
Utah State University Utah State University

DigitalCommons@USU DigitalCommons@USU

All Graduate Theses and Dissertations Graduate Studies

5-2012

Test Case Generation Using Combinatorial Based Coverage for Test Case Generation Using Combinatorial Based Coverage for

Rich Web Applications Rich Web Applications

Chad Maughan
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Maughan, Chad, "Test Case Generation Using Combinatorial Based Coverage for Rich Web Applications"
(2012). All Graduate Theses and Dissertations. 1405.
https://digitalcommons.usu.edu/etd/1405

This Thesis is brought to you for free and open access by
the Graduate Studies at DigitalCommons@USU. It has
been accepted for inclusion in All Graduate Theses and
Dissertations by an authorized administrator of
DigitalCommons@USU. For more information, please
contact digitalcommons@usu.edu.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by DigitalCommons@USU

https://core.ac.uk/display/32549604?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd?utm_source=digitalcommons.usu.edu%2Fetd%2F1405&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.usu.edu%2Fetd%2F1405&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd/1405?utm_source=digitalcommons.usu.edu%2Fetd%2F1405&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/

TEST CASE GENERATION USING COMBINATORIAL BASED COVERAGE

FOR RICH WEB APPLICATIONS

by

Chad Maughan

A thesis submitted in partial fulfillment
of the requirements for the degree

of

MASTER OF SCIENCE

in

Computer Science

Approved:

Dr. Renee Bryce Dr. Daniel Bryce
Major Professor Committee Member

Dr. Daniel Watson Dr. Mark R. McLellan
Committee Member Vice President for Research and

Dean of the School of Graduate Studies

UTAH STATE UNIVERSITY
Logan, Utah

2012

ii

Copyright c© Chad Maughan 2012

All Rights Reserved

iii

ABSTRACT

Test Case Generation Using Combinatorial Based Coverage for Rich Web Applications

by

Chad Maughan, Master of Science

Utah State University, 2012

Major Professor: Dr. Renee Bryce
Department: Computer Science

Web applications are increasingly moving business and processing logic from the server

to the browser. Traditional, multiple-page request/response applications are quickly being

replaced by single-page applications where complex application logic is downloaded on the

initial page load and data is then subsequently fetched asynchronously via the browser’s

native XMLHttpRequest (XHR) object.

These new generation web applications are called Rich Web Applications (RWA).

Frameworks such as the Google Web Toolkit (GWT), and JavaScript model-view-controller

(MVC) frameworks such as Backbone.js are facilitating this move. With this migration,

testing frameworks need to follow the logic by moving analysis and test generation from

the server to the client. One problem hindering the movement of testing in this domain is

the adoption of semantic URLs. This paper introduces a novel approach to systematically

identify variables in semantic URLs and use them as part of the test generation process.

Using a sample RWA seeded with various JavaScript faults, I demonstrate in this thesis,

as an empirical study, that combinatorial testing algorithms and reduction strategies also

apply to new RWAs.

(40 pages)

iv

PUBLIC ABSTRACT

CHAD M. MAUGHAN

Rich Web Applications (RWA) that are data driven and feature responsive user inter-

faces are rapidly growing in popularity. Popular sites such as Twitter, Pandora, and Angry

Birds (browser version) are all examples of popular RWAs. These RWAs are more complex

and are developed differently than many previous web sites. More of the processing power

needed to run these applications is performed on the client machine, not the server. Due

to this development strategy, testing tools need new techniques to identify web application

variables, capture errors, and identify problems. In this thesis, I introduce novel techniques

to identify variables in RWA semantic URLs and automatically generate tests for RWAs

using a form of testing called combinatorial testing.

v

CONTENTS

Page

ABSTRACT . iii

PUBLIC ABSTRACT . v

LIST OF TABLES . vii

LIST OF FIGURES . viii

CHAPTER

1 INTRODUCTION . 1

2 BACKGROUND . 5
2.1 JavaScript Background . 5
2.2 Traditional URL Formats . 6
2.3 Semantic URL Formats . 6
2.4 Variable Detection Algorithm for Semantic URLs 7
2.5 Algorithm Description . 8

3 EXPERIMENTS . 11
3.1 Research Questions . 11
3.2 Sample Application . 11
3.3 JavaScript Faults . 12
3.4 Testing Technologies . 16
3.5 Navigation Graph . 17
3.6 Abstract URLs . 18
3.7 Capturing Errors . 20
3.8 Combinatorial Testing . 21

4 RESULTS . 23
4.1 Size Impact of Abstract URL Test Suite . 23
4.2 Effectiveness of Abstract URL Test Suite 24
4.3 Size Impact of Combinatorial Coverage . 24
4.4 Effectiveness of Combinatorial Coverage . 26

5 CONCLUSIONS . 27

REFERENCES . 30

vi

LIST OF TABLES

Table Page

3.1 Sample Rich Web Application Information. 12

3.2 Sample Rich Web Application Seeded Errors. 17

4.1 Size of Test Suites by Strategy. 24

4.2 Effectiveness of Single Coverage With Abstract URL Reduction. 24

4.3 Size of Test Suites by Strategy. 24

4.4 Sample Combinatorial Tests. 25

4.5 Effectiveness of Combinatorial Coverage. 26

5.1 Environment Variables. 28

vii

LIST OF FIGURES

Figure Page

2.1 Algorithm for variable identification of semantic URLs 9

2.2 A visual representation of branching complexity in an application structure. 10

3.1 Sample rich web application screenshot. 13

3.2 Depth first crawling of a rich web application 19

3.3 An example JavaScript error in the Firebug console. 21

3.4 Browser exception catching . 22

4.1 Hierarchical variable HTML form example 25

CHAPTER 1

INTRODUCTION

After the introduction of HTML5 in 2011, and its compelling set of new APIs [13], Rich

Web Applications (RWA) have rapidly gained in popularity. RWAs differ from the more

recent Rich Internet Applications (RIA) in that they don’t require proprietary browser

plug-ins. They also differ from traditional request/response web applications in that they

typically use a single HTML page and update the view on the client-side instead of building

many HTML pages on the server-side.

