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ABSTRACT 

 
Equivalent Fraction Learning Trajectories for Students with Mathematical  

 
Learning Difficulties When Using Manipulatives 

 
 

by  
 
 

Arla Westenskow, Doctor of Philosophy 
 

Utah State University, 2012 
 
 
Major Professor: Dr. Patricia Moyer-Packenham 
Department: School of Teacher Education and Leadership 
 
 

This study identified variations in the learning trajectories of Tier II students 

when learning equivalent fraction concepts using physical and virtual manipulatives. The 

study compared three interventions: physical manipulatives, virtual manipulatives, and a 

combination of physical and virtual manipulatives. The research used a sequential 

explanatory mixed-method approach to collect and analyze data and used two types of 

learning trajectories to compare and synthesize the results. For this study, 43 Tier II fifth-

grade students participated in 10 sessions of equivalent fraction intervention.  

  Pre- to postdata analysis indicated significant gains for all three interventions. 

Cohen d effect size scores were used to compare the effect of the three types of 

manipulatives—at the total, cluster, and questions levels of the assessments. Daily 

assessment data were used to develop trajectories comparing mastery and achievement 

changes over the duration of the intervention. Data were also synthesized into an iceberg 
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learning trajectory containing five clusters and three subcluster concepts of equivalent 

fraction understanding and variations among interventions were identified. The syntheses 

favored the use of physical manipulatives for instruction in two clusters, the use of virtual 

manipulatives for one cluster, and the use of combined manipulatives for two clusters.  

 The qualitative analysis identified variations in students’ resolution of 

misconceptions and variations in their use of strategies and representations. Variations 

favored virtual manipulatives for the development of symbolic only representations and 

physical manipulatives for the development of set model representations. Results also 

suggested that there is a link between the simultaneous linking of the virtual 

manipulatives and the development of multiplicative thinking as seen in the tendency of 

the students using virtual manipulative intervention to have higher gains on questions 

asking students to develop groups of three or more equivalent fractions. These results 

demonstrated that the instructional affordances of physical and virtual manipulatives are 

specific to different equivalent fraction subconcepts and that an understanding of the 

variations is needed to determine when and how each manipulative should be used in the 

sequence of instruction. 

(295 pages) 
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PUBLIC ABSTRACT 

 
Equivalent Fraction Learning Trajectories for Students with Mathematical  

 
Learning Difficulties When Using Manipulatives 

 
 

by  
 
 

Arla Westenskow, Doctor of Philosophy 
 

Utah State University, 2012 
 
 

This study identified variations in the equivalent fraction learning of students with 

mathematical learning difficulties when using physical and virtual manipulatives. The 

study compared three interventions: physical manipulatives, virtual manipulatives, and a 

combination of physical and virtual manipulatives. The research used a mixed-method 

approach to collect and analyze data. Two types of learning trajectories were used to 

compare and synthesize the result. For this study, 43 fifth-grade students with 

mathematical learning difficulties participated in 10 sessions of equivalent fraction 

intervention. 

  Pre- to postdata analysis indicated significant gains for all three interventions. 

Effect size scores were used to compare the effects of the three types of manipulative 

intervention at the total, cluster, and questions levels of the assessments. Daily 

assessment data were used to develop trajectories comparing mastery and achievement 

changes over the duration of the intervention. Data were also synthesized into an iceberg 

learning trajectory containing five clusters and three subcluster concepts of equivalent 
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fraction understanding. The syntheses favored the use of physical manipulatives for 

instruction in two clusters, the use of virtual manipulatives for one cluster and the use of 

combined manipulatives for two clusters. 

The qualitative analysis indentified variations in students’ resolution of 

misconceptions and students’ use of strategies and representations. Variations favored 

virtual manipulatives for the development of students’ understanding of representations 

using only symbols. Physical manipulatives were favored for students’ understanding of 

set model representations. Results also suggested that the ability of students using virtual 

manipulatives to see the link between their manipulation of the objects and simultaneous 

changes in the symbolic representations of the building of equivalent fraction groups. 

Students using virtual manipulatives tended to have higher gains on questions that asked 

students to develop groups of three or more equivalent fractions. The results of this study 

demonstrated that the instructional benefits of physical and virtual manipulative 

instruction are specific to the different equivalent fraction subconcepts and that an 

understanding of the variations is needed to determine when and how each manipulative 

should be used in the sequence of instruction. 
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CHAPTER I 

INTRODUCTION 

 
“Children who have fallen in the gap” is a term used to describe children who 

struggle with learning mathematical concepts but have not received the support or 

additional instruction needed to help them overcome their difficulties. These are children 

(referred to as children or students with mathematical learning difficulties) who do not 

respond adequately to regular classroom instruction, but also do not qualify for special 

education services. Due to recent changes in educational funding, many school systems 

are beginning to place a greater emphasis on providing intervention support for children 

with mathematical learning difficulties. However, one of the difficulties for designers and 

implementers of intervention programs has been the limited amount of research 

concerning effective instruction specific to intervention settings. This study focused on 

the use of physical and virtual manipulatives in intervention settings. Both types of 

manipulatives have been shown to be effective in regular education settings, but there has 

been little research evaluating their use in intervention settings and even less research 

which can be used to guide teachers and curriculum designers as to when the two 

manipulatives can be used most effectively during intervention. The purpose of this study 

was to identify variations in the learning trajectories of students with mathematical 

difficulties when learning equivalent fraction concepts during instruction using virtual 

and physical manipulatives.  

 

 



 2 
 

  

Background of the Problem 

 

Research on intervention for students struggling with mathematical learning 

difficulties has steadily, but slowly evolved throughout the past 100 years. By the early 

1900s, the opportunity for education was made available to almost all children. However, 

during the first half of the century, little attention was given to the individual differences 

and needs of children (Eisner, 1994). Very little money and few programs were directed 

for the intervention of students who did not respond to regular education classroom 

instruction. The first unified movement of diversifying instruction to meet the needs of 

children came as a result the Cold War. The Russian launching of Sputnik in the 1960s, 

created a fear in the United States that the nation would be overpowered if the abilities of 

United States’ mathematicians and scientist were substandard to those of communist 

countries allowing other countries to produce more advanced war technology. As a result 

of this fear, heavy emphasis was placed on building a large pool of highly educated 

mathematicians and the first practice of diversification, tracking students by ability, 

began.  

With today’s globalization of markets, the advancement of technology and the 

overwhelming spread of information through the World Wide Web, a flexible 

comprehension of mathematics by all people is becoming increasingly more important 

and therefore a greater emphasis is being placed on educating students of all abilities 

(Woodward, 2004). In 1975, the Education for All Handicapped Children Act (EHA) 

calling for free and appropriate public education for all children with disabilities was 

passed. EHA was reauthorized in 1990 to become the Individuals with Disabilities 
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Education Act (IDEA). This law set the criteria for determining which students could be 

considered learning disabled and who would receive special education services. In recent 

years, the movement to ensure that all children have adequate mathematics skills and 

knowledge has been reinforced by the No Child Left Behind Act (NCLB). One of the 

main goals of NCLB is that all children will become proficient at mathematics. 

Yet, in the United States a large number of students still fail to acquire the needed 

mathematical skills. In the latest international mathematics study, United States students 

achieved the ranking of only 18th in a study of 25 countries (Frykholm, 2004). Each year, 

a large percentage of college students are required to enroll in remedial mathematics 

courses because they lack sufficient skills needed for beginning mathematics courses. 

Within the average classroom, it is estimated that a large number of students are 

functioning below grade level in mathematics (Din, 1998). Almost three million students 

in the public school system have been classified with learning disabilities and are 

receiving special education services and the number of students classified as learning 

disabled has increased by 22% over the last 25 years (Singapogu & Burg, 2009).  

The failure of so many students to learn adequate mathematical skills has caused 

educational and government leaders to reevaluate their policies and practices of 

intervention. Until 2004, the United States government funded only the traditional 

remediation form of intervention: programs in which intervention is provided for students 

only when it is determined that the student is academically at least two years behind 

his/her peers and the student is diagnosed with a learning disorder or moderate to severe 

mental retardation (D. Fuchs, Compton, L. S. Fuchs, Bryant, & Davis, 2008a). This 
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system has been referred to as the “wait to fail” approach (D. Fuchs et al., 2008a). As a 

result, intervention literature has primarily focused on students with diagnosed learning 

disorders. However, concern over the rising number of students needing mathematical 

remediation has recently caused a shift in focus towards earlier interventions. Supporters 

of earlier interventions believe that providing students with effective intervention earlier 

in their schooling will, for most students, prevent the need for more intense intervention 

later.  

In 2004, in support of the shift towards earlier intervention, Congress passed the 

Individuals with Disabilities Education Improvement Act (P.L. 108-446), giving states 

and districts the right to redirect a proportion of their funding from the traditional 

remediation process to supporting classroom intervention. A number of states chose to 

respond to the opportunity and are now beginning to initiate changes in procedures and 

programs. Many have chosen to adopt the Response to Intervention (RtI) approach which 

targets earlier intervention for students having mathematical difficulties. Although RtI 

has been successfully used in the field of reading, research and program implementation 

of RtI intervention in mathematics is still in its infancy. Because of the emphasis of past 

funding on traditional intervention, intervention research has been heavily influenced by 

special education policies and research and has focused primarily on behavior analysis, 

direct instruction, peer mediated instruction and cognitive behavior modification 

(Gersten, Clarke, & Mozzocco, 2007). It is only in the last few years that the literature 

has begun to focus on the development of early intervention practices in the classroom 

(Gersten et al., 2009). Both research designers and program implementers have identified 
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the lack of research concerning intervention appropriate materials and tools as one of the 

factors limiting the implementation of early intervention in the field of mathematics (D. 

Fuchs et al., 2008a; Glover & DiPerna, 2007). 

 
Problem Statement 

 
 

The purpose of this study was to identify variations in the learning trajectories of 

students with mathematical difficulties when learning equivalent fraction concepts during 

instruction using virtual and physical manipulatives and to pilot instruments and protocol 

for use in future research. Physical manipulatives have been shown to be effective tools 

for use in developing student understanding when used in regular classroom instruction, 

however their use in intervention has been limited (Sowell, 1989). Research results 

indicate that the action of manipulating physical objects can aid students in the process of 

constructing and retention of new mathematical concepts. Teachers report that students 

are typically more engaged and motivated to complete assignments when using physical 

manipulatives. Literature has also begun to emerge supporting their effectiveness in 

special education instruction. However, very limited research has focused directly on the 

use of physical manipulatives in early intervention settings for students with 

mathematical learning difficulties.  

Virtual manipulatives are an “interactive, web based, visual representation of a 

dynamic object that presents opportunities constructing mathematical knowledge” 

(Moyer, Bolyard, & Spikell, 2002, p. 373). Although research is still limited, a recent 

synthesis of empirical research indicates that virtual manipulatives are also effective tools 
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of instruction when used in regular instruction (Moyer-Packenham,Westenskow, & 

Salkin, 2012). In addition to having many of the same representational advantages as 

physical manipulatives, many virtual manipulative applets are designed specifically to aid 

students in linking concrete, semiconcrete and symbolic representations. Although there 

have been several studies assessing the use of virtual manipulatives with students having 

learning disabilities, there are no known studies which specifically target their use in 

early intervention settings.  

A small number of studies (N = 26) have examined the effectiveness of 

combining the use of physical and virtual manipulatives for instruction. An effect size 

analysis of these studies resulted in a moderate effect size when the combined use of 

virtual and physical manipulatives was compared to traditional instruction, and a lesser, 

but still moderate effect when compared to the use of physical or virtual manipulatives 

alone (Moyer-Packenham et al., 2012). Several researchers report that the affordances of 

each type of manipulative produce variations in learning unique to the type of 

manipulative (Izydorczak 2003; Moyer, Niezgoda, & Stanley, 2005; Takahashi, 2002). 

This indicates that it would be incorrect to suggest that one manipulative is always more 

effective than the other. Instead research is needed comparing the effectiveness of each 

manipulative as used in specific settings to teach specific mathematical concepts thus 

aiding designers and implementers of curriculum to maximize the efficiency and 

effectiveness of the manipulatives.  

The underlying differences of the learning trajectories of students with 

mathematical learning difficulties compared with the learning trajectories of students 
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without learning difficulties has been debated in the literature. Some argue that the 

differences are in the amount of time students need to master concepts and that all 

students follow the same basic trajectories. Others argue that differences are more a result 

of how the students learn. It is more likely that the learning trajectories of students with 

mathematical learning difficulties differ in both time and direction. These differences in 

learning make it necessary for research on manipulative use to be conducted specifically 

for students with mathematical learning difficulties.  

One of the most difficult mathematical topics for students with mathematical 

learning difficulties has been the study of fractions. Fractions do not follow the same 

rules which children have established and used in their study of whole numbers. The 

study of fractions is, for most students, the first time they experience numbers that can be 

represented by more than one name and that represent a relationship between two discrete 

quantities rather than a specific quantity (Smith, 2002; Van de Walle, 2004). Yet 

fractions are the foundation for many mathematical concepts (e.g., ratios, proportions, 

percents, decimals, rational numbers) and fraction mastery is essential for the future 

development of students’ mathematical understandings (Chan & Leu, 2007). One of the 

basic fraction concepts to be mastered is understanding fraction equivalence. Until 

students have a conceptual understanding of equivalence they will not be able to grasp 

the concept of fraction arithmetic (Arnon, Nesher, Nirenburg, 2001; Smith, 2002). This 

study examined the effects of virtual and physical manipulatives usage on the 

development and resolution of students’ misconceptions and errors in four areas of 

fraction understanding difficulties identified by Chan and Leu: (a) difficulty 
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understanding that a fractional amount can be represented by an infinite set of names; (b) 

difficulty focusing on the need for all parts of the fraction to represent equal sizes; (c) 

difficulty identifying the whole and its relationship to the parts; and (d) difficulty 

simplifying and expanding fractions to represent equivalent fractions. 

 
Research Questions 

 

 To identify and describe variations in the effects of virtual and physical 

manipulatives in the intervention of four areas of fraction difficulties, this study used a 

mixed methods approach with data collected during intervention instruction of fifth-grade 

students. The overarching research question and subquestions guiding this study were as 

follows. 

1. What variations occur in the learning trajectories of students with 

mathematical learning difficulties that are unique to the use of different instructional 

manipulatives for intervention (virtual, physical or a combination of virtual and physical 

manipulatives) in the learning of equivalent fraction concepts?  

a. What are the variations of achievement, mastery, retention, and resolutions of 

errors in students’ development of equivalent fraction concepts and skills?  

b. What are the variations in learning trajectories showing changes in student 

achievement over time? 

c. What are the variations in patterns of daily lesson achievement, retention and 

work completion? 

d. What are the variations in the strategies developed and used by students? 

e. What are the variations in students’ use of representations? 
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Definition of Terms 

 
The following terms are defined for this study. 

An affordance is a design feature that determines how the object will be used 

(Norman, 1988) 

Distracters are irrelevant or incomplete components of manipulatives which must 

be ignored by the student (Behr, Lesh, Post, & Silver, 1983). 

Intervention is the additional instruction and activities needed to meet a student’s 

individual circumstances and instructional needs (L. S. Fuchs & D. Fuchs, 2006). 

Learning trajectories are a mapping of the progression of learning of 

mathematical concepts and skills (Clements & Sarama, 2004).  

Misconceptions are previously learned incorrect mathematical conceptions which 

inhibit learning (Vosniadou & Vamvakoussi, 2006). 

Multiplicative thinking is thinking of a fraction number as multiplicative groups 

(Ball, 1993). 

Partitioning is sectioning into equal shares (Lamon, 1996). 

Students with mathematical learning difficulties are those students who have not 

responded to Tier I intervention and have not been identified as needing Tier III 

intervention (L. S. Fuchs, 2005).  

Physical manipulatives are concrete objects which students use to visually and 

tactilely explore abstract concepts (McNeil & Jarvin, 2007).  

A representation is a configuration of signs, characters, icons, or objects that 

represent something else (Goldin, 2003). 



 10 
 

  

Virtual manipulatives are interactive, Web-based, visual representations of 

dynamic objects that allow users opportunities to construct mathematical knowledge 

(Moyer et al., 2002). 
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CHAPTER II 

LITERATURE REVIEW 
 
 

The range of students’ mathematical abilities in a regular elementary classroom 

tends to be very diverse with as much as five to seven years difference in mathematical 

ability (Brown, Askew, Millet, & Rhodes, 2002). Students not only differ in ability, but 

also each student uniquely differs in culture, learning preferences, motivation, past 

experiences and a variety of other characteristics. As a result, each student in a classroom 

understands and responds to group instruction differently and the instruction is more 

effective for some students than others. Thus some students will require intervention. 

Intervention is the additional instruction and activities needed to meet a student’s 

individual circumstances and needs. An important component in effective intervention is 

the selection of methods and instructional materials. Yet, there has been relatively little 

research identifying which methods and tools are most effective in intervention settings. 

This study targeted the use of two instructional manipulatives (virtual and physical 

manipulatives) in the intervention instruction of equivalent fractions for students with 

mathematical learning difficulties. This chapter reviews the literature relevant to students 

with mathematical learning disabilities, intervention, fraction instruction, and virtual and 

physical manipulatives. The literature was searched in the databases of ERIC, PsychInfo, 

Google Scholar, and Digital Dissertation Index using search terms including intervention, 

mathematical learning difficulties, remediation, learning disorders, response to 

intervention, fractions, representations, manipulatives, virtual manipulatives, physical 

manipulatives, computer manipulatives, dynamic manipulatives, and rational numbers. 



 12 
 

  

Reference lists of articles found were also manually searched for further references.  

 
Conceptual Framework 

 

 To synthesize the relevant research, a conceptual framework of the relationships 

and elements of the intervention process was developed (see Figure 1). Four main 

elements affect the outcomes of the intervention process: the intervention goals, the 

student, the mathematical concept, and the environment. Each intervention is a unique 

reflection of the four elements and therefore differs in the order, frequency and difficulty 

of mathematical concepts presented; the activity level of the participants; the intervention 

duration; and the types of methods, models, and manipulatives used. As a result of the 

intervention process, students’ mathematical attitudes, beliefs and understandings are 

changed. Interpretation of changes requires an evaluation of the four contributing 

elements. 

 
Intervention Goals 

The goals set for intervention instruction are a reflection of both what is 

considered necessary for each student’s success and what is considered to be achievable 

by the student. The goals selected for the intervention will determine how focused 

instruction will be on varying elements, such as the development of the student’s 

attitudes, problem solving abilities, retention, and conceptual and procedural 

understanding. How the intervention designer perceives the characteristics of the student, 

the environment and the mathematical topic influences their selection of goals of each 

intervention setting and thereby influences their selection of factors such as the depth at 
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caused by a teacher’s inability to provide effective instruction or it may stem from 

circumstances in which the student has not received instruction because of absences, 

moving, or the topic not being taught. Individual characteristics inhibiting learning can be 

abilities (e.g., memory, organizational, attention, etc.), attitudes (e.g., anxiety, beliefs), 

motivation, self-efficacy, and cultural factors such as language and customs. Most often, 

a student’s need for intervention stems from a combination of these elements. A student’s 

characteristics affect their response to instruction, but instruction may also affect the 

development and influence of the individual characteristics. The challenge of intervention 

instruction is the selection of appropriate goals and environmental characteristics which, 

when matched with the student’s individual characteristics, make learning each 

mathematical topic possible. 

 
Mathematical Concept 

The selection of the mathematics concept is typically determined by district, state 

or national standards. Varying characteristics of mathematics concepts which influence 

the intervention processes are the complexity of the concept, the transparency of 

representational models and algorithms, and the students’ familiarity with the concept. 

These characteristics influence the intervention designer’s selection of methods, materials 

and manipulatives to be used in the intervention process. 

 
Environment 

Environmental factors are the influences of the context on the intervention 

process and include teacher characteristics, school climate, setting characteristics and 
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instructional methods. Research has shown that teachers’ mathematical ability, attitudes 

and knowledge affect student learning (Bolyard & Moyer-Packenham, 2008). A school’s 

learning culture affects the goals, motivation, and attitudes of both teachers and learners 

(Okpala, Smith, Jones, & Ellis, 2000). Factors such as schedules and space availability 

can effect when, where and in what types of groupings the intervention will take place. 

The availability of materials and manipulatives can also influence methods and style of 

instructional presentation. 

This study focused specifically on the items in bold lettering in the conceptual 

framework in Figure 1 (conceptual and procedural knowledge, students with 

mathematical learning difficulties, equivalent fractions and virtual and physical 

manipulatives). The study investigated the conceptual and procedural mastery of fraction 

equivalence through the use of physical and virtual manipulatives for students with 

mathematics learning difficulties. Each of the four sections of the following literature 

review focuses on one of the four intervention process elements: intervention goal (i.e., 

conceptual and procedural knowledge), students with mathematical learning difficulties, 

mathematical concepts (i.e., equivalent fractions), and environmental tools (i.e., physical 

manipulatives and virtual manipulatives). 

 
Intervention Goals 

 
 

Throughout the past century, there has been a gradual development of 

intervention research, theory and practice. Each phase of the development has seen 

important changes in the purpose or goals of the intervention practices as people have 
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reevaluated who should receive intervention and when, where and how intervention 

should be administered. 

 
Early 1900s Goals of Intervention Instruction  

Up until the middle of the 1900s, mathematics education focused primarily on 

preparing students for work in the industrial world, a world in which the average person 

needed only strong computational skills to be successful. The growth of technology in the 

1900s significantly changed people’s life styles and their educational needs. These 

changes have been mirrored in the focus of the development of mathematics education in 

this century and subsequently in the research and development of intervention instruction 

(Gersten et al., 2007). 

It was with the “new math” movement of the 1950s that the first dramatic shift in 

mathematics education began. The drive for the new math movement began with the 

Soviet’s launching of Sputnik, which was seen by many in the United States to be a 

demonstration of the Russians’ superior mathematical and science advancements over 

those of the United States. In response, the U.S. government funded extensive spending 

programs for research in the field of mathematics education with particular funding 

attention to the ultimate goal of producing a more scientifically oriented society. 

Although this funding was primarily focused on the development of high achieving 

students, some funding was also given to intervention projects of low achieving students. 

As a result, the concept of learning disabilities was developed in the 1960s. Intervention 

goals at this time centered mostly on the development of perceptual motor skills and were 

not content specific (Woodward, 2004). 
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Late 1900s Goals of Intervention Instruction 
 

In the 1970s the new-math movement was followed by the “back-to-basics” 

movement and intervention at this time became more individualized and content specific. 

During this period the influences of behaviorism, with a heavy emphasis on task analysis, 

began to take a strong hold on education. Mathematics instruction was typically a 

carefully planned progression of basic skills which were taught in explicit, step by step 

approaches. Mastery was determined by two elements: accuracy and efficiency (Lampert, 

1990). 

In 1975, Congress passed the Educational of All Handicapped Children Act of 

1975 (Miller, McCoy, & Litcher, 2000; Woodward, 2004). Prior to the passing of this act, 

many students with disabilities had been denied education opportunities, but this act 

established the right of all children to receive appropriate education. During this time the 

goal of mathematics intervention was generally the development of the procedural 

knowledge students needed to perform the basic life skill tasks. This laid the foundation 

for most of the research that has been conducted in the field of mathematics intervention 

(Woodward, 2004). This strong focus on procedural mastery was reinforced by the 

research work of Pellegrino and Goldman (1987), which reported that a students’ 

inability to automatically recall facts was a strong predictor of mathematics learning 

disabilities and Hasselbring, Goin, and Bransford’s (1988) research, which found that by 

the age of 1, typically achieving students could recall, on average, three times more basic 

facts than students with mathematical learning disabilities. As a result of these influences, 

until the 2000s, mathematical intervention instruction and research focused almost 



 18 
 

  

exclusively on students with learning disabilities receiving basic fact and algorithm 

instruction (Woodward, 2004).  

 
Recent Changes in Goals of Intervention  
Instruction 
 

In the 1900s, information processing and cognitive construction theories became 

increasingly popular and instructional methods used in mathematics education gradually 

began to change (Schoenfeld, 2004). Spurring on these changes was the poor showing of 

U.S. students in two international studies: the Second International Mathematics and 

Science Study (SIMSS) and the Third International Mathematics and Science Study 

(TIMSS). These reports revealed the lack of strong mathematical conceptual knowledge 

of United States students when compared with other students in developed countries 

(Frykholm, 2004).  

In 2000, the National Council of Teachers for Mathematics (NCTM) published its 

Principles and Standards for School Mathematics which is based primarily on 

constructivist learning theories and evaluation of concept mastery began to focus on both 

conceptual and procedural understanding. However, the shift towards a more cognitive 

construction approach of instruction methods has occurred much slower in the field of 

intervention practices. Typically intervention research and practices have been considered 

to be under the domain of special education practices which, in most situations, is still 

predominately influenced by behaviorism (Miller & Mercer, 1997).  

In recent years, results of several studies have supported the use of constructivist 

practices for intervention. Two studies indicated that students with mathematical learning 
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difficulties not only tended to have difficulties with recall but tend to also have more 

immature strategies for solving problems (Fletcher, Huffman, Bray, & Grupe, 1998; 

Geary, 1990). Dowker’s (2005) research reported a positive correlation between people’s 

mathematical abilities and the number of strategies people used when solving and 

resolving mathematical problems. Dowker explained:  

Development consists not of the replacement of a single immature strategy or by a 
single more mature strategy but of the discovery of increasingly more mature 
strategies, which co-exist for a long time with immature strategies, before 
gradually supplanting them. (p. 22) 
 

These results suggest that intervention should focus not just on procedural understanding, 

but also on the development of flexible conceptual understanding. Several other research 

studies indicate that students with disabilities perform better in schools in which NCTM 

suggested practices of cooperative learning and the active manipulation of materials are 

used (Peetsma, Vergeer, Roeleveld, & Karsten, 2001; Rosa, 2002).  

 Until 2004, the United States government funded only intervention with students 

who qualified for special education services (D. Fuchs et al., 2008a). This system, used 

since the 1970’s, is sometimes referred to as a “wait to fail” approach because students 

were not eligible for intervention services until they were academically at least two grade 

levels behind. The number of students with identified mathematical learning disabilities 

in the U.S has increased over 200% in the last 10 years and there is growing concern that 

students with mathematical difficulties are falling in a gap between regular classroom 

instruction and special education remediation and are not receiving the support they need 

(VanDerHeyden, Witt, & Barnett, 2006).  

In response to these concerns, in 2004, Congress passed the Individuals with 
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Disabilities Education Improvement Act (P.L. 108-446) giving states the right to redirect 

a proportion of their funding from the traditional remediation processes to early 

classroom intervention. A number of states have adopted the “response to intervention” 

(RtI) approach in which students needing intervention are identified, not by types of 

disabilities, but by their levels of response to the intervention process (D. Fuchs et al., 

2008a). The most commonly used model is the three-tiered design (L. S. Fuchs, D. Fuchs, 

& Hollenbeck, 2007). Tier I is research proven effective instruction presented in the 

regular education classroom setting. It is expected that at least 80% of the students will 

master the concepts taught in Tier I (D. Fuchs et al., 2008a).  

Tier II intervention provides additional assistance for students who did not reach 

mastery through Tier I. Tier II intervention is content specific and is typically conducted 

by the classroom teacher or a mathematics coach. Students who do not respond to Tier II 

intervention are identified as nonresponders and are referred for Tier III intervention in 

special education settings designed to give specialized ongoing individual instruction.  

The goals of Tier II intervention vary according to whether the intervention is 

preliminary, concurrent, or remedial (D. Fuchs et al., 2008a). Students receiving 

preliminary intervention are identified before implementation of the instructional unit and 

the goal of the intervention instruction is the development of the prerequisite knowledge 

and skills needed by the students for the unit of study. Students receiving concurrent 

intervention are identified from the results of daily assessments and assignments given 

during the instructional unit and the goal of intervention is to support scaffolding of new 

learning presented during classroom instruction. Students receiving remedial intervention 
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are identified as not having mastered the concept on posttests and the goal of intervention 

is mastery of the unit concepts.  

 
Research Needs 
 

Although research investigating the processes of Tier II intervention is still in its 

infancy, preliminary research has been positive (L. S. Fuchs, 2005; Gersten, Jordan, & 

Flojo, 2005; Glover & DiPerna, 2007; VanDerHeyden et al., 2006). Yet, developers of 

RtI programs have reported that the lack of available Tier II instructional materials and 

lack of knowledge of effective use of instructional tools is limiting program 

implementation and research (e.g., L. S. Fuchs et al., 2008b; Gersten et al., 2009; Glover 

& DiPerna, 2007).  

Teachers have also expressed the need for additional research in intervention. In 

2008, to address the problem of linking research to teacher practices, NCTM brought 

together a group of 60 mathematics educators who examined 350 questions that over 200 

teachers had identified as questions they would like to have answered by research. These 

350 questions were then aggregated into seven areas from which 10 theme questions 

were identified. Three of the 10 theme questions that emerged in this process are relevant 

to this study: (a) What interventions work with helping students who are having 

difficulties in mathematics? (b) How can technology be used to facilitate student 

learning? and (c) What are the frameworks of student thinking development (Arbaugh, 

Ramirez, Knuth, Kranendonk, & Quander, 2010). 
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Summary 

In the past century, intervention policies, instructional methods and research have 

gradually evolved and developed. Students who struggle with mathematics are receiving 

intervention earlier and students who previously did not qualify for intervention are now 

receiving intervention. The goals of intervention have become more focused on 

developing both conceptual and procedural understanding. Yet, additional research is 

needed to guide the planning and implementation of effective intervention instruction.  

 
Students with Mathematical Learning Difficulties 

 
 

Defining Mathematical Learning Difficulties 

The second element affecting the intervention process is the student. When 

describing students who have difficulty learning mathematics, researchers have used a 

variety of definitions and terms. Some of the more commonly used terms are 

mathematical disabilities, mathematical learning disabilities, dyscalculia and 

mathematical learning difficulties (Mazzocco, 2007). The first three terms are typically 

used to describe the same population, students who have been or could be identified as 

having a disability and qualify to receive special education services. These terms imply a 

disorder that is inherent rather than a disorder resulting from environmental influences. A 

disorder affects learning in multiple mathematical topics (Gersten et al., 2007). It is 

generally estimated that approximately 6% of children have this type of mathematical 

disability (Dowker, 2005; Gersten et al., 2005). In RtI literature, these students are 

identified as nonresponders and receive Tier III intervention (L. S. Fuchs, 2005).  
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In contrast, the term mathematical learning difficulty encompasses students whose 

learning difficulties may be environmental and specific to one or two topics. The term is 

often used to describe all children below the 35th percentile on a mathematical 

achievement test. It implies, not necessarily a disability, but low mathematical 

performance (Gersten et al., 2005). In RtI literature, students with mathematical learning 

difficulties are those students who have not responded to Tier I intervention and have not 

been identified as needing Tier III intervention (L. S. Fuchs, 2005). This is the definition 

which was used in this study.  

 
How Students Differ 

An important mediating factor in intervention is the question of whether people 

with mathematical learning difficulties differ in degree or differ in kind of learning 

(Dowker, 2005). Differing in degree implies that all students follow the same general 

paths in learning, but that students with mathematical learning difficulties require more 

and longer learning sessions. An example of a study supporting the difference in degree 

theory is that of Staszewski (1988) in which students were taught methods of fast 

calculations, a skill believed by many to be possible for only students of higher abilities 

to master. The students received over 300 hours of instruction within a three year period. 

By the end of the third year, students, regardless of ability, were able to accurately 

calculate within 30 seconds five digits by two digits multiplication problems. This study 

implies that given adequate time all students can master computation skills.  

In contrast, results from a series of studies conducted by Dowker (2005) indicate 

that differences in learning of students with varying abilities is not just a difference in the 
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time required to learn concepts, but also a difference in the number of strategies 

developed and used by students. The greater the mathematical ability, the greater the 

number of strategies the person is able to use to solve problems. In a study which 

compared estimation abilities of college students with those of mathematicians, the most 

striking difference identified was the variety of methods used by the mathematicians who 

rarely used traditional algorithms. Their deeper understanding of concepts allowed them 

greater flexibility in their uses of problem solving approaches (Dowker, 1992).  

