPA network model and a transport agnostic networking infras-

tructure that does not place the burden of routing on the network endpoints. These two

goals have been met by the SPA network model and the design of the data link and network

layers. The complete SPA network stack as presented in Chapter 3 has been implemented

in a real world software package called the SPA Services Manager (SSM). The SSM is a

flight ready, ISO-9001 certified implementation of the research done in this dissertation.

Specifically, the research contributions of this dissertation include:

• Presentation of the SPA network model, enabling future development to fit properly

within the rest of the SPA network. This is one of the first instances of the OSI model

being applied to a spacecraft system.

• Design of the data link and network layers, which do not place the burden of routing

on the network endpoints.

100

• The realization that the collection of software application running on a processor

substantiate a new SPA subnet type, SPA-Local.

• Definition of a new query syntax for xTEDS queries to the Lookup Service.

• The flight ready implementation of this research, the SSM.

• A test platform for measuring SPA network performance.

7.3 Future Work

The research presented in this dissertation presents several opportunities for further

study to increase the scalability and robustness of the network. Further study is also merited

on the performance and characterization of the SPA network. Other research topics could

include:

• Handling dynamic discovery and topology mapping of a SpaceWire network with loops

• Fault tolerance and fail over of core network components including subnet mangers

and the Lookup Service

• Implementation and characterization of the SPA-1 and SPA-U subnets

• Further characterization of the SPA-Local and SPA-SpaceWire

101

REFERENCES

[1] Omg brings standardization to satellite operations, Retrieved September 1999. http:

//www.spacedaily.com/news/software-99b.html.

[2] Official I2C Specification. NXP Semiconductors, June 2007. Rev. 03.

[3] SpaceWire - ECSS-E-ST-50-12C Standard. European Cooperation on Space Stan-

dardization, July 2008. Rev. C.

[4] Driving down mission costs - new flight software package delivered to lunar mission,

Retrieved January 2010. http://gsfctechnology.gsfc.nasa.gov/MissionCost.html.

[5] Ssm baseline requirements specification. APT Program, October 2010.

[6] Space Plug-and-Play Architecture Standard - Local Subnet Adaptation. AIAA, Febru-

ary 2011. Draft.

[7] Space Plug-and-Play Architecture Standard - Logical Interface. AIAA, February 2011.

Draft.

[8] Space Plug-and-Play Architecture Standard - Networking. AIAA, February 2011.

Draft.

[9] Space Plug-and-Play Architecture Standard - Ontology. AIAA, February 2011. Draft.

[10] Space Plug-and-Play Architecture Standard - SpaceWire Subnet Adaptation. AIAA,

February 2011. Draft.

[11] Ssm software configuration managment plan. Space Dynamics Laboratory, April 2011.

Document Number: SDL/11-235.

http://www.spacedaily.com/news/software-99b.html
http://www.spacedaily.com/news/software-99b.html
http://gsfctechnology.gsfc.nasa.gov/MissionCost.html

102

[12] Ssm software design description. Space Dynamics Laboratory, April 2011. Document

Number: SDL/11-238.

[13] Ssm software development plan. Space Dynamics Laboratory, November 2011. Doc-

ument Number: SDL/11-234.

[14] Ssm software quality assurance plan. Space Dynamics Laboratory, April 2011. Doc-

ument Number: SDL/11-236.

[15] Ssm software test plan. Space Dynamics Laboratory, April 2011. Document Number:

SDL/11-237.

[16] Universal Serial Bus Revision 3.0 Specification. USB-IF, Inc., June 2011. Revision

1.0.

[17] Code review tool codecollaborator, Retrieved July 2012. http://smartbear.com/

products/software-development/code-review/code-review-tools.

[18] Cppcheck - a tool for static c/c++ code analysis, Retrieved July 2012. http:

//cppcheck.sourceforge.net/.

[19] Doxygen, Retrieved July 2012. http://www.stack.nl/∼dimitri/doxygen/.

[20] googletest - google c++ testing framework, Retrieved July 2012. http://code.google.

com/p/googletest/.

[21] Modas: Modular avionics system. Space Dynamics Laboratory, Retrieved August

2012. http://sdl.usu.edu/downloads/modas.pdf.

[22] Overview - redmine, Retrieved July 2012. http://www.redmine.org/.

[23] Pnpsat-1, Retrieved May 2012. http://en.wikipedia.org/wiki/PnPSat-1.

[24] Redmine. Space Dynamics Laboratory, Retrieved August 2012. https://pnpsoftware.

sdl.usu.edu/redmine.

http://smartbear.com/products/software-development/code-review/code-review-tools
http://smartbear.com/products/software-development/code-review/code-review-tools
http://cppcheck.sourceforge.net/
http://cppcheck.sourceforge.net/
http://www.stack.nl/~dimitri/doxygen/
http://code.google.com/p/googletest/
http://code.google.com/p/googletest/
http://sdl.usu.edu/downloads/modas.pdf
http://www.redmine.org/
http://en.wikipedia.org/wiki/PnPSat-1
https://pnpsoftware.sdl.usu.edu/redmine
https://pnpsoftware.sdl.usu.edu/redmine

103

[25] Test driven development, Retrieved June 2012. http://en.wikipedia.org/wiki/

Test-driven-development.

[26] Valgrind home, Retrieved July 2012. http://valgrind.org/.

[27] Welcome to jenkins ci!, Retrieved July 2012. http://jenkins-ci.org/.

[28] Xteds schema definition, Retrieved April 2012. https://pnpsoftware.sdl.usu.edu/

redmine/projects/xtedsschema.

[29] xunit, Retrieved September 2012. http://en.wikipedia.org/wiki/XUnit.

[30] Bajracharya, M., Maimone, M., and Helmick, D. Autonomy for mars rovers: Past,

present, and future. Computer 41, 12 (December 2008), 44–50.

[31] Bartlett, R. O. Nasa standard multimission modular spacecraft for future space explo-

ration. In 16th American Astronautical Society and Deutsche Gesellschaft fuer Luft-

und Raumfahrt, Goddard Memorial Symposium (Washington, DC, March 1978).

[32] Beck, K., and Andres, C. Extreme Programming Explained: Embrace Change, 2nd ed.

Addison-Wesley Professional, 2004.

[33] Berger, R., Burcin, L., Hutcheson, D., Koehler, J., Lassa, M., Milliser, M., Moser,

D., Stanley, D., Zeger, R., Blalock, B., and Hale, M. The rad6000mc system-on-

chip microcontroller for spacecraft avionics and instrument control. In Aerospace

Conference, 2008 IEEE (March 2008), 1–14.

[34] Borky, J., Singaraju, B., and Stevens, K. An advanced spacecraft avionics architec-

ture. In Aerospace Applications Conference Proceedings, 1996 IEEE (February 1996),

227–242.

[35] Boyce, L., Meyers, G., Rigsbee, E., Branch, W., Shaw, J., and Poole, D. Plug-and-

play integration through space object standardization. In International Institue of

Informatics and Systemics Conference (Orlando, FL, August 1999).

http://en.wikipedia.org/wiki/Test-driven-development
http://en.wikipedia.org/wiki/Test-driven-development
http://valgrind.org/
http://jenkins-ci.org/
https://pnpsoftware.sdl.usu.edu/redmine/projects/xtedsschema
https://pnpsoftware.sdl.usu.edu/redmine/projects/xtedsschema
http://en.wikipedia.org/wiki/XUnit

104

[36] Bruhn, F., Lindegren, R., Lyke, J., Henderson, B., Rosengren-Calixte, J., and Nor-

denberg, R. International harmonization of plug-and-play technology for modular

and reconfigurable rapid response nanosatellites. In European Space Agency Small

Satellite Systems and Services (Funchal, Madeira, Portugal, June 2010), ESA.

[37] Bruhn, F., Selin, P., Kalnins, I., Lyke, J., Rosengren-Calixte, J., and Nordenberg, R.

Quadsat/pnp: A space-plug-and-play architecture (spa) compliant nanosatellite. In

AIAA Infotech@Aerospace Conference (St. Louis, MO, March 2011), AIAA.

[38] Caffrey, R., Shaw, H., and Wagner, L. Developing plug-and-play spacecraft systems:

Nasa goddard space flight center’s (gsfc) essential services node (esn). In Digital

Avionics Systems Conference, 1997. 16th DASC., AIAA/IEEE (October 1997), vol. 1,

2.1–28–35.

[39] Cannon, S. Responsive space plug-and-play with the satellite data model. In AIAA

Infotech@Aerospace Conference (Rohnert Park, CA, May 2007), AIAA.

