Utah State University
DigitalCommons@USU

1998

Climate of Salt Lake City, Utah

William J. Alder
Laurence S. Nierenberg
Sean T. Buchanan
William Cope
James A. Cisco
Craig C. Schmidt

See next page for additional authors

Follow this and additional works at: https://digitalcommons.usu.edu/elusive_docs
Part of the Environmental Sciences Commons

Recommended Citation

Alder, William J.; Nierenberg, Laurence S.; Buchanan, Sean T.; Cope, William; Cisco, James A.; Schmidt, Craig C.; Smith, Alexander R.; and Figgins, Wilbur E., "Climate of Salt Lake City, Utah" (1998). Elusive Documents. Paper 57.
https://digitalcommons.usu.edu/elusive_docs/57

This Book is brought to you for free and open access by the U.S. Government Documents (Utah Regional Depository) at DigitalCommons@USU. It has been accepted for inclusion in Elusive Documents by an authorized administrator of DigitalCommons@USU. For more information, please contact digitalcommons@usu.edu.

Authors

William J. Alder, Laurence S. Nierenberg, Sean T. Buchanan, William Cope, James A. Cisco, Craig C.
Schmidt, Alexander R. Smith, and Wilbur E. Figgins

NOAA TECHNICAL MEMORANDUM NWS WR-152

CLIMATE OF SALT LAKE CITY, UTAH

William J. Alder, Laurence S. Nierenberg, Sean T. Buchanan, William Cope (Retired), James A. Cisco, Craig C. Schmidt, Alexander R. Smith (Retired), Wilbur E. Figgins (Retired)
National Weather Service Forecast Office Salt Lake City, Utah

February 1998
Seventh Revision

NOAA TECHNICAL MEMORANDA

National Weather Service, Western Region Subseries

The National Weather Service (NWS) Western Region (WR) Subseries provides an informal medium for the documentation and quick dissemination of results not appropriate, or not yet ready, for formal publication. The series is used to report on work in progress, to describe technical procedures and practices, or to relate progress to a limited audience. These Technical Memoranda will report on investigations devoted primarily to regional and local problems of interest mainly to personnel, and hence will not be widely distributed.

Papers 1 to 25 are in the former series, ESSA Technical Memoranda, Western Region Technical Memoranda (WRTM); papers 24 to 59 are in the former series, ESSA Technical Memoranda, Weather Bureau Technical Memoranda (WBTM). Beginning with 60, the papers are part of the series, NOAA Technical Memoranda NWS. Out-of-print memoranda are not listed.

Papers 2 to 22, except for 5 (revised edition), are available from the National Weather Sevice Western Region, Scientific Services Division, 125 South State Street - Rm 1210, Salt Lake City, Utah 84138-1102. Paper 5 (revised edition), and all others beginning with 25 are available from the National Technical Information Service, U.S. Department of Commerce, Silis Building, 5285 Port Royal Road, Springfield, Virginia 22161. Prices vary for all paper copies; microfiche are $\$ 3.50$. Order by accession number shown in parentheses at end of each entry.

ESSA Technical Memoranda (WRTM)

2 Climatological Precipitation Probabilities. Compiled by Lucianne Miller, December 1965.
3 Western Region Pre-and Post-FP-3 Program, December 1, 1965, to February 20, 1966. Edward Destern Region Pre-and
D. Diemer, March 1966.
5 Station Descriptions of Local Effects on Synoptic Weather Patterns. Philip Williams, Jr., April 1966 (Revised November 1967, October 1969). (PB-17800)
8 interpreting the RAREP. Herbert P. Benner, May 1966 (Revised January 1967).
Some Electrical Processes in the Atmosphere. J. Latham, June 1966
17 A Digitalized Surnmary of Radar Echoes within 100 Miles of Sacramento, California. J. A. Youngberg and L. B. Overaas, December 1966.
21 An Objective Aid for Forecasting the End of East Winds in the Columbia Gorge, July through October. D. John Coparanis, April 1967.
22 Derivation of Radar Horizons in Mountainous Terrain. Roger G. Pappas, April 1967.

ESSA Technical Memoranda, Weather Bureau Technical Memoranda (WBTM)

25 Verification of Operation Probability of Precipitation Forecasts, April 1966-March 1967. W. W. Dickey, October 1967. (PE-176240)
26 A Study of Winds in the Lake Mead Recreation Area. R. P. Augulis, January 1968. (PB-177830)
28 Weather Extremes. R. J. Schmidli, April 1968 (Revised March 1986). (PB86 177672/AS). (Revised October 1991-PB92-115062/AS)
29 Small-Scale Analysis and Prediction. Philip Williams, Jr., May 1968. (PB178425)
30 Numerical Weather Prediction and Synoptic Meteorology. CPT Thomas D. Murphy, USAF, May 1968. (AD 673365)

31 Precipitation Detection Probabilities by Sait Lake ARTC Radars. Robert K. Belesky, July 1968. (PB 179084)

32 Probability Forecasting.-A Problem Analysis with Reference to the Portland Fire Weather District. Harold S. Ayer, July 1968 . (PB 179289)
36 Temperature Trends in Sacramento--Another Heat Island. Anthony D. Lentini, February 1969. (PB 183055)

37 Disposal of Logging Residues Without Damage to Air Quality. Owen P. Cramer, March 1969. (PB 183057)

39 Upper-Air Lows Over Northwestern United States. A.L. Jacobson, Aprii 1969. PB 184296)
40 The Man-Machine Mix in Apptied Weather Forecasting in the 1970s. L.W. Snellman, August 1969. (PB 185068)
43 Forecasting Maximum Temperatures at Helena, Montana. David E. Olsen, October 1969. (PB 185762)

44 Estimated Retum Periods for Short-Duration Precipitation in Arizona. Paul C. Kangieser, October 1969. (PB 187763)

46 Applications of the Net Radiometer to Short-Range Fog and Stratus Forecasting at Eugene, Oregon. L. Yee and E. Bates, December 1969. (PB 190476)

47 Statistical Analysis as a Flood Routing Toal. Robert J.C. Burnash, December 1969. (PB 188744) 48 Tsunami. Richard P. Augulis, February 1970. (PB 190157)
49 Predicting Precipitation Type. Robert J.C. Burnash and Floyd E. Hug, March 1970. (PB 190962) 50 Statistical Report on Aeroallergens (Pollens and Molds) Fort Huachuca, Arizona, 1969. Wayne S. Johnson, Aprit 1970. (PB 191743)
51 Western Region Sea State and Surf Forecaster's Manual. Gordon C. Shields and Gerald B. Burdwell, July 1970. (PB 193102)
52 Sacramento Weather Radar Climatology. R.G. Pappas and C. M. Veliquette, July 1970. (PB 193347)

54 A Refinement of the Vorticity Field to Delineate Areas of Significant Precipitation. Barry B. Aronovitch, August 1970.
55 Application of the SSARR Model to a Basin without Discharge Record. Vail Schermerhorn and Donal W. Kuehl, August 1970. (PB 194394)
56 Areal Coverage of Precipitation in Northwestern Utah. Philip Williams, Jr., and Werner J. Heck, September 1970. (PB 194389)
57 Preliminary Report on Agricultural Field Burning vs. Atmospheric Visibility in the Willamette Valley of Oregon. Eari M. Bates and David O. Chilcote, September 1970. (PB 194710)
58 Air Pollution by Jet Aircraft at Seattle-Tacoma Airport. Wallace R. Donaldson, October 1970. (COM 7100017)
59 Application of PE Model Forecast Parameters to Local-Area Forecasting. Leonard W. Snellman, October 1970. (COM 71 00016)
60 An Aid for Forecasting the Minimum Temperature at Medford, Oregon, Arthur W. Fritz, October 1970. (COM 7100120)
63700 -mb Warm Air Advection as a Forecasting Tool for Montana and Northern Idaho. Norris E. Woerner, February 1971. (COM 71 00349)
64 Wind and Weather Regimes at Great Falis, Montana. Warren B. Price, March 1971
65 Climate of Sacramento, California. Richard Honton and Tony Martini (Retired), August 1996. (Fifth Revision) (PB89 207781/AS)
66 A Preliminary Report on Correlation of ARTCC Radar Echoes and Precipitation. Wilbur K. Hall, June 1971. (COM 71 00829)

69 National Weather Sevice Support to Soaring Activities. Ellis Burton, August 1971. (COM 71 00956)
71 Western Region Synoptic Analysis-Problems and Methods. Philip Williams, Ji., February 1972. (COM 72 10433)
74 Thunderstorms and Hail Days Probabilities in Nevada. Clarence M. Sakamoto, April 1972. (COM 72 10554) Robert Y.G. Lee, June 1973. (COM 73 11276) Williams, January 1976. (PB 253 053/AS)
104 Objective Aids for Forecasting Minimum Temperatures at Reno, Nevada, During the Summer Months. Christopher D. Hill, January 1976. (PB 252 866/AS)
105 Forecasting the Mono Wind. Charles P. Ruscha, Jr., February 1976. (PB 254 650)
106 Use of MOS Forecast Parameters in Temperature Forecasting. John C. Plankinton, Jr., March 1976. (PB 254 649)