There are research findings indicating that the learning trajectories of lower 

achieving students differ from higher achieving students because the students differ in 

how they process information and use strategies. Sheffield (1994) compiled a list of 

characteristics identifying children with high mathematical abilities as students who 

could more easily perceive and generalize patterns and relationships: were more curious 

and aware of quantitative information: could reason both inductively and deductively: 

could more effectively transfer learning to new situations: were more creative: and were 

more persistent with difficult problems. In contrast, research results indicate that children 

with low mathematical abilities tend to have less positive identifying characteristics. 

Desoete, Roeyers, and Buysee’s (2001) and Lucangeli and Cornoldi’s (1997) results 

indicated that low-achieving students tend to be more inaccurate in mathematical tasks 

and in evaluating and predicting the correctness of their responses. Garrett, Mazzocco, 

and Baker (2006) found that students with mathematical learning difficulties were less 

effective in evaluating the correctness of whether their solutions were accurate. 

Mazzocco (2007) identified the following terms used in research studies to describe 
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children with mathematical learning difficulties: poor retrieval skills, inadequate 

mathematics skills and procedures, poor selection of strategies and use of immature 

strategies, slowed response time, inaccurate calculations, and poor recognition of 

mathematics principles. 

In recent years, literacy research results have indicated that the lack of phonetic 

awareness is a strong predictor of reading disabilities (Mazzocco, 2005). Theorist have 

questioned if there may be some similar underlying cause of mathematics difficulties 

which would explain differences in learning. However, the learning of mathematics is 

more complex with different sets of strategies needed for different types and topics of 

problems, making it difficult to identify one underlying cause of differences (Dowker, 

2005; Mazzocco, 2007). The question of whether students differ in degree or kind is 

complex. It may be that students differ in degree because their optimum learning 

trajectories do not match the instructional methods being used and it takes them longer to 

perform and learn from the instructional tasks. But it may also be that students differ in 

kind because they learn at a different pace than students without mathematical learning 

difficulties and therefore appear to have different learning trajectories because they are 

forced into learning facts and concepts in unnatural sequences. Dowker (2005) explained:  

However, most difficulties in arithmetic, like most difficulties in learned subjects, 
lie on a ‘normal’ continuum between extreme talent and extreme weakness; and 
are due not to brain damage but to a mismatch between an individual’s pattern of 
cognitive strengths and weaknesses and the way that s(he) is taught. (p 11) 

 
 
Summary 

 The term mathematical learning difficulties is used in the literature to describe 
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students who, due to differences in environment or learning characteristics, do not 

respond adequately to regular classroom instruction at a specific time or setting and have 

not qualified for special education services. The question of whether students of varying 

ability differ in kind or in degree is an important, but unresolved question. This research 

study was built upon the assumption that students differ not only in degree, but also kind 

and that students with mathematical learning difficulties may respond differently to 

instruction incorporating physical and virtual manipulatives than would students not 

having mathematical difficulties. It is only through further study that we will discover 

why some programs do not work well with certain populations (Hiebert, 2003). 

 
Mathematics Content of Equivalent Fractions 

 
The third element of the intervention process is mathematical content, which for 

this study was equivalent fractions. The Common Core State Standards (2010) suggested 

that fourth-grade students should develop the ability to recognize two equivalent 

fractions, generate sets of equivalent fractions and be able to decompose fractions into 

unit fractions. 

For many elementary and middle school students the study of fractions becomes a 

bottle neck in their mathematical education (Wu, 2005). A strong understanding of 

fractions is important because fractions are the basis for ratios, proportions, percents, and 

decimals and students with a weak understanding of fractions are hindered in their 

understanding of more advanced concepts of geometry, algebra, statistics and calculus 

(Behr et al., 1983; Chan & Leu, 2007). In their clearinghouse document, Assisting 
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students struggling with mathematics: Response to intervention (RTI) for elementary and 

middle schools, Gersten and colleagues (2009) suggested that because of the importance 

of fraction understanding, intervention for students in grades four through eight should 

focus on the development of the key concepts of rational numbers. This suggestion is 

aligned with the NCTM (2006) curriculum focal points and the National Mathematics 

Advisory Panel (2008) call for U.S. curriculum to provide in-depth coverage of the key 

topics of numbers to kindergarten through fifth grade and rational numbers from fourth 

through eighth grades (NCTM, 2006). Yet, Moss (2005) reported that analysis of 

textbooks indicated the time allotted to teaching fractions was short, with as little as only 

one lesson developing the concept of equivalent fractions. In a typical elementary 

classroom 85% of the time is spent on teaching computation or rote procedures while less 

than 15% is spent on conceptual understanding (Niemi, 1995). This section will discuss 

the literature describing the difficulties students experience in developing equivalent 

fraction concepts.  

 
Difficulties with Learning Equivalent  
Fraction Concepts  

The three main indicators of equivalent fraction mastery are the ability to: rename 

fractions into their simplest forms, generate sets of equivalent fractions, and determine 

fraction equivalence (Van de Walle, 2004). Chan and Leu (2007) identified five main 

cognitive difficulties students experience in developing equivalent fraction concepts: (a) 

conceptualizing fractions as a quantity, (b) partitioning into equal subparts, (c) 

identifying the unit or whole, (d) building sets of equivalent fractions, and (e) 
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representation model distractions. Chan and Leu tested 2,612 Taiwanese fifth and sixth 

graders and identified groups of students experiencing each of these five cognitive 

difficulties. They suggested that for intervention purposes, students could be grouped by 

the type of difficulty they seemed to be experiencing. The next section will focus on each 

of these five difficulties. 

Conceptualizing fractions as a quantity. For most students, the study of 

fractions is the first encounter they have with numbers which have multiple names and 

with numbers being used to represent the relationship between two discrete quantities 

instead of one discrete quantity (Smith, 2002; Van de Walle, 2004). Most children, at 

first, attempt to apply whole number rules to fractions and are thereby hindered in their 

ability to interpret fractions correctly (Arnon et al., 2001; Hecht, Vagi, & Torgesen, 2007; 

Smith, 2002). In developing fractional understanding students must first develop the 

understanding that the fraction represents a relationship, the numerator represents the 

number of parts and that the denominator represents how many parts are in a whole 

(Smith, 2002). Until this is developed students see fractions only as a pair of whole 

numbers. The predominance of this misconception is demonstrated in the research of 

Behr and Post (1992) in which only 24% of 13 year olds estimated the sum of 12/18 + 

7/8 to be about one or two. Twenty-eight percent answered 19 and 27% answered 21.  

Adding to the complexity of understanding the part whole relationship is the need 

for students to maintain, while operating on fractions, a conceptualization of the whole. 

Maintaining conceptualization of the whole is much easier for students when working 

with region models, such as ¾ of a circle, than when students work with sets, such as ¾ 
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of a group of people (Behr et al., 1983). Students must also develop an understanding that 

fractions describe the part whole relationship, but not the size of the whole. One half of 

the small pizza may be less than one third of a larger pizza. 

Partitioning into equal subparts. A second cognitive difficulty students 

experience in developing their fraction equivalence understanding is developing the skill 

of partitioning into equal subparts (Smith, 2002). Partitioning is defined as 

“determination of equal shares” (Lamon, 1996). Piaget, Inhelder, and Szeminska (1960) 

asked children to equally divide an imaginary cake between dolls and observed a 

developmental sequence in students’ learning to partition. In a later study, Pothier and 

Sawada (1983) identified five stages in the development of students’ partitioning 

behaviors. In stage one, students are able to partition objects into halves and they tend to 

think of all partitions, regardless of the number of partitions, as halves (Ball, 1993). 

Sometimes when an object or line is split into sections, the children in this stage see each 

part as a new whole and not as a fractional part of the original whole. In stage two, 

students learn to use successive halving to get fourths, eighths, sixteenths, and so forth. 

When asked to split seven candy bars between three children, only six of the 17 first-

grade students initially split the extra candy bar into thirds (Empson, 1995). In stage 

three, students learn to partition into other even numbered partitions such as sixths and 

tenths. Typically this is followed by a gap, until students reach stage four in which they 

overcome their tendency to always half objects and learn to divide objects into thirds , 

fifths, sevenths, and so forth. Finally, in stage five, students learn to use multiplicative 

thinking and are able to partition objects into sections that are a product of two odd 
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numbers, such as ninths and fifteenths (Behr & Post, 1992).  

Identifying the unit or whole. The third cognitive difficulty many students 

experience in mastering equivalent fractions is learning to identify the whole and learning 

to conserve their conceptualization of the whole as models are partitioned. In a study 

conducted by Kamii and Clark (1995), during individual interviews, 120 fifth- and sixth-

grade students were shown two identical paper rectangles. The students watched as the 

researcher cut the two rectangles in half, one vertically and the other diagonally. When 

asked the fractional size of each of the pieces all students responded that the pieces were 

one half. Yet, when asked if the vertically and diagonally cut pieces were the same size 

only 44% of the fifth graders and 51% of the sixth graders reported that the two parts 

were the same size. Operationally they knew it was one half and that ½ = ½, but they 

responded to their perceptual interpretations that one of the pieces was larger than the 

other. Next the students were shown two more identical rectangles. This time the 

researcher folded the first rectangle in fourths and cut off a one-fourth strip. The second 

rectangle was cut into eight strips. The students were asked to show how many of the 

one-eighth strips would be needed to make the same amount as the three fourths. Only 

13% of fifth graders and 32% of the sixth graders got the right answer (Kammi & Clark, 

1995). These two examples illustrate the difficulty students have conserving the 

relationship of the parts to the whole. Research also indicates that most students are not 

able to visualize nested equal-sized partitions until about fourth grade (Grobecker, 2000). 

Models similar to the one in Figure 2 are often used to teach equivalence, to illustrate, for 

example, that three twelfths of the circle (c, d, and e) is equivalent to one fourth of the 
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students need to think of a fraction number not just as objects, but as multiplicative 

groups (Ball, 1993). Many children find the transition of reasoning from additive to 

multiplicative difficult and will initially seek to solve problems and discover patterns 

using additive principles (Kent, Arnosky, & McMonagle, 2002; Moss, 2005). When 

examining a set of equivalent fractions (e.g., 1/3, 2/6, 3/9…) students often first focus on 

what is added (e.g., one to the numerator and three to the denominator) rather than on the 

pattern of multiplying the denominator and numerator of the unit fraction by one integer 

(Moss, 2005). Repeated addition thinking involves only one level of successive thinking 

(e.g., 3+ 3 + 3 =9) whereas multiplicative thinking requires the student to focus on two 

levels simultaneously (e.g., one 3 is 3, two 3s is 6, three 3s is 9; Kamii & Clark, 1995). 

To become fluent in working with equivalent fractions students need to not only see the 

multiplicative relationship of numerator and denominator between fractions but also the 

multiplicative relationship between the numerator and denominator of a single fraction 

(e.g., 24/48 is equivalent to 1/2 because 24 x 2 = 48).  

Representational model distractions. The final cognitive difficulty identified by 

Chan and Leu (2007) is representational model distractions. Fraction representational 

models are drawings, diagrams, symbols and manipulatives which support the 

development of children’s conceptual understanding and strategies in solving fraction 

problems (Empson, 2002). The typical representations used in fraction instruction in 

elementary grades are usually of three types: geometric regions, sets of discrete objects or 

number lines (Behr & Post, 1992). The geometric region model is the most commonly 

used model (Witherspoon, 1993). Research results indicate model type affects student 
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learning. In an Australian study, fourth-, sixth- and eighth-year students were asked to 

identify the fraction modeled by fraction pie, set, and region models of two-fifths. Results 

are show in Table 1 (Jigyel & Afamasaga-Fuata’I, 2007).  

The variability in model results indicates there were perceptual features of the 

models which limited or enhanced students’ ability to identify the fraction represented. 

Irrelevant components become distracters which must be ignored by the student. Behr 

and colleagues’ (1983) research results demonstrated that as the degree of completeness 

and consistency of models decreased, students made more and more errors. They 

suggested that children tend to think that all the conditions presented in the model are 

relevant and therefore tend to accept rather than ignore distractions. For example in 

equivalent fraction models many students have a hard time ignoring extra distracting 

lines. In a rectangle model in Figure 3 students may have difficulty ignoring the 

horizontal line and understanding that the three columns each represent one-third of the 

model (Behr & Post, 1992).  

Another aspect of model distracters is the difficulties some students have 

transferring between model types. Witherspoon (1993) asked fifth-grade students to 

 
Table 1 

Model Effect 

Type of model  

 Percent of students correctly identifying two-fifths 
────────────────────────────── 

Number Fourth year Sixth year Eighth year 

Fraction pie 21 90.0 83.3 90.5 

Set model 12 54.5 66.7 47.6 

Region model 22 72.7 83.3 57.1 
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Figure 3. Rectangle model. 
 
 
illustrate the statements, “There are eight marbles. One fourth of the marbles are white.” 

One student colored in a small one-eighth portion on each of four circles. Another student 

drew a large circle and divided it into eight sections. The author’s description of the 

students’ confusion while drawing the models suggested that the students knew the model 

was not working, but they did not know what to do to solve the problem.  

However, this does not mean that model incompleteness and distracters should 

always be avoided. Distracters and incomplete representations can help the child as they 

learn to identify what is relevant and irrelevant and mentally restructure incomplete 

models. In Martin and Schwartz’s (2002) fraction addition research, treatment groups 

were taught three identical lessons with each group using either fraction tiles or fraction 

circles. Fraction circles have a constant and well defined whole (the size of the circle). 

When students use fraction tiles, they must visualize what the whole is. After the three 

lessons, students were tested as they solved problems using both manipulatives. Both 

groups performed equally well on questions using the manipulative they learned with, 

however the fraction tile group was able to transfer their knowledge to the fraction circles 

and was significantly more accurate when using fraction circles than were the fraction 

circle group when using fraction tiles. The researchers concluded that the fraction tile 

model was more effective because it did not have the conceptualization of the whole built 

in and therefore students learned to focus on the whole as part of their work. Also, as 
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students develop stronger conceptual understanding, a good representation can be a 

model that causes a certain amount of confusion thus creating cognitive disequilibrium 

which challenges students to rethink or restructure their understandings (Behr et al., 

1983).  

 
Summary 

 The concepts of equivalent fractions are important building blocks for fraction 

computation and a number of other mathematical topics. Yet, many students have 

difficulty developing equivalent fraction understanding, in part because many students 

must learn to overcome their tendency to inappropriately apply previous learning to 

fractions. Five cognitive difficulties many students have in developing equivalent fraction 

understanding have been identified in the literature: (a) conceptualizing fractions as a 

quantity, (b) partitioning into equal subparts, (c) identifying the unit or whole, (d) 

building sets of equivalent fractions, and (e) representation model distractions. 

 
Environment: Physical and Virtual Manipulatives 

 
The fourth component of intervention instruction is the environmental features. 

This component includes the teacher, school, setting and instructional characteristics. 

Intervention settings have several characteristics that differ from regular classroom 

instruction. Tier II intervention is often conducted in small group settings under the 

supervision of a math coach, teacher, paraprofessional, or volunteer. While the 

intervention setting offers more opportunity for individualization and immediate 

feedback, there are fewer opportunities for learning from peer modeling and discussions. 
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Also because of time limitations, materials, and space, instructors providing intervention 

often tend to use instruction which is more direct and explicit with little time given to 

problem solving activities. One possible result of differences between the classroom 

setting and the intervention settings is that instructional methods that have been proven to 

be effective in classroom instruction may not be found to be as effective in intervention 

settings. Also emphasized even more in intervention settings are demands for efficiency 

of instruction. It becomes paramount that instructors are able to select the manipulative 

which most closely fits the goals of instruction, the needs of the students, and the 

demands of the mathematical topic. This section will discuss the literature addressing the 

use of physical and virtual manipulatives as tools of instruction. First will be a 

description of the theory of representation and the use of manipulatives in developing 

representational images. Next will be a discussion of the relevant literature concerning 

the effects of physical and virtual manipulatives on student achievement. This will be 

followed by comparison of effects of specific physical and virtual manipulative 

characteristics on student learning.  

 
Developing Representations 

 Gersten and colleagues (2009) conducted an extensive review of RtI literature and 

made eight research-based recommendations for setting up effective RtI programs for 

mathematical interventions. The fifth recommendation read: 

Intervention materials should include opportunities for students to work with 
visual representations of mathematical ideas and interventionists should be 
proficient in the use of visual representations of mathematical ideas. (p. 30) 
  

Gersten and colleagues (2009) explained that the problems mathematically-at-risk 
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students struggle most with is their lack of ability to connect the abstract symbols of 

mathematics to various visual representations. The researchers suggested that the 

“occasional and unsystematic” presentations of representations in the typical classroom is 

not enough to facilitate learning for students with mathematical difficulties and that 

intervention instruction must place strong emphasis on a systematic scaffolding of 

students’ representational models.  

External representations (e.g., manipulatives, drawings, mathematical tables, etc.) 

are used to aid students in their development of internal representations (Behr et al., 

1983). Students’ internal representations can be in the form of: (a) verbal/syntactic 

images in a person’s natural language, (b) mental images, (c) formal notation as students 

mentally manipulate numbers, and (d) affective images including emotions, attitudes, 

beliefs and values (Goldin & Shteingold, 2001). A student’s conceptual understanding of 

mathematical concepts rests in the power and flexibility of their internal representations 

and it is believed that students with mathematical learning difficulties often experience 

difficulties because they have developed only partial internal systems of representations 

(Goldin & Shteingold, 2001). The purpose of using manipulatives is to help students 

develop the internal representations necessary to give meaning to symbolic 

representations (Baroody, 1989). 

 
Using Manipulatives to Develop  
Representations 

Physical manipulatives are concrete objects which students use to explore 

mathematical concepts (McNeil & Jarvin, 2007). Virtual manipulatives are an 
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“interactive, web based visual representation of a dynamic object that presents 

opportunities for constructing mathematical knowledge” (Moyer et al., 2002, p. 373). 

Advocacy for the use of manipulatives centers on a number of learning theories. 

Piagetian theory suggests that children learn best by actively manipulating objects and 

reflecting on the results of their physical actions (Baroody, 1989). The theories of Piaget, 

Bruner and Montessori are built upon the concept that students must develop and build 

knowledge from concrete to abstract and that the more experience students have with the 

concrete, the greater will be their conceptual understanding (McNeil & Jarvin, 2007).  

The impact of student learning through manipulative use is demonstrated in two 

studies conducted by Martin and Schwartz (2005). In both studies, they compared the 

learning of students who manipulated objects to a control group who did not manipulate 

the objects. In the first study, both groups received the same instruction, but the treatment 

group manipulated fraction pies and tiles while the other group made marks on pictorial 

representations. Students moving the objects solved significantly more problems and 

tried more strategies than those students who did not manipulate objects. In the second 

study, children performed better when they physically rearranged the objects to find the 

solution than when the objects were prearranged for them. The authors suggested that 

physically moving the pieces helped the children to let go of their previously held whole 

number understandings.  

Through their research and a review of the literature, Martin and Schwartz (2005) 

identified four levels in which the physical action of manipulating objects supports 

student thinking and learning: induction, offloading, repurposing, and physically 
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distributed learning. Induction occurs when students, through the use of manipulatives, 

use inductive reasoning to change their understandings (Martin & Schwartz, 2005). For 

example, laying two one-eighth fraction pieces onto a one-fourth piece helps students 

understand the size relationships of the fractions and through reflection they begin to 

interiorize and visualize the mathematical concept of equivalence (Arnon et al., 2001). At 

the offloading level, students use the objects to keep track of elements, freeing up internal 

memory and making learning easier and more efficient (Cary & Carlson, 1999; Martin & 

Schwartz, 2005). Students functioning at the repurposing level change their environment 

enabling them to more efficiently implement their understanding (Martin & Schwartz, 

2005). In physically distributed learning, both student understanding and the 

manipulative are changed so that the development of new ideas is distributed from both 

the physical adaptation and the individual. For example, when solving one fourth of 

eight, the student may think one fourth only as one fourth of one whole object but as the 

student puts eight objects into four groups, the student learns to reinterpret the two 

objects as a group of one, thereby overcoming their whole quantity interpretation of one. 

In physically distributed learning, the learning is situated in both the student 

understanding and in the action of manipulation (Martin & Schwartz, 2005).  

Research reports from the Rational Number Project, a project in which the 

development of representations through the use of manipulatives received a heavy 

emphasis, indicated that students using manipulatives significantly outperformed other 

students taught using the more symbolic approach (Cramer, Post, & delMas, 2002). They 

reported four ways in which the use of manipulatives helped students understand 
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fractions: (a) they helped students develop mental images of fraction meaning, (b) they 

helped students understand fractional size, (c) they gave students a reference when 

justifying their answers, and (d) students were less apt to resort to the misconceptions 

developed from applying whole number rules to fractions. 

 
Effectiveness of Physical and Virtual  
Manipulatives 

A large number of research studies have examined the effectiveness of using 

physical manipulatives in mathematical instruction. Three meta-analysis reports were 

identified which summarize the results of these studies. Suydam and Higgins (1977) 

evaluated 23 studies conducted during 1930 to 1970. Eleven of the studies showed 

significant differences in student achievement favoring the use of manipulatives, two 

studies favored not using manipulatives and in the remaining 10 studies no significant 

differences were found between use and nonuse of manipulatives. The researchers also 

reported that, for students of all age groups and ability groups, the majority of studies 

reported that students tested higher when using manipulatives than when using other 

methods of instruction. The majority of studies involving fraction instruction reported 

significant differences favoring the use of manipulatives.  

 Parham’s (1983) meta-analysis from 64 studies conducted between 1960 to 1982 

obtained 171 effect size scores comparing the use of manipulatives with nonuse on 

student achievement. The averaged mean effect size was 1.03, indicating a large effect 

size favoring manipulative use. Parham, however, expressed concern that the effect size 

may be inflated by study quality. Fifty-three of the 64 studies were unpublished studies 
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and although Parham had already eliminated one-third of the studies of poorer quality, 

analyses indicated that the mean effect size from 40 studies that did not show evidence of 

equivalency in ability of treatment groups was 0.99, while the effect size was only 0.38 

for the remaining studies that either showed evidence of group equality or used random 

assignment of students to treatment groups. This difference was significant.  

Sowell (1989) calculated effect size scores from 60 studies in which the use of 

manipulatives was compared with other instructional methods. The studies were 

separated into two main categories, those studies using specific objectives and those 

using broad objectives. Only the two categories of studies which yielded significant mean 

effect sizes were studies, of at least one year duration, using broad objectives (0.29) and 

specific objectives (1.89). The effect sizes of studies of shorter durations were not 

significant and results were mixed. A comparison of 13 studies of retention, when 

compared with traditional instruction, produced an effect score of 0.38. These results 

indicate that when used for over a year, physical manipulatives are effective tools for 

mathematics instruction.  

 Moyer-Packenham and colleagues (2012) conducted a meta-analysis evaluating 

the effect of virtual manipulatives on student learning. The analysis of 82 effect scores 

obtained from 32 studies yielded a moderate average effect size of 0.35 when compared 

with the use of other methods of instruction. When virtual manipulatives were used alone 

as the primary tool of instruction and was compared with instruction using physical 

manipulatives and with traditional classroom instruction, the averaged effect scores were 

a small effect of 0.15 (38 effect scores) and moderate of 0.75 (18 effect scores) 
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respectively. The researchers also conducted an analysis of effect size scores in relation 

to subject matter that resulted in a moderate averaged effect score of 0.53 (11 effect 

scores) when using virtual manipulatives for teaching fractions as compared to other 

types of instruction. From the studies, 26 effect size scores were identified in which 

instruction combining the use of virtual and physical manipulatives was compared with 

other instructional methods. When virtual manipulatives were used in combination with 

physical manipulatives and compared with all other forms of instruction effect scores 

produced a moderate effect of 0.33. Results of the meta-analysis indicate that virtual 

manipulatives are an effective in teaching mathematical concepts, that there may be an 

advantage to combining the use of virtual and physical manipulatives in instruction and 

that virtual manipulatives are effective in teaching fractions. 

 
Use of Manipulatives in Instructing Students  
with Mathematical Difficulties  

Five studies were identified in which the use of physical manipulatives with 

students with mathematical learning difficulties was investigated. Butler, Miller, Crehan, 

Babbit, and Pierce (2003) assigned 50 sixth-, seventh-, and eighth-grade students with 

mild to moderate mathematical disabilities to two treatment groups. Both groups received 

identical equivalent fraction instruction with the exception that one group used physical 

manipulatives during the first three of ten lessons. This group scored significantly higher 

on all five subtests and significantly higher overall. Witzel, Mercer, and Miller (2003) 

compared algebra posttest scores of 34 matched pairs of sixth- and seventh-grade 

students with mathematical learning disorders. Those students who had received 
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treatment involving physical manipulatives significantly outperformed those involved in 

traditional instruction. Results of Moch’s (2001) study with 15 fifth-grade students, of 

which one third were students requiring special services. Cass, Cates, Smith, and 

Jackson’s (2003) study with three fourth-grade students with learning disabilities, and 

Maccini and Hughes’ (2000) study with six adolescents with learning disabilities reported 

that students’ scores and understanding improved after instruction with manipulatives.  

A search of the literature identified seven studies in which the use of virtual 

manipulatives with students of differing mathematical abilities was investigated (Moyer-

Packenham et al., 2012). Both Drickey’s (2000) research with 219 sixth-grade students 

and Kim’s (1993) research with 35 kindergarten students compared students of different 

ability levels and found no significant difference. However, in a third study Moreno and 

Mayer’s (1999) analysis did indicate that sixth-grade students with high mathematical 

and spatial abilities benefit more from virtual manipulative instruction than those with 

low abilities. In their study, they used the same integer applet for the experimental and 

control group, except that the applet of the experimental group also included symbolic 

representation. Although posttest-score analysis indicated there was not a significant 

difference between the groups, when students were further grouped by ability, 

comparison of symbolic linked and nonsymbolic linked applets of students with high 

ability produced an effect size of 1.11 while gain scores of the low ability student 

produced an effect size of -0.47. Moreno and Mayer also grouped the students according 

to spatial and memory abilities. Students with high spatial abilities had, on average, gain 

scores which were six times greater than the gain scores of the students with low spatial 
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abilities, but results comparing differences in memory were not statistically significant. 

Results of this study indicate that there may be difference in the effectiveness of certain 

virtual manipulatives among students of differing abilities.  

 Moyer-Packenham and Suh (2012) compared gains for low, average and high 

ability groups of fifth-grade students who used virtual manipulates in the study of 

fractions. Results of paired samples t tests indicated that although all three groups 

achieved gains, the gains were significant for only the low achieving group. Similarly, 

Lin, Shao, Wong, Li, and Niramitranon (2011) and Hativa and Cohen (1995) found low 

achieving sixth- and fourth-grade students (respectively) made greater gains than did 

higher achieving students when participating in instruction using virtual manipulatives. 

Suh, Moyer, and Heo (2005) observed virtual manipulative use of 46 fifth graders 

who had been grouped into high, average and low ability instructional groups for fraction 

instruction. Researchers observing the different classrooms reported that the high 

achievement group was more efficient and used more mental processes for finding 

answers, while the low groups tended to be more methodical and followed each step of 

the program. The low groups were observed to also be more dependent on using the 

visual models to scaffold between the pictorial and symbolic. 

Three studies were identified that investigated virtual manipulative use with 

students receiving special education services. All three reported positive effects and two 

of the studies reported students using virtual manipulatives outperformed students who 

did not use manipulatives (Guevara, 2009; Hitchcock & Noonan, 2000; Suh & Moyer-

Packenham, 2008). 
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One concern that has been expressed about the use of virtual manipulatives with 

students with mathematical learning difficulties is that students’ frustrations with 

computer manipulation may cause cognitive overload (Highfield & Mulligan, 2007; 

Sorden, 2005). The cognitive overload theory of John Sweller (Clark, Nguyen, & 

Sweller, 2006) suggested that a person’s working memory is limited to five to nine items 

at one time. Once a person has reached cognitive overload they become limited in their 

ability to absorb new information. Concern has been expressed that when computer 

manipulation utilizes part of the working memory, less memory is available for 

processing the concepts. Others, however, suggest that the use of virtual manipulatives 

can lessen the cognitive demands through off loading and dual coding. An element in the 

distributed learning theory of Martin and Schwartz (2005) is the use of manipulatives to 

off-load information. The manipulatives hold the information for the user, freeing their 

memory and reducing cognitive overload. Dual coding theory suggests that the use of 

more than one mode produces an additive affect, increasing memory effectiveness (Clark 

& Paivio, 1991). The use of the linked dual modes in virtual manipulatives further 

enhances the users’ cognitive abilities (Moreno & Mayer, 1999; Suh & Moyer-

Packenham, 2007).  

In summary, results of studies investigating the use of manipulatives with students 

of differing abilities indicate that, although there are variations, students of all abilities 

may benefit from the use of manipulatives. 
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Comparison of Physical and Virtual  
Manipulative Characteristics 

Although evidence indicates that overall the use of manipulatives improves 

student achievement, individual results are still mixed (McNeil & Jarvin, 2007). One of 

the variables mediating the effectiveness of instruction involving manipulatives is 

characteristics of the individual manipulatives. The next section will discuss the literature 

relating to the structure, representations, constraints, distracters and usage affordances of 

both virtual and physical manipulatives. 

Structure. Manipulatives can be used in both problem solving activities and in 

explicit guided instruction (Martin & Swartz, 2005; McNeil & Jarvin, 2007). Although 

most physical manipulatives do not have defined structures which guide students in 

usage, a number of the virtual manipulatives do and some applets are designed to teach 

specific mathematical skills and concepts by guiding students through explicit steps 

(Heal, Dorward, & Cannon, 2002; Suh & Moyer, 2007). These applets typically have 

features which give students instant feedback. Clements, Battista, and Sarama (2001) and 

Highfield and Mulligan (2007) indicated that as a result of feedback, students were more 

experimental in developing representations, making conjectures and in testing their ideas. 

Although the applet feedback has been identified as an affordance (e.g., Deliyianni, 

Michael, & Pitta-Pantazi, 2006; Highfield & Mulligan; 2007; Izydorczak, 2003; Steen, 

Brooks, & Lyon, 2006; Suh et al., 2005) research on the effects of applet feedback on 

student learning is limited. 

Concern has been expressed that the supports built into some virtual 

manipulatives can allow students with mathematical learning difficulties to develop rote 
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procedures (Izydorczak, 2003). If the supports allow students to complete procedures 

without reflecting on the connections between their actions and the mathematical 

concepts, the use of manipulatives becomes mechanical and students fail to develop 

understanding (Martin & Schwartz, 2002; Moyer, 2001). Students can become locked 

into what Sayeski (2008) calls “search space” in which they lock into using only one 

method and will not back track or seek to take different approaches to find solutions. 

Rather than experimenting or trying to fix mistakes by changing their conceptual 

thinking, the students simply hit reset, new problem or the help button (Izydorczak, 

2003).  

Linking representations. Another important difference between most physical 

and virtual manipulatives is the degree and manner in which representations are linked. A 

few physical manipulatives, such as fraction tiles, typically have symbolic representations 

written on the pieces, but most physical manipulatives and some virtual manipulatives 

(e.g., pattern blocks) do not have features connecting the object representations to the 

symbolic. In contrast many virtual manipulatives are designed specifically to support 

students in linking abstract symbolic representations to more concrete visual images 

(Bolyard, 2006; Heal et al., 2002). As students interact with the objects in these virtual 

manipulative applets, they can relate changes in the concrete representation to changes in 

the symbolic representation as a result of their actions (Moyer et al., 2005). In interviews 

conducted by Haistings (2009), students reported that they preferred an applet that 

contained both symbolic and pictorial representations over an applet with only pictorial 

representations because the problem was written for them on the screen, they did not 
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have to keep recounting the number of blocks, they could confirm if they set up the 

problem correctly, they did not have to remember large numbers and they enjoyed seeing 

the numbers change when they lassoed blocks. These comments would indicate that the 

students made strong symbolic-pictorial links.  