[40] Cannon, S. R., Goodsell, K., Rice, A., Lyke, J., and Watson, D. A self-configuring

avionic network architecture. In 3rd International Conference on Communications in

Computing (June 2002).

[41] Casas, N., and Estvez, C. Asynchronous messaging as backbone for the mcs. In

12th International Conference on Space Operations (Stockholm, Sweden, June 2012),

SpaceOps.

[42] CCSDS. Spacecraft onboard interface services. Tech. Rep., CCSDS, June 2007.

[43] Center, K. Developing the process tools and software architecture for the pnpsat

initiative. In Aerospace Conference, 2008 IEEE (March 2008), 1–8.

[44] Center, K., and Fronterhouse, D. Autonomous pnp flight software. In 7th Responsive

Space Conference (Los Angeles, CA, April 2009), AIAA.

[45] Center, K., Fronterhouse, D., and Martin, M. The software strategy for spa plug-and-

play spacecraft. In Aerospace Conference, 2010 IEEE (March 2010), 1–11.

105

[46] Chacon, S. Pro Git. Creative Commons Attribution Non Commercial Share Alike 3.0

license, July 2009. http://git-scm.com/book.

[47] Christensen, J., Cannon, S., and Hansen, B. Automatic software generation of asim

program code from an xteds. In AIAA Infotech@Aerospace Conference (Atlanta, GA,

April 2010), AIAA.

[48] Christensen, J., Cannon, S., Hansen, B., and Lyke, J. Automatic generation of sdm

application source code from xteds. In 24th Annual AIAA/USU Conference on Small

Satellites (Logan, UT, August 2010), AIAA.

[49] Christensen, J., Hansen, B., and Cannon, S. Spa network management. In

ReSpace/MAPLD 2010 Conference (Albuquerque, NM, November 2010), COSMIAC.

[50] Christensen, J. H., Anderson, D. B., Greenman, M. E., and Hansen, B. D. Scalable

network approach for the space plug-and-play architecture. In Aerospace Conference,

2012 IEEE (March 2012), 1–10.

[51] Collins, J. T., Hansen, L. J., and Pollack, J. Self-configuring network for launch vehicle

and satellite avionics. In Proceedings of the 28th Annual GOMACTech Conference

(Tampa, FL, March 2003).

[52] Cook, B., and Walker, C. Spacewire plug-and-play: An early implementation and

lessons learned. In Proceedings of the 2007 AIAA Infotech Conference (Rohnert Park,

CA, May 2007).

[53] Cook, B. M., and Walker, P. H. Spacewire and ieee 1355 revisited. In International

Spacewire Conference (September 2007).

[54] de Selding, P. B. Software glitch blamed for turning satellite

into space zombie, Retrieved January 2011. http://www.space.com/

10622-electrostatic-discharge-zombie-satellite.html.

[55] Dvorak, D. L. Nasa study on flight software complexity. Final Report, NASA, March

2009.

http://git-scm.com/book
http://www.space.com/10622-electrostatic-discharge-zombie-satellite.html
http://www.space.com/10622-electrostatic-discharge-zombie-satellite.html

106

[56] ECSS. ECSS-E-50-12A SpaceWire - Links, nodes, routers and networks. ECSS,

January 2003.

[57] Falkenhayn, E. J. Multimission modular spacecraft. In Space Programs and Tech-

nologies Conference (Houston, TX, June 1988), AIAA.

[58] Ferrandiz, T., Frances, F., and Fraboul, C. Modeling spacewire networks with network

calculus. In Proceedings of the 1st International Workshop on Worst-Case Traversal

Time (New York, NY, 2011), WCTT ’11, ACM, 51–57.

[59] Francis, N., Collier, P., and Lyke, J. Optical networking for aerospace systems pro-

visioned through plug-and-play avionics. In AIAA Infotech@Aerospace Conference

(Atlanta, GA, April 2010), AIAA.

[60] Fronterhouse, D., Center, K., and Preble, J. Building spa pnp satellites. In 7th

Responsive Space Conference (Los Angeles, CA, April 2009), AIAA.

[61] Fronterhouse, D., Center, K., Strunce, B., Mann, T., and Dipalma, J. Pnpsat-2 spa

technology testbed initial results and development status. In Aerospace Conference,

2010 IEEE (March 2010), 1–12.

[62] Fronterhouse, D., and Lyke, J. Plug-and-play satellite (pnpsat). In 1st International

SpaceWire Conference (Dundee, Scotland, September 2007), Space Technology Cen-

tre, University of Dundee.

[63] Fronterhouse, D., Lyke, J., and Achramowicz, S. Plug-and-play satellite. In AIAA

Infotech@Aerospace Conference (Rohnert Park, CA, May 2007), AIAA.

[64] Glass, B. J., Cannon, H., Christa, S., Huffman, S., and Johnson, J. Executive modular

control of heterogeneous spacecraft components and agents. In 57th International

Astronautical Congress (Valencia, Spain, October 2006), IAF.

[65] Graven, P., Kolcio, K., Plam, Y., and Hansen, L. Implementation of a plug-and-play

attitude determination and control system on pnpsat. In Aerospace Conference, 2009

IEEE (March 2009), 1–13.

107

[66] Group, O. M. Corba component model 4.0 specification. Specification, Object Man-

agement Group, April 2006.

[67] Hammett, R. Networking intelligent components to create intelligent spacecraft. In

Aerospace Conference, 2001, IEEE Proceedings, (2001), vol. 5, 2209–2215.

[68] Henderson, B., and Lyke, J. The science and technology of responsive space and its

implications on risk. High Frontier Journal 6, 3 (May 2010), 14–17.

[69] Hicks, M., Enoch, M., and Capots, L. Hexpak a flexible, scalable architecture for

responsive spacecraft. In 3rd Responsive Space Conference, 2005 AIAA (Los Angeles,

CA, April 2005), AIAA, responsivespace.com.

[70] IEEE. IEEE Standard 830-1993: IEEE Recommended Practice for Software Require-

ments Specifications. IEEE, 1994.

[71] IEEE. IEEE Standard 1355-1995: IEEE Standard for Heterogeneous Interconnect.

IEEE, 1995.

[72] IEEE. IEEE Standard 1451.2-1997 IEEE Standard for a Smart Transducer Interface

for Sensors and Actuators-Transducer to Microprocessor Communication Protocols

and Transducer Electronic Data Sheet (TEDS) Formats. IEEE, 1997.

[73] IEEE. IEEE Standard 1016-1998: IEEE Recommended Practice for Software Design

Descriptions. IEEE, 1998.

[74] ISO/IEC 7498-1:1994(E). Information technology – Open Systems Interconnection –

Basic Reference Model: The Basic Model. ISO, Geneva, Switzerland, 2005.

[75] Jacobson, Z., Rawashdeh, S., and Lumpp, J. A spa-1 enabled plug-and-play cubelab

for iss payloads. In AIAA Infotech@Aerospace Conference (Garden Grove, CA, June

2012), AIAA.

108

[76] Jordan, L., and McDermott, S. Aeroastros smartbus: A low-cost modular approach

enabling responsive space missions. In 3rd Responsive Space Conference, 2005 AIAA

(April 2005), AIAA, responsivespace.com.

[77] Kahraman, M. O. A constraint based approach for building operationally responsive

satellites. Master’s thesis, Air Force Institute of Technology, Wright-Patterson AFB,

OH, September 2008.

[78] Kalicinski, M. Rapidxml, Retrieved August 2012. http://rapidxml.sourceforge.net/.

[79] Kief, C., Hansen, B., Mee, J., and Christensen, J. Cubeflow: Training for a new space

community. In AIAA Infotech@Aerospace Conference (Atlanta, GA, April 2010),

AIAA.

[80] Kief, C., and Suddarth, S. Cubeflow, spa and the revolution of small satellites. Cal

Poly Workshop, April 2010.

[81] Kief, C., and Zufelt, B. Trailblazer, spa and radiation testing overview. In 2011

Summer CubeSat Developers Workshop (Logan, UT, August 2011), AIAA.

[82] Kief, C. J., Zufelt, B., Cannon, S. R., Lyke, J., and Mee, J. K. The advent of the pnp

cube satellite. In Aerospace Conference, 2012 IEEE (March 2012), 1–5.

[83] Kief, C. J., Zufelt, B. K., Christensen, J. H., and Mee, J. K. Trailblazer: Proof

of concept cubesat mission for spa-1. In AIAA Infotech@Aerospace Conference (St.

Louis, MO, March 2011), AIAA.

[84] Konstantinou, A., Florissi, D., and Yemini, Y. Towards self-configuring networks.

In DARPA Active NEtworks Conference and Exposition, 2002. Proceedings (2002),

143–156.

