
Utah State University Utah State University

DigitalCommons@USU DigitalCommons@USU

All Graduate Theses and Dissertations Graduate Studies

5-2012

Planning, Acting, and Learning in Incomplete Domains Planning, Acting, and Learning in Incomplete Domains

Christopher H. Weber
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Weber, Christopher H., "Planning, Acting, and Learning in Incomplete Domains" (2012). All Graduate
Theses and Dissertations. 1168.
https://digitalcommons.usu.edu/etd/1168

This Thesis is brought to you for free and open access by
the Graduate Studies at DigitalCommons@USU. It has
been accepted for inclusion in All Graduate Theses and
Dissertations by an authorized administrator of
DigitalCommons@USU. For more information, please
contact digitalcommons@usu.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@USU

https://core.ac.uk/display/32549497?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd?utm_source=digitalcommons.usu.edu%2Fetd%2F1168&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.usu.edu%2Fetd%2F1168&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd/1168?utm_source=digitalcommons.usu.edu%2Fetd%2F1168&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/

PLANNING, ACTING, AND LEARNING IN INCOMPLETE DOMAINS

by

Christopher H. Weber

A thesis submitted in partial fulfillment
of the requirements for the degree

of

MASTER OF SCIENCE

in

Computer Science

Approved:

Dr. Daniel L. Bryce Dr. Curtis E. Dyreson
Major Professor Committee Member

Dr. Stephen J. Allan Dr. Byron R. Burnham
Committee Member Dean of Graduate Studies

UTAH STATE UNIVERSITY
Logan, Utah

2011

ii

Copyright c© Christopher H. Weber 2011

All Rights Reserved

iii

ABSTRACT

Planning, Acting, and Learning in Incomplete Domains

by

Christopher H. Weber, Master of Science

Utah State University, 2011

Major Professor: Dr. Daniel L. Bryce
Department: Computer Science

The engineering of complete planning domain descriptions is often very costly because

of human error or lack of domain knowledge. Learning complete domain descriptions is also

very challenging because many features are irrelevant to achieving the goals and data may be

scarce. Given incomplete knowledge of their actions, agents can ignore the incompleteness,

plan around it, ask questions of a domain expert, or learn through trial and error.

Our agent Goalie learns about the preconditions and effects of its incompletely-specified

actions by monitoring the environment state. In conjunction with the plan failure explana-

tions generated by its planner DeFault, Goalie diagnoses past and future action failures.

DeFault computes failure explanations for each action and state in the plan and counts

the number of incomplete domain interpretations wherein failure will occur. The question-

asking strategies employed by our extended Goalie agent using these conjunctive normal

form-based plan failure explanations are goal-directed and attempt to approach always

successful execution while asking the fewest questions possible. In sum, Goalie:

i) interleaves acting, planning, and question-asking;

ii) synthesizes plans that avoid execution failure due to ignorance of the domain model;

iii) uses these plans to identify relevant (goal-directed) questions;

iv

iv) passively learns about the domain model during execution to improve later replanning

attempts;

v) and employs various targeted (goal-directed) strategies to ask questions (actively

learn).

Our planner DeFault is the first to reason about a domain’s incompleteness to avoid

potential plan failure. We show that DeFault performs best by counting prime implicants

(failure diagnoses) rather than propositional models. Further, we show that by reasoning

about incompleteness in planning (as opposed to ignoring it), Goalie fails and replans less

often, and executes fewer actions. Finally, we show that goal-directed knowledge acquisition

- prioritizing questions based on plan failure diagnoses - leads to fewer questions, lower

overall planning and replanning time, and higher success rates than approaches that naively

ask many questions or learn by trial and error.

(59 pages)

v

DEDICATION

To my family, and my teachers along the way. . .

vi

ACKNOWLEDGMENTS

This work is indebted to the co-authors of the papers which form its main body, Daniel

Bryce and Daniel Morwood of the Department of Computer Science, Utah State University.

This work is supported by DARPA contract HR001-07-C-0060.

Christopher H. Weber

vii

CONTENTS

Page

ABSTRACT . iii

DEDICATION . v

ACKNOWLEDGMENTS . vi

LIST OF TABLES . ix

LIST OF FIGURES . x

CHAPTER

1 INTRODUCTION . 1

2 PLANNING AND ACTING IN INCOMPLETE DOMAINS 3
2.1 Abstract . 3
2.2 Introduction . 3
2.3 Background and Representation . 5

2.3.1 STRIPS Domains . 5
2.3.2 Incomplete STRIPS Domains . 5
2.3.3 Discussion . 7

2.4 Planning in Incomplete Domains . 8
2.5 Heuristics in Incomplete Domains . 11

2.5.1 Planning Graph Heuristics . 11
2.5.2 Incomplete Domain Heuristics . 11
2.5.3 Heuristic Computation . 13

2.6 Counting Models and Prime Implicants . 14
2.7 Acting in Incomplete Domains . 14
2.8 Empirical Evaluation . 17

2.8.1 Domains . 17
2.8.2 Test Setup . 19
2.8.3 Off-line Planning Results . 20
2.8.4 On-line Planning and Execution Results 22

2.9 Related Work . 24
2.10 Conclusion . 25

3 GOAL-DIRECTED KNOWLEDGE ACQUISITION . 26
3.1 Abstract . 26
3.2 Introduction . 26
3.3 Background and Representation . 28

3.3.1 Incomplete STRIPS Domains . 28
3.3.2 Incomplete STRIPS Plans . 29

viii

3.4 Belief Maintenance and Planning . 30
3.4.1 Filtering Observations . 30

3.5 Planning . 32
3.5.1 Incomplete Domain Relaxed Plans 33

3.6 Goal-Directed Knowledge Acquisition . 34
3.6.1 Uninformed QA . 35
3.6.2 Non-QA . 35
3.6.3 Goal-Directed QA . 36
3.6.4 Plan Relevant Questions . 36
3.6.5 Plan Failure Diagnosis Relevant Questions 37
3.6.6 Ranking Relevant Questions . 37

3.7 Empirical Evaluation . 38
3.7.1 Domains . 39
3.7.2 Test Setup . 40
3.7.3 Results . 40

3.8 Conclusion . 43

4 CONCLUSION . 44

REFERENCES . 46

APPENDIX . 48

ix

LIST OF TABLES

Table Page

2.1 Number of Plans Having a Greater Number of Successful Domain Interpre-
tations (i.e., Better Quality). Bold Indicates Best Performers. 21

2.2 Instances Solved By Domain. 21

3.1 FF Vs. DeFault Performance Ratio (Number Solved / Number of Steps /
Time / Questions). 40

3.2 Extreme Strategy Average Performance (Number Solved / Number of Steps
/ Time (seconds) / Questions). Bold Indicates Best Performers. 41

3.3 Goal-Directed KA Average Performance Using DeFault (Number Solved /
Number of Steps / Time (seconds) / Questions). 41

3.4 Plan Vs. Relaxed Plan Ratio in Shannon Entropy Strategy. 42

x

LIST OF FIGURES

Figure Page

2.1 Incomplete plan example. 10

2.2 Cumulative time in all domains. 22

2.3 Total number of actions comparison, Goalie with DeFault-FF vs. Goalie

with DeFault-PI1. 23

2.4 Total number of plans generated comparison, Goalie with DeFault-FF vs.
Goalie with DeFault-PI1. 23

2.5 Total execution time comparison, Goalie with DeFault-FF vs. Goalie with
DeFault-PI1. 24

CHAPTER 1

INTRODUCTION

Two research papers constitute the main substance of this multi-paper thesis:

1. Planning and Acting in Incomplete Domains 1

2. Goal-Directed Knowledge Acquisition2

These papers compose the bodies of Chapters 2 and 3, respectively.

Their mutual subject is an agent we have developed that plans, acts and learns in

incomplete domains. Paper two extends the learning capability of the agent as presented in

the first paper; while the agent of the first paper learns passively about its environment as

it acts, the second paper’s extended agent also learns actively via a question-asking ability.

This extended learning ability allows the agent to perform far more effectively in incomplete

domains.

The engineering of complete planning domain descriptions is often very costly because

of human error or lack of domain knowledge. Learning complete domain descriptions is

also very challenging because many features are irrelevant to achieving the stated goals and

data may be scarce. Given incomplete knowledge of their actions, agents can ignore the

incompleteness, plan around it, ask questions of a domain expert, or learn through trial and

error.

Our agent Goalie learns about the preconditions and effects of its incompletely-specified

actions by monitoring the environment state. In conjunction with the plan failure explana-

tions generated by its planner DeFault, Goalie diagnoses past and future action failures.

DeFault computes failure explanations for each action and state in the plan and counts

the number of interpretations of the incomplete domain wherein failure will occur. The

1Co-Author: Daniel Bryce, Department of Computer Science, Utah State University. Accepted for
publication in Proceedings of ICAPS’11.

2Co-Authors: Daniel Bryce and Daniel Morwood, Department of Computer Science, Utah State Uni-
versity.

2

question-asking strategies employed by our extended Goalie agent using these conjunctive

normal form-based plan failure explanations are goal-directed and attempt to approach

always successful execution while asking the least questions possible. In sum, Goalie:

i) interleaves acting, planning, and question-asking;

ii) synthesizes plans that avoid execution failure due to ignorance of the domain model;

iii) uses these plans to identify relevant (goal-directed) questions;

iv) passively learns about the domain model during execution to improve later replanning

attempts;

v) and employs various targeted (goal-directed) strategies to ask questions (actively

learn).

Our planner DeFault is the first to utilize a forward state space-based heuristic search

that reasons about a domain’s incompleteness to avoid potential plan failure. We show that

DeFault performs best by counting prime implicants (failure diagnoses) rather than propo-

sitional models. Further, we show that by reasoning about incompleteness during planning

(as opposed to ignoring it), Goalie fails and replans less often, and executes fewer actions.

Finally, we show that goal-directed knowledge acquisition - prioritizing questions based on

plan failure diagnoses - leads to fewer questions, lower overall planning and replanning time,

and higher success rates than approaches that naively ask many questions or learn by trial

and error.

3

CHAPTER 2

PLANNING AND ACTING IN INCOMPLETE DOMAINS

2.1 Abstract

Engineering complete planning domain descriptions is often very costly because of

human error or lack of domain knowledge. Learning complete domain descriptions is also

very challenging because many features are irrelevant to achieving the goals and data may

be scarce. We present a planner and agent that respectively plan and act in incomplete

domains by:

i) synthesizing plans to avoid execution failure due to domain model ignorance; and

ii) passively learning about the domain model during execution to improve later replan-

ning attempts.