Amplification and constraints. Manipulative objects have built in constraints 

and amplifications which can limit or enhance their use in different settings (Behr et al., 

1983). Takahashi’s (2002) observations demonstrate the effects manipulative 

amplification and constraints can have on students’ learning as they developed formulas 

of area. Takahashi reported that the virtual manipulative applets required students to 

perform the tasks step-by-step. This took more time, but also focused students’ attention 

on the characteristics of the geometric shapes. In contrast those using the physical 

geoboards focused more on visually counting the squares. When calculating the area of 

shapes which had to be transformed into other shapes for area calculation (e.g., triangles 

are transformed into rectangular shapes), the students using the physical geo-boards still 

relied more on counting the squares, while those using the virtual geo-boards were more 

apt to look for equivalent area transformations and then use the formulas they had 

developed.  

Some virtual manipulatives have been specifically designed to amplify 

mathematical concepts (Dorward & Heal, 1999; Moyer-Packenham, Salkind, & Bolyard, 

2008; Suh, 2010). A review of research literature identified three processes of amplifying 

mathematical concepts that affected student learning: (a) requiring specific actions, (b) 

demonstrating simultaneous changes, and (c) focusing student attention or constraining 
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on specific aspects or characteristics of objects, concepts, or procedural fluency (Moyer-

Packenham et al., 2012). For example, Beck and Huse (2007) reported that students 

spinning a virtual spinner observed how visually the changes in the computer bar graph 

which decreased as the number of spins increased, it amplified the differences between 

experimental and theoretical probability for the students. 

Distracters. As reported in the preceding section describing cognitive difficulties 

of fraction learning, each manipulative contains cognitive distracters which students must 

learn to ignore. Some researchers have expressed concern that there are features of virtual 

manipulative applets which can make their use less effective for students with 

mathematical learning difficulties. Highfield and Mulligan (2007) and Izydorczak (2003) 

reported that to some children the ability to change languages and the color and shape of 

objects was a distraction. The students became so focused on altering the features of their 

applets that they failed to learn the concept or to complete the assigned mathematical 

tasks. 

Ease of use. Manipulatives also vary in the degree and ease with which they can 

be manipulated. Physical manipulatives can be physically handled and manipulated by 

students while virtual manipulatives are not physically handled, but are manipulated 

through the use of the computer mouse. If characteristics of the manipulative object make 

manipulation too difficult, students will not reach a level of automaticity in its use and 

effectiveness of the manipulative will be limited and may even be detrimental to student 

learning (Boulton-Lewis, 1998). Both advantages and disadvantages of the ease of use of 

physical and virtual manipulatives have been reported. Haistings (2009) and Izydorczak 
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(2003) observed that students using physical manipulatives often “sloppily” stacked and 

arranged the physical manipulatives while those using virtual manipulatives were more 

organized and thus were more accurate in their answers. Kim (1993) reported that 

Kindergarten students using virtual manipulatives were more methodical and purposeful 

than those using physical manipulatives. Some researchers indicated that physical 

manipulatives were less cumbersome for students to manipulate than the virtual 

manipulatives and that while using them students completed tasks quicker (e.g., Baturo, 

Cooper, & Thomas, 2003; Haistings, 2009; Highfield & Mulligan, 2007; Hsiao, 2001; 

Izydorczak, 2003; Kim, 1993; Nute, 1997; Takahashi, 2002). Other researchers indicated 

that the virtual manipulative applets were easier to manipulate and that features such as 

cloning objects and rapid repetition of computer actions made it possible for students to 

complete more work (e.g., Beck & Huse, 2007; Clements & Sarama, 2002; Deliyianni et 

al., 2006; Izydorczak, 2003; Steen et al., 2006; Terry, 1995; Yuan, Lee, & Wang, 2010). 

Several researchers also reported that students using virtual manipulatives created a 

greater variety of responses than those using other methods of instruction (e.g., Clements 

& Sarama, 2007; Heal et al., 2002; Highfield & Mulligan, 2007; Moyer et al., 2005; Suh 

et al., 2005; Thompson, 1992).  

 
Summary 

Manipulatives are used in mathematics instruction to support students in their 

development of representations. Research results indicate that the use of physical 

manipulatives or virtual manipulatives generally has positive effects on student 

achievement. Studies comparing use of manipulatives with differing abilities suggests 
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that instruction using manipulatives is effective for both high and low achieving students, 

but that there may be differences in how students of differing abilities use and learn from 

the manipulatives. Although limited, the research indicates that there may be advantages 

to combining the use of physical and virtual manipulatives in instruction. Comparisons of 

physical and virtual manipulatives suggests that each manipulative has distinct 

affordances and limitations. As suggested by Behr and colleagues (1983), while a 

manipulative may be used to illustrate effectively one concept it may in fact impede a 

student’s learning when used to illustrate another concept. They suggested that research 

needs to be designed that will identify which manipulative will facilitate specific 

mathematical learning. To take advantage of the affordances of manipulatives and to 

produce higher student achievement it is a necessary to identify and compare the learning 

effects of different manipulatives used to teach specific mathematical concepts. The 

purpose of this research study was to identify variations in the learning trajectories of 

students with mathematical learning difficulties when learning equivalent fraction 

concepts during instruction using virtual and physical manipulatives.  
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CHAPTER III 

METHODS 

 
Research Design 

 
The purpose of this research study was to identify variations in the learning 

trajectories of students with mathematical learning difficulties when learning equivalent 

fraction concepts during instruction using virtual and physical manipulatives. This study 

also served as a pilot study used to validate study instruments and protocol for future 

research. The overarching research question and subquestions guiding the study were as 

follows. 

1. What variations occur in the learning trajectories of students with mathematical 

learning difficulties that are unique to the use of different instructional manipulatives for 

intervention (virtual manipulatives, physical manipulatives or a combination of virtual 

and physical manipulatives) in the learning of equivalent fraction concepts?  

a. What are the variations of achievement, mastery, retention, and resolutions of 

errors in students’ development of equivalent fraction concepts and skills?  

b. What are the variations in learning trajectories showing changes in student 

achievement over time? 

c. What are the variations in patterns of daily lesson achievement, retention and 

work completion? 

d. What are the variations in the strategies developed and used by students? 

e. What are the variations in students’ use of representations? 
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This study used a sequential explanatory mixed methods approach of triangulating 

evidence from both quantitative and qualitative data in answering each of the research 

questions (Creswell, Plano Clark, Gutmann, & Hanson, 2003). Building from 

constructivist epistemology, this study, through the observations of student learning in 

the environment of virtual and physical manipulatives, describes how students’ building 

of equivalent fraction understanding is affected by manipulative use. The research for the 

study was conducted during a three month time frame in four public schools. The 

research activities included Tier II intervention for fifth-grade students who did not 

demonstrate mastery of equivalent fractions concepts; concepts which the Common Core 

and the Utah state core suggest should be mastered in fourth grade. Data were collected 

from equivalent fraction tests, lesson assessments, instructors’ logs and lesson artifacts 

(activity sheets, explore papers, and videotapes). Data analysis focused on the 

development of learning trajectories to develop models of the progress students make 

while constructing equivalent fraction understanding using virtual and physical 

manipulatives. Clements and Sarama (2004) explained the concept and use of learning 

trajectories. 

We conceptualize learning trajectories as descriptions of children’s thinking and 
learning in a specific mathematical domain and a related conjectured route 
through a set of instructional tasks designed to engender those mental processes or 
actions hypothesized to move children through a developmental progression of 
levels of thinking, created with the intent of supporting children’s achievement of 
specific goals in that mathematical domain. (p. 83) 
 

In this study, learning trajectories were used as a framework for building an 

understanding of how students’ development of equivalent fraction understanding was 

influenced by manipulative types. Data were analyzed using a transitional conceptions 



 54 
 

  

perspective; not only were pre and post intervention data analyzed, but the data were also 

analyzed at the individual lesson and student levels, thus making it possible to identify 

the effects of different manipulatives on the spectrum of students’ understanding as they 

developed equivalent fraction concepts as well as determining the overall effect on 

student learning and learning trajectories (Shaughnessy, 2007).  

 
Participants and Setting 

 
 

 Forty-three fifth-grade students from four schools participated in this study. The 

concept of equivalent fractions is introduced in third grade and expanded in fourth grade. 

After completing fourth grade it is expected that students have developed the basic 

equivalent fraction understanding needed as a base for understanding more advanced 

fraction concepts. As a preliminary intervention, only students who had not yet 

participated in fifth-grade fraction instruction in the regular classroom were selected for 

participation. The equivalent fractions pretest was given to all fifth-grade students in the 

participating classrooms of the four schools. In total, 182 students completed the test. 

Student scores ranged from 5% to100% correct with a mean score of 51.1%. Students 

who scored below 40% and who were identified by teachers as having math learning 

difficulties were identified for participation in the study. Teachers also requested that 

eight other students be allowed to participate. These were students who had in the past 

experienced difficulty learning mathematical concepts. Seven of the students scored 

between 42% and 46% correct. One student scored 57%. Because this research was 

designed to target Tier II intervention, students who were receiving special education 
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services in mathematics were not included. At the time of the study there were, in the 

four participating schools, four students receiving special education assistance for 

mathematics. This was 2.2% of the students. IRB and school district approval was 

obtained to conduct the study. Permission forms were obtained from the participating 

students and their parents. Of the 52 students invited to participate, 45 returned 

permission slips. After the second lesson, the parents of two students expressed concern 

that their students were not completing their regular classroom activities and opted to 

have their students removed from the intervention. In total, 43 students completed the 

intervention instruction. One student was not available for the delayed posttesting. 

 Participants were assigned to one of three intervention groups through a stratified 

selection process based on pretest scores. For each school, the three qualifying students 

with the highest, second highest, and third highest pretest scores were assigned to groups 

one, two and three, respectively. Students with the fourth, fifth and sixth highest scores 

were assigned to groups two, three and one respectively until all students were assigned 

to one of the three groups. Groups were then randomly assigned to one of three 

interventions: physical manipulatives alone (PM group), virtual manipulatives alone (VM 

group) or physical and virtual manipulative combined group (CM group). Instructional 

groups consisted of two to four students per group.  

 
Procedures 

 
 

The study consisted of three phases: preintervention, intervention, and data 

analysis. In the preintervention phase the researcher developed the lesson assessments 
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and the equivalent fraction tests. Also during this time the necessary IRB approval and 

district approval were obtained. During the intervention phase, a pretest was administered 

to all fifth-grade students in the participating schools. Students scoring below the 

established criterion level were invited to participate in the study (with the exception of 

students receiving special education services). The intervention consisted of 10 

instructional lessons. Data were gathered during the intervention lessons from 

assessments, instructor logs, activity sheets and videotaping. At the conclusion of the 

tenth instructional lesson, students completed a posttest. Three to four weeks after the 

final instructional lesson, participants completed a delayed posttest. In the final phase, 

data collected during the intervention was analyzed and results were synthesized to 

develop learning trajectories which were used to identify variations among student 

groups related to manipulative use.  

 
Format of the Instructional Lessons 

 The instructional lessons followed the Rational Number Project: Initial Fraction 

Ideas Lessons (Cramer, Behr, Post, & Lesh, 2009) with adaptations to accommodate 

differences for the physical or virtual manipulatives. The Rational Number Project (RNP) 

is a series of 23 lessons designed and tested for fraction study of middle grades students. 

It was first published in 1997 and was revised and published again in 2009. The lessons 

were designed as an alternative to textbook instruction and have been used successfully 

by both regular and intervention settings. Each lesson provides students with hands on 

experience using concrete manipulatives. These lessons have been used with over 1,600 

students and pilot testing results indicate the performance of students who used these 
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lessons is significantly greater than those using traditional textbook lessons. Lessons 1 

through 13 from the Rational Number Project were adapted and used in this study. Two 

additional activities, concept practice and lesson assessment, were added to each lesson. 

The lessons in this study consisted of four phases: (a) lesson pre assessment, (b) explore, 

(c) practice, and (d) lesson concept assessments. Each lesson lasted approximately 45 

minutes. Students worked in groups of two to four students. The lesson sequence is 

summarized in Table 2. 

During the lesson preassessment phase, students, using paper and pencil, 

answered two questions designed to assess if mastery of the previous lesson concept had 

been retained. In the explore phase of the lesson, the instructors guided students in 

discovery and discussion of the lesson concepts as outlined in the RNP lessons. Students 

verbally responded to questions and performed activities using the manipulative of their 

assigned intervention groups. In this and in the subsequent phases, when students failed 

to respond accurately to problems and instruction, the outlined instructional sequence was  

 
Table 2 

Lesson Sequence 

Phase  Duration Activity Purpose 

Lesson preassessment 5 minutes 2 review questions Determine retention of previous 
lesson’s concepts 

Explore 20 minutes Concept development 
and completion of 
activity sheets 

Concept discovery and application 

Practice 10 minutes Practice Practice of fraction skills 

Assessments 
- Concept 
- Cumulative  

10 minutes 10 questions Determine concept mastery and 
cumulative fraction understanding 
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first repeated. If after repetition of instruction, students responded incorrectly, the 

instructor again repeated the instruction, using different words, word order, or pictorial 

representations. If students continued to respond incorrectly, the instructor returned to 

previous lesson concepts and repeated instruction scaffolding up to the concept causing 

the misunderstanding. 

The RNP lessons include from one to six student activity sheets that were used in 

the explore phase of each lesson. Students solved problems using their assigned 

manipulative and recorded their answers on the activity sheets. Instructors attempted to 

provide immediate feedback to the students and when necessary retaught the concepts. 

Appendix A contains a table listing the lesson concepts and describing which activity 

sheets and manipulatives were used in each lesson.  

In the practice phase, students were involved in approximately 10 minutes of 

additional practice, naming, comparing, and simplifying fractions and in finding multiple 

groups of equivalent fractions. For the VM and CM intervention groups, the computer 

presented the problems and gave feedback. For the PM intervention group, the instructor 

presented the problems and gave immediate feedback to students. Students in all three 

groups completed similar problems. 

 In the lesson assessment phase, the teacher first conducted a short discussion 

prompting students to summarize the lessons’ concepts. Students then, without 

assistance, individually completed the lesson concept assessment (three questions) and 

the daily cumulative assessment (eight questions). Students were encouraged to use their 

assigned manipulative while responding to assessment questions. 
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Lesson Instructors 

Instruction for each intervention group was conducted by the researcher and a 

second trained instructor. Both instructors had over 25 years of public school teaching 

experience. The second instructor received training from the researcher on the specific 

instructional procedures to be followed throughout the study. During the majority of the 

instructional lessons, the researcher and the second instructor taught in the same room 

and were able to synchronize the instruction and the duration of each instructional phase.  

 
Manipulatives 

Four types of physical manipulatives and six virtual manipulatives were used in 

the study. The next section contains descriptions of the physical manipulatives and their 

corresponding virtual manipulatives which were used during the explore and practice 

phases of the lessons. Appendix B contains tables summarizing the similarities and 

differences of each of the physical and virtual manipulative combinations.  

Manipulatives used in explore activities. Two types of virtual and three types of 

physical manipulatives were used in the explore activities. 

Physical fraction circles and virtual Fraction Pieces. The concrete fraction 

circles consist of eight different colored plastic circles partitioned into halves, thirds, 

fourths, fifths, sixths, eighths, tenths, and twelfths. Each set also contains one whole 

circle. None of the fraction pieces in the sets contain symbols. The virtual fraction circles 

are a web-based applet found on the National Library of Virtual Manipulatives (NLVM; 

found at http://nlvm.usu.edu; retrieved June 25, 2012). In this applet students can work 

with circular or square models. When students click on the pieces bins at the left of the 
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it possible for students to “see” the equivalence. However, students must be able to 

distinguish both the original partitioning and the new partitioning which is within the 

original partitioning.  

 
Instruments and Data Sources 

 
Data were collected using the following instruments: equivalent fraction tests, 

lesson assessments, instructors’ logs and lesson artifacts (activity sheets, explore papers 

and video tapes of instructional lessons).  

 
Equivalent Fraction Tests  

There were three Equivalent Fraction Tests administered during the study: pretest, 

posttest and delayed posttest. Each equivalent fraction test consisted of three types of 

questions: open response, short response, and multiple choice. Each test contained 20 

questions, four questions from each of the five fraction subtopics of: (a) modeling 

equivalence, (b) evaluating equivalence, (c) building an equivalent group, (d) solving 

equivalent sentences, and (e) simplifying fractions. Modeling equivalence questions 

assess students’ abilities to represent the concept of equivalent fractions through pictorial 

models. Evaluating equivalence questions assesses students’ ability to determine if two 

fractions are equivalent. Building an equivalent group questions assess students’ abilities 

to develop sets of multiple fractions representing the same amount. Solving equivalent 

sentences questions assess students’ abilities to identify a missing numerator or 

denominator in a pair of equivalent fractions and simplifying questions assess students’ 

ability to simplify fractions into their lowest forms. Appendix C contains a copy of the 
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tests and a table showing the breakdown of questions by representational level (pictorial 

and symbolic only), question types (multiple choice, open response and short answer) and 

representation types (region or set). Questions on all three tests were similarly formatted 

with changes made only in the values used.  

Validity of the questions was developed using a three stage process. First a pool 

of 60 potential questions based on research literature was developed by the researcher 

and an expert team of three mathematics specialist evaluated each question’s content 

validity (Kane, 2001). In the second stage, to evaluate internal validity, the questions 

were administered to three students, a high-, a medium-, and a low-achieving student. 

After students completed each problem, the researcher asked the students to explain their 

reasoning processes to access if the question elicited the targeted equivalent fraction 

thinking. The questions which did not prompt students’ equivalent fraction thinking were 

then refined. In the third stage, the multiple choice questions for each test were paired 

with the multiple choice questions from another test, resulting in three pilot tests. Pilot 

test A contained the questions from the pretest and the posttest, pilot test B contained the 

questions from the pretest and the delayed test and pilot test C contained questions from 

the posttest and the delayed test. The three pilot tests were then administered to a group 

of 81 students. Each question was answered by 54 to 56 students. An item response 

analysis of the questions was used to determine reliability and item difficulty 

(Hambleton, Swaminathan & Rogers, 1991). Table 3 contains the reliability and item 

difficulty level for each test. 
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Table 3  

Reliability and Item Difficulty for Equivalent Fraction Tests 

Variable Pretest Posttest Delayed test 

Reliability 0.74 0.76 0.74 

Mean item difficulty -0.1 -0.002 -0.005 

 
 

Results were also used to establish the criterion for participation in the study. In 

the literature it is estimated that 80% of students will respond to Tier I instruction (D. 

Fuchs et al., 2008a). To allow for error the criterion for participation in this study was 

first set at the level at which 70% of the fifth-grade students (including those receiving 

special education services) scored above. Seventy percent of the students scored above 

35% on the test. However, after consulting with the teachers of the participating schools, 

because the overall average on the pretest was so low, to capture all students needing 

intervention, the criteria for invitation to participate was set for 40%. This was 

approximately 33% of the students taking the pretest.  

 
Lesson Assessments  

 Lesson assessments consisted of three types of assessments that occurred during 

each lesson: lesson preasessment, lesson concept assessment and the daily cumulative 

assessment. Figure 8 diagrams the three types of assessments. 

The lesson preassessments were administered at the beginning of each daily 

instructional lesson and consisted of two questions from the previous lesson’s activity 

sheets. These two questions were used to determine if the student had retained the 

previously learned concept. The lesson concept assessment was administered after the  
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two other fractions, and partitioning sets. The final three questions of the quiz were 

specific to equivalent fraction understanding: identifying equivalent fractions in a region 

model, modeling equivalent fractions, and simplifying fractions (Appendix D contains an 

example of each of the three parts of the lesson assessments). 

 
Instructors’ Logs 

 The instructors kept a daily log detailing, for each student, the start and end time 

of each lesson phase and the number of problems the student completed in the explore 

and practice phases. The logs contained the instructors’ suggestions for concepts which 

needed additional instruction or focus in subsequent lessons. Appendix E contains an 

example of the Instructors’ Log Recording Sheet.  

 
Lesson Artifacts 

 Lesson artifacts consisted of all activity sheets, explore papers and video tapes 

from each lesson. During the explore phases of each lesson, students completed one to 

three activity sheets. These activity sheets were collected and dated (Appendix F contains 

an example of a activity sheet). Instructions were videotaped. The video cameras were 

placed on a stationary stand and positioned to focus on the students. Seventy-two percent 

of the lessons were videotaped. Due to camera malfunctions and human errors (e.g., 

forgetting to turn on the video cameras, failure to observe a full memory card, low-

battery power) there was no video recording for 10.8% of the lessons and short clips of 

16.9% of the lessons. The percent of lessons for which complete videotaping was 

conducted was 84% of the physical manipulative lessons, 63.5% of the virtual 
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manipulative lessons and 65% of the combined manipulative lessons. During instruction 

and assessments, students were encouraged to think-aloud and to discuss with the 

instructor and their peers their solutions and questions. 

 
Data Analysis 

 
 Both quantitative and qualitative analyses were collected to answer the research 

questions. Quantitative analysis data were collected from equivalent fraction testing, 

lesson assessments, instructors’ logs and summaries of lesson artifacts. These were used 

to identify quantitative differences in student achievement and to develop learning 

trajectories of students’ understanding, including the resolution of students’ errors and 

misconceptions. Because this study was designed to identify differences in achievement 

and learning trajectories and to validate instruments and analysis protocols for further 

research in studying fraction intervention, the primary focus of the quantitative data was a 

comparison of descriptive statistics, graphs and effect size scores. Statistical comparison 

were not used to establish significance, but as a method of identifying differences in the 

instructional effect of the manipulatives. Effect scores were calculated using the pooled 

Cohen d formula: 

d = M1-M2 / σ pooled 

σ pooled = √[(σ1
2+ σ2

2) / 2] 

M1= mean for intervention group 1 

M2= mean for intervention group 2 

σ1= standard deviation of intervention group 1 

σ2= standard deviation of intervention group 2 
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Qualitative data from lesson artifacts (i.e., instructors’ logs, activity sheets, explore 

papers and video tapes) and testing data (i.e. Equivalent Fraction Test open item 

responses) were collected and summarized to establish categories of misconceptions, 

errors, strategies and representations.  

 The analysis of data included two phases: (1) analysis of achievement data; and 

(2) analysis of lesson, strategy and representation data. Data from the analysis was used 

to develop learning trajectories. Tables 4 (shown below) and 6 (shown later in this 

chapter) summarize the techniques used in the first and second phases of analysis. These 

tables are followed by a description of the analysis in each phase. 

 
Table 4 
 
Data Analysis for Achievement Data 
 

Variable Data source Analysis level Data analysis 

Sub 1(a). What are the 
variations of 
achievement, mastery, 
retention, and 
resolutions of errors in 
students’ development 
of equivalent fraction 
concepts and skills?  

Equivalent 
fraction tests 

Summative 
5 clusters  
Individual question 

Paired samples t tests 
Comparison of effect sizes  

Daily cumulative 
Assessment  

Summative 
8 fraction concepts 

Paired samples t tests 
Comparison of effect sizes  
Comparisons of scatter plots and 
trend lines of achievement and 
mastery 

Lesson artifacts 
 

Summative 
 
  

Open and axial coding 
Comparison of error scatter plots 
and trend lines 

Sub 1(b). What are the 
variations in learning 
trajectories showing 
changes in student 
achievement over time? 

Daily cumulative 
assessment 

 summative 
Individual question 

Comparison of achievement and 
mastery trend lines 

Lesson artifacts Summative Comparison of error resolution 
trend lines 

Note. Question asked, “What variations occur in the learning trajectories of students with mathematical 
learning difficulties that are unique to the use of different instructional manipulatives for intervention 
(virtual, physical or a combination of virtual and physical manipulatives) in the learning of equivalent 
fraction concepts?” 
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Phase 1: Analysis of Achievement Data 

 Sub 1(a) was: What are the variations of achievement, mastery, retention, and 

resolutions of errors in students’ development of equivalent fraction concepts and skills? 

Achievement, mastery and retention data were collected from the Equivalent Fractions 

Test and the Daily Cumulative Assessment. Resolution of error data were collected from 

the Equivalent Fraction Tests, Daily Cumulative Assessments and lesson artifacts. The 

results of quantitative analysis of data collected was also qualitatively analyzed for the 

emergence of categories of variations related to the unique impacts of physical and 

virtual manipulatives on student achievement. In the following section, the analyses of 

each source of data will be described. 

 Equivalent Fraction Test analysis. Analysis of Equivalent Fraction Tests were 

conducted at three levels: summative, subtest, and individual questions. Student 

responses to all questions were evaluated as correct or incorrect and a score of five was 

assigned to all correct responses. Paired samples t tests were used to determine if each 

intervention produced significant changes in student understanding. From the statistics 

produced, Cohen d effect size scores were calculated from each student’s pretest to 

posttest gain to determine the average amount of gain in scores. Gain scores were also 

used to calculate Cohen d effect size scores comparing differences among intervention 

groups. Finally a one-way ANOVA was conducted to determine if there were significant 

differences among the intervention gain scores. In a similar manner, an intervention mean 

effect size score of the gain between posttest and the delayed posttest was calculated and 

used to identify intervention effects relating to students’ retention of concepts learned. At 
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the subtest level, questions of the pre/post/delayed posttesting were categorized into the 

five equivalent fraction concept groups of modeling equivalence, identifying equivalence, 

building equivalent groupings, solving equivalent sentences and simplifying fractions. 

Paired samples t tests, one-way ANOVAs and Cohen d effects size scores were 

calculated to determine and compare student gains in achievement. At the individual 

question level, the gain in the percentages of students in each intervention group who 

answered the questions correctly were calculated and compared between the pre and post 

Equivalent Fraction Tests. Questions for which one intervention mean gain was 30 

percentage points greater than another intervention group’s gain were examined for 

differences in which manipulative type impacted students’ response to the content of 

specific questions. 

 Students’ incorrect responses on the post Equivalent Fraction Tests were also 

examined for differences related to intervention group. Incidences were identified in 

which the percentage of students either selecting incorrect responses of the multiple 

choice questions or responding with incorrect answers on the open response questions 

was greater than 20% difference between intervention groups. These questions were 

further examined for any possible differences in student errors related to intervention.  

 Daily Cumulative Assessment. Daily Cumulative Assessment scores were used 

to compare intervention effects through the development of three levels of student 

learning trajectories: individual fraction skills, concept skill clusters, and a summation of 

skill development. Responses to each question were evaluated using a rubric designed for 

that specific question (see Appendix G). Scores were totaled to obtain a test summation 
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and clustered into concept skill groups (see Table 5). Results were analyzed using paired 

sample t tests to determine if the intervention was significant and Cohen d effect size 

scores to determine the magnitude of the intervention effectiveness for each intervention 

type. The gain scores of student achievement between pre and posttesting were calculated 

and analyzed using one-way ANOVAs to determine if the intervention groups differed 

significantly and using Cohen d effect size analysis to compare intervention group 

differences. Student scores in each intervention group were used to develop scatter plots 

and line plots for each fraction skill cluster (see Table 5). Each student score was graphed 

(x being the student score, y being lesson number) onto a scatter plot and a line of best fit 

was calculated. The slopes of the lines were compared to identify differences in the 

development of fraction skills throughout the duration of the intervention lessons.  

 
Table 5 
 
Daily Cumulative Assessment Questions for Learning Trajectories  
 

Question content 
Fraction skill learning 
trajectory 

Cognitive difficulty group learning 
trajectory 

1 Modeling fractions  Drawing fraction model Partitioning 
Numerator/denominator relationship  

2 Comparison Compare fractional quantities Numerator/denominator relationship  
Conceptualizing fraction quantity  

3 Number Line Placement of fractions on a 
number line 

Numerator/denominator relationship 
Conceptualizing fraction quantity 

4 Infinite number of 
fractions 

Identify a fraction between two 
fractions 

Infinite number of fractions 

5 Fair shares Partition sets Partitioning 

6 Identifying equivalent 
fractions 

Identify equivalent fractions in 
a region model 

Conceptualizing units/wholes 
Building equivalent sets 
 

7 Equivalent Sets Model equivalent fractions 
using pictorial representations 

Building equivalent sets 
Conceptualizing of units/wholes 

8 Simplifying fractions Simplify fractions Building equivalent sets 
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Intervention groups’ average scores for each lesson were calculated and used to build line 

plots showing student trajectories of growth at the summative, cluster and question levels 

of analysis. These line plots were examined for differences which could be attributed to 

intervention effects.  

 Daily Cumulative Assessment data were also analyzed for differences in time 

required to reach mastery. When a student correctly answered a fraction skill question on 

two consecutive lessons and did not incorrectly answer the question in more than two-

thirds of the subsequent lessons, the skill was considered mastered. For each question, a 

trend line graph comparing the mastery results for each intervention group was 

developed. The trend lines show the percentage of students which had reached mastery 

for each lesson. 

 Lesson artifacts analysis. During analysis, the activity sheets, instructors’ logs 

and video tape from each lesson were viewed together as one lesson artifact unit. As 

lesson artifacts from an intervention lesson were viewed the researcher summarized data 

on the Lesson Summary Sheet and the Student Summary Sheet (see Appendix H for 

Lesson Summary Sheet and Student Summary Sheet templates). These data were 

analyzed using open and axial data coding to identify categories of variations not 

identified in the research literature (Stake, 1995; Strauss & Corbin, 1998). Analysis of the 

data from lesson artifacts focused on three areas: misconceptions and errors, 

representations, and alternative strategies.  

 Six categories of errors and five categories of misconceptions were identified 

from the literature as possible student errors and misconceptions (Appendix I contains 
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descriptions of identified errors and misconceptions). During analysis of the lesson 

artifacts, occurrences of misconceptions and errors were coded and tallied using the 

Lesson Summary Sheet. For each type of error only one case was recorded per lesson per 

student. Observations of students’ error responses from the Lesson Summary Sheet were 

entered onto the Student Summary Sheet. For each lesson the number of students 

exhibiting each error type was plotted in line plots and scatter plots. The lines of best fit 

were used to identify intervention group differences. 

 As the data of subquestion 1(a), concerning student achievement were analyzed, 

they were then synthesized by using an iterative process into the structure of a learning 

trajectory. Initially the data content determined the components of the learning trajectory, 

but as the learning trajectory emerged and findings were synthesized, new themes 

emerged. Additional data analyses were conducted which were then used to further shape 

the structure of the learning trajectories. In this manner both the data analysis and the 

learning trajectory were continually refined.  

Sub 1(b) was: What are the variations in learning trajectories showing changes in 

student achievement over time? The artifacts used to answer sub 1(b) were the trend lines 

developed in the analysis of the achievement data. Two groups of trend lines were 

analyzed, the trend lines showing the continuous learning and mastery of the Daily 

Cumulative Assessment questions and the trend lines showing the resolution of errors 

(see Table 6). The trend lines of each intervention group were compared and variations of 

magnitude and sequence were identified. 
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Table 6 
 
Data Analyses for Lesson Data 
 

Variable Data source Analysis level Data analysis 

Sub 1(c). What are the 
variations in patterns of 
daily lesson achievement, 
retention and work 
completion? 
 

Lesson concept 
assessment 

Individual lesson Comparison of effect sizes  
Comparisons of line plots 

Lesson pre 
assessment 

Summative 
Individual lesson 

Comparison of effect sizes 
Comparison of line plots 

Instructor logs Summative  
Individual lesson  
 

Comparison of problems 
completed  
Comparison of line plots 

Sub 1(d). What are the 
variations in the strategies 
developed and used by 
students? 

Equivalent fraction 
tests 

Summative Open and axial coding 

Lesson artifacts Summative  Open and axial coding 

Sub 1(e). What are the 
variations in students’ use 
of representations? 

Equivalent fraction 
tests 

Summative Open and axial coding 

Lesson artifacts Summative  Open and axial coding 

Note. Question asked was, “What variations occur in the learning trajectories of students with mathematical 
learning difficulties that are unique to the use of different instructional manipulatives for intervention 
(virtual, physical or a combination of virtual and physical manipulatives) in the learning of equivalent 
fraction concepts?” 
 
 
Phases Two: Lesson, Strategies and  
Representations Data 
 
 To answer research questions 1 (c) through (e), quantitative and qualitative data 

was collected and analyzed from lesson concept assessments, lesson preassessment, 

equivalent fraction tests, daily cumulative assessments and lesson artifacts.  