[85] Kuwahara, T., Yoshida, K., Sakamoto, Y., Tomioka, Y., Fukuda, K., Fukuyama, M.,

and Shibuya, Y. International scientific micro-satellite risesat based on space plug-

and-play avionics. In 26th Annual AIAA/USU Conference on Small Satellites (Logan,

UT, August 2012), AIAA.

http://rapidxml.sourceforge.net/

109

[86] Lanza, D., Lyke, J., Zetocha, P., Fronterhouse, D., and Melanson, D. Responsive

space through adaptive avionics. In 2nd Responsive Space Conference (Los Angeles,

CA, April 2004), AIAA.

[87] Lanza, D., Vick, R., and Lyke, J. The space plug-and-play avionics common data dic-

tionary – constructing the language of spa. In AIAA Infotech@Aerospace Conference

(Atlanta, GA, April 2010), AIAA.

[88] Larson, W. J., and Wertz, J. R., Eds. Space Mission Analysis and Design, 8th ed.

Space Technology Series. Microcosm Press and Springer, 2006.

[89] Leone, D. Nasa: James webb telescope expected to cost $8.7 billion, Retrieved August

2011. http://www.spacenews.com/civil/110826-jwst-cost-billion.html.

[90] Lyke, J. Reconfigurable systems: A generalization of reconfigurable computational

strategies for space systems. In Aerospace Conference Proceedings, 2002. IEEE (2002),

vol. 4, 4–1935 – 4–1950.

[91] Lyke, J. Space-plug-and-play avionics (spa): A three-year progress report. In AIAA

Infotech@Aerospace Conference (Rohnert Park, CA, May 2007), AIAA.

[92] Lyke, J. Plug-and-play as an enabler for future systems. In SPACE 2010 Conference

and Exposition (Anaheim, CA, August 2010), AIAA.

[93] Lyke, J. Plug-and-play satellites. Spectrum, IEEE 49, 8 (August 2012), 36–42.

[94] Lyke, J., Cannon, S., Fronterhouse, D., Lanza, D., and Byers, T. A plug-and-play sys-

tem for spacecraft components based on the usb standard. In 19th Annual AIAA/USU

Conference on Small Satellites (Logan, UT, August 2005), AIAA.

[95] Lyke, J., Christensen, J., Cannon, S., and et al. A plug-and-play approach based on

the i2c standard. In 24th Annual AIAA/USU Conference on Small Satellites (Logan,

UT, August 2010), AIAA.

http://www.spacenews.com/civil/110826-jwst-cost-billion.html

110

[96] Lyke, J., Fronterhouse, D., Cannon, S. R., Lanza, D., and Byers, T. Space plug-and-

play avionics. In 3rd Responsive Space Conference (Los Angeles, CA, April 2005),

AIAA.

[97] Lyke, J., Fronterhouse, D., Lanza, D., and Byers, T. A plug-and-play concept for

spacecraft. In 8th MAPLD International Conference (Washington, DC, September

2005), NASA.

[98] Lyke, J., Sulham, C., and Cannon, S. Strategy for protection architectures based on

scalable, self-organizing avionics approaches. In IEEE Core Technologies for Space

Systems Conference (November 2001).

[99] Lynaugh, K., Dossey, S., Davis, M., Middlestead, R., Lyke, J., Crane, J., and Roman,

C. Space plug-and-play avionics application programmers interface for radio devices.

In AIAA Infotech@Aerospace Conference (St. Louis, MO, March 2011), AIAA.

[100] Marketos, L. Leveraging the space plug-and-play avionics (spa) standard to en-

able constellation-level collaborative autonomy. In Advanced Maui Optical and Space

Surveillance Technologies Conference (Wailea, Maui, HI, September 2009).

[101] Martin, M., Fronterhouse, D., and Lyke, J. The implementation of a plug-and-play

satellite bus. In 22nd Annual AIAA/USU Conference on Small Satellites (Logan,

UT, August 2008), AIAA.

[102] Martin, M., Summers, J., and Lyke, J. Afrl plug-and-play spacecraft avionics experi-

ment (sae). In Aerospace Conference, 2012 IEEE (March 2012), 1–6.

[103] McDermott, S. Astrologic: using xml in a spacecraft-focused client-server system. In

Aerospace Conference, 2006 IEEE (July 2006), 15.

[104] McDermott, S., and Goldstein, D. The bitsytm spacecraft kernel: reducing mission

cost with modular architecture and miniature technology. In Aerospace Conference

Proceedings, 2000 IEEE (2000), vol. 4, 1–6.

111

[105] McGuirk, P., Rakow, G., Kimmery, C., and Jaffe, P. Spacewire plug-and-play (pnp).

In Proceedings of the 2007 AIAA Infotech Conference (Rohnert Park, CA, May 2007).

[106] McGuirk, P., Rakow, G., Kimmery, C., Jaffe, P., Klar, R., and Bertrand, A. Spacewire

plug-and-play (pnp). In AIAA Infotech@Aerospace Conference (Rohnert Park, CA,

May 2007), AIAA.

[107] McGuirk, P. S., and Podva, D. R. Design of a low voltage applique sensor interface

module (lv asim). In AIAA Infotech@Aerospace Conference (St. Louis, MO, March

2011), AIAA.

[108] McNutt, C. J., Vick, R., Whiting, H., and Lyke, J. Modular nanosatellites plug-

and-play (pnp) cubesat. In 7th Responsive Space Conference (Los Angeles, CA, April

2009), AIAA.

[109] Messeri, L. R., and Richards, M. G. Standards in the space industry: Looking back,

looking forward. Managment and Organizational History 4, 3 (August 2009), 281–297.

[110] Montenegro, S., Dannemann, F., Dittrich, L., Vogel, B., Noyer, U., Gacnik, J., Han-

nibal, M., Richter, A., and Kster, F. (spacecraft bus controller) + (automotive ecu) /

2 = ultimate controller. In Proceedings from the Workshop on Software Engineering

(Paderborn, Germany, February 2010).

[111] Montenegro, S., Petrovic, V., and Schoof, G. Network centric systems for space

applications. In 2010 Second International Conference on Advances in Satellite and

Space Communications (SPACOMM) (June 2010), 146–150.

[112] Montenegro, S., Vogel, B., Petrovic, V., Schoof, G., Herrholz, A., and Gruttner, K.

Spacecraft area network (scan) for plug-and-play of devices. In Small Satellite Systems

and Services - The 4S Symposium 2010 (05 2010), ESA.

[113] Morphopoulos, T., Hansen, L. J., Pollack, J., Lyke, J., and Cannon, S. Plug-and-

play an enabling capability for responsive space missions. In 2nd Responsive Space

Conference (Los Angeles, CA, April 2004), AIAA.

112

[114] ORSOffice1. Pnpsat assembly, Retrieved June 2011. http://www.youtube.com/

watch?v=P1KgIpntSfU.

[115] Parkes, S. Spacewire for adaptive systems. In NASA/ESA Conference on Adaptive

Hardware and Systems (June 2008), 77–82.

[116] Parkes, S., and Armbruster, P. Spacewire: a spacecraft onboard network for real-time

communications. In Real Time Conference, 2005. 14th IEEE-NPSS (June 2005),

6–10.

[117] Parkes, S., and Armbruster, P. Spacewire: Spacecraft onboard data-handling network.

Acta Astronautica 66, 12 (2010), 88–95.

[118] Patel, J., Brinza, D. E., Tran, T. A., and Blaes, B. R. Plug-and-play environmental

monitoring spacecraft subsystem. Tech. Rep., Vol. 35, no. 3, pp. 30-32. NASA Jet

Propulsion Laboratory, Pasadena, CA, March 2011.

[119] Peti, P., Obermaisser, R., Elmenreich, W., and Losert, T. An architecture supporting

monitoring and configuration in real-time smart transducer networks. In Sensors,

2002. Proceedings of IEEE (2002), vol. 2, 1479–1484.

[120] Petrovic, V., Schoof, G., and Montenegro, S. Middleware switch asic implementa-

tion. In Electronics, Circuits and Systems (ICECS), 2011 18th IEEE International

Conference on (December 2011), 695–698.

[121] Pisacane, V. L., and Moore, R. C., Eds. Findamentals of Space Systems. Series in

Science and Engineering. John Hopkins University Applied Physics Laboratory, 1994.

[122] Pitter, T., and D’Errico, M. Multi-purpose modular plug-and-play architecture for

space systems: Design, integration and testing. Acta Astronautica 69, 78 (2011), 629

– 643.

[123] Puig-Suari, J., Turner, C., and Twiggs, R. J. Cubesat: The development and launch

support infrastructure for eighteen different satellite customers on one launch. In

http://www.youtube.com/watch?v=P1KgIpntSfU
http://www.youtube.com/watch?v=P1KgIpntSfU

113

15th Annual AIAA/USU Conference on Small Satellites (Logan, UT, August 2001),

AIAA.