107 Map Types as Aids in Using MOS PoPs in Western United States. Ira S. Brenner, August 1976. (PB 259 594)
108 Other Kinds of Wind Shear. Christopher D. Hill, August 1976. (PB 260 437/AS)
109 Forecasting North Winds in the Upper Sacramento Valley and Adjoining Forests. Christopher E. Fontana, September 1976. (PB 273 677/AS)
Cool Inflow as a Weakening Influence on Eastern Pacific Tropical Cyclones. William J. \square November 1976. (PB 264 655/AS)
112 The MAN/MOS Program. Alexander E. MacDonald, February 1977. (PB 265 941/AS)
113 Winter Season Minimum Temperature Formula for Bakersfield, California, Using Multiple Regression. Michael J. Oard, February 1977. (PB 273 694/AS)
114 Tropical Cyclone Kathleen. James R. Fors, February 1977. (PB 273 676/AS)
116 A Study of Wind Gusts on Lake Mead. Bradley Colman, April 1977. (PB 268 847)
117 The Relative Frequency of Cumulonimbus Clouds at the Nevada Test Site as a Function of KValue. R.F. Quiring, April 1977. (PB 272 831)
118 Moisture Distribution Modification by Upward Vertical Motion. Ira S. Brenner, April 1977. (PB 268 740)

119 Relative Frequency of Occurrence of Warm Season Echo Activity as a Function of Stability Indices Computed from the Yucca Flat, Nevada, Rawinsonde. Darryl Randerson, June 1977 (PB 271 290/AS)
121 Climatological Prediction of Cumulonimbus Clouds in the Vicinity of the Yucca Flat Weather Station. R.F. Quiring, June 1977. (PB 271 704/AS)
122 A Method for Transforming Temperature Distribution to Normality. Morris S. Webb. Jr., June 1977. (PB 271 742/AS)
124 Statistical Guidance for Prediction of Eastern North Pacific Tropical Cyclone Motion - Part I. Charles J. Neumann and Preston W. Leftwich. August 1977. (PB 272 661)
125 Statistical Guidance on the Prediction of Eastern North Pacific Tropical Cyclone Motion - Part II. Preston W. Leftwich and Charles J. Neumann, August 1977. (PB 273 155/AS)
126 Climate of San Francisco. E. Jan Null, February 1978. (Revised by George T. Pericht, April 1988 and January 1995). (PB88 2C8624/AS)
Development of a Probability Equation for Winter-Type Precipitation Patterns in Great Falls, Montana. Kenneth B. Mielke, February 1978. (PB 281 387/AS)
128 Hand Calculator Program to Compute Parce! Thermal Dynamics. Dan Gudgel, April 1978. (PB 283 080/AS)
129 Fire whirls. David W. Goens, May 1978. (PB 283 866/AS)
130 Flash-Flood Procedure. Ralph C. Hatch and Gerald Williams, May 1978. (PB 286 014/AS)
131 Automated Fire-Weather Forecasts. Mark A. Mollner and David E. Olsen, September 1978. (PB 289 916/AS)
132 Estimates of the Effects of Terrain Blocking on the Los Angeles WSR-74C Weather Radar. R.G. Pappas, R.Y. Lee, B.W. Finke, October 1978. (PB 289767/AS)
133 Spectral Techniques in Ocean Wave Forecasting. John A. Jannuzzi, October 1978. (PB291317/AS)
134 Solar Radiation. John A. Jannuzzi, November 1978. (PB291195/AS)
135 Application of a Spectrum Analyzer in Forecasting Ocean Swell in Southern California Coastal Waters. Lawrence P. Kierulff, January 1979. (PB292716/AS)
136 Basic Hydrologic Principles. Thomas L. Dietrich, January 1979. (PB292247/AS)
137 LFM 24-Hour Prediction of Eastern Pacific Cyclones Refined by Satellite Images. John R. Zimmerman and Charles P. Ruscha, Jr., January 1979. (PB294324/AS)
138 A Simple Analysis/Diagnosis System for Real Time Evaluation of Vertical Motion. Scott Heflick and James R. Fors, February 1979. (PB294216/AS)
139 Aids for Forecasting Minimum Temperature in the Wenatchee Frost District. Robert S. Rc April 1979. (PB298339/AS)
140 Influence of Cloudiness on Summertime Temperatures in the Eastern Washington Fire We_crater district. James Hoicomb, April 1979. (PB298674/AS)
141 Comparison of LFM and MFM Precipitation Guidance for Nevada During Doreen. Christopher Hill, April 1979. (PB298613/AS)
142 The Usefulness of Data from Mountaintop Fire Lookout Stations in Determining Atmospheric Stability. Jonathan W. Corey, April 1979. (PB298899/AS)
143 The Depth of the Marine Layer at San Diego as Related to Subsequent Cool Season Precipitation Episodes in Arizona. Ira S. Brenner, May 1979. (PB298817/AS)

NOAA TECHNICAL MEMORANDUM NWS WR-152

CLIMATE OF SALT LAKE CITY, UTAH

William J. Alder, Laurence S. Nierenberg, Sean T. Buchanan, William Cope (Retired), James A. Cisco, Craig C. Schmidt, Alexander R. Smith (Retired), Wilbur E. Figgins (Retired) National Weather Service Forecast Office Salt Lake City, Utah

February 1998
Seventh Revision

This publication has been reviewed and is approved for publication by Scientific Services Division, Western Region

