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ABSTRACT 

Using Biophysical Geospatial and Remotely Sensed Data to Classify 

Ecological Sites and States 

by 

Carson A. Stam, Master of Science 

 

Utah State University, 2012 

 

 

Major Professor: Dr. R. Douglas Ramsey 

Department: Wildland Resources 

 

 

 Monitoring and identifying the state of rangelands on a landscape scale can be a 

time consuming process.  In this thesis, remote sensing imagery has been used to show 

how the process of classifying different ecological sites and states can be done on a per 

pixel basis for a large landscape.   

 Twenty-seven years’ worth of remotely sensed imagery was collected, 

atmospherically corrected, and radiometrically normalized.  Several vegetation indices 

were extracted from the imagery along with derivatives from a digital elevation model.  

Dominant vegetation components from five major ecological sites in Rich County, Utah, 

were chosen for study.  The vegetation components were Aspen, Douglas-fir, Utah 

juniper, mountain big sagebrush, and Wyoming big sagebrush.  Training sites were 

extracted from within map units with a majority of one of the five ecological sites.   

A Random Forests decision tree model was developed using an attribute table 

populated with spectral biophysical variables derived from the training sites.  The overall 
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out-of-bag accuracy for the Random Forests model was 97.2%.  The model was then 

applied to the predictor spectral and biophysical variables to spatially map the five major 

vegetation components for all of Rich County.  Each vegetation class had greater than 

90% accuracies except for Utah juniper at 81%.  This process is further explained in 

chapter 2. 

 As a follow-on effort, we attempted to classify vegetation ecological states within 

a single ecological site (Wyoming big sagebrush).  This was done using field data 

collected by previous studies as training data for all five ecological states documented for 

our chosen ecological site.  A Maximum Likelihood classifier was applied to four years of 

Landsat 5 Thematic Mapper imagery to map each ecological state to pixels coincident to 

the map units correlated to the Wyoming big sagebrush ecological site.  We used the 

Mahalanobis distance metric as an indicator of pixel membership to the Wyoming big 

sagebrush ecological site.  Overall classification accuracy for the different ecological 

states was 64.7% for pixels with low Mahalanobis distance and less than 25% for higher 

distances.   

(96 pages) 
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PUBLIC ABSTRACT 

Using Biophysical Geospatial and Remotely Sensed Data to Classify 

Ecological Sites and States 

 

Within the Intermountain West, vast expanses of big sagebrush shrubland and 

steppe are considered emblems of the western range.  Currently, there are approximately 

60 million hectares of big sagebrush within the 11 western states, four million of which 

are in the state of Utah.  However, the historic distribution of sagebrush has been impacted 

by conversion to other types of land cover through juniper encroachment, urbanization, 

invasive weeds, and agricultural expansion.  In Utah alone, big sagebrush communities 

have been reduced to approximately 55% of their historic extent.  A primary and current 

example of the cumulative impact of big sagebrush loss is the eminent listing of the Sage 

Grouse as an endangered species.  This potential listing will force land management 

agencies to impose strict guidelines for future development of sagebrush-dominated 

landscapes.  These growing pressures have led to a need to accurately estimate the actual 

and potential spatial distribution of sagebrush shrubland and steppe and their current 

ecological condition. 

The Utah State University Remote Sensing and Geographic Information Systems 

laboratory proposed a two-year study to develop and demonstrate methods of ecological 

assessment using satellite and aerial imagery.  This project will show how common 

remote sensing tools can help in the identification of unique ecological sites across an 

entire landscape.  Ecological site descriptions describe the historic plant communities and 
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soils that existed on an ecological site (ES).  Therefore, classifying ESs will allow land 

managers to understand the potential vegetation communities that can exist at a site.   

Because much of the historic vegetation in the Intermountain West has changed to 

alternative land cover types, it is also important to assess the current vegetation condition 

of the landscape.  A remote sensing based classification was used to identify the 

ecological state of Wyoming big sagebrush communities.  A method of calculating the 

probability of an area belonging to the Wyoming big sagebrush ES will also be explained.   

The methodology described in this research will be easily replicated by those with 

minimal training in remote sensing techniques.  It is expected that these methods will 

benefit both public and private land managers as they seek to produce sustainable policies.   

Carson Stam 

  



vii 

DEDICATION 

 

To my beautiful and loving wife Marissa, our son Greyson, and our other  

children yet to come.  

  



viii 

ACKNOWLEDGMENTS 

I first want to thank and recognize my major professor, Douglas Ramsey.  I began 

meeting with Doug well before I was accepted to graduate school.  He has been helpful 

and provided much appreciated guidance and direction on my thesis.  He also employed 

me at the RS/GIS lab during my time in Logan.  There I learned valuable skills that will 

help me in my future employment.  I also want to express my gratitude to my other 

committee members, Janis Boettinger and Eugene “Geno” Schupp.  One of my first 

courses at USU was an exceptional soils class taught by Janis.  She has also offered 

important comments to my thesis project ideas and papers.  I thank Geno for being willing 

to be on my committee and for his valuable comments and criticisms of my work.   

If there was an award for “Honorary Committee Member” Alex Hernandez would 

win it.  Alex shared his extensive knowledge of ecology and remote sensing with me 

whenever I needed help. Without Alex’s help on my graduate work, my thesis would 

never have been completed.  I would also like to thank Nate Payne.  Nate helped me with 

my field work in Rich County, UT.  I couldn’t have asked for a better research assistant.   

Thank you to everyone at the RS/GIS lab.  Chris McGinty helped me with several 

details of my project and helped me get ready for my field work.  He also included me on 

several projects for the lab.  Chris Garrard taught one of my favorite classes I have ever 

taken.  The things I learned in that programming class have and will continue to help me.  

She was also willing to help me with questions whenever I had them. 



ix 

I need to express my gratitude to the staff at Deseret Land and Livestock for the 

permission to access several sites on their property.  I would particularly like to thank 

Rick Danvir for giving me information about the ranch. 

I would like to thank my parents and siblings for encouraging me to attend 

graduate school and for all the support they have given me throughout my life.   

Finally, I want to thank my wife, Marissa, for everything she has done for me.  Her 

support during this time has meant everything to me.  She has been patient with me as I 

worked through graduate school and listened to me when I was discouraged about my 

research progress.  Marissa is always willing to put her wants second.  I love her and hope 

she knows how important she has been in this process. 

Carson A. Stam 

  



x 

CONTENTS 

 

 

Page 

 

ABSTRACT…………………………………………………………………………….. iii 

 

PUBLIC ABSTRACT………………………………………………………………….... v 

 

DEDICATION…………………………………………………………………………... vii 

 

ACKNOWLEDGMENTS……………….......…………………………………………. viii 

 

LIST OF TABLES……………………………………………………………………….. xi 

 

LIST OF FIGURES……………………………………………………………………... xii 

 

CHAPTER 

  

1.  INTRODUCTION……………………………………………………….. 1 

2. MAPPING VEGETATION COMPONENTS OF ECOLOGICAL  

SITES: A REMOTE SENSING APROACH…………………………..... 6 

3. ECOLOGICAL SITE AND STATE CLASSIFICATION OF  

WYOMING BIG SAGEBRUSH IN RICH COUNTY, UTAH……....... 45 

 

4. CONCLUSION…………………………………………………………. 80 

  



xi 

LIST OF TABLES 

 

 

Table                           Page 

 

2-1 Site-by-attribute table for each training site…………………………………….. 33 

 

2-2 Confusion matrix for Random Forests classification of Rich County, UT…..….36 

 

2-3 Remote sensing and topographic variables used in the cluster analysis  

and Random Forests model……………………………………………………... 36 

 

3-1 Confusion matrix for the similar field sites...……………….……...................... 71 

 

3-2 Confusion matrix for the somewhat similar field sites……….……………….... 71 

 

3-3 Confusion matrix for the dissimilar field sites………………………………….. 72 

  



xii 

LIST OF FIGURES 

 

 

Figure               Page 

 

2-1 Line graph of annual fluctuations in NDVI for evergreen forests,  

shrublands, and deciduous forests……………………………………………… 37 

 

2-2 Random Forests classification of Rich County, UT ………………………….    38 

 

2-3 Scatter-plot showing the distribution of each ecological site in  

our study with average NDVI value on the x-axis and the average standard 

deviation in NDVI on the y-axis…………………………………………………39 

 

2-4 Scatter-plot showing the distribution of each ecological site in  

our study with average NDVI value on the x-axis and the average  

brightness component (obtained from the tasseled cap transformation)  

value on the y-axis………………………………………………………………..40 

 

2-5 Scatter-plot showing the distribution of each ecological site in  

our study with elevation on the x-axis and slope on the y-axis……………….... 41 

 

2-6 Scatter-plot showing the distribution of each ecological site in  

our study with elevation on the x-axis and aspect on the y-axis……………….  42 

 

2-7 Dendogram of Average Linkage Clustering.  This figure shows the  

grouping of ecological sites (ES) into their own clusters……………..….…….  43 

 

2-8 Variable importance plot produced by Random Forests model…………………44 

 

3-1 State-and-transition model for the R034AY2ggUT ecological site  

description………………………………………………………………………..73 

 

3-2 Line graph of annual fluctuations in NDVI for grasslands, shrublands,  

and deciduous forests………………………………………………………...…..74 

 

3-3 State Classification map of all areas in the R034AY2ggUT ecological site in  

Rich County, UT…………………………………………………………………..75 

 

3-4 Mahalanobis distances for all areas in the R034AY2ggUT ecological site in  

Rich County, UT...………………………………………………………………..76 

 

3-5 Distribution of pixels based on Mahalanobis distance from whichever  

state the pixel was classified as…………………………………………………...77 

 



xiii 

 

3-6 Bar graph showing the percentages of each similarity class that actually  

were within the R034AY2ggUT ecological site………………….........................78 

 

3-7 Bar graph showing the percentages of areas within each Mahalanobis  

distance range that actually were within the R034AY2ggUT ecological  

site ……………………………………………………………………………….. 78 

 

3-8 Bar graph showing the percentages of areas within each Mahalanobis  

distance range that actually were within the R034AY2ggUT ecological  

site.  Extra ranges added by including additional thresholds  

at the midpoint of each range………………………………………………….......79 

 



 

CHAPTER 1 

INTRODUCTION 

In the recent history of land management, ground-based techniques have been 

used to monitor and assess the condition of ecosystems.  The information gathered using 

ground-based techniques is often extrapolated to larger landscapes.  The application of 

these techniques is usually sparse in time and space, leading to a mischaracterization of 

the landscape (Pringle et al. 2006).  This problem presents a challenge to natural resource 

managers responsible for assessing and taking action to improve or maintain the 

ecological condition of landscapes.  Forbis et al. (2007) stated that one of the main, initial 

issues facing resource managers is to quantitatively assess the ecological condition of 

landscapes using limited financial resources which translates into limited field sampling 

efforts.  The subject of our research has been to investigate remote sensing methods and 

strategies that can identify the potential and current ecological condition of a landscape.  

Remote sensing is recognized as a cost-effective method for identifying ecological 

conditions across large landscapes (Mumby et al. 1999).  In fact, remote sensing is now 

critical to the successful modeling of many natural resource processes (Jensen 2000).  A 

major consideration when using remote sensing to monitor ecological condition is the 

contextual framework within which spectral data is interpreted.  For this work, we have 

opted to use a landscape level framework developed by the USDA Natural Resources 

Conservation Service (NRCS).  

 The NRCS has been systematically classifying rangelands into ecological sites 

(ES) that link soil characteristics to the defined historic plant community occupying that 

soil.  Ecological site descriptions (ESD) describe areas of specific biophysical properties 
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and associated plant communities that may be found at a given ES.  These sites differ 

from other sites in their ability to produce a distinct kind and amount of vegetation.  

Areas of the same ES, but separated by geography, are also unique in that they are 

assumed to “respond similarly to management actions and natural disturbances” (U.S. 

Department of Agriculture, NRCS 2011).  Ecological sites are primarily determined on 

the basis of soil characteristics and the resulting differences in plant species composition 

and production that occur on those soils. 

 Currently, ESs are only identified on a landscape as components within map units 

(MU).  An MU is a spatially defined area that defines the soil characteristics at a location.  

A given MU can contain one or more different soil types that are termed components.  

Components are contiguous groupings of different soils whose extents are equal to or 

smaller than the MU.  Map unit polygons therefore have a one-to-many relationship with 

ESs (Arid Land Research Programs 2010).  The spatial and tabular data for MUs are 

stored in individual soil surveys and can be obtained from the NRCS SSURGO database 

(U.S. Department of Agriculture, NRCS-SSURGO 2012).  Up to four different ecological 

site components (one per soil type) are combined into one MU and the SSURGO tabular 

database details the percentage of area each component occupies within a given MU; 

however, the database does not define the spatial location of a particular ES component 

within the MU. 

Vegetation communities exist across their geographic distribution in various 

ecological states.  These states can be viewed as nuances in community structure due to 

local environmental factors, or they can represent alterations forced by management 

actions or changes in climate.  Information about the different ecological states that 
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communities can occupy, as well as the forces that promote the transitions between 

states, can be enumerated in state-and-transition models (STMs) (Westoby et al. 1989).  