Sub 1(c) was: What are the variations in patterns of daily lesson achievement, 

retention and work completion? To identify variations related to manipulative type in 

students’ performance during lesson activities, data of students’ understanding and 

retention of lesson concepts taught and the number of problems completed was analyzed.  

Understanding and retention. Student responses on the lesson preassessments 

and lesson concept assessments were scored using four point rubrics evaluating the 
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amount of guidance students needed to correctly respond to the questions. For each 

intervention group students’ scores for each lesson were averaged and the standard 

deviations calculated. A one-way ANOVA was conducted to determine if there were 

significance differences between intervention groups. Cohen d effect size scores were 

calculated to compare the magnitude of the effect of the types of manipulatives for each 

lesson and for the total average number of pre assessment questions answered correctly. 

Line plots of daily averaged scores were developed and compared for variations in trends.  

 Number of problems completed. The total number of problems completed by 

each student during the explore and practice phases of each lesson was recorded in the 

instructors’ logs. Group averages were calculated and the results were placed on a line 

plot and used to compare intervention effects on the number of problems completed. A 

total number of problems completed by each student in all the lessons was also calculated 

and compared.  

 The processes of analysis were the same for Sub 1(d): Are there variations in the 

strategies developed and used by students and Sub 1(e): What are the variations in 

students’ use of representations? Students’ responses to the Equivalent Fraction Test 

questions and lesson artifacts were examined for differences in student strategies and 

representations related to intervention type. Identified differences were analyzed using 

open and axial data coding to determine categories of differences (Stake, 1995; Strauss & 

Corbin, 1998). While viewing the lesson artifacts, the researcher recorded on the Lesson 

Summary Sheet any variations in student strategies or representations. When a pattern of 

student variances was observed, responses were coded, tallied and compared.  
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CHAPTER IV 
 

RESULTS 
 
 

 The purpose this study was to identifying variations in the learning trajectories of 

students with mathematical learning difficulties when learning equivalent fraction 

concepts during intervention instruction using physical and virtual manipulatives. This 

study used both quantitative and qualitative analyses to answer the research questions. 

Quantitative analysis was used to identify differences in student achievement. The 

student intervention groups were small and the quantitative results reported in this 

chapter should be interpreted as suggestive of trends and not as conclusive statements 

about the effectiveness of the types of manipulatives used. From the quantitative data, 

eight components of equivalent fraction learning emerged. An iceberg model of 

equivalent fraction understanding was developed and used to synthesize the findings. 

Qualitative analyses were used in the development of trend line learning trajectories 

showing patterns in student learning and resolution of errors and misconceptions. 

Variations in strategies and representations were identified.  

The research question guiding this study was: What variations occur in the 

learning trajectories of students with mathematical learning difficulties that are unique to 

the use of different instructional manipulatives for intervention (virtual, physical, or a 

combination of virtual and physical manipulatives) in the learning of equivalent fraction 

concepts? There were five subquestions used to answer the research question. This 

chapter is divided into five sections based on the research questions. Section one contains 

results relevant to question 1(a), the identification of variations in student achievement, 
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mastery, retention and resolution of errors. Section two, in response to subquestion 1(b), 

contains an overview of the continuous learning trajectories developed in section one and 

identifies variations in learning patterns which emerged from analysis of the trajectories. 

Section three contains results relevant to subquestion 1(c), lesson variations; section four 

contains results relevant to research question 1(d), variations in strategies; and section 

five contains results relevant to research question 1(e), variations in representations. 

Throughout the chapter, abbreviations are used for the three intervention groups: 

(a) PM for physical manipulatives, (b) VM for virtual manipulatives, and (c) CM for the 

combined use of physical and virtual manipulatives. Abbreviations will also be used for 

the four assessment instruments: (a) EFT for equivalent fraction test, (b) DCA for daily 

cumulative assessment, (c) LCA for lesson concept assessment, and (d) LPA for lesson 

preassessment. For all comparisons among the intervention groups, one-way ANOVAs 

were conducted. Only one of the comparisons among intervention groups resulted in 

differences that were significant at the 95% level and this will be reported in the 

description of DCA question 5. The other results of the one way ANOVAs will not be 

reported in the following sections, but are summarized in a table in Appendix J.  

 
Research Subquestion 1(a): Student Achievement, Mastery,  

Retention, and Error Resolution 

 
 Research subquestion 1(a) was: What are the variations of achievement, mastery, 

retention, and resolutions of errors in students’ development of equivalent fraction 

concepts and skills? The sources of data for this question were the pre, post and delayed 
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post EFT, DCA, and results which emerged from the misconception and error analyses of 

assessments and lesson artifacts. Because the data from these sources were used at 

multiple levels for multiple concepts, this section begins with an overview of the analyses 

processes. The overview is followed by an explanation of the iceberg learning trajectory 

used to synthesize the results of the three sources in the analyses. Next, findings for each 

concept of the iceberg learning trajectory are discussed and synthesized. 

 
Overview of Analyses Processes 

The analyses processes for each of the three sources are described in this section. 

Appendices K, L, and M contain tables summarizing the analysis of data from the EFT, 

DCA and misconception analysis, respectively. The results are described and variations 

identified in the corresponding content areas of the iceberg learning trajectory.  

Equivalent fraction test (EFT). The EFT results were used to compare pre to 

posttest and post to delayed post variations in student achievement gains at the total test 

and concept clusters levels. Paired samples t tests were used to determine the pre and 

posttest means, standard deviations, gains and significance of the intervention for each 

intervention group. From these statistics, Cohen d effect sizes were calculated to 

determine differences in pre to post gain and post to delayed posttest differences within 

each intervention group. The gain scores of each intervention group were used to 

calculate Cohen d effect sizes to compare differences among intervention groups.  

The pre to post EFT results were compared at the question level. The average gain 

from pre to posttest in the percent of students answering each question correctly was 

calculated for each intervention group. Eight questions were identified for which the 
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differences between two intervention groups exceeded or were equal to 30% (see 

Appendix K). 

Daily cumulative assessments (DCA). DCAs consisted of eight questions which 

were administered at the end of each lesson. The format of the questions remained 

constant for all ten lessons. Student progress measured through the DCAs was analyzed 

at the total test and individual question levels. Results at both levels were analyzed using 

paired samples t tests. Cohen d effect size analyses were conducted to determine 

differences between gains at the pre and post assessments and to compare effect size 

differences among intervention types. Scatter plots and trend line graphs of the data were 

developed and analyzed for differences.  

Student responses to the eight questions on the DCA were analyzed for 

differences in the percent of students who reached question mastery and differences in 

the time required to reach mastery. When a student correctly answered a question during 

two consecutive lessons and continued to answer correctly for at least two-thirds of 

subsequent lessons, the question was considered mastered. For each DCA question, the 

percentage of students who had reached mastery was calculated, and a trend line 

trajectory was developed (see Appendix L for a summary of DCA results).  

Misconceptions and errors. Two sources were used to identify student 

misconceptions and errors, lesson artifacts and EFTs. Types of errors were identified, 

tallied and comparisons were made to identify variations related to intervention type. The 

results of each source are reported in the next two sections. 

Lesson artifacts. The lesson artifacts examined were: LPA, LCA, DCA, video 
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tapings, instructors’ logs, and students’ written responses during explore and practice 

phases of the lessons. Errors were identified and instances of their occurrences tallied for 

each student. The errors were grouped into categories of student misconceptions. Seven 

categories of misconceptions with a total of 19 errors were identified (see Appendix M). 

In addition, three types of partitioning errors were identified. For each type of error, the 

number of observed cases by intervention group was tallied and charted. Only one case of 

each error type was reported for each student per lesson. Because of the limitations with 

the video recording and instructional differences, the number of errors should not be 

directly compared in general statements. Two examples of these limitations are the 

seating arrangements and the amount of problems solved. Seating arrangements for work 

with the PM tended to be students sitting around a table and the video recordings of these 

lessons included the conversation of all of the students. In contrast, in all but one of the 

intervention sites, computers were set up in straight lines and the video camera could 

only be focused on part of the students. Also, the rate at which each group of students 

solved problems differed, yet the amount of time given to the different phases of the 

lessons was fixed, therefore some problems were solved by some groups, but not by 

others. Some problems are more prone to elicit certain errors. Direct comparison of the 

number of errors could only have been made if all students completed the exact same 

problems on the computers. Reporting of the frequency of errors was done to establish 

trends, therefore, direct comparisons of numbers should not be made. To identify and 

compare variations in student error patterns, the frequency of error cases within each 

misconception group was totaled and used to develop trend lines and scatter plots. 
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EFT posttest error analysis. The second source used to compare variance in 

errors was student responses on the post EFT. The percentages of students in each 

intervention group which gave each type of incorrect response on the post EFT were 

calculated and compared. Fourteen incidences, with scores differing by more than 20% 

among intervention groups, were identified (see Appendix M). 

 
Iceberg Learning Trajectory 

An iceberg learning trajectory was used to synthesize the data from the three 

sources. The iceberg learning trajectory was developed and used by the Freudenthal 

Institute for planning and designing mathematical instruction (Webb, Boswinkel, & 

Dekker, 2008). In the iceberg model, the part of the iceberg above the water line 

represents the mastery of a skill or concept, the part of the iceberg below the water level 

represents the knowledge, understandings, and skills a student needs for mastery of the 

iceberg concept. The more basic the skill, the lower it is placed on the iceberg. The 

equivalent fraction iceberg model used in this study was developed through a synthesis of 

the literature and study results. From a review of the equivalent fraction literature, five 

clusters of equivalent fraction understanding were identified. The literature, also, 

described connections between students’ ability to model and evaluate fractions and the 

development of equivalent fraction concepts. Through the analysis of findings of 

students’ misconceptions and use of representations, additional layers of modeling, the 

importance of equivalent thinking and connections between the clusters emerged. The 

concepts and connections were synthesized using the iceberg model to form the 

equivalent fractions iceberg model used in this study. 
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amounts. To develop equivalence thinking, students need to develop the thought 

processes of meaning of equivalence, comparison of area, conservation of part-whole 

relationships and the development of multiplicative thinking. This model is not designed 

to be inclusive of all equivalent fraction understanding, but as a tool to synthesize the 

concepts examined in this study. In the next section, the findings of this study, pertinent 

to each level of the iceberg trajectory, are described. The description begins at the top 

with general equivalent fraction knowledge and descends to level three. Discussions of 

the skills and thought processes of level four will be addressed with the discussion of the 

level three general fraction understanding to which they contribute. 

Level I: Equivalent fraction understanding. The sources of data used to 

analyze Level I of the iceberg model, gains in students’ overall understanding of 

equivalent fractions, came from two sources, the EFT and the DCA.  

Equivalent fraction test (EFT-total). Although, one way ANOVA indicated that 

pretest differences among the intervention groups were not significant, F(2,43) = 1.69, p 

= .20, there was a numerical difference with a range of 7.44 points (25.07-32.51). The 

CM group scored the highest and VM group scored the lowest. To limit the influence of 

the difference, gain scores were used for both paired samples t tests and Cohen d effect 

size calculations. 

Paired samples t tests of gains from the pre to post EFT scores indicated that the 

PM, VM, and CM interventions were all significant at the 95% level (see Table 7). Using 

the findings from the paired samples t tests, Cohen d effect size scores were calculated. 

All three gains resulted in large effect size scores. PM intervention produced the greatest  
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Table 7 

Comparison of Pre to Posttest Gains of EFT 

 EFT pretest 
─────────── 

EFT posttest 
─────────── 

Pre to post 
──────────────────── 

Intervention type M SD M SD df t p Cohen d 

PM 26.47 10.74 66.73 17.39 14 11.74 0.00 2.79 

VM 25.07 8.72 59.79 22.57 13 6.66 0.00 2.03 

CM 32.36 13.51 67.93 21.57 13 7.79 0.00 1.98 

Note. N = 43. 

 
positive effect size (2.79), followed by intervention using VM (2.03) and intervention 

using CM (1.98). 

Table 8 shows the results of the study participants EFT gains in relation to the 

population from which the students were drawn. The averaged EFT posttest scores 

(64.9%) for the students in this study were 36.9 percentage points higher than the EFT 

pretest scores (27.9%). The averaged pretest score for all students in the classes involved 

in the intervention was 51.1%. After the intervention, 69.8% of the students in the study 

scored higher than the 51.1% averaged score of all students in the fifth-grade classes of 

the participating schools and 46.3% scored 75% or higher on the posttest. These findings 

suggest that all three of the interventions were effective in increasing students 

understanding of equivalent fractions.  

An effect size comparison of the EFT pre to posttest gains among the intervention 

groups indicated there was a small to moderate effect favoring PM intervention when 

compared to VM (d = 0.27) and CM intervention (d = 0.24). Comparison of VM 

intervention and CM intervention resulted in a small effect size of 0.04 favoring CM 

intervention. 
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Table 8 

Averaged Percent Correct for Intervention Students Compared to All Students 

 Pretest percent correct 
──────────── 

Posttest percent correct 
────────────────────────── 

Students N Average Average Scored > 51.1% Scored > 75% 

Intervention 43 27.9 64.9 51.1 46.3 

All classroom 183 51.1    

 
 

 
Comparison of the post to the delayed post EFT scores indicated that overall 

students retained their posttest achievement levels. Paired samples t tests of the difference 

between posttest and delayed posttest scores indicated that difference was not significant 

for any of the intervention groups (see Table 9). All three groups experienced only a 

slight decrease on delayed posttest averaged scores, 2.5% for the VM, 1.9% for the CM, 

and 1.7% for the PM intervention. Effect size scores comparing posttest to the delayed 

posttest resulted in small effect size scores of 0.12 or less for all three interventions. 

Daily cumulative assessments (DCA-Total). Although, a one way ANOVA 

indicated that the pretest differences among the intervention groups was not significant, 

F(2,43) = 0.01, p = .99, there was a numerical difference with a range of 3.6 (25.07 -

32.51). PM groups scored the highest and VM groups scored the lowest. To limit the 

influence of the difference, gain scores were used for both paired samples t tests and 

Cohen d effect size comparison analyses.  

Results of the DCAs were analyzed using paired samples t tests, effect size 

scores, scatter plots and trend lines. Paired samples t tests indicated the pre to posttest 

gains for all three intervention groups were significant at the 95% level (see Table 10). 
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Table 9 

Summary of EFT Post to Delayed-Post Gains 

EFT Posttest 
─────────── 

EFT delayed posttest 
───────────── 

Post to delay 
──────────────────── 

Intervention type M SD M SD df t p Cohen d 

PM 66.73 17.39 65.07 18.37 14 -0.47 0.65 -0.09 

VM 59.79 22.57 57.29 20.75 13 -0.65 0.53 -0.12 

CM 69.85 21.17 67.92 27.68 112 -0.54 0.60 -0.08 

Note. N = 42. 

 
 
Cohen d effect size calculations comparing pre and posttests gains yielded large effect 

size scores of 1.58, 1.53, and 1.81 for the PM, VM, and CM intervention groups, 

respectively. Cohen d effect size calculations among interventions yielded a moderate 

effect size favoring CM intervention when compared with PM (0.58) and VM (0.47) 

intervention. Comparison of PM and VM intervention yielded a small effect size score of 

0.04 favoring VM.  

To analyze the growth of student knowledge over the duration of the intervention, 

scatter plots were developed and the equations of the line of best fit for each intervention 

group were used to plot a comparison graph (see Figure 10). The greater slope of the line 

of best fit for the VM intervention (y = 1.22x + 17.4), when compared with the PM (y = 

1.00x + 22.38) and the CM intervention (y = 1.14x + 22.1) suggests that the rate of 

growth was greater for the VM intervention. 

The DCA-total data were used to develop a trend line of averaged intervention 

group scores over the duration of the ten lessons (see Figure 11).  Although large 

differences are not seen relating to specific lessons, the line graph suggests that, although 



 

  

T

S

 

 

P

V

C
N

 
 

F

 

 

F

Table 10 

Summary of D

Intervention ty

PM 

VM 

CM 
Note. N = 43. 

Figure 10. Tr

Figure 11. Tr

DCA-Total P

DCA
────

ype M 

23.53 

19.93 

20.93 

rajectories of

rend line traj

Paired Samp

A pretest 
────── 

SD 

5.55 

5.90 

6.99 

f growth for 

jectory of stu

ples t Test an

DCA post
────────

M 

32.73 

29.36 

33.50 

total DCAs

udent growth

nd Effect Size

ttest 
──── ──

SD df

4.50 14

6.43 13

6.89 13

.  

h in DCA-to

e Analyses 

Pre t
─────────

f t 

4 8.20 

3 8.63 

3 8.17 

 

 
otal scores. 

to post 
─────────

p Cohen

0.00 1.5

0.00 1.5

0.00 1.8

 89 

─── 

n’s d 

58 

53 

81 



 90 
 

  

all three groups began at similar levels, the VM group tended to score slightly lower for 

the first five lessons. Beginning with lesson six that gap began to narrow.  

In summary, the findings of both the EFT and DCA suggest that all three of the 

interventions were effective in increasing students’ equivalent fractions achievement 

scores and that three weeks after the intervention students had retained their 

understandings. Analysis of EFT data favored PM intervention, while analysis of DCA 

data favored both CM and PM intervention. The effect sizes were small to moderate for 

EFT comparisons and moderate for DCA comparisons. The difference between findings 

may have been due in part to the differences in sources. EFT assessed only students’ 

understanding of equivalent fractions. DCA assessed both general fraction understanding 

and equivalent fraction skills. Although the gains of the VM students were less than those 

of the CM and PM interventions, the scatter plots and trend lines suggested that the 

averaged VM students’ rate of growth was greater than that of the CM and PM students 

and that during the last five lessons the difference among the intervention groups 

decreased. Synthesis of the findings suggested that, the variations among the three 

intervention types at the general level of equivalent fraction understanding were small. 

Level II: Equivalent fraction clusters. A conceptual and procedural 

understanding of the equivalent fraction concepts consists of an understanding of the five 

clusters and skills: modeling, identifying, grouping, solving, and simplifying. To analyze 

Level II of the iceberg model, this section contains a description of each cluster and 

describes the findings of achievement, retention, mastery and error resolution related to 

each concept. 
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Modeling. The cluster of modeling is the ability to develop and to interpret 

models of equivalent fractions. The sources of data related to modeling are EFT modeling 

cluster questions, DCA question 6 (DCA-Q6), and tallies of Misconception 7 (Set 

Modeling) errors.  

EFT modeling cluster. Paired samples t tests analyses of pre to posttest gains of 

the EFT modeling cluster indicated that the gain scores were significant at the 95% level 

for all three intervention groups (see Table 11). All pre to posttest gains yielded large 

Cohen d effect size scores. CM intervention produced the greatest positive effect size 

(1.45), followed by intervention using VM (1.34) and intervention using PM (1.22). 

Cohen d effect size comparisons among intervention groups yielded only small effects 

(VM to PM, d = 0.17; VM to CM, d = 0.20; and PM to CM, d = 0.01).  

There were no differences of 30% or greater among the intervention groups for 

any of the individual questions of the EFT modeling cluster. Paired samples t tests of the 

post to delayed post EFT modeling cluster indicated that none of the differences were 

significant (see Table 12). PM and CM intervention retention differences yielded small 

effect sizes and the VM intervention differences in scores yielded a moderate effect size. 

 
Table 11 

Summary of EFT Modeling Cluster Analyses 

 EFT pretest 
───────── 

EFT posttest 
───────── 

Pre to post 
──────────────────── 

Intervention type M SD M SD df t p Cohen’s d 

PM 7.00 3.48 12.87 5.48 14 3.12 0.01 1.22 

VM 5.21 4.56 12.07 5.64 13 4.62 0.00 1.34 

CM 4.50 1.91 10.29 5.30 13 4.21 0.00 1.45 
Note. N = 43. 
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Table 12 

Summary of EFT Modeling Cluster Post to Delayed-Post Results 

 EFT posttest 
───────── 

EFT delayed post 
─────────── 

Post to delay 
─────────────────── 

Intervention type M SD M SD df t p Cohen’s d 

PM 12.87 5.84 13.13 5.55 14 1.76 0.86 0.05 

VM 12.07 5.64 13.57 4.97 13 0.86 0.40 0.28 

CM 10.92 4.92 11.46 5.89 12 0.30 0.77 0.10 

Note. N = 42. 
 
 

Daily cumulative assessment question 6 (DCA-Q6). DCA-Q6 asked students to 

identify from a circle area region a set of equivalent fractions shown in the region. 

Students’ responses were evaluated on a 6-point rubric that ranged from not identifying 

any fraction in the model to correctly identifying two equivalent fractions (see Appendix 

G). Paired samples t tests indicated that pre to post gain for all three intervention groups 

was significant at the 95% level (see Table 13). Cohen d effect size analyses of the pre to 

posttest gains yielded large effect size scores for each of the three groups, 1.98 for the 

VM group, 1.66 for the CM group and 0.97 for the PM group. An effect size comparison 

of the intervention groups yielded a moderate effect size of 0.67 favoring CM compared 

to PM intervention, a moderate effect size of 0.49 favoring VM compared to PM 

intervention, and a small effect size of 0.15 favoring CM compared to VM intervention. 

To analyze the growth of student knowledge over the duration of the intervention, 

scatter plots were developed and the lines of best fit were compared (see Figure 12). The 

greater slope of the line of best fit for the CM intervention (y = 0.26x + 2.68), when 

compared with the PM (y = 0.2x + 2.37) and the VM intervention (y = 0.2x + 1.86) 

suggests that the rate of growth was slightly greater for the CM intervention.  



 

  

T

S

 

I

P

V

C
N

 

F

 
 

le

gr

th

m

n

in

Table 13 

Summary of D

Intervention ty

PM 

VM 

CM 
Note. N = 43. 

Figure 12. Tr

A tren

essons was d

roup tended 

hree groups i

manipulatives

aming apple

ncrease in sc

DCA-Q6 Ana

DCA
────

ype M 

2.60 

1.50 

2.21 

rajectories of

nd line of stu

developed (se

to score hig

increased ov

s, were obse

et for practic

cores at the e

alyses 

A pretest 
────── 

SD 

1.92 

0.94 

1.89 

f growth for 

udent progre

ee Figure 13

gher and the 

verall. Two v

erved. Both t

e during the

end of lesson

DCA post
───────

M 

4.33 

4.00 

4.93 

DCA-Q6.

ssion for qu

3). The trend

VM group t

variations, w

the VM and 

 first two les

n two wherea

ttest 
──── ───

SD df 

1.63 14

1.52 13

1.33 13

 

estion six ov

d line indicat

ended to sco

which may be

CM groups 

ssons and bo

as the PM st

Pre to p
─────────

t p 

4.25 0.00

3.42 0.00

1.57 0.00

 

ver the durat

tes that altho

ore lower, th

e related to t

used the NL

oth of these g

tudents, usin

post 
─────────

Cohen’s d

0 0.97 

0 1.98 

0 1.66 

tion of the te

ough the CM

he growth of 

the use of 

LVM fraction

groups had a

ng physical 

 93 

─ 

d 

en 

M 

f all 

ns-

an 



 

  

F

 

m

F

fr

le

ap

tw

o

D

st

an

E

re

Figure 13. Tr

manipulatives

ractions-nam

ractional am

essons 8, 9, a

pplet. The V

wo-colored c

f the three g

A tren

DCA-Q6 for 

tudents (42.9

Misco

nalysis (see 

Equivalent fra

elationship. F

rend line traj

s, remained 

ming applet h

ounts. The s

and 10. Duri

VM and CM 

counters. Ho

roups had na

nd line show

each interve

9%) obtained

onception 7 (

Appendix N

actions of se

Four types o

jectory of stu

constant. Th

had advantag

second variat

ing lessons 8

students, wh

owever, by le

arrowed. 

wing the perc

ention lesson

d mastery of

(set modeling

N for descript

et models rep

of errors wer

udent growth

his may indic

ges for stude

tion is the de

8, 9, and 10, 

hose scores c

esson 10 the

entage of stu

n was develo

f DCA-Q6 th

g errors). M

tion of misc

present relat

re observed i

h for DCA-Q

cate that feat

ents learning

ecline of sco

the VM gro

continued to

 difference b

udents who h

oped (see Fig

han did VM 

Misconception

onceptions a

tionships oth

in which stu

 
Q6. 

tures of the N

g to identify 

ores for the V

oup used the 

o gradually in

between the 

had reached

gure 14). Tw

students (21

n 7 emerged

and errors). I

her than the p

udents incorr

NLVM 

and name 

VM group du

pattern bloc

ncrease, used

average sco

d mastery of 

wice as many

1.4%). 

d from qualit

It reads: 

part/whole 

ectly named

 94 

uring 

ck 

d the 

ores 

y CM 

tative 

d 



 

  

 
F

 
 
fr

7 

th

M

nu

o

d

M

or

M

d

d

u

Figure 14. Tr

ractions usin

cases, stude

he equivalen

Misconceptio

umber of ite

f the Miscon

enominator 

Misconceptio

riginal fracti

Misconceptio

eveloped. H

ifference bet

sed physical

rend line of p

ng set model

ents incorrec

nt set would b

on 7 cases, st

ems in each g

nception 7 ca

of an equiva

on 7 cases, st

ion as the nu

on 7 errors oc

However, com

tween manip

l two-colored

percent of m

s. In Error 1

ctly used the 

be partitione

tudents incor

group of the 

ases, student

alent fraction

tudents incor

umerator or d

ccurred only

mparison of t

pulative type

d counters d

mastery for D

6 cases, mak

numerator o

ed into. In Er

rrectly used 

equivalent s

ts used how 

n. In Error 19

rrectly used 

denominator

y in the last t

the number o

es. The two i

during the ex

DCA-Q6. 

king up 18.3

of the fractio

rror 17 cases

the numerat

set. In Error 

many items 

9 cases, mak

the numerat

r of an equiv

three lessons

of cases obs

intervention

xplore part of

 

3% of the 93

on as the num

s, making up

tor or denom

18 cases, m

 in a group a

king up 21.5

tor or denom

valent fractio

s, trajectorie

served does s

ns, PM and C

f these three

 Misconcept

mber of grou

p 23.7% of th

minator as th

making up 36

as the 

5% of the 

minator of th

on. Because 

es were not 

show a large

CM groups, b

e lessons. Th

 95 

tion 

ups 

he 

e 

6.6% 

e 

all 

e 

both 

here 



 96 
 

  

were 45 cases of Misconception 7 errors observed with the PM group and 40 cases with 

the CM group, in contrast to 8 cases of Misconception 7 for the VM group which used 

the NLVM Pattern Blocks applet for the explore activities of Lessons 8, 9 and 10. 

 Fourteen cases were identified in which one intervention group differed from 

another intervention group by more than 20% in the number of students who selected 

incorrect answers on EFT questions. Seven of the 14 cases (50%) were Misconception 7 

type errors. The averaged percent of students making Misconception 7 errors was 11.43% 

for the PM group, 22.71% for the VM group, and 15.29% for the CM group. Thus, 

although students of the VM intervention group made approximately 1/5 the number of 

Misconception 7 errors in the lessons as the CM and PM groups, they made almost twice 

the number of Misconception 7 errors on the EFT as were made by students of the other 

two groups.   

 In summary, results of the EFT indicated all three interventions were effective in 

increasing students’ modeling achievement, and effect size comparisons among groups 

resulted in only small effects. These findings suggest that the variations in modeling 

achievement among interventions groups were minimal for the modeling cluster. DCA-

Q6 focused on interpreting region models. Results indicate that CM intervention was 

favored in effect size comparisons of pre to posttest gains, question mastery, and rate of 

growth. Misconception 7 (set model errors) analyses examined errors made by students 

when developing set models of equivalent fractions. Students in the VM intervention 

group made fewer errors than the PM and CM intervention groups during the lessons, but 

made more Misconceptions 7 errors on the post EFT. A synthesis of the results suggests 



 97 
 

  

that there are advantages to CM interventions for modeling instruction, and that when 

solving set model representations the number of student errors varied in relation to the 

setting and the type of intervention.  

Identifying. The concept identifying is the process of determining if two fractions 

are equivalent. The source of data was the EFT identifying cluster. Paired samples t tests 

analyses of pre to post gains of the EFT identifying cluster indicated that the gain scores 

were significant at the 95% level for only the PM intervention group (see Table 14). 

Cohen d pre to post effect size yielded a large effect (d = 1.03) for PM intervention and 

moderate effects for VM (d = 0.77) and CM (d = 0.71) intervention. Effect size 

comparisons among interventions yielded a moderate effect size favoring the PM 

intervention when compared to the VM (d = 0.38) and CM (d = 0.46) interventions.  

There were differences of 20% or greater among the intervention groups for all of 

the individual questions of the EFT identifying cluster. Comparisons of the type of 

representation used in each of the EFT identify questions revealed differences related to 

the type of representation used in the questions. These differences are discussed in the 

last section of the chapter. 

 
Table 14 

Summary of EFT Identifying Cluster Analyses 

 EFT pretest 
─────────── 

EFT posttest 
─────────── 

Pre to post 
─────────────────── 

Intervention type M SD M SD df t p Cohen’s d 

PM 6.60 5.54 12.00 4.93 14 2.40 0.03 1.03 

VM 6.79 4.64 10.36 4.58 13 1.74 0.11 0.77 

CM 10.00 4.39 13.21 4.64 13 2.09 0.06 0.71 
Note. N = 43. 
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Paired samples t tests of the post to delayed post EFT identifying cluster indicated 

that none of the differences were significant (see Table 15). However, Cohen d effect size 

analysis of post to delayed test differences yielded a moderate negative effect size for PM 

intervention (d = - 0.33), no effect for VM intervention (d = 0) and a small positive effect 

for CM intervention (d = 0.19). These results indicate that the retention of concepts was 

less for the PM intervention. 

In summary, paired samples t tests indicated that the intervention was only 

statistically significant for the PM intervention group on the posttest. Cohen d analyses of 

both pre to post differences and differences among interventions favored PM 

intervention. Although growth gains were greater for PM intervention, the CM 

intervention group’s average posttest score was higher than those of PM and VM 

intervention, and retention of the identifying concepts was greater.  

Grouping. Grouping is the development of equivalent fraction groups. The 

sources of data for this concept were gains of EFT grouping achievement and results of 

the DCA-Q7 analysis.  

EFT grouping cluster. Paired samples t tests analyses of pre to post gains of the  

 
Table 15 

Summary of Identifying Cluster Post to Delayed-Post Analyses 

 EFT posttest 
─────────── 

EFT delayed 
─────────── 

Post to delay 
─────────────────── 

Intervention type M SD M SD df t p Cohen’s d 

PM 12.00 4.93 10.33 5.16 14 -0.79 0.44 -0.33 

VM 10.36 4.58 10.36 4.14 13 0.00 1.00 0.00 

CM 13.08 4.80 14.23 7.03 12 1.00 0.34 0.19 
Note. N = 42. 
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EFT grouping cluster indicated that the gain scores were significant at the 95% level for 

all three intervention groups (see Table 16). For the grouping cluster of the pretest, the 

averaged CM group score was almost double (6.79) the average scores of the PM (3.27) 

and VM (3.79) intervention groups. All three gains resulted in large Cohen d pre to post 

effect size scores. VM intervention produced the greatest effect size (d = 2.00), followed 

by intervention using PM (d = 1.60) and intervention using CM (d =1.07). Cohen d effect 

size comparisons among intervention groups yielded a moderate effect size favoring VM 

intervention compared to CM intervention (d = 0.54) and PM intervention (d = 0.35).  

Three of the EFT grouping cluster questions resulted in greater than 20% 

differences in the gain of VM students answering correctly when compared to the gains 

of PM (Questions 7 and 18) and CM (Questions 8 and 18) students. In all four of the 

grouping questions the VM group scored higher than both the PM and CM groups. 