The concept of a “rich” in-browser application experience was introduced years earlier

with technologies such as Adobe’s Flex, Microsoft’s Silverlight, and Oracle’s JavaFX [17].

Each of these technologies uses proprietary browser add-ons to provide a responsive user

interaction and are categorized as Rich Internet Applications (RIA). These proprietary add-

ons provide additional functionalities to the web that were missing before HTML5, but also

decreased its openness [23].

Rich Web Applications (RWA) differ from RIAs in that RWAs focus on creating a

specific browser independent application without the reliance on any proprietary, client-

side browser plug-ins. Indeed, Ian Hickson, one of the W3Cs HTML5 editors, stated “one

of our goals is to move the Web away from proprietary technologies” [23].

Additionally, there are key differences between traditional web applications and RWAs

[20]. First, a traditional web application consists of many static HTML pages or scripts

(e.g., JSP or PHP) to render different portions of the site [8, 25]. A user of a traditional

web application is required to retrieve a full page for each interaction with the application.

Conversely, a RWA typically consists of a single HTML page that acts as an entry point.

This single page entry point contains complex application logic implemented in bundled

JavaScript or a collection of JavaScript script files. This application logic is downloaded

2

on the first HTML entry point page load and is then run on the browser. A RWA then

updates its views by manipulating the Document Object Model (DOM) using HTML com-

posites downloaded with that first page load. It also retrieves data associated with these

components by asynchronously making Ajax requests (i.e., XmlHttpRequest or XHR) to

the server. The server then responds with data in a JSON or XML format.

Along with this architecture change, RWAs have adopted a new URL structure that

relies heavily on sometimes complex URL fragments to maintain history and state within

the application. These URLs are sometimes called semantic or clean URLs. These semantic

URLs are much easier for the end-user to understand, describe, and infer site application

structure. While easier for user understanding, semantic URLs pose a significantly more

difficult challenge in systematically identifying variables for subsequent testing.

As RWAs adopt the HTML5 strategy of moving away from proprietary technologies,

there is also a movement to follow the HTTP protocol as it was designed— a “generic,

stateless protocol” [2]. This leads to many RWAs being stateless. A stateless web applica-

tion has many benefits, including performance, scalability, and simplicity. Not requiring the

expensive overhead of maintaining session information on the server allows for more con-

current users with less infrastructure. It also allows for the removal of an additional layer

of complexity in the production environment by not requiring the replication of session

information across multiple nodes.

A RWA architecture provides many benefits. From a development standpoint, a RWA

allows for a clean separation of concerns. Front-end development and design can be done

independent of the back-end services. Back-end developers can then focus exclusively on

building a robust API. This API can then be made available to both RWAs and other

non-web applications, such as native Android or iOS applications. Perhaps the biggest

advantage is that a user is never required to load a new page. Due to this, and the resulting

lack of latency, a RWA feels more responsive or “rich.”

While end users benefit from the migration of complex application logic from the server

to the browser, testing has become more difficult. Exceptions and coding irregularities no

3

longer occur solely on the server in a convenient, controlled, and centralized location. Errors

now occur in a distributed fashion in various types and versions of browsers, computers,

and environments. As such, a more structured approach to testing needs to move from the

server to the client.

The RWA focus on a “rich” user experience (i.e., responsive interfaces and interactive

capabilities) [20], comes at a price as the “richness” increases the importance and cost of

testing. For software testing, much effort has been applied to controlling the cost while

still maintaining effective fault discovery. Research into quality and reliability of software

development by Wallace and Kuhn has yielded empirical data that “suggests that relatively

few parameters are actually involved in triggering failures” [16]. Kuhn et al. reviewed 15

years worth of medical device recall data gathered by the U.S. Food and Drug Administra-

tion (FDA). Working with 109 cases, they determined that 97% of all reported flaws could

be detected by testing all pairs of parameter settings [16]. Pairwise testing (i.e., two-way

testing) combines all interactions between two parameters. In a separate study, Kuhn et al.

also discovered by analyzing the publicly available fault database of the Mozilla Browser,

that 76% of faults were found by two-way testing [15]. The remaining faults were identified

with higher “t-wise” combination of parameters.

Colbourn shows that producing higher “t-wise” variable combinations is NP Hard [6],

meaning the number of test cases to perform grows exponentially with higher variable

interaction. This substantial growth in test cases can make exhaustive or higher strength

testing impractical and costly. One strategy to control cost is to reduce the number of

tests needed to discover faults. Due to the heavy use of templates (i.e., reusable snippets

of layout and logic) in RWAs, they are a prime candidate for reduction. Later, I propose a

reduction strategy and provide a comparison on the effectiveness of discovering faults on a

sample application.

In addition to generating tests that cover interactions, combinatorial based prioritiza-

tion may improve testing effectiveness by increasing the rate at which faults are detected.

This strategy tests “more important” components early in the testing phase. While outside

4

the scope of this paper, I do mention some ideas for prioritization that could be explored

in future research. Indeed, recent work by Bryce et al. [3,4,21], with two-way inter-window

event coverage for event-driven systems, has applicability with RWAs.

Before any combinatorial testing can be performed, a covering array needs to be gen-

erated to build the “t-wise” combination of variables. With their single page HTML entry

points, and their dynamic, semantic URL fragments, RWAs pose a challenge in identifying

variables for the creation of covering arrays. This thesis will also introduce a novel and

practical way to identify variables in semantic URL fragments and demonstrate that com-

binatorial testing, like in other application types, provides benefit in identifying faults in

RWAs on a relatively small test suite.

5

CHAPTER 2

BACKGROUND

This chapter is divided into four sections. First, I provide some background on JavaScript

and the characteristics of the language that make it challenging to test. Second, I explain a

traditional URL format, describing the relative ease of programmatically discovering vari-

ables. Third, I explain the more recent semantic URL format and some of the difficulties

introduced with systemic variable identification. Fourth, I introduce and describe an algo-

rithm for statistically analyzing an application’s URL structure to identify variables.

2.1 JavaScript Background

Due to its distribution in all browsers, JavaScript is the primary language for Rich

Web Applications (RWA). It plays a central role in RWAs by updating styles and modifying

application structure markup (i.e., the Document Object Model or DOM). It also is the key

data transport mechanism for interacting with the server via it’s XmlHttpRequest (XHR)

object. As a language, it is dynamic, weakly typed, interpreted, and prototype-based.