Called DeFault, our planner is the first to utilize a forward state space-based heuristic

search that reasons about a domain’s incompleteness to avoid potential plan failure. While

DeFault computes failure explanations for each action and state in the plan and counts

the number of interpretations of the incomplete domain in which failure will occur, our

agent Goalie learns about the preconditions and effects of incompletely-specified actions

by monitoring the environment state. Goalie works in conjunction with DeFault’s plan

failure explanations to diagnose past and future action failures. We show that DeFault

performs best by counting prime implicants (failure diagnoses) rather than propositional

models. Further, we show that by reasoning about incompleteness (as opposed to ignoring

it), Goalie fails and replans less and executes fewer actions.

2.2 Introduction

The knowledge engineering required to create complete and correct domain descrip-

tions for planning problems is often very costly and difficult (Kambhampati 2007; Wu,

Yang, and Jiang 2007). Machine learning techniques have been applied with some success

4

(Wu, Yang, and Jiang 2007), but still suffer from impoverished data and limitations of

the algorithms (Kambhampati 2007). In particular, we are motivated by applications in

instructable computing (Mailler et al. 2009) wherein a domain expert teaches an intelligent

system about a domain, but can often leave out whole procedures (plans) and aspects of

action descriptions. In such cases, the alternative to making domains complete is to plan

around the incompleteness. That is, given knowledge of the possible action descriptions, we

seek out plans that will succeed despite any (or most of the) incompleteness in the domain

formulation.

While prior work (Garland and Lesh 2002) (henceforth abbreviated, GL) has cat-

egorized risks to a plan and described plan quality metrics in terms of the risks (es-

sentially single-fault diagnoses of plan failure (de Kleer and Williams 1987)), no prior

work using or extending the Stanford Research Institute Problem Solver (STRIPS) model

(Fikes and Nilsson 1971) has sought to deliberately synthesize low-risk plans for incom-

plete domains (notable work in Markov decision processes (Nilim and El Ghaoui 2005;

Choudhary et al. 2006) and model-based reinforcement learning (Sutton and Barto 1998)

has explored similar issues). Our planner DeFault labels partial plans with propositional

explanations of failure due to incompleteness (derived from the semantics of assumption-

based truth maintenance systems (Bryce 2011)) and either counts failure models or prime

implicants (diagnoses) to bias search. Our agent Goalie passively learns about the incom-

plete domain as it executes actions, like Chang and Amir (2006) (henceforth abbreviated,

CA). Unlike CA, Goalie executes plans that are robust to domain incompleteness. Within

Goalie, we compare the use of robust plans generated by our planner DeFault, and plans

that are generated in the spirit of CA which are not intentionally robust, i.e., they are

only optimistically successful. We demonstrate that the effort to synthesize robust plans is

justified because DeFault executes fewer overall actions and fails and replans less.

This paper is organized as follows. The next section details incomplete STRIPS, the

language we use to describe incomplete domains. We follow with our approach to plan

synthesis and search heuristics. We discuss alternatives to reasoning about failure explana-

5

tions, including model counting and prime implicant counting. We describe our execution

monitoring and replanning strategy, and then provide an empirical analysis, discussion of

related work, and conclusion.

2.3 Background and Representation

The incomplete STRIPS model minimally relaxes the classical STRIPS model to allow

for possible preconditions and effects. In the following, we review the STRIPS model and

present the incomplete STRIPS model.

2.3.1 STRIPS Domains

A STRIPS planning domain D defines the tuple (P , A, I, G), where:

P is a set of propositions;

A is a set of action descriptions;

I ⊆ P defines a set of initially true propositions; and

G ⊆ P defines the goal propositions.

Each action a ∈ A defines:

pre(a) ⊆ P , a set of preconditions;

add(a) ⊆ P , a set of add effects; and

del(a) ⊆ P , a set of delete effects.

A plan π = (a0, ..., an−1) in D is a sequence of actions. This sequence of actions corresponds

to a sequence of states (s0, ..., sn), where:

s0 = I;

pre(at) ⊆ st for t = 0, ..., n− 1;

G ⊆ sn; and

st+1 = st\del(at) ∪ add(at) for t = 0, ..., n− 1.

2.3.2 Incomplete STRIPS Domains

Incomplete STRIPS domains are identical to STRIPS domains, with the exception that

the actions are incompletely specified. Much like planning with incomplete state informa-

tion (Domshlak and Hoffmann 2007; Bryce, Kambhampati, and Smith 2008), the action

6

incompleteness is not completely unbounded. The preconditions and effects of each action

can be any subset of the propositions P ; the incompleteness is with regard to a lack of

knowledge about which of the subsets corresponds to each precondition and effect. To nar-

row the possibilities, we find it convenient to refer to the known, possible, and impossible

preconditions and effects.

For example, an action’s preconditions must consist of the known preconditions, and

it must not contain the impossible preconditions, but we do not know if it contains the

possible preconditions. The union of the known, possible, and impossible preconditions

must equal P . Therefore, an action can represent any two, and we can infer the third. We

choose to represent the known and possible, but note that GL represent the known and

impossible, noting that the trade-off makes our representation more appropriate if there are

fewer possible action features.

An incomplete STRIPS domain D̃ defines the tuple (P , Ã, I, G), where:

P is a set of propositions;

Ã is a set of incomplete action descriptions;

I ⊆ P defines a set of initially true propositions; and

G ⊆ P defines the goal propositions.

Each action ã ∈ Ã defines:

pre(ã) ⊆ P , a set of known preconditions;

p̃re(ã) ⊆ P , a set of possible preconditions;

add(ã) ⊆ P , a set of known add effects;

ãdd(ã) ⊆ P , a set of possible add effects;

del(ã) ⊆ P , a set of known delete effects; and

d̃el(ã) ⊆ P , a set of possible delete effects.

Consider the following incomplete domain:

P = {p, q, r, g}; Ã = {ã, b̃, c̃}; I = {p, q}; and G = {g}.

7

The actions are defined:

pre(ã) = {p, q}, p̃re(ã) = {r}, ãdd(ã) = {r}, d̃el(ã) = {p};

pre(b̃) = {p}, add(b̃) = {r}, del(b̃) = {p}, d̃el(b̃) = {q}; and

pre(c̃) = {r}, p̃re(c̃) = {q}, add(c̃) = {g}.

The set of incomplete domain features F is comprised of the following propositions for each

ã ∈ Ã:

p̃re(ã, p) if p ∈ p̃re(ã);

ãdd(ã, p) if p ∈ ãdd(ã); and

d̃el(ã, p) if p ∈ d̃el(ã).

An interpretation Fi ⊆ F of the incomplete STRIPS domain defines a STRIPS domain,

in that every feature f ∈ Fi indicates that a possible precondition or effect is a respective

known precondition or known effect. Those features not in Fi are not preconditions or

effects.

A plan π for D̃ is a sequence of actions that when applied can lead to a state wherein

the goal is satisfied. A plan π = (ã0, ..., ãn−1) in an incomplete domain D̃ is a sequence of

actions that corresponds to the optimistic sequence of states (s0, ..., sn), where:

s0 = I;

pre(ãt) ⊆ st for t = 0, ..., n;

G ⊆ sn; and

st+1 = st\del(ãt) ∪ add(ãt) ∪ ãdd(ãt) for t = 0, ..., n− 1.

For example, the plan (ã, b̃, c̃) corresponds to the state sequence

(s0 = {p, q}, s1 = {p, q, r}, s2 = {q, r}, s3 = {q, r, g}),
where the goal is satisfied in s3.

2.3.3 Discussion

Our definition of the plan semantics sets a loose requirement that plans with incomplete

actions succeed under the most optimistic conditions: possible preconditions need not be

satisfied and the possible add effects (but not the possible delete effects) are assumed to

8

occur when computing successor states. This notion of optimism is similar to that of

GraphPlan (Blum and Furst 1995) in that both assert every proposition that could be

made true at a particular time even if only a subset of the propositions can actually be made

true. In GraphPlan, there may exist a plan to establish a proposition if the proposition

appears in the planning graph. In our definitions there does exist an interpretation of the

incomplete domain that will establish a proposition if it appears in a state (Bryce 2011), and

this interpretation may correspond to the true domain. In GraphPlan, failing to assert a

proposition that may be established could eliminate plans, and in our case, failing to assert

a proposition would prevent us from computing interpretations of the incomplete domain

that achieve the goal.

We ensure that the plan is valid for the least constraining (most optimistic) interpre-

tation of the incomplete domain. If the plan can achieve the goal in the most optimistic

interpretation, it may achieve the goal in others; if the goal is not reachable in this inter-

pretation, it cannot be reached in any interpretation (Bryce 2011). As we show, we can

efficiently determine the interpretations in which a plan is invalid and use the number of

such failed interpretations as a plan quality metric.

2.4 Planning in Incomplete Domains

We present a forward state space planner called DeFault that attempts to minimize the

number of interpretations of the incomplete domain that can result in plan failure. DeFault

generates states reached under the optimistic interpretation of the incomplete domain, but

labels each state proposition with the interpretations (a failure explanation) in which it

is impossible to achieve the proposition. As such, the number of interpretations labeling

the goals reached by a plan indicates the number of failed interpretations. By counting

interpretations (i.e., propositional model counting), we can determine the quality of a plan.

DeFault labels propositions and actions with domain interpretations that, respectively,

fail to achieve the proposition or fail to achieve the preconditions of an action. That is,

labels indicate the cases wherein a proposition is false (i.e., the plan fails to establish the

proposition). Labels d(·) are represented as propositional sentences over F whose models

9

correspond to domain interpretations.

Initially, each proposition p0 ∈ s0 is labeled d(p0) =⊥ to denote that there are no failed

interpretations affecting the initial state, and each p0 6∈ s0 is labeled d(p0) = >. For all

t ≥ 0, we define:

d(ãt) = d(ãt−1) ∨
∨

p∈pre(ã)

d(pt) ∨
∨

p∈p̃re(ã)

(d(pt) ∧ p̃re(ãt, p)) (2.1)

d(pt+1) =

d(pt) ∧ d(ãt) : p ∈ add(ãt)

d(pt) ∧ (d(ãt) ∨ ¬ãdd(ãt, p)) : p ∈ ãdd(ãt)

> : p ∈ del(ãt)

d(pt) ∨ d̃el(ãt, p) : p ∈ d̃el(ãt)

d(pt) : otherwise

(2.2)

where d(ã−1) = ⊥. The intuition behind the label propagation is that in Equation 2.1 an

action will fail in the domain interpretations d(ãt) where a prior action failed, a known

precondition is not satisfied, or a possible precondition (which is a known precondition for

the interpretation) is not satisfied. As defined by Equation 2.2, the plan will fail to achieve

a proposition at time t+ 1 in all interpretations in which:

i) the plan fails to achieve the proposition at time t and the action fails;

ii) the plan fails to achieve the proposition at time t and the action fails or it does not

add the proposition in the interpretation;

iii) the action deletes the proposition;

iv) the plan fails to achieve the proposition at time t or in the interpretation the action

deletes the proposition; or

v) the action does not affect the proposition and any prior failed interpretations still

apply.