Paired samples t tests of the post to delayed post EFT grouping cluster indicated 

that none of the differences between post and delayed post scores were significant (see 

Table 17). The PM and CM groups gains yielded small positive effect sizes and the VM 

group yielded a moderate negative effect size indicating that PM and CM students’ 

 
Table 16 

Summary of EFT Grouping Cluster Analyses 

 EFT pretest 
─────────── 

EFT posttest 
─────────── 

Pre to post 
─────────────────── 

Intervention type M SD M SD df t p Cohen’s d 

PM 3.27 3.20 10.87 5.90 14 5.21 0.00 1.60 

VM 3.79 4.15 13.36 5.33 13 6.29 0.00 2.00 

CM 6.79 6.39 13.36 5.87 13 3.73 0.00 1.07 
Note. N = 43. 
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Table 17 

Summary of EFT Grouping Cluster Post to Delayed-Post Results 

 EFT posttest 
─────────── 

EFT delayed 
─────────── 

Post to delay 
─────────────────── 

Intervention type M SD M SD df t p Cohen’s d 

PM 11.00 5.95 12.27 4.85 14 0.86 0.40 0.23 

VM 13.36 5.33 11.21 5.65 13 -1.28 0.22 -0.39 

CM 13.69 5.94 14.92 6.08 12 0.76 0.46 0.20 
Note. N = 42. 

 
retention of grouping concepts at the time of the delayed test was greater than the 

retention of VM intervention students.  

Daily cumulative assessment question 7. DCA-Q7 question provided a rectangular 

pictorial representation of a fraction and asked students to first identify the fraction 

pictured and then to name two equivalent fractions. Responses were evaluated on a 6-

point rubric that ranged from incorrectly naming the fraction pictured to correctly naming 

the fraction and providing two equivalent fractions (see Appendix G). Paired samples t 

tests indicated that for all three interventions the pre to posttest gains of DCA-Q7 were 

significant at the 95% level (see Table 18). Cohen d effect size analyses of the pre to 

posttest gains yielded large effect size scores of 2.84 for the PM group, 1.86 for the VM 

group, and 1.67 for the CM group. An effect size comparison of the intervention groups 

yielded moderate effect sizes favoring PM when compared to the use of CM (d = 0.66) 

and VM (d = 0.54). Comparison of CM groups to VM groups yielded a small effect score 

of 0.05.  

To analyze the growth of student knowledge over the duration of the intervention, 

scatter plots were developed and the lines of best fit were compared (see Figure 15). The 
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Table 19 

Summary of EFT Solving Cluster Analyses 

 EFT pretest 
─────────── 

EFT posttest 
─────────── 

Pre to post 
─────────────────── 

Intervention type M SD M SD df t p Cohen’s d 

PM 4.00 4.31 17.00 3.16 14 13.67 0.00 3.44 

VM 4.29 3.31 13.21 5.75 13 5.10 0.00 1.90 

CM 5.36 4.14 16.43 4.13 13 9.28 0.00 2.68 
Note. N = 43. 

 

Paired samples t tests of the post to delayed post EFT solving cluster indicated 

that the difference was significant at the 95% level for the PM intervention (see Table 

20), but not for the VM and CM interventions. PM and CM interventions posttest to 

delayed posttests decreases yielded moderate negative effect sizes, and the VM 

intervention yielded a small negative effect size. 

 In summary, the results of the EFT solving cluster pre to post gains favored the 

use of the PM intervention. Although the PM intervention students experienced the 

greater decrease in retention of the concepts from post to delayed posttesting, their 

averaged delayed score was still higher than that of the other two groups.  

 Simplifying. Simplifying is finding an equivalent fraction which is in its lowest 

terms. Data from three sources were analyzed for this concept: EFT simplifying cluster, 

DCA-Q8 and analysis of Misconception 4 (Partitioning/Simplifying Errors).  

EFT simplifying cluster. Paired samples t tests of the pre to posttest gains from the 

EFT simplifying cluster indicated that the gain was significant at the 95% level for all 

three interventions groups (see Table 21). Cohen d effect size analyses of the EFT  
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Table 20 

Summary of EFT Solving Cluster Post to Delayed-Post Results 

 EFT posttest 
─────────── 

EFT delayed 
─────────── 

Post to delay 
─────────────────── 

Intervention type M SD M SD df t p Cohen’s d 

PM 17.00 3.16 15.33 3.52 14 -2.65 0.02 -0.50 

VM 13.21 5.75 12.50 5.46 13 -0.43 0.67 -0.13 

CM 16.92 3.84 15.00 5.77 12 -1.81 0.10 -0.39 

Note. N = 42. 

 
Table 21 

Summary of EFT Simplifying Cluster Analyses 

 EFT pretest 
─────────── 

EFT posttest 
─────────── 

Pre to post 
─────────────────── 

Intervention type M SD M SD df t p Cohen’s d 

PM 5.60 4.97 13.87 6.37 14 5.43 0.00 1.45 

VM 5.00 4.80 10.79 8.85 13 2.78 0.02 0.81 

CM 5.00 5.55 14.64 7.03 13 4.87 0.00 1.52 
Note. N = 43. 

 
simplifying cluster pre to posttest gains yielded large effect size scores, with CM 

intervention yielding the largest effect size of 1.52, followed by 1.45 for PM intervention 

and 0.81 for VM intervention. Cohen d effect size comparisons among intervention 

groups favored CM groups compared to VM groups (d =0.48) and PM groups (d = 0.20).  

Two questions of the EFT simplifying cluster, with a difference of 20% or greater 

among the intervention groups, were identified. Again these related to representation 

types and will be discussed in the last section. Paired samples t tests of the post to 

delayed post EFT simplifying cluster indicated that the decrease in post to delayed 

posttest scores was significant for the CM intervention, but not for the PM and VM 
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interventions (see Table 22). Cohen d effect size analyses of post to delayed post results 

yielded small effect sizes for PM (d = 0.02) and VM (d = -0.15) interventions and a 

moderate effect size for the CM intervention (d = - 40). These results indicate that the 

CM intervention was not as effective as PM and VM intervention for the retention of 

simplifying concepts.  

Daily cumulative assessment question 8 (DCA-Q8). DCA-Q8 asked students to 

simplify a given fraction. This question used only symbolic representations. Student 

responses were evaluated on a four point rubric which ranged from naming fractions 

which were not equivalent to naming a fraction that was reduced into lowest terms (see 

Appendix G). Paired samples t tests indicated that the gain for all three interventions was 

significant at the 95% level (see Table 23). Cohen d effect size analyses of pre to post 

gains yielded large effect sizes of 1.48 and 0.83 for the PM and CM intervention, 

respectively, and a moderate effect size of 0.63 for the VM intervention. Effect size 

comparisons of intervention groups yielded a moderate effect favoring PM groups when 

compared to VM groups (d = 0.46) and a small effect size when compared to CM groups 

(d = 0.25). Comparisons of CM to VM groups yielded a small effect size of 0.21.  

 
Table 22 

Summary of EFT Simplifying Cluster Post to Delayed-Post Results 

 EFT posttest 
─────────── 

EFT delayed post 
─────────── 

Post to delay 
──────────────────── 

Intervention type M SD M SD df t p Cohen’s d 

PM 13.87 6.37 14.00 5.41 14 0.09 0.93 0.02 

VM 10.79 8.85 9.64 6.64 13 -0.83 0.42 -0.15 

CM 15.23 6.95 12.31 7.80 12 -2.61 0.02 -0.40 
Note. N = 42. 
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Table 23 

Summary of Analysis of DCA-Q8 

 DCA pretest 
─────────── 

DCA posttest 
─────────── 

Pre to post 
─────────────────── 

Intervention type M SD M SD df t p Cohen’s d 

PM 0.93 0.46 2.53 1.46 14 4.77 0.00 1.48 

VM 1.36 1.50 2.29 1.44 13 2.88 0.01 0.63 

CM 1.71 1.64 3.00 1.47 13 3.35 0.01 0.83 
Note. N = 43. 

 
 

Scatter plots were developed and the lines of best fit were compared (see Figure 

18). Comparison of the slopes of the lines of best fit indicated similar slopes for the PM 

(y = 0.17x+0.97) and CM (y = 0.16x+1.17) intervention which were greater than the 

slope of the VM (y = 0.11x+1.09) intervention. This suggests that the rates of growth 

were greater for the PM and CM interventions.  

Analysis of trend lines showing averaged responses for DCA-Q8 indicated that 

the trajectories for the VM and CM groups were very similar (see Figure 19). The 

trajectory for the PM group had greater increases and decreases in scores for the first four 

lessons, but then remained at about the same level for the remaining lessons. 

Trend lines showing the percentage of students who reached mastery of DCA-Q8 

for each intervention lesson were developed (see Figure 20). The trend lines for the PM 

and CM intervention groups follow similar trajectories, but the trend line for the VM 

intervention indicates that fewer students reached mastery and that they tended to reach 

mastery later than the PM and CM intervention students. More CM students (42.9%) 

obtained mastery than did PM (33.3%) and VM (21.4%) students. 

 



 

  

F

 

 
F

Figure 18. Tr

Figure 19. Tr

 

rajectories of

rend line of a

f growth for 

averaged sco

DCA-Q8. 

ores for DCAA-Q8. 

 

 

 108 



 

  

F
 
 
 

fo

4 

w

M

fr

ac

fr

st

to

o

Figure 20. Tr

Misco

or simplifyin

is the belief

was reflected

Misconceptio

ractions or si

ccounted for

raction whic

tudents incor

 The n

otaled and pl

f error analy

rend line sho

onception 4 (

ng fractions w

f that partitio

in two type

on 4 errors, o

implified fra

r 28.2% of th

h was not di

rrectly “halv

number of ca

lotted in scat

yses show a n

owing percen

(partitioning

was the redu

oning and sim

s of errors. E

occurred whe

actions with 

he cases, occ

ivisible by tw

ved” the num

ases of error

tter plots (se

negative rela

ntage of mas

g/simplifying

uction of Mis

mplifying al

Error 7, whic

en students r

the incorrec

curred when

wo. Rather th

merator and t

s for Miscon

ee Figure 21)

ationship, wi

stery of DCA

g errors). Th

sconception 

lways produc

ch accounted

responded to

ct response o

n students we

han determin

the denomin

nception 4 ob

). Ideally the

ith the numb

A-Q8. 

he final sourc

4 type error

ces halves. M

d for 71.8% 

o requests fo

of ½. Error 8

ere asked to 

ning a comm

nator. 

bserved in e

e scatter plot

ber of errors 

 

ce of compar

rs. Misconce

Misconceptio

of the 78 

or equivalent

, which 

simplify a 

mon factor, 

each lesson w

ts and trend 

decreasing 

 109 

rison 

eption 

on 4 

t 

were 

lines 

over  



 

  

F

 

th

in

in

re

ea

er

dr

th

o

g

th

Figure 21. Tr

he duration o

ntervention (

ntervention (

eduction of e

Figure

ach interven

rrors while t

rops in the n

he CM group

ccurrence of

In sum

ains all favo

he retention 

rajectories of

of the interve

(y = -0.67x+

(y = -0.23x+

errors. 

e 22 contain

ntion group. T

the VM inter

number of oc

ps appeared 

f Misconcep

mmary, the e

ored CM inte

of PM and V

f Misconcep

ention. The g

+6.6) when c

+2.67) indica

s trend lines

The PM grou

rvention grou

ccurrences. H

to be compl

tion 4 errors

effect size ca

ervention, bu

VM students

ption 4 cases

greater slope

ompared to t

ated that the 

s comparing 

up had a stro

up, for the fi

However, by

ete and both

s in each less

alculations o

ut post to del

s’ scores was

s. 

e of the line 

the VM (y =

PM students

the resolutio

ong steady d

first six lesso

y the last two

h the PM and

son. 

of the EFT si

layed posttes

s greater. An

 

of best fit fo

= -0.33x+5.3

s had the gre

on of Miscon

decrease in th

ons, had dram

o lessons the

d CM groups

implifying cl

st difference

nalysis of the

or the PM 

3) and the CM

eatest rate of

nception 4 fo

heir number

matic rises an

e resolution f

s had only on

luster pre to 

es indicated t

e percentage

 110 

M 

f 

for 

r of 

nd 

for 

ne 

post 

that 

e of  



 

  

F

 
st

al

re

gr

du

o

P

an

co

T

er

th

o

pr

v

Figure 22. Tr

tudents answ

lso have bee

epresentation

reatest for th

uration and 

f DCA-Q8 s

M interventi

nd their traje

ontinued to s

The opposite 

rrors). The P

he CM and V

f errors was 

roduced a st

ariations, an

rend line traj

wering specif

en variations

ns used in th

he PM interv

scores for on

shows that th

ions but by t

ectories beca

steadily incr

was observe

PM intervent

VM groups h

almost com

teadier gain o

nd PM interv

jectories of M

fic questions

 in achievem

he questions.

vention, but t

nly the CM i

he increase in

the last four 

ame more sim

rease, while t

ed in the reso

tion trend lin

had more err

mplete. A syn

of simplifyin

vention produ

Misconceptio

s of the simp

ment which c

 Analyses o

that there wa

intervention 

n scores was

lessons all t

milar. Durin

the VM and 

olution of M

ne shows a s

ratic trajecto

nthesis of the

ng concepts, 

uced a stead

on 4. 

plifying clust

corresponded

f DCA-Q8 i

as a linear re

 students. Ex

s erratic for t

three interve

ng these last 

d PM groups 

Misconceptio

steady contin

ries. For all 

e results sugg

but there we

dier resolutio

 

ter suggested

d to the type

indicated tha

elationship b

xamination o

the first five

ention groups

lessons, the 

remained ab

on 4 (partitio

nual decrease

three groups

gests that CM

ere areas of 

on of Miscon

d that, there 

e of 

at the gain w

between less

of the trend 

e lessons for 

s had stabiliz

CM group 

bout the sam

ning/simplif

e of errors w

s the resolut

M interventi

unexplained

nception 4 er

 111 

may 

was 

on 

lines 

the 

zed 

me. 

fying 

while 

tion 

ion 

d 

rrors. 



 112 
 

  

Levels III and IV: Basic understanding of fractions. Levels III and IV of the 

iceberg model contains three Level III concepts and 10 Level IV sub concepts that are 

basic to the development and understanding of equivalent fractions. The three concepts of 

Level III are: naming fractions, evaluating fraction values, and developing equivalence 

thinking. There are three to four Level IV subconcepts that are important for conceptual 

understanding of each of the Level III concepts. This section discusses the findings of the 

study related to each of the Level III concepts and their Level IV subconcepts.  

Naming fractions. Naming fractions, of the iceberg model Level III, is the ability 

to give a symbolic representation to the part-whole relationship shown in concrete and 

pictorial models. It also involves the ability to develop models of symbolic fractions. 

Data were collected on three iceberg Level IV skills which contribute to students’ 

understanding of naming fractions: labeling fractions, partitioning and building models 

of fractions. 

 Labeling fractions. Labeling fractions is the skill of identifying the part and the 

whole of a concrete or pictorial representation and writing that relationship in the proper 

symbolic form. In the study, although students’ ability to label fractions was not 

specifically measured, it was a foundational skill students needed as they compared, 

described and modeled equivalent fractions. Although this is a skill which typically 

receives a strong focus of instruction in third and fourth grades, the emergence of 

Misconception 3 (misnaming errors) from the analysis of student errors, indicated that 

some students had not mastered the skill of labeling fractions. Misconception 3 was: 

Fractions of regional models represent relationships other than the part-whole 
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relationship of the model. Coding of the data revealed four types of relationships students 

incorrectly focused on when naming fractions. These four types of relationships were: (a) 

Error 3, modeling fractions as arrays (18.8% of the 133 Misconception 3 cases); (b) Error 

4, interchanging the numerator and denominator when naming fractions (10.5%); (c) 

Error 5, naming fractions as the relationship of shaded to unshaded (18.8%); and (d) 

Error 6, focusing on the number of sections and not the relationships of different sized 

sections of a whole (51.9%).  

The number of cases of errors for Misconception 3 observed in each lesson were 

totaled and plotted in scatter plots (see Figure 23). The greater slope of the line of best fit 

for the PM intervention (y = -1.35x+12.5) when compared to the VM (-0.71x+9.4) and 

the CM intervention (y = -0.66x+6.33) indicated that the PM students had the greatest 

rate of reduction of errors. However, the comparison with the CM intervention could also 

be affected by the CM trajectory. As the trend lines in Figure 23 show, the CM 

intervention had fewer cases of Misconception 3 and the number of cases were reduced to 

none before the last lesson suggesting that the degree of the slope of best fit for the CM 

group may have been limited by the smaller number of error cases.  

An analysis of the trend lines for Misconception 3 indicated that, although all 

three types of instruction appeared to effectively reduce errors, the VM trajectory does 

differ (see Figure 24). Resolution of errors for the VM intervention was slower, with the 

number of cases remaining almost constant for the first five lessons. The resolution of 

errors for the PM and CM groups was almost complete by lesson 8 while the VM group 

continued to have three to four error cases per lesson.  
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One incidence of a Misconception 3 error type six was identified from the post 

EFT analyses of intervention group differences in the percent of incorrect responses. The 

Error 6 multiple choice selection was choosen by 28.6% of the VM intervention students 

as compared to 14.3% of the PM and 6.7% of the CM intervention students. Analysis of 

the data relating to the resolution of Misconception 3 suggested that, when compared 

with students of VM intervention, the rate of resolution of the errors was greater and 

more complete for students in the PM intervention group. For both the CM and PM 

interventions the resolution of the errors were complete.  

Building models: Building models is the skill of building concrete models or 

drawing pictorial models to represent fractions. In the process of developing equivalent 

fraction understanding, students should be able to build accurate models which they can 

use to compare and partition. The purpose of DCA-Q1 was to assess students’ ability to 

build models.  

 DCA-Q1 asked students to draw a model of a given fraction within a rectangular 

region. Responses were rated on a 6 point rubric (see Appendix G). Paired samples t tests 

indicated that the pre to posttest gains were significant for the VM and CM intervention, 

but not significant for the PM intervention (see Table 24). The Cohen d effect size 

analysis of pre to post gains yielded a large effect for the CM intervention (d = 1.05), and 

a moderate effect of for the VM (d = 0.62) and the PM (d = 0.46) interventions. An effect 

size comparison of the three intervention groups, yielded large effect sizes favoring CM 

groups when compared with PM groups (d = 1.36) and VM groups (d = 0.84) and a 

moderate effect (d = 0.39) favoring VM groups when compared to PM groups. The high  
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Table 24 

Summary of Analysis of DCA-Q1 

 DCA Pretest 
─────────── 

DCA posttest 
─────────── 

Pre to post 
─────────────────── 

Intervention type M SD M SD df t p Cohen’s d 

PM 5.00 1.65 5.60 0.83 14 1.42 0.18 0.46 

VM 4.21 1.93 5.14 0.86 13 2.33 0.04 0.62 

CM 4.29 1.98 5.79 0.43 13 3.07 0.01 1.05 
Note. N = 43. 

 

averages of all three groups’ pretest scores indicated that many students had previously 

developed the ability to model fractions.  

To analyze the growth of student knowledge over the duration of the intervention, 

scatter plots were developed and the lines of best fit were compared (see Figure 25). The 

greater slopes of the lines of best fit for the VM (y = 0.14x + 3.87) and CM interventions 

(y = 0.13x+4.36), when compared with the PM intervention (y = 0.4x + 5.17) suggests 

that the rate of growth was greater for the VM and CM intervention. However, the rate of 

growth of student knowledge was low for all three groups. In part this is likely due to the 

high number of students who had mastered the skill prior to the intervention.  

Trend lines of the averaged intervention group scores show that the trajectory for 

DCA-Q1 had initial high scores and little gain for the PM and CM interventions (see 

Figure 26). In the rubric used in evaluating the student responses, a score of 5 was given 

if the students used the correct number of partitions and shading. A 6 was given if all the 

partitions were drawn accurately in equal proportion. All of the averaged scores of the 

PM group and all of the averaged scores of the CM group after lesson 3 were 5 or 
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Partitioning. The ability to partition fraction models affects students’ use of 

models in developing fraction concepts. When objects are not correctly partitioned, the 

results of visual comparisons made by the student become meaningless and may cause 

conceptual misunderstandings. Two sources provided data related to partitioning: DCA-

Q5 and the analysis of student errors. 

  DCA-Q5 was a fair share question in which students were asked to divide a given 

number of pizzas with a given number of friends. Responses were evaluated using a six 

point rubric ranging from not drawing the correct number of pizzas to partitioning the 

models correctly and identifying the fractional amount each friend would receive (see 

Appendix G). Paired samples t tests indicated that the pre to posttest gain was significant 

for the VM and the CM intervention groups, but not the PM intervention group (see 

Table 25). Similarly, the effect size analyses yielded large effects for the VM and CM 

groups, but only a moderate effect for the PM intervention. Comparison of intervention 

groups yielded large effects favoring VM groups (d = 1.85) and CM groups (d = 1.31) 

when compared to the PM groups. The comparisons of VM and CM intervention yielded 

a small effect size score of 0.20 favoring the VM intervention. A one-way ANOVA 

comparison of gain scores indicated that the difference among groups was significant at 

the 95% level, F(2, 43) = 3.87, p = 0.03. However, the PM groups’ pretest scores (4.27 

out of 6 possible points) was considerably higher than those of the VM (2.21) and CM 

(2.43). On the posttest all three intervention groups scored within the range of 4.71 to 

4.80. Although the PM groups made significantly less gains, the posttest achievement 

levels of the three groups were similar. 
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Table 25 

Summary of DCA-Q5 Analyses 

 Pretest 
────────── 

Posttest 
─────────── 

Pre to post 
──────────────────── 

Intervention type M SD M SD df t p Cohen’s d 

PM 4.27 1.10 4.80 0.86 14 1.74 0.10 0.54 

VM 2.21 2.01 4.79 1.31 13 3.56 0.00 1.52 

CM 2.43 1.95 4.71 1.68 13 4.02 0.00 1.25 
Note. N = 43. 

 

To analyze the growth of student knowledge over the duration of the intervention, 

scatter plots of DCA-Q5 were developed and the lines of best fit were compared (see 

Figure 28). The greater slope of the line of best fit for the VM intervention (y = 0.28x + 

1.85), when compared with the PM (y = 0.5x + 4.13), and the CM interventions (y = 

0.18x + 2.98) suggests that the rate of growth was greater for the VM intervention.  

 Analyses of the trend lines of DCA-Q5 also suggested that, only for the VM 

group was the growth continuous over time (see Figure 29). The PM intervention trend 

line started high and remained almost constant showing little growth, and the CM 

intervention trend line showed an early dramatic increase and then remained fairly 

constant. The VM intervention trend line showed an initial decrease in scores and then 

the scores gradually increased to the level of the other two interventions. The three 

groups achieved similar scores for the last four lessons.  

Trend lines of the percent of students who reached DCA-Q5 mastery showed that 

less than 15% mastered the question. The PM intervention students tended to reach 

mastery sooner than the students of the other two groups (see Figure 30). 
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achievement. Error resolution of partitioning errors was complete for more PM and CM 

students. However, the analyses also indicate that a number of the students already were 

functioning at high levels of achievement, thus limiting comparisons. 

Evaluating fraction values. For students to evaluate if two symbolic 

representations of fractions are equivalent, they need an understanding of the magnitude 

of fractions and the ability to compare fractions. From the literature, the three skills of 

comparing, ordering, and developing were identified and three corresponding DCA 

questions developed. DCA-2 asked students to compare three fractions, one of which was 

greater than ½. DCA-3 asked students to place two fractions on a number line and DCA-

4 asked students to develop and place on the number line, between the two existing 

fractions, a new fraction. Table 27 contains a summary of the paired samples t tests. For 

DCA-Q2 and DCA-Q4 the intervention was not significant, indicating that students made 

only limited gains. Therefore, the analysis comparing the effects of the manipulative 

interventions did not reflect variations in learning and these questions were not analyzed 

further. Further analyses will be provided for DCA-Q3. 

 Daily cumulative assessment question 3 (DCA-Q3). DCA-Q3 asked students to 

place two given fractions on a number line. The difference between the student’s 

placement of the fraction on the number line and the correct location was measured. 

Responses were evaluated on a six point rubric ranging from a total difference of greater 

than 20 centimeters to 0 centimeters (see Appendix G). Paired samples t tests indicated 

that the gains were significant for the PM and CM intervention at the 95% level (see 

Table 27). The Cohen d effect size analysis of pre to posttest gains yielded a large effect  
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Table 27 

Summary of Data Analysis for DCA-Q2 and DCA-Q4 

Question/ 
intervention type 

DCA pretest 
─────────── 

DCA posttest 
──────────── 

   

M SD M SD df t p 

DCA-Q2 PM 4.93 1.58 4.80 1.78 14 -0.13 0.71 

DCA-Q2 VM 4.21 1.58 4.43 1.79 13 .366 0.72 

DCA-Q2 CM 3.86 1.61 4.79 1.63 13 1.43 0.18 

DCA-Q3 PM 3.47 1.61 5.00 1056 14 2.66 0.02 

DCA-Q3 VM 4.00 1.52 4.14 1.75 13 0.30 0.77 

DCA-Q3 CM 3.07 1.59 4.21 1.58 13 2.51 0.03 

DCA-Q4 PM 0.40 0.51 0.47 0.52 14 0.44 0.67 

DCA-Q4 VM 0.64 0.50 0.43 0.51 13 1.00 0.37 

DCA-Q4 CM 0.36 0.50 0.50 0.52 13 1.47 0.17 

 

 
 
size (d = 0.96) for the PM intervention, a moderate effect size (d = 0.72) for the CM 

intervention and a small effect size (d = 0.09) for the VM intervention. An effect size 

comparison among intervention groups yielded a large effect size favoring PM groups 

when compared to VM groups (d = 0.84) and a small moderate effect size when 

compared to CM groups (d = 0.25). Comparison of PM groups to CM groups yielded a 

moderate effect size of 0.60.  

To analyze the growth of student knowledge over the duration of the intervention, 

scatter plots were developed and the lines of best fit were compared (see Figure 33). The 

greater slope of the line of best fit for the PM intervention (y = 0.14x + 3.35), when 

compared with the VM (y = 0.06x + 3.31) and the CM interventions (y = 0.05x + 3.67) 

suggests that the rate of growth was slightly greater for the CM intervention. However, 

the rate of growth was small for all three groups. 
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and CM interventions and comparisons of gain and percent of students reaching mastery 

both favored PM intervention. Likewise, the rate and completeness of resolution of 

Misconception 1 (Whole Number Dominance) favored both the PM and the CM 

interventions. 

Developing equivalence thinking. At the base of each of the five equivalent 

fraction concepts of modeling, identifying, grouping, solving, and simplifying is the 

students’ development of equivalence thinking in relationship to fractions. Equivalence 

thinking requires students to develop a working understanding of: (a) the meaning of 

equivalence, (b) comparison of areas, (c) the conservation of the part-whole relationship, 

and (d) and the ability to think multiplicatively. Since it was through the qualitative 

coding of errors that the distinctiveness of equivalence thinking and the persistence of 

nonequivalence thinking emerged, none of the assessments specifically targeted students’ 

development of equivalence thinking. Therefore, the sources of data relating to this 

concept were limited to error analysis. The four aspects of equivalence thinking are 

discussed in relation to the correlating misconceptions. 

Meaning of equivalence. Thinking of equivalence in relation to fractions is not the 

same as thinking of equivalence of whole numbers. Fractions are part- whole 

relationships and that relationship is the focus for determining equivalence. As some 

students seek to understand equivalence of fractions they focus on incorrect relationships. 

Misconception 5 (equivalence meaning errors), which emerged from the analysis of 

lesson artifact student errors reads: Equivalence denotes relationships other than equal 

amounts. Four incorrect relationships that students used in developing an equivalent 



 132 
 

  

fraction were: (a) Error 9: Identifies equivalent fractions as being two fractions naming 

the relationship of the parts making up a whole (e.g., 1/3 = 2/3; 51.1% of the 247 

Misconception 5 cases); (b) Error 10: Identifies equivalent fractions as the original 

fraction and a second fraction whose value is equal to one and contains numerals that 

were either in the original fraction or factors or multiples of the numerals in the original 

fraction (e.g., 6/8 = 6/6 or 8/8 – numerals from original fraction, 6/8 = 2/2 - factor or 2/3 

= 4/4 or 6/6 – multiples; .20.6% of the 247 Misconception 5 cases); (c). Error 11: 

Identifies equivalent fractions as being a fraction and its reciprocal (e.g., 1/3 = 3/1; 15.4% 

of the 247 Misconception 5 cases); and (d) Error 12: Identifies equivalent fractions as 

being a fraction and a second fraction which is derived by determining the number of 

times a number will go into either the numerator or the denominator of the original 

fraction (e.g., 5/10 = 2/5 because 5 goes into 10 twice; 8.9% of the 247 Misconception 5 

cases). Most of the Misconception 5 cases were from students’ responses to the DCAs 

with only several instances during discussions.  

The number of Misconception 5 error cases observed in each lesson were totaled 

and plotted in scatter plots (see Figure 38). To compare the resolution of errors over time 

scatter plots were developed and the lines of best fit compared. The greater slope of the 

line of best fit for the VM intervention (y = -1.35x+17.2) when compared to the PM (y = 

-1.16x+15.07) and the CM interventions (y = -0.83x+10.67) indicated that the VM 

students had the greatest rate of reduction of errors. 

Figure 39 shows the trend line trajectories derived from the number of 

Misconception 5 error cases observed for each lesson. Over the first four lessons, the 
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Conservation of the part-whole relationship. A concept which beginning fraction 

students often struggle with is the understanding that partitioning or combining sections 

of a model, proportionally changes both the numerator and the denominator. 

Symbolically, to conserve the relationship of the fraction you must multiply or divide the 

numerator and the denominator by the same number to maintain the same proportional 

relationship. Error analysis of the lesson artifacts identified Misconception 6 (Incorrect 

Equivalent Sentences). It reads: When developing equivalent fractions, numerators and 

denominators may vary independently of each other. Three types of errors were observed 

in which students manipulated the numerators and denominators differently when 

developing equivalent fractions. The three manipulation errors were: (a) multiplying the 

numerator and denominator by different numbers (Error 13, 36.1% of the 147 

Misconception 6 cases); (b) increasing or decreasing only the denominator or only the 

numerator (Error 14, 58.7% of the 147 Misconception 6 errors); and (c) multiplying a 

number in the numerator of the second fraction by either the numerator or the 

denominator of the original fraction (Error 15, 6.8% of the 147 Misconception 6 cases).  

The cases of errors for Misconception 6 observed in each lesson were totaled and 

plotted in scatter plots (see Figure 41). The greater slope of the line of best fit for the PM 

intervention (y = -0.41x+8.4) when compared to the VM (y = -0.12x+6.47) and the CM 

interventions (y = -0.05x+3.07) indicated that the PM students had the greatest rate of 

reduction of errors for Misconception 6.  

A trend line of Misconception 6 errors shows multiple increases and decreases in 

errors, with the differences in the number of error cases observed in lesson 10 being only 
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Research Subquestion 1(b): Line Trajectories Showing Changes 

Achievement 

 
The purpose of the line trajectory synthesis was to examine the trend lines 

developed in the study for any observable differences among intervention groups. 

Trajectories were divided into two groups. The first group was the trend lines which 

showed growth over time, including those showing data from the DCA (Figures 45 and 

46). For this comparison, the data from the eight questions of the DCA were aggregated 

into the three concept clusters of partitioning, fraction value, and equivalence. Six 

observations resulted from an examination of the trend lines. 

1. The PM and the CM groups tended to perform with similar increases and 

decreases, suggesting that use of these interventions had similar effects on student 

learning; 

2. Both the PM and CM groups tended to score higher than the VM group. This 

difference was especially evident in the graphs of mastery; 

3. As can best be observed in the four graphs of the DCA total score and 

clusters, the VM intervention scores decreased between the DCA pretest given before 

lesson 1 and the second DCA which was given at the end of lesson 2. The scores of the 

PM and CM interventions from lesson 1 to lesson 2 rose, suggesting that there may have 

been some type of factor influencing the performance of the VM students, but not that of 

the PM or CM students;  

4. The baseline at the beginning of the mastery trajectories of the VM 

intervention tended to remain flat showing little difference for a longer period of time  
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than the trajectories of the other two manipulative groups. This suggests that the VM 

students obtained mastery at a slower rate than the other two intervention groups; 

5. For the majority of the graphs, the range of difference between the groups 

began to decrease during lessons 4 to 7 and the trend line trajectories became more 

similar, suggesting that, as the duration of the intervention increases, the learning of the 

three groups became more similar; and, 

6. The trend lines increased at a steadier rate, with less increases and decreases, 

during the last five lessons, suggesting that over time the students became more solidified 

in their knowledge. These six observations suggest that, there were variations in learning 

which may be related to intervention type, and that as the duration of the intervention 

increased, the variations in student learning decreased.  