These transitions can take place due to soil erosion, fire regimes, weather variability, and 

management (Briske et al. 2005).  Westoby et al. (1989) suggested that the purpose of an 

STM are to 1. Define the states possible within a system, 2. Catalogue management 

action and other forces that drive transitions from one state to another, and 3. List the 

actions that could produce favorable transitions as well as the hazards of inaction that 

could result in unfavorable transitions.  A state is defined as a recognizable, resistant, and 

resilient complex of soil base and vegetation structure (Stringham et al. 2003).  The 

original STM framework did not indicate a need to identify a reference state.  However, 

STMs adopted by the NRCS have been joined with the traditional range model so that 

STMs developed by the NRCS include a reference state that characterizes the historic 

plant community (Briske et al. 2005).   

This thesis is composed of two substantive chapters bounded by this introduction 

and overall conclusion chapters.  In chapter 2, we test whether a multi-temporal dataset of 

Landsat 5 Thematic Mapper (TM) imagery can be used in conjunction with a decision 

tree classifier to map the vegetation components of ESs within map units.  Landsat 5 TM 

imagery was collected for a 26 year span.  Each image was atmospherically corrected and 

normalized using an image-based method (Chavez 1996).  Several remote sensing 

variables and topographic variables were explored for their ability to separate ES 

vegetation components.  A cluster analysis was conducted to determine whether there 

was natural structure in the data that would allow for discrimination between vegetation 

types.  A Random Forests model was developed and applied to a set of image and 
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topographic predictor variables to map the spatial distribution of ESs on a pixel basis.  

This ability to predict ecological sites on a pixel basis has been suggested as the next step 

in remote sensing applications to rangeland conservation (Hernandez 2011).  With the 

knowledge of where these ecological sites can occur, resource managers are then able to 

understand the distribution of resources and the ecological potential of sites.  This 

information will lead to better-informed management decision making. 

In chapter 3, we explored whether different ecological states could be classified 

within Wyoming big sagebrush ecological sites.  Field data collected by Peterson (2009) 

and the Utah Division of Wildlife Resources (2006) were used to train the classifier to 

map the different ecological states.  A Maximum Likelihood classifier was used to 

classify a temporal image stack of TM imagery spanning four continuous years (2005-

2008) into different ecological states.  A Mahalanobis distance metric was calculated to 

estimate the probability of a pixel belonging to a specific ecological state.  Field work 

was done to 1) assess the accuracy of our ecological state classification and 2) determine 

whether the Mahalanobis distance was a suitable indicator of membership in a Wyoming 

big sagebrush ecological site.  The implications of the classification accuracies as well as 

the suitability of using Mahalanobis distance as a similarity metric are discussed.   
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CHAPTER 2 

MAPPING VEGETATION COMPONENTS OF ECOLOGICAL SITES: 

A REMOTE SENSING APROACH 

 

INTRODUCTION 

Ecological Site Descriptions (ESD) as defined by the Natural Resources 

Conservation Service (NRCS), characterize sites of specific biophysical properties and 

plant communities.  These sites differ from other kinds of land in their ability to produce 

a distinctive kind and amount of vegetation.  Areas of the same ecological site (ES) are 

also unique in that they will “respond similarly to management actions and natural 

disturbances” (U.S. Department of Agriculture, NRCS 2012a).  Ecological sites are 

correlated on the basis of soils, geomorphology, hydrology, and the resulting differences 

in plant species composition that occur on those soils. Because ESDs are based on the 

plant community that existed at the time of European settlement (U.S. Department of 

Agriculture, NRCS 2011), ESDs represent reference states for State and Transition 

Models (STM). 

Each complete ESD has an associated STM.  The purposes of an STM are to 1. 

Define the alternative stable states possible within a system 2. Catalogue the transitions 

from one state to another including the conditions which induce the transitions and 3. List 

the management actions that could produce favorable transitions as well as the hazards of 

inaction that could produce unfavorable transitions (Westoby et al. 1989).  A state is 

defined as a recognizable, resistant, and resilient complex of soil base and vegetation 

structure (Stringham et al. 2003).  The original STM framework does not indicate the 
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need to identify a reference state.  However, STMs developed by the Natural Resources 

Conservation Service (NRCS) have been joined with the traditional range model so that 

these STMs include a reference state that refers to the historic (pre-Columbian) plant 

community (Briske et al. 2005).  An ESD, therefore, is an important component of an 

STM because it defines the reference state.  Briske et al. also stated that ESDs are a 

“critical feature of state-and-transition models because the descriptions provide the 

interpretive information associated with these models” (p. 5). 

Currently, ESs are spatially identified as components within map units (MU).  An 

MU is a spatially defined area that defines the soil characteristics at that location.  A 

given MU can contain one or more different soil types that are termed components.  

Components are contiguous groupings of different soils whose extents are smaller than 

the minimum mapping unit of the MU.  The percentage of area each component occupies 

within an MU is documented; however, the spatial location of a specific component 

within an MU is not defined.    

Bestelmeyer et al. (2009) formulated an approach to develop and apply ecological 

sites along with STMs.  They suggested a spatial hierarchy system for sampling which 

used imagery to identify vegetation distribution.  These mapped vegetation areas could 

then infer possible ecological sites and states.  They suggested that Southwest Regional 

Gap (SWGAP) (Prior-Magee 2007) or Landsat imagery could be used for this purpose.  

Maynard et al. (2007) found that there was a high correlation between field measures of 

productivity and exposed soil when compared to the tasseled cap brightness component 

extracted from Landsat Thematic Mapper (TM) imagery.  The tasseled cap 

transformation converts reflectance values obtained through remote sensing into a set of 
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composite values consisting of scene brightness, greenness and wetness.  The brightness 

component represents the general intensity of reflectance per pixel across all spectral 

bands in a Landsat 5 TM scene.  Differences in brightness have been shown to 

discriminate between deciduous shrubs (or harvested forest stands) and closed canopy 

forests (Dymond et al. 2002).  

The Normalized Difference Vegetation Index (NDVI) (Rouse et al. 1974) 

quantifies the amount of live green vegetation found in a remotely sensed image.  Gamon 

et al. (1995) discussed the usefulness of the NDVI as an indicator of photosynthetic 

activity as well as canopy structure, and plant nitrogen content.  Jensen (2000) showed 

that NDVI was sensitive to canopy variations including soil visible through canopy 

openings” (p. 386).  While the sensitivity to soil background has typically been seen as a 

disadvantage of NDVI for vegetation assessment, it could prove useful for studying ESs 

because areas of the same ES may have a similar amount and type of bare soil.  Since 

NDVI is sensitive to these differences, it should be a good index for distinguishing 

different ESs.  The NDVI values within the polygon of a soil mapping unit and the 

variation in the NDVI has also been used to distinguish between cover types (Pickup and 

Foran 1987).   

Accurately classifying and identifying the spatial extent of ESs on a landscape 

level is a very time consuming process.  At this point in time, only extensive field work 

can map the spatial distribution of ESs across a landscape due to the need to properly 

identify soils.  While remotely sensed data cannot yet be used to obtain detailed data 

about soils, it can be used to identify the unique vegetation components of ESs.  Being 

able to accurately identify the vegetation component of ESs should provide a means by 
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which soil field sample locations can be identified more efficiently.  We postulate that 

using satellite derived NDVI and brightness, coupled with biophysical geospatial data 

(elevation, slope, and aspect) should allow areas of the same ES vegetation component to 

be mapped.  If remote sensing indices allow for separation between ES vegetation 

components, then that process could help with accurately classifying the landscape into 

individual ESs and subsequently help with the formulation of STMs.  Our objective, 

therefore, is to use NDVI, brightness, and biophysical geospatial data to determine 

whether we can accurately identify areas of the same ES vegetation component across a 

large landscape.  This process of identifying sites using spectral and biophysical data 

could provide a way to identify and understand the various states an ES could occupy.  

 
METHODS 

Study Area 

Our research was conducted in Rich County, Utah, located in the northeastern 

corner of the state (long 111°30’38.5’’ – long 111°2’42.2’’ West and lat 42°0’0’’- lat 

42°08’24.3’’ North).  The sites we sampled were from two Major Land Resource Areas 

(MLRA) including the Wasatch and Uinta Mountains (47) and Cool Central Desertic 

Basins and Plateaus (34A).  MLRAs are classified by physiography, geology, climate, 

water, soils, biological resources, and land use (U.S. Department of Agriculture, NRCS 

2005).  The western portion of the study area is characterized by high elevations with 

vegetation consisting of aspen forests, subalpine conifer forests, and scattered mountain 

sagebrush steppe.  Moving east, the elevation decreases, and the mountain sagebrush 

steppe becomes dominant.  Both the mountain and foothills sections of the county are in 
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MLRA 47.  Central and eastern Rich County is made up of relatively lower elevations 

with vegetation consisting of basin big sagebrush steppe and shrubland, subalpine 

grasslands, and agriculture.  These sections of the county are in MLRA 34A.   

The average elevation is 2093 m.  The highest point is Bridger Peak at 2821 m 

and the lowest point is about 1800 m.  The climate is variable and is affected by the 

changing topography of the county.  The soil temperature regime is frigid and the soil 

moisture regime is xeric for most of the county.  North facing slopes in the higher 

elevations have cryic soil temperature regimes.  Higher elevations also transition to an 

ustic soil moisture regime.  The parent material is primarily derived from sandstone and 

limestone.  The large variations in elevation, slope, and climate make a detailed account 

of all soils present in Rich County difficult in this document.  For a detailed description 

of the soils present in Rich County, visit the online NRCS Soil Survery Geographic 

(SSURGO) Database (U.S. Department of Agriculture, NRCS-SSURGO 2012).  

The majority of the land is in private ownership at 58.8%.  The federal 

government is the next largest landowner with 33.6% with land split between the Bureau 

of Land Management and the U.S. Forest Service.  The state of Utah owns only 7.6% of 

the land area which is mostly composed of State Trust Lands (Utah Office of Tourism 

2009).  Disturbances that have affected the area include agriculture, grazing, logging, and 

burning.  

 

Biophysical Geospatial Datasets 

A series of Landsat 5 TM images (Path 38/ Row 31) for each year between 1984-

2011 with Julian date as close to 207 (July 26
th

) as possible was collected from the U.S. 
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Geological Survey Global Visualization Viewer (GLOVIS).  The Julian date of 207 was 

chosen by averaging the date for each year that displayed the greatest variance in NDVI 

between different land cover types.  The dates were obtained by examining line graphs of 

mean NDVI values collected by AVHRR of evergreen forests, shrubs, and deciduous 

forests.  These graphs can be obtained through GLOVIS using a tool called “NDVI 

graph” (U.S. Geological Survey 2011).  Figure 2-1 is an example of one of these graphs 

from 2009.  Images with minimal cloud cover and collection dates closest to the Julian 

date 207 were selected.  Of the 28 years’ images, 18 were within 20 days of 207, 5 more 

were within 30 days of 207, and 3 more were within forty days of 207.  The cloud free 

scene closest to Julian date 207 from 1987 had a Julian date of 153 and was 54 days off.  

The year 2001 was the only year that a late spring or summer image was not available 

due to cloud cover.   

 All images were rectified and resampled to UTM Zone 12 NAD 1983 map 

projection.  Each image’s raw digital numbers were converted to reflectance values using 

an image-based atmospheric correction (Chavez 1996) and the calibration coefficients for 

Landsat 5 TM (Chander et al. 2009).  Following image standardization, we calculated 

NDVI using the formula (NIR - RED) / (NIR + RED).  We then used a 5 x 5 pixel 

(22,500 m
2
 ground area) focal window to calculate the standard deviation in NDVI for 

each pixel.  A 5x5 focal window was not used in calculating NDVI because it was not 

necessary and doing so would only decrease the spatial accuracy of the NDVI values.  

The brightness component was calculated using the published transformation coefficients 

for the Landsat 5 TM imagery for each year (Crist and Cicone 1984).  These variables 

were collected for multiple years based on literature indicating that longer time series of 
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remotely sensed data were necessary to adequately characterize different ecological states 

due to inherent year-to-year variance (Hernandez 2011). 

 A 30 m digital elevation model (DEM) was obtained from the Automated 

Geographic Reference Center (2011) for Rich County.  Slope and aspect were then 

calculated using Spatial Analyst in ArcMap
TM

.  Elevation, slope, and aspect have been 

shown to determine the microclimate and therefore the spatial distribution and patterns of 

vegetation (Jin et al. 2008). 

 

Ecological Sites 

For this study, five ES vegetation components were selected.  They included 

Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis), mountain big 

sagebrush (Artemisia tridentata ssp. vaseyana), Utah juniper (Juniperus osteosperma), 

Douglas-fir (Pseudotsuga menziesii), and aspen (Populus tremuloides).  With the 

exception of Utah juniper, these vegetation components were selected because of their 

prevalence in the county.  Wyoming big sagebrush accounts for much of the vegetation in 

MLRA 34A, and MRLA 47 is mostly comprised of aspen, Douglas-fir, and mountain big 

sagebrush.  Utah juniper is not prevalent in either MRLA; however, we thought it an 

important vegetation component to classify due to its potential encroachment into 

sagebrush steppe communities (Miller and Rose 1999).  Together, these vegetation 

components represent approximately 71% of the county by area. 