Delain A. Edman, Chief
Scientific Services Division
Salt Lake City, Utah

CONTENTS

Table of Contents I - V

1. Introduction 1
II. Geographical and Climatological Summary1
III. History of Weather Observations at Salt Lake City 2
IV. Selected Highlights of the Salt Lake City Airport Weather Records. 6
V. Local Topography Effects Upon the Salt Lake Weather 7
VI. Air Pollution and Trapped Air 8
VII. Solar Energy and Sky Cover 8
VIII. Acknowledgments 9
IX. References 10
X. Salt Lake City Observation Site (Weather Service Forecast Office) in relation to Salt Lake County (Figure 3) 11
XI. Table 1. Sunrise and Sunset Table 12
XII. Table 2. Normals, Means, and Extremes 1961-1990 13
XIII. Table 3, a-d. Daily Normals of Temperature, Heating and Cooling Degree Days, and Precipitation 14-17
XIV. TEMPERATURE DATA:
Figure 4, a-f. Smoothed Average Hourly Temperature Curves by Month 18-23
Tables 4a-41. Daily Maximum and Minimum Temperature Extremes for for Each Month 24-35
Table 5a. Normal Monthly Maximum Temperature, plus Highest and Lowest Daily Extremes for each Month with Day and Year of Occurrence 36
Table 5b. Normal Monthly Minimum Temperature, plus Highest and Lowest Daily Extremes for each Month with Day and Year of Occurrence 36
Table 6a. Normal Monthly Maximum Temperature, plus Highest and Lowest Monthly Averages with Year of Occurrence 37
Table 6b. Normal Monthly Minimum Temperature, plus Highest and Lowest Monthly Averages with Year of Occurrence. 37
Table 7. Normal Monthly Mean Temperature, plus Highest and Lowest Monthly Extremes with Year of Occurrence 38
Table 7a. Normal Annual Mean Temperature, plus Highest and Lowest Annual Extremes with Year of Occurrence. 39
Table 7b. Normal Fall Season Mean Temperature, plus Highest and Lowest Fall Season Averages with Year of Occurrence 40
Table 7c. Normal Winter Season Mean Temperature, plus Highest and Lowest Winter Season Averages with Year of Occurrence. 40
Table 7d. Normal Spring Season Mean Temperature, plus Highest and Lowest Spring Season Averages with Year of Occurrence 41
Table 7e. Normal Summer Season Mean Temperature, plus Highest and Lowest Summer Season Averages with Year of Occurrence. 41
Table 8. Record Number of Days per Year with Maximum Temperatures 90, 95, and 100 degrees or Higher. 42
Table 9. Average and Greatest Number of Days per Month with Maximum Temperatures 90, 95, and 100 degrees or Higher 42
Table 10. Greatest Number of Consecutive Days with a Temperature of 90 degrees or Higher. 43
Table 11. Greatest Number of Days in one Month with a Temperature of 90 degrees or Higher 43
Table 12. Earliest Date of Occurrence in the Spring and Latest Date of Occurrence in the Fall with 90 degrees or Higher 43
Table 13. Greatest Number of Consecutive Days with a Temperature of 95 degrees or Higher 44
Table 14. Greatest Number of Days in one Month with a Temperature of 95 degrees or Higher 44
Table 15. Earliest Date of Occurrence in the Spring and Latest Date of Occurrence in the Fall with 95 degrees or Higher 44
Table 16. Greatest Number of Consecutive Days with a Temperature of 100 degrees or Higher 45
Table 17. Greatest Number of Days in one Month with a Temperature of 100 degrees or Higher 45
Table 18. Earliest Date of Occurrence in the Spring and Latest Date of Occurrence in the Fall with 100 degrees or Higher 45
Table 19. Greatest Number of Days in One Month with a Maximum Temperature of 32 degrees or Lower 46
Table 20. Greatest Number of Consecutive Days with a Maximum Temperature of 32 degrees or Lower 46
Table 21. Normal Number of Days with a Maximum Temperature of 32 degrees or Lower 46
Table 22. Greatest Number of Consecutive Days with a Minimum Temperature of 32 degrees or Lower 47
Table 23. Average Number of Days with a Minimum Temperature of 32 degrees or Lower 47
Table 24. Greatest Number of Days in One Month with a Minimum Temperature of 0 degrees or Lower 48
Table 25. Greatest Number of Consecutive Days with a Minimum Temperature of 0 degrees or Lower 48
Table 26. Average Number of Days with a Minimum Temperature of 0 degrees or Lower 48
Table 27. Freeze Data for the Salt Lake City Airport 49
Table 28. Growing Season Data for the Salt Lake City Airport 50
XV. PRECIPITATION DATA
Figure 5. Salt Lake City Airport Seasonal Precipitation Record by Water Year (1928-1995) 51
Table 29. Maximum and Minimum Annual Precipitation by Calendar Year (1928-1995) 52
Table 30. The Average Time Interval for the Reoccurrence of Listed Precipitation Amounts 52
Table 31. Wettest and Driest Water Year Amounts for 67 years of record 53
Table 32. Normal Monthly Precipitation Totals, plus Wettest and Driest Totals for each Month (1928-1995) 54
Table 33. Maximum and Minimum Seasonal Precipitation by Water Year (1928-1995). 55
Table 34a. Greatest 24-Hour Precipitation (Midnight to Midnight) by Month from (January-April) 56
Table 34b. Greatest 24 -Hour Precipitation (Midnight to Midnight) by Month from (May-August). 57
Table 34c. Greatest 24-Hour Precipitation (Midnight to Midnight) by Month from (September-December) 58
Table 35. Record Maximum Precipitation for Specified Time Periods 59
Table 36. Average and Greatest Number of Days per Month with at Least $.01, .10, .50$, and 1.00 inch of Precipitation (Midnight to Midnight) 60
Table 37. Greatest Number of Consecutive Days with a Trace or more of Precipitation. 60
Table 38. Greatest Number of Consecutive Days with .01 inch or more of Precipitation 61
Table 39. Greatest Number of Consecutive Days with .10 inch or more of Precipitation 61
Table 40. . Greatest Number of Consecutive Days with .25 inch or more of Precipitation 61
Table 41. Greatest Number of Consecutive Days without
Even a Trace of Precipitation 62
Table 42. Greatest Number of Consecutive Days without
Measurable Precipitation, but including Traces 62
Table 42a. Chances of Measurable Precipitation on Any Given Day of the Year (January-June) 63
Table 42b. Chances of Measurable Precipitation on
Any Given Day of the Year (July-December) 64
Figure 7. Salt Lake City Airport Seasonal Snowfall Record (1929-1930 to 1994-1995 Season) 65
Table 43. Normal Monthly Snowfall Totals, plus
Greatest and Least Snowfall Totals for each Month (1928-1995) 66
Table 44. Normal Annual Snowfall, plus Maximum and Minimum Seasonal Snowfall (1928-1929 through 1994-1995 Season) 67
Table 45a. Greatest 24-Hour Snowfall (Midnight to Midnight) by Month from (January-April) 68
Table 45b. Greatest 24-Hour Snowfall (Midnight to Midnight) by Month from (May-August) 69
Table 45c. Greatest 24-Hour Snowfall (Midnight to Midnight) by Month
from (September-December) 70
Table 45d Earliest Measurable Snowfall in Salt Lake City (Dates and Graph) 70A
Table 46. Greatest Snowfall in any 24-Hours (Including Ice Pellets) and Greatest Depth of snow on the Ground 71
Table 47. Earliest and Latest Date of Measurable Snowfall with Amount, and The Average Date of the First Measurable Snowfall 72
Table 48. Greatest Number of Consecutive Days with 1.0 Inch or More of Snow on the Ground. 72
Table 49. Average, Maximum and Minimum Number of Days with Measurable Snowfall by Season. 73
Table 50. Maximum Snowfall from any Single Storm 73
Table 51. Average, Maximum and Minimum Number of Days per Month with Measurable Snowfall (September-May) 74
Table 52. Average and Maximum Number of Days with Snowfall (Including Ice Pellets) of 1 Inch or more and 3 Inches or More 75
XVI. THUNDERSTORMS AND HAIL
Table 53. Average and Greatest Number of Days with Thunderstorms and Hail. 76
XVII. Table 54. Average Relative Humidity by Time Periods 77
VIII. SUNSHINE, SKY COVER, AND FOG
Table 55. Average Percent of Possible Sunshine; Average Amount of Sky Cover (Tenths); Average Number of Clear Days, Partly Cloudy Days and Cloudy Days; Average and Greatest Number of Heavy Fog Days. 78
Table 56a. Average, Maximum and Minimum Number of Days in a Month with Clear, Parrtly Cloudy, and Cloudy Conditions (January-June) 79

Table 56b. Average, Maximum and Minimum Number of Days in a Month with Clear, Partly Cloudy, and Cloudy Conditions (July-December).
 80

XIX. WIND

Table 57. Average Wind Speed, Prevailing Direction, Fastest Mile and Peak Gust by Months with Day and Year of Occurrence 81
XX. BAROMETRIC PRESSURE
Table 58. Highest and Lowest Pressure (Reduced to Sea Level), plus Average, Highest and Lowest Station Pressure by Months with Day and Year of Occurrence. 82
Table 58a. Average Monthly Station Pressure Reduced to Sea Level 82
XXI. HEATING AND COOLING DEGREE DAYS
Table 59. Normal, Highest and Lowest Heating Degree Days by Months and Year of Occurrence. 83
Table 60. Normal, Higheast and Lowest Cooling Degree Days by Months and Year of Occurrence 83
XXII. SUMMER, WINTER, SPRING AND FALL SEASONAL DATA
Table 61. Warmest and Coldest Summer Seasons on Record (June-August) with their Average Mean Temperature and Amount of Precipitation Received During the Period 84
Table 62. Warmest and Coldest Winter Seasons on Record (December-February) with their Average Mean Temperature, Total Snowfall, and Days with Snow During the Period. 84
Table 63. Warmest and Coldest Spring Seasons on Record (March-May) with their Average Mean Temperature, and Amount of Precipitation and Snowfall Received During the Period 85
Table 64. Warmest and Coldest Fall Seasons on Record (September-November) with their Average Mean Temperature, and Amount of Precipitation and Snowfall Received During the Period 85
XXIII. HOLIDAY WEATHER INFORMATION
Table 65. Average Maximum and Minimum Temperatures, Temperature Extremes, Probability of Measurable Rain or Snow, and Maximum 24-Hour Snowfall. 86
White Christmas Occurrences in Salt Lake City 87
XXIV. ADDITIONAL WEATHER INFORMATION
Wind -Chill Chart. 88

CLIMATE OF SALT LAKE CITY, UTAH

William J. Alder
Laurence S. Nierenberg
Sean T. Buchanan
William Cope (Retired)
James A. Cisco
Craig C. Schmidt
Alexander R. Smith (Retired)
Wilbur E. Figgins (Retired)
Weather Service Forecast Office
Salt Lake City, Utah

I. INTRODUCTION

The purpose of this publication is to attempt to bring together under one cover as much data as possible concerning the climate of Salt Lake City. This was a difficult undertaking because of the wide variance of climate in the Salt Lake area. The Wasatch Mountain range, immediately east of the city, and the location of the Great Salt Lake, a short distance to the west, cause a great difference in local microclimates.

The Salt Lake City weather records began over 100 years ago; however, the statistics in this report are based on the airport weather records which began May 1, 1928. The airport location continues to the present to be the National Weather Service's official weather observing location for the Salt Lake City area. This provides us with over 6 decades of continuous weather information that was observed from an existing or comparable exposure location. However, it must be remembered that various extremes stated in this paper have, no doubt, been exceeded at other sites in the locality. Any summary such as this must be taken in the context of giving a general view of Salt Lake Valley conditions, with the details only being applicable to the airport environs.

II. GEOGRAPHICAL AND CLIMATOLOGICAL SUMMARY

Salt Lake City is located in a northern Utah valley surrounded by mountains on three sides and the Great Salt Lake to the northwest. The city varies in altitude from near 4200 feet to 5000 feet above sea level (ASL).

The Wasatch Mountains to the east have peaks to nearly 12,000 feet ASL. Their orographic effects cause more precipitation in the eastern part of the city than over the western part.

The Oquirrh Mountains to the southwest of the city have several peaks to above 10,000 feet ASL. The Traverse Mountain Range at the south end of the Salt Lake Valley rises to above 6,000 feet ASL. These mountain ranges help to shelter the valley from storms from the southwest in winter, but are instrumental in developing thunderstorms which can drift over the valley in the summer.

Besides the mountain ranges, the most influential natural condition affecting the climate of Salt Lake City is the Great Salt Lake. This large inland body of water, which never freezes over due to its high salt content, can moderate the temperatures of cold winter winds blowing from the northwest and helps drive a lake/valley wind system. The warmer lake water during the fall through the spring also contributes to increased precipitation in the valley downwind from the lake. The combination of the Great Salt Lake and the Wasatch Mountains often enhances storm precipitation in the valley.

Salt Lake City normally has a semi-arid continental climate with four well-defined seasons. Summers are characterized by hot, dry weather, but the high temperatures are usually not oppressive since the relative humidity is generally low and the nights usually cool. July is the hottest month with average maximum readings in the nineties.

The average temperature range is about 30 degrees in the summer and 18 degrees during the winter. Summer temperatures above 102 degrees or winter temperatures colder than -10 degrees occur only 1 season out of 4 .

Winters are cold, but usually not severe. Mountains to the north and east act as a barrier to frequent invasions of cold continental air. The average annual snowfall is under 60 inches at the airport, but much greater amounts fall on higher bench locations. Heavy fog often develops under temperature inversions in the winter and can persist for several days.