A consequence of our definition of action failure is that each action fails if any prior

action fails. This definition follows from the semantics that the state becomes undefined

if we apply an action whose preconditions are not satisfied. While we use this notion in

10

plan synthesis, we explore the semantics that the state does not change (i.e., it is defined)

upon failure when we discuss acting in incomplete domains. The reason that we define

action failures in this manner is that we can determine all failed interpretations affecting

a plan d(π), defined by d(ãn−1) ∨
∨
g∈G d(gn). By d(ãt), it is possible to determine the

interpretations that fail to successfully execute the plan up to and including time t.

p0 p1
q1 q2

g3

q3
ã0 b̃1

q0
c̃2

r1 r2 r3

⊥

⊥

⊥

p̃re(ã, r)

p̃re(ã, r)∨¬ãdd(ã, r)

p̃re(ã, r)∨ d̃el(ã, p)

d̃el(b̃, q)

p̃re(ã, r)∨
()d̃el(ã, p)∧¬ãdd(ã, r)

p̃re(ã, r)∨
()d̃el(ã, p)∧¬ãdd(ã, r)

d̃el(b̃, q)

∨p̃re(ã, r)∨
()∧

d̃el(ã, p)
p̃re(c̃, q)d̃el(b̃, q)

∨p̃re(ã, r)∨
()∧

d̃el(ã, p)
p̃re(c̃, q)d̃el(b̃, q)

d̃el(ã, p)

r0
�

p2
� p3

�

Fig. 2.1: Incomplete plan example.

Consider the plan depicted in Figure 2.1. The propositions in each state and each action

at each time are labeled by the propositional sentence below it. The edges in the figure

connecting the propositions and actions denote what must be true to successfully execute

an action or achieve a proposition. The dashed edges indicate that action incompleteness

affects the ability of an action or proposition to support a proposition.

Note that ã possibly deletes p, so the edge denoting its persistence is dashed. The

propositional sentences d(·) below each proposition and action denote the domain interpre-

tations in which an action will fail or a proposition will not be achieved.

Further, b̃ at time one, b̃1, will fail if either p̃re(ã, r) or d̃el(ã, p) is true in the inter-

pretation. Thus,

d(π) = p̃re(ã, r) ∨ d̃el(ã, p) ∨ (d̃el(b̃, q) ∧ p̃re(c̃, q)),

and any domain interpretation satisfying d(π) will fail to execute the plan and achieve the

goal.

11

2.5 Heuristics in Incomplete Domains

Similar to propagating failed interpretation labels in a plan, we can propagate labels

in the relaxed planning problem to compute a search heuristic. The primary heuristic is

the number of actions in a relaxed plan. While we do not use the number of failed domain

interpretations as the primary heuristic, we use the failure labels to bias the selection of

the relaxed plan actions and break ties between search nodes with an equivalent number

of actions in their relaxed plans. As in recent trends in satisficing planning (classical,

conformant, etc.) we want high quality solutions, but not at the expense of returning no

solution. We solve the relaxed planning problem using a planning graph and thus begin

with a brief description of planning graphs.

2.5.1 Planning Graph Heuristics

A relaxed planning graph is a layered graph of sets of vertices (Pt,At, ...,At+m,Pt+m+1).

The planning graph built for state st defines:

Pt = {pt|p ∈ st};

At+k = {at|∀p∈pre(a)pt ∈ Pt+k, a ∈ A ∪A(P)}; and

Pt+k+1 = {pt+k+1|at+k ∈ At+k, p ∈ add(a)};

for k = 0, ...,m. The set A(P) includes noop actions for each proposition, such that

A(P) = {a(p)|p ∈ P, pre(a(p)) = add(a(p)) = p, del(a(p)) = ∅}.

The hFF heuristic (Hoffmann and Nebel 2001) solves this relaxed planning problem

by choosing actions from At+m to support the goals in Pt+m+1, and recursively so for each

chosen action’s preconditions when counting the number of chosen actions.

2.5.2 Incomplete Domain Heuristics

Propagating failed interpretations in the planning graph resembles propagating failed

interpretations over a plan. The primary difference is how we define the failed interpreta-

tions for a proposition when the proposition has multiple sources of support. Recall that

we allow only serial plans and that at each time each state proposition is supported by

persistence and/or a single action (action choice is handled in the search space). In a level

12

of the relaxed planning graph, there are potentially many actions supporting a proposition,

and we select the supporter with the fewest failed interpretations. The chosen supporting

action, denoted ât+k(p), determines the failed interpretations affecting proposition p at the

level t+ k + 1.

A relaxed planning graph with propagated labels is a layered graph of sets of vertices of

the form (P̂t, Ât, ..., Ât+m, P̂t+m+1). The relaxed planning graph built for state s̃t defines:

P̂0 = {p̂t|p ∈ s̃t};

Ât+k = {ât+k|∀p∈pre(ã)p̂t+k ∈ P̂t+k, ã ∈ Ã ∪A(P)}; and

P̂t+k+1 = {p̂t+k+1|ât+k ∈ Ât+k, p ∈ add(ã) ∪ ãdd(ã)};

for k = 0, ...,m. Much like the successor function used to compute next states, the relaxed

planning graph assumes an optimistic semantics for effects by adding possible add effects

to proposition layers. However, as we will explain below, it associates failed interpretations

with the possible adds.

Each planning graph vertex has a label, denoted d̂(·). The failed interpretations d̂(p̂t)

affecting a proposition are defined such that:

d̂(p̂t) = d(pt);

and for k ≥ 0,

d̂(ãt+k) =
∨

p∈pre(ã)

d̂(p̂t+k) ∨
∨

p∈p̃re(ã)

(d̂(p̂t+k) ∧ p̃re(ã, p)) (2.3)

d̂(p̂t+k+1) =

d̂(ât+k(p)) : p ∈ add(ât+k(p))

d̂(ât+k(p)) ∨ ¬ãdd(ât+k(p), p) : p ∈ ãdd(ât+k(p))
(2.4)

Every action in every level k of the planning graph will fail in any interpretation in which

its preconditions are not supported (Equation 2.3). A proposition will fail to be achieved

in any interpretation in which the chosen supporting action fails to add the proposition

(Equation 2.4).

We note that the rules for propagating labels in the planning graph differ from the

rules for propagating labels in the state space. In the state space, the action failure labels

13

include interpretations wherein any prior action fails. In the relaxed planning problem, an

action’s failure labels include only the interpretations affecting its preconditions, and not

prior actions; it is not clear which actions will be executed prior to achieving a proposition

because many actions may be used to achieve other propositions at the same time.

2.5.3 Heuristic Computation

We terminate the relaxed planning graph expansion at level t+ k + 1 when one of the

following conditions is met:

i) the planning graph reaches a fixed point where the explanations do not change,

d̂(p̂t+k) = d̂(p̂t+k+1) for all p ∈ P ; or

ii) the goals have been reached at t+ k+ 1 and the fixed point has not yet been reached.

Our h∼FF heuristic makes use of the chosen supporting action ât+k(p) for each propo-

sition requiring support in the relaxed plan. Hence, it measures the number of actions used

while attempting to minimize failed interpretations (the supporting actions are chosen by

comparing failure explanations). Our h∼M heuristic measures the number of interpretations

that fail to reach the goals in the last level:

h∼M = |M(∨p∈G d̂(p̂t+m+1))|,

where m + 1 is the last level of the planning graph, and M(·) is the set of models of a

formula.

DeFault uses both heuristics, treating h∼FF as the primary heuristic and using h∼M

to break ties. While it is likely that swapping the role of the heuristics may lead to higher

quality plans (fewer failed interpretations), our informal experiments determined that the

scalability of DeFault is greatly limited in such cases – measuring failed interpretations is not

correlated with solution depth in the search graph, unlike relaxed plan length. The relaxed

plans are informed by the propagated explanations because we use the failure explanation

to bias action selection.

14

2.6 Counting Models and Prime Implicants

Failure explanations d(·) and d̂(·) are propositional sentences that help bias decisions

in our heuristic-based search. Namely, we assume that we can count the number of propo-

sitional models of these sentences to indicate how many interpretations of the incomplete

domain will fail to successfully execute a plan. Model counting is intractable (Roth 1996),

but by representing the sentences as Ordered Binary Decision Diagrams (OBDDs) (Bryant

1986), model counting is polynomial in the size of the OBDD (Darwiche and Marquis 2002),

although it can be exponential sized in the worst case).

In addition to OBDDs and model counting, we explore counting prime implicants (PIs)

(also called diagnoses). Counting PIs allows us to compute heuristic h∼PI , which is similar

to h∼M . A set of PIs is a set of conjunctive clauses – similar to a DNF, wherein no clause is

subsumed by another. These are used in model-based diagnosis to represent diagnoses – sets

of incomplete features that must interact to cause system failure (de Kleer and Williams

1987). We find it useful to bound the cardinality – the number of conjuncts – of the PIs,

effectively over-approximating the models of a propositional sentence.

Instead of counting the models of two labels d(·) and d′(·), we can compare the number

of PIs (as in h∼PI). Our intuition is that having fewer diagnoses of failure is preferred, just

as is having fewer models of failure (even though having fewer PIs does not always imply

fewer models). The advantage is that counting PIs is much less expensive than counting

models, especially if we bound the cardinality of the PIs. Finally, when counting PIs, we

use a heuristic that compares two sets in terms of the number of cardinality-one PIs, and

if equal, the number of cardinality-two PIs, and so on. The intuition behind comparing

PIs in this fashion is that smaller PIs are typically satisfied by a larger number of models

and are thus more representative of the number of models. That is, a sentence with one

cardinality-one PI will have more models than a sentence with one cardinality-two PI.

2.7 Acting in Incomplete Domains

Acting in incomplete domains provides an opportunity to learn about the domain by

observing the states resulting from execution. In the following, we describe what our agent

15

Goalie can learn from acting in incomplete domains and how it achieves its goals. Goalie

will continue to execute a plan until it is faced with an action that is guaranteed to fail or

in hindsight it has determined that the plan failed.