Map unit (MU) spatial and tabular data were obtained from the NRCS SSURGO 

database.  For the purposes of this study, we selected MU’s which were predominantly 

made up of one of our targeted components (70% areal composition).  This was done to 
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help ensure that sites chosen for sampling would have low spatial soil and land cover 

variability.  Land cover data from the SWGAP analysis were used to identify MU’s that 

represented the defined ES.  For instance, an MU was selected that consisted of a >=70% 

component Wyoming big sagebrush.  If the SWGAP analysis land cover also identified 

the area as containing a big sagebrush land cover class, then that MU was used for this 

study.  Twenty polygons were digitized for each ES vegetation component of interest 

using the intersection of the SSURGO and SWGAP data and the visible boundaries of the 

vegetation component as photointerpreted from the 2009 National Agricultural Imagery 

Project (NAIP) 1m resolution orthoimagery.  In total, one-hundred polygons were created 

(20 for each ES vegetation component).  

 
Cluster Analysis and Dataset Preparation 

We applied a cluster analysis to determine if the spectral and biophysical 

characteristics of our 100 training polygons would allow us to separate each vegetation 

type from the others.  Cluster analysis was conducted to determine if there was natural 

structure in the data that would allow separation between dissimilar ES vegetation types.  

Cluster analysis is suited for this task because it does not take into account any training 

data.  Clusters are created based solely on the distance, in n-dimensional space, of one 

cluster to another.  For our purposes, we used the agglomerative hierarchical clustering 

(AHC) method.  AHC starts with n clusters where each initial observation is its own 

single observation cluster.  On the first iteration, the two closest observations are merged 

into a composite cluster so that there then exists n - 1 clusters.  This process continues 

until there is one cluster that contains all observations.  The distance between clusters can 
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be defined multiple ways in AHC.  The most common are single-link, complete-link, and 

average-link clustering.  Single-link clustering measures the distance of the two most 

similar observations within a cluster.  Complete-link clustering measures the distance of 

the two most dissimilar observations within a cluster.  Average-link clustering measures 

the distance between each observation in a cluster and all the observations in another 

cluster.  The two clusters with the lowest average distance are combined to form a new 

cluster.  There are drawbacks to each method.  The single-link method is sensitive to 

noise and outliers.  The complete-link method is not sensitive to noise and outliers, but 

can break large clusters into smaller clusters.  The average-link method is a compromise 

between the two (Kotsiantis and Pintelas 2004).  We chose to use the average-link 

method because of this compromise.   

 Polygons were intersected with the topographic data layers, yearly NDVI 

imagery, and yearly brightness component images.  For each polygon, the mean values of 

topographic and brightness variables were extracted along with the mean and standard 

deviation of each NDVI image.  Instead of including the brightness component, NDVI, 

and standard deviation of NDVI for each year for each polygon in our data matrix, we 

created 5-year averages for these variables.  This was done to minimize the effects of 

interannual climate variability and clouds.  Interannual climate variability has been 

shown to affect some plant species productivity (Goulden et al. 1996; Arain et al. 2002) 

and ecologic processes (Westerling and Swetnam 2003). The resulting data matrix was 

therefore composed of the ES vegetation component name followed by three columns for 

the DEM derivatives, five sets of 5-year averages for the remotely sensed variables, and 

one set of 3-year (2009 – 2011) averages for the remotely sensed variables.  Because our 
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variables contained different units of measurement (degrees, meters, and vegetation 

indices), we normalized each variable by subtracting the mean of that variable from the 

actual value and dividing by the standard deviation (Sakrejda-Leavitt 2009).  To perform 

cluster analysis, we used R code written by Everitt and Hothorn (2010). 

 

Random Forests 

The purpose of running cluster analysis on the data matrix was to determine if 

there was enough structure in the data to spatially map ES vegetation components using 

these variables.  If we determined that there was structure to the data, it was then our goal 

to develop a decision tree model utilizing these data to map the distribution of our 

selected ESs across the study area. We chose Random Forests (Breiman 2001) for its 

high accuracy in ecological applications (Cutler et al. 2007), automatic variable selection, 

and generation of an internal unbiased estimate of the generalization error.  We also 

wanted the ability to interpret what variables were most important in deriving the 

decision tree model.  Random Forests is well suited to this task because of its easy to 

produce variable importance plots.  Random Forests uses a bootstrap sample of the 

dataset to “fit” several classification trees.  Observations not included in the bootstrap 

sample are called out-of-bag observations.  Each fitted classification tree is then used to 

predict the out-of-bag observations.  The out-of-bag accuracy (cross-validation) is 

calculated for each observation using the out-of-bag predictions (Cutler et al. 2007).  This 

process is repeated hundreds of times until a final classification and cross-validation 

accuracy is produced.   
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 Vegetation type (i.e. aspen, Douglas-fir, mountain big sagebrush, Wyoming big 

sagebrush, and Utah juniper) was used as the class variable to be predicted while the 

remotely sensed and topographic variables were used as predictors.  We used the default 

500 iterations as our bootstrap.   

 

Image Classification and Validation
 

After a Random Forests decision tree model was created, we applied it to a 

geospatial data stack of Rich County using the image imputation package in R 

(Crookston and Finley 2008).  This geospatial data stack contained the normalized 

variables (see the Cluster Analysis and Data Set Preparation section above) used to 

develop the model including the multiple year averages, NDVI layers, the matching 

spatial variance layers, matching brightness layers, as well as the topographic layers.  The 

output of the image imputation package (Fig. 2-2) was assessed for accuracy by 

generating random points within each class.  Fifty random points were generated within 

the classified areas for each vegetation type.  Each point was validated using NAIP 1 m 

resolution imagery.   

 

RESULTS 

The 100 polygons representing the five different vegetation components (20 each) 

varied in size.  The smallest polygon was approximately 4 acres and the largest was 124 

acres.  The reason for this range of area is that some ESs had larger areas of contiguous 

coverage (e.g. Wyoming big sagebrush) while others had smaller areas of contiguous 

coverage (e.g. Utah juniper).  Area did not vary as much within a given ES.  Table 2-1 
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contains the averaged spectral values and topographic data as well as polygon size 

collected for each polygon. 

An exploratory analysis was conducted to determine whether vegetation 

components had unique NDVI and brightness values.  A series of graphs plotted each 

observation (polygon) against different variables. Figure 2-3 shows the 28-year mean of 

the average NDVI value for each polygon plotted against the 28-year mean of the 

standard deviation of NDVI for each polygon. This analysis showed that our selected 

vegetation components occupied unique NDVI mean and spatial variance regions.  Some 

overlap occurred between Wyoming big sagebrush and Utah juniper and between 

Douglas-fir and aspen ESs.  We then tested whether brightness could also help separate 

the five vegetation types.  This was done by plotting each observation on a graph 

continuing to use the 28-year mean NDVI on the x-axis and 28-year mean brightness on 

the y-axis (Fig. 2-4).  The brightness component was able to cleanly separate Aspen 

polygons from the Douglas-fir polygons.  However, brightness provided little separation 

between Utah juniper and Wyoming big sagebrush.   

We plotted each polygon against elevation and slope (Fig. 2-5) and also against 

elevation and the cosine of aspect (Fig. 2-6).  Topographic variables alone were able to 

somewhat separate vegetation components along an elevation gradient (as expected).  

Slope seemed to be a good variable to separate Utah Juniper from Wyoming big 

sagebrush and Douglas-fir from Aspen.  Aspect was not useful for distinguishing 

between any vegetation types.  Every vegetation component had observations with wide 

ranges of aspect that overlapped dissimilar vegetation component observations.  Because 
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aspect did not seem to separate any vegetation components, it was omitted from the data 

matrix when performing cluster analysis. 

 The areas in spectral space that the 20 samples from each vegetation component 

occupied (Figs 2-2 and 2-3) were where we anticipated they would be.  The Wyoming 

big sagebrush polygons had low greenness and low spatial variation in greenness.  Utah 

juniper sites had similarly low average greenness, but due to high contrast between green 

juniper trees and a relatively larger amount of bare ground, these sites had higher spatial 

variation in greenness.  Mountain big sagebrush had higher average NDVI values.  This 

was expected since mountain big sagebrush occurs in higher elevations that receive more 

precipitation than either Wyoming big sagebrush or Utah juniper and therefore is 

associated with higher plant production.  Aspen polygons tended to have higher NDVI 

values than Douglas-fir polygons with both ES vegetation components having a similar, 

relatively large distribution of spatial variance. 

 

Cluster Analysis 

Figure 2-7 shows a graphical representation of the cluster analysis for the one-

hundred vegetation component polygons using the average-link method.  Each time large 

clusters were created, the data was closely examined to determine whether observations 

with like vegetation components were being agglomerated.  Most of the aspen 

observations were in one cluster that contained 16 of the 20 aspen observations.  All 20 

Douglas-fir observations were present in one cluster.  Seventeen of the 20 mountain big 

sagebrush sites were in one cluster.  Eighteen of the 20 Utah juniper polygons were 

present in one cluster that also contained 2 Wyoming big sagebrush polygons.  The last 
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large cluster contained 18 of the 20 Wyoming big sagebrush polygons.   Besides these 

large clusters, two smaller clusters were also formed that contained four observations 

each.  One of these small clusters contained one Utah juniper polygon and three mountain 

big sagebrush polygons.  This small cluster was appended to the cluster formed by the 

large Wyoming big sagebrush and Utah juniper clusters.  The other small cluster 

contained four aspen observations.  This small cluster was appended to the large 

mountain big sagebrush cluster.  One lone Utah juniper observation was also appended to 

the large mountain big sagebrush cluster.   

As seen in Figure 2-7, the linkages between the large Utah juniper and Wyoming 

big sagebrush clusters, the large aspen, Douglas-fir, and mountain big sagebrush clusters 

were the last agglomeration to occur. This means that these ES vegetation components 

were the most distant from each other in terms of spectral and biophysical space.  This is 

not surprising due to the difference in elevation and precipitation between these groups.  

That break also loosely represents the division between the two MRLAs present in Rich 

County.   

 

Cluster Analysis Validation 

The validation of the cluster analysis was done to 1) Make sure that each polygon 

accurately represented the vegetation component that we were classifying them as, and 2) 

Determine why some sites (two Utah juniper, four aspen, three mountain big sagebrush, 

and two Wyoming big sagebrush) were not clustered with the rest of their respective 

observations.  A site being classified as a different vegetation type meant that the site was 

more similar to a vegetation component of different type than to its own.  Validation of 
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vegetation type was performed using high resolution NAIP imagery for all ESs.  Close 

examination of the DEM derivatives for all observations was also done to explain the 

incorrect clustering of certain observations. 

 It was found that the clustering of two Utah juniper sites with mountain big 

sagebrush clusters was caused by a low brightness component values.  These two sites 

are mostly on west facing slopes that would have been shaded during image acquisition.  

The rest of the Utah juniper sites were characterized by relatively higher brightness 

values compared to mountain big sagebrush sites due to the high amount of bare soil 

typical of juniper sites.  The Utah juniper site that was clustered with the large mountain 

big sagebrush cluster had a higher standard deviation in NDVI than the rest of the Utah 

juniper sites.  This juniper site straddles a ridge so that it has both north and south facing 

slopes.  The multiple topographic aspects within this polygon caused the high spatial 

variance in NDVI.  Along with brightness value, the high standard deviation in NDVI 

made it more similar to the large cluster of mountain big sagebrush observations.  The 

other Utah juniper site was clustered with three mountain big sagebrush sites that 

together were agglomerated to the combination of the large Wyoming big sagebrush and 

Utah Juniper clusters.  These three mountain big sagebrush sites had low standard 

deviations in NDVI which were more typical of Wyoming big sagebrush and Utah 

Juniper sites as seen in Figure 2-3.  The low standard deviations were a product of low 

variability in vegetation cover, whereas the other mountain big sagebrush sites had large 

percentages of bare ground cover which increased the standard deviation in NDVI for 

those sites. 
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   The two Wyoming big sagebrush sites that were clustered with the large Utah 

Juniper cluster were a product of having high slopes and slightly higher standard 

deviations in NDVI.  Several other sites had similarly high standard deviations or high 

slopes, but no other Wyoming big sagebrush sites had both of these conditions. 

 Four aspen sites were clustered together and then added to the large cluster of 

mountain big sagebrush observations.  These sites had relatively high standard deviations 

when compared to the majority of aspen sites.  These sites also had slightly lower NDVI 

values.  Three of these sites appeared to have lower aspen canopy cover.  The other site 

contained a mix of immature aspen trees and shrubs which caused high standard 

deviation values. 