Precipitation, generally light during the summer and early fall, reaches a maximum in the spring when storms from the Pacific Ocean are moving through the area more frequently than in any other season of the year.

Winds are usually light, although occasional high winds have occurred in every month of the year, particularly in March.

The growing season, or freeze-free period, averages over 5 months in length. Yard and garden foliage generally are making good growth by mid April. The last freezing temperature in the spring normally occurs in late April with the first fall freeze normally occurring in mid October.

III. HISTORY OF WEATHER OBSERVATIONS AT SALT LAKE CITY

The first published weather observations of the Salt Lake area were taken in the summer of 1847 by William W. Phelps, who entered the Salt Lake valley with the Brigham Young company in July 1847. During the 1850's and 1860's, W.W. Phelps probably took most of his weather observations on or near his property that was located on the northwest corner of West Temple and 100 South Street in downtown Salt Lake City.

On January 12, 1857, W.W. Phelps presented to the Utah legislature a resolution creating the office of Superintendent of Meteorological Observations. The resolution was accepted and Phelps was appointed to fill the position. As Superintendent, Phelps used weather instruments from the Smithsonian Institution and private sources to furnish daily and monthly weather observations and summaries to the city's newspaper, the Deseret News. Figure 1 shows two of these summaries -- dated December 1857 and November 1861.
W.W. Phelps died on March 6, 1872. Subsequently, Marcus E. Jones, a professor of Botany at Salt Lake College (in 1880) and President of the Utah Academy of Science (in 1914), obtained Phelp's weather data from the Deseret News and corrected and summarized Phelp's daily weather records into monthly tabulations for the years 1847 to 1867 . See figure 2.

In March 1874, the U.S. Army Signal Service of the United States government began taking official weather observations for the Salt Lake City area. Their weather station was located in a corner room on the third floor of the "Exchange Building" on the southeast corner of East Temple and First South Streets.

On July 1, 1891, the U.S. Weather Bureau was established and made part of the Department of Agriculture. At this time many Army Signal Corps personnel doffed their Army uniforms and became members of the Weather Bureau. The first civilian official in charge of the Weather Bureau Office was formerly an Army official.

Through the years, the downtown Salt Lake Weather office changed locations several times. In succession, the office was located at the following addresses:

March 19, 1874, to June 29, 1876: Corner room on the third floor of the "Exchange Building" or "Godbe Building" on the southeast corner of East Temple and First South Streets.

June 29, 1876, to July 31, 1891: In two rooms on the fourth floor of the Wasatch Hotel, southeast corner of Main and Second South Streets.

FIGURE 1

Meteorological Observations for December, 1857, by H.E. Phelps in Salt Lake City, Utah. Taken from the Deseret News, January 6, 1858.

Meteorological Observations for November, 1861, by W.W. Phelps in Salt Lake City, Utah Taken from the Deseret News, Janary 8, 1862.

FIGURE 2

Copy of M.E. Jones Revision of Phelp's and Son's Record
Form No. 1078-Met'2.

July 31, 1891, to March 15, 1899: Board of Trade Building at 154 West Second South Street, in ROOMS 50, 51, AND 52 ON THE 5TH FLOOR.

March 15, 1899, to July 1, 1909: Southeast corner of Second South and West Temple Streets, on the 6th floor, rooms 601, 628, and 629. On July 1, 1904, the office quarters were expanded to include rooms 630 and 631.

July 1, 1909, to December 1, 1932: Boston Building on the corner of Main Street and Exchange Place occupying office rooms 1103 through 1107 in the east end of the penthouse and the east corner of the garret. Starting on May 1, 1928, an additional office was opened at the new airport west of downtown Salt Lake City.

December 1, 1932, to August 15, 1954: 501 Federal Building located at Main and Fourth South Streets.
August 15, 1954, to present: The city office was closed and its functions moved to the airport.
The Wright brothers ushered in the flying age and with it the demand for supporting airports around the country. As mentioned above, the Weather Bureau expanded their mode of operation to meet this challenge. On May 1, 1928, the Weather Bureau established a first-order weather station at the Salt Lake Municipal Airport, 3-3/4 miles west-northwest of the downtown Federal Building at latitude $40^{\circ} 46^{\prime}$ and longitude $111^{\circ} 58$ '. The station was located in a small house in the southeast corner of the airport complex, east of the United Airlines hangar. Elevation at the observing site was 4222 feet ASL.

The airway and pibal observations began on the opening date with the first weather observation being taken at 6:00 a.m. May 1, 1928. The wind anemometer was located 47 feet above the ground. The thermometers were installed in a standard Weather Bureau instrument shelter with the thermometers 5 feet above the ground. The precipitation gages were placed approximately 6 feet west of the shelter with the base on the ground and top or opening 3 feet above the ground. On June 11, 1933, the weather-observing equipment was moved 800 feet north of the original location to the roof of the Airport Administration Building which was a two-story structure. The temperature apparatus was installed in a standard Weather Bureau instrument shelter with the thermometer being located 5 feet above the roof and 33 feet above ground level. The rain gages were installed on the same roof, about 20 to 25 feet immediately north of the instrument shelter. The wind instrument was 18 feet above the second-story roof or 46 feet above ground level.

During the winter of 1943-1944, a third floor was added to the Administration Building. Although the instrument shelter was able to remain on the second-story roof, just south of the new third story, the rain gages were moved to the roof of the third floor on April 1, 1944, making them 41 feet above ground level.

On July 2, 1954, the station was moved to the one-story Federal Aviation Agency - Weather Bureau Office building at 174 North 2300 West Streets or some 325 feet southeast of the previous location. The wind instruments were 33 feet above the ground, temperature instruments 6 feet above the ground, and rain gages 3 feet above the ground.

On July 29, 1960, automatic temperature and wind-measuring equipment were moved to near the major runway 3600 feet northwest of the Government building.

On March 8, 1978, the station was moved to the Executive Terminal building at 337 North 2370 West Streets approximately $1 / 4$ mile north of the 1954 location. Wind, temperature, dew point, and visibility measuring equipment were remote sensors and were located adjacent to the main airport runway. Precipitation, solar radiation, and standby temperature measuring equipment were located about 300 feet east of the station. The new elevation of the station was 4227 feet ASL.

Ceilometer equipment, which automatically observes and records cloud heights, was first installed at the airport on March 5, 1946. The projector was located 1463 feet north of the observing quarters, and the ceilometer scanner was located on the roof of the first floor of the Administration Building about 80 feet north of the observing quarters. On October 31, 1958, a rotating beam ceilometer, with a baseline of 800 feet, was installed $1 / 4$ mile south of the main airport runway, and then on December 12, 1976, relocated to be near the south end of the main airport runway about 4700 feet west-northwest of the Forecast Office.

On August 11, 1994, the weather office was relocated to the extreme southeast corner of the airport complex at 2242 West North Temple Street. This is about 3400 feet southeast of the previous location. The elevation of the station continued to be 4227 feet ASL. On November 15, 1994 the forecast office accepted and began using a Doppler Radar which was located on Promontory Point at the north end of the Great Salt Lake.

The present state of the art of both observing and forecasting the weather is constantly being re-evaluated for improvement. New computer-age technology is replacing the older, and often times, cumbersome methods of producing the various weather products issued to the public and special user groups. Weather forecasting programs have been developed that are especially tailored for special problem areas. The fire-weather forecasting program is a typical example. Specifically trained meteorologists utilize mobile self-contained weather stations and report directly to forest or range fire fighting crews. They give on-the-spot observations and forecasts of wind direction and speed, temperature, humidity, and other selected parameters required for maximum support to the fire fighting crews. Other special weather support programs include those in fruit-frost cooperative observing and forecasting, air pollution, aviation, and local forecasting. All these are in addition to the regular public service duties.

Climatology is an input in many of these programs. Certain combinations of pressure, wind, moisture, modified by topographical combinations yield specific characteristics of "weather". The only problem is that the atmosphere is so vast in its global scale that local combinations of specific weather yielding parameters are very difficult to duplicate. "Man" by his very existence is constantly changing the landscape--laying miles or acres of pavement and cement, building heating and cooling systems, and other modern-day miracle aids--and in the process, influencing Mother Nature's natural local temperature and wind circulation patterns.

IV. SELECTED HIGHLIGHTS OF THE SALT LAKE CITY AIRPORT WEATHER RECORDS

When the all-time high temperature of 107 degrees occurred on July 26,1960 , the surface winds, for the most part, were southerly 5-12 mph through the night and morning hours shifting to northerly 5-9 mph during the afternoon. At $3 \mathrm{p} . \mathrm{m}$. the temperature was 103 degrees with 8 tenths of the sky covered by a combination of cumulonimbus and cirrus type clouds. The clouds thinned out during the next couple of hours and the record maximum temperature of 107 was reached. The morning minimum on the 26th of July was 63 degrees, which was only one degree warmer than the normal minimum for that date. Increasing cloudiness the following day, July 27th, accounted for a slight drop in the maximum temperature to 104 degrees. Maximum temperatures continued to decrease the next two days--down to 101 on the 28th, and finally on the 29th, down to an even 100 degrees.

February 9, 1933, was the date of the lowest temperature ever recorded at the Salt Lake airport which was 30 degrees below zero. The mercury managed to climb to 8 degrees above zero for the afternoon maximum. It was cold again the next day, February 10th, with a minimum of 26 degrees below zero. But on February 11 th, the short cold snap was broken when a snow storm moved over the area and the minimum temperature rose to 1 degree above zero.