With it’s features such as first-class functions, it supports multiple development paradigms,

including: object-oriented, imperative, and functional. JavaScript can either be loaded by

the browser as static code or it can be dynamically created at runtime using an “eval()”

function.

Two traits make JavaScript particularly vulnerable to faults. First, as a dynamically

typed, interpreted language it does not benefit as much as strongly typed, compiled lan-

guages from static code analysis. Lint-like tools exist for JavaScript but they typically focus

on syntax. Second, JavaScript is designed to respond to timers and browser events such

as clicks, hovering, or key presses. This makes it difficult to test event driven code in a

development environment as it requires simulating those events to test.

6

New JavaScript frameworks such as Backbone.js have helped with the consistency of

JavaScript code being developed. They have helped isolate faults to mostly appearance

related exceptions. In the next chapter, I describe in detail the types of web application and

JavaScript faults in the context of a sample application and how those faults are identified

with the developed testing strategies.

2.2 Traditional URL Formats

Rich web applications, along with a migration from server-side to client-side JavaScript

based frameworks, have generally adopted a different URL structure from the traditional

format defined in RFC 1738 [1]. A traditional URL structure defined in the RFC 1738

standard, follows the format:

http://<host>:<port>/<path>?<searchpart>

The <searchpart> of a traditional URL format is composed of a series of key-value

pairs that start after the question mark. Keys and values are separated by an equals sign

and the key-value pairs are separated by an ampersand. An example of a <searchpart>,

more frequently called a query string, following the question mark of a URL is as follows:

key1=value1&key2=value2

Traditional URL structures, as defined in RFC 1738, with their key-value pairs are very

easy to programmatically identify and parse. This well structured format allows a testing

solution to quickly determine variable names and values for combinatorial testing.

2.3 Semantic URL Formats

Rich web applications have departed from this traditional <searchpart> format in favor

of a more user friendly, more permanent format [5]. This new format is often referred to as

semantic or clean URLs. One goal of semantic URLs is to provide an immediate, human

7

understandable format of resources. Instead of clearly identifying variables and their values

as key-value pairs after a question mark in the <searchpart> section of a URL, rich web

applications typically combine their variables and values as part of the <path> portion

of the URL. While easier for a human to understand, this structure makes it difficult to

programmatically discover variables for combinatorial testing.

As an example of a semantic URL, imagine a rich web application that provides census

information on states, counties, and cities over a certain population of the United States.

A semantic URL for this application might look as follows:

http://example.com/#/state/utah/county/cache/city/logan

This example is a well structured semantic URL. Each variable is preceded by a de-

scriptive key (e.g., “state” precedes “ut” and “county” precedes “cache”). Unfortunately,

no standards exist for semantic URL structures, and many rich web applications do not al-

ways find it practical to follow this industry best practice of associated keys and values for

variables. This application could have just as easily been developed with a URL structure:

http://example.com/#/utah/cache/logan

Due to the variety of formats used in semantic URLs and the absence of an industry

standard, identifying variables for combinatorial testing can be difficult. In the next section

I propose an algorithm for variable identification regardless of the example structures shown

above.

2.4 Variable Detection Algorithm for Semantic URLs

In order to address the complexities of identifying variables in semantic URLs, I propose

the following algorithm that processes all URLs from a rich web application and identifies

the location of variables in a URL structure.

8

The algorithm processes each URL of the rich web application and then subsequently

processes each portion of the URL <path>. It then combines them into a common hier-

archical graph to allow analysis of the application structure. The key to identifying the

location of variables is by calculating branching complexity as each URL is processed. This

branching complexity is measured by creating a graph node at each URL <path> portion

(e.g., each part of the URL path separated by a “/” character). As each node is created,

the Strahler number is calculated by looking at all the previous child nodes [9]. Identifying

the degree of branching at each level of the URL path allows for analysis of the branching

complexity for each abstract portion of the URLS of the application.

The algorithm is listed in Figure 2.1 followed in the next section by a detailed descrip-

tion.

2.5 Algorithm Description

For brevity, the algorithm, as listed, assumes the possession of a list every possible

URL available in the application. The sample rich web application discussed in this section

has approximately 200,000 different semantic URLs. A better implementation of the algo-

rithm would be to crawl the site in a depth-first, non-deterministic fashion recording and

processing each URL (i.e., applying this algorithm in-line as the site is crawled).

The algorithm proceeds to lob off each outer part of the URL path until the position

variable listed on line 103 is less than the fragment identifier character position in the URL.

Starting with the example URL listed previously, the algorithm values are processed

in the following list.

1. http://example.com/#/state/ut/county/cache/city/logan.

2. http://example.com/#/state/ut/county/cache/city

3. http://example.com/#/state/ut/county/cache

4. http://example.com/#/state/ut/county

5. http://example.com/#/state/ut/

9

100 fo r each (u r l in u r l s) {

101 Node previousNode = retr ieveOrCreateNode (u r l) ;

102 int po s i t i o n = ur l . l ength () ;

103 St r ing shortenedUr l ;

104 while (p o s i t i o n > f r a gmen t I d en t i f i e r) {

105 po s i t i o n = ur l . l a s t IndexOf (”/”) ;

106 i f (p o s i t i o n > 0) {

107 shortenedUr l = ur l . s ub s t r i ng (0 , p o s i t i o n) ;

108 Node node = retr ieveOrCreateNode (shortenedUr l) ;

109 int branchingComplexity = calcu lateBranchingComplex i ty (node) ;

110 node . se tProper ty (BRANCHINGCOMPLEXITY, branchingComplexity) ;

111 previousNode . c r ea teRe la t i onsh ipTo (node ,

112 Relat ionsh ipTypes .CHILD OF) ;

113 previousNode = node ;

114 }

115 else {

116 break ;

117 }

118 }

119 Node l a s t = retr ieveOrCreateNode (shortenedUr l) ;

120 }

Figure 2.1: Algorithm for variable identification of semantic URLs

6. http://example.com/#/state

7. http://example.com/#

As we’re focused on the <path> portion of the URL, the algorithm stops processing

when the position index of the last instance of the path separator “/” is less than the

position index of the fragment identifier (the “#” character). Continuing on line 108, the

algorithm then either retrieves (if it already exists) or creates (if the remaining URL has

not been processed) a new node that represents that portion of the URL. The algorithm

works its way backwards from full URL to just the host to allow for the easy calculation

of the Strahler number used to identify branching complexity in line 109. On line 111 the

10

algorithm creates the edge between the current and the previous node. It then assigns the

current node to the previous node so it can continue processing if needed.