Goalie maintains propositional sentence φ defined over F∪{fail}, which describes the

current knowledge of the incomplete domain. The proposition fail denotes whether Goalie

believes that its current plan may have failed – it is not always possible to determine if an

action applied in the past did not have its preconditions satisfied. Initially, Goalie believes

φ = >, denoting its complete lack of knowledge of the incomplete domain and whether its

current plan will fail. If Goalie executes ã in state s and transitions to state s′, then it

updates its knowledge as φ ∧ o(s, ã, s′), where:

o(s, ã, s′) =

(fail ∧ o−) ∨ o+ : s = s′

o+ : s 6= s′
(2.5)

o− =
∨

p̃re(ã,p)∈F:
p 6∈s

p̃re(ã, p) (2.6)

o+ = opre ∧ oadd ∧ odel (2.7)

opre =
∧

p̃re(ã,p)∈F:
p 6∈s

¬p̃re(ã, p) (2.8)

oadd =
∧

ãdd(ã,p)∈F:
p∈s′\s

ãdd(ã, p) ∧
∧

ãdd(ã,p)∈F:
p 6∈s∪s′

¬ãdd(ã, p) (2.9)

odel =
∧

d̃el(ã,p)∈F:
p∈s\s′

d̃el(ã, p) ∧
∧

d̃el(ã,p)∈F:
p∈s∩s′

¬d̃el(ã, p) (2.10)

We assume that the state will remain unchanged when Goalie executes an action whose

precondition is not satisfied by the state, and because the state is observable, Equation 2.5

references both the case in which the state does not change and the case in which it does

change. If the state does not change, either the action failed and one of its unsatisfied

possible preconditions is a precondition (Equation 3.1), or the action succeeded (Equation

16

3.1). If the state changes, Goalie knows that the action succeeded. If an action succeeds,

Goalie can conclude that:

i) each possible precondition that was not satisfied is not a precondition (Equation 3.1);

ii) each possible add effect that appears in the successor but not the predecessor state

is an add effect, and each that does not appear in either state is, in fact, not an add

effect (Equation 3.1);

iii) each possible delete effect that appears in the predecessor but not the successor is a

delete effect, and each that appears in both states is not a delete effect (Equation 3.1).

Using φ, it is possible to determine if the next action in a plan, or any subsequent

action, can or will fail. If φ ∧ d(ãt+k) is satisfiable, then ãt+k can fail, and if φ |= d(ãt+k),

then ãt+k will fail. Goalie will execute an action if it may not fail, even if later actions

in its plan will fail. If Goalie determines that its next action will fail, or a prior action

failed (φ |= fail), it will replan. Goalie uses φ to modify the actions during replanning by

checking for each incomplete domain feature f ∈ F if φ |= f or if φ |= ¬f . Each such literal

entailed by φ indicates that the respective action has the possible feature as a known or

impossible feature; all other features remain as possible features.

Algorithm 1 is the strategy used by Goalie. First, the algorithm initializes the agent’s

knowledge and plan (lines 1 and 2). Then, while the plan is non-empty and the goal is not

achieved (line 3), the agent proceeds with execution. The agent selects the next action in

the plan (line 4) and determines if it can apply the action (line 6). If it applies the action,

the next state is returned by the environment/simulator (line 7) and the agent updates its

knowledge (line 8 and Equation 2.5) and state (line 9). Otherwise, the agent determines

that the plan will fail (lines 10 and 11). If the plan has failed (line 12), the agent forgets its

knowledge of the plan failure (line 13) and finds a new plan using its new knowledge (line

14). Goalie cannot guaranteed success unless it can find a plan that will not fail (i.e., d(π)

= ⊥).

Goalie is not hesitant to apply actions that may fail because trying actions is its only

way to learn about them. However, Goalie is able to determine when an action will fail

17

Algorithm 1: Goalie(s,G, Ã)

Input: state s, goal G, actions Ã
φ← >;1

π ← Plan(s,G, Ã, φ);2

while π 6= () and G 6⊆ s do3

ã← π.first();4

π ← π.rest();5

if pre(ã) ⊆ s and φ 6|= ∨
p̃re(ã,p)∈F:p 6∈s

p̃re(ã, p) then
6

s′ ← Execute(ã);7

φ← φ ∧ o(s, ã, s′);8

s← s′;9

else10

φ← φ ∧ fail;11

if φ |= fail then12

φ← ∃failφ;13

π ← Plan(s,G, Ã, φ);14

and so replans. More conservative strategies are possible if we assume that Goalie can

query a domain expert about action features to avoid potential plan failure, but we leave

such goal-directed knowledge acquisition for future work.

2.8 Empirical Evaluation

The empirical evaluation is divided into four sections: the domains used for the ex-

periments, the test setup used, results for off-line planning, and results for planning and

execution. The questions we seek to answer include:

Q1 – Does reasoning about incompleteness lead to high quality plans?

Q2 – Does counting prime implicants perform better than counting models?

Q3 – As incomplete features increase, does stronger reasoning about incompleteness

help?

Q4 – Does reasoning about incompleteness reduce the number of execution failures?

2.8.1 Domains

We use four domains in the evaluation: a modified Pathways, Bridges, a modified PARC

Printer, and Barter World. For these domains, we created multiple instances by injecting

18

incomplete features with probabilities 0.25, 0.5, 0.75, and 1.0. An instance may possess

up to 10,000 incomplete features. Planning results are taken from 10 random instances

(varying F) of each problem. Within these, each planning and execution result is one of ten

ground-truth domains selected by the simulator. The problem generators and our planner

are available at: http://www.cs.usu.edu/∼danbryce/software/default.jar.

The Pathways (PW) domain from the International Planning Competition (IPC) in-

volves actions that model chemical reactions in signal transduction pathways. Pathways

is a naturally incomplete domain in which the lack of knowledge of the reactions is quite

common, and are an active research topic in biology (Choudhary et al. 2006).

The Bridges (BR) domain consists of a traversable grid in which the task is to find a

different treasure at each corner of the grid. Grids are square and vary in dimension (2-16).

There are three versions:

BR1 – a bridge might be required to cross between some grid locations (a possible

precondition);

BR2 – BR1, plus many of the bridges may have a troll living underneath that will take

all the treasure accumulated (a possible delete effect);

BR3 – BR2, plus the corners may give additional treasures (possible add effects).

The PARC Printer (PP) domain from the IPC involves planning paths for sheets of

paper through a modular printer. A source of domain incompleteness is that a module

accepts only certain paper sizes, but its documentation is incomplete. Thus, in using the

module, paper size becomes a possible precondition to actions.

The Barter World (BW) domain involves navigating a grid and bartering items to

travel between locations. The domain is incomplete because actions that acquire items are

not always known to be successful (possible add effects) and traveling between locations

may both require certain items (possible preconditions) and result in the loss of an item

(possible delete effects). Grids vary in dimension (2-16) and items in number (1-4).

19

2.8.2 Test Setup

The tests were run on a Linux machine with a 3 Ghz Xeon processor, a memory limit

of 2GB, and a time limit of 20 minutes per run for the off-line planning invocation and 60

minutes for each on-line planning and execution test. All code is written in Java and run

on the 1.6 JVM.

We use five configurations of the planner: DeFault-FF , DeFault-PIk (k = 1, 2, 3),

and DeFault-BDD, each of which differ in how they reason about domain incompleteness.

DeFault-FF does not compute failure explanations and uses the FF heuristic; inspired by

the planner used by CA, it is likely to find a plan that will work for only the most optimistic

domain interpretation. DeFault-PIk, where k is the bound on the cardinality of the prime

implicants, counts prime implicants to compare failure explanations. DeFault-BDD uses

OBDDs to represent and count failure explanations. DeFault uses a greedy best-first search

with deferred heuristic evaluation and a dual-queue for preferred and nonpreferred operators

(Helmert 2006).

The number of failed interpretations for a plan π found by any of the planners is

found by counting models of an OBDD representing d(π). The versions of the planner are

compared by the proportion of interpretations of the incomplete domain that achieve the

goal and total planning time in seconds. The plot in the following section depict these

results using the cumulative planning time to identify the performance over all problems

and domains. We also report detailed results on the number of solved problems per domain

and the relative quality of solutions (successful domain interpretations).

Additionally, we compare the off-line planning results to the conformant probabilistic

planner POND (with N=10 particles in its heuristic) (Bryce, Kambhampati, and Smith

2008) that solves translated instances of the incomplete STRIPS problems. We set the

minimum required probability of goal satisfaction to the minimum proportion of success-

ful domain interpretations of plans found by the other approaches. We do not provide

the details of the translation because the results are very poor, but refer the reader to an

extended version of this work (Bryce 2011). We attempted a comparison to PFF (Domsh-

20

lak and Hoffmann 2007), but the implementation proved unstable for all but the smallest

instances (results not shown).

2.8.3 Off-line Planning Results

Table 2.1 shows when each configuration finds a better solution (number of success-

ful interpretations) than another; for example, PI1 finds a better solution than FF 629

times. Table 2.2 lists the number of solved problems for each planner. Figure 2.2 plots the

cumulative total planning time (by every 100th data point to enhance readability).

We see that Q1 is answered positively by the results. Table 2.1 shows that plan quality

is improved by reasoning about incompleteness (through DeFault-PIk or DeFault-BDD),

though Table 2.2 shows that scalability suffers. However, we note that minimizing the num-

ber of failed interpretations can be phrased as a conformant probabilistic planning problem,

which is notoriously difficult (Domshlak and Hoffmann 2007; Bryce, Kambhampati, and

Smith 2008), and expecting the scalability of a classical planner is perhaps unreasonable.

Q2 is answered overall positively by our experiments because the PIk counting ap-

proaches solve more problems with better quality and in less time than the BDD model

counting approach (see Table 2.2 and Figure 2.2).

Q3 is answered negatively because as the probability of injecting incomplete features

grows from 0.25 to 1.0, PI3 initially solves the most problems, but then PI2 , and finally

PI1 solves the most problems in each domain (see Table 2.2). A possible explanation for

this result is that as incompleteness increases, more complete reasoning about it becomes

too costly, and thus a more coarse approach is needed; however, the BDD approach, while

not the best, seems to degrade less as the incompleteness increases. It is likely that the

OBDD package implementation (Vahidi 2011) is to be credited for the BDD approach’s

performance because model counting can become prohibitively expensive in larger problems.

Table 2.2 indicates that POND is not competitive and suggests that existing approaches

are not directly applicable to planning in incomplete domains. We note that DeFault is

inspired by POND, but employs more approximate reasoning about incompleteness by using

bounded prime implicants (see (Bryce 2011) for a more thorough discussion).

21

Table 2.1: Number of Plans Having a Greater Number of Successful Domain Interpretations
(i.e., Better Quality). Bold Indicates Best Performers.

FF PI1 PI2 PI3 BDD

FF 0 155 161 161 123
PI1 629 0 79 78 208
PI2 619 77 0 46 208
PI3 594 62 51 0 199
BDD 512 189 189 187 0

Table 2.2: Instances Solved By Domain.
Domain FF PI1 PI2 PI3 BDD POND

PP 0.25 130 83 85 86 80 10
PP 0.5 130 87 88 87 80 0
PP 0.75 130 82 83 81 80 0
PP 1.0 13 10 9 9 8 0

PP 403 262 265 263 248 10

BR1 0.25 40 22 22 22 22 2
BR1 0.5 39 20 20 20 20 2
BR1 0.75 36 19 19 19 19 2
BR1 1.0 4 2 2 2 2 1
BR2 0.25 38 20 20 20 21 3
BR2 0.5 35 25 25 25 23 3
BR2 0.75 35 22 21 21 21 2
BR2 1.0 4 2 2 2 2 1
BR3 0.25 45 36 36 36 36 1
BR3 0.5 47 33 33 33 32 2
BR3 0.75 46 39 39 39 41 1
BR3 1.0 5 4 4 4 3 1

BR 374 244 243 243 242 21

BW 0.25 150 106 128 129 108 60
BW 0.5 150 134 137 134 118 45
BW 0.75 150 140 138 137 111 27
BW 1.0 15 14 14 14 11 2

BW 465 394 417 414 348 155

PW 0.25 160 40 40 40 40 19
PW 0.5 160 70 60 50 60 13
PW 0.75 170 60 50 40 60 12
PW 1.0 19 5 6 6 7 2

PW 509 175 156 136 167 46

Total 1751 1075 1081 1056 1005 232

22

0
5e+06
1e+07

1.5e+07
2e+07

2.5e+07
3e+07

3.5e+07
4e+07

0 200 400 600 800 1000 1200

C
um

m
. T

im
e

(s
)

Problems

All Problems: Time

FF PI1 PI2 PI3 BDD

Fig. 2.2: Cumulative time in all domains.