The snowiest month of the year is January with an average of 9 days with snowfall of 0.1 inch or more, and with an average monthly snowfall total of 13.2 inches. The greatest monthly snowfall total at the Salt Lake Airport was 50.3 inches that fell in January 1993.

It may be surprising to many to note that significant amounts of snow can fall as late as April. In April 1974, a total of 26.4 inches of snow fell at the Salt Lake Airport. This not only set the record for the most snow ever accumulated in the month of April, but was also the greatest monthly snowfall for the entire 1973-74 season. April 1984 was also a very snowy month with a total accumulation of 25.1 inches.

April has the distinction of having the highest average monthly precipitation with 2.21 inches followed by March with an average of 1.72 inches. The greatest total monthly precipitation of 7.04 inches fell in September 1982 when moisture from the remains of hurricane Olivia moved north through Utah. The driest month of the year is July with a monthly precipitation average of only 0.72 inches. The next driest is September with a monthly average of 0.89 inches.

The maximum 24 hour precipitation (not confined to a calendar day) ever recorded at the Salt Lake Airport was 2.41 inches on April 22-23, 1957. The maximum one hour precipitation of 1.94 inches was recorded during heavy thundershowers between noon and $1 \mathrm{p} . \mathrm{m}$. on July 13, 1962. On that same day, hailstones up to one half inch in diameter fell, and the total 24 hour rainfall was 2.28 inches.

V. LOCAL TOPOGRAPHY EFFECTS UPON THE SALT LAKE WEATHER

Snowfall enhancement along and downwind of the Great Salt Lake is often observed. On occasion it appears that the snow area extends continuously from the lee shores of the lake to the windward slopes of the nearby mountains. The theory of this phenomenon is as follows. The Great Salt Lake, due to its high salt content, never freezes during the winter. Cold air masses moving from the Pacific or out of Canada during the fall and winter months are sometimes much colder than the water surface of the lake. As these cold air masses pass over the lake, the air is modified by the absorption of heat and moisture rising off the surface of the lake and becomes more unstable, causing what is referred to as a "lake effect" snowstorm.

An example would be, air carried by west to northwest winds blowing across the Great Salt Lake in the rear of a winter low pressure system gaining both moisture and instability over the water. Then, the induced vertical motion due to differential friction as the air moves off the water to land results in bands of heavy snow in the valley. Nearby mountain ranges force the air to be cooled by the orographic lift up the mountain slopes. This orographic lift often prolongs and increases precipitation along the windward slopes of the mountains. One such "lake effect" snow storm occurring October 17-18, 1984, was documented by WSFO Salt Lake City forecaster David Carpenter in NOAA Technical Memorandum NWS WR-190.

The surface wind pattern around the Salt Lake Valley and adjacent bench areas is greatly influenced by local topography. For example, the Great Salt Lake is responsible for local lake breezes, which usually develop by late morning or early afternoon and continues until sunset. After sunset and through the night, the surrounding mountains produce canyon breezes which extend down into the valleys..

The Great Salt Lake breeze is caused by the temperature difference of the colder lake surface and the warmer adjacent land when it is heated by the sun. Because the air over the land is warmer, it rises and is replaced by the cooler air from the lake surface. This breeze usually blows on relatively calm, sunny, summer days, and alternates with the oppositely directed nighttime land breeze or canyon breeze.

Canyon breezes occur almost every night when the sky is clear or partly cloudy. They are the result of the radiational cooling of the surface layer of air on the mountain slopes. This air cools much faster than air at the same level in the free atmosphere over the valley and, hence, sinks. The air aloft flowing toward the mountain slope to replace this sinking air gives a circulation similar to the sea-breeze circulation. Such breezes usually do not extend more than a few miles into the valleys and rarely reach excessive speeds. In fact, during the summer these cool winds are a refreshing change from the heat of the day. Only when this nocturnal cooling process is reinforced by large scale circulation do the winds reach high speeds.

Canyon winds are one form of topographic wind that create serious problems several times each year. These winds occur when strong high pressure develops over Wyoming and significantly lower pressure develops in Utah and/or Nevada. When surface pressure differences are significant between the two areas, moderate to strong easterly canyon winds blow out of the canyon mouths along the Wasatch Front from Cache to Utah counties. Occasionally the cold polar or arctic air associated with high pressure in Wyoming is deep enough to spill over the mountains. Sometimes this can result in easterly winds blowing from the mouths of canyons and steep slopes of the Wasatch Mountains into the nearby valleys. In extreme cases these winds can exceed hurricane force. In some circumstances these winds can extend into the valley. Canyon winds can cause snow to drift over heavily traveled highways, break tree limbs, topple structures, and, in general, make life unpleasant.

A strong southwest flow that proceeds a pacific cold front sometimes causes the Salt Lake Valley to experience a "rain shadow" effect. This is known as the "Oquirrh shadow," and it can prevent the Salt Lake valley from receiving significant precipitation. The area is protected by strong winds aloft that downslope the Oquirrh mountains, causing air to warm and dry out by compression. Moderate to strong southerly winds are usually an indication of a significant storm to hit the Salt Lake area. Strong northwesterly winds often blow behind a cold front and can cause havoc for drivers along interstate 80 between Salt Lake City and Wendover. These winds kick up waves along the shores of the Great Salt Lake and can cause blowing salt and sand, sometimes reducing visibilities to as low as 100 feet across the west desert. These winds often deposit a foul smelling odor in the Salt Lake Valley, known as "Lake Stink." The Lake stink is a combination of decomposing algae and brine shrimp.

VI. AIR POLLUTION AND TRAPPED AIR

Air pollution caused by stagnant air trapped under temperature inversions is another big part of the Salt Lake Valley weather regime. In Salt Lake City, the worst air stagnation occurs with stationary high pressure, both at the surface and aloft, and mainly in the months of November through February. Under this weather pattern, the wind is largely controlled by local topography rather than ambient pressure gradients; hence, it is very light and subject to diurnal variation. These light winds, when combined with frequent snow cover during the winter months, result in strong nighttime radiational cooling. At the same time, it is usually getting warmer aloft. This creates a strong surface-based temperature inversion under which cold, stable air is trapped in the valley. This air often becomes very stagnant. Such a stagnant layer is generally confined to below 6,000 feet ASL and diurnal heating is frequently unable to activate much vertical mixing in the stagnant layer. Under these conditions, bench locations above 6,000 feet ASL surrounding the valley often enjoy good ventilation or movement of air and may be much warmer than valley locations. These conditions are, respectively, due to the fact that the wind above 6,000 feet ASL is usually still controlled by pressure gradients and frequently stronger than the lower level winds, and by the fact that it is relatively warmer aloft.

There are situations that can allow some air mixing in the Salt Lake Valley that may present a problem at the surrounding higher elevations. This can happen when there is a subsidence inversion or stable layer of air between about 6 and 12 thousand feet. Subsidence is a descending motion of air in the atmosphere. A subsidence inversion is a temperature inversion produced by the adiabatic warming of this layer of subsiding air. In an adiabatic process, compression or descending motion always results in warming. Rising motion results in expansion and cooling. Surface heating usually allows mixing of the air to the base of this stable layer aloft, which gives a moderate mixing depth of air in the valley. However, if the base of the stable layer is at or just above the surrounding mountain areas, surface heating may not affect it so that it may severely restrict the vertical transport of pollutants.

VII. SOLAR ENERGY AND SKY COVER

The average annual amount of sky cover at the Salt Lake Airport (sunrise to sunset), based on a range of 0 tenths for no clouds or obscuring phenomena to 10 tenths for overcast conditions, is 5.5 tenths. The months with the highest average amount of sky cover are December and January with 7.1 tenths and 7.2 tenths respectively. The months with the lowest average sky cover are July and September with both averaging 3.5 tenths, followed closely by August with 3.6 tenths.

Based on the definition that the sky is cloudy with 8 tenths to 10 tenths of cloud cover, partly cloudy with 4 tenths to 7 tenths cloud cover, and clear with 0 tenths to 3 tenths cloud cover, there is an annual average of 134 cloudy days at the Salt Lake Airport, 103 partly cloudy days, and 128 clear days. These values are somewhat misleading because they are based on total cloud cover without any distinction between opaque and thin clouds. Some of the days listed in our climatological data as cloudy may have experienced only high, thin clouds covering 8 tenths to 10 tenths of the sky with only a few tenths of these clouds actually dense enough to block out the sun or sky.

Because solar energy is being increasingly emphasized as an alternative to fossil fuels, a more meaningful statistic than amount of sky cover may be the percent of possible sunshine received. At the Salt Lake Airport, the annual average percent of possible sunshine received is 70 percent. The sunniest days of the year are in July and September with each of these months receiving 84 percent of possible sunshine. The lowest average amount of possible sunshine is received in December with 40 percent followed by January with 48 percent.

Sunlight is usually measured in footcandles, the illuminance provided by a light source of one candle at a distance of one foot and only the visible portion of the solar spectrum is used. Full sunlight, when the sun is at its zenith, produces an illuminance of the order of 10,000 footcandles on a horizontal surface compared to full moonlight, which provides an illuminance of only about 0.02 footcandles.

The energy from this sunlight is measured in kilojoules per square meter or the langley unit which is defined as a unit of energy per unit area and is equal to one gram-calorie per square centimeter. To convert kilojoules to langleys, you multiply the kilojoule value by 0.02390 .