An additional benefit of having the application structure in a common graph is it makes

it easy to visually identify branching complexity as in Figure 2.2. Dark areas represent

extensive branching that is associated with variables in semantic URLs.

Figure 2.2: A visual representation of branching complexity in an application structure.

11

CHAPTER 3

EXPERIMENTS

3.1 Research Questions

There are four main questions of focus that the following experiments attempt to

answer:

1. What is the impact on the size of the test suite using abstract URLs instead of an

exhaustive enumeration of every variable combination?

2. What is the fault finding effectiveness of testing with abstract URLs versus exhaustive

testing?

3. What is the impact on the size of the test suite using combinatorial coverage compared

to single coverage?

4. What is the fault finding effectiveness of the combinatorial coverage compared with

single coverage?

3.2 Sample Application

All experiments were conducted on a sample Rich Web Application written by the

author and is available at http://chadmaughan.com/thesis. The application provides

United States census information for 1990, 2000, and preliminary numbers from 2005 for

each state, county, and city with a population over 25,000 residents. The application is

designed for mobile devices with larger touch points. The sample application uses the

following technologies:

http://chadmaughan.com/thesis

12

1. Backbone.js: A client-side, JavaScript MVC framework that gives structure to rich

web applications. Backbone.js allows you to bind custom events to models, and route

URL fragments to JavaScript functions.

2. jQuery Mobile: A unified, HTML5-based cross-platform user interface system for

mobile devices. It focuses on semantic markup that is easily themeable.

3. Spring MVC: A module of the popular Spring Framework for Java that allows for

easy implementation of server-side controllers for building REST APIs.

4. Apache Derby DB: An open source, embedded relational database implemented in

Java.

Source code for both the application and the fault finding, testing code is also avail-

able at http://code.chadmaughan.com/thesis. Metrics about the sample application are

included in Table 3.1. A sample screenshot of the application is provided in Figure 3.1.

Table 3.1: Sample Rich Web Application Information.

Number of Application States 199,484

Number of Files 328

JavaScript Lines of Code 605

Java Number of Classes 21

Java Lines of Code 1,091

Seeded Faults 73

3.3 JavaScript Faults

The sample application is seeded with 73 faults. A detailed list of those exceptions and

the categories they belong to are listed in Table 3.2.

On fault categories, Sampath et al. described five web application fault categories [22],

of which all are used in the sample application.

1. Data store faults: Faults in the application code that manipulates data in any kind

of data store. This category of faults also applies to data that is incorrectly persisted

http://code.chadmaughan.com/thesis

13

Figure 3.1: Sample rich web application screenshot.

14

in the data store. There are a number of seeded data store faults in the sample

application.

2. Logic faults: Faults in the application code that implements business logic and control

flow. An example of this is an error in the page transition with jQuery Mobile.

3. Form faults: Faults in the application code that controls, modifies and displays name-

value pairs in forms. The sample application does not submit any data to the server

but does use dynamically updated forms to direct to different application states.

4. Appearance Faults: faults in the application code that controls the way in which a

web page is displayed. With the use of modern JavaScript based templating solutions,

such as Mustache.js and Underscore.js, appearance faults typically cause a template

to not be rendered. The sample application demonstrates this type of error when

trying to load the search page.

5. Link faults: Faults in the application code that changes the page pointed to by an

URL.

Guo and Sampath [11] add a sixth category, compatibility faults or “faults in applica-

tion code that ensures that the web application complies with different browsers, versions

of browsers and other client environments.” With the rapid introduction of new HTML5

APIs (i.e., Websockets and Webstorage) and the varying speed of adoption among browser

creators, compatibility faults will play an increasingly important role in client-side testing.

Guo also expands the logic faults category to include seven sub-categories. The sub-

categories of logic faults are:

1. Browser interaction faults: Faults in the application code that control the web browser,

such as code that disables the “back” button on the browser, or code that is affected

by user-defined browser settings, such as disabled cookies. Browser manipulation is

discouraged as it alters expected application behavior. Other browser settings, such

as disabling JavaScript, would render the application useless. As such, the sample

application does not use this fault sub-category.

15

2. Session faults: Faults in the application code that deal with maintaining state of

application or other session-based operations such as using sessions to save and data

entered into a form and display the data after the sessions has been validated. As

most rich web applications are stateless to avoid the overhead of session management

and allow for greater scalability, the sample application does not use this sub-category.

3. Paging faults: Faults in the application code that deals with paging when displaying

large amounts of data on the screen. While applicable to rich web applications, the

sample application does not use this sub-category.

4. Server-side parsing faults: Faults in the application code that deal with server-side

parsing of HTML, XML, and JavaScript tags. This sub-category does not apply to

rich web applications as HTML used in a RWA is typically a minimal page used

only as an entry point. “client-side parsing faults” are more applicable to rich web

applications. The sample application has a number JavaScript syntax related faults.

These errors are described below in Table 3.2.

5. Encoding/decoding faults: Faults in the application code that encodes or decodes

characters for transmission, storage, and display

6. Locale faults: Faults that exist in application code that sets or gets locale-specific

information, such as date format or language. Not used in the sample application.

7. Other: Other logic faults that do not belong to any of the above sub categories.

More recently, in addition to Sampath and Guo, Ocariza et al. [19] defines five categories

specifically for JavaScript exceptions. He found that JavaScript exceptions tend to be much

more defined than other applications and fall into well-defined categories. In fact, 94% of

all errors studied from the Alexa top 100 list fall into five categories, namely:

16

1. Permission Denied: Faults in the application code that attempt to access JavaScript

components from another domain violating the same-origin policy. The sample appli-

cation has a seeded fault where it tries to load recent search data from Twitter and

violates the same-origin policy.