2.8.4 On-line Planning and Execution Results

So that we may judge whether planning and execution strategies such as that of CA

benefit when the planner reasons about incompleteness, we provide Figures 2.3, 2.4, and 2.5.

These scatter plots are comparisons between Goalie using DeFault-FF and DeFault-PI1

to synthesize plans, contrasting the respective:

Figure 2.3 – number of actions applied to achieve the goal;

Figure 2.4 – number of plans generated; and

Figure 2.5 – total planning and execution time.

Q4 is answered mostly positively. By investigating the plots of the number of actions

taken (Figure 2.3) and the number of plans generated (Figure 2.4), it is apparent that

DeFault-PI1 takes fewer actions as the instances minimum required steps increases, and

it tends to fail and replan less often. The plot of the total time taken (Figure 2.5) shows

that the planners are somewhat mixed or even for times less than 10 seconds. However, for

times greater than 10 seconds, it appears that using DeFault-FF in Goalie can take up

to an order of magnitude less time. However, there are several difficult instances in which

DeFault-PI1 does outperform DeFault-FF .

23

100

101

102

103

100 101 102 103

D
eF

au
lt-

P
I1

DeFault-FF

Actions Applied

Fig. 2.3: Total number of actions comparison, Goalie with DeFault-FF vs. Goalie with
DeFault-PI1.

100

101

102

100 101 102

D
eF

au
lt-

P
I1

DeFault-FF

Plans Generated

Fig. 2.4: Total number of plans generated comparison, Goalie with DeFault-FF vs. Goalie
with DeFault-PI1.

24

10-3

10-2

10-1

100

101

102

103

104

10-310-210-1100101 102 103 104

D
eF

au
lt-

P
I1

DeFault-FF

Total Time (s)

Fig. 2.5: Total execution time comparison, Goalie with DeFault-FF vs. Goalie with
DeFault-PI1.

We expect that more efficient implementations of reasoning about prime implicants (e.g.,

tries) could lower the cost of planning with DeFault, thus allowing it to capitalize on its

more robust plans.

2.9 Related Work

Planning in incomplete domains is noticeably similar to planning with incomplete in-

formation. However, for incomplete domains it is the actions, not the states, that are

incomplete. Incomplete domains can be translated to conformant probabilistic planning

domains, and planners such as POND (Bryce, Kambhampati, and Smith 2008) and PFF

(Domshlak and Hoffmann 2007) are applicable. However, while the translation is theoreti-

cally feasible, current CPP planners are not reasonable approaches to the problem (Bryce

2011).

Our investigation is an instantiation of model-lite planning (Kambhampati 2007). As

pointed out by Kambhampati (2007), constraint-based hierarchical task networks are an

25

alternative that avoid specifying all preconditions and effects through methods and con-

straints corresponding to underlying, implicit causal links.

As previously stated, this work is a natural extension of the Garland and Lesh (2002)

model for evaluating plans in incomplete domains. We note that their enhanced-STRIPS

formulation of incomplete domains has come to define the term “incomplete domains” as

a research area. Our methods for computing plan failure explanations are different in that

we compute them in the forward direction and allow for multiple, interacting faults instead

of single faults. In addition to calculating the failure explanations of partial plans, we use

a relaxed planning heuristic informed by failure explanations.

Prior work of Chang and Amir (2006) addresses planning with incomplete models, but

does not attempt to synthesize robust plans, which is similar to our DeFault-FF planner.

We have shown that incorporating knowledge about domain incompleteness into the planner

can lead to an agent that replans less and thus fails less often. We also differ from CA in

that:

i) we do not assume direct feedback from the environment about action failures; and

ii) we are able to learn about action preconditions.

2.10 Conclusion

We have presented the first research to utilize heuristic search to find robust plans for

incomplete domains. Our planner DeFault:

i) performs forward search while maintaining plan failure explanations; and

ii) estimates the future failures by propagating failure explanations on planning graphs.

We have shown that, compared to a configuration that essentially ignores aspects of the

incomplete domain, DeFault scales reasonably well while finding much higher quality plans.

We have also shown that representing plan failure explanations with prime implicants leads

to better scalability than complete model-counting (using OBDDs). Our agent Goalie uses

DeFault to generate robust plans that fail less often and require less replanning than more

optimistic planning approaches that ignore incompleteness.

26

CHAPTER 3

GOAL-DIRECTED KNOWLEDGE ACQUISITION

3.1 Abstract

Agents with incomplete knowledge of their actions can either plan around the incom-

pleteness, ask questions of a domain expert, or learn through trial and error. We present

and evaluate several approaches to formulating plans under incomplete information, using

the plans to identify relevant (goal-directed) questions, and interleaving acting, planning,

and question asking.

We show that goal-directed knowledge acquisition leads to fewer questions and lower

overall planning and replanning time than naive approaches that ask many questions, or

learn by trial and error. Moreover, we show that prioritizing questions based on plan failure

diagnoses leads to fewer questions on average to formulate a successful plan.

3.2 Introduction

Knowledge engineering (Bertoli, Botea, and Fratini 2009) and machine learning (Wu,

Yang, and Jiang 2007; Oates and Cohen 1996) have been applied to constructing represen-

tations for planning, but pose intensive human and/or data requirements, only to leave a

potential mismatch between the environment and model (Kambhampati 2007). Recently,

Weber and Bryce (see Chapter 2) showed that instead of placing effort upon making domains

complete it is possible to plan with incomplete knowledge of an agent’s action descriptions

(i.e., plan around the incompleteness). Agents executing such robust plans fail and replan

less often, achieving their goals in less overall time than agents that ignore incomplete-

ness when planning (Chang and Amir 2006). While Weber and Bryce (see Chapter 2)

demonstrate that planning in incomplete domains can help agents learn about domains,

they ignore cases wherein domain experts are available to help engineer the agent’s knowl-

edge. We extend the work found in Chapter 2 (including their DeFault planner) to consider

27

agents that can query a domain expert, as in instructable computing (Mailler et al. 2009),

but carefully select their questions for knowledge acquisition (KA) in a goal-directed fashion

to reduce domain expert fatigue and overall task completion time.

Selecting questions is a problem that has been studied in areas such as preference

elicitation (Boutilier 2002), machine learning (Gervasio, Yeh, and Myers 2011), and model-

based diagnosis (de Kleer, Mackworth, and Reiter 1992). KA in planning with incomplete

domain knowledge is unique in that plans have a rich causal structure that makes questions

highly coupled, frequent replanning can change which questions are relevant, and planning

relaxations provide opportunities for selecting relevant questions at a fraction of the cost of

analyzing full plans.

Our approach to formulating questions relies on planning with incomplete information,

deriving a plan failure explanation (set of diagnoses), and ranking questions based upon

these diagnoses so that questions are goal-directed. Upon finding a plan that will provably

succeed, our agent executes the plan to achieve its goals. We compare our methods with

simpler strategies that either ask questions about all possible incomplete domain features

prior to planning, or ask no questions and learn by trial and error. This work investigates

several issues, including whether:

i) planning with incompleteness is helpful when agents have the ability to ask questions;

ii) how plans can effectively support goal-directed knowledge acquisition; and

iii) relaxed plans provide the same benefit of actual plans in guiding knowledge acquisi-

tion.

We find that, indeed:

i) planning with incompleteness leads to fewer required questions and lower overall time

to solve a task;

ii) ranking goal-directed questions by a measure of their one-step Shannon entropy is the

most effective method to knowledge acquisition; and

iii) relaxed plans improve the speed with which goal-directed questions are identified with

no impact on agent performance.

28

Our presentation includes a discussion of incomplete STRIPS, belief maintenance and

planning in incomplete domains, strategies for KA (goal-directed and otherwise), an empir-

ical evaluation in several domains, related work, and a conclusion.

3.3 Background and Representation

Incomplete STRIPS minimally relaxes the classical STRIPS model to allow for possible

preconditions and effects (Garland and Lesh 2002). Incomplete STRIPS domains are iden-

tical to STRIPS domains, with the exception that the actions are incompletely specified.

Much like planning with incomplete state information (Bonet and Geffner 2000), the action

incompleteness is not completely unbounded. The preconditions and effects of each action

can be any subset of the propositions P ; the incompleteness is with regard to a lack of

knowledge about which of the subsets corresponds to each precondition and effect.

3.3.1 Incomplete STRIPS Domains

An incomplete STRIPS domain D̃ defines the tuple (P , Ã, I, G, F), where:

P is a set of propositions;

Ã is a set of incomplete action descriptions;

I ⊆ P defines a set of initially true propositions;

G ⊆ P defines the goal propositions; and

F is a set of propositions describing incomplete domain features.

Each action a ∈ A defines:

pre(a) ⊆ P , a set of known preconditions;

add(a) ⊆ P , a set of known add effects; and

del(a) ⊆ P , a set of known delete effects.

The set of incomplete domain features F is comprised of propositions of the form:

pre(a, p), a possible precondition of a;

add(a, p), a possible add effect of a; and

del(a, p), a possible delete effect of a.

29

Consider the following incomplete domain:

P = {p, q, r, g};

A = {a, b, c};

I = {p, q};

G = {g}; and

F = {pre(a, r), add(a, r), del(a, p), del(b, q), pre(c, q)}.

The known features of the actions are defined:

pre(a) = {p, q};

pre(b) = {r}, add(b) = {r}; and

pre(c) = {r}, add(c) = {g}.

An interpretation F i ⊆ F of the incomplete STRIPS domain defines a STRIPS domain,

in that every feature f ∈ F i indicates that a possible precondition or effect is a respective

known precondition or known effect; those features not in F i are not preconditions or effects.

3.3.2 Incomplete STRIPS Plans

A plan π for D is a sequence of actions that when applied can lead to a state in which

the goal is satisfied. A plan π = (a0, ..., an−1) in an incomplete domain D is a sequence of

actions that corresponds to the optimistic sequence of states (s0, ..., sn), where:

s0 = I;

pre(at) ⊆ st for t = 0, ..., n;

G ⊆ sn; and

st+1 = st\del(at) ∪ add(at) ∪ {p|add(a, p) ∈ F} for t = 0, ..., n− 1.