 

Random Forests 

Due to the relatively clean separation of types as shown by the simple cluster 

analysis, the resulting cross-validation accuracy of our decision tree model derived from 

Random Forests was approximately 97.2%. We note that because Random Forests uses 

an iterative process that employs a random sub-sample of the training data to fit multiple 

classification trees, cross-validation accuracies change slightly with each Random Forests 

analysis.  We therefore have reported the average cross-validation accuracy produced 

from 20 independent runs of Random Forests.  The standard deviation of the cross-

validation accuracies from these 20 runs was 0.616.  The model with the most 

conservative estimate of cross-validation accuracy was 96% accurate.  This model 

resulted in three Utah juniper polygons incorrectly classified as Wyoming big sagebrush 

and one Wyoming big sagebrush polygon incorrectly classified as Utah juniper.  These 
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incorrect classifications were not surprising given the results of the cluster analysis and 

the visible overlap in mean and spatial variance in NDVI and brightness values for these 

two vegetation components (Figs. 1-2 and 1-3).   

 We were also interested in which variables were most important in the 

development of the decision tree model.  To determine variable importance, random 

values are substituted in place of the original values for a specific variable for each out-

of-bag observation.  The difference between the misclassification rate for the modified 

and original out-of-bag data, divided by the standard error, is the measure of variable 

importance (Cutler et al. 2007).  Because of the way these values are computed, they can 

be thought of as z-scores.  Variable importance was calculated for each variable in our 

model and the results plotted on a variable importance plot (Fig. 1-7).  This graph ranks 

the variables (top to bottom on vertical axis) according to the “mean decrease in 

accuracy” caused by the substitution of that variable with random numbers.  Of the 21 

predictor variables (six 5-year averages each for NDVI, standard deviation in NDVI, and 

brightness, as well as elevation, slope, and aspect), NDVI variables were generally 

ranked highest in importance (occupying the 1-5 and 7 rank values), the standard 

deviation in NDVI variables were ranked 12, 14, 15, 17, 18, and 20 and the brightness 

variables were ranked 6, 9-11, 13, and 16. Slope was ranked 8, elevation was ranked 19, 

and aspect was ranked 21.  It was unsurprising that aspect had the lowest variable 

importance since it also showed the least visual separation between our sampled 

vegetation components (Fig. 1-5).   

 We calculated a correlation matrix for all variable pairs and determined that all 

combinations of like variables (e.g. comparing each NDVI variable to each other) were 
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significantly correlated.  Most of the correlations produced Pearson coefficients greater 

than or equal to 0.92.  These high correlations suggested that only one 5-year group is 

needed for accurate classification.  To confirm this, we fit several Random Forests 

classifications with random combinations of only one variable per NDVI, standard 

deviation in NDVI, and the brightness component.  Each of the out-of-bag accuracies for 

these Random Forests classifications was equally accurate with our initial Random 

Forests model using several multi-year variables.   

 

Image Classification Accuracies
 

The results of the accuracy assessment are summarized in Table 2-2.  Because 

there were a few vegetation component classes that we did not account for in our model 

(e.g. black sagebrush, mountain mahogany, shadscale) that were present in Rich County, 

we expected many errors of commission (i.e. identifying a pixel as belonging to a 

vegetation type that does not belong to that vegetation type).  We tried to limit these by 

only performing the accuracy assessment within the MUs that were predominantly made 

up of one of our five ESs.  However, because there were still minority components within 

virtually every MU, these other vegetation components not accounted for in our model 

still occurred in our accuracy assessment.  These errors are summarized in the “Other” 

row of Table 2-2.  Since these errors were due to vegetation components not accounted 

for in our model, and therefore, not due to the inability of our model to discriminate 

between these types, we did not use these errors in the calculation of the percent correctly 

classified for each of our target vegetation types.   
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 Those vegetation components not accounted for in our model were primarily 

classified as Utah juniper.  Utah juniper also had the lowest percent correctly classified 

(81%) due to confusion with Wyoming big sagebrush.  This was not surprising given the 

obvious overlap with certain variables.  The percent correctly classified for Mountain big 

sagebrush was 95%.  Wyoming big sagebrush had the highest percent correctly classified 

(98%).  Only 2% of pixels classified as Wyoming big sagebrush belonged to the “Other” 

category.  Douglas-fir and Aspen had similarly high percent correctly classified measures 

with 96% and 94%, respectively.  When not omitting the error introduced by vegetation 

types not accounted for in our model, the user’s accuracies decreased.  The user’s 

accuracies for each ES were as follows: Utah Juniper 44%, mountain big sagebrush 84%, 

aspen 92%, Wyoming big sagebrush 96%, and Douglas-fir 96%.   

 
DISCUSSION 

Identifying ES components of MUs on a landscape scale can be very time 

consuming.  Remote sensing offers a cost-efficient alternative and has been found to be 

effective in evaluating the spatial dynamics of large landscapes (Brandon et al. 2003; 

Hunt et al. 2003; Washington-Allen et al. 2006).  We have shown that using variables 

derived from remotely sensed images as well as biophysical geospatial data, ES 

vegetation components can be discriminated on a per-pixel basis.     

Our initial cluster analysis showed that 89% of all observations were first grouped 

with the observations of their respective vegetation components before being combined 

with other clusters.  Those observations not clustered with observations of the same ES 
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vegetation component were shown to have topographic or plant community properties 

not typical of the sampled ES vegetation communities for that type.  

 Decision tree-based algorithms (such as Random Forests) differ from cluster 

analysis in that they identify thresholds in each variable that best reduce the deviance in a 

response variable (Breiman et al. 1984).   Cluster analysis does not produce a response 

variable and is thus incapable of doing this.  Creating thresholds allows classifiers such as 

Random Forests to adjust the point at which classes are separated until the most accurate 

result is produced.  An examination of the distribution of the observations in Figures 2-3 

– 2-5 shows that drawing thresholds for different variables, instead of relying on distance 

from a centroid can produce cleaner results.  This is particularly evident in Figure 2-5 

when separating Wyoming big sagebrush from Utah juniper and mountain big sagebrush 

using slope and elevation.  To a lesser extent, the advantage of thresholds can also be 

seen in Figures 2-2 and 2-3 when separating Utah juniper from mountain big sagebrush 

using NDVI.   

 Our out-of-bag accuracy for Random Forests of 97.2% demonstrated that we 

could accurately classify our observations.  Some may suggest that this high level of 

accuracy is a product of over-fitting our classification to the data.  However, out-of-bag 

accuracies are considered to be unbiased estimates of error (Breiman et al. 1984).  

Furthermore, over-fitting is not likely to occur in Random Forests (Prasad et al. 2006).  

Our Random Forests accuracy was also validated by applying the tree model to a 

geospatial data stack and randomly testing the output.  This resulted in an overall 

accuracy estimate of 94%.  The 3.2% reduction in accuracy when compared to the out-of-
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bag accuracy may be attributed to the vegetation components present on the landscape, 

but that were not captured in our sampling.   

 We acknowledge that we have only shown the ability to accurately identify five 

vegetation communities out of several in Rich County.  Twenty-nine percent of the ES 

vegetation components by land area were not considered.  The inclusion of these other 

vegetation types would undoubtedly decrease our accuracy.  The accuracy of our 

methodology is dependent on the spectral and ecological separability of vegetation types.   

Even though we focused on only five of the ES vegetation types in Rich County, 

we have demonstrated that we can also identify vegetation components within an MU 

that did not belong to the majority vegetation component.  An example of this is the 

mapping of mountain big sagebrush communities in MUs that were predominantly 

composed of aspen and Douglas-fir and did not identify mountain big sagebrush as a 

component.  These results could help direct future soil mapping and also derive finer 

resolution MUs.   

For areas of Wyoming big sagebrush and mountain big sagebrush, our error 

increased at intermediate elevations where these varieties intermix and create hybrids 

known as Bonneville big sagebrush (U.S. Department of Agriculture, NRCS 2012b).  

This intermixing presents obvious difficulties in identifying distinct ecological sites in 

transition areas.  Currently, a precise identification of these types in intermediate 

elevations will require field-work.   

 Our variable importance plots produced by Random Forests showed that 5-year 

averages of NDVI were typically the most important remotely sensed variables, followed 

by the brightness components and then by the spatial variance in NDVI variables.  We 
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also concluded that only one set of 5-year groups is needed to accurately map our 

vegetation components.  This conclusion does not go against those of other papers who 

suggested that multi-temporal datasets were important for remote sensing classifications.  

One 5-year average variable is still a product of multiple years’ worth of remote sensing 

imagery.  We tested our conclusion that 5-year averages were necessary by creating a 

Random Forests model using just one year for each remotely sensed variable.  The out-

of-bag accuracy for this model was significantly lower that the accuracy from our model 

with 5-year averages.  Other multi-temporal datasets such as multi-seasonal remote 

sensing data could be useful for ecological site classification and have been proven to be 

effective in land cover classification (Andres et al. 1994; Kasischke and French 1995).    

It was somewhat surprising that elevation was ranked relatively low in variable 

importance.  We concluded that this was due to the fact that almost all of these ESs 

overlap on an elevation gradient.  Additionally, even when elevation is assigned random 

values during variable importance calculations, NDVI acts as somewhat of a proxy for 

elevation because of increased precipitation in higher elevations leading to higher NDVI 

values. 

 

IMPLICATIONS 

Prediction of the spatial distribution of ESs on a pixel basis has been suggested as 

the next step in remote sensing applications to rangeland conservation (Hernandez 2011).  

We have described and implemented a methodological approach to identify ES 

vegetation components within individual MUs. We stress that we have not developed a 

remote sensing solution for identifying complete ecological sites.  To accomplish this we 
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need to accurately identify soil characteristics in addition to a more detailed description 

of the vegetation component.  Our method accurately identifies and discriminates 

between vegetation components that are unique to certain ESs.  The product from our 

method identifies where vegetation components occur spatially within MUs that 

previously only contained vegetation data on a percent composition level.  This 

information can be used by those responsible for delineating ESs on a landscape scale to 

identify areas that have a high probability of ownership to a certain ES.  Field work, 

particularly soil identification, can then be done to validate ES locations. 

 We have found that there are a few variables that were used in our analysis that 

only marginally improved our predictive ability (e.g aspect) and there are a few variables 

not used in this study that should be considered.  We suggest that multi-seasonal imagery 

could be used as an independent variable.  Another variable that should be considered is 

the map unit name.  This variable could help in limiting the area that a certain ES can be 

mapped.  If the training data used to build the classifier for a particular ES do not fall 

within the boundaries of certain MUs, then it will be unlikely that the particular ES will 

be mapped in those MUs.  This will not help to differentiate between vegetation types 

that occupy the same MUs; however, it will help discriminate between vegetation 

components that may have similar remote sensing index values but do not occur on the 

same MUs.  In our study, Utah juniper was significantly over estimated across the 

landscape. This problem could likely be solved by using the map unit name as a 

categorical variable in our Random Forests classifier since Utah juniper only occurs on 

specific map units.  There are also several topographic variables derived from DEMs 

such as topographic wetness index, curvature, hillshade, and others.  Certain 
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combinations of Landsat ETM bands have also been used to estimate soil composition 

(Nield et al. 2007).  Exploratory analyses, including scatterplots and cluster analysis, 

should be conducted to determine what variables will be essential for accurate 

classification of ES vegetation components.  However, it is possible for variables to show 

little added separation during cluster analysis and still be useful in Random Forests 

classification.   
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Table 2-1. Site-by-attribute table for each training site. There are 20 training sites for 

each ecological site vegetation component. Table continues on next two pages. 

 

 

name NDVI mean NDVI SD brightness elevation slope aspect area

     ---m---               -----degrees-----  ---acres---

aspen1 180.81 4.82 130.48 2565 9.85 276.06 58

aspen2 183.07 4.99 145.52 2404 6.84 107.39 56

aspen3 181.94 7.59 146.05 2383 9.32 105.35 43

aspen4 182.26 3.23 131.38 2417 8.8 89.51 24

aspen5 181.65 3.82 154.58 2224 12.3 87.6 33

aspen6 185.28 4.45 141.71 2151 13.01 312.51 50

aspen7 186.04 3.92 149.12 2085 13.93 114.6 14

aspen8 185.21 3.53 133.05 2174 7.38 97.07 16

aspen9 179.6 6.87 144.07 2359 12.48 42.23 87

aspen10 176.97 8.04 148.83 2563 9.43 135.91 48

aspen11 179.74 4.17 132.36 2427 8.73 93.21 91

aspen12 174.26 9.71 129.08 2567 6.64 137.47 28

aspen13 178.43 5.6 118.45 2450 10.92 48.38 21

aspen14 183.92 5.66 135.55 2515 10.78 114.67 18

aspen15 183.11 3.25 131.39 2570 8.8 120.86 13

aspen16 182.25 6.13 134.81 2483 19.42 224.6 8

aspen17 186.88 3.69 144.75 2321 15.26 111.59 13

aspen18 182.92 5.36 144.63 2431 6.11 86.37 18

aspen19 183.44 5.19 138.26 2643 9.7 139.43 12

aspen20 183.47 4.62 128.31 2566 5.71 167.71 14

df1 174.62 5.46 85.87 2364 22.99 268.83 25

df2 174.95 6.67 82.33 2365 23.56 252.16 18

df3 180.04 8.68 95.81 2121 25.14 28.88 15

df4 181.71 4.62 93.43 2365 23.56 252.16 31

df5 174.95 6.67 82.33 2198 18.9 162.02 23

df6 172.09 4.84 99.73 2496 13.96 81.52 23

df7 182.07 3.81 85.19 2152 27.38 87.64 19

df8 182.56 3.82 85.54 2171 19.8 285.01 25

df9 177.69 3.19 76.75 2403 14.49 84.14 61

df10 177.09 5.04 81.06 2478 9.35 259.95 24

df11 177.08 4.53 91.57 2402 9.82 221.03 13

df12 179.36 4.23 82.74 2372 9.65 264.54 44

df13 176.86 5.13 74.07 2411 28.71 294.94 22

df14 175.29 7.84 83.39 2535 21.32 256.53 12

df15 176.27 4.39 88.35 2312 27.82 298.69 27

df16 172.71 6.46 82.27 2266 28.5 338.85 4

df17 177.66 5.71 88.63 2455 17.82 271.13 16

df18 178.38 4.68 86.97 2604 13.71 254.92 53

df19 171.41 7.01 90.01 2298 26.24 291.75 18

df20 178.55 3.4 87.36 2282 8.09 64.69 18
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Table 2-1. Continued.  