[124] Raymond, E. S. The cathedral and the bazaar, Retrieved August 2002. http://www.

catb.org/∼esr/writings/cathedral-bazaar/cathedral-bazaar/index.html.

[125] Rogers, A., Jordan, L., McDermott, S., and Shoemaker, J. Scout: developing a

modular multimission spacecraft architecture for high-capability rapid access to space.

In Proceedings of the Society of Photo-Optical Instrumentation Engineers (Orlando,

FL, April 2004), vol. 5419, SPIE, SPIE.

[126] Romero, J., Bourdu, H., Lyke, J., Czajkowski, D., Collier, C., and Avery, K. Design

of an optical applique sensor interface module (o-asim). In AIAA Infotech@Aerospace

Conference (St. Louis, MO, March 2011), AIAA.

[127] Scott, J., Lyke, J., McGuirk, P., Shaw, M., and Fronterhouse, D. Applique sensor

interface module: An enabling technology for space plug-and-play systems. In 21st

Annual AIAA/USU Conference on Small Satellites (Logan, UT, August 2007), AIAA.

[128] Simpson, J. Afrl: ’plug-and-play’ concept could lead to sats being built in days. Inside

the Air Force, 19, 22, May 2008.

[129] Singer, J. Spacedev satellite chosen to ride spacex’s third falcon 1 rocket. Space News

(May 2008).

[130] Slane, F., and Hooke, A. Space plug-and-play avionics standards: Progress, problems

and a view of the future. In AIAA Infotech@Aerospace Conference (Rohnert Park,

CA, May 2007), AIAA.

[131] Some, R., Neff, J., and Lyke, J. Lessons learned in building a spacecraft xml taxonomy

and ontology. In AIAA Infotech@Aerospace Conference (Rohnert Park, CA, May

2007), AIAA.

[132] Spolsky, J. The joel test: 12 steps to better code, Retrieved August 2000. http:

//www.joelonsoftware.com/articles/fog0000000043.html.

http://www.catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/index.html
http://www.catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/index.html
http://www.joelonsoftware.com/articles/fog0000000043.html
http://www.joelonsoftware.com/articles/fog0000000043.html

114

[133] Stevens, W. R. UNIX Network Programming, Networking APIs: Sockets, 2nd ed.,

vol. 1. Prentice Hall PTR, January 1998.

[134] Stryker, A., and Jacques, D. Plug-and-play satellite: A modularity assessment. Jour-

nal of Spacecraft and Rockets 49, 1 (January 2012), 91–100.

[135] Summers, J. Plug-and-play testbed to enable responsive space missions. In Aerospace

Conference, 2005 IEEE (March 2005), 557–563.

[136] Sundberg, K., Cannon, S., Hospodarsky, T., and Fronterhouse, D. The satellite data

model. In International Conference on Embedded Systems and Applications (Las

Vegas, NV, June 2006).

[137] Sundberg, K., Cannon, S., Hospodarsky, T., Fronterhouse, D., and Lyke, J. A satel-

lite data model for the afrl responsive space initiative. In 20th Annual AIAA/USU

Conference on Small Satellites (Logan, UT, August 2006), AIAA.

[138] Suri, D., and Howell, A. The adaptive network architecture for formations of hetero-

geneous spacecraft. In The Fifth Annual NASA Earth Science Technology Conference

(College Park, MA, June 2005).

[139] Suri, D., Howell, A., Shankaran, N., Kinnebrew, J. S., Otte, W. R., Schmidt, D. C.,

and Biswas, G. Onboard processing using the adaptive network architecture. In The

Sixth Annual NASA Earth Science Technology Conference (College Park, MA, June

2006).

[140] Tribble, A. C. The Space Environment: Implications for Spacecraft Design. Princeton

University Press, 1995.

[141] VanderLeest, S., and Buter, A. Escape the waterfall: Agile for aerospace. In Digital

Avionics Systems Conference, 2009. DASC ’09. IEEE/AIAA 28th (October 2009),

6.D.3–1–6.D.3–16.

[142] Vick, R., and Lyke, J. Development of a low power space plug- and- play avionics

protocol. In AIAA Infotech@Aerospace Conference (Atlanta, GA, April 2010), AIAA.

115

[143] Vick, R. W. Challenges in designing reusable flight software modules. In AIAA

Infotech@Aerospace Conference (St. Louis, MO, March 2011), AIAA.

[144] Walker, W. L., Manning, W. J., McFarland, C. D., and Lyke, J. Performance char-

acterization of a space plug-and-play avionics applique sensor interface module. In

AIAA Infotech@Aerospace Conference (St. Louis, MO, March 2011), AIAA.

[145] Webb, E. Ethernet for spaceflight applications. In Aerospace Conference Proceedings,

2002. IEEE (2002), vol. 4, 4–1927 – 4–1934.

[146] Wegner, P. M., and Kiziah, R. R. Pulling the pieces together at afrl. In 4th Responsive

Space Conference (Los Angeles, CA, April 2006), AIAA.

[147] Williams, L., Kessler, R., Cunningham, W., and Jeffries, R. Strengthening the case

for pair programming. Software, IEEE 17, 4 (jul/aug 2000), 19–25.

[148] Wilmot, J. A core flight software system. In Hardware/Software Codesign and System

Synthesis, 2005. CODES+ISSS ’05. Third IEEE/ACM/IFIP International Confer-

ence on (September 2005), 13–14.

[149] Wilmot, J. A reusable and adaptable software architecture for embedded space flight

system: The core flight software system (cfs). In International Conference on Hard-

ware/Software Codesign and System Synthesis (Jersey City, NJ, September 2005),

NASA.

[150] Wilmot, J. A core plug-and-play architecture for reusable flight software systems. In

Second IEEE International Conference on Space Mission Challenges for Information

Technology (Pasadena, CA, July 2006), 447–452.

[151] Wilmot, J. Implications of responsive space on the flight software architecture. In 4th

Responsive Space Conference, 2006 AIAA (April 2006), AIAA, responsivespace.com.

116

APPENDICES

117

Appendix A

First Recorded Instance of the SPA Network

The text below is the first record of the SPA network as it is presented in this disserta-

tion in Chapter 3. The following is taken from the online discussion at https://pnpsoftware.

sdl.usu.edu/redmine/issues/163 (see entry #11).

– July 08, 2010 at 3:51 PM –

Updated by Jacob Christensen almost 2 years ago

USU Logical Addressing Proposal

Description:

The networking is handled by the SPA Managers. Each SPA subnet, (SPA-1, SPA-U, SPA-

S, SPA-O, etc.) has a SPA Manager. The SPA Managers map their respective subnets,

request logical addresses from an addressing authority, and assign them to the endpoints.

Each SPA Manager knows how to talk to each other and the endpoints in their subnet.

When routing a message the SPA Manager takes the message and encapsulates it in a

packet that is native to their subnet. Simple routing tables are mapped during configura-

tion. These tables are mostly static and require very little updating.

Address format:

SPA Version - 1 byte

Message Opcode - 1 byte

QoS - 1 byte

Source - 2 bytes (Logical ID)

Destination - 2 bytes (Logical ID)

Length - 2 bytes

CRC - 2 bytes

https://pnpsoftware.sdl.usu.edu/redmine/issues/163
https://pnpsoftware.sdl.usu.edu/redmine/issues/163

118

Router Behavior:

Routers do not require any special routing tables. The router does not look at the address

fields in the SPA header. On SpW, path routing is used. Ethernet uses IP routing. Each

SPA frame is encapsulated in a frame native to the transport medium it is traversing. The

routers make no changes to the SPA frame. Nothing needs to be updated in the router

during reconfiguration.

Endpoint behavior:

The endpoint only needs the 2 byte destination address to send a message to an endpoint.

Because we are using logical addressing, in the event of reconfiguration the logical addresses

stay the same and only the physical addresses would change. This is transparent to the

endpoints. (In other words, no change on reconfiguration.)

The pros of your system as you see it.

• Very flexible approach that abstracts the networking details away from the endpoints.

No custom hardware requirements.

• COTS networking components can route encapsulated SPA messages.

• SPA Message is intact/unmodified from source to destination

• Scales to new SPA subnets and network sizes.

• Ability to nest subnets.

• Works for all SPA subnet types.

• Works for future SPA subnet types.

The cons of your system as you see it.

• Requires a centralized addressing authority in the system (although redundancy is an

option).

• Quick table lookup required at each hop in the network.