2. Null Exception faults: Faults in the application code where a property or method is

accessed via a null object. The sample application attempts to add a CSS class name

to an element that is null.

3. Undefined Symbol faults: Faults in the application code where a function or variable

is accessed that has not been previously defined.

4. Syntax Error faults: Faults in the application code where interpreted code, such as in

an eval() function, has the wrong syntax.

5. Miscellaneous faults: Faults in the application code that apply specifically to a single

site.

These five categories align more closely with the JavaScript Error object and its six

other core errors: EvalError (Syntax Error faults), RangeError, ReferenceError (Undefined

Symbol faults), SyntaxError (Syntax Error faults), TypeError, and URIError [18].

3.4 Testing Technologies

In addition to the sample Rich Web Application, the code used to identify the seeded

faults rely on some key technologies. These technologies are listed below:

1. Neo4j: A powerful graph database with a rich API that was used to both systemati-

cally identify variables in semantic URLs and store a full navigation graph of the rich

web application for test traversal retrieval.

2. BrowserMob: An embedded proxy software that allows the interception of HTTP

requests from the client and HTTP responses from the server. This allows for the

17
Table 3.2: Sample Rich Web Application Seeded Errors.

Location Description Category Count

index.html:39 console.log(variable) - vari-
able is not defined.

ReferenceError,
Undefined

1

main.js:54 SearchPageView template is
not included as a source.

ReferenceError,
Appearance

1

geochart:438 County Map doesn’t exist on
County Details page. ”Con-
tainer is not defined” error.

Appearance 1 (3,144)

main.js:49 Syntax Error on eval() -
eval(”window.print(;”)

SyntaxError 1

main.js:37 Missing script file - not-
there.js”

Link, Other, Misc 1

jquery-1.7.1.min.js:4 Multiple words in the name (9
states plus Washington DC)
doesn’t have a flag to display

10

jquery-1.7.1.min.js:4 Multiple words in the name (9
states plus Washington DC)
doesn’t have a seal to display

Appearance 10

CityController.java:39 Cities with periods in their
name/code, return HTTP 500
(i.e., St. George, UT).

Data Store 13

index.html:87 Type Error ’bad type’ for all
Washington State cities

TypeError, Misc 37

twitter.js:4 City Twitter Search feed Permission 1 (1,267)

census-table-view.js:17 Adds a CSS class to a null el-
ement

Null Exception,
TypeError

1

identification of network errors and for the modification of the server responses to

assist in identifying client side JavaScript errors.

3. Selenium WebDriver: Allows for the crawling and interaction with the application in

the various browsers “as the user would,” giving a more accurate result while testing.

3.5 Navigation Graph

A navigation graph is a visual representation of an application [12]. A navigation

graph of a rich web application is a visual representation of how different states of the

web application are related to one another. A traditional web application navigation graph

typically would have a single node for each HTML page or a single node for each rendering

18

of a server-side script. An edge on a traditional web application represents an HTML anchor

tag. As rich web applications typically have a single or very limited number of HTML pages

acting as entry points, a node in the navigation graph of a rich web application represents

a single state of the application. An edge in a navigation graph for a rich web application

represents a transition from one state to another. Like in a traditional web application, this

is also typically done through an HTML anchor tag.

Building a navigation graph of the rich web applications has many benefits, including

understanding the application as a whole, maintenance over the development cycle, and

test case generation and the subsequent testing of those tests [24]. To build the graph,

and expand it as the application increases in size, a rich web application can be crawled

using the Selenium WebDriver in a simple depth first traversal. Figure 3.2 demonstrates

the crawling algorithm using Selenium WebDriver.

Also of benefit is the ability to identify key, holistic characteristics about the application

as the navigation graph is built. For example, while this experiment does not focus on test

prioritization, systematically creating a navigation graph with Selenium WebDriver allows

you to easily record and track key information about state transitions in the application. As

an example, one may wish to prioritize testing based on the location of links or elements that

trigger a change in state. Combining the exact top and left pixel location of that element

allows you to prioritize links that are more in the key navigation sections. As another

prioritization strategy with a navigation graph, one could also easily prioritize based on

states of the application that are most transitioned.

3.6 Abstract URLs

One problem with the depth-first traversal of a rich web application is the time it

takes to complete a full application crawl. For example, the sample census application

discussed previously contains nearly 200,000 different states. Assuming an average page

load of around 500 milliseconds, it would still require more than 27 hours to perform a

full regression test. While this amount of time to perform an exhaustive regression test is

possible, it may not always be practical.

19

100 public stat ic void main (St r ing [] a rgs) {

101 d r i v e r = new Fi r e f oxDr iv e r () ;

102 new Crawl (” http :// example . com”) ;

103 }

104

105 public Crawl (S t r ing s t a r t i n gUr l) throws Exception {

106 St r ing newAddress = null ;

107 while ((newAddress = queue . p o l l ()) != null)

108 processPage (newAddress) ;

109 }

110

111 private void processPage (S t r ing sourceHre f) throws Exception {

112 d r i v e r . get (sourceHre f) ;

113 Lis t<WebElement> l i n k s = dr i v e r . f indElements (By . tagName(”a”)) ;

114 Node sourceNode = retr ieveOrCreateNode (sourceHre f) ;

115 St r ing ta rge tHre f ;

116

117 for (int i = 0 ; i < l i n k s . s i z e () ; i++) {

118 WebElement w = l i n k s . get (i) ;

119 ta rge tHre f = w. ge tAt t r ibute (” h r e f ”) ;

120 i f (i sVa l i dUr l (t a rg e tHre f)) {

121 i f (w. i sD i sp l ayed ()) {

122 Node targetNode = retr ieveOrCreateNode (ta rge tHre f) ;

123 i f (targetNode == null)

124 targetNode = nodeMapper .mapNode(targetHre f , w) ;

125 sourceNode . c r ea teRe la t i onsh ipTo (targetNode ,

126 Relat ionshipTypes .LINKS TO) ;

127 i f (! p roce s s ed . conta in s (t a rg e tHre f))

128 queue . add (ta rge tHre f) ;