For example, the plan (a, b, c) corresponds to the state sequence

(s0 = {p, q}, s1 = {p, q, r}, s2 = {q, r}, s3 = {q, r, g}),

where the goal is satisfied in s3. We note that r ∈ s1 even though r is only a possible add

effect of a; without listing r in s1, the known precondition of b would not be satisfied. It

is certainly possible that in the true domain r is not an add effect of a. However, in the

30

absence of contrary information, we optimistically assume r is an add effect so that we can

synthesize a plan. Pessimistically disallowing such plans is admissible, but constraining,

and we prefer to find a plan that may work to finding no plan at all. Naturally, we prefer

plans that succeed under more interpretations.

3.4 Belief Maintenance and Planning

An agent can act, ask questions, and plan. Acting and asking a question provide

observations of the incomplete domain, and planning involves predicting future states (in

the absence of observations). In the following, we discuss how observations can be filtered

to update an agent’s knowledge φ (defined over the literals of F), and what can be assumed

about predicted states (when taking knowledge into account). We denote by d(π) a plan’s

failure explanations/diagnoses, which are represented by a propositional sentence over F .

We use φ to reason about actions and plans by making queries of the form:

φ |= add(a, p) – Is p a known add effect of a?;

φ 6|= add(a, p) and φ 6|= ¬add(a, p) – Is p a possible/unknown add effect of a?; or

φ |= d(π) – Is the current knowledge consistent with every interpretation where π is

guaranteed to fail?).

It is often the case that it is unknown if an incomplete feature f ∈ F exists in the true

domain that is consistent with φ (i.e., φ 6|= f and φ 6|= ¬f), and we denote this by “φ?f”.

3.4.1 Filtering Observations

An agent that acts in incomplete STRIPS domains starts with no knowledge of the

incomplete features (i.e., φ = >). However, taking actions provides state transition obser-

vations of the form o(s, a, s′), and asking questions (i.e., “Is f true or false?”) provides

observations of the form f or ¬f .

31

Thus, the function filter returns the updated knowledge φ′ after an observation, and

is defined:

filter(φ, f) = φ ∧ f

filter(φ,¬f) = φ ∧ ¬f

filter(φ, o(s, a, s)) = φ ∧ ((fail ∧ o−) ∨ o+)

filter(φ, o(s, a, s′)) = φ ∧ o+

where:

o− =
∨

pre(a,p)∈F :
p6∈s

pre(a, p)

o+ = opre ∧ oadd ∧ odel

opre =
∧

pre(a,p)∈F :
p6∈s

¬pre(a, p)

oadd =
∧

add(a,p)∈F :
p∈s′\s

add(a, p) ∧
∧

add(a,p)∈F :
p6∈s∪s′

¬add(a, p)

odel =
∧

del(a,p)∈F:
p∈s\s′

del(a, p) ∧
∧

del(a,p)∈F :
p∈s∩s′

¬del(a, p)

We assume that the state will remain unchanged upon executing an action whose

precondition is not satisfied. As the state is observable, filter(φ, o(s, a, s)) references the

case wherein the state does not change, and filter(φ, o(s, a, s′)) references the case wherein

the state does change. If the state does not change, then either the action failed (o−) and

one of its unsatisfied possible preconditions is a precondition, or the action succeeded (o+).

We use the fail proposition to denote interpretations under which a plan failed because it

is not always observable that the plan has failed. If the state changes, then the agent knows

that the action succeeded. If an action succeeds, the agent can conclude that:

i) each possible precondition that was not satisfied is not a precondition (opre);

ii) each possible add effect that appears in the successor but not the predecessor state is

an add effect, and each that does not appear in either state is not an add effect (oadd);

32

iii) each possible delete effect that appears in the predecessor but not the successor is a

delete effect, and each that appears in both states is not (odel).

3.5 Planning

We label predicted state propositions and actions with domain interpretations that will

respectively fail to achieve the proposition or fail to achieve the preconditions of an action.

That is, labels indicate the cases in which a proposition will be false; i.e., the plan fails

to establish the proposition. Labels d(·) are represented as propositional sentences over F

whose models correspond to failed domain interpretations.

Initially, each proposition p0 ∈ s0, in the state from which a plan is generated, is labeled

d(p0) =⊥ to denote that there are no interpretations in the current state where a proposition

may be false (the state is fully-observable), and each p0 6∈ s0 is labeled d(p0) = > to denote

they are known false. For all t ≥ 0, we define:

d(at) = d(at−1) ∨
∨

p∈pre(a) or
φ|=pre(a,p)

d(pt) ∨
∨

p:φ?pre(a,p)

(d(pt) ∧ pre(at, p))

d(pt+1) =

d(pt) ∧ d(at) : p ∈ add(at) or φ |= add(at, p)

d(pt) ∧ (d(at) ∨ ¬add(at, p) : φ?add(at, p))

> : p ∈ del(at) or φ |= del(at, p)

d(pt) ∨ del(at, p) : φ?del(at, p)

d(pt) : otherwise

where d(a−1) = ⊥. The intuition behind the label propagation is that an action will fail in

the domain interpretations d(at) wherein a prior action failed, a known precondition is not

satisfied, or a possible precondition is not satisfied. As defined for d(pt+1), the plan will fail

to achieve a proposition at time t+ 1 in all interpretations wherein:

i) the plan fails to achieve the proposition at time t and the action fails;

ii) the plan fails to achieve the proposition at time t and the action fails or it does not

add the proposition in the interpretation;

iii) the action deletes the proposition;

33

iv) the plan fails to achieve the proposition at time t or in the interpretation the action

deletes the proposition; or

v) the action does not affect the proposition and prior failures apply.

A consequence of our definition of action failure is that each action fails if any prior

action fails. This definition follows from the semantics that the state becomes undefined if

we apply an action whose preconditions are not satisfied. While we use this notion in plan

synthesis, we explore the semantics that the state does not change (i.e., it is defined) upon

failure when acting in incomplete domains. The pragmatic reason that we define action

failures in this manner is that we can determine all failed interpretations affecting a plan

d(π), by defining

d(π) = d(an−1) ∨
∨
p∈G d(pn).

That is, failure to execute an action is propagated to a failure to achieve the goal. For

example, our plan example from the previous section has the failure explanation label

d(π) = pre(a, r) ∨ del(a, p) ∨ (del(b, q) ∧ pre(c, q)).

3.5.1 Incomplete Domain Relaxed Plans

The DeFault planner (see Chapter 2) guides its expansion of plans that are labeled with

failure explanations by computing relaxed plans with failure explanations. We also use such

relaxed plan failure expalantions to select questions. Finding a relaxed plan that attempts to

minimize failure explanations involves propagating failed interpretation labels in a planning

graph. Propagating labels relies on selecting an action to support each proposition, and we

select supporter at+k(p) at step k of the planning graph for state st with the fewest failed

interpretations, denoted by its label d̂(at+k(p)).

A relaxed planning graph with propagated labels is a layered graph of sets of vertices of

the form (P̂t, Ât, ..., Ât+m, P̂t+m+1). The relaxed planning graph built for state s̃t defines:

P0 = {pt|p ∈ st};

At+k = {at+k|∀p∈pre(a)pt+k ∈ Pt+k, a ∈ A ∪A(P)}; and

Pt+k+1 = {pt+k+1|at+k ∈ At+k, p ∈ add(a) ∪ {p|φ 6|= ¬add(a, p)};

34

for k = 0, ...,m. Much like the successor function used to compute next states, the relaxed

planning graph assumes optimistic semantics for action effects by adding possible add effects

to proposition layers. In addition, as explained below, it associates failed interpretations

with the possible adds.

Each planning graph vertex has a label, denoted d̂(·). The failed interpretations d̂(pt)

affecting a proposition are defined such that:

d̂(pt) = d(pt);

and for k ≥ 0,

d̂(at+k) =
∨

p∈pre(a) or
φ|=pre(a,p)

d̂(pt+k) ∨
∨

φ?pre(a,p)

(d̂(pt+k) ∧ pre(a, p))

d̂(pt+k+1) =

d̂(ât+k(p)) : p ∈ add(ât+k(p)) or φ |= add(ât+k(p), p)

d̂(ât+k(p)) ∨ ¬add(ât+k(p), p) : φ?add(ât+k(p), p)

Every action in every level k of the planning graph will fail in any interpretation in which

their preconditions are not supported. A proposition will fail to be achieved in any inter-

pretation in which the chosen supporting action fails to add the proposition.

The relaxed planning graph expansion terminates at the level t + k + 1 wherein the

goals have been reached at t+k+1. The h∼FF heuristic makes use of the chosen supporting

action ât+k(p) for each proposition that requires support in the relaxed plan, and, hence,

measures the number of actions used while attempting to minimize failed interpretations.

The failure explanation of the relaxed plan is defined by

d(π̂) =
∨
p∈G

d̂(pt+m+1).

3.6 Goal-Directed Knowledge Acquisition

We describe several approaches to formulating questions for a domain expert in incom-

plete domains, which include asking all possible questions in an uninformed manner, asking

no questions but learning by trial and error, and using plans to select goal directed ques-

tions. We discuss the approaches by increasing sophistication and follow with an empirical

evaluation.

35

3.6.1 Uninformed QA

Uninformed QA (UQA) is the strategy taken by an agent that cannot plan, will not

plan, or will not act under uncertainty. Thus, the agent must ask the domain expert about

each incomplete feature of the domain without regard to its relevance to goal achievement.

As such, uninformed QA-based agents ask a set of questions QF = F about every feature

in F , formulate a classical plan, and execute the plan.

3.6.2 Non-QA

Non-QA is the strategy taken by an agent that would rather act under uncertainty

and ask no questions of the domain expert. Non-QA agents are potentially reckless because

learning about the domain sometimes requires that they apply actions whose preconditions

may be unsatisfied.

Algorithm 2 is the strategy used by the non-QA agent. The algorithm involves initial-

izing the agent’s knowledge and plan (lines 1 and 2). Then, while the plan is non-empty

and the goal is not achieved (line 3), the agent proceeds as follows.

Algorithm 2: Non-QA(s,G,A)

Input: state s, goal G, actions A
φ← >;1

π ← plan(s,G,A, φ);2

while π 6= () and G 6⊆ s do3

a← π.first();4

π ← π.rest();5

if pre(a) ⊆ s and φ 6|= d(π) then6

s′ ← Execute(a);7

φ← filter(φ, o(s, a, s′));8

s← s′;9

else10

φ← φ ∧ fail;11

end12

if φ |= fail then13

φ← ∃failφ;14

π ← plan(s,G,A, φ);15

end16

end17

36

The agent selects the next action in the plan (line 4) and determines if it can apply the action

(line 6). If it applies the action, the next state is returned by the environment/simulator

(line 7) and the agent updates its knowledge (line 8) and state (line 9); otherwise, the agent

determines that the plan will fail (line 11). If the plan has failed (line 13), the agent forgets

its knowledge of the plan failure by projecting over fail (line 14) and finds a new plan using

its new knowledge (line 15).