119

Appendix B

Message Definitions

B.1 Introduction

This appendix provides a complete detailed listing of the SPA Network messages. This

appendix is given as a reference. Many of the message tables defined in this appendix

are referenced throughout this dissertation. It is important to list these to allow for easy

reproduction of the work.

B.2 SPA-L Messages

Message Name LocalHeader

Message Opcode n/a

Summary Description Standard header included on every Local message

Field Name Type Units Description

SourcePort UInt16 n/a Port of the sending component

Length UInt16 n/a Length of the message payload

Opcode UInt8 n/a Unique opcode of the message

Table B.1. Message definition for the LocalHeader message

120

Message Name LocalHello

Message Opcode 0x20

Summary Description Sent by a component to the SM-L in order to alert the SM-L

of its presence

Field Name Type Units Description

CUUID UInt128 UUID Universally Unique Id of the SPA com-

ponent

ComponentType UInt8 n/a The type of SPA component

Table B.2. Message definition for the LocalHello message

Message Name LocalAck

Message Opcode 0x21

Summary Description Sent in order to acknowledge a message

Field Name Type Units Description

Status UInt8 n/a The status of the acknowledgement

Table B.3. Message definition for the LocalAck message

Message Name LocalRouteRequest

Message Opcode 0x23

Summary Description Sent by a component to the SM-L in order to request a direct

route to another component

Field Name Type Units Description

Logical Address UInt32 n/a Logical address for which the sender

desires a direct path

Table B.4. Message definition for the LocalRouteRequest message

121

Message Name LocalRoute

Message Opcode 0x24

Summary Description Sent by the SPA-L to a component in order to provide a di-

rect route from the component to another component with-

out having to go through the SM-L

Field Name Type Units Description

CUUID UInt128 UUID Universally Unique Id of the SPA com-

ponent

Logical Address UInt32 n/a Logical address of requested route

Port UInt16 n/a Port of the most direct route

ComponentType UInt8 n/a The type of SPA component

AckRequired UInt8 n/a Acknowledge required flag

Table B.5. Message definition for the LocalRoute message

122

B.3 SPA-1 Messages

Message Name OneArp

Message Opcode 0x30

Summary Description Sent by a SPA-1 components to discover if anyone is on the

given address

Field Name Type Units Description

CUUID UInt128 UUID Universally Unique Id of the SPA com-

ponent

Table B.6. Message definition for the OneArp message

Message Name OneHello

Message Opcode 0x31

Summary Description Sent by the SPA-1 subnet manager to discover SPA-1 com-

ponents

Field Name Type Units Description

CUUID UInt128 UUID Universally Unique Id of the SPA-1

subnet manager

Table B.7. Message definition for the OneHello message

Message Name OneAck

Message Opcode 0x32

Summary Description Sent in order to acknowledge a message

Field Name Type Units Description

CUUID UInt128 UUID Universally Unique Id of the SPA-1

component

Table B.8. Message definition for the OneAck message

123

B.4 SPA-U Messages

Message Name UsbHello

Message Opcode 0x90

Summary Description Sent by a SPA-U subnet manager to discover SPA-U com-

ponents

Field Name Type Units Description

CUUID UInt128 UUID Universally Unique Id of the SPA-U

subnet manager

Table B.9. Message definition for the UsbHello message

Message Name UsbAck

Message Opcode 0x91

Summary Description Sent in order to acknowledge a message

Field Name Type Units Description

CUUID UInt128 UUID Universally Unique Id of the SPA-U

component

Table B.10. Message definition for the UsbAck message

124

B.5 SPA-S Messages

Message Name SpwHeader

Message Opcode n/a

Summary Description SPA-S header

Field Name Type Units Description

Route UInt8 [] bytes SpaceWire route to an SpaceWire end-

point

Protocol ID UInt8 n/a SpaceWire protocol ID

Return Route UInt8 [] bytes Null terminated SpaceWire route to re-

turn to the sending endpoint from the

receiving endpoint

Forward Route UInt8 [] bytes Null terminated SpaceWire route from

the sending endpoint to the receiving

endpoint

MessageLength UInt16 bytes Number of bytes in the message

Opcode UInt8 n/a Unique opcode of the message

Table B.11. Message definition for the SpwHeader message

Message Name SpwRouterProbe

Message Opcode 0x6A

Summary Description SpaceWire Router Probe used to discover routers via reflec-

tion

Field Name Type Units Description

CUUID UInt128 UUID Universally Unique Id of the SPA-S

subnet manager that sent the message

Table B.12. Message definition for the SpwRouterProbe message

125

Message Name SpwEndpointPing

Message Opcode 0x6B

Summary Description SpaceWire Endpoint Ping used to discover SPA-S compo-

nents attached to a SpaceWire router

Field Name Type Units Description

CUUID UInt128 UUID Universally Unique Id of the SPA-S

subnet manager that sent the message

Table B.13. Message definition for the SpwEndpointPing message

Message Name SpwEndpointPingReply

Message Opcode 0x6C

Summary Description SpaceWire Endpoint Ping Reply returned to the SPA-S sub-

net manager by a SPA-S component in response to a Sp-

wEndpointPing

Field Name Type Units Description

CUUID UInt128 UUID Universally Unique Id of the SPA-S

subnet manager that sent the message

ComponentType UInt8 n/a Type of SPA component receiving ad-

dress

Table B.14. Message definition for the SpwEndpointPingReply message

126

Message Name SpwConfigureTopologyDiscovery

Message Opcode 0x6D

Summary Description Message used to configure the SPA-S subnet manager redis-

covery rate of the SPA-S subnet

Field Name Type Units Description

Period UInt32 seconds Period in seconds of the topology redis-

covery, 0 for immediate, and UINT32-

MAX for disabled

Table B.15. Message definition for the SpwConfigureTopologyDiscovery message

Message Name SpwRouteRequest

Message Opcode 0x6F

Summary Description Message used to request a route between two SPA logical

addresses

Field Name Type Units Description

FromLogicalAddress UInt32 n/a The logical address of the source com-

ponent

ToLogicalAddress UInt32 n/a The logical address of the destination

component

Table B.16. Message definition for the SpwRouteRequest message

127

Message Name SpwRoute

Message Opcode 0x69

Summary Description Message used to configure the SPA-S subnet manager redis-

covery rate of the SPA-S subnet

Field Name Type Units Description

CUUID UInt128 UUID Universally Unique Id for the SPA-S

destination component

LogicalAddress UInt32 n/a The logical address of the destination

component

ComponentType UInt8 n/a Type of SPA component receiving ad-

dress

PathLength UInt8 bytes Length of the SpaceWire route

PathRoute UInt8 [] bytes The SpaceWire route

Table B.17. Message definition for the SpwRoute message

128

B.6 SPA Messages

Message Name SpaHeader

Message Opcode n/a

Summary Description Standard header included on every SPA message

Field Name Type Units Description

Version UInt8 n/a SPA version number

Priority UInt8 n/a Message priority

Length UInt16 bytes Length of the message payload

Destination UInt32 n/a Destination logical address