129 }

130 }

131 }

132 }

Figure 3.2: Depth first crawling of a rich web application

20

Using variables previously identified through the algorithm described in the background

chapter, application states can be stored in the navigation graph as “abstract URLs” [24], or

URLs with variable names instead of each possible value. Similar to semantic URL formats

discussed earlier, an example of an abstract semantic URL stored in a navigation graph

would look as follows:

http://example.com/#/state/{var1}/county/{var2}/city/{var3}

Storing the abstract URL instead of every URL variable combination significantly re-

duces the number of tests required. Indeed, it is ideal as most rich web application states

reuse small HTML templates for the displaying of particular data points. This means that

client-side errors would typically manifest themselves for every variance of a variable. One

disadvantage of using abstract URLs is that data specific errors may be missed. For ex-

ample, the sample application has a fault where any city with a period in it’s name (i.e.,

“St. George, UT”) doesn’t render correctly. Unless the random value for the abstract URL

variable selected contained a period, this data related fault would be missed. While not dis-

cussed in detail in this paper, due to the available resource of the full application structure

(from the systemic variable identification), one possibility is to use a sample size confidence

level to adequately test a certain size of the data available.

One of the experiments completed was calculating and comparing the amount of time

required to crawl a full rich web application, a reduced number of states based on a sample

size, and a fully reduced test suite testing only abstract URLs one time. Results of this

experiment are discussed in the following chapter.

3.7 Capturing Errors

Another difficulty encountered with testing rich web applications is the ability to iden-

tify errors that occur in the browser. JavaScript errors are difficult to systematically in-

tercept and report. This section introduces a novel approach for identifying two different

21

types of exceptions during testing, namely network related and JavaScript browser related.

Some network related exceptions are errors that are simple to identify on the server-

side by examining the log files. BrowserMob was used as an embedded proxy to intercept

all communications between the browser and the server. This allows for the logging of

network related exceptions, as well as response interception and subsequent modification

for JavaScript exception reporting.

JavaScript exceptions in modern browsers typically manifest themselves via the browser

console object. The console is typically not visible to the end user and needs to be enabled

via menu options or browser plug-ins such as Firebug for Firefox. A sample of thrown

exception is shown in Figure 3.3.

Figure 3.3: An example JavaScript error in the Firebug console.

Unfortunately, once these exceptions are thrown, there is no way to retrieve them from

the browser. A simple way to capture these is to introduce a small snippet of JavaScript code

in every HTML entry point that has a collection for inserting exceptions. This requires that

testing code be added to the deployable deliverable, considered by many to be bad practice.

As an alternative, this experiment introduces a novel approach to keep testing scaffolding

out of the deployable code base. BrowserMob is used in to intercept only full HTML page

responses from the server to the browser, and alter it injecting a custom browser Console

object at the beginning of the HTML <script> tag. This custom Console object stores any

exception for later retrieval and reporting. Figure 3.4 shows the custom JavaScript injected

into each response.

3.8 Combinatorial Testing

The preparation done with the creation of both the exhaustive and the reduced nav-

igation graph has prepared for the generation of combinatorial test cases. The sample

22

100 <script type=” text / j a v a s c r i p t ”>

101 window . j sE r r o r s = [] ;

102 window . oner ro r = func t i on (errorMessage) {

103 window . j sE r r o r s [window . j sE r r o r s . l ength] = errorMessage ;

104 }

105 </ script>

Figure 3.4: Browser exception catching

application has some variables, namely state, county, and city, that are hierarchical in na-

ture. Czerwonka [7], while describing the capabilities of the Microsoft PICT combinatorial

test generation tool, explains that these hierarchical variables are treated as a “sub-model”

and pairwise combined first to represent a single variable that is then used in the genera-

tion of the combinatorial test cases. For example, in the sample application on the home

page, the State of Utah, Cache County, and Logan City are combined together to form a

single variable that is then used in building the combinatorial tests. Additionally, a great

majority of exceptions that occur in rich web applications result from the different browsers

and environments. Tatsumi [10] made the distinction of input and environment variables.

The input variables discovered via the process introduced previously can then be combined

with provided environment variables to also identify “compatibility faults.” I discuss in the

concluding chapter future work that can add distributed computing capabilities enabling

browsers in different client environments to perform the same tests.

23

CHAPTER 4

RESULTS

Each section of this chapter focuses on the results of one of the four research ques-

tions discussed in the experiments chapter. First, an abstract URL test suite is compared

to the full exhaustive test suite in both size and effectiveness. Second, a more effective

combinatorial coverage based test suite is compared to the same exhaustive test suite.

4.1 Size Impact of Abstract URL Test Suite

Using the algorithm described in Figure 2.1, one is able to identify variables in semantic

URLs. These variables are then used to build abstract URLs that represent a single appli-

cation state for each template or combinations of templates in the sample application. The

abstract URL test suite does not represent every possible data combination represented in

the sample application. The exhaustive count represents every application state as a com-

bination of data plus templates. The hypothesis of this experiment was that the abstract

URL test suite would find less faults than the exhaustive test suite but would miss most, if

not all, data related faults.

For this relatively small application, one can quickly understand the value of identifying

abstract URLs. Indeed, assuming an average page load latency of around 500 milliseconds,

running the exhaustive test suite would require more than 27 hours to perform a full re-

gression test.

One option for future work would be to increase the number of abstract URL tests

from a single random data point for each application state to a statistically relevant sam-

ple of random data points for each application state and compare the effectiveness to the

exhaustive test suite. Table 4.1 compares the sizes of the two strategies.

24
Table 4.1: Size of Test Suites by Strategy.

Strategy Number of Tests

Exhaustive 199,484

Abstract URLs 27

4.2 Effectiveness of Abstract URL Test Suite

The exhaustive test suite yields significantly better results in fault detection compared

to the abstract URL test suite but also took the longest amount of time. In real-world

scenarios, it may not be practical to let a full regression test of nearly 200,000 application

states run for more than a day before deploying.

Table 4.2: Effectiveness of Single Coverage With Abstract URL Reduction.