 

 
 

  

name NDVI mean NDVI SD brightness elevation slope aspect area

     ---m---               -----degrees-----  ---acres---

juniper1 129.44 2.3 180.58 2136 15.6 92.12 48

juniper2 129.47 3.29 175.92 2122 11.65 93.89 19

juniper3 131.49 2.13 170.74 2118 11.68 133.3 24

juniper4 125.91 3.78 191.16 2091 22.41 161.51 13

juniper5 132.8 2.45 169.93 2149 12.46 124.96 9

juniper6 129.98 4.51 175.67 2130 18.64 171.16 11

juniper7 130.46 3.42 171.1 2220 22.8 180.05 32

juniper8 131.79 3.05 173.88 2188 13.71 151.03 39

juniper9 130.64 2.35 173.94 1970 16.71 138.11 28

juniper10 134.78 4.36 160.52 1968 16.79 165.69 85

juniper11 126.79 4.96 197.95 1998 16.65 162.37 45

juniper12 130.02 3.7 167.98 2103 11.8 126.82 28

juniper13 131.09 2.74 168.51 2115 7.93 95.84 124

juniper14 130.48 2.44 172.65 2117 12.28 100.61 28

juniper15 133.58 3.11 130.64 1990 21.99 268.54 21

juniper16 126.44 3.5 189.65 1982 16.17 164.27 4

juniper17 129.64 3.11 157.36 1965 14.4 215.3 16

juniper18 127.01 3.72 196.82 2038 17.89 168.63 27

juniper19 127.74 3.42 177.6 2155 10.15 189.96 12

juniper20 130.54 5.77 141.47 2140 25.97 269.37 15

mbs1 146.3 5.61 142.17 2248 6.08 82.87 89

mbs2 148.53 6.24 145.71 2220 1.67 222.07 26

mbs3 151.88 3.55 139.16 2195 6.62 180.92 23

mbs4 142.02 4.39 148.32 2085 9.18 121.2 25

mbs5 155.52 7.03 135.58 2138 17.91 230.99 46

mbs6 141.93 3.45 154.1 2186 4.79 143.38 22

mbs7 159.67 7.34 145.65 2368 9.83 159.92 16

mbs8 154.25 5.11 146.23 2322 11.04 130.38 47

mbs9 151.17 8.09 137.99 2314 6.74 224.13 56

mbs10 150.09 6.72 143.46 2363 8.34 102.96 23
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Table 2-1. Continued.  

 

 
 

  

name NDVI mean NDVI SD brightness elevation slope aspect area

     ---m---               -----degrees-----  ---acres---

mbs11 149.19 8.9 161.07 2382 13.71 155.94 95

mbs12 148.98 7.73 143.59 2402 6.13 244.23 60

mbs13 150.4 7.16 146.06 2177 9.76 97.21 59

mbs14 150.34 6.64 150.74 2177 10.83 90.08 28

mbs15 154.46 6.6 136.2 2149 9.68 65.04 13

mbs16 138.22 7.4 163.37 2194 9.43 163.16 31

mbs17 161.91 7.77 140.39 2323 8.59 145.72 12

mbs18 145.79 8.05 143.48 2096 12.74 71.09 23

mbs19 146.82 5.18 141.17 2119 13.44 178.5 35

mbs20 162.6 7.7 149.62 2432 13.6 170.91 19

wbs1 124.12 1.24 183.76 1936 0.36 127.76 119

wbs2 125.4 1.59 181.34 1956 1.27 117.84 68

wbs3 124.6 1.45 198.44 1946 1.57 205.6 51

wbs4 129.57 2.03 161.31 2054 0.96 136.15 55

wbs5 129.45 1.66 157.93 2045 1.62 102.82 52

wbs6 127.2 1.74 166.36 2038 2.73 233.43 25

wbs7 129.28 1.74 155.4 2034 6.16 84.56 20

wbs8 125.77 1.66 173.57 1924 1.07 50.46 12

wbs9 125.86 1.6 167.51 2048 1.6 101.69 22

wbs10 125.08 1.78 189.98 1975 1.37 313.34 23

wbs11 132.33 1.88 152.67 2028 6.92 75.17 16

wbs12 126.94 1.7 170.09 2018 1.96 116.38 124

wbs13 123.79 1.47 192.89 1959 1.41 112.06 23

wbs14 129.13 2.77 159.15 1984 2.79 117.3 42

wbs15 126.76 1.66 163.34 2041 2.56 160.63 30

wbs16 128.37 2.33 174.61 2066 5.38 181.92 8

wbs17 127.07 1.61 180.02 1943 2.63 65.85 9

wbs18 126.16 1.42 172.56 2025 2.43 90.24 45

wbs19 128.72 1.94 161.01 2017 4.79 314.33 29

wbs20 131.87 2.76 162.75 2047 8.35 35.03 18
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Table 2-2. Confusion matrix for random forests classification of Rich County, UT.  The 

“Other” row displays the number of accuracy assessment sites that were classified as 

each class but in reality were part of an ecological site vegetation component not 

accounted for in our classification. MBS, mountain big sagebrush; WBS, Wyoming big 

sagebrush. 

 

 
 

 

 

 

Table 2-3. Remote sensing and topographic variables used in the cluster analysis and 

Random Forests model. 

 

 
  

          Predicted

Aspen Douglas-fir Utah Juniper MBS WBS

Aspen 46 1 0 0 0

Douglas-fir 1 48 1 0 0

Actual Utah Juniper 0 1 22 2 1

MBS 2 0 1 42 0

WBS 0 0 3 0 48

Other 1 0 23 6 1

                                    Variables

5 year averages NDVI 5 year averages standard 

deviation of NDVI

5 year averages 

Brightness component

Topographic

NDVI84_88 SD84_88 BRIGHT84_88 slope30m

NDVI89_93 SD89_93 BRIGHT89_93 elevation30m

NDVI94_98 SD94_98 BRIGHT94_98 aspect30m

NDVI99_03 SD99_03 BRIGHT99_03

NDVI04_08 SD04_08 BRIGHT04_08

NDVI09_11 SD09_11 BRIGHT09_11
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Figure 2-1. Line graph of annual fluctuations in NDVI for evergreen forests, shrublands, 

and deciduous forests.  The largest differences in NDVI can be seen in mid-summer.  

Similar graphs can be obtained from the USGS GLOVIS Visualization Viewer at 

http://glovis.usgs.gov/.  NDVI, Normalized Difference Vegetation Index.   
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Figure 2-2. Random Forests classification of Rich County, UT.  Black areas represent 

map units (MU) whose majority component was not Aspen, Douglas-fir, Utah Juniper, 

Mountain big sagebrush, or Wyoming big sagebrush.   
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Figure 2-3. Scatter-plot showing the distribution of each ecological site vegetation 

component in our study with average NDVI value on the x-axis and the average standard 

deviation in NDVI on the y-axis.  Both of these variables provide some separation 

between vegetation classes. TM, Thematic Mapper; NDVI, Normalized Difference 

Vegetation Index. 
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Figure 2-4. Scatter-plot showing the distribution of each ecological site vegetation 

component in our study with average NDVI value on the x-axis and the average 

brightness component (obtained from the tasseled cap transformation) value on the y-

axis.  This graph shows that brightness provides added separation between ecological site 

vegetation classes. NDVI, Normalized Difference Vegetation Index. 
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Figure 2-5. Scatter-plot showing the distribution of each ecological site vegetation 

component in our study with elevation on the x-axis and slope on the y-axis.  Most 

vegetation classes overlap one another.  However, slope does help with separating 

Wyoming big sagebrush from Utah juniper.   

 

  



42 

 

Figure 2-6. Scatter-plot showing the distribution of each ecological site vegetation 

component in our study with elevation on the x-axis and aspect on the y-axis.  Aspect 

does not appear to separate any vegetation classes. 
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Figure 2-8. Variable importance plot produced by random forests model.  Variables with 

higher mean decrease in accuracy values provided more separation between classes. 
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CHAPTER 3 

 

ECOLOGICAL SITE AND STATE CLASSIFICATION OF WYOMING BIG 

SAGEBRUSH IN RICH COUNTY,  

UTAH 

 

INTRODUCTION 

Within the Intermountain West, vast expanses of big sagebrush shrubland and 

steppe are considered emblems of the western range.  Currently, there are approximately 

60 million hectares of big sagebrush within the 11 western states (Beetle 1960), four 

million of which are in the state of Utah (Lowry et al. 2007).  However, the historic 

distribution of sagebrush has been impacted by conversion to other types of land cover 

(e.g., encroachment by Juniper and invasion by annual weeds) (Miller and Rose 1999), 

and anthropogenic land use (agriculture and urbanization).  In Utah alone, Big Sagebrush 

communities have been reduced to approximately 55% of their historic extent (Landfire – 

EVT 2008; Landfire – BPS 2008).  Changes to alternative land cover types have been 

facilitated by an alteration of disturbance regimes, namely fire return intervals, grazing, 

mechanical treatments, and urbanization (Knick et al. 2003).  A primary and current 

example of the cumulative impact of big sagebrush loss is the eminent listing of the Sage 

Grouse as a threatened and endangered species (Connelly et al. 2004).  This potential 

listing will force land management agencies to impose strict guidelines for future 

development of sagebrush-dominated landscapes.  These growing pressures have led to a 

need to accurately estimate the current spatial distribution of sagebrush shrubland and 

steppe and their current ecological condition. 
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Big Sagebrush communities, as well as other semiarid vegetation communities, 

exist across their geographic distribution in various ecological states.  These states can be 

viewed as nuances in community structure due to local environmental factors, or they can 

represent alterations forced by management actions or changes in climate.  Information 

about the different ecological states that sagebrush communities can occupy, as well as 

the forces that promote the transitions between states, can be enumerated in state-and-

transition models (STMs) (Westoby et al. 1989).  These transitions can take place due to 

soil erosion, fire regimes, weather variability, and management (Briske et al. 2005).  

Westoby et al. suggested that the purposes of STMs are to 1. Define the states possible 

within a system 2. Catalogue management action and other forces that drive transitions 

from one state to another and 3. List the actions that could produce favorable transitions 

as well as the hazards of inaction that could result in unfavorable transitions.  A state is 

defined as a recognizable, resistant, and resilient complex of soil base and vegetation 

structure (Stringham et al. 2003).  The original STM framework does not indicate a need 

to identify a reference state.  However, STMs adopted by the USDA Natural Resources 

Conservation Service (NRCS) have been joined with the traditional range model so that 

STMs developed by the NRCS include a reference state that characterizes the historic 

plant community (Briske et al. 2005).   

The NRCS has been systematically classifying rangelands into ecological sites 

(ES) that link soil characteristics to the defined historic plant community occupying that 

soil.  Ecological site descriptions (ESDs) describe areas of specific biophysical properties 

and associated plant communities that may be found at a given site.  These sites differ 

from other sites in their ability to produce a distinct kind and amount of vegetation.  
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Areas of the same ES, but separated by geography, are also unique in that they are 

assumed to “respond similarly to management actions and natural disturbances” (U.S. 

Department of Agriculture 2011).  Ecological sites are primarily determined on the basis 

of soil characteristics and the resulting differences in plant species composition and 

production that occur on those soils.  Because ESDs are based on the plant community 

that existed at the time of European settlement (U.S. Department of Agriculture, NRCS 

2011), ESDs represent reference states in STMs.   