The second group of trajectories examined was the trajectories of students’ 

misconceptions and students’ errors of partitioning (see Figure 47). With the exception of 

Misconception 6 (incorrect equivalent sentences), for all three intervention groups, the 

number of errors was reduced over the time of the intervention. Again, as was observed 

in the previous group of trajectories, initially the trajectories show greater variance in rate 

and consistency, but over time these variances diminish and the trajectories become more 

similar. Again the VM intervention group progressed at a slower rate than the PM and the 

CM intervention groups, but the difference among the error rates began to narrow over 

the duration of the intervention.  
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Research Sub1uestion 1(c): Variations of Achievement in  

Lessons Activities 

 
Research subquestion 1(c) was: What are the variations in patterns of daily lesson 

achievement, retention and work completion? The sources of data for this question are: 

LCA, which measured concept understanding; and the LPA, which measured retention 

and the number of problems completed in the explore and practice phases of the lessons. 

These measures were specific to each lesson and do not represent growth over time. 

 
Lesson Concept Assessments 

Each LCA administered at the end of the lesson consisted of three questions 

duplicating questions students had responded to during the explore phase of the lesson. 

Responses were scored on a 1- to 4-point rubric evaluating the level of guidance students 

received in answering the question. Students’ scores were averaged for each intervention 

group (see Table 28). The Cohen d effect scores analysis yielded a moderate effect score 

favoring PM intervention when compared to VM intervention (d = 0.74) and a small 

effect when compared with CM intervention (d = 0.07). A moderate effect score of 0.50 

favored the CM intervention compared to the VM interventions. A comparison of the CM 

and VM intervention yielded a moderate effect size of 0.50. 

 Next, intervention group averages for each lesson were compared using Cohen d 

effect size scores (see Table 29). Analyses yielded six large effect size differences. PM 

intervention was favored when compared with VM intervention for the concepts of: 

fraction names, developing groups, and identifying equivalent fractions by partitioning 
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Table 28 

Summary of LCA Student Average Scores 

 PM LCA scores 
─────────── 

VM LCA scores 
─────────── 

CM LCA scores 
─────────── 

Lessons N M SD N M SD n M SD 

1.  Naming fractions 13 11.15 1.52 12 9.50 2.28 12 11.42 1.38 

2.  Fractions and wholes 15 9.53 2.53 10 8.50 2.36 11 10.91 1.92 

3.  Comparing 14 11.43 4.16 13 10.69 1.97 13 10.92 1.89 

4.  Equivalent groups  14 8.86 4.00 13 7.69 2.06 13 9.23 2.01 

5.  Equivalence in wholes 15 10.13 1.73 14 8.00 2.45 12 9.33 2.46 

6.  Equivalence by partitioning 15 11.47 1.06 14 10.43 1.45 14 11.93 0.27 

7.  Comparing fractions to ½ 14 10.29 1.82 14 10.29 1.90 13 10.54 2.26 

8.  Set models 14 9.57 2.28 14 9.64 2.92 12 8.92 3.75 

9.  Equivalent set models 15 10.53 1.51 14 8.93 2.73 14 10.29 1.49 

10. Simplify fractions 15 9.87 2.62 14 10.71 1.86 14 9.29 3.15 

Total average 15 10.27 0.93 14 9.51 1.12 14 10.18 1.52 
Note. N = 43. 

 
 

Table 29 

LCA Effect Size Comparisons by Intervention Groups 

  Intervention comparisons 

Lesson Concept PM to VM PM to CM VM to CM 

1 Naming fractions 0.85 -0.19 -1.02 

2 Fractions and wholes 0.42 -0.61 -1.12 

3 Comparing 0.23 0.16 -0.12 

4 Equivalent groups  0.37 -0.12 -0.76 

5 Equivalence in wholes 1.00 0.38 -0.54 

6 Equivalence by partitioning 0.08 -0.59 -1.44 

7 Comparing fractions to ½ 0.00 -0.18 -0.18 

8 Set models -0.03 0.21 0.21 

9 Equivalent set models 0.73 0.16 -0.62 

10 Simplify fractions -0.13 0.20 0.34 

Total lessons 0.74 0.07 -0.50 
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that the students in the PM and CM interventions tended to score higher for specific 

lessons focusing on concepts of naming, grouping, identifying and partitioning. Over the 

duration of the intervention the LCA variations among the intervention groups tended to 

decrease.  

 
Lesson Preassessment 

 The daily LPA was administered at the beginning of each lesson and consisted of 

two questions that duplicated questions students answered in the explore phase of the 

previous lesson. Responses were scored on a 1- to 4-point rubric that evaluated the 

amount of guidance students needed to correctly respond to the questions. Students’ 

scores for each intervention group were averaged (see Table 30).  

Cohen d effect size comparisons yielded a moderate effect score favoring the PM 

intervention when compared to the VM intervention (d = 0.63) and a small effect size 

 
Table 30 

Summary of Students’ Averages on LPAs  

 PM LPA scores 
──────────── 

VM LPA scores 
──────────── 

CM LPA scores 
──────────── 

Lesson N M SD N M SD N M SD 

1. Naming fractions 13 7.38 1.50 10 7.70 0.95 9 8.00 0.00 

2. Fractions and wholes 15 6.93 1.39 12 6.83 1.41 13 6.54 1.85 

3. Comparing 14 6.21 1.53 13 6.08 2.18 14 6.79 1.48 

4. Developing equivalent groups  14 7.07 0.80 14 5.43 2.41 13 7.15 1.82 

5. Equivalence in wholes 15 7.33 1.05 14 6.14 2.25 14 6.50 1.61 

6. Equivalence by partitioning 15 7.86 0.53 14 7.71 1.07 14 8.00 0.00 

7. Comparing fractions to ½ 14 7.71 0.83 14 5.71 2.43 13 6.23 2.46 

8. Set models 15 5.73 2.66 14 7.07 1.00 13 6.15 2.15 

9. Equivalent set models 15 6.60 1.55 14 5.64 2.13 14 5.79 1.12 

Average 15 6.98 0.63 14 6.48 0.88 14 6.79 0.78 
Note. N = 43. 
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when compared to the CM intervention (d = 0.25). A moderate effect score of 0.38 

favored the CM intervention when compared to the VM intervention.  

Next Cohen d effect size comparisons of intervention group averages were 

calculated for each lesson concept (see Table 31). Four comparisons which yielded large 

effect size scores of 0.80 or higher were identified: (a) PM compared to VM intervention 

for the building of equivalent groups (d = 0.91), (b) CM compared to VM intervention for 

the building of equivalent groups (d = 0.81), (c) PM compared to VM intervention for 

comparing fractions to ½ (d = 1.10), and (d) PM compared to CM intervention for 

comparing fractions to ½ (d = 0.81).   

A line plot of the LPA averages was developed to compare the trajectories of the 

three types of intervention (see Figure 49). The trajectories for all three groups were very 

similar, with differences being less than one and one half points.  

 
Table 31 

LPA Effect Size Comparisons by Intervention Groups 

  Intervention comparisons 

Lesson Concept PM to VM PM to CM VM to CM 

2 Naming fractions -0.25 -0.58 -0.45 

3 Fractions and wholes 0.07 0.24 0.18 

4 Comparing 0.07 -0.39 -0.38 

5 Developing equivalent groups  0.91a -0.06 -0.81a 

6 Equivalence in wholes 0.68 0.61 -0.18 

7 Equivalence by partitioning 0.18 -0.37 -0.38 

8 Comparing fractions to ½ 1.10a 0.81a -0.21 

9 Set models -0.67 -0.17 0.55 

10 Equivalent set models 0.52 0.60 -0.09 

Total lessons 0.79 0.24 -0.41 
Note. N = 43. 

a Large effect size 
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Problems completed in the practice phase. The number of problems completed 

during the practice phase of each lesson was recorded and averages were calculated (see 

Table 33). During the practice phase of the lesson, both the VM group and the CM group 

used virtual manipulatives. The PM group used physical manipulatives. There was little 

variation in the averaged total number of problems completed by each intervention group. 

The average number of problems completed was 138.7 problems for the CM group, 

131.97 for the PM group, and 127.9 problems for the VM group. Effect size comparisons 

of the three intervention groups produced only small effect sizes.  

A line plot was developed to compare the number of problems solved by each 

intervention group (see Figure 51). The line plot suggests three variations in the average 

number of practice problems completed for each lesson. During the naming fractions 

practice (lessons 1and 2) the students using the NLVM Fractions – Naming applet 

completed more than twice as many problems as the students using the physical 

manipulatives.  

During the practice phase of lessons 3, 4, and 5, the VM and the CM intervention 

groups used the Illuminations- Equivalent Fraction Applet and the line plot shows a slow 

  
Table 33 

Average Number of Problems Completed During the Practice Phases 

Intervention 
type 

Number of explore problems completed in lessons 

1 2 3 4 5 6 7 8 9 10 Total 

PM 9.38 9.3 8.0 6.5 14.5 26.5 26.9 7.2 6.9 16.9 132.0 

VM 22.9 30.6 4.0 11.5 11.6 11.9 15.9 4.2 7.6 7.7 127.9 

CM 22.8 23.0 8.1 13.7 18.2 14.5 17.0 4.9 5.6 10.8 138.7 
Note. N = 43. 
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The final variation occurred during the last three lessons. The virtual manipulative 

used during these lessons was the NLVM fractions-comparing. The applet guided 

students through the process of finding equivalent fractions with common denominators 

for the two fractions to be compared and then placement of the fractions on a number 

line. Students using physical manipulatives mirrored this process with the use of fraction 

squares and pipe cleaners. For lesson 8 and 9, the line plot shows a decrease in the 

number of problems completed by all three groups as they learned the new procedures. 

The instructors noted that during the practice portions of lessons 9 and 10, some of the 

PM students became frustrated with the manipulatives and began to find the common 

denominators by multiplying the original fractions by the number one in fraction form 

(e.g., 
ଶ

ଶ
, 
ଷ

ଷ
, 
ସ

ସ
). By lesson 10, the instructors reported that a number of the students of the 

physical manipulative group were doing all of the problems without the use of the 

manipulatives. The line plot shows a rise in the number of problems completed by the 

PM group for lesson 10. 

In summary, no statistically significant differences were found in concept 

achievement, concept retention or in the number of problems completed in the lessons. 

Effect sizes indicated moderate effects favoring PM and CM interventions. Six LCA and 

4 LPA comparisons yielded large effect sizes favoring PM and CM interventions when 

compared with VM intervention for specific lesson concepts. Examination of line plots of 

the LCA and LPA results suggested that over the duration of the intervention lessons 

variations among the interventions tended to decrease. Line plots of the number of 

practice problems completed identified three variations which reflected the use of the 
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different virtual manipulative applets. 

 
Research Subquestion 1(d): Variations in Strategies 

 
 

Research subquestion 1(d) was: What are the variations in the strategies 

developed and used by students? The Rational Number Project lessons provided strong 

guidance and structure for the explore phases of the lessons, as did also the tool guidance 

of the VM applets used in the practice phases. The instructors mirrored the applet 

guidance in their instruction of the PM intervention practice lessons. As a result of the 

strong structure and guidance, there were few observable variances in the strategies 

students used.  

 Students’ answers to the open response questions of the post EFT and lesson 

artifacts were examined for variations in students’ strategies. The post EFT open 

response items were coded to compare students’ strategies used in solving a set model 

problem and their partitioning strategies for finding equivalent fractions. Another 

question was coded to compare differences in students’ use of columns or rows in 

developing equivalent fraction representations. Only small variances were identified. 

 Identified variations were limited to three comparisons, the strategies used in 

building groups of equivalent fractions, strategies used in partitioning pizzas, and 

strategies used in modeling. 

 
Strategies for Building Groups 

Students’ strategies for building groups of equivalent fractions during the daily 

practice phase were examined at the end of two lessons, the last day of the Illuminations -
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Equivalent Fraction practice (lesson 5) and the last day of the NLVM Fraction -

Equivalent practice (lesson 7). Responses were coded into three strategies: Strategy 1-

doubling the original fraction twice (e.g., 2/3, 4/6, 8/12); Strategy 2 - multiplying the 

original fraction by 2/2 and then 3/3 (e.g., 2/3, 4/6, 6/9); and, Strategy 3 multiplying by 

fractions of one, other than 2/2, and 3/3 (e.g., 2/3, 10/15, 20/30). The results are 

summarized in Table 34. 

In the first comparison, the PM students used Strategy 2 for 94.42% of the 

problems. In contrast the VM and the CM intervention students used Strategy 2 for only 

55.88% and 48.12% of the problems, respectively. During the practice phase, the PM 

students had been guided to model each fraction using fraction squares and then to 

partition the model using pipe cleaners. In contrast, the VM and CM students using the 

computer applets partitioned the models by sliding over a bar which automatically 

partitioned the model into as many as 100 partitions. By the end of lesson 7, this trend 

had shifted. It was observed by the instructors, that in the seventh lesson, most of the PM 

group chose not to use the manipulatives and the percent of problems completed using 

 
Table 34 

Percent of Students Using Strategies for Building Groups of Equivalent Fractions  

 
Equivalent fractions (illuminations) 

────────────────────────
Fractions equivalent (NLVM) 

────────────────────────

Intervention 
N of 

problems Doubles Multiples Other 
N of 

problems Doubles Multiples Other 

PM 109 0.0 94.42 5.58 189 18.87 57.4 23.64 

VM 104 3.67 57.88 38.45 93 8.10 79.37 12.54 

CM 96 4.91 48.12 46.97 124 22.50 53.45 24.05 
Note. N = 43. 
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Strategy 2 dropped to 57.49%. The CM and VM students had used the NLVM Fractions-

Equivalent applet for practice in lessons 6 and 7. In this applet students were required to 

repeatedly click the partitioning button until the lines of the original and the new fractions 

merged together. It was observed by the instructors that many students appeared to 

become impatient with this method of partitioning, stopped using the virtual manipulative 

and began to mentally calculate the sets of fractions. For lesson 7, the percent of 

problems the PM and CM students solved using Strategy 3 decreased and the percent 

using Strategies 1 and 2 increased in comparison to lesson 5. For lesson 7 the percentages 

of the CM group were very similar to the percentages of the PM group while the VM 

group tended to use Strategy 2 more than the other two groups. These results suggest that 

at first, the use of the physical manipulatives limited the use of multiple strategies for 

building groups of equivalent fractions, but as practice continued the students began to 

use other strategies. The VM and CM groups initially used multiple strategies in building 

groups of equivalent fractions, but when students used a different applet there was a 

decrease in the variations of the types of strategies students used.   

 
Strategies for Partitioning Pizza 

The data source for students’ variations in strategies for partitioning pizza was 

DCA-Q2. The question asked students to divide a given number of pizzas evenly among 

a given number of friends. The difference in student strategies was the students’ method 

for partitioning the pizzas. Some students divided each pizza by the number of friends 

while other students first distributed the possible number of the whole pizza to the friends 

and then partitioned the remaining pizzas. The strategy of first distributing the whole 
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pizzas requires more steps and is a more complex strategy. A correct answer could be 

obtained using either method. Table 35 summarizes the use of the two strategies by 

treatment group and Figure 52 shows trend lines of the two strategies. For all three 

treatment groups, the percent of students developing the strategy of distributing the whole 

pizzas and partitioning the remaining pizzas gradually increased and the final percent of 

students using the strategy of partitioning remaining pizzas was similar. However, after 

lesson 2, there was a large drop in the percent of CM students who partitioned all pizzas 

and a large rise in the percent of students distributing the whole and partitioning the 

remaining pizzas. These results indicate that the CM intervention encouraged students to 

use the strategy of distributing the wholes and partitioning the pieces more than the PM 

and VM interventions.  

 
Table 35 

Percent of Students Using Pizza Partitioning Strategies for DCA-Q2 

 Percent of students for each lesson 
───────────────────────────────────────────

Intervention/strategy 1 2 3 4 5 6 7 8 9 10 

PM           

 Every pizza 73.3 92.9 57.1 78.6 46.7 66.7 85.7 85.7 60.0 66.7 

 Remaining pizzas 20.0 7.1 28.6 21.4 40.0 33.3 14.3 14.3 40.0 33.3 

VM  

 Every pizza 14.3 22.2 30.8 15.4 38.6 42.9 35.7 35.7 28.6 35.7 

 Remaining pizzas 21.4 11.1 30.8 53.8 35.7 21.4 14.3 35.7 35.7 42.9 

CM  

 Every pizza 55.0 80.0 38.5 15.4 33.3 28.6 15.4 25.0 35.7 28.6 

 Remaining pizzas 0 0 46.2 69.2 58.3 57.1 46.2 58.3 35.7 50.0 
Note. N = 43. 
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Strategies for Partitioning 

 Variations were also identified in students’ partitioning responses to an open 

response EFT question which asked students to model two fractions equivalent to 1/3. 

Responses were coded as to whether the students used only vertical partitions or if they 

used cross-sectioned partitions. Students using cross-sectioned representations used 

vertical lines to model 1/3 and then one or more horizontal lines to partition the 1/3 

sections into equivalent fractions. It is suggested that the cross-sectioned representation is 

a more complex representation than the vertical lines only model. Cross-sectioning 

suggests that the student is using the model to develop equivalent fractions, whereas 

vertical only partitioning suggests that the student is first calculating the equivalent 

fraction and then drawing a model to match their answer. The percent of VM and PM 

intervention students using the cross-section representations was almost three times the 

percent of the CM intervention group using the strategy (see Table 36). This indicates 

that the PM and VM interventions tended to encourage the use of the cross-sectioned 

representation, while the CM intervention tended to encourage the use of vertical only 

partitioning.  

 
Table 36 

Variations in Methods Used to Partition Representations 

 Percent of students in each intervention group using strategy 
────────────────────────────────── 

Strategy PM VM CM 

Vertical partitions 40.0 33.3 78.6 

Crossed partitions 60.0 66.6 21.4 
Note. N = 43. 
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 In summary, three variations in strategies were identified. For the comparison of 

grouping strategies, the variations among groups corresponded to differences in the use 

of manipulatives. In this comparison and in the comparison of partitioning pizzas, more 

of the CM students tended to use more complex and creative strategies. For the strategies 

used to partition a rectangle, the VM and PM groups both tended to use more complex 

strategies.  

 
Research Subquestion 1(e): Variations in Representations 

 
 Research subquestion 1(e) was: Are there variations in the types of 

representations used by students and in the connections students make among 

representational models. Two sources were examined for variations in representations: 

the EFT and lesson artifacts. No variations within the lesson artifacts were identified. 

Two post EFT open response questions were coded to compare whether students 

explained their solutions using pictorial or symbolic representations. Again, the variances 

identified were too small to be meaningful.  

 The responses to questions on the pre and post EFT were examined to determine 

if the gain in the percent of correct responses varied according to whether questions used 

region, set, or symbolic-only representations. Each EFT test contained nine region, six set 

and five symbolic-only questions. Except for the values of the fractions, the wording and 

pictures on the pre and posttest questions were identical. The gain from pre to posttest in 

the percent of students responding correctly was calculated and averaged for each type of 

representation (see Table 37). For region representation questions, the percent of gain  
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Table 37 

Average Gain for Representational Types of EFT Questions 

  Gain of correct responses for each model 
──────────────────────── 

Intervention type N Region Set Symbolic 

PM 15 28.15 41.11 44.00 

VM 14 30.16 20.24 54.29 

CM 14 30.16 30.95 38.57 
Note. N = 43. 

 

was similar for all three intervention groups. For questions using set representations, the 

PM group had the highest gain, while for questions using symbolic-only representations 

the VM group had the greatest gains. 

 Because analyses of variations of individual questions for three of the clusters 

identified large differences related to the type of representation, the differences in gain 

were compared for the five equivalent clusters in Table 38. Eight cases, in which the gain 

in representation type between manipulative groups differed by more than 20% were 

identified. For the clusters of identifying and solving each type of representation had one 

manipulative intervention for which the gain was greater than 20% and the type of 

manipulative intervention with the highest gain was different for each representation. For 

identifying, the interventions with the greatest gains were: PM for the region, CM for the 

set, and VM for the symbolic only representations. For solving, the interventions with the 

greatest gains were: CM for the region, PM for the set, and VM for the symbolic only 

representations. These differences indicate that for these two clusters, there may be a 

relationship between the type of problems, the manipulative used and the gain in 

achievement. 
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Table 38 

Cluster Gains by Types of Representations and Intervention 

 Region percent gain 
────────────── 

Set percent gain 
───────────── 

Symbolic percent gain 
────────────── 

Variable PM VM CM PM VM CM PM VM CM 

Modeling 33.3 35.7 32.1 30.0 32.1 21.3 X X X  

Identifying 30.0a 10.7 3.57 13.3 -7.14 35.7a 33.3 57.1a 21.4 

Grouping 13.3 39.2a 21.4 X X X 40.0 46.4 32.1 

Solving 53.3 42.8 78.6a 63.3a 28.6 39.3 60.0 78.6a 57.6 

Simplifying 23.3 28.6 39.3 46.7a 7.14 28.6 46.7 42.8 50.0 
a Differences greater than 20.0%, X- there were no question of this representation type. 
 
 
 
 In summary, although analyses were made to identify variations in representations 

in students’ written responses of the EFT and lesson artifacts, none were identified. 

Analyses of the representations used in EFT questions and gains indicated that more 

students of the PM intervention groups tended to answer set model questions correctly 

than students in the other two groups, and more students in the VM intervention group 

tended to answer symbolic only questions correctly than students in the other two groups. 

Analyses of intervention type, equivalent fraction clusters, and the type of representation 

of the questions indicated that for the clusters of identifying and solving there may be 

relationships between students’ gains and the type of manipulative used for each 

representation. 

. 

. 
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CHAPTER V 

DISCUSSION 

 
 This study focused on the use of physical and virtual manipulatives when used in 

the development of equivalent fraction understandings for students with mathematical 

learning difficulties during intervention. Effective intervention is a unique blending of 

student characteristics, intervention goals, mathematical content and the appropriate 

instructional environment. To design and teach effective intervention, teachers and 

curriculum designers need an understanding of the effective use of manipulative tools. As 

with the use of any tool, manipulatives (physical or virtual) are used most effectively 

when the user has an understanding of the affordances of the tool. A craftsman is able to 

use a variety of tools, sometimes selecting a specific tool for one job, sometimes using 

the tools interchangeably. Likewise, if a teacher or curriculum designer of intervention 

has an understanding of how the use of physical and virtual manipulatives affects student 

learning they are then able to make decisions that will maximize the effectiveness of how 

the tools are used during teaching and learning interactions with children. To make these 

decisions, teachers and designers need to know which manipulative affordances are most 

effective for instruction of each mathematics concept. They need an understanding of 

how virtual and physical manipulatives instruction differs and how best to use the 

manipulatives interchangeably. Because research investigating the use of manipulatives 

in intervention settings is limited, one goal of this study was to identify variations in 

student learning related to the types of manipulatives used during mathematics 

intervention instruction. 
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The purpose of this study was to identify variations in student learning related to 

the use of physical and virtual manipulatives when manipulatives were used in the 

intervention instruction of equivalent fraction concepts. This discussion of the results has 

five sections. The first section contains a summary and discussion of the identified 

variations in learning in relation to the study’s research questions. The second section 

will describe three trends that emerged from the identification of variations. Section three 

contains implications of the findings for intervention instruction. Sections four and five 

contain the limitations of the study and ideas for future research, respectively.  

 
Identified Variations in Learning in Relation to Research Questions 

 
 One research question with five subquestions guided this study. The main 

research question was: What variations occur in the learning trajectories of students with 

mathematical learning difficulties that are unique to the use of different instructional 

manipulatives for intervention (virtual, physical or a combination of virtual and physical 

manipulatives) in the learning of equivalent fraction concepts? The variations identified 

in relation to each of the five subquestions are summarized in the following section. 

 
Subquestion 1(a). Variations in Achievement 

Subquestion1(a) was: What are the variations of achievement, mastery, retention, 

and resolutions of errors in students’ development of equivalent fraction concepts and 

skills? Data from the EFT, DCA, and error analyses of lesson artifacts were analyzed and 

synthesized to identify variations at the total test, concept clusters and basic fraction 

concepts levels. These findings are summarized in Table 39 highlighting the intervention  
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Table 39 

Summary of Achievement Findings 

Concept Source Favored Magnitude Growth/resolution 

Total Test EFT PM small comparisons  

 DCA CM moderate comparisons CM greatest growth rate 

Modeling EFT CM small comparisons  

 DCA-Q6 CM moderate to small VM and CM greatest growth 
rate 

Identifying EFT PM moderate comparisons  

Grouping EFT VM moderate comparison  

 DCA-Q7 PM moderate comparison PM greatest growth rate 

Solving EFT PM large to moderate   

Simplifying EFT CM moderate comparisons  

 DCA-Q8 PM moderate comparisons PM and CM greatest growth rate 

 Misc 4 PM  PM greatest slope of resolution 

Naming     

Labeling Misc 3 PM  PM greatest slope of resolution 

Models DCA-Q1 CM large comparisons CM greatest growth rate 

Partitioning DCA-Q5 VM large to small VM greatest growth rate 

Evaluating     

Comparing DCA-Q2  not effective  

  Misc 1 CM  CM greatest slope of resolution 

Ordering DCA-Q3 PM   

Developing DCA-Q4  not effective  

Equivalence     

Meaning Misc 5 VM  VM greatest slope of resolution 

Area EFT-17 PM 
CM 

20% difference in gain 
20% difference in 
incorrect responses 

 

Part/Whole Misc 6 PM  PM greatest slope of resolution 

Multiplicative 
thinking 

Misc 2 VM  VM greatest slope of resolution 

Note. Misc = Misconception. 

 

strategy (PM, VM, or CM in the column labeled “Favored”) with the greatest growth or 

resolution for each mathematics concept. 

Total test. Total test findings on both the EFT and DCA suggest that the PM, 

VM, and CM interventions were all effective in increasing students’ fractions 
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achievement scores. The EFT assessed equivalent fraction understanding and comparison 

of EFT gains yielded small effect sizes favoring PM intervention when compared to VM 

and CM interventions. This indicates that differences in the effectiveness of instruction 

among the three interventions were minimal. In contrast, the DCA assessed both general 

fraction understanding and equivalent fraction skills and comparison of DCA gains 

yielded moderate effect sizes favoring CM intervention when compared to PM and VM 

interventions. However, analysis of the DCA scatter plots suggested that the VM 

students’ rate of growth was greater than those of the CM and PM students. Analysis of 

the DCA trend line indicated that the VM group’s DCA total test scores, in contrast to the 

steady growth of the CM and PM students, initially decreased, remained low for the first 

five lessons and then steadily increased for the remaining lessons. This indicates that, 

although the gains were similar for the three interventions, the pattern of growth varied. 

Three possible explanations for the variances observed in the VM group were considered: 

(a) Initially VM students’ unique interactions with the virtual manipulative applets 

limited their focus on learning the mathematical concepts (e.g., demands of learning to 

manipulate the VMs or students’ focus on VM features limiting their focus on 

mathematical concepts); (b) Unique affordances of the VM applets, such as simultaneous 

linking of symbolic to pictorial representations, required multiple experiences before the 

effects of the affordances could be observed in measurable student growth; and (c) The 

initial slower growth of the VM group could be due to differences in the ability of the 

students. Although, the three intervention groups pretest scores were not statistically 

different, the averaged VM students’ scores on the pretests of both the EFT and the DCA 
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were numerically lower than the averaged scores of the PM and CM groups. If the initial 

variation was due to differences in ability, the results would indicate that the VM 

intervention was successful in decreasing the influence of the differences in abilities. To 

obtain a more complete picture of differences among manipulative intervention types, 

results of the EFT and DCA were analyzed at the cluster and concept levels. 

Five concept clusters. A review of the literature identified five sub concept 

clusters of equivalent fraction understanding: modeling, identifying, grouping, solving 

and simplifying. EFT, DCA and error analyses data were synthesized to identify 

variations at the cluster level. Because the EFT was previously piloted and analyzed for 

validity and because it assessed a wider range of questions, for this discussion, favoring 

of manipulatives for the concepts with mixed results will give preference to the EFT 

results. Thus, analyses of data indicated advantages of PM intervention for the two 

clusters of identifying and solving, CM intervention for the two clusters of modeling and 

simplifying, and VM intervention for the grouping cluster. The reason for this variance 

may be attributed to specific interactions between manipulative affordances and the 

development of concepts necessary for cluster mastery. For example, it may be that the 

processes of physically partitioning the physical fraction squares focused students’ 

attention on partitioning fractions into two and three parts, developing their ability to 

identify equivalent fractions developed by doubling or tripling the numerator and 

denominators. Potential interactions are described in the second section of this chapter. 

Basic fraction concepts. From a review of the literature and the qualitative 

analysis of this study, three basic fraction concepts with ten sub concepts were identified. 
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The three basic concepts were: naming fractions, evaluating fraction value, and 

equivalence thinking. 

The basic fraction concept of naming fractions had three sub concepts: labeling 

fractions, partitioning and building models. For the sub concept of labeling fractions, 

scatter plot analysis indicated that PM students had the greatest rate of reduction of 

labeling errors. For the sub concept of partitioning, comparisons of DCA gains favored 

VM intervention. For the sub concept of building models, comparison of DCA gains 

favored CM intervention. Thus, for the basic skill of naming fractions, analyses 

suggested that there were advantages for the use of a different manipulative for each of 

the three sub concepts. These results suggest that the use of physical manipulatives tends 

to limit the errors students make in labeling fractions; the use of virtual manipulatives 

tends to encourage their development of partitioning skills; and, the use of both 

manipulatives best supports students in developing modeling concepts. The selection of 

the manipulative should match the focus of the lesson; labeling fractions, partitioning or 

modeling. 

The basic fraction concept of evaluating fraction values had three sub concepts: 

comparing, ordering and developing. The results of the DCA gains suggest that 

intervention was effective only for the sub concept of ordering fractions on number lines. 

The results favored PM intervention, but the rate of growth for all three interventions was 

low. Because the instructional methods for evaluating fractions were not effective, the 

current results may not be accurate determiners of manipulative effectiveness for the 

evaluating fraction value concepts.  
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Although the intervention instruction was not effective for the development of the 

comparing fraction concept, scatter plot analyses indicated that the intervention was 

effective for the resolution of students’ misconception of using whole number thinking 

when comparing fractions. CM and PM students had the greater rates of error reduction. 

The results suggest that while all three interventions effectively resolved inappropriate 

whole number thinking, the students developed other incorrect methods for evaluating 

fractions which were not detected or measured in the analysis. This limits the 

effectiveness of comparing effects of the three types of intervention.  

For the basic fraction concept of equivalence thinking, four sub concepts were 

identified: meaning of equivalence, comparison of area, conservation of part-whole 

relationships and multiplicative thinking. Except for comparison of area, none of the 

testing instruments specifically measured equivalence thinking, therefore data for this 

concept came mainly from error analysis. Analysis indicated the PM group had the 

greatest rate of error resolution for the conservation of part–whole relationship errors and 

the gain of the PM group was more than the gains of the VM and CM groups for an 

equivalent fraction test question assessing students’ comparison of area ability. The VM 

group had the greatest rate of error resolution for meaning of equivalence and for the 

resolution of the error of using additive instead of multiplicative thinking. These results 

indicate that there were advantages for using PM intervention for the development of the 

basic understanding that two equivalent fractions name the same amount of area. It may 

be that students benefit from the ability to physically manipulate the fraction objects 

when developing the basic understandings of equivalence. For the development of the 



 171 
 

  

more abstract concept of multiplicative thinking and for the resolution of equivalency 

misconceptions, results indicate advantages to the VM intervention. A possible 

explanation is that this reflects the virtual manipulative affordances of simultaneous 

linking of pictorial to multiple symbolic representations which supported students in their 

development of internal visualizations. It could also be that the ease with which students 

using the virtual manipulative applets in this study could produce a variety of equivalent 

fractions for the same area may have influenced their ability to apply the concepts of 

equivalency to a larger variety of situations. When using physical manipulatives, the 

partitioning of fractions is typically limited to equivalent fractions that are doubled or 

tripled the original fraction, whereas those using virtual manipulatives tended to develop 

a broader range of equivalent fractions. Although it is possible to develop doubled and 

tripled equivalent fractions using additive thinking (e.g., For two fractions equivalent to 

ଵ

ଶ
, the numerators equal 1+1 and 2+1, and the denominators equal 2+2 and 4+2), 

multiplicative thinking is needed to develop groups of equivalent fractions that do not 

follow the double/triple pattern. 