Using φ, it is possible to determine if the next action in a plan, or any subsequent

action, can or will fail. If φ∧d(π) is satisfiable, then π can fail, and if φ |= d(π), then π will

fail. For example, upon executing a, the non-QA agent might observe the state transition

o1 = o({p, q}, a, {p, q}), and thus

φ′ = filter(φ, o1) = ¬del(a, r).

The agent must replan because φ′ |= d(π).

3.6.3 Goal-Directed QA

Similar to the non-QA agent, goal-directed QA agents plan under uncertainty, but

they differ in that they ask about action features that are relevant to the plan. There

are a number of strategies for using a plan to generate questions, and we assume that the

goal-directed QA agent continues to ask questions and replan until it finds a plan that is

guaranteed to succeed. The strategies include:

i) asking about all incomplete features related to actions in a plan;

ii) asking about only those features that can cause failure; and

iii) ranking the questions based on the diagnoses of plan failure to “fail fast.”

3.6.4 Plan Relevant Questions

Without computing failure explanations, it is possible to determine relevant questions

by inspecting the actions in the plan and their possible preconditions and effects such that

the set of questions is defined:

37

Qπ = {pre(at, p) | φ?pre(at, p), at ∈ π} ∪

{add(at, p) | φ?add(at, p), at ∈ π} ∪

{del(at, p) | φ?del(at, p), at ∈ π}

By using Qπ and no plan failure explanation, an agent is relegated to asking each question

because it cannot determine if the plan will fail given the answers it has received thus

far. The agent can only replan afterward and determine if the plan contains actions with

incomplete features. The example plan would lead to Qπ = F because the incomplete

feature in F relates to an action in the plan. However, as we saw in d(π), add(a, r) is

irrelevant because the plan will succeed no matter its value.

3.6.5 Plan Failure Diagnosis Relevant Questions

A question is relevant to a plan π if the incomplete feature f is entailed by a potential

diagnosis δ of plan failure. Each diagnosis δ of the plan failure explanation d(π) is a

conjunction of incomplete features that must interact to destroy the plan. Thus, if δ |= d(π)

and δ |= f, then

Qd(π) = {f|δ |= d(π), δ |= f or δ |= ¬f}.

The example plan yields

Qd(π) = {pre(a, r), del(a, p), del(b, q), pre(c, q)}

because each feature appears in a diagnosis.

3.6.6 Ranking Relevant Questions

The features in smaller cardinality diagnoses have a greater impact on the plan because

a smaller number of unfavorable answers are needed to prove the plan will fail; asking

about these features will enable an agent to fail fast. Moreover, features appearing in more

diagnoses have a high impact on plan failure. Using this diagnosis-impact (DI) measure, we

can prioritize by selecting the f where:

38

f = argmax
f∈Qd(π)

∑

δ:δ|=d(π),
δ|=f

1

|{f|δ |= f}|2

The denominator of the expression above is squared to penalize the contribution of

larger diagnoses. DI determines the incomplete feature most likely to cause the plan to

fail. Using DI for the example plan questions will select pre(a, r) and del(a, p) as equally

preferred questions because both appear in a size one diagnosis.

An alternative, based on Shannon entropy (SE), selects the question f where:

f = argmin
f∈Qd(π)

−
∑

f∈{f,¬f}

pf log pf

pf = |M(filter(φ, f) ∧ d(π))|/2|F |

and M(·) denotes the set of propositional models of some sentence. The probability pf

that the plan fails under the true domain model is the proportion of propositional models

wherein after filtering f the plan will fail. If it is the case that filter(φ, f) |= d(π), then

π will fail and the agent must replan; when computing pf and the plan fails, we compute

a new plan π′ given the knowledge φ′ = filter(φ, f) and replace d(π) with d(π′). If no

plan π′ exists, we define pf = 1 to denote that the absence of a plan indicates failure. For

example, both pre(a, r) and del(a, p) are equally preferred questions because their entropy

is 0.16, whereas both del(b, q) and pre(c, q) have entropy 0.32.

3.7 Empirical Evaluation

The empirical evaluation is divided into three sections: the domains used for the ex-

periments, the test setup used, and results. The questions that we seek to answer include:

Q1 – Does reasoning about incompleteness effect KA strategy performance?

Q2 – Which KA strategy has best solution time and number of questions trade-off?

Q3 – Do relaxed plans reduce the cost of KA?

39

3.7.1 Domains

We use the same four domains as presented in Chapter 2 for our evaluation: a modified

Pathways, Bridges, a modified PARC Printer, and Barter World. Again, in all domains,

we derived multiple instances by randomly (with probabilities 0.25, 0.5, 0.75, and 1.0 for

each action) injecting incomplete features. Such variations of the domains create instances

that include up to 10,000 incomplete features each. All results are taken from 10 random

instances (varying F) of each problem and three ground-truth domains selected by the

simulator. For the reader’s convenience, we again present the descriptions of these four

domains.

The Pathways (PW) domain from the International Planning Competition (IPC) in-

volves actions that model chemical reactions in signal transduction pathways. Pathways is a

naturally incomplete domain where the lack of knowledge of the reactions is quite common,

and are an active research topic in biology.

The Bridges (BR) domain consists of a traversable grid wherein the task is to find a

different treasure at each corner of the grid. Grids are square and vary in dimension (2-16).

Again, as presented in Chapter 2, there are three versions (summed in these results):

BR1 – a bridge might be required to cross between some grid locations (a possible

precondition);

BR2 – BR1, plus many of the bridges may have a troll living underneath that will take

all the treasure accumulated (a possible delete effect);

BR3 – BR2, plus the corners may give additional treasures (possible add effects).

The PARC Printer (PP) domain from the IPC involves planning paths for sheets of

paper through a modular printer. A source of domain incompleteness is that a module

accepts only certain paper sizes, but its documentation is incomplete. Thus, in using the

module, paper size becomes a possible precondition to actions.

The Barter World (BW) domain involves navigating a grid and bartering items to

travel between locations. The domain is incomplete because actions that acquire items are

not always known to be successful (possible add effects) and traveling between locations

40

may require certain items (possible preconditions) and also may result in the loss of an item

(possible delete effects). Grids vary in dimension (2-16) and items in number (1-4).

3.7.2 Test Setup

The tests were run on a Linux machine with a 3 Ghz Xeon processor, a memory limit

of 2GB, and a 60-minute time limit for each simulation instance. All code is written in Java

and run on the 1.6 JVM. DeFault uses a greedy best-first search with deferred heuristic

evaluation and a dual-queue for preferred and nonpreferred operators (Helmert 2006).

3.7.3 Results

Table 3.1 shows the performance ratio for FF versus DeFault as our agent’s planner; a

result greater than 1.0 indicates that DeFault is the better performer. Table 3.2 contrasts

the performance of non-QA against uniformed QA. Table 3.3 compares the various KA

strategies to each other. Lastly, Table 3.4 shows the performance ratio of relaxed plans over

fully-formed plans as the source for question derivation, wherein a result greater than 1.0

indicates that the relaxed plan is the better performer.

Table 3.1: FF Vs. DeFault Performance Ratio (Number Solved / Number of Steps / Time
/ Questions).

Domain Non-QA SE

BR 0.25 1.0/1.2/6.4/- 1.0/1.0/23.4/3.8

BR 0.5 0.9/1.2/4.5/- 1.1/1.0/4.4/1.7

BR 0.75 1.0/1.0/3.9/- 1.2/1.0/1.3/1.2

BR 1.0 1.1/1.0/1.3/- 1.3/1.0/2.4/1.2

PW 0.25 1.0/1.0/1.7/- 1.3/0.9/3.7/1.6

PW 0.5 0.5/1.1/1.6/- 1.5/1.1/6.5/1.7

PW 0.75 0.7/1.1/1.8/- 1.2/1.0/1.6/1.1

PW 1.0 0.8/0.9/0.8/- 1.1/1.0/1.1/1.1

PP 0.25 0.8/1.0/2.3/- 1.1/1.0/2.2/1.1

PP 0.5 2.3/1.0/3.6/- 1.4/1.0/0.9/0.9

PP 0.75 -/-/-/- 2.1/1.0/1.0/1.0

PP 1.0 -/-/-/- 1.9/1.1/0.6/0.8

BW 0.25 0.8/1.2/9.7/- 1.0/0.9/18.5/3.3

BW 0.5 0.7/1.2/12.2/- 1.0/1.0/18.9/2.3

BW 0.75 0.7/1.0/11.5/- 1.2/0.9/8.8/1.4

BW 1.0 0.5/0.9/27.3/- 1.5/0.9/14.0/1.3

41

Table 3.2: Extreme Strategy Average Performance (Number Solved / Number of Steps /
Time (seconds) / Questions). Bold Indicates Best Performers.

Domain Non-QA QF
BR 0.25 271/22.1/1.6/- 274/20.2/0.5/57.5

BR 0.5 199/27.1/3.0/- 251/17.9/0.4/114.1

BR 0.75 131/18.2/1.9/- 200/13.5/0.2/65.7

BR 1.0 89/12.0/0.9/- 190/12.1/0.2/107.8

PW 0.25 91/13.5/0.4/- 121/16.8/0.3/28.9

PW 0.5 80/21.4/4.5/- 180/27.2/0.5/75.8

PW 0.75 70/12.4/0.5/- 130/15.2/0.3/73.2

PW 1.0 40/11.2/0.5/- 127/14.5/0.3/104.3

PP 0.25 37/9.5/0.3/- 151/11.0/0.4/36.4

PP 0.5 6/9.3/0.4/- 151/11.0/0.4/75.3

PP 0.75 -/-/-/- 150/11.0/0.4/109.4

PP 1.0 -/-/-/- 150/11.0/0.4/145.2

BW 0.25 276/13.6/4.7/- 321/11.5/0.8/232.8

BW 0.5 179/11.0/7.7/- 239/9.2/0.4/205.7

BW 0.75 118/12.1/2.6/- 207/8.1/0.3/172.8

BW 1.0 11/12.5/3.6/- 20/8.6/0.3/189.8

Table 3.3: Goal-Directed KA Average Performance Using DeFault (Number Solved / Num-
ber of Steps / Time (seconds) / Questions).
Domain Qπ Qd(π) DI SE