Currently, ESs are identified on a landscape as components within map units 

(MU).  An MU is a spatially defined area that enumerates the soil characteristics at that 

location.  A given MU can contain one or more different soil types that are termed 

components.  Components are contiguous groupings of different soils whose extents are 

equal to or smaller than the MU.  Map unit polygons therefore have a one-to-many 

relationship with ESs (Arid Land Research Programs 2010).  The spatial and tabular data 

for MUs are stored in individual soil surveys and can be obtained from the NRCS 

SSURGO database (U.S. Department of Agriculture, NRCS-SSURGO 2012).  Up to four 

different ecological site components (one per soil type) are combined into one MU and 

the SSURGO tabular database details the percentage of area each component occupies 

within a given MU; however, the database does not define the spatial location of a 

particular ES component within the MU.  It will be the goal of this research to create and 

use a remote sensing based similarity index to map the spatial distribution of an ES 

component and its states across a landscape. 

Similarity indices are not new to the ES process.  The NRCS adopted a similarity 

index in an effort to standardize definitions and quantify ecological states.  This effort 
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followed an initial lack of universally accepted definitions of STMs that subsequently led 

to confusion and criticism (Iglesias and Kothmann 1997).  The NRCS’s similarity index 

provides a way to compare vegetation states to one another.  This is done by comparing 

the present state of vegetation on a site to the kinds, proportions, and amounts of 

vegetation that existed in the reference/historic climax plant community state (U.S. 

Department of Agriculture, NRCS 2006).  The similarity index indicates the percent of 

the plant community present during the reference state that is still present today.  Before 

the similarity index for a site can be calculated, a field inventory is carried out to estimate 

the annual productivity for each species present at the site.  Like all field work, this 

process takes a great deal of time and is therefore costly.   

Hernandez (2011) postulated a method for creating a similarity index, referred to 

as “ecodistance,” using remotely sensed imagery.  This was done by comparing the mean 

and standard deviations in the soil adjusted vegetation index (SAVI) for a given location 

to identical metrics of undesirable alternative states (e.g., cheatgrass and juniper 

encroachment). These alternative undesirable states served as benchmarks from which to 

compare all other sites with similar ESs (West 1991).  Similarity was quantified by using 

a Euclidean distance metric, measured in standardized units of mean and standard 

deviations in SAVI, between a given geographic location and the alternative state 

benchmarks.  Sites with low distance were considered very similar to the conditions of 

the benchmark.   

Other studies have used remotely sensed data to help classify and discriminate 

between different ESs and the different ecological states possible within an ES.  Maynard 

et al. (2007) found that the tasseled cap components were correlated with variations in 
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ground measurements of biomass and exposed soil when sites were stratified by 

ecological site.  Gamon et al. (1995) discussed the usefulness of the NDVI as an indicator 

of photosynthetic activity as well as canopy structure, and plant nitrogen content.  Jensen 

(2000) showed that NDVI was sensitive to canopy variations including soil visible 

through canopy openings” (p. 386).  While the sensitivity to soil background has 

typically been seen as a disadvantage of NDVI for vegetation assessment (Huete et al. 

2002), it could prove useful for studying states within an ES since areas of the same 

ecological state will have a similar amount and type of bare soil.  Since NDVI is sensitive 

to these differences, we feel that it would be a suitable index for distinguishing between 

states and approximating distance to states.  The NDVI values within the polygon of a 

soil mapping unit and the variation in the NDVI has also been used to distinguish 

between states (Hernandez 2011).   

Because ESs are not explicitly mapped, it is not surprising that ecological states 

within a given ESs STM have also not been mapped.  We were only able to find one 

study that attempted to map ecological states.  Steele et al. (2012) used a manual mapping 

approach that combined aerial photo interpretation supplemented with field data to map 

ecological states in New Mexico.  We wish to build upon Hernandez’s work by first 

classifying each pixel in the ES R034AY2ggUT (Semi-desert Loam: Wyoming big 

sagebrush/Caespitose bluebunch wheatgrass) in Rich County, UT, to one of the states 

identified in the STM.  We will then calculate a similarity index represented by the 

Mahalanobis distance for each image pixel to the most probable state identified by the 

corresponding STM.  We have chosen to work with the Rich County, Utah, soil survey 

area (NRCS soil survey UT604) where there are 679 individual MUs whose largest 
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component (40 - 95% of the area) is R034AY2ggUT.  By applying the similarity index 

developed here to every remotely sensed pixel within a given MU, pixels that have large 

distances to any one of our predefined benchmark states should either be inclusions (not 

R034AYggUT) or states not previously considered for R034AYggUT.  Doing this will 

create a cost efficient and standardized way to map the spatial extent of ESs and their 

respective ecological states.  We expect this work to be valuable to those responsible for 

identifying and defining ESs as well as those responsible for creating and updating MUs 

and STMs. 

 
METHODS 

Study Area 

Our research was conducted in Rich County, Utah, located in the northeastern 

corner of the state (long 111°30’38.5’’ – long 111°2’42.2’’ West and lat 42°0’0’’ – lat 

42°08’24.3’’ North).  Rich County is made up of two Major Land Resource Areas 

(MLRA) including the Wasatch and Uinta Mountains (47) and Cool Central Desertic 

Basins and Plateaus (34A).  MLRAs are generalized areas similar to ecoregions that are 

classified by physiography, geology, climate, water, soils, biological resources, and land 

use (U.S. Department of Agriculture, NRCS 2005).  The western portion of Rich County 

is characterized by high elevations with vegetation consisting of aspen forests, subalpine 

conifer forests, and scattered mountain sagebrush steppe.  Moving east, the elevation 

decreases, and the mountain sagebrush steppe becomes dominant.  Both the mountain and 

foothills sections of the county are in MLRA 47.  The ES that we were interested 

(R034AY2ggUT) is in MLRA 34A which is primarily located in central and eastern Rich 
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County.  This MRLA is made up of relatively lower elevations with vegetation consisting 

of big sagebrush steppe and shrubland, subalpine grasslands, and agriculture. 

The average elevation in Rich County for areas dominated by R034AY2ggUT is 

1990 m.  The highest elevation is 2300 m and the lowest point is about 1891 m.  The soil 

temperature regime is frigid and the soil moisture regime is xeric for most of the county.  

The parent material is primarily derived from sandstone and limestone.  The source of the 

parent material is alluvium.  Plants in R034AY2ggUT occur on xeric soils that are 

shallower than those occupied by other sagebrush species such as basin and mountain big 

sagebrush.  R034AY2ggUT soils typically contain a large amount of clay or sometimes 

silt.  Wyoming big sagebrush does not do well on coarse textured soils (Frisina and 

Wambolt 2004).  For a detailed description of the soils present in the study area, read the 

Soil Survey of Rich County Utah (U.S. Department of Agriculture, NRCS-SSURGO 

1982).   

A slight majority of the land occupied by R034AY2ggUT is in private ownership 

at 52.8%.  The federal government is the next largest landowner with 40.2% which is 

managed by the Bureau of Land Management.  The state of Utah owns only 7% of the 

land area which is mostly composed of State Trust Lands (Utah Office of Tourism 2009).  

Much of the private land (22%) is owned by Deseret Land and Livestock.  Disturbances 

that have affected the area include agriculture, grazing, and burning.  

 
Ecological Site 

We chose the ES R034AY2ggUT since it is a preferred plant community of 

wintering sage-grouse (Welch et al. 1991) and its large distribution across the 
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Intermountain West.  In Rich County, three other ESs are identified as having a dominant 

component of Wyoming big sagebrush.  R034AY2ggUT was chosen because it is the 

most commonly occurring of the four ESs.  The reference vegetation component 

(historical plant community) for the ES R034AY2ggUT is Wyoming big sagebrush 

(Artemisia tridentata Nutt. ssp. wyomingensis) with varying amounts of bluebunch 

wheatgrass (Pseduoroegneria spicata [Pursh] Á. Löve), yellow rabbitbrush 

(Chrysothamnus viscidiflorus [Hook.] Nutt.), and other native perennial bunchgrasses 

(Fig. 3-1).  While a general estimation of the historic pre-Columbian plant community 

can be made, a confident quantitative estimate is not possible for this ES due to a lack of 

direct historical documentation preceding European settlement.  The first reports of 

dominant plant species were made in the late 19
th

 century from a cadastral survey 

conducted by the General Land Office (Galatowitsch 1990).  Human management in this 

area was introduced well before European settlement by Shoshone Indians who grazed 

horses and set fires to alter the vegetation for their needs (Parson 1996). 

 Since then, several other and more frequent disturbances have occurred that have 

caused transitions from the defined reference state to alternative states.   These changes 

are modeled in Figure 3-1 (U.S. Department of Agriculture, NRCS 2012).  This first 

transition is from the reference state to an alternative state (State 2) that is very close to 

the approximation of the reference state.  State 2 is identical to the reference state with 

the exception of a small component of introduced non-natives into the plant community.  

The second alternative state (State 3) is a Wyoming big sagebrush super-dominance state 

which is caused by heavy, year-round grazing by cattle, sheep, and horses.  From this 

state, three different transitions can occur that can move the ES into one of three 
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additional states.  State 4 is an increased invasives state caused by prescribed grazing, 

unusually wet climate, soil anoxia, insects, and/or wildfire.  State 5 is a crested 

wheatgrass state that can be transitioned to from either State 3 or 4 by brush management.  

State 6 is a Wyoming big sagebrush and native grass state that can be transitioned from 

either State 3 or 4 by means of prescribed grazing.   

 
Datasets 

 
Because we wanted to calculate the similarity of all areas within the 

R034AY2ggUT ES to the state of most probable membership, we needed to have a 

representative sample of each state defined in the STM.  The reference state (State 1) is 

not represented because it is assumed that this state no longer exists.  Training sites were 

acquired from fieldwork conducted by Peterson (2009) and the Utah Division of Wildlife 

Resources (2006).  Both datasets included the geographic location of the site along with 

the percent cover of each species present.  From this information, we created polygons 

that represented the area sampled for each site.  We also assigned a state number to each 

site if it appeared to be in one of the states present in the STM.  These assignments were 

based on the percent cover for each species at each site.  The minimum number of sites 

that were assigned to a single state was three.  It was important that each state have the 

same number of training sites so that none would be over or underestimated.  This led us 

to use only three training sites for each state.  If a state had more than three sites, three of 

them were randomly selected for use in our classification and distance computations.   

 Remotely sensed imagery provided the data used to calculate our NDVI metrics.  

Four Landsat 5 Thematic Mapper (TM)  images (Path 38/ Row 31) for years 2005-2008 
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with Julian date as close to 207 (July 26
th

) as possible were downloaded from the U.S. 

Geological Survey Global Visualization Viewer (GLOVIS).  The Julian date of 207 was 

chosen by averaging the date for each year that displayed the greatest variance in NDVI 

between different land cover types.  The dates were obtained by examining line graphs of 

mean NDVI values collected by AVHRR of grasslands, shrubs, and deciduous forests.  

These graphs can be obtained through GLOVIS using a tool called “NDVI graph” (U.S. 

Geological Survey 2011).  Figure 3-2 shows an example of one of these graphs from 

2008.  Landsat 5 TM images with minimal cloud cover and collection dates closest to 207 

were selected.  All images were rectified and resampled to the UTM Zone 12 NAD 1983 

map projection.  Each image was converted to percent reflectance values using an image-

based atmospheric correction (Chavez 1996) and the calibration coefficients for Landsat 

5 TM (Chander et al. 2009).  Following image standardization, we calculated NDVI 

using the formula (NIR-RED)/ (NIR+RED).  We also calculated the standard deviation in 

NDVI using a 5x5 (22500 m
2
 ground area)

 
focal window that produced a standard 

deviation in NDVI value for each pixel.   

 

Classification and Similarity 

 
To calculate the similarity of all MUs containing R034AY2ggUT to the state of 

most probable membership, we first classified the area encompassed by these MUs into 

the five alternative states using our training data (Fig. 3-3).  The variables that we used 

included the NDVI and standard deviation of NDVI calculated from the Landsat 5 TM 

scenes.  The classifier we used was a maximum likelihood classifier which is a form of 

linear discriminant analysis.  Maximum likelihood classification is one of the most 
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widely used supervised classification algorithms (McIver and Friedl 2002; Wu and Shao 

2002). 

All pixels in the MU with R034AY2ggUT as the largest component ES were 

classified into one of the five R034AY2ggUT states even though many of the pixels 

represented areas of much different vegetation type (e.g., agriculture, juniper, riparian 

zones).  When our maximum likelihood classifier was executed, a Mahalanobis distance 

image was also produced (Fig. 3-4) as a standard output of the classification process.  

The pixels in this image were enumerated with the Mahalanobis distance to whichever 

state the pixel had been assigned to in the classification.  Mahalanobis distance calculates 

the similarity of an observation with n-variables to a group of observations (training sets 

in our case) with n-variables (Mahalanobis 1936).  Mahalanobis differs from Euclidean 

distance measures in that it takes into account the correlations of variables within the data 

set and it is scale invariant.  Because Mahalanobis distance accounts for unequal 

variances and correlations between variables, it is able to assign different weights to the 

variables.  Only when variables are uncorrelated will the Mahalanobis distance be equal 

to the Euclidean distance (Xian et al. 2008).   