An accurate conversion of these illumination/radiation factors is impossible, but a rough comparison on a cloudy or a cloudless day is as follows: to convert langley per minute to footcandles on a cloudy day, multiply by 7,000 .

The mean daily solar radiation (in langleys) at Salt Lake City by month is as follows: January 163, February 256, March 354, April 479, May 570, June 621, July 620, August 551, September 446, October 316, November 204, and December 146 for an annual average of 394.

VIII. ACKNOWLEDGMENTS

Mr. Wilbur E. Figgins (retired) is responsible for the original research and preparation of this document. Since Mr. Figgins retirement in 1985 until the fall of 1989, Alexander Smith (retired) of the Salt Lake City WSFO staff undertook the responsibility of keeping it updated, as well as computerizing much of the content. Craig Schmidt was responsible for the maintenance and reformatting of the document through September of 1991. James Cisco took over Craig Schmidt's responsibilities until November of 1994. William Cope (retired) was responsible for updating much of the new material until his retirement in April of 1995. Sean Buchanan took over the responsibility of updating, reformatting, and creating new information for the climate book in August of 1995 to December 1995. From January 1996 to the present, Laurence Nierenberg assumed the responsibility of updating the records and creating new tables for the climate book.

We would like to thank Mr. William Alder, Meteorologist in Charge, Salt Lake City Weather Service Forecast Office, for his encouragement, direction, and support in helping us complete this project. We are very grateful to Mr. L. W. Snellman, former Chief, Scientific Services Division, Western Region Headquarters, for his initial review, suggestions, candor, expertise, and encouragement to pursue the project. Additionally, our gratitude to Mr. Dean Jackman, former Deputy Meteorologist in Charge (retired), Salt Lake City WSFO, for his assistance in historical research, and for the use of information from his air pollution studies. Finally, our thanks to all individuals, past and present, whose attempts at organizing these records made our work easier.

IX. REFERENCES

Alder, William J., Monthly Climatic Summary for Salt Lake City, Utah, January 1980 through December 1995. National Weather Service Forecast Office, Salt Lake City, Utah.
ashcroft, Gaylen L., Donald T. Jensen and Jeffrey L. Brown. Utah Climate. Utah Climate Center, Utah State University, Logan, Utah. 1992.

Brough, R. Clayton, The Weather Reports and Summaries of William W. Phelps and Marcus E. Jones for Salt Lake City, Utah, 1847-1867. KTVX Television, Salt Lake City, Utah. October 1988.

Brough, R. Clayton, Dale L. Jones and Dale J. Stevens. Utah's Comprehensive Weather Almanac. Publishers Press, Salt Lake City, Utah. 1987.

Carpenter, David, "Lake Effect Snow Storm" NOAA Technical Memorandum, NWS WR-190, National Oceanic and Atmospheric Administration. October 1985.

Jannuzzi, John A., 1978: "Solar Radiation." NOAA Technical Memorandum, NWS WR-134, National Oceanic and Atmospheric Administration. November 1978.

National Climatic Center, National Oceanic and Atmospheric Administration. Local Climatological Data and Annual Summary with Comparative Data (for Salt Lake City, Utah). 1994.

SCALE: 1 Inch Equals 2 Miles.

Local Topography and Map of Salt Lake Airport and Vicinity.

	JAN.		FEB.		MAR.		APR.		MAY		JUNE		JULY		AUG.		SEPT.		OCT.		NOV.		DEC.	
DAY	Riso A.M.	$\begin{aligned} & \text { Set } \\ & \text { P.M. } \end{aligned}$	$\begin{aligned} & \text { Rise } \\ & \text { A.M. } \end{aligned}$	$\begin{aligned} & \text { Sel } \\ & \text { P.M. } \end{aligned}$	$\begin{aligned} & \text { Rise } \\ & \text { A.M. } \end{aligned}$	$\begin{aligned} & \text { Sot } \\ & \text { P.M. } \end{aligned}$	$\begin{aligned} & \text { Riso } \\ & \text { A.M. } \end{aligned}$	Set P.M.		$\begin{aligned} & \text { Sot } \\ & \text { P.M. } \end{aligned}$		$\begin{aligned} & \text { Sol } \\ & \text { P.M. } \end{aligned}$	$\begin{aligned} & \text { Rise } \\ & \text { A.M. } \end{aligned}$	$\begin{aligned} & \text { Sel } \\ & \text { P.M. } \end{aligned}$	$\begin{aligned} & \text { Rise } \\ & \text { A.M. } \end{aligned}$	$\begin{aligned} & \text { Sel } \\ & \text { P.M. } \end{aligned}$	$\begin{aligned} & \text { Riso } \\ & \text { A.M. } \end{aligned}$	$\begin{aligned} & \text { Set } \\ & \text { P.M. } \end{aligned}$	${ }^{180}$	Set P.M.	Rise A.M.	Sel P.M.	Riso A.M.	$\begin{aligned} & \text { Set } \\ & \text { P.M. } \end{aligned}$
1	752	511	738	545	702	619	612	652	5	724	459	753	500	803	524	744	55	701	624	610	658	5	732	501
2	752	512	737	546	701	620	610	653	525	725	458	753	500	803	525	743		659	625	609	659	523	734	501
3	752	513	736	548	659	621	609	654	524	726	458	754	501	803	526	741	556	657	626	607	700	522	735	501
4	752	514	735	549	658	622	607	656	523	727	458	755	502	803	527	740	557	656	627	605	702	521	736	500
5	752	515	734	550	656	623	605	657	522	728	457	756	- 502	802	528	739	558	654	628	604	703	520	736	500
6	752	515	733	551	655	624	604	658	521	729	457	756	503	802	529	738	559	652	629	602	704	519	737	500
	752	516	732	553	653	626	602	659	519	730	457	757	503	802	530	737	600	651	630	601	705	518	738	5100
	752	517	731	554	651	627	601	700	518	731	456	757	504	801	531	735	601	649	631	559	706	517	739	500
	752	518	730	555	650	628	559	701	517	732	456	758	505	801	532	734	602	647	632	557	707	515	740	500
10	752	519	729	556	648	629	557	702	516	733	456	758	505	801	533	733	603	646	633	556	709	515	741	0
11	752	521	727	558	6	630	556	703	515	734	456	759	506	800	5	732	604	644	634	554	710	514	742	500
12	7.51	522	726	559	645	631	554	704	514	735	456	759	507	800	535	730	605	642	636	553	711	513	743	500
13	751	523	725	600	643	632	553	705	. 513	736	456	800	507	759	536	729	606	641	637	551	712	512	743	501
14	751	524	724	601	642	633	551	706	512	737	456	800	508	759	537	728	607	639	638	549	713	511	744	501
15	750	525	722	602	640	634	549	7.07	511	738	456	801	509	758	538	726	608	637	639	548	715	510	745	01
16	750	526	721	604	638	635	548	708	510	739	456	801	510	757	539	725	609	636	640	546	716	509	746	501
17	749	527	720	605	637	637	546	709	509	740	456	802	511	757	540	723	610	634	641	515	717	508	746	502
18	749	528	718	606	635	638	545	710	508	741	456	802	511	756	541	722	611	632	642	543	718	508	747	502
19	748	529	717	607	633	639	543	711	507	742	456	802	512	755	542	721	612	631	643	542	719	507	747	5.03
20	748	531	716	608	632	640	542	712	506	743	456	802	513	755	543	719	613	629	644	541	720	506	748	503
21	747	532	714	610	630	641	541	713	506	744	456	803	514	754	544	718	614	627	645	539	722	506	749	503
22	746	533	713	611	628	642	539	714	505	745	457	803	515	753	545	716	615	625	647	538	723	505	749	504
23	746	534	711	612	627	643	538	715	504	745	457	803	516	752	546	715	616	624	648	536	724	504	750	504
24	745	535	710	613	625	644	536	716	503	746	457	803	517	751	547	713	617	622	649	535	725	504	750	505
25	744	537	708	614	623	645	535	718	503	747	457	803	517	751	548	712	618	620	650	533	726	503	750	506
26	744	538	707	615	622	646	533	719	502	748	458	803	518	750	549	710	619	619	651	532	727	503	751	506
27	743	539	705	617	620	647	532	720	501	749	458	803	519	749	550	709	620	617	652	531	728	502	751	507
28	742	540	704	618	618	648	531	721	501	750	459	803	520	748	550	707	6.21	615	653	529	729	502	751	508
29	741	542	703	619	617	649	529	722	500	750	459	803	521	747	551	705	622	614	6.55	528	730	502	752	508
30	740	543			615	650	528	723	500	751	459	803	522	746	552	704	623	612	65	527	731	501	752	507
31	739	544			614	651			459	752			523	745	553	702			657	526			752	510

Add one hour for Daylight Saving Time il and when in use.
Prepared by

> NAUTICAL ALMANAC OFFICE
> UNITED STATES NAVAL OBSERVATORY

WASHINGTON, D.C. 20390
U.S. GOVERNMENT PRINTING OFFICE
WASHINGTON:

WASHINGTON: 1965

NORMALS, MEANS, AND EXTREMES

SALT LAKE CITY, UTAH
IATTIUDI: $40^{\circ} 47^{\circ} \mathrm{N}$ LONGITUDE: 11° 57' W ELEVATION: FT. GRND 4221 BARO 4224 TIME ZONE: MOUNTAIN WBAN: 24127