BR 0.25 272/19.8/1.8/4.1 272/19.8/1.8/2.8 272/19.9/1.9/2.2 271/20.0/15.4/2.3

BR 0.5 232/17.0/3.1/18.2 231/17.1/3.7/12.4 226/16.8/4.4/8.9 219/16.1/146.3/10.3

BR 0.75 191/12.3/1.9/24.5 191/12.3/1.9/17.5 183/12.0/3.1/13.2 171/11.2/75.9/12.6

BR 1.0 172/11.0/3.6/35.0 169/10.9/3.4/22.1 173/10.7/3.5/17.1 151/9.5/128.9/15.9

PW 0.25 91/13.3/0.5/1.3 91/13.3/0.4/1.0 91/13.3/0.3/1.0 91/13.3/1.1/1.0

PW 0.5 130/27.5/10.3/10.9 130/27.5/10.2/7.7 141/24.8/11.5/5.0 101/16.4/42.0/3.0

PW 0.75 130/15.8/1.8/11.9 130/16.3/1.8/7.2 110/14.5/1.6/5.6 110/14.7/54.5/5.9

PW 1.0 127/14.6/1.5/21.7 127/15.2/2.1/12.8 117/14.5/2.6/10.2 118/14.2/83.6/10.8

PP 0.25 138/10.6/1.4/3.5 138/10.6/1.3/3.5 136/10.5/1.0/2.9 136/10.5/6.1/3.0

PP 0.5 126/10.3/1.9/7.9 126/10.3/1.8/7.9 121/10.1/1.8/6.0 110/9.8/24.3/6.4

PP 0.75 83/9.5/2.3/14.8 83/9.5/2.0/14.8 79/9.4/2.0/11.1 71/9.1/29.9/11.8

PP 1.0 84/9.1/2.9/21.3 83/9.1/2.7/21.1 80/8.4/3.8/17.6 78/8.4/36.5/18.1

BW 0.25 321/11.9/10.0/10.9 321/12.0/9.5/6.5 318/12.6/10.8/3.7 320/12.6/116.0/4.9

BW 0.5 230/8.9/11.3/20.7 230/9.2/12.2/15.2 227/9.6/15.6/9.5 228/9.5/171.1/11.5

BW 0.75 189/7.4/3.2/31.7 190/7.6/4.0/23.9 184/8.4/16.3/14.6 178/7.9/83.2/14.5

BW 1.0 13/5.9/2.1/28.5 14/6.5/3.0/25.6 15/7.1/7.9/17.5 13/6.3/201.9/20.2

42

Table 3.4: Plan Vs. Relaxed Plan Ratio in Shannon Entropy Strategy.
Domain SE

BR 0.25 1/1.0/8.3/1.0

BR 0.5 1/1.0/33.1/1.1

BR 0.75 1/1.0/51.1/1.1

BR 1.0 1/1.0/55.3/1.1

PW 0.25 1/1.0/5.4/1.0

PW 0.5 1/1.0/6.0/1.0

PW 0.75 1/1.0/7.4/1.0

PW 1.0 1/1.0/18.5/1.0

PP 0.25 1/1.0/4.9/1.0

PP 0.5 1/1.0/8.8/1.1

PP 0.75 1/1.0/9.7/1.1

PP 1.0 1/1.0/8.8/1.0

BW 0.25 1/1.0/14.4/1.1

BW 0.5 1/1.0/15.0/1.1

BW 0.75 1/1.0/20.4/1.1

BW 1.0 1/1.0/18.1/0.9

To answer Q1, Table 3.1 compares two planners and two KA strategies. The entries

in the table are the ratio of the number of problems solved, number of steps taken by the

agent, total time, and questions asked when using a planner that ignores incompleteness

(DeFault using the FF heuristic (Hoffmann and Nebel 2001)) and a planner that plans

with incompleteness (DeFault). The columns list results for the non-QA agent and the SE

strategy. We see that total time and number of steps is reduced in the non-QA agent when

planning with incompleteness (as also found in Chapter 2), and that the total time and

number of questions is reduced when using SE. The results demonstrate that planning with

incompleteness is beneficial whether asking questions or not.

To answer Q2, Tables 3.2 and 3.3 list the average performance of DeFault with various

KA strategies. We see that in comparing the two extremes, non-QA or QF , QF leads to

more solved instances and lower total time, but as expected a high number of questions. In

comparing the approaches that use a plan to limit and/or bias KA in Table 3.3, we note the

number of solved instances is relatively similar, but the methods that prioritize questions

based on the plan failure explanations (DI or SE) ask the fewest questions. The total time

43

taken is relatively similar among the methods, except for a noticeably higher average time

with SE – which is due to many hypothesized replanning episodes to compute the entropy.

To answer Q3, and follow up on the high cost of SE, Table 3.4 lists the performance

ratios of using SE with actual plans versus relaxed plans when replanning is required. We

note that the performance is nearly identical, with the exception of much lower total times

– which makes SE competitive with DI.

3.8 Conclusion

We have found that reasoning about incompleteness during planning leads to more

effective trial-and-error and KA-based agents. Further, we have shown that plans can

be used to help maintain a goal-directed focus on knowledge acquisition and lower the

overall strain upon a domain expert to answer many questions. In particular, methods

for prioritizing questions based on plan failure explanations are able to greatly reduce the

number of questions required to synthesize successful plans. Finally, we have demonstrated

that when determining best questions, relaxed plans can be an advantageous substitute for

actual plans.

44

CHAPTER 4

CONCLUSION

Two research papers constitute the main substance of this multi-paper thesis:

1. Planning and Acting in Incomplete Domains

2. Goal-Directed Knowledge Acquisition

These papers compose the bodies of Chapters 2 and 3, respectively.

Their mutual subject is our agent Goalie that plans, acts and learns in incomplete

domains. In Chapter 3 we saw the learning capability of Goalie extended from it’s initial

presentation in Chapter 2. While in Chapter 2 Goalie learns passively about its environ-

ment as it acts, in Chapter 3 Goalie learns actively via its newly-granted ability to ask

questions. We have shown that this extended learning ability allows Goalie to perform far

more effectively in incomplete domains. In sum, Goalie:

i) interleaves acting, planning, and question-asking;

ii) synthesizes plans that avoid execution failure due to ignorance of the domain model;

iii) uses these plans to identify relevant (goal-directed) questions;

iv) passively learns about the domain model during execution to improve later replanning

attempts;

v) and employs various targeted (goal-directed) strategies to ask questions (actively

learn).

Goalie’s planner DeFault is the first to utilize a forward state space-based heuristic

search that reasons about a domain’s incompleteness to avoid potential plan failure. We

have shown that DeFault performs best by counting prime implicants (failure diagnoses)

rather than propositional models. Further, we have shown that by reasoning about incom-

pleteness in planning (as opposed to ignoring it), Goalie fails and replans less often, and

executes fewer actions. Finally, we have shown that goal-directed knowledge acquisition –

45

prioritizing questions based on plan failure diagnoses – leads to fewer questions, lower over-

all planning and replanning time, and higher success rates than approaches that naively ask

many questions or learn by trial and error.

46

REFERENCES

Bertoli, P.; Botea, A.; and Fratini, S. 2009. Introduction. In Proceedings of ICKEPS,
ICAPS’09.

Blum, A., and Furst, M. L. 1995. Fast planning through planning graph analysis. In
Proceedings of IJCAI’95, 1636–1642.

Bonet, B., and Geffner, H. 2000. Planning with incomplete information as heuristic search
in belief space. In Proceedings of AIPS’00, 52–61.

Boutilier, C. 2002. A pomdp formulation of preference elicitation problems. In AAAI/IAAI,
239–246.

Bryant, R. 1986. Graph-based algorithms for Boolean function manipulation. IEEE Trans-
actions on Computers C-35(8):677–691.

Bryce, D.; Kambhampati, S.; and Smith, D. 2008. Sequential monte carlo in probabilistic
planning reachability heuristics. AIJ 172(6-7):685–715.

Bryce, D. 2011. Planning in incomplete domains. Technical Report 001, Utah State Uni-
versity. Available at: http://www.cs.usu.edu/∼danbryce/papers/USU-CS-TR-11-001.pdf.

Chang, A., and Amir, E. 2006. Goal achievement in partially known, partially observable
domains. In Proceedings of ICAPS’06.

Choudhary, A.; Datta, A.; Bittner, M. L.; and Dougherty, E. R. 2006. Intervention in a
family of boolean networks. Bioinformatics 22(2):226–232.

Darwiche, A., and Marquis, P. 2002. A knowledge compilation map. JAIR 17:229–264.

de Kleer, J., and Williams, B. C. 1987. Diagnosing multiple faults. AIJ 32(1):97–130.

de Kleer, J.; Mackworth, A. K.; and Reiter, R. 1992. Characterizing diagnoses and systems.
AI 56(2-3):197–222.

Domshlak, C., and Hoffmann, J. 2007. Probabilistic planning via heuristic forward search
and weighted model counting. JAIR 30:565–620.

Fikes, R., and Nilsson, N. 1971. STRIPS: A new approach to the application of theorem
proving to problem solving. In Proceedings of AAAI’71, 608–620.

Garland, A., and Lesh, N. 2002. Plan evaluation with incomplete action descriptions. In
Proceedings of AAAI’02.

47

Gervasio, M.; Yeh, E.; and Myers, K. 2011. Learning to ask the right questions to help a
learner learn. In Proceedings of the IUI’11.

Helmert, M. 2006. The fast downward planning system. JAIR 26:191–246.

Hoffmann, J., and Nebel, B. 2001. The FF planning system: Fast plan generation through
heuristic search. JAIR 14:253–302.

Kambhampati, S. 2007. Model-lite planning for the web age masses. In Proceedings of
AAAI’07.

Mailler, R.; Bryce, D.; Shen, J.; and Orielly, C. 2009. Mable: A framework for natural
instruction. In Proceedings of AAMAS’09.

Nilim, A., and El Ghaoui, L. 2005. Robust control of Markov decision processes with
uncertain transition matrices. Oper. Res. 53(5):780–798.

Oates, T., and Cohen, P. R. 1996. Searching for planning operators with context-dependent
and probabilistic effects. In AAAI/IAAI, Vol. 1, 863–868.

Roth, D. 1996. On the hardness of approximate reasoning. AIJ 82(1-2):273–302.

Sutton, R. S., and Barto, A. G. 1998. Reinforcement Learning: An Introduction (Adaptive
Computation and Machine Learning). Cambridge, MA, USA: The MIT Press.

Vahidi, A. 2011. JDD: Java BDD package. http://javaddlib.sourceforge.net/jdd/.

Wu, K.; Yang, Q.; and Jiang, Y. 2007. ARMS: An automatic knowledge engineering tool
for learning action models for AI planning. K. Eng. Rev. 22(2):135–152.

48

APPENDIX

49

April 15, 2011

I, Daniel Morwood, co-author of the paper Goal-Directed Knowledge Acquisition, do

hereby give my permission to Christopher H. Weber to use this paper as part of his Utah

State University Masters of Science thesis entitled Planning, Acting, and Learning in In-

complete Domains.

Yours,

Daniel Morwood

Utah State University

Department of Computer Science

danmorwood@gmail.com

	Planning, Acting, and Learning in Incomplete Domains
	Recommended Citation

	tmp.1334248210.pdf.jyR88