Source UInt32 n/a Source logical address

Flags UInt16 n/a Special message flags

Opcode UInt8 n/a Unique opcode of the message

Extended Header Length UInt8 bytes Length of the extended headers

Table B.18. Message definition for the SpaHeader message

Message Name SpaAck

Message Opcode 0x41

Summary Description SPA message guaranteed delivery acknowledgement

Field Name Type Units Description

AckId UInt8 n/a Id to associate ack with original mes-

sage

Table B.19. Message definition for the SpaAck message

129

Message Name SpaXtedsRequest

Message Opcode 0x42

Summary Description Request xTEDS of a component

Field Name Type Units Description

CUUID UInt128 UUID Universally Unique Id of the SPA com-

ponent

XUUID UInt128 UUID Universally Unique Id of the xTEDS

Address UInt32 n/a Address of a component

DialogId UInt16 n/a Dialog identifier set by the requester

RequestType UInt16 n/a Indicator for which field to use in the

request

Table B.20. Message definition for the SpaXtedsRequest message

Message Name SpaXtedsReply

Message Opcode 0x43

Summary Description Response to an xTEDS request of a component

Field Name Type Units Description

XUUID UInt128 UUID Universally Unique Id of the xTEDS

Address UInt32 n/a Address of the component

DialogId UInt16 n/a Dialog identifier set by the requester

ReplyStatus UInt16 n/a Status code of the message

xTEDS String n/a xTEDS of the requested component

Table B.21. Message definition for the SpaXtedsReply message

130

Message Name SpaSubscriptionRequest

Message Opcode 0x46

Summary Description Request subscription services to retrieve system data

Field Name Type Units Description

ProducerAddress UInt32 n/a Address of the producer component

ConsumerAddress UInt32 n/a Address of the consumer component

ManagerAddress UInt32 n/a Address of the subscriptions manager

component

LeasePeriod UInt32 seconds Duration of the subscription, 0 = un-

limited

DialogId UInt16 n/a Dialog identifier set by the requester

DeliveryRateDivisor UInt16 n/a Subscribe to every nth message

InterfaceId UInt8 n/a xTEDS interface Id

MessageId UInt8 n/a xTEDS message Id

SubscriptionPriority UInt8 n/a subscription priority, 0=highest,

255=lowest

Type UInt8 n/a message type, subscription or unsub-

scription

Table B.22. Message definition for the SpaSubscriptionRequest message

131

Message Name SpaSubscriptionReply

Message Opcode 0x47

Summary Description Reply to SpaSubscriptionRequest message

Field Name Type Units Description

DialogId UInt16 n/a Dialog identifier set by the requester

ReplyType UInt8 n/a Indicates subscription acceptance,

deny, or cancellation

Table B.23. Message definition for the SpaSubscriptionReply message

Message Name SpaQueryRequest

Message Opcode 0x48

Summary Description Request information about currently registered providers

Field Name Type Units Description

DialogId UInt16 n/a Dialog identifier set by the requester

QueryType UInt8 n/a Bit mask for the type of request

Reserved UInt8 n/a Reserved byte

Query String n/a Null terminated XML formatted query

string

Table B.24. Message definition for the SpaQueryRequest message

132

Message Name SpaQueryReply

Message Opcode 0x49

Summary Description Response message to SPAQueryRequest message

Field Name Type Units Description

ProviderCuuid UInt128 UUID Component UUID of the message

provider

ProviderXuuid UInt128 UUID xTEDS UUID of the message provider

ProviderAddress UInt32 n/a Logical address of the message provider

DialogId UInt16 n/a Dialog identifier set by the requester

InterfaceId UInt8 n/a xTEDS interface Id

MessageId UInt8 n/a xTEDS message Id

MessageType UInt8 n/a Message type: Notification(0), Com-

mand(1), Request(2)

ReplyType UInt8 n/a Indicates registration or cancellation of

the query

VariableIdList n1 n/a Null terminated, comma separated list

of variable IDs

MessageDefinition n2 n/a Null-terminated format string of the

xTEDS message

XtedsSection n3 n/a Null terminated section of the xTEDS

message definition from the xTEDS

Table B.25. Message definition for the SpaQueryReply message

133

Message Name SpaRequestAddressBlock

Message Opcode 0x4c

Summary Description Request a block of logical addresses

Field Name Type Units Description

CUUID UInt128 UUID Universally Unique SPA Identifier of

requesting component

Table B.26. Message definition for the SpaRequestAddressBlock message

Message Name SpaAssignAddressBlock

Message Opcode 0x4d

Summary Description Assigns an address block to a Subnet Manager, response to

SpaRequestAddressBlock

Field Name Type Units Description

CUUID UInt128 UUID Component UUID of the destination

component

AddressBlock UInt32 n/a The base address of the address block

ResponseType UInt8 n/a Type of address response: valid (0) or

invalid (1)

Table B.27. Message definition for the SpaAssignAddressBlock message

134

Message Name SpaDistributeRoute

Message Opcode 0x72

Summary Description Advertises a route to a SPA component

Field Name Type Units Description

CUUID UInt128 UUID Universally Unique Id of the compo-

nent

Address UInt32 n/a Logical address

ComponentType UInt8 n/a Type of SPA component for which the

route is being advertised

Table B.28. Message definition for the SpaDistributeRoute message

Message Name SpaRequestLookupServiceProbe

Message Opcode 0x73

Summary Description SM-x request to Lookup Service to perform component

probe

Field Name Type Units Description

Address UInt32 n/a Logical address of the component to

probe

Table B.29. Message definition for the SpaRequestLookupServiceProbe message

135

Message Name SpaData

Message Opcode 0x74

Summary Description xTEDS level message for a Notification message

Field Name Type Units Description

DialogId UInt16 n/a Dialog identifier set by the requester

PayloadLength UInt16 bytes Length of the payload data

SequenceIndex UInt16 n/a The 1-indexed number of index of the

message within the sequence, the ’i’ in

’i’ of ’j’

SequenceCount UInt16 n/a The total number of messages within

the sequence, the ’j’ in ’i’ of ’j’

InterfaceId UInt8 n/a xTEDS interface Id

MessageId UInt8 n/a xTEDS message Id

Payload n n/a Message data payload

Table B.30. Message definition for the SpaData message

Message Name SpaServiceRequest

Message Opcode 0x75

Summary Description xTEDS level message for the CommandMsg portion of a

Request message

Field Name Type Units Description

DialogId UInt16 n/a Dialog identifier set by the requester

PayloadLength UInt16 bytes Length of the payload data

InterfaceId UInt8 n/a xTEDS interface Id

MessageId UInt8 n/a xTEDS message Id

Payload n n/a Message data payload

Table B.31. Message definition for the SpaServiceRequest message

136

Message Name SpaServiceReply

Message Opcode 0x76

Summary Description xTEDS level message for the DataReplyMsg portion of a

Request message

Field Name Type Units Description

DialogId UInt16 n/a Dialog identifier set by the requester

PayloadLength UInt16 bytes Length of the payload data

SequenceIndex UInt16 n/a The 1-indexed number of index of the

message within the sequence, the ’i’ in

’i’ of ’j’

SequenceCount UInt16 n/a The total number of messages within

the sequence, the ’j’ in ’i’ of ’j’