 

Field Work 

Following the calculation of a Mahalanobis distance for each pixel, we verified 

that the distance metric corresponded with conditions in the field.  Our assumption was 

that pixels with the largest Mahalanobis distances represented pixels that were less likely 

to be associated with any of the five different alternative states defined by the 

R034AY2ggUT STM model.  These pixels were either another ES or they represented 

previously unconsidered states for the R034AY2ggUT ES.  Conversely, pixels with low 
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distances represented vegetation cover conditions similar to one of the five states and 

pixels with moderate distances were somewhat similar.  It was our belief that ecological 

state classifications would also be more accurate for sites with smaller Mahalanobis 

distances. 

A stratified random sample of the Mahalanobis distance image’s values was used 

to select field sites to validate.  Because Mahalanobis distances are unitless, thresholding 

distances into similar, somewhat similar, and dissimilar can be subjective.  To do this as 

objectively as possible we used the distance image’s histogram (Fig. 3-5) to select these 

thresholds.  The distribution of the distances was skewed to the right.  The pixel value 

with the maximum occurrence in the image was 12.  At the Mahalanobis distance of 52 a 

point of inflection occurred.  Previous studies have used the maximum value and 

inflection points to identify similar threshold values such as dark object values and 

phenological stages (Chavez 1988; Sakamoto et al. 2005).  With these thresholds we 

described distances of 0 - 12 as being similar, 12 - 52 as somewhat similar, and > 52 as 

dissimilar.  Conceptually, the threshold at the distance of 12 represented the point at 

which every following interval of Mahalanobis distance had a lower pixel frequency.  

The threshold at 52 represented the point at which every following interval of distance 

had a much lower decrease in pixel frequency.  While these thresholds did not necessarily 

relate to the ecological conditions of the areas represented by the pixels, they did serve as 

a starting point for identifying actual ecological breaks. 

 With our data stratified into three groups, we randomly selected twenty sites in 

each group for field validation.  Areas identified as agriculture by the Southwest Regional 

Gap (GAP) (Prior-Magee 2007) were not included in the potential sample area.  
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Validation sites were visited during the summer of 2012.  Two 60 m transects, with their 

center point being one random sample location were used to apply the Daubenmire field 

method.  The Daubenmire method was chosen for its utility in estimating percent cover, 

its simplicity and rapid application (U.S. Department of Agriculture, NRCS 1999).  The 

two transects were run in north-south and east-west directions. Square 1 m quadrats were 

placed every 5 m along each transect and percent canopy cover was recorded for each 

plot.  When all plot canopy covers were collected, a site percent canopy cover was 

calculated by averaging the plot percent canopy estimates.   The percent canopy cover 

data for each point was examined to determine whether there were plant species present 

that were not indicative of one of the states described in the STM or that were correlated 

with other ESs.  This was a binary approach of recording whether each point had non-

R034AY2ggUT plant species present or not.  The area sampled at each site was equal to 

four Landsat 5 TM pixels.  Of the 60 sites that were randomly generated, we were able to 

access 56.  Access to private property was the largest factor in not being able to sample 

all points.  Two of these points were in our similar class and two were in our dissimilar 

class.   

 

RESULTS 

Ecological State Classification Accuracy 

Each of our 56 validation points was assigned a state by comparing the percent 

canopy cover collected during the field work to the plant communities described for each 

state in the STM.  Our a priori knowledge that many of our points in the dissimilar and 

somewhat similar classes would not be correctly classified due to the fact that our MUs 



58 

included areas of completely different ESs (and therefore states) led us to construct three 

separate confusion matrices.  A confusion matrix was built for each distance class 

(similar, somewhat similar, and dissimilar distances) (Tables 3-1 — 3-3).  Because there 

were states present in our area that were not considered, an additional column was added 

to represent when a pixel was classified as a state from the R034AY2ggUT STM but in 

reality the pixel belonged to a state not identified within the STM.  The percent correctly 

classified (PCC) for the points with Mahalanobis distance 0 - 12 was 64.7%.  The Kappa 

value for these pixels was 0.50. Points with Mahalanobis distance 12 - 52 had a PCC of 

17.7% and had a Kappa value of 0.03.  The PCC for points with a Mahalanobis distance 

> 52 was 25.0% and had a Kappa value of 0.14.   

States 2 and 4 (Fig. 3-1) had the highest PCC at 71.4% and 80.0% respectively 

when looking at points in the similar class.  Using only points from the similar class, 

State 6 had the lowest PCC at 33.3% and no points were classified as belonging to State 

3. When only using points from the somewhat similar class, the highest PCC was for 

State 2 at 28.6% and the lowest PCC was for State 4 and 6 at 0.0%.  All of the State 

PCCs for the dissimilar points were 0.0% accurate except for State 2 which had a PCC of 

100%.  All distance classes contained points that were misclassified as belonging to a 

state from the R034AY2ggUT STM.   

 

Ecological Site Similarity Assessment 

  Of the 56 sampled areas, at least a portion of 18 of them were in an ecological 

state not identified for that particular ES.  Of the 18 points whose Mahalanobis pixels 

were classified as being similar (0 - 12), only one had plant species present that were not 



59 

associated with R034AY2ggUT states.  Three out of the 20 points that were classified as 

being somewhat similar (12 – 52) had plant species present that were not associated with 

R034AY2ggUT states.  Of the 18 points that had Mahalanobis pixel values classified as 

dissimilar (> 52) only four had exclusively R034AY2ggUT plant species present.  These 

results are summarized in Figure 3-6. 

 Because species data were recorded for the area within 30 m of each random point 

location, we also examined the spectral data by averaging the four nearest pixels’ values 

to the point (60 meter buffer).   We calculated the differences between the point pixel 

Mahalanobis distance values and the area-averaged Mahalanobis distance values.  

Overall, the Mahalanobis values differed by less than 0.5; however, some of the 

differences were quite large with one sample location showing a 2000% difference in 

Mahalanobis distance between the averaged value and the point specific value.  Using the 

averaged values, 14 validation sites had Mahalanobis distance values below the first 

threshold (< 12), 26 sites occurred in the somewhat similar class (12 – 52), and 16 sites 

were found in the dissimilar class (> 52).  Only one of the sites with Mahalanobis 

distance less than 12 had plant species present that were not linked with the 

R034AY2ggUT ES.  Of the sites with distances between 12 and 52, three had plant 

species that were not associated with our specific ES.  Fourteen of the sites with distances 

greater than 52 had plant species present that were associated with dissimilar ESs.  These 

results (Fig. 3-7) are very similar to those summarized in Figure 3-6. 

 After obtaining the percentages of areas that had plant species present from other 

ESs for each class (0 - 12, 12 - 52, and > 52) we desired to see if the trend of increasing 

percentages of non-R034AY2ggUT plant species could be seen within these classes (Fig. 



60 

3-8).  We created six classes from the three by adding a threshold at the halfway point 

within each class.  Because no halfway point existed for the dissimilar class (the class 

represented values of 52 to infinite), we instead created two classes which each held half 

of the samples.  These six new classes were separated at thresholds of 6, 12, 32, 52, and 

120.  Both areas with Mahalanobis distance between 0 and 6 had only R034AY2ggUT 

plant species present.  Eleven of 12 areas in the distance class of 6-12 were exclusively 

made up of R034AY2ggUT plant species.  Fifteen of 16 areas in the class from 12 - 32 

was made up of areas with only R034AY2ggUT plant species.  Eight of 10 areas in the 

distance range of 32-52 contained only R034AY2ggUT plant species.  The distance range 

of 52-120 had only two of its eight areas exclusively made up of R034AY2ggUT plant 

species.  The last distance class, greater than 120, had no points out of eight that were 

exclusively made up of R034AY2ggUT plant species. 

 

DISCUSSION 

Ecological State Classification 

Implementations of STM concepts are increasing in the Western United States for 

field-level assessments of vegetation and soil condition at discrete locations (Steele et al. 

2012).  These field-level assessments cannot be used for comprehensive management of 

large landscapes (Fuhlendorf et al. 2006; Briske et al. 2008).  With an increasing desire to 

incorporate detailed ecological data for landscape scale decision-making , a repeatable 

and dependable method of mapping ecological states across a large landscape is 

necessary(Karl and Sadowski 2005; Forbis et al. 2007; Ludwig et al. 2007; Steele et al. 

2012).  We have demonstrated that remote sensing can aid in this process.  We calculated 
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a PCC of 64.7% for all pixels with Mahalanobis distances less than 12.  These pixels 

comprised about 26% of all non-irrigated areas within the R034AY2ggUT ES.  Percent 

Correctly Classified dropped significantly for pixels with higher Mahalanobis distances 

showing that the Mahalanobis distance is an appropriate metric to identify areas that were 

either correctly or incorrectly classified.  Land managers can use the Mahalanobis 

distance to identify areas where the automated state classification  product will be helpful 

in creating ecological state maps. 

The difficulty with accurately classifying states within the R034AY2ggUT ES lies 

in the fact that the differences in plant species composition in each state do not provide a 

sufficient spectral discrimination. For example, the differences between ecological states 

2 and 4 are functionally very small.  These states are nearly identical with the exception 

of an increase in invasives such as mustards and cheatgrass in State 4.  The dominant 

plant species, Wyoming big sagebrush, is constant throughout both states.  Therefore, we 

find that this method of pixel-based classification to map ecological states is appropriate 

for those states that are distinct from each other, but not for states that have subtle 

difference.  These findings in part confirm the conclusions of Steele et al. (2012) that the 

accurate mapping of ecological states using common classification algorithms is difficult.  

However, ecological state classification can have a significant utility as a supportive, 

ancillary dataset to assist land managers in the process of drawing new MU boundaries to 

more closely match specific ecological sites. 
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Ecological Site Inclusions 

 
Several types of inclusions and one ecological state that were not accounted for in 

the STM for R034AY2ggUT were identified through this process  Approximately  80% 

of the validation sites located in the dissimilar class contained plant species that were 

either associated with other ESs or were not accounted for in the STM.  Of these points, 

29% contained black sagebrush (Artemisia nova A. Nelson) which occurs on shallow, 

stony soils (Zamora and Tueller 1973). Fourteen percent of the points contained basin big 

sagebrush which is generally found on deep, well-drained soils in valley bottoms.   

Another 29% contained plant communities that are typical of another ES which is a 

mixture of basin big sagebrush (Artemisia tridentata Nutt. ssp. tridentata), basin wildrye 

(Leymus cinereus [Scribn. & Merr.]  Á. Löve), and thickspike wheatgrass (Elymus 

lanceolatus [Scribn. & J.G. Sm.] Gould ssp. lanceolatus).  The remaining points (21%) 

contained greasewood (Sarcobatus Nees) which is part of another ES occurring on finely 

textured, highly saline soils.  All of these areas were considered inclusions (which are 

defined as minority ESs within an MU) because ESs existed whose plant profile matched 

the plant communities at these sites.  These plants’ ESs frequently occur within the same 

MU as the R034AY2ggUT ES.  We have demonstrated that it is possible to map these 

inclusions within MUs through the use of the Mahalanobis distance. 

 Only one of these sites could be considered an alternative ecological state of the 

R034AY2ggUT ES but was not accounted for in the associated STM.  This site contained 

a high amount of Utah juniper (Juniperus osteosperma [Torr.] Little) at 26.7% canopy 

cover as well as plants that were typical of R034AY2ggUT such as Wyoming big 

sagebrush (4.5%), rabbitbrush (4%), and Kentucky bluegrass (5.6%).  However, there is 
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no state within the R034AY2ggUT STM that details any encroachment of Utah juniper.  

Additionally, there is another ES, R034AY2rrUT (Semi-desert Shallow Breaks 

(Caespitose Bluebunch Wheatgrass/ Utah Juniper)), that has a similar described plant 

community to what we found at the site.  A decision must be made as to whether an 

update to the R034AY2ggUT STM needs to be made or whether this site is a completely 

different ES.  This decision would be based on the soil characteristics at the site.   

  Four field sites containing plant species not attributed to the R034AY2ggUT ES 

were found in the similar and somewhat similar distance classes.  One of these sites, 

located within the similar distance pixels, was largely made up of black sagebrush (22% 

canopy cover).  We have no explanation as to why this site was classified as being similar 

to the R034AY2ggUT ES. The mean and standard deviation of NDVI values at this site 

were similar to those of our training data.  The other three sites that had different plant 

species present were found in the somewhat similar class’ pixels.  These sites contained 

different combinations of basin big sagebrush, black sagebrush, and Utah Serviceberry 

(Amelanchier utahensis Koehne).  Finding a few sites with plant species typical of other 

ESs was expected for points in the somewhat similar class.  Likewise, we also expected 

to have a few sites that were part of the R034AY2ggUT ES in the dissimilar class.   