Strategy Number Faults Identified Percent Faults Identified

Exhaustive 69 89.6%

Abstract URL 15 19.5%

4.3 Size Impact of Combinatorial Coverage

The test generation code, when discovering a <form> element on any snippet of HTML

code, analyzes it looking for related or hierarchical variables to apply combinatorial algo-

rithms to test generation. Not all of the application states in the sample application have

multiple variable combinations as an option. Some pages, such as the application “about”

page, have no variables. As the combinatorial test generation algorithms do not apply to

them, I have combined both generated combinatorial tests and the remaining “uncombined”

states (i.e., about page) to provide a more comprehensive test suite to better compare with

the exhaustive, single coverage testing strategy. The single, exhaustive coverage and com-

binatorial testing coverage had the following number of tests in their respective test suites.

Table 4.3: Size of Test Suites by Strategy.

Strategy Number of Tests

Exhaustive, Single Coverage 199,484

2-way Combinatorial Coverage 25,560 (13,387 combinatorial + 12,173 remaining)

25

100 <f i e ldset data−name=”uni t ” data−r o l e=” contro lg roup ”>

101 <select data−h i e r a r c h i c a l=” uni t ” name=” s t a t e ” id=” s t a t e ”>

102 <option>Se l e c t State</option>

103 </ select>

104 <select data−h i e r a r c h i c a l=” uni t ” name=”county” id=”county”>

105 <option value=””>Se l e c t County</option>

106 </ select>

107 <select data−h i e r a r c h i c a l=” uni t ” name=” c i t y ” id=” c i t y ”>

108 <option value=””>Se l e c t City</option>

109 </ select>

110 </ f i e ldset>

Figure 4.1: Hierarchical variable HTML form example

Inside an encountered <form> element, the combinatorial test generation will search

for any input element or select element as well as a “data-hierarchical” attribute that

indicates these options should be pre-combined before applied as a option in a variable in

the combinatorial test generation. An example <form> element can be found in Figure 4.1.

The “data-hierarchical” attribute tells the test generation code to combine them as a sub-

model before applying it to a combinatorial algorithm. A sample of the pre-combined

sub-model data would look like is found in Table 4.4.

With the unit variable type pre-combined in the sample application, combinatorial test

generation can then be applied according to Table 4.4.

Table 4.4: Sample Combinatorial Tests.

Unit Year Data Point

/state/alabama 1990 Population

/state/alabama/county/autauga 2000 Density

/state/alabama/county/lee/city/auburn-city 2005 Ranking

/state/alabama/county/tuscaloosa/city/tuscaloosa-city

...

Remaining combined units

26

4.4 Effectiveness of Combinatorial Coverage

The single, exhaustive coverage testing yielded a slightly better fault detection but

required a full order of magnitude more tests to achieve that result, 199,484 compared to

25,560. Assuming an average latency of 500 milliseconds would require only 3.5 hours to

execute all test cases in the combinatorial coverage test suite, or approximately 23.5 hours

less time required to test the exhaustive test suite on the sample application.

Table 4.5: Effectiveness of Combinatorial Coverage.

Strategy Number Faults Identified Percent Faults Identified

Exhaustive, Single Coverage 69 89.6%

2-way, Combinatorial Coverage 68 88.3%

27

CHAPTER 5

CONCLUSIONS

Combinatorial testing is a powerful tool in identifying software faults. Indeed, Kuhn, et

al. showed in a study of a NASA Distributed Database that 93% of all faults were identified

by 2-way combinations, and 98% by 3-way combinations. Across industries, “the detection

rate curves for the other applications studied are similar, reaching 100% detection with 4

to 6-way interactions” [14].

Rich web applications continue to grow with the introduction and rapid development

of new HTML5 features and APIs, powerful JavaScript based frameworks, and increasingly

more powerful client machines. This thesis demonstrates that combinatorial testing can

play an important role in the testing of rich web applications and that more future work is

needed.

While there is not a specific standard for semantic URLs compared to the traditional

URL format defined in RFC 1378, this paper has shown a novel way to identify variables by

employing graph theory and branching complexity analysis. This approach worked with the

sample application but needs additional work to be universally applicable to all semantic

URL formats. For instance, an application that has a small number of variables that equal

the branching complexity of the URL structure could result in false positives with variable

identification.

This research also showed that using abstract URLs to generate test cases was an

effective and inexpensive way to discover all types of faults except data faults in the sample

application and particularly well suited for template heavy client-side applications. While it

didn’t find as many errors as the exhaustive or combinatorial approaches, with only 27 tests

(0.0001% of the exhaustive tests run) it found 19.5%. Using abstract URLs may be a good

strategy when time is extremely limited. A point of future work that may possibly yield

28

better results with abstract URLs would be to increase the number of random variables used

from a single variable to a statistically significant percentage of total data points available.

Also demonstrated in this paper was a convenient way to capture JavaScript exceptions

by intercepting HTTP requests and responses via an embedded proxy server, and then

injecting a JavaScript array in the <HEAD> section of each HTML page to capture any

thrown exceptions.

Future work may extend testing to distributed machines and different client environ-

ments. For example, the environment variables shown in Table 5.1 could be combined

with input variables to help catch compatibility faults, an ongoing concern with the various

browser creators adoption rate of new HTML5 features.

Table 5.1: Environment Variables.

OS Browser

Linux Chrome

OSX Firefox

Windows IE

Safari

While I attempted to make the sample application as “real world” as possible, addi-

tional work is needed to make the testing tool better and more practical for rich web appli-

cations in real world scenarios. An initial effort was made to implement ideas in Microsoft’s

PICT tool [7], such as making a better distinction between preparation and test gener-

ation, pre-combining related, hierarchical fields, and providing test generation guidelines

by employing the new HTML5 data-* attributes. As an example of future enhancements

to the testing software, one could create a new “data-exclude-test” to keep a particular

variable from being combined for test case generation. Also, guidelines on associated form

variables with attributes in the ¡fieldset¿ tags would allow for better control of test case

generation with variables. Integrating in with build tools would also be beneficial to keep

those guideline attributes from being deployed to production. More future work that would

be beneficial would be better testing of all JavaScript event types and application state

29

transitions that are not associated with an update to the URL fragment (i.e., an event

triggered by the clicking of a non anchor tag that updates a value in an existing portion of

the Document Object Model (DOM) structure).