InterfaceId UInt8 n/a xTEDS interface Id

MessageId UInt8 n/a xTEDS message Id

Payload n n/a Message data payload

Table B.32. Message definition for the SpaServiceReply message

Message Name SpaProbeRequest

Message Opcode 0x78

Summary Description Probe a SPA component for identification

Field Name Type Units Description

DialogId UInt16 n/a Dialog identifier set by the requester

Table B.33. Message definition for the SpaProbeRequest message

137

Message Name SpaProbeReply

Message Opcode 0x79

Summary Description Probe response for a SPA component

Field Name Type Units Description

CUUID UInt128 UUID Universally Unique Id of the SPA com-

ponent

XUUID UInt128 UUID Universally Unique Id of the xTEDS

FaultIndicator UInt32 Bit field Indicates fault conditions

Uptime UInt32 seconds Seconds since power on

DialogId UInt16 n/a Dialog identifier set by the requester

Table B.34. Message definition for the SpaProbeReply message

Message Name SpaCommand

Message Opcode 0x7a

Summary Description xTEDS level message for a Command message

Field Name Type Units Description

PayloadLength UInt16 bytes Length of the payload data

InterfaceId UInt8 n/a xTEDS interface Id

MessageId UInt8 n/a xTEDS message Id

Payload n n/a Message data payload

Table B.35. Message definition for the SpaCommand message

138

Message Name SpaAssignAddress

Message Opcode 0x7b

Summary Description Sent to assign a logical address to a component

Field Name Type Units Description

CUUID UInt128 UUID Universally Unique Id of the SPA com-

ponent

Address UInt32 n/a The logical address being assigned

Table B.36. Message definition for the SpaAssignAddress message

139

Appendix C

Comprehensive Results

140

C.1 Endpoint Characterization

Endpoint 1

Figure C.1. Endpoint 1 - Summary of all three message sizes on one router

141

Figure C.2. Endpoint 1 - Summary of all three message sizes on two routers

Figure C.3. Endpoint 1 - Summary of all three message sizes on three routers

142

Figure C.4. Endpoint 1 scatter plot - One router, message size: 100 bytes

Figure C.5. Endpoint 1 histogram - One router, message size: 100 bytes

143

Figure C.6. Endpoint 1 scatter plot - Two routers, message size: 100 bytes

Figure C.7. Endpoint 1 histogram - Two routers, message size: 100 bytes

144

Figure C.8. Endpoint 1 scatter plot - Three routers, message size: 100 bytes

Figure C.9. Endpoint 1 histogram - Three routers, message size: 100 bytes

145

Figure C.10. Endpoint 1 scatter plot - One router, message size: 500 bytes

Figure C.11. Endpoint 1 histogram - One router, message size: 500 bytes

146

Figure C.12. Endpoint 1 scatter plot - Two routers, message size: 500 bytes

Figure C.13. Endpoint 1 histogram - Two routers, message size: 500 bytes

147

Figure C.14. Endpoint 1 scatter plot - Three routers, message size: 500 bytes

Figure C.15. Endpoint 1 histogram - Three routers, message size: 500 bytes

148

Figure C.16. Endpoint 1 scatter plot - One router, message size: 1000 bytes

Figure C.17. Endpoint 1 histogram - One router, message size: 1000 bytes

149

Figure C.18. Endpoint 1 scatter plot - Two routers, message size: 1000 bytes

Figure C.19. Endpoint 1 histogram - Two routers, message size: 1000 bytes

150

Figure C.20. Endpoint 1 scatter plot - Two routers, message size: 1000 bytes

Figure C.21. Endpoint 1 histogram - Three routers, message size: 1000 bytes

151

Endpoint 2

Figure C.22. Endpoint 2 - Summary of all three message sizes on one router

Figure C.23. Endpoint 2 - Summary of all three message sizes on two routers

152

Figure C.24. Endpoint 2 - Summary of all three message sizes on three routers

153

Figure C.25. Endpoint 2 scatter plot - One router, message size: 100 bytes

Figure C.26. Endpoint 2 histogram - One router, message size: 100 bytes

154

Figure C.27. Endpoint 2 scatter plot - Two routers, message size: 100 bytes

Figure C.28. Endpoint 2 histogram - Two routers, message size: 100 bytes

155

Figure C.29. Endpoint 2 scatter plot - Three routers, message size: 100 bytes

Figure C.30. Endpoint 2 histogram - Three routers, message size: 100 bytes

156

Figure C.31. Endpoint 2 scatter plot - One router, message size: 500 bytes

Figure C.32. Endpoint 2 histogram - One router, message size: 500 bytes

157

Figure C.33. Endpoint 2 scatter plot - Two routers, message size: 500 bytes

Figure C.34. Endpoint 2 histogram - Two routers, message size: 500 bytes

158

Figure C.35. Endpoint 2 scatter plot - Three routers, message size: 500 bytes

Figure C.36. Endpoint 2 histogram - Three routers, message size: 500 bytes

159

Figure C.37. Endpoint 2 scatter plot - One router, message size: 1000 bytes

Figure C.38. Endpoint 2 histogram - One router, message size: 1000 bytes

160

Figure C.39. Endpoint 2 scatter plot - Two routers, message size: 1000 bytes

Figure C.40. Endpoint 2 histogram - Two routers, message size: 1000 bytes

161

Figure C.41. Endpoint 2 scatter plot - Three routers, message size: 1000 bytes

Figure C.42. Endpoint 2 histogram - Three routers, message size: 1000 bytes

162

Endpoint 3

Figure C.43. Endpoint 3 - Summary of all three message sizes on one router

Figure C.44. Endpoint 3 - Summary of all three message sizes on two routers

163

Figure C.45. Endpoint 3 - Summary of all three message sizes on three routers

164

Figure C.46. Endpoint 3 scatter plot - One router, message size: 100 bytes

Figure C.47. Endpoint 3 histogram - One router, message size: 100 bytes

165

Figure C.48. Endpoint 3 scatter plot - Two routers, message size: 100 bytes

Figure C.49. Endpoint 3 histogram - Two routers, message size: 100 bytes

166

Figure C.50. Endpoint 3 scatter plot - Three routers, message size: 100 bytes

Figure C.51. Endpoint 3 histogram - Three routers, message size: 100 bytes

167

Figure C.52. Endpoint 3 scatter plot - One router, message size: 500 bytes

Figure C.53. Endpoint 3 histogram - One router, message size: 500 bytes

168

Figure C.54. Endpoint 3 scatter plot - Two routers, message size: 500 bytes

Figure C.55. Endpoint 3 histogram - Two routers, message size: 500 bytes

169

Figure C.56. Endpoint 3 scatter plot - Three routers, message size: 500 bytes

Figure C.57. Endpoint 3 histogram - Three routers, message size: 500 bytes

170

Figure C.58. Endpoint 3 scatter plot - One router, message size: 1000 bytes

Figure C.59. Endpoint 3 histogram - One router, message size: 1000 bytes

171

Figure C.60. Endpoint 3 scatter plot - Two routers, message size: 1000 bytes

Figure C.61. Endpoint 3 histogram - Two routers, message size: 1000 bytes

172

Figure C.62. Endpoint 3 scatter plot - Three routers, message size: 1000 bytes

Figure C.63. Endpoint 3 histogram - Three routers, message size: 1000 bytes

173

Endpoint 4

Figure C.64. Endpoint 4 - Summary of all three message sizes on one router

Figure C.65. Endpoint 4 - Summary of all three message sizes on two routers

174

Figure C.66. Endpoint 4 - Summary of all three message sizes on three routers

175

Figure C.67. Endpoint 4 scatter plot - One router, message size: 100 bytes

Figure C.68. Endpoint 4 histogram - One router, message size: 100 bytes

176

Figure C.69. Endpoint 4 scatter plot - Two routers, message size: 100 bytes

Figure C.70. Endpoint 4 histogram - Two routers, message size: 100 bytes

177

Figure C.71. Endpoint 4 scatter plot - Three routers, message size: 100 bytes

Figure C.72. Endpoint 4 histogram - Three routers, message size: 100 bytes

178

Figure C.73. Endpoint 4 scatter plot - One router, message size: 500 bytes

Figure C.74. Endpoint 4 histogram - One router, message size: 500 bytes

179

Figure C.75. Endpoint 4 scatter plot - Two routers, message size: 500 bytes

Figure C.76. Endpoint 4 histogram - Two routers, message size: 500 bytes

180

Figure C.77. Endpoint 4 scatter plot - Three routers, message size: 500 bytes

Figure C.78. Endpoint 4 histogram - Three routers, message size: 500 bytes

181

Figure C.79. Endpoint 4 scatter plot - One router, message size: 1000 bytes

Figure C.80. Endpoint 4 histogram - One router, message size: 1000 bytes

182

Figure C.81. Endpoint 4 scatter plot - Two routers, message size: 1000 bytes

Figure C.82. Endpoint 4 histogram - Two routers, message size: 1000 bytes

183

Figure C.83. Endpoint 4 scatter plot - Three routers, message size: 1000 bytes

Figure C.84. Endpoint 4 histogram - Three routers, message size: 1000 bytes

184

Endpoint 5

Figure C.85. Endpoint 5 - Summary of all three message sizes on one router

Figure C.86. Endpoint 5 - Summary of all three message sizes on two routers

185

Figure C.87. Endpoint 5 - Summary of all three message sizes on three routers

186

Figure C.88. Endpoint 5 scatter plot - One router, message size: 100 bytes

Figure C.89. Endpoint 5 histogram - One router, message size: 100 bytes

187

Figure C.90. Endpoint 5 scatter plot - Two routers, message size: 100 bytes

Figure C.91. Endpoint 5 histogram - Two routers, message size: 100 bytes

188

Figure C.92. Endpoint 5 scatter plot - Three routers, message size: 100 bytes

Figure C.93. Endpoint 5 histogram - Three routers, message size: 100 bytes

189

Figure C.94. Endpoint 5 scatter plot - One router, message size: 500 bytes

Figure C.95. Endpoint 5 histogram - One router, message size: 500 bytes

190

Figure C.96. Endpoint 5 scatter plot - Two routers, message size: 500 bytes

Figure C.97. Endpoint 5 histogram - Two routers, message size: 500 bytes

191

Figure C.98. Endpoint 5 scatter plot - Three routers, message size: 500 bytes