A few factors may have contributed to the inability to identify a Mahalanobis 

distance value that cleanly separated pixels that represented areas of different ES.  One of 

these issues could have been the standard deviation in NDVI variable that was used.  This 

variable allowed us to separate areas in our ES of interest, which have low spectral 

variance, from other ESs that have higher variance such as riparian areas.  However, this 

variable also expanded the estimated area of dissimilar ES around each area of higher 
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variance.  This was caused by the way that the standard deviation was calculated.  The 

only way to calculate the standard deviation for an area is to consider the pixels 

surrounding the pixel of interest.  We used a 5 x 5 pixel focal window in each calculation 

of standard deviation.  This means that the standard deviation of a pixel that was in 

reality an R034AY2ggUT pixel could potentially be mischaracterized by an area of high 

variance up to 60 m away.  

  Another issue was heterogeneity among states within the R034AY2ggUT ES.  

Sometimes the MU containing our specific ES would have two or more states in close 

proximity.  If these states had contrasting NDVI values, then this caused the standard 

deviation in NDVI to increase above normal levels and an exaggerated Mahalanobis 

distance would be obtained.  

There are other limitations to this methodology.  Remote sensing cannot be used 

to obtain detailed information about soils.  Our methodology makes the assumption that 

since plants from other ESs (and plants not detailed in the associated STM) were present 

at a site, that at least some of the area was part of a different ES.  We did not attempt to 

verify this assumption through soil work.  Only soil sampling can positively identify the 

extent of ESs.  The distance image we produced with its probabilities of ES membership 

could provide a way to effectively choose sample sites for soil field work.   

 
IMPLICATIONS 

 

 
Our research has shown that a pixel-based classification shows promise as a 

means of separating distinct ecological states, but has difficulty separating states that are 

compositionally similar.  Therefore, this method should be used in combination with 
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other techniques to identify ecological states within a specific ES.  This technique can 

assist and supplement manual delineations of ecological states as described by Steele et 

al. (2012).  Areas with small Mahalanobis distance had a much higher classification 

accuracy and could therefore be used as a basis for where states occurred.   

 A similarity index like the Mahalanobis distance can be applied at the landscape 

scale to locate areas of similarity to a specific ecological state.  The method described 

here can help define where ecological states of a given ES occur on a landscape.  

Furthermore, the similarity index can be used in its original pixel value, categorized into 

discrete similarity categories, or converted into probability of ES membership through 

field work and used as a predictor variable in a more advanced classification algorithm 

such as random forests or an object-oriented classification tool.  This would be helpful 

when classifying multiple states from a variety of possible ESs across a large area. 

This method can be easily replicated by land managers for multiple ecological 

sites and states. Existing field data is available from a variety of government and 

educational organizations that could be used to both classify ecological states and 

calculate Mahalanobis distances.  However, a posteriori field work will need to be done 

similar to our study to validate at what Mahalanobis distances the probability of ES 

membership decreases dramatically.  After this data is created, it could be distributed 

with the tabular soil data in the NRCS SSURGO database (U.S. Department of 

Agriculture, NRCS-SSURGO 2012).   
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Table 3-1. Confusion matrix for the similar field sites.  Similarity classes were based on 

the distribution of Mahalanobis distances for each pixel classified by the Natural 

Resources Conservation service as being part of a map unit with a majority 

R034AY2ggUT ecological site (ES).  A column was added and labeled “Other ES” to 

represent when a pixel was classified as being one of the five states but in reality was in a 

different ES altogether. ES, ecological site. 

 

 

 
 

 

 

 

Table 3-2. Confusion matrix for the somewhat similar field sites.  Similarity classes were 

based on the distribution of Mahalanobis distances for each pixel classified by the 

Natural Resources Conservation service as being part of a map unit with a majority 

R034AY2ggUT ecological site (ES).  A column was added and labeled “Other ES” to 

represent when a pixel was classified as being one of the five states but in reality was in a 

different ES altogether. ES, ecological site. 

 

 

 
  

  Similar field sites

       Predicted

State 2 3 4 5 6

2 5 1 2

3 1

Actual 4 4

5 2 1

6 1

Other ES 1

          Somewhat similar field sites

       Predicted

State 2 3 4 5 6

2 2

3 3 1 1

Actual 4 1 2 2

5 1 2 1 1

6

Other ES 1 2
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Table 3-3. Confusion matrix for the dissimilar field sites.  Similarity classes were based 

on the distribution of Mahalanobis distances for each pixel classified by the Natural 

Resources Conservation service as being part of a map unit with a majority 

R034AY2ggUT ecological site (ES).  A column was added and labeled “Other ES” to 

represent when a pixel was classified as being one of the five states but in reality was in a 

different ES altogether. ES, ecological. 

 

 
  

Dissimilar field sites

       Predicted

State 2 3 4 5 6

2 1

3

Actual 4 1

5 1

6 1

Other ES 3 8 1 2
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1. Reference State 

1.1

bluebunch wheatgrass/ 

scattered Wyoming big sagebrush

R034AY2ggUT: Semi-desert Loam

(Wyoming Big Sagebrush/ Caespitose Bluebunch Wheatgrass)

BMC Brush Management (chemical)

BMM Brush Management (mechanical)

CLw Climate (unusually wet period)

HC Historic Change

HCSLG Heavy Continuous Season Long Grazing

HYRG Heavy Year Round Grazing

I&P Insects & Other Pathogens (Aroga Moth)

6. Wyoming Big Sagebrush/ 

Native Grass State

 
6.1 

reduced Wyoming big sagebrush/ 

increased native perennial grasses/ 

short occupancy of cheatgrass

T4a

( )

NF No Fire

NU Non use

PG Prescribed grazing

RS Re-seed

SA Soil Anoxia

Till Tillage

WFc Wildfire – cool

WFh Wildfire - hot

1.3

Wyoming big sagebrush dominant/ 

bluebunch wheatgrass & other 

native perennial bunchgrasses  

1.1a

(NF)

5. Crested Wheatgrass State

 

5.1 

crested wheatgrass

4. Increased Invasives/ Wyoming Big 

Sagebrush State 

4.3

Wyoming big sagebrush/ 

sparse mixed understory

4.2

yellow rabbitbrush/                     

native herbaceous perennials  

4.1

invasive annuals 

(mustards & cheatgrass)  

T2a

(NF;

HYRG -cattle, sheep, 

horses)

5.1a

(BMC or BMM)

3. Wyoming Big Sagebrush Super-dominance State 

3.1

Increased Wyoming big sagebrush/ 

diminished understory

T3a

(PG; CLw; SA; I&P;

WF)

T4a

(BMC or BMM; 

Till & RS)

4.1a

(NF)

4.2a

(NF)

4.3a 

(WFc)

4.2b 

(WFh)

4.3b 

(WFh)

T4b

(PG)

T3c

(PG-

Fall, sheep)

1.2

yellow rabbitbrush/ Wyoming 

big sagebrush increasing

1.2a

(NF)

1.2b

(WF)

T3b

(BMC or BMM;

Till & RS)

1.3a

(WF)

2. Wyoming Big Sagebrush/Caespitose Bluebunch Wheatgrass/ Introduced Non-natives State 

2.1

bluebunch wheatgrass/ 

scattered Wyoming big sagebrush

2.3

Wyoming big sagebrush dominant/ 

bluebunch wheatgrass & other 

native perennial bunchgrasses  

2.2

yellow rabbitbrush/ Wyoming 

big sagebrush increasing

2.1a

(NF)

2.2a

(NF)

2.2b

(WF)

2.3a

(WF)

T1a

(HC)

 

Figure 3-1. State-and-transition model for the R034AY2ggUT ecological site (U.S. 

Department of Agriculture, NRCS 2012).  Each numbered box represents a state.  Boxes 

with decimal numbers represent phases within a state.  
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Figure 3-2. Line graph of annual fluctuations in NDVI for grasslands, shrublands, and 

deciduous forests.  The largest differences in NDVI can be seen in mid-summer.  Similar 

graphs can be obtained from the USGS GLOVIS Visualization Viewer at 

http://glovis.usgs.gov/.  NDVI, Normalized Difference Vegetation Index.   
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Figure 3-3. State Classification map of all areas in the R034AY2ggUT ecological site in 

Rich County, UT. 
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Figure 3-4. Mahalanobis distances for all areas in the R034AY2ggUT ecological site in 

Rich County, UT. 
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Figure 3-5. Distribution of pixels based on Mahalanobis distance from whichever state 

the pixel was classified as.  Pixels with larger distances are more probable to be a 

different ecological site.  Thresholds to stratify the data were placed at the Mahalanobis 

distances of 12 and 52.   
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Figure 3-6. Bar graph showing the percentages of each similarity class that actually were 

within the R034AY2ggUT ecological site.  Numbers at the top of the bars represent the 

total number of field sites in each category. 

 

Figure 3-7. Bar graph showing the percentages of areas within each Mahalanobis 

distance range that actually were within the R034AY2ggUT ecological site.  Numbers at 

the top of the bars represent the total number of field sites in each category.  
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Figure 3-8. Bar graph showing the percentages of areas within each Mahalanobis 

distance range that actually were within the R034AY2ggUT ecological site.  Extra ranges 

added by including additional thresholds at the midpoint of each range.  Numbers at the 

top of the bars represent the total number of field sites in each category. 
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CHAPTER 4 

CONCLUSION 

The conceptual framework of ecological site descriptions (ESD) and state and 

transition models (STM) (Westoby et al. 1989) provides a way to record the historic plant 

communities as well as the current soil and plant properties at a given location. An ESD 

represents unique soil characteristics and the resulting plant species composition that 

occur on those soils.  Ecological sites differ from one another in their ability to produce a 

distinct kind and amount of vegetation.  Areas of the same ES, but separated by 

geography, are also unique in that they are assumed to “respond similarly to management 

actions and natural disturbances” (U.S. Department of Agriculture 2011).  Each ESD has 

an associated STM that describes the different ecological states that can occur within an 

ES.  STMs also describe how transitions to different states occur.  Because of the 

information contained in ESDs and their associated STMs, they are a valuable decision 

support system that land managers can use in fragile ecosystems (Hernandez 2011). 

 The issue with the current state of ESs that we have identified in this thesis is that 

they are not explicitly delineated.  Currently, ESs are identified on a landscape as 

components within map units (MU) with no specific spatial extent.  In order for ESDs to 

be more useful to land managers, the spatial extent of ESs must be identified.  Once ESs 

are mapped, their utility should be improved (Steele et al. 2012).  The main goals of this 

research were to utilize common remote sensing techniques to 1) identify the spatial 

distribution of ecological sites and 2) identify the spatial distribution of states within 

ecological sites.    
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 In Chapter 2 we addressed the first goal by identifying vegetation indices as well 

as biophysical variables that allowed us to discriminate between the vegetation 

components of selected ESs.  The normalized difference vegetation index (NDVI) (Rouse 

et al. 1974) provided the most separation between vegetation components followed by the 

brightness component and then by the spatial variance of NDVI.  A cluster analysis 

showed that the natural structure in the data would allow for separation between classes.  

We then applied the Random Forests decision tree algorithm (Breiman 2001) to our data 

resulting in an out-of-bag accuracy (cross-validation) of 97.2%.  Our Random Forests 

model was then applied to all of Rich County, UT.  Most of the vegetation components in 

our selected ESs were classified at greater than 90% accuracy.  Our method accurately 

identified and discriminated between vegetation components that are unique to specific 

ESs.  The resulting classified image from this process mapped the specific boundaries of 

vegetation components within MUs.   

 Chapter 3 utilized field work collected by Peterson (2009) and the Utah Division 

of Wildlife Resources (2006) to address both objectives using a similarity index rather 

than a decision tree model.  Field sites were assigned an ecological state outlined by the 

STM for the Semi-desert Loam: Wyoming big sagebrush ES.  A representative sample of 

each state was used to train a Maximum Likelihood classifier and subsequently classify 

each pixel identified by the U.S. Department of Agriculture: Natural Resources 

Conservation Service (NRCS) as being within our specific ES.  A per-pixel Mahalanobis 

distance metric was produced during the image classification.  The classification 

accuracy for pixels with low Mahalanobis distances was 64.7%.  Classification 

accuracies were very low (<25%) for pixels with higher Mahalanobis distances (low 



82 

similarity).  We found that the Mahalanobis distance metric is a suitable indicator of pixel 

membership to various ecological states of the Semi-desert Loam: Wyoming big 

sagebrush ES.    We propose that Mahalanobis distances can be converted to probabilities 

of ecological site membership by performing field work.  These results could help land 

managers delineate ecological sites and lead to a better understanding of landscape 

potential.   

 The work presented in Chapters 2 and 3 has demonstrated how common remote 

sensing techniques can help in the classification of ecological sites and ecological states.  

If implemented by land management agencies, these techniques will help clarify the 

vegetation potential of landscapes and help in policy-making decisions.  The techniques 

in both chapters have implemented multi-temporal remotely sensed data sets.  These were 

needed to average yearly changes in vegetation production due to climate variability. 

 Multi-temporal imagery coupled with field reconnaissance can be used to better 

delineate ecological sites and to some degree map different ecological states.  Improved 

knowledge of the spatial distribution and extent of ES vegetation components can lead to 

improved delineation of soils as well as a better understanding of the different ecological 

state-and-transition forces occurring on these landscapes. 
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