In summary, although total test EFT analyses, favored PM intervention and DCA 

analyses favored CM intervention, at the cluster and basic fraction concept levels, 

thirteen variations were identified. Figure 53 illustrates these variations using the iceberg 

model. These variations suggest that decisions of which manipulative to use when 

providing intervention instruction varies for each specific concept. Although there are 

curriculum, decisions about which manipulative to use for maximum effectiveness tended 

to vary in this group of students for each specific concept and sub concept. The demands 
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intervention lessons were identified: (a) During the first five intervention lessons, the VM 

groups tended to score lower than the PM and CM intervention groups; (b) During the 

final five intervention lessons, the differences among intervention groups tended to 

decrease; (c) More students of the PM and CM interventions mastered the DCA concepts 

than did VM students; (d) All student errors, except for Misconception 6 (Incorrect 

Equivalent Sentences) tended to be resolved by most of the students by the final sessions; 

and (e) The VM groups tended to have the highest rates of resolution, but they also 

tended to make more errors. A summary of the results for this question suggests that, for 

this group of students, the VM group trajectory of growth differed from that of the other 

two groups. But by the final lesson, VM students’ scores and their resolution of errors 

tended to be similar to those of the other groups. As explained earlier, three possible 

explanations for the VM group’s initial lower growth rates are: the types of student 

interactions with the virtual manipulative; the need for multiple experiences; and, 

differences in the abilities of students in each group. What is important for the 

development of intervention instruction is the pattern that the effectiveness of the VM 

intervention appeared to increase over time. This trend was reported by findings of 

Moyer-Packenham and colleagues’ (2012) meta-analysis, that studies of longer duration 

tended to have higher effect size scores than those of shorter duration. What is not known 

from the present study is, if the intervention had continued, would further growth be 

similar to that of the other two interventions, or would VM students’ growth continue to 

increase going beyond that of the other two groups?  
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Subquestion 1(c). Lesson Variations 

Subquestion 1(c) was: What are the variations in patterns of daily lesson 

achievement, retention, and work completion? The variations identified are summarized 

in Table 40. Analyses for subquestion 1(c) focused on the identification of variations 

within the lessons by examining lesson concept retention, lesson concept understanding 

and the amount of work completed within lessons.  

LPA assessed concept retention and LCA assessed concept development. 

Comparisons of the LPA and LCA scores and line plots indicated that although the scores 

of VM groups tended to be slightly lower, the trajectories of all three interventions were 

similar. The comparisons of the number of explore problems completed by the 

intervention groups also yielded trajectories with little variation among groups. These 

comparisons suggested that the concepts learned and retained and the amount of work 

completed were basically the same for all three intervention groups. Although the  

 
Table 40 

Summary of Processes of Learning Variations 

Topic Source Favored  Finding 

lesson concepts  LCA PM and CM  consistently higher than VM 

lesson retention  LPA PM and CM  Consistently higher than VM 

explore problems Lesson artifacts None Small effect size  

practice problems Lesson artifacts None Small effect size 

Strategies    

 Grouping Lesson artifacts VM and CM  More complex ,greater variety 

 Fair shares DCA CM  More complex  

 Partitions EFT CM More complex 

 Representations EFT 
EFT 

VM 
PM  

Symbolic only 
Set models 

 Misconception 7 VM Less set model errors 
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analysis did not identify specific variations, the findings do support the premise that the 

instructional processes and students’ opportunity to learn was basically the same for all 

three groups. In contrast, variations were identified in the number of practice problems 

completed. Three variations were identified, each which reflected the use of specific 

manipulative affordances. Two of these variations will be further discussed in a 

subsequent section of the discussion. The results of this question show that during the 

concept building (the explore phase of the lessons in this study) the amount of work 

students completed and students’ understanding and retention of the specific concepts 

taught in these lessons were not dependent upon the type of manipulative intervention. 

However, the number of practice problems completed did vary according to concept and 

the manipulative objects or applets being used. This suggests that when planning practice 

activities, each activity should be examined to determine the most effective type of 

intervention. 

 
Subquestion 1(d): Variations in Strategies 

Subquestion 1(d) was: What are the variations in the strategies developed and 

used by students? Although the structure of the lessons and activities of the study were of 

a nature that did not encourage many variations in students’ strategies, three variations 

were identified. In two incidences, partitioning pizzas and building equivalent groups, the 

CM groups tended to use a greater variety and more complex strategies than those used 

by the PM and VM groups. In the third variation, partitioning, the PM and VM groups 

used the more complex strategy. The results on strategy variations seem to indicate that 

CM intervention tended to encourage a greater variety of strategies and more complex 
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thinking. It may be that the process of switching from one manipulative to another 

manipulative encouraged CM intervention students to observe and compare mathematical 

processes and understandings in a broader and more complex manner than those students 

exposed to only one type of manipulative. However, there are some situations in which 

the use of only one representation appears to lead students to the development of more 

complex strategies (e.g., partitioning, in this study). This suggests that selecting which 

manipulative to use requires an understanding of the four factors of the intervention 

process: student characteristics, intervention goals, mathematical content, and the 

affordances of the manipulatives. 

 
Subquestion 1(e) 

Subquestion1(e) was: What are the variations in students’ use of representations? 

An analysis of the representations used in questions on the EFT indentified variations 

related to manipulative types. For questions using set model representations, the PM 

groups had the greatest gains. For questions using symbolic-only representations, the VM 

groups had the greatest gains. Gains for questions using region models were similar for 

all three groups.  

 Another identified variation in representations was the tendency of the PM and 

CM groups, during the three days of set model instruction, to make almost five times 

more set model errors each day than were made by the VM groups. Yet, when set model 

questions of the EFT were compared for intervention differences, the VM group 

consistently scored lower than the PM and CM groups. The VM group made twice the 

number of set model errors on the EFT as did the CM and PM groups. This suggests that 
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the virtual manipulative applet constrained the making of errors, but it appears this 

limited learning. The increased number of errors made by the CM and PM groups may 

have encouraged more reflection about their understandings.  

In summary, although lesson processes were similar for all three intervention 

groups, variations related to manipulative use were identified for 13 of the 15 clusters and 

sub concepts. Intervention was ineffective for the other two sub concepts. Analyses of 

growth trajectories suggested that variations in the scores of achievement, among the 

intervention groups, tended to decrease over time. Variations in the number of practice 

problems completed appeared to be related to features of the manipulatives being used. 

Variations related to the type of manipulatives and the complexities of three types of 

student strategies were identified and an analysis of EFT gains in relation to type of 

representations indicated that PM groups had the greatest gains on questions using set 

models while VM had the greatest gains on questions using symbols only. The 

importance of these results for the instructional intervention of equivalent fractions, is 

that the three types of manipulatives are effective instructional tools. Yet there are 

variations among the intervention types related to students’ learning of specific concepts, 

number of practice problems completed, and the strategies and representations used by 

the students. Understandings of these variations can guide curriculum designers and 

implementers in their selection of manipulatives. 

 
Trends 

 
 Once variations have been identified, the next step is to develop a deeper 
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which students could use a fraction equal to one (e.g., 
ଶ

ଶ
 ) to determine if two fractions 

were equivalent (identifying) or to complete an equivalent fraction sentence (solving). 

These concepts are built upon the general fraction knowledge concepts and skills of 

comparing area of two fractions conserving the part whole relationship. Three possible 

explanations for these findings are: tangibility, familiarity, or interactive affordances. 

Tangibility. Several authors have suggested that students should use physical 

manipulatives when learning new mathematics concepts (Hunt, Nipper, & Nash, 2011; 

Swan & Marshall, 2010; Takahashi, 2002). This is built upon the theory that when 

learning new concepts, students learn best when they can tactilely explore the concrete 

objects (McNeil & Jarvin, 2007). The students’ early experiences manipulating the 

physical objects becomes the basis for later conceptual learning (Skemp, 1987). Theories 

of embodiment suggest that body movement and sensory input plays an important role in 

the development of mathematical ideas (Lakoff & Nunez, 2000). Martin and Schwartz’s 

(2005) theory of physically distributed learning suggests that students’ ideas are 

developed and challenged as they physically interact with the manipulatives. Identifying 

and solving are the basic concepts of equivalent fraction understanding. It may be that in 

forming these basic ideas there were advantages in the students manipulating tangible 

three dimensional objects as compared to the virtual objects. 

Familiarity. Students develop at an early age an understanding of how physical 

objects can be manipulated, making the offloading of memory and the processes of 

cognition easier (Manches, O’Malley, & Benford, 2010). The use of manipulatives is 

most effective when the learner is thinking, not so much about the tool, as about the 
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mathematical concept (Boulton-Lewis, 1998). If a manipulative is too interesting, it 

becomes less likely that the students will be able to think of the manipulative as a 

representation of something else (Uttal, Scudder, DeLoache, 1997). Both fraction circles 

and fraction squares are simple objects and students quickly became familiar with them.  

In contrast, the virtual tools used in the study were new to the students and 

initially the students had to focus, not only on the mathematical concepts, but also on 

learning to manipulate the virtual objects. Several authors have expressed concern that 

the additional load of computer manipulation may initially limit the learning of 

mathematical concepts (Baturo et al., 2003; Haistings, 2009; Highfield & Mulligan, 

2007; Izydorczak, 2003; Takahashi, 2002). Cognitive load theory suggests that a person’s 

working memory is limited to five to nine items at a time and that once the limit is 

reached, the person is limited in their ability to retain new information (Clark et al., 

2006). Thus the novelty of the virtual manipulatives may have initially limited the ability 

of the students to retain knowledge and could in part explain why the VM group tended, 

for the first five lessons, to have lower rates of growth than the PM group.  

Interactive affordances. Although both the tangibility and familiarity may in 

part explain why the use of the PM intervention was favored for the basic concepts of 

equivalency of two fractions, additional findings of this study suggest that a third effect, 

the effect of the type of interactions students had with the manipulatives, may have also 

had a large influence on student learning. Two examples of the effect of students 

interactions with the manipulatives will be given. 

During the practice phases of lessons 3 through 10, PM students used pipe 
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cleaners to partition fraction squares. As described in the results section, these students 

initially used the strategy of doubling and tripling fractions to develop equivalent 

fractions 94.4 % of the time. By lesson 6 many of the PM students were no longer using 

the manipulatives, suggesting that they had internalized the process of doubling and 

tripling. In contrast, the VM and CM students tended to initially use several different 

strategies and tended to continue to use the manipulatives tools for a longer duration. The 

virtual applet allowed the students to perform different types of interactions and to use 

different strategies whereas; the physical fraction squares limited students to only one 

strategy. By focusing the students’ attention to the use of the doubling and tripling 

strategy, the students became more proficient in its use. This is the basic concept strategy 

used in the concepts of identifying, solving, comparison of area and conservation of the 

part/whole relationship.  

The type of interactions students had with the different manipulatives may explain 

the advantage of physical manipulatives for teaching set models. When solving set model 

problems, PM and CM students using physical tokens tended to make five times more 

errors than VM students using virtual manipulatives. However, the PM and CM groups 

scored higher on EFT posttest questions which used set model representations. The errors 

made during the intervention were mistakes made as students moved the tokens to set up 

each of the set models problems. The students using virtual and physical tokens used the 

same procedure, except that the VM students cleared their screens after each problem and 

started each problem with new pieces. In contrast the PM students rearranged the tokens 

from the previous problem and in the process of regrouping the tokens they tended to 
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make more errors. It appears that through correcting their errors they developed a deeper 

understanding of set models. Martin and Schwartz (2005) reported similar findings, 

reporting that children performed better on posttests, when they physically rearranged the 

objects to find practice solutions than when the objects had been prearranged for them. 

The authors suggested that physically moving the pieces helped the children to let go of 

their previously held whole number understanding.  

These two examples suggest that the interaction of students with the affordances 

and constraints of each tools’ features can create, within the same type of activity, very 

different learning processes and that the variations can affect achievement. Olive and 

Labato’s (2008) results summarizing five projects involving the use of technology in 

teaching fraction concepts also described the importance of students’ interactions with 

the features of applets. 

The nature of what students learn about rational numbers appears to be related to 
the match between the affordances and constraints of the technology and the 
mental operations involved in constructing rational numbers; if such links are 
missing then a greater demand is placed on the teacher and the non-technology 
activities. (pp. 30-31) 
 
To effectively blend the use of physical and virtual manipulatives in intervention 

instruction, research describing interactions students have with the affordances and 

constraints of the manipulatives is needed.  

 
Virtual Manipulative Intervention 

Figure 55 summarizes the concepts favoring VM intervention. A possible link 

between the four concepts of equivalent grouping, meaning of equivalence, symbolic 

representations, and multiplicative thinking was identified, however, no suggestions were  
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connect abstract symbols of mathematics to representations (Baroody, 1989; Gersten et 

al., 2009). The continuous simultaneous linking of the virtual objects to the symbolic 

representations may explain why the VM groups tended to have the greater gains in 

solving symbolic only questions. The affordance of simultaneous linking between 

pictorial and symbolic representations has been similarly identified in other research 

studies (e.g., Baturo et al., 2003; Clements et al., 2001; Suh & Moyer-Packenham, 2008; 

Takahashi, 2002). 

Simultaneous linking may also explain the finding of analyses favoring the VM 

intervention for instruction of grouping. Since PM intervention was favored for concepts 

of equivalence of two fractions, it could be expected that PM intervention would have 

also been found to be favored for finding sets of three or more equivalent fractions. Yet, 

analysis of the EFT data indicated that the VM group had the greatest increase in gains on 

all four of the grouping questions. Several researchers have suggested that grouping is a 

difficult skill for students because it requires multiplicative thinking (Kamii & Clark, 

1995; Kent et al., 2002; Moss, 2005). Although the growth of multiplicative thinking was 

not measured directly, error analysis did indicate that VM students experienced the 

greatest reduction of the use of additive thinking in situations requiring multiplicative 

thinking. The higher grouping scores and greater reduction of additive thinking errors 

suggest that use of the virtual manipulatives encouraged multiplicative thinking with this 

group of students. It is hypothesized that there is a link between simultaneous linking, 

symbolic understanding, multiplicative thinking and grouping: (a) Simultaneous linking 

of symbols deepens students’ understanding of symbols and develops increased 
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Modeling questions differed from other questions of the EFT in that students were 

asked to identify and build models representing and unlike other questions of the test, 

none could be solved using only procedural skills. One possible explanation of why CM 

intervention was favored for modeling instruction is that the CM group, through exposure 

to multiple representations, may have developed a deeper conceptual understanding. 

During the practice phases of the lessons the CM and VM intervention groups found 

equivalent fractions using models in three different applets. During the explore phases the 

PM and CM groups used tokens and fraction circles. Each manipulative had distinct 

features. As students transferred learning from one model to another, the unique features 

of the new models both challenged students’ understandings and supported students in 

the development of new concepts (Kiczek, Maher, & Speiser, 2001). Friedlander and 

Taback (2001) found that presenting problems using different models increased students’ 

flexibility. Other studies report that as students interact with manipulatives, they 

experience visual proof of their solutions and build understanding of mathematical 

concepts (Durmus & Karakirik, 2006; Moyer et al., 2002, 2008). For this group of 

students, there were five findings which suggest that the CM group may have developed 

a deeper conceptual understanding of fractions than the other two groups. 

1. Effect size gain scores of the DCA favored CM intervention with moderate 

effect sizes when compared to VM and PM intervention.  

2. More CM students mastered the skills for four of the six DCA skills than did 

students of the other two groups. 

3.  Analyses of the misconception and error line plots indicated that the CM 
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groups had the least number of errors and the most complete resolution of errors for five 

of the seven misconceptions. 

4. Analysis of variations in strategies indicated that for two of the three 

variations, the CM groups used the more complex strategies. 

5. Of the five equivalent fraction clusters, simplifying requires the most complex 

understanding. Simplifying involves not only an understanding of partitioning to develop 

equivalency, but also the ability to reverse partitioning and an understanding of unit 

fractions. Results of the EFT simplifying cluster favored CM intervention. 

These results suggest that exposure to multiple representations may have 

encouraged students of the CM group to develop a deeper conceptual understanding, but 

further research is needed to determine if these variations were specific only to this group 

of students or if the trends will generalize to other groups of students. 

  
Implications 

 
 One goal of research is to inform practice. The use of the iceberg model to 

synthesize results of this study aggregated the findings into components which could be 

directly applied to classroom intervention. Trends indicated advantages for the use of a 

specific type of manipulative intervention. If further research shows that these trends 

generalize to other groups, this information can be used in planning curriculum.  

Findings suggest there may be advantages to using symbolic linking throughout 

the intervention process for the development of multiplicative thinking. The virtual 

fraction circles, all of the virtual applets used during the practice phases of these lessons, 
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and other web based fraction applets have the affordance of simultaneous linking.  

In the study, instances were identified when the use of a manipulative limited 

errors, but also limited the development of learning. In these instances the question for 

planning intervention instruction becomes how to balance the affordances of the 

manipulatives with their limitations. For example, when teaching set models, one method 

could be to start intervention instruction using virtual manipulative to limit errors while 

instruction focuses on the development of basic concepts. Then as students develop the 

concepts, physical manipulatives could be used for practicing the skills. Another method 

would be to start instruction using physical manipulatives while encouraging reflection 

and group discussion about any errors made. Then students could use the virtual 

manipulatives to practice the developed procedures. The most effective balance of 

manipulative use depends upon the students and the goals of the intervention.  

 
Limitations 

 
As with all studies, there were limitations that affect generalizing these data. The 

three main limitations were sample characteristics, ability differences and physical 

arrangements.  

The size of the intervention groups were small. When groups are of small size the 

variations in students’ abilities and characteristics have a more profound effect on 

comparison results. The small sample size also lessened the probability that the 

differences would be statistically significant. Also, all schools were located within one 

city and within one school district. All the schools used similar mathematics textbooks 
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and assessments meaning that the majority of the students probably had similar third and 

fourth grade fraction instruction. There may be understandings or student errors that are a 

result of similar textbook use. Also the population of this group of 43 students was a 

white middle class with limited diversity. It may be that findings would differ for more 

diverse student populations. Future studies could include populations from a variety of 

schools with a variety of population characteristics. 

Although the pretest scores of the three groups were not statistically different, 

there were numerical differences. The CM group scored higher on the EFT pretest and 

the PM group scored higher on the DCA pretest. Although most analyses compared gain 

scores, it is possible that, even though the pretest differences were small, differences in 

student’s abilities within each group may in part explain the variations identified in this 

study. 

Physical arrangements may also have been a contributing factor in the results. 

Seating arrangements for the three intervention groups were different. In all four schools, 

the computers were standalone PCs that were placed in straight lines. Students were 

limited in communication to the students sitting on each side of them. Also because the 

instructors moved from student to student, involvement in student teacher conversations 

was typically limited to one or two students. In contrast, students using physical 

manipulatives sat around a table, with the teacher at the center. These students had the 

benefit of hearing all student and teacher conversations and they had continual 

opportunities to compare their responses with those of others. Through the increased 

communications students may have been prompted to increased reflection about the 
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mathematical concepts, and may have experienced more times when their misconceptions 

were challenged.  

 
Future Research 

 
 This was a foundational study, developed to identify variations and to pilot 

methods of fraction intervention instruction. The most important extension of the study 

would be an expansion with a larger more diverse population. Because of the small 

number of participants in each intervention, a replication study could help determine if 

the results were unique to this population, or if the variations are common to the larger 

population.  

This intervention was designed as a preliminary intervention. The ultimate 

comparison of the affordances of the three types of intervention would be a measurement 

of how affordances affected the students’ learning of new fractional concepts in regular 

classroom settings. Future tracking could consist of follow up classroom observations in 

the regular classroom and the use of instruments designed to measure variations in 

learning concepts taught in the classroom.  

 This study did not focus on the motivation or the attitude variations related to 

manipulative type. Yet, these are important factors of learning. Future research could also 

develop instruments to measure affective variations as well as achievement variations. 

 The main purpose of this study was to identify variations in student learning 

related to the type of manipulative used. The next step, after identifying variations is to 

develop understanding of how the affordances of manipulatives specifically influence 
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student thinking. For example, at what point does a student change from additive thinking 

to multiplicative thinking and how does the use of a manipulative influence this change. 

 Another purpose of this study was to pilot the use of two types of learning 

trajectories in research comparing manipulative types. Both the iceberg and the line plot 

trajectories were used to identify variations. The iceberg model was used as a tool to 

identify components of equivalent fraction understanding and to synthesize the findings 

of the study. The line plot trajectories were used to compare the effects of manipulative 

use over time. The use of trajectories to identify the student achievement of the learning 

components and to track variations in learning present a picture of student learning. The 

trajectories developed in this study could be compared with similar trajectories developed 

for students without mathematical learning difficulties. Comparisons of the rate and 

direction in the trajectories of learning development and the occurrences and resolution of 

misconceptions could deepen our understandings of how students with fraction learning 

difficulties differ from students who do not experience difficulties in both rate and kind 

of learning. Knowing this would make it possible to determine if the students need 

different types of instruction or if they require only more learning experiences. 

  
Conclusion 

 
The question of which manipulative is the most effective, virtual or physical, has 

been researched in more than 30 studies. A recent meta-analysis of the studies examining 

this comparison indicated that the difference between physical and virtual manipulatives’ 

effectiveness for increasing student achievement produced small effects favoring 
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instruction with virtual manipulatives (Moyer-Packenham et al., 2012). The present study 

was built on the premise that the effectiveness of the manipulative type depends on many 

factors, including the characteristics of the domain, learner, environment and goals of the 

intervention. In this study, the results of the total equivalent fraction test, favored the use 

of PM intervention, suggesting that physical manipulatives were the best manipulative for 

teaching these students many concepts of equivalent fractions. Yet, theoretically, if the 

use of one manipulative was best for all aspects of equivalent fraction instruction, then 

the analyses of the sub concepts of equivalent fractions should consistently favor the use 

of physical manipulatives. But analyses of the equivalent fraction test subconcepts 

favored VM intervention for the concepts for grouping, PM intervention for the concepts 

of identifying and solving, and CM intervention for the concepts of modeling and 

simplifying. One explanation for these variations is that, the learning characteristics of the 

students in the three intervention groups differed and that the students in each 

intervention group would have experienced higher gains in the identified sub concepts 

regardless of which manipulative they used. Another explanation is that the effectiveness 

of the unique affordances of the manipulatives vary according to the sub concepts and 

that the most effective equivalent fraction instruction would utilize both physical and 

virtual manipulatives in a manner that takes advantage of the manipulative affordances 

unique to each topic and situation. The findings of this study support the second 

explanation. Through the use of two types of learning trajectories, qualitative data and 

quantitative data were synthesized to identify variations in the learning of equivalent 

fractions in the intervention setting. From the literature and data collected in this study, 



 193 
 

  

the iceberg model of equivalent fraction learning was developed. For the 15 subconcepts 

identified in the model, 13 variations suggesting advantages for the use of a specific 

manipulative were identified.  

From analyses of lesson data, variations in the learning processes of the students 

were identified. The data includes descriptions of the interactions of students with 

manipulative features throughout a series of ten practice sessions. The descriptions 

illustrate how variations in students’ learning processes are a reflection of students’ 

interactions with the manipulatives. Some types of interactions appeared to encourage 

exploration while others appeared to encourage the development of procedural abilities. 

Some interactions prevented errors while others encouraged reflection on errors. These 

types of variations are important for designing and implementing intervention instruction. 

Three variations in students’ strategies related to manipulative type were 

identified. The degree of creativity and complexity of the strategies varied according to 

the types of manipulatives used. Variations in students’ use of representations were also 

identified. Students using physical manipulatives tended to score higher on questions 

using set model representations. Students using virtual manipulatives tended to score 

higher on questions using symbolic only representations.  

The variations and trends identified in this study point to the complicated issues 

instructors and curriculum developers must consider when developing intervention 

instruction. Each intervention setting is a unique blend of goals, environment, content and 

students. Effective mathematics intervention requires knowledge of each of the factors. 

An important goal of future research is the development of knowledge supporting 
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intervention instruction. An increased understanding of the use of physical and virtual 

manipulatives in intervention instruction is one step in developing the knowledge needed. 
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Appendix B 

Physical Manipulative and Applet Comparisons
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Table B1 

Similarities and Differences of Fraction Circle and Virtual Fraction Circles 

Variable Tool similarities Distinct attributes 

Learning structure Open structure with no student 
guidance 

 

Representation links  PM: None 
VM: Optional pictorial/symbolic link 

Model type Region: Circles  

Feedback None  

Affordances  PM: Flexibility of movement 
VM: Colors can be changed 
 -  No limit to the amount of pieces 
 -  Objects designed can be lassoed 

and  become fixed 
 - Region unit grabbing 

Constraints Preselected sizes  

Distracters  PM: None 
VM: Region unit grabbing 
 Optional symbolic link 

 

 

Table B2 

Similarities and Differences of Chips and Pattern Blocks 

Variable Tool similarities Distinct attributes 

Structure type Open structure with no student 
guidance 

 

Representation links None  

Model type Set  

Feedback None  

Affordances  PM: None 
VM: Pieces click together 
 - Groups can be lassoed 
 - Groups can be cloned 

Constraints None  

Distracters Students must conceptualize 
the whole 
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Table B3 

Similarities and Differences of Physical Manipulatives and Virtual Manipulatives Used 
in Practice Phases of Lessons 
 

Variable Tool similarities  Distinct attributes 

Structure type  PM: Open structure with no student  
guidance 

VM: Guided structure 

Representation links  PM: None 
VM: Pictorial/symbolic 

Feedback  PM: None 
VM: Correct/incorrect 

Model type  PM: Circle and square regions 
VM: Circle and square regions and 

number line models 

Affordances  
 

PM: None 
VM: Partitioning accuracy 
 - Will partition up to 99 sections 

Constraints Fraction piece sizes limited to 
one size 

PM: None 
VM: Can partition only one direction 

Distracters  PM: None 
VM: Multiple partitions are viewed 
  - Equivalent partitions are viewed 

on one shape 
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Appendix C 

Equivalent Fraction Tests
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Table C1 

Pre/Post/Delayed Test Question Types 

Content Representation level Type Representation type 

Modeling equivalence 4 Pictorial 2 multiple choice 
 
2 open response 

1 Region and 1 Set 
 
2 Region 

Evaluating equivalence 3 Pictorial 
 
 
 
1 Symbolic only 

1 multiple choice 
1 matching 
1 open response 
 
1 multiple choice 

1 Region 
1 Region 
1 Set 
 
 

Building equivalent 
groups 

2 Pictorial 
 
 
2 Symbolic only 

1 multiple choice 
1 open response 
 
1 multiple choice 
1 open response 

1 Set 
1 Region 
 
 

Completing equivalent 
sentences 

2 Pictorial 
 
 
2 Symbolic only 

1 multiple choice 
1 open response 
 
2 short answer 

1 Region 
1 Set 
 

Simplifying fractions 2 Pictorial 
 
 
2 Symbolic only 

1 multiple choice 
1 open response 
 
2 short answer 

1 Set 
1 Region 
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Instructor’s Log 
Date________________________  Instructor________________________ 
Lesson _____________________ 
 
 Time Lesson Activity Notes 
 
 
 
 

Pre Assessment 
 

 

 
 
 
 

Explore  

 
 
 
 

Apply  

 Practice Session Applet:  

 
 
 
 

Lesson Assessment  

 
Student 

    

PreAssess 1 
 

    

PreAssess 2 
 

    

Practice  
Problems Correct/ 
Problems 
Attempted 

    

Lesson Assess 1 
 

    

Lesson Assess 2 
 

    

Lesson Assess 3 
 

    

Ideas or concerns for next session 
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Appendix G 

Daily Cumulative Assessment Scoring Rubric
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Daily Cumulative Assessment Scoring Rubric 

 

Question 1 

6  Correct number even distribution 

5  Correct number uneven distribution 

4  Correct partition but not shaded 

3 One extra line 

2 Numerator x denominator 

1 other 

0 No response 

Question 2 

6  Largest fraction - correct number line order  

5  Largest fraction –incorrect number line 

4  Second fraction –correct number line 

3  Second fraction –incorrect number line 

2  Lowest fraction- correct number line 

1  Lowest fraction – incorrect number line or blank and correct number line 

0 No response 

Question 3 

Centimeter distance from correct location 

6  0-2 

5  2.1-4 
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4 4.1-6 

3 6.1-8 

2 8.1-10 

1  Greater than 10.1 

0 No response 

Question 4 

Fraction between correct 

1   Yes it is between 

0  No it is not between or no response 

Question 5 

6  Model and answer correct 

5  Model correct answer missing or incorrect 

4  Correct number of pizzas -wrong partition or correct partition but wrong number  

 of  pizzas 

3  Drew correct number of pizzas no partition or correct answer with no picture 

2  Drew only one pizza correct partition 

1  Drew only one pizza incorrect partition or drew wrong number of pizzas  

0 No response 

Question 6 

6 Correct 

5  Identified lowest but incorrectly counted or used equivalent not in picture 

4  Identified highest but gave other equivalent 



250 
 

  

3  Identified highest but gave non equivalent 

2  Identified shaded and non-shaded or flip flopped 

1  Other non-related fractions 

0 No response 

Question 7 

6  Correct 

5  Three correct fractions – doubled all 

4  Two correct fractions 

2  One correct fraction 

1 All fractions incorrect 

0 No response 

Question 8 

4  Correct 

3  Partial simplification 

2  Higher Equivalent  

1  Other 

0 No Response 
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Coding of Errors 

 

1. Multiply N/D differently 

Multiplies the numerator and the denominator by different numbers to find 

equivalent fractions. 

2. Adds N/D within 

Adds or subtracts the numerator and denominator with in a fraction 

3. Adds or subtraction numerators or denominators between fractions to determine 

equivalence 

4. Adds same number to N and D to get equivalent fractions 

e.g., ¾ = 7/8 because you add 4 to both the numerator and denominator 

5. Operates only with N or D 

6. Performs an operation on only the numerator or denominator when finding 

equivalent fractions 

7. Model N + D as the whole 

When modeling the whole they make the number of partitions or sets 

corresponding to the numerator and denominator added together 

Coding of Misconceptions 

1. Whole number dominance 

Size of the fraction is related to size of the numbers making up the fraction 

2. Additive thinking 

Adding instead of multiplying when developing equivalent fractions, e. b. ½, 2/4, 
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Appendix J 
 

One Way ANOVAs
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Table J1 

One-Way ANOVAs 

Source df f p 

EFT-Pre/Post 2 0.467 .631 

Modeling 2 0.139 .871 

Identifying 2 0.355 .703 

Grouping 2 0.909 .411 

Solving 2 2.382 .105 

Simplifying 2 1.078 .350 

EFT – Post/Delay 2 0.014 .986 

Modeling 2 0.152 .859 

Identifying 2 0.793 .459 

Grouping 2 1.524 .231 

Solving 2 0.289 .750 

Simplifying 2 1.200 .312 

DCA Total 2 2.207 .123 

DCA Q1 2 1.085 .347 

DCA Q2 2 1.021 .369 

DCA Q3 2 1.977 .152 

DCA Q4 2 1.327 .277 

DCA Q5 2 3.870 .029 

DCA Q6 2 0.860 .431 

DCA Q7 2 1.200 .312 

DCA Q8 2 0.941 .399 

LCA 2 1.690 0.197 

LPA 2 0.926 .410 

N of Explore Problems 2 0.134 .875 

N of Practice Problems 2 0.051 .951 

Note. N = 43. 
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Appendix K 
 

Analyses of Equivalent Fraction Test 
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Table K1 

Comparison of Overall EFTs Results 

 EFT pretest 
─────────── 

EFT posttest 
─────────── 

Pre to post 
─────────────────── 

Intervention type M SD M SD df t p Cohen’s d 

PM 26.47 10.74 66.73 17.39 14 11.74 0.00 0.79 

VM 25.07 8.72 59.79 22.57 13 6.65 0.00 2.03 

CM 32.36 13.51 67.93 21.57 13 7.79 0.00 1.98 

Note. N = 43. 