	(a)	IAN	17il3	MAB	APK	M M Y	JUN	JUL.	\triangle UG	SEP	OCT	NOV	DEC	YEAR
TEMPERATURE *F														
-Daily Maximum		36.4	43.6	52.2	61.3	71.9	B2.8	92.2	$89.4{ }^{\prime}$	79.2	66.1	50.8	37.8	63.6
-Daily Minimum		19.3	24.6	31.4	37.9	45.6'	55.4	63.7	-61.8	51.0	40.2	30.9	21.6	40.3
-Monithly		27.9	34.1	41.8	49.7	58.8	69.1	77.9	75.6	65.2	53.2	40.8	29.7	52.0
lixiremes -Record	66	62	69	78	86	93	104	107	106	100	89	75	67	107
- Year		1982	1972	1960	1992	1984	1979	1960	1994	1979	1963	1967	1969	JUl. 1960
-Record Lowest	66	-22	-30	2	14	25	35	40	37	27	16	-14	-21	-30
- Year		1949	1933	1966	1936	1965	1962	1968	1965	1965	1971	1955	1932	FT:131933
NORMAL DEGREE DAYS:														
lleating (basc $65 \times F$)		1150	865 0	719 0	464 0	215 23	51 174	${ }_{400}^{0}$	329	108	373 7	726 0	1094 0	1047
Cooling (basc 65 ${ }^{\text {² }}$)		0	0	0	0	23	174 80	$\frac{400}{83}$	$\frac{329}{82}$	$\frac{114}{82}$				
\% OF POSSIBLE SUNSIIINE	56	45	54	63	68	73	80	83	82	82	72	53	43	67
MBAN SKY COVEK(tenths)	59	7.3	7.1	6.7	6.4	5.7	4.3	3.6	3.7	3.7	4.7	6.3	7.2	5.6
MEAN NUMBER OF DAYS:														
Sunrise to Sunset												8.4	6.3	125.2
-Clear	66	5.6	5.2	7.0	6.7	9.1	13.8 9.8	16.7 9.8	15.8 10.7	16.5 8.3	13.9 7.7	8.4	6.5	125.2
-Partly Cloudy	66	6.5	6.9	8.2	9.4	10.2	9.8	9.8	10.7	8.3 5.2	7.7 9.4	7.1 14.5	6.5 18.2	101.0 139.1
-Cloudy	66	18.9	16.2	15.8	13.9	11.7	6.3	4.5	4.6	5.2	9.4	14.5	18.2	139.1
Precipitation .01 inches or more	66	9.9	8.9	9.8	9.5	8.3	5.4	4.5	5.7	5.3	6.4	8.0	9.1	90.6
Snow,Ice Pellets, Hail										0.*	0.3	2.2	3.8	17.8
1.0 inches or more	66	4.1	3.2	2.8	1.3	0.2 5.3	0.0 5.3	0.0	0.0	4.2	1.9			
Thunderstorms	66	0.3	0.7	1.3	2.2	5.3	5.3	6.7	7.7	4.2	1.9	0.5	0.3	36.5
Ileavy Fog Visibility 1/4 mile or less	66	4.5	2.3	0.3	0.1	0.*	0.0	0.0	0.0	0.0	0.*	0.9	3.6	11.8
Temperature ${ }^{\prime} \mathrm{F}$														
-Maximum	35	0.0	0.0	0.0	0.0	0.6	9.1	23.3	19.3	3.8	0.0	0.0	0.0	56.1
32° and below	35	10.6	3.6	0.6	0.0	0.0	0.0	0.0	0.0	0.0	0.*	0.9	8.6	24.3
-Minimum														
32^{*} and below	35	27.6	22.7	15.5	6.2	0.7	0.0	0.0	0.0	0.3	4.6	18.3	27.7	123.7
0^{\wedge} and below	35	1.6	0.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.8	2.8
AV. STATION PRES. (mb)	22	874.9	873.3	869.7	869.7	869.0	870.0	871.2	871.6	872.2	873.5	873.5	874.8	871.9
REIATIVE HUMIDITY (\%) Hlour OS	35	79	78	71	67	65	59	52	54	61	69	75	79	67
Ilour 11 (Local Time)	35	71	64	52	44	39	31	27	30	35	43	58	70	47
Hour 17	35	69	59	47	39	33	26	22	23	29	41	59	71	43
Ilour 23	35	79	77	68	61	58	49	42	45	54	66	74	79	63
PRECIPITATION (ins):														
Water Equivalent -Normal		1.11	1.23	1.91	2.12	1.80	0.93	0.81	0.86	1.28	1.44	1.29	1.40	16.18
-Maximum Monthly	66	3.23	3.22	3.97	4.90	4.76	2.93	2.57	3.66	7.04	3.91	2.96	4.37	7.04
- Year		1993	1936	1983	1944	1977	1947	1982	1968	1982	1981	1994	1983	SEP 1982
-Minimum Monthly	66	0.09	0.12	0.10	0.45	T	T	T	T	T	0.00	0.01	0.08	0.00
-Year		1961	1946	1956	1981	1934	1994	1963	1944	1951	1952	1939	1976	OCT 1952
-Maximum in 24 hrs	66	1.36	1.05	1.83	2.41	2.03	1.88	2.35	1.96	2.30	1.76	1.13	1.82	2.41
-Year		1953	1958	1944	1957	1942	1948	1962	1932	1982	1984	1954	1972	APR 1957
Snow, lce Pellets, Hail														
-Maximum Monthly	66	50.3.	27.9 1969	41.9	26.4 1974			T 199	T 1993	4.0 1971	20.4 1984	33.3 1994	35.2 1972	JAN 1993
- Ycar		1993 10.7	1969 11.9	1977 15.4	1974 16.2	1975 6.4	1993	1991	1993	1971 4.0	1984 18.4	1994 11.0	1972 18.1	JAN 1993 18.4
- Maximum in 24 hrs - Year	66	10.7 1980	11.9 1989	1974 1944	16.2 1974	6.4 1975	1993	1991	1993	1971	1984	1930	1972	OCT 1984
WIND:								9.5	9.7	9.1	8.5	8.0	7.5	8.8
Mean Speed (mph)	65	7.5	8.2	9.3	9.6	9.5	9.4	9.5	9.7	9.1	8.5	8.0	7.5	8.8
Prevailing Direction through 1963		SSE	SI:	SSE	SL:	SE	SSE	SSE	SSE	SL	SE	SSE	SSE	SSE
Fastest Mile									SW	W	NW	NW	S	NW
- Direction (!!)	59 59	NW 59	SE	NW 71	NW 57	NW 57	63	NW 51	58	61	67	63	54	71
-Speed (mph)	59	N9 1980	1954	71	57 1964	1953	1963	1986	1946	1952	1950	1937	1955	MAR 1954
- Year Pcak (iust														
- Disection (!!)	11	N	5	NW	NW	SW	SW	NW	SW	NW	NW	SW	5	SW
-Speed (mph)	11	59	54	59	54	69	58	63	67	61	63	54	49	69
-Date		1988	1989	1989	1984	1989	1993	1994	1989	1992	1985	1992	1992	MAY 1989

XIII. Table 3a.

CLIMATOGRAPHY OF THE UNITED STATES NO. 84
DAILY NORMALS OF TEMPERATURE, HEATING AND COOLING DEGREE DAYS, AND PRECIPITATION 1961-90

the daily values presenteo in these tables are not simple means of observed values. they are interpolated from THE MUCH LESS VARIABLE MONTHLY NORMALS BY USE OF THE NATURAL SPLINE fUNCTION. IN LEAP YEARS USE THE FEBRUARY 28IH VALUES FOR THE 29IH AND ADJUST THE DEGREE DAY MONTHLY TOTALS ACCORDINGLY. DAILY PRECIPITAIION NORMALS WERE ALSO COMPUTED USING THE NATURAL SPLINE FUNCIION AND DO NOT EXHIBIT THE TYPICAL DAILY RANDOM PATTERNS. HOWEVER. they may be used to compuie normal precipitation over time intervals.

[^0]Table 3c.
CLIMATOGRAPHY OF THE UNITED STATES NO. 84
DAILY NORMALS OF TEMPERATURE, HEATING AND COOLING DEGREE DAYS, AND PRECIPITATION 1961-90

THE DAILY VALUES PRESENTED IN THESE TABLES ARE NOT SIMPLE MEANS OF OBSERVED VALUES THEY ARE INTERPOLATED FROM THE MUCH LESS VARIABLE MONTHLY NORALS BY USE OF IHE NATURAL SSLINE FUNCIION. IN LEAP YEARS USE THE FEBRUARY 28IH VALUES FOR THE 29IH AND ADJUST THE DEGREE DAY MONTHLY TOTALS ACCOROINGLY. DAIILY PRECIPITATION NO HALS WERE THEY MAY BE USED IO COMPUTE NORMAL PRECIPITATION OVER IIME INTERVALS.