Figure C.99. Endpoint 5 histogram - Three routers, message size: 500 bytes

192

Figure C.100. Endpoint 5 scatter plot - One router, message size: 1000 bytes

Figure C.101. Endpoint 5 histogram - One router, message size: 1000 bytes

193

Figure C.102. Endpoint 5 scatter plot - Two routers, message size: 1000 bytes

Figure C.103. Endpoint 5 histogram - Two routers, message size: 1000 bytes

194

Figure C.104. Endpoint 5 scatter plot - Three routers, message size: 1000 bytes

Figure C.105. Endpoint 5 histogram - Three routers, message size: 1000 bytes

195

Endpoint 6

Figure C.106. Endpoint 6 - Summary of all three message sizes on one router

Figure C.107. Endpoint 6 - Summary of all three message sizes on two routers

196

Figure C.108. Endpoint 6 - Summary of all three message sizes on two routers

197

Figure C.109. Endpoint 6 scatter plot - One router, message size: 100 bytes

Figure C.110. Endpoint 6 histogram - One router, message size: 100 bytes

198

Figure C.111. Endpoint 6 scatter plot - Two routers, message size: 100 bytes

Figure C.112. Endpoint 6 histogram - Two routers, message size: 100 bytes

199

Figure C.113. Endpoint 6 scatter plot - Three routers, message size: 100 bytes

Figure C.114. Endpoint 6 histogram - Three routers, message size: 100 bytes

200

Figure C.115. Endpoint 6 scatter plot - One router, message size: 500 bytes

Figure C.116. Endpoint 6 histogram - One router, message size: 500 bytes

201

Figure C.117. Endpoint 6 scatter plot - Two routers, message size: 500 bytes

Figure C.118. Endpoint 6 histogram - Two routers, message size: 500 bytes

202

Figure C.119. Endpoint 6 scatter plot - Three routers, message size: 500 bytes

Figure C.120. Endpoint 6 histogram - Three routers, message size: 500 bytes

203

Figure C.121. Endpoint 6 scatter plot - One router, message size: 1000 bytes

Figure C.122. Endpoint 6 histogram - One router, message size: 1000 bytes

204

Figure C.123. Endpoint 6 scatter plot - Two routers, message size: 1000 bytes

Figure C.124. Endpoint 6 histogram - Two routers, message size: 1000 bytes

205

Figure C.125. Endpoint 6 scatter plot - Three routers, message size: 1000 bytes

Figure C.126. Endpoint 6 histogram - Three routers, message size: 1000 bytes

206

C.2 Topology Characterization

All Endpoints on a Single Router

Figure C.127. All endpoints scatter plot - One router, message size: 100 bytes

207

Figure C.128. All endpoints histogram - One router, message size: 100 bytes

Figure C.129. All endpoints scatter plot - One router, message size: 500 bytes

208

Figure C.130. All endpoints histogram - One router, message size: 500 bytes

Figure C.131. All endpoints scatter plot - One router, message size: 1000 bytes

209

Figure C.132. All endpoints histogram - One router, message size: 1000 bytes

Figure C.133. All endpoints scatter plot - One router, all message sizes

210

All Endpoints on a String of Three Routers

Figure C.134. All endpoints scatter plot - String of three routers, message size: 100 bytes

Figure C.135. All endpoints histogram - String of three routers, message size: 100 bytes

211

Figure C.136. All endpoints scatter plot - String of three routers, message size: 500 bytes

Figure C.137. All endpoints histogram - String of three routers, message size: 500 bytes

212

Figure C.138. All endpoints scatter plot - String of three routers, message size: 1000 bytes

Figure C.139. All endpoints histogram - String of three routers, message size: 1000 bytes

213

Figure C.140. All endpoints scatter plot - String of three routers, all message sizes, config-
uration 1

Figure C.141. All endpoints scatter plot - String of three routers, all message sizes, config-
uration 2

214

Figure C.142. All endpoints scatter plot - String of three routers, all message sizes, config-
uration 3

Figure C.143. All endpoints scatter plot - String of three routers, all message sizes, config-
uration 4

215

Figure C.144. All endpoints scatter plot - String of three routers, all message sizes, config-
uration 5

Figure C.145. All endpoints scatter plot - String of three routers, all message sizes, config-
uration 6

216

All Endpoints on a Split of Three Routers

Figure C.146. All endpoints scatter plot - Split of three routers, message size: 100 bytes

Figure C.147. All endpoints histogram - Split of three routers, message size: 100 bytes

217

Figure C.148. All endpoints scatter plot - Split of three routers, message size: 500 bytes

Figure C.149. All endpoints histogram - Split of three routers, message size: 500 bytes

218

Figure C.150. All endpoints scatter plot - Split of three routers, message size: 1000 bytes

Figure C.151. All endpoints histogram - Split of three routers, message size: 1000 bytes

219

Figure C.152. All endpoints scatter plot - Split of three routers, all message sizes, configu-
ration 1

Figure C.153. All endpoints scatter plot - Split of three routers, all message sizes, configu-
ration 2

220

Figure C.154. All endpoints scatter plot - Split of three routers, all message sizes, configu-
ration 3

Figure C.155. All endpoints scatter plot - Split of three routers, all message sizes, configu-
ration 4

221

Figure C.156. All endpoints scatter plot - Split of three routers, all message sizes, configu-
ration 5

Figure C.157. All endpoints scatter plot - Split of three routers, all message sizes, configu-
ration 6

222

Appendix D

Memory Usage

223

Figure D.1. Entire SSM minimal memory footprint

Figure D.2. Central Address Service minimal memory footprint

224

Figure D.3. Central Address Service memory usage, including SM-X address assignments

Figure D.4. Lookup Service minimal memory footprint

225

Figure D.5. Lookup Service memory usage during query processing

Figure D.6. Lookup Service memory usage during registration and deregistration

226

Figure D.7. SPA-Local Manager minimal memory footprint

Figure D.8. SPA-SpaceWire minimal memory footprint

227

CURRICULUM VITAE

Jacob Holt Christensen

EDUCATION

Ph.D., Computer Science. Utah State University, Logan, UT. 2012.

B.S., Computer Science. Brigham Young Univeristy - Idaho, Rexburg, ID. 2008.

RESEARCH INTERESTS

Distributed and parallel systems, self-configuring network, spaceflight software, and con-

currency

CONFERENCE PUBLICATIONS

Christensen, J., Anderson, D., Greenman, M., and Hansen, B. (2012) “Scalable network

approach for the Space Plug-and-Play Architecture”, In Proceedings of the 2012 IEEE

Aerospace Conference, Big Sky, MT.

Kief, C., Zufelt, B., Christensen, J., and Mee, J. (2011) “Trailblazer: Proof of Concept

CubeSat Mission for SPA-1”, In Proceedings of the 2011 AIAA Infotech@Aerospace

Conference, St. Louis, MO.

Christensen, J., Hansen, B., and Cannon, S. (2010) “SPA Network Management”, In

the Proceedings of the 2010 ReSpace/MAPLD Conference, Albuquerque, NM.

Lyke, J., Christensen, J., and Cannon, S. (2010) “A Plug-and-Play Approach Based on

the I2C Standard”, In Proceedings of the 24th Annual AIAA/USU Conference on Small

Satellites, Logan, UT.

228

Christensen, J., Cannon, S., Hansen, B., and Lyke, J. (2010) “Automatic Generation

of SDM Application Source Code From xTEDS”, In Proceedings of the 24th Annual

AIAA/USU Conference on Small Satellites, Logan, UT.

Kief, C., Christensen, J., Hansen, B., and Mee, J. (2010) “CubeFlow: Training for a New

Space Community”, In Proceedings of the 2010 AIAA Infotech@Aerospace Conference,

Atlanta, GA.

Christensen, J., Cannon, S., and Hansen, B. (2010) “Automatic Software Genera-

tion of ASIM Program Code from an xTEDS”, In Proceedings of the 2010 AIAA In-

fotech@Aerospace Conference, Atlanta, GA.

INDUSTRY EXPERIENCE

Software Engineer. Space Dynamics Laboratory. 2008 to Present.

Software Developer. LDS Church. 2007.

Software Development Intern. Stennis Space Center, NASA. 2006.

TEACHING EXPERIENCE

CS 2420 - Data Structures & Algorithms. Utah State University. 2012.

CS 5060 - Intensive Programming. Utah State University. 2009 to 2010.

SERVICE

Invited presentation on “Space Plug-and-Play Architecture”, CCSDS Fall meeting. 2011.

Panelist, Plug-and-Play panel, ReSpace/MAPLD. 2010.

Invited presentation on “SSM, How it works, and rapid application development”,

ReSpace/MAPLD. 2010.

	Space Plug-and-Play Architecture Networking: A Self-Configuring Heterogeneous Network Architecture
	Recommended Citation

	ABSTRACT
	PUBLIC ABSTRACT
	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	ACRONYMS
	INTRODUCTION
	Introduction
	Space Environment Design Constraints
	Self-Configuring Networks
	The Plug-and-Play Promise
	Space Plug-and-Play Architecture History
	Research Scope

	RELATED WORK
	Introduction
	Historical Progress
	Onboard Spacecraft Networking
	Self-Configuring Onboard Spacecraft Networking
	Summary

	SPA NETWORK ARCHITECTURE
	Introduction
	The SPA Stack
	The Physical Layer
	The Data Link Layer
	The Network Layer
	The Transport Layer
	The Application Layer
	Summary

	IMPLEMENTATION
	Introduction
	Development Process
	Software Architecture
	Software Implementation
	Summary

	EXPERIMENTAL SETUP
	Introduction
	Performance Measures
	Tests Configurations
	Test Parameters
	Test Procedure and Data Collection

	RESULTS
	Introduction
	Measured Performance
	Selected Data and Aggregation
	Conclusion

	CONCLUSIONS
	Introduction
	Contributions
	Future Work

	REFERENCES
	APPENDICES
	Appendix A First Recorded Instance of the SPA Network
	Appendix B Message Definitions
	Appendix C Comprehensive Results
	Appendix D Memory Usage

	CURRICULUM VITAE