 

Table K2 

Comparison of Equivalent Fraction Concept Test Results 

 EFT pretest 
─────────── 

EFT posttest 
─────────── 

Pre to post 
─────────────────── 

Intervention type M SD M SD df t p Cohen d 

Modeling          

PM 7.00 3.48 12.87 5.48 14 3.12 0.01 1.22 

VM 5.21 4.56 12.07 5.64 13 4.62 0.00 1.34 

CM 4.50 1.91 10.29 5.3 13 4.21 0.00 1.45 

Identifying         

PM 6.60 5.54 12.00 4.93 14 2.40 0.03 1.03 

VM 6.79 4.64 10.36 4.58 13 1.74 0.11 0.77 

CM 10.00 4.39 13.21 4.64 13 2.09 0.06 0.71 

Grouping         

PM 3.27 3.20 10.87 5.90 14 5.21 0.00 1.60 

VM 3.79 4.15 13.36 5.33 13 6.29 0.00 2.00 

CM 6.79 6.39 13.36 5.87 13 3.73 0.00 1.07 

Solving         

PM 4.00 4.31 17.00 3.16 14 13.67 0.00 3.44 

VM 4.29 3.31 13.21 5.75 13 5.10 0.00 1.90 

CM 5.36 4.14 16.43 4.13 13 9.28 0.00 2.68 

Simplifying         

PM 5.60 4.97 13.87 6.37 14 5.43 0.00 1.45 

VM 5.00 4.80 10.79 8.85 13 2.78 0.02 0.81 

CM 5.00 5.55 14.64 7.03 13 4.87 0.00 1.52 
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Table K3 

Pre to Post Differences in the Percentage of Correct Student Answers 

 Gain in percent of correct responses 
───────────────────────────────── 

 

Questions PM VM CM Difference > 30% 

1 20.00 28.57 14.29  

2 33.33 42.86 21.43  

3 26.67 21.43 21.43  

4 33.33 7.14 21.43 PM>VM 

5 13.33 -7.14 35.71 CM>VM 

6 33.33 57.14 21.43 VM>CM 

7 20.00 50.00 42.86 VM>PM 

8 13.33 21.43 00.00  

9 53.33 42.86 78.57 CM>VM 

10 53.33 14.29 28.57 PM>VM 

11 13.33 28.57 35.71  

12 46.67 7.14 28.57 PM>VM 

13 66.67 71.43 64.29  

14 60.00 78.57 57.57  

15 46.67 42.86 50.00  

16 46.67 42.86 50.00  

17 26.67 14.29 -14.29 PM>CM 

18 6.67 28.57 0  

19 73.33 42.86 50.00 PM>VM 

20 33.33 28.57 42.86  

 

Table K4 

Summary of Post EFT to Delayed Posttest EFT Differences 

 EFT pretest 
─────────── 

EFT posttest 
─────────── 

Pre to post 
─────────────────── 

Intervention type M SD M SD df t p Cohen d 

PM 66.73 17.39 65.07 18.37 14 -0.47 0.65 -0.09 

VM 59.79 22.57 57.29 20.75 13 -0.65 0.53 -0.12 

CM 69.85 21.17 67.92 27.68 112 -0.54 0.60 -0.08 
Note. N = 42. 
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Table K5 

Summary of Post to Delayed EFT Differences by Concepts 

 EFT pretest 
─────────── 

EFT posttest 
─────────── 

Pre to post 
─────────────────── 

Intervention type M SD M SD df t p Cohen d 

Modeling          

PM 12.87 5.84 13.13 5.55 14 1.76 0.86 +0.05 

VM 12.07 5.64 13.57 4.97 13 0.86 0.40 +0.28 

CM 10.92 4.92 11.46 5.89 12 0.30 0.77 +0.10 

Identifying         

PM 12.00 4.93 10.33 5.16 14 -0.79 0.44 -0.33 

VM 10.36 4.58 10.36 4.14 13 0.00 1.00 0.00 

CM 13.08 4.80 14.23 7.03 12 1.00 0.34 +0.19 

Grouping         

PM 11.00 5.95 12.27 4.85 14 +0.86 0.40 +0.23 

VM 13.36 5.33 11.21 5.65 13 -1.28 0.22 -0.39 

CM 13.69 5.94 14.92 6.08 12 +0.76 0.46 +0.20 

Solving         

PM 17.00 3.16 15.33 3.52 14 -2.65 0.02 -0.50 

VM 13.21 5.75 12.50 5.46 13 -0.43 0.67 -0.13 

CM 16.92 3.84 15.00 5.77 12 -1.81 0.10 -0.39 

Simplifying         

PM 13.87 6.37 14.00 5.41 14 +0.09 0.93 +0.02 

VM 10.79 8.85 9.64 6.64 13 -0.83 0.42 -0.15 

CM 15.23 6.95 12.31 7.80 12 -2.61 0.02 -0.40 
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Appendix L 

Analysis of Daily Cumulative Assessment
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Table L1 

Summary of DCA Total Paired Samples t Tests 

 EFT pretest 
─────────── 

EFT posttest 
─────────── 

Pre to post 
───────────────────── 

Intervention type M SD M SD df t p Cohen d 
PM 23.53 5.55 32.73 4.50 14 8.20 0.00 1.82 
VM 19.93 5.90 29.36 6.43 13 8.63 0.00 1.53 
CM 20.93 6.99 33.50 6.89 13 8.17 0.00 1.81 

Note. N = 43. 

 

Table L2 

Summary of DCA Questions Paired Samples t Tests 

Question Pretest SD Posttest SD Df T p ES 
Question 1         

PM 5.00 1.65 5.60 0.83 14 1.42 0.178 0.46 
VM 4.21 1.93 5.14 0.86 13 2.33 0.037 0.62 
CM 4.29 1.98 5.79 0.43 13 3.07 0.009 1.05 

Question 2         
PM 4.93 1.58 4.80 1.78 14 0.13 0.709 -0.08 
VM 4.21 1.53 4.43 1.79 13 0.37 0.720 0.13 

CM 3.86 1.61 4.79 1.63 13 1.43 0.177 0.57 
Question 3         

PM 3.47 1.64 5.00 1.56 14 2.66 0.019 0.96 
VM 4.00 1.52 4.14 1.75 13 0.30 0.770 0.09 
CM 3.07 1.59 4.21 1.58 13 2.51 0.026 0.72 

Question 4         
PM 0.40 0.51 0.47 0.52 14 0.44 0.670 0.14 
VM 0.64 0.50 0.43 0.51 13 1.00 0.336 -0.42 
CM 0.36 0.50 0.50 0.52 13 1.47 0.165 0.27 

Question 5         
PM 4.27 1.10 4.80 0.86 14 1.74 0.104 0.54 
VM 2.21 2.01 4.79 1.31 13 3.56 0.001 1.52 
CM 2.43 1.95 4.71 1.68 13 4.02 0.001 1.25 

Question 6         
PM 2.60 1.92 4.33 1.63 14 4.25 0.001 0.97 
VM 1.50 0.94 4.00 1.52 13 3.42 0.000 1.98 
CM 2.21 1.89 4.93 1.33 13 1.57 0.000 1.66 

Question 7         
PM 1.93 1.33 5.20 0.94 14 9.12 0.000 2.84 
VM 1.64 0.63 4.14 1.79 13 3.24 0.000 1.86 
CM 3.00 1.84 5.57 1.16 13 4.93 0.000 1.67 

Question 8         
PM 0.93 0.46 2.53 1.46 14 4.77 0.000 1.48 
VM 1.36 1.50 2.29 1.44 13 2.88 0.013 0.63 
CM 1.71 1.64 3.00 1.47 13 3.35 0.005 0.83 
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Table L3 

Percent of Students Who Mastered DCA Questions 

 Daily cumulative assessment questions 
─────────────────────────────────────────── 

Intervention type 1 2 3 4 5 6 7 8 

PM 60.0 53.3 40.0 40.0 13.3 33.3 46.7 33.3 

VM 28.6 35.7 14.3 28.6 7.1 21.4 14.3 21.4 

CM 53.3 53.3 14.3 50.0 14.3 42.9 64.3 42.9 

Note. N = 43. 
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Appendix M 

Misconception and Error Analyses
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Student Misconceptions and Errors 

Misconception 1: (Whole Number Dominance) Whole number dominance applies to 
fraction comparison.   

Error 1: Compares fractions by comparing the numbers in the denominator as if 
comparing whole numbers (e.g., ¼ is greater than 1/3 because 4 is greater than 3). 

Misconception 2: (Additive Thinking) Equivalent fractions can be formed by adding the 
same number to the numerator and the denominator of the original fraction.   

Error 2: Adds or subtracts the same number to the numerator or denominator (e.g., 
¾ = 5/6 because (3+2)/(4+2)=5/6).  

Misconception 3: (Misnaming) Fractions of regional models represent relationships other 
than the part/whole relationship of the model.  

Error 3: Models fractions as arrays (e.g., Draws as a model for the fraction 5/6 a 
five by six array).  

Error 4: Interchanges numerator and denominator when naming fractions (e.g., 
Writes 1/3 as 3/1). 

Error 5: Names a fraction by representing shaded/non shaded or nonshaded/ 
shaded (e.g., Writes 6/8 as 2/6 or 6/2).  

Error 6: Incorrectly identifies fractional amount of the whole (e.g., Incorrectly 
identifies 1/6 section of a circle, which has been partitioned to show ½ and 3/6, as 
1/5 instead of 1/6).  

Misconception 4: (Partitioning/Simplifying) Partitioning and simplifying produces halves 

Error 7: Responds to requests for equivalent fractions, not equal to ½, with ½ 
(e.g., 3/4 = ½ or 5/15 =1/2). 

Error 8: Equates simplifying with dividing the numerator and denominator by 
two. When the fraction numerals are odd the student responds with either a 
decimal or the next whole number (e.g., 4/8 = 2/4 or 5/20 = 2.5/10 or 2/10 or 
3/10)  

Misconception 5: (Equivalence Meaning) Equivalence denotes relationships other than 
equal amounts 

Error 9: Identifies equivalent fractions as being two fractions naming the 
relationship of the parts making up a whole (e.g., 1/3 = 2/3).  
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Error 10: Identifies equivalent fractions as the original fraction and a second 
fraction whose value is equal to one and contains numerals that were either in the 
original fraction or factors or multiples of the numerals in the original fraction 
(e.g., 6/8 = 6/6 or 8/8 – numerals from original fraction, 6/8=2/2-factor or 2/3 = 
4/4 or 6/6/ - multiples) . 

Error 11: Identifies equivalent fractions as being a fraction and its reciprocal (e.g., 
1/3 = 3/1). 

Error 12: Identifies equivalent fractions as being a fraction and a second fraction 
which is derived by determining the number of times a number will go into either 
the numerator or the denominator of the original fraction (e.g., 5/10 = 2/5 because 
five goes into 10 twice)  

Misconception 6: (Incorrect Equivalent Sentences) When developing equivalent 
fractions, numerators and denominators may vary independently of each other.  

Error13: Multiplies the numerator and denominator of the original fraction by 
different numbers (e.g., 3/4 = 9/16 because (3x3)/(4x4)=9/16) . 

Error 14: Increases or decreases only the denominator or only the numerator of 
the original fraction (e.g., ¾ = 6/4 or 3/8). 

Error 15: Multiplies the numerator of the original fraction by an arbitrary chosen 
number, which has been placed in the numerator of the new fraction, to obtain a 
new denominator (e.g., 3/4 = 2/8 because 2x4=8 or ¾ = 2/6 because 2x3=6).  

Misconception 7: (Set Modeling) Fractions of set models represent relationships other 
than the part/whole relationship  

Error 16: Identifying the numerator as being the number of groups in the set (e.g., 
when modeling ¾ they model 3 groups instead of four groups).  

Error 17: Identifying as either the numerator or the denominator as being many 
items are in each group (e.g., given the fraction 3/4 they place three or four items 
in each set)  

Error 18: When determining equivalent fractions using the set model, they 
interchange how many groups with how many in a group (e.g., When modeling 
what ¾ of 20 is, they make 5 groups).  

Error 19: When determining equivalent fractions using the set model, they 
interchange the numerator of the new fraction with either the numerator or 
denominator of the original fraction (e.g., When asked to find 3/4 of 20, they 
respond with 3/20 or 4/20). 
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Table M1 

Frequency of Student Error Types 

Misconception/error 
  

Number of observed cases 
──────────────────── 

PM VM CM 

1.  Whole number dominance    

  E1 compares whole numbers 38 38 39 

2.  Additive thinking    

 E2 Adds or Subtracts 28 34 16 

3.  Misnaming    

 E3 Arrays 4 19 2 

 E4 Reverses N and D 6 19 2 

 E5 Shaded/Un-shaded or Un-shaded/ Shaded 6 16 3 

 E6 Doesn’t recognize whole 35 15 19 

 Total Errors 51 69 26 

 4.  Partitioning/simplifying    

 E7 Fraction=1/2 22 26 8 

 E8 Fraction= number of divisions/factor 7 9 6  

 Total Errors 29 35 14 

 5.  Equivalence meaning    

 E9 Shaded = un-shaded 58 50 28 

 E10 Fraction equivalent to one 19 17 15 

 E11 Reciprocal  3 22 13 

 E12 Fraction made of factors 7 9 6 

 Total 87 98 62 

6.  Incorrect equivalent sentences    

 E13 Multiplies N and D by different numbers 21 20 12 

 E14 Operates on only N or D 35 34 15 

 E15 Multiplies N by another number to get D 5 4 1 

 Total 61 58 28 

7.  Set modeling    

 E16 Uses N to determine the number of groups 9 2 6 

 E17 Uses N or D to determine how many in each group 9 3 10 

 E18 Uses how many in a group as the D 20 3 11 

 E 19 N or D of first fraction is used as N in second  7 0 13 

 Total 45 8 40 

Note. Numerator (N), Denominator (D)
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Appendix N 

EFT Incorrect Responses



 
 T

ab
le

 N
1 

P
er

ce
nt

 o
f S

tu
de

nt
s’

 E
F

T 
In

co
rr

ec
t R

es
po

ns
es

 

 
Q

ue
st

io
n 

1 
A

-E
rr

or
 1

4 
D

-E
rr

or
 6

 
Q

ue
st

io
n 

2 
C

-M
is

c 
7 

Q
ue

st
io

n 
3 

B
 M

is
c 

7 
Q

ue
st

io
n 

5 
M

is
c 

7 
Q

ue
st

io
n 

7 
E

rr
or

 1
3 

 
P

M
 

V
M

 
C

om
 

P
M

 
V

M
 

C
om

 
P

M
 

V
M

 
C

om
 

PM
 

V
M

 
C

om
 

PM
 

V
M

 
C

om
 

A
 

13
.3

 
0.

0 
35

.7
 

 
 

 
 

 
 

 
 

 
46

.7
 

21
.4

 
35

.7
 

B
 

 
 

 
 

 
 

6.
7 

28
.6

 
7.

1 
 

 
 

 
 

 
C

 
 

 
 

13
.3

 
0.

0 
35

.7
 

 
 

 
20

.0
 

35
.7

 
0.

0 
 

 
 

D
 

6.
7 

28
.6

 
14

.3
 

 
 

 
 

 
 

 
 

 
 

 
 

 
Q

ue
st

io
n 

8 
A

-E
rr

or
 1

3 
B

- 
E

rr
or

 1
3 

Q
ue

st
io

n 
10

 
A

 –
 M

is
c 

7 
C

- 
M

is
c 

7 
D

- 
M

is
c 

7 

Q
ue

st
io

n 
11

 
C

 -
 E

rr
or

 1
4 

Q
ue

st
io

n 
12

 
C

- 
M

is
c 

7 
Q

ue
st

io
n 

17
 

C
-M

is
c 

5 

A
 

33
.3

 
7.

1 
7.

1 
0.

0 
21

.4
 

0.
0 

 
 

 
 

 
 

 
 

 
B

 
20

.0
 

28
.6

 
42

.9
 

 
 

 
 

 
 

 
 

 
 

 
 

C
 

 
 

 
6.

7 
35

.7
 

21
.4

 
13

.3
 

35
.7

 
14

.3
 

13
.3

 
37

.5
 

35
.7

 
0.

0 
0.

0 
28

.6
 

D
 

 
 

 
20

.0
 

0.
0 

7.
1 

 
 

 
 

 
 

 
 

 

 

271



272 
 

  

CURRICULUM VITAE 
 
 

ARLA WESTENSKOW 
 
 

School Address:        Home Address: 
Utah State University       555 Center 
College of Education & Human Services     Logan, UT 84341 
2805 Old Main Hill       (801) 540-7063 
Logan, UT 84321     
Email: arlawestenskow@gmail.com 
 
 

EDUCATION 
 
Ph.D.  May 2012 
  Education, Utah State University 

Specialization:  Curriculum and Instruction 
Emphasis:  Mathematics Education and Leadership 

 
M.S     April 1992 
  Special Education, University of Utah 
  Specialization:  Mild and Moderate Disabilities 
  Thesis:  Benefits to Siblings of Children with Autism  
 
B.S.    May 1974 
  Department of Communications, Brigham Young University 
  Utah State Professional Educator License Level 2 (1977) 
 

EMPLOYMENT HISTORY 
 
Adjunct Faculty 
 
Utah State University at Logan, Utah (2009-present) 
 Director of TIME Clinic:  Organized intervention program, developed materials, and 

 tutored students 
 Taught 6  methods courses:   EDLE 4060 – Teaching Mathematics and Practicum Level III 

 Relevant mathematics instruction in the elementary and middle-level curriculum; methods of 
 instruction, evaluation, remediation, and enrichment. A field experience practicum is required. 

 
University Supervisor and Instructor, Elementary Education Program (F2008, 
Sp2010) 
 
Utah State University at Logan, Utah 
 Supervised student teachers in grades 2-6 and instructed bi-weekly group seminars.  



273 
 

  

Elementary School Teacher, Grades 1-6, (1978-2008) 
Davis County School District at Farmington, Utah 
  Boulton Elementary, Bountiful, Utah 
  Kaysville Elementary, Kaysville, Utah 
 
Co- Developer and Presenter for Davis Professional Development (1994-2008) 
Davis County School District at Farmington, Utah 
 Co-instructed professional development workshops, developed teacher material and 
 programs or co-instructed student groups for the following programs: 
  Davis Math Academy 
  Curriculum Standards 
  Curriculum Assessment Development 
  Discipline with Dignity 
  Student Assistance Program 
  Math Survival for Novice Teachers 
  Mathematics Core Enrichment 
 
Cooperating Teacher (1999-2004) 
University of Utah at Salt Lake City, Utah 
Utah State University, at Logan, Utah 
 Supervised pre-service teachers during their student teaching experience. 
 
Mathematics Instructor, Utah Core Academy (2004)  
University of Utah at Logan, Utah 
 Number Sense Instructor in weeklong 6th grade teacher professional development 
 workshops held throughout the state of Utah.   
 
Part Time Hearing Impaired Seminary Instructor (1982-1983) 
Church of Jesus Christ of Latter Day Saints at Bountiful, Utah 
 Instructor of weekly seminary class to Jr. High students with hearing limitations 
 
Part Time Deaf/Blind Tutor (1973-1974) 
American Fork Training School at American Fork, Utah 
 Week end tutor and caretaker for a teenage deaf-blind resident at training school. 
 
Camp Recreation Leader and Speech Therapist (1970-1973) 
Meadowwood Springs Speech Camp at Weston, Oregon 

Instructor of camp recreation activities for children with speech disabilities and speech therapist 
instructing students with hearing limitations.   

 

.Research 
 

Research Interests: 
 Mathematics professional development 
 Mathematics early intervention 
 Mathematics and technology 

 



274 
 

  

Research Projects 
 

Equivalent fraction learning trajectories for students with mathematical learning 
difficulties when using manipulatives (2011-2012).  Dissertation Research.  Designed 
study, curriculum, tutored 5th grade mathematics fraction intervention and analyzed data.  
Utah State University. 
 
 Grades 3-4 Fractions and Virtual Manipulatives Mathematics Project (2009-
present).  Designed curriculum, taught 3rd and 4th grade mathematics fraction units and 
analyzed data.  Utah State University. 
 
 Effects of Virtual Manipulatives on Mathematics Teaching and Student 
Achievement Literature Review (2010).  Library search, data analysis and synthesis.  Utah 
State University. 
 
 Analyzing Mathematics Teaching Anxiety Project (2009 – present). Method 
design, library search, data collection and analysis. Utah State University. 
 

Evidence of Growth in Teacher Content Knowledge in Mathematics and Science 
Partnership Program Analysis (2008-2009).  Document search and data analysis. Utah 
State University. 

 
Student Teacher and First Year Teacher Mentoring (2005).  Method design, data 

collection and analysis.  University of Utah. 
 

Publications 
 

Journal Articles (Refereed) 
 
Moyer-Packenham, P. S., & Westenskow, A. (in press). Effects of virtual manipulatives 

on student achievement and mathematics learning. 
 
Brown, A. B., Westenskow, A., & Moyer-Packenham, P. S. (2012).Teaching Anxieties 

Revealed: Pre-service Elementary Teachers: Reflections on their Mathematics 
Teaching Experiences, Teaching Education, 23(4), 365-385. 

 
Moyer-Packenham, P. S., & Westenskow, A. (2012). Processes and pathways: How do 

mathematics and science partnerships measure and promote growth in teacher 
content knowledge? School Science and Mathematics. 112(3), 133-146. 

 
Westenskow, A., & Moyer-Packenham, P. S. (2011). Canine Conjectures: Using Data for 

Proportional Reasoning. Mathematics Teaching in the Middle School, 17(1), 26-
32. 

 
  



275 
 

  

Brown, A. B., Westenskow, A., & Moyer-Packenham, P. S. (2011). Elementary Pre-
Service Teachers: Can They Experience Mathematics Teaching Anxiety Without 
Having Mathematics Anxiety?. Issues in the Undergraduate Mathematics 
Preparation of School Teachers: The Journal, 5(teal_facpub), 1. 

 
Marx, S., Gardner, J., Landon-Hayes, M., Sheridan, D., Westenskow, A., Johnson, K., 

Thurgood, L., (2009)  Book review:  Theory and educational research:  Toward 
critical social explanation.   International Journal of Qualitative Studies in 
Education 23(2),251-255. 

 
Conference Proceedings (Refereed) 
 
Moyer-Packenham, P.S., & Westenskow, A. (2012, Apr). Effects of virtual manipulatives on 

student achievement and mathematics learning.  Proceedings of the 2012 Annual Meeting 
of American Educational Research Association, Vancouver, British Columbia, Canada. 

 
Moyer-Packenham, P.S., & Westenskow, A. (2011, Sep). An initial examination of effect 

sizes for virtual manipulatives and other instructional treatments. Proceedings of 
the 11th International Conference on Transformations and Paradigm Shifts in 
Mathematics Education, Rhodes University, Grahamstown, South Africa. 

 
Westenskow, A. (2011, September).  Comparing the use of virtual manipulatives and 

physical manipulatives in equivalent fraction intervention instruction. 
Proceedings of the 11th International Conference on Transformations and 
Paradigm Shifts in Mathematics Education, Rhodes University, Grahamstown, 
South Africa. 

 
Unpublished Manuscripts 
 
Moyer-Packenham, P.S., Baker, J., Westenskow, A., Rodzon, K., Anderson, K., 

Shumway, J., Ng, D. & Jordan, K.(2012). Comparing virtual manipulatives with 
other treatment modalities of mathematics instruction: hidden predictors of 
achievement. Unpublished manuscript. 

 
Moyer-Packenham, P.S., Baker, J., Westenskow, A., Rodzon, K., Anderson, K., 

Shumway, J., Ng, D. & Jordan, K.(2012). Third and Fourth Results Manuscript in 
preparation. 

 
Shumway, J., Baker, J., Moyer-Packenham, P. S., Westenskow, A., Anderson, K. (2012).  

Comparing Virtual and Traditional Instruction in Fraction Concepts. Manuscript 
in preparation. 

 
Wesstenskow, A., Moyer-Packenham, P.S., & Thurgood, J. (2012).  Parental Perspectives 

in Tutoring Sessions.  Manuscript in preparation. 
 



276 
 

  

Westenskow, A., Moyer-Packenham, P. S., Anderson, K, Shumway, J., Rodzon, K., & 
Jordan, K. (2012).  Modeling Fraction Error.  Manuscript in preparation. 

 
Westenskow A. The rhizomes of teachers’ professional development pathways.  

Manuscript in preparation.   
 

Grants Funded 
 
Graduate Research Assistant ($35,000). Virtual Manipulatives Research Group: Effects 
of Multiple Visual Modalities of Representation on Rational Number Competence.  
(2011-2012). Utah State University, Vice President for Research SPARC Funding.  Lead 
PI – Patricia Moyer Packenham, Collaborating Faculty – Kerry Jordan, Dicky Ng, and 
Kady Schneiter.  My role:  design lesson plans for experimental classroom, teach 
experimental lessons at research sites, conduct data collection and analysis, participate in 
research team meetings, collaborated on publications and presentations focusing on using 
virtual manipulatives to teach rational number concepts. 
 
Graduate Student ($600) Professional Conference Awards. Utah State University, 
Graduate Senate.  (April, 2010). Travel grants award for presentations AERA and NCTM 
national conferences. 
 
Graduate Student ($600) Graduate Student Travel & Research Grant. Utah State 
Univeristy, (Jan, 2010) Women & Gender Research Institute.  Travel grant award for 
presentation at AMTE national conference.  
 
Classroom Teacher ($1,000).  Toyota Education Grant.  (2005). Boulton Elementary, 
Bountiful, Utah. Designed and built mathematics lessons and tool kits for 5th and 6th 
grade mathematics lessons focusing on the integration of mathematics in other subject 
areas. 
 
Classroom Teacher ($500). Davis Education Foundation Grants. (2000). Davis School 
District. Developed and distributed supplemental sixth-grade mathematics activities to 
Davis School District school. 
 

Presentations 
 
National/International 
 
Anderson, K., Westenskow, A., & Moyer-Packenham, P. S. (2012, April). Teacher 

Resources for Using Virtual Manipulatives to Teach Fraction Concepts. .  
Presentation, Annual Meeting of the National Council of Teachers of 
Mathematics (NCTM), Philadelphia, PA. 

  



277 
 

  

Moyer-Packenham, P.S., & Westenskow, A. (2012, April). Effects and Affordances of 
Virtual Manipulatives on Students’ Achievement. Research Paper Presentation, 
Annual Meeting of the National Council of Teachers of Mathematics (NCTM), 
Philadelphia, PA. 

 
Moyer-Packenham, P. S., & Westenskow, A. (2012, April).  Research on Teaching with 

Simulated Virtual Tools and Spaces.  Roundtable session. American Educational 
Research Association (AERA) Annual Meeting, Vancouver, Canada. 

 
Moyer-Packenham, P.S. & Westenskow, A. (2012, February).  Connecting Research 

Results on the Effects of Virtual Manipulatives with Mathematics Teacher 
Development.  Research Paper Presentation, Annual Meeting of the Association of 
Mathematics Teacher Educators (AMTE), Fort Worth, TX. 

 
Moyer-Packenham, P.S. & Westenskow, A. (2011, November).  A Meta-Analysis of the 

Effects of Virtual Manipulatives on Mathematics Learning and Student 
Achievement. Research Presentation, Annual Meeting of School Science and 
Mathematics Association,(SSMS) Colorado Springs, CO. 

 
Moyer-Packenham, Jordan, K., Ng, D., Anderson, K., Baker, J., Rodzon, K., Shumway, 

J., & Westenskow, A.(2011, November).  School Mathematics Research on 
Virtual Manipulatives: A Collaborative Team Approach.  Research Presentation, 
Annual Meeting of School Science and Mathematics Association (SSMA), 
Colorado Springs, CO. 

 
Westenskow, A. (2011, September).  Comparing the use of virtual manipulatives and 

physical manipulatives in equivalent fraction intervention instruction. 
Proceedings of the 11th International Conference on Transformations and 
Paradigm Shifts in Mathematics Education, Rhodes University, Grahamstown, 
South Africa. 

 
Moyer-Packenham, P. S., & Westenskow, A. (2011, September). An initial examination 

of effect sizes for virtual manipulatives and other instructional treatments. 
Proceedings of the 11th International Conference on Transformations and 
Paradigm Shifts in Mathematics Education, Rhodes University, Grahamstown, 
South Africa. 

 
Brown, A. B., Westenskow, A., & Moyer-Packenham, P. S. (2011, January). Analyzing 

Mathematics Teaching Anxiety: Assumptions, Findings and Implications for 
Mathematics Educators. Research Paper Presentation, Annual Meeting of the 
Association of Mathematics Teacher Educators (AMTE), Irvine, CA. 

 
Westenskow, A. (2010, November).  The rhizomes of teachers’ professional development 

pathways.  Research Paper Presentation, Annual Conference of School Science 
and Mathematics Association (SSMA), Florida 



278 
 

  

Moyer-Packenham, P. S. & Westenskow, A. (2010, April).  Analyzing, Interpreting, and 
Connecting Data Relationships Using Virtual Manipulatives.  Presentation, 99th 
Annual Meeting of the National Council of Teachers of Mathematics (NCTM), 
San Diego, CA. 

 
Moyer-Packenham, P. S., & Westenskow, A. (2010, April).  Process and Pathways:  

How Do Mathematics/Science Partnerships Measure and Promote Teacher 
Content Knowledge Growth?  Research Paper Presentation, American 
Educational Research Association (AERA) Annual Meeting, Denver, CO. 

 
Westenskow, A., Brown, A. B., & Moyer-Packenham, P.S. (2010, January).  Reducing 

Pre-Service Teacher Anxieties for Teaching Elementary Mathematics.  Research 
Paper Presentation, Annual Meeting of the Association of Mathematics Teacher 
Educators (AMTE), Irvine, CA. 

 
State/Regional 
 
Westenskow, A. (2011), November).  Building equivalent fraction learning trajectories.  

Annual Conference of the Utah Council of Teachers of Mathematics (UCTM), 
Magna, Utah 

 
Westenskow, A. (2010, November). Using data sets to explore proportional 

relationships. Annual Conference of the Utah Council of Teachers of 
Mathematics (UCTM), Bountiful, Utah 

 
Cloke, G., & Westenskow, A. (2000, November).  Using math games.  Workshop 

presentation at Utah Council of Teachers of Mathematics State Conference, Salt 
Lake City, Utah. 

 
Westenskow, A (2003, July)  Ratios. Workshop presentation at The Northern Utah 

Summer Math Institute at Bountiful, Utah. 
 

Service and Leadership Activities 
 
Liaison    Utah State University Graduate Senate Liaison, Served as an 
(2009-2010)  information liaison and presided as session leader in research 

conference. 
 
Course Developer  Davis Math Academy  Designed and presented mathematics 
     (2005-2008)  professional development courses. 
 
Committee Member Davis Curriculum Standards Alignment.  Developed curriculum  
     (2004)  guides for 1st year teachers.  
  



279 
 

  

Curriculum Designer Mathematics Core Enrichment.  Developed supplemental  
     (1998)  mathematics activities for 6th grade curriculum.  
 

Awards 
 
2012    AERA Best Paper Award 
2011 Graduate Research Assistant of the Year, Utah State University 
2009 Graduate Teaching Assistant of the Year, Utah State University 
2006    Who’s Who Among Teachers 
2002    Davis County District Hall of Fame, Farmington, Utah 
2002    Toyota Horizon Award, Farmington, Utah  
2002  Who’s Who Among Teachers 
1995    Teacher Academy Fellow (Social Studies), Weber State University 
 


	Equivalent Fraction Learning Trajectories for Students with Mathematical Learning Difficulties When Using Manipulatives
	Recommended Citation

	Microsoft Word - Arla Westenskow dissertation.docx