Despite much future work left to be researched, this thesis demonstrates that test

case generation using combinatorial coverage strategies in rich web applications, as in other

application types, provides much benefit in identifying faults and should be explored further.

30

REFERENCES

[1] Berners-Lee, T., Masinter, L., McCahill, M., et al. Uniform resource locators (URL).

http://www.ietf.org/rfc/rfc1738.txt, 1994. [Online; accessed June 8, 2012].

[2] Berners-Lee, T., Mogul, J., Masinter, L., Leach, P., Fielding, R., Frystyk, H., and

Gettys, J. Hypertext Transfer Protocol–HTTP/1.1. http://www.ietf.org/rfc/

rfc2616.txt, 1999. [Online; accessed June 8, 2012].

[3] Bryce, R., and Memon, A. Test suite prioritization by interaction coverage. In Work-

shop on Domain specific approaches to software test automation: in conjunction with

the 6th ESEC/FSE joint meeting (2007), ACM, pp. 1–7.

[4] Bryce, R., Sampath, S., and Memon, A. Developing a single model and test prioriti-

zation strategies for event-driven software. Software Engineering, IEEE Transactions

on, 37 (2011), 48–64.

[5] Burners-Lee, T. Cool URIs don’t change. W3C (2008).

[6] Colbourn, C. Combinatorial aspects of covering arrays. Le Matematiche (Catania) 59

(2004), 125–172.

[7] Czerwonka, J. Pairwise testing in the real world: Practical extensions to test-case sce-

narios. http://msdn.microsoft.com/en-us/library/cc150619.aspx, 2008. [Online;

accessed June 8, 2012].

[8] Falkner, J., Timney, J., and Galbraith, B. Beginning JSP web development. Wrox

Press Ltd., 2001.

http://www.ietf.org/rfc/rfc1738.txt
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2616.txt
http://msdn.microsoft.com/en-us/library/cc150619.aspx

31

[9] Gleyzer, A., Denisyuk, M., Rimmer, A., and Salingar, Y. A fast recursive GIS algorithm

for computing strahler stream order in braided and nonbraided networks. JAWRA

Journal of the American Water Resources Association 40, 4 (2004), 937–946.

[10] Grochtmann, M., Wegener, J., and Grimm, K. Test case design using classification

trees and the classification-tree editor CTE. In Proceedings of Quality Week (1995),

vol. 95, p. 30.

[11] Guo, Y., and Sampath, S. Web application fault classification-an exploratory study. In

Proceedings of the Second ACM-IEEE international symposium on Empirical software

engineering and measurement (2008), ACM, pp. 303–305.

[12] Herman, I., Melançon, G., and Marshall, M. Graph visualization and navigation in

information visualization: A survey. Visualization and Computer Graphics, IEEE

Transactions on 6, 1 (2000), 24–43.

[13] Hickson, I., and Hyatt, D. HTML5: A vocabulary and associated APIs for HTML and

XHTML. W3C Working Draft 19 (2010).

[14] Kuhn, D., Kacker, R., and Lei, Y. Practical combinatorial testing. NIST Special

Publication 800 (2010), 142.

[15] Kuhn, D., and Reilly, M. An investigation of the applicability of design of experiments

to software testing. In Software Engineering Workshop, 2002. Proceedings. 27th Annual

NASA Goddard/IEEE (2002), IEEE, pp. 91–95.

[16] Kuhn, D., Wallace, D., and AM Gallo, J. Software fault interactions and implications

for software testing. Software Engineering, IEEE Transactions on 30, 6 (2004), 418–

421.

[17] Lawton, G. New ways to build rich internet applications. Computer 41, 8 (2008),

10–12.

32

[18] Mozilla. Mozilla Developer Network, Error Object Reference. https://developer.

mozilla.org/en/JavaScript/Reference/Global_Objects/Error, 2011. [Online; ac-

cessed June 8, 2012].

[19] Ocariza Jr, F., Pattabiraman, K., and Zorn, B. JavaScript errors in the wild: An empir-

ical study. In Software Reliability Engineering (ISSRE), 2011 IEEE 22nd International

Symposium on (2011), IEEE, pp. 100–109.

[20] Paulson, L. Building rich web applications with Ajax. Computer 38, 10 (2005), 14–17.

[21] Sampath, S., Bryce, R., Viswanath, G., Kandimalla, V., and Koru, A. Prioritizing user-

session-based test cases for web applications testing. In Software Testing, Verification,

and Validation, 2008 1st International Conference on (2008), IEEE, pp. 141–150.

[22] Sampath, S., Sprenkle, S., Gibson, E., Pollock, L., and Greenwald, A. Applying concept

analysis to user-session-based testing of web applications. Software Engineering, IEEE

Transactions on 33, 10 (2007), 643–658.

[23] Vaughan-Nichols, S. J. Will HTML 5 Restandardize the Web. Computer 43 (2010),

13.

[24] Wang, W., Lei, Y., Sampath, S., Kacker, R., Kuhn, R., and Lawrence, J. A com-

binatorial approach to building navigation graphs for dynamic web applications. In

Software Maintenance, 2009. ICSM 2009. IEEE International Conference on (2009),

IEEE, pp. 211–220.

[25] Williams, H., and Lane, D. Web database applications with PHP & MySQL. O’Reilly

& Associates, Inc., 2004.

https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Error
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Error

	Test Case Generation Using Combinatorial Based Coverage for Rich Web Applications
	Recommended Citation

	ABSTRACT
	PUBLIC ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	BACKGROUND
	JavaScript Background
	Traditional URL Formats
	Semantic URL Formats
	Variable Detection Algorithm for Semantic URLs
	Algorithm Description

	EXPERIMENTS
	Research Questions
	Sample Application
	JavaScript Faults
	Testing Technologies
	Navigation Graph
	Abstract URLs
	Capturing Errors
	Combinatorial Testing

	RESULTS
	Size Impact of Abstract URL Test Suite
	Effectiveness of Abstract URL Test Suite
	Size Impact of Combinatorial Coverage
	Effectiveness of Combinatorial Coverage

	Conclusions
	REFERENCES