Table 3d.
CLIMATOGRAPHY OF THE UNITED STATES NO. 84
DAILY NORMALS OF TEMPERATURE, HEATING AND COOLING DEGREE DAYS, AND PRECIPITATION 1961-90

IHE DAILY VALUES PRESENIED IN THESE TABLES ARE NOI SIMPLE MEANS OF OBSERVED VALUES THEY ARE INTERPOLATED FROM THE MUCH LESS VARIABLE MONTHLY NOAMALS BY USE OF THE NAIURAL SPLINE FUNCIION. IN LEAP YEARS USE THE FEBRUARY 28IH VALUES FOR IHE 29 IH AND AD JUSI THE DEGRE DAY HONHLY IOTAS ACCORINGLY. DAILY PRELIPI IAIIION NORHALS WERE ALSO COMPUIED USING IHE NATURAL SPLINE FUNCIION AND DO NOI EXHIBIT IHE

The following graphs, Figures $4 \mathrm{a}-4 \mathrm{f}$ are smoothed average hourly temperature curves made by using the average hourly temperature that was compiled for a 15 -year.period and then making slight adjustments necessary to incorporate the average synoptic temperature observations ($5 \mathrm{am}, 11 \mathrm{am}, 5 \mathrm{pm}, 11 \mathrm{pm}$ MST) for the Climatological period 1961-1990.

Note: The normal maximum and minimum temperatures (1961-1990) are also listed on each graph. This is because maximum and minimum temperature readings usually occur between the times of the hourly observations and do not fall on the average hourly temperature curve. This is especially true of the minimum temperature, because of not only the variability in time of occurrence, but also because of the usually short time period in which the minimum temperature occurs. These factors should be remembered when using the following graphs.

JANUARY

FEBRUARY

Figure 4a

Normal Maximum: 61.3
Normal Minimum: 37.9

Figure 4b

Normal Maximum: 82.8
Normal Minimum: 55.4

Figure 4c

July
Normal Maximum: 92.2
Normal Minimum: 63.7

August

Normal Maximum: 89.4
Normal Minimum: 61.8

Figure 4d

September
Normal Maximum: 79.2
Normal Minimum: 51.0

October

Normal Maximum: 66.1
Normal Minimum: 40.2

Figure 4 e

November
Normal Maximum: 50.8
Normal Minimum: 30.9

December

Normal Maximum: 37.8
Normal Minimum: 21.6

Figure 4 f

TABLE 4a
DAILY MAXIMUM AND MINIMUM TEMPERATURE EXTREMES, 1928-1997
JANUARY

+ Also occurred in earlier years.

TABLE 4b

DAILY MAXIMUM AND MINIMUM TEMPERATURE EXTREMES, 1928-1997
FEBRUARY

+ Also occurred in earlier years.

TABLE 4c
DAILY MAXIMUM AND MINIMUM TEMPERATURE EXTREMES, 1928-1997
MARCH

+ Also occurred in earlier years.

TABLE 4d

 DAILY MAXIMUM AND MINIMUM TEMPERATURE EXTREMES, 1928-1997APRIL

+ Also occurred in earlier years.

TABLE 4e

DAILY MAXIMUM AND MINIMUM TEMPERATURE EXTREMES, 1928-1997

MAY

D A Y	$\begin{aligned} & \text { HIGH } \\ & \text { MAX } \end{aligned}$	YEAR		LOW MAX	YEAR		HIGH MIN	YEAR		LOW MIN	YEAR
1	86.9	1981		45.2	1954		56.2	1943		26.9	1946
2	91.3	1947		38.7	1964		60.0	1985		28.1	1967
3	91.1	1947		43.5	1950		64.0	1985		27.6	1964
4	87.7	1947		48.8	1950		58.7	1962		31.0	1964
5	87.9	1947		44.5	1978		59.0	1979		28.0	1961
6	90.7	1947		45.5	1965		56.5	1980		25.4	1965
7	89.0	1947+		45.4	1975		61.0	1947		27.2	1965
8	87.2	1962+		45.6	1930		59.1	1989+		30.2	1931
9	86.5	1954		46.0	1933		62.4	1962		28.2	1930
10	91.6	1961		47.4	1983		58.9	1954		31.0	1948
11	91.2	1960		44.2	1983		54.7	1994+		32.0	1933
12	91.9	1960		45.2	1942		62.6	1960		32.4	1967
13	91.7	1959		50.1	1942		61.6	1993		30.0	1967
14	89.1	1936		52.6	1968		66.0	1984		33.1	1967
15	88.0	1934		50.0	1955		62.3	1996		32.4	1955
16	89.7	1948		47.6	1977		64.4	1987		30.0	1955
17	89.2	1948		48.0	1977		60.0	1948		32.7	1943
18	92.3	1932		44.6	1977		61.5	1992		33.0	1971+
19	92.9	1958		53.2	1945		59.4	1993+		31.0	1960
20	92.4	1958		43.4	1975		62.9	1954		33.3	1959
21	86.2	1958		50.8	1962		62.0	1958		34.5	1959
22	89.0	1989		53.8	1986		59.3	1963		33.3	1960
23	91.0	1967		53.0	1995		62.1	1934		30.2	1966
24	90.0	1988		55.5	1939		61.8	1973+		34.8	1930
25	91.5	1961		54.8	1980		63.0	1993		31.6	1975
26	92.0	1958		47.9	1929		65.7	1988		34.0	1975+
27	92.7	1951		56.7	1954		67.0	1985+		32.8	1929
28	92.1	1958		55.0	1935		63.4	$1993+$		32.4	1954
29	90.9	1939		55.2	1964		62.4	1943		37.1	1946
30	92.6	1984		52.0	1937		62.3	1984		34.0	1979
31	94.8	1997		54.1	1955		61.8	1993		35.9	1978
mnth	94.8	1997/31		38.7	1964/2		67.0	1985/27		25.4	1965/6

+ Also occurred in earlier years.

TABLE 4f

DAILY MAXIMUM AND MINIMUM TEMPERATURE EXTREMES, 1928-1997

JUNE

D A Y	$\begin{aligned} & \text { HIGH } \\ & \text { MAX } \end{aligned}$	YEAR		$\begin{aligned} & \text { LOW } \\ & \text { MAX } \end{aligned}$	YEAR		HIGH MIN	YEAR		LOW MIN	YEAR
1	91.8	1977		50.8	1955		59.9	1940		38.4	1969
2	89.2	1968		51.9	1943		61.7	1986		34.8	1954
3	93.7	1994		55.6	1955		63.3	1968		34.9	1929
4	96.3	1988		52.3	1943		66.2	1988		39.4	1962
5	93.3	1946		60.0	1945		67.7	1987		35.3	1937
6	94.7	1959		51.8	1932		67.0	1950		36.9	1954
7	100.2	1985		52.2	1993		64.2	1985		34.8	1962+
8	98.0	1996		55.9	1941		65.6	1996		38.5	1979
9	101.0	1973		56.8	1941		65.0	1956		36.0	1950
10	95.0	$1961+$		58.6	1970		65.4	1946		40.2	1947
11	96.1	1961		48.7	1947		66.0	1992		40.0	1929
12	97.5	1979		62.8	1928		67.5	1994		40.9	1970
13	98.1	1979		62.0	1957		70.0	1959		39.7	1993
14	100.5	1974		60.1	1945		68.8	1959		39.3	1981
15	101.5	1974		61.3	1957		70.8	1974		38.8	1945
16	99.7	1940		62.3	1957		71.9	1974		39.8	1939
17	103.3	1940		50.0	1939		72.0	1933		37.4	1939
18	101.8	1940		53.5	1975		70.3	1986		36.8	1928
19	101.0	1940		61.5	1975		71.9	1994		40.3	1938
20	101.1	1936		66.2	1975		72.7	1940		41.0	1929
21	103.5	1961		58.0	1948		67.9	1988		37.5	1960
22	101.0	1961		59.8	1948		73.6	1937		42.0	1960
23	100.2	1990		67.3	1993		70.9	1990		44.4	1964
24	102.0	1988		63.8	1952		71.8	1959		43.3	1993
25	101.7	1994		62.4	1969		75.3	1988		39.8	1953+
26	102.5	1970		62.9	1942		75.4	1981		42.1	1978
27	101.9	1958		60.6	1942		75.3	1981		43.4	1942
28	102.4	1961		65.0	1959		74.3	1986		40.3	1945
29	103.5	1979		63.9	1959		72.0	1935		42.2	1968
30	103.4	1990		72.7	1992		74.8	1990		39.9	1968
mnth	103.5	1979/29		48.7	1947/11		75.4	1981/26		34.8	1962/7.

+ Also occurred in earlier years.

TABLE 4g

DAILY MAXIMUM AND MINIMUM TEMPERATURE EXTREMES, 1928-1997

+ Also occurred in earlier years.

TABLE 4h

DAILY MAXIMUM AND MINIMUM TEMPERATURE EXTREMES, 1928-1997
AUGUST

D A Y	$\begin{aligned} & \text { HIGH } \\ & \text { MAX } \end{aligned}$	YEAR		$\begin{aligned} & \text { LOW } \\ & \text { MAX } \end{aligned}$	YEAR		HIGH MIN	YEAR		LOW MIN	YEAR
1	101.6	1979		78.5	1965		74.4	1989		49.1	1932
2	102.9	1992		78.7	1928		72.2	1981+		45.0	1928
3	101.9	1994		77.4	1951		73.1	1992		47.0	1928
4	106.1	1994		75.9	1951		70.4	1994		47.7	1944
5	105.2	1994		78.3	1962		73.9	1994		50.4	1928
6	101.4	1995		74.3	1939		75.1	1975		48.3	1950
7	100.4	1995		79.2	1939		76.3	1995		49.0	1928
8	102.6	1990		77.3	1995		73.4	1983+		48.8	1976
9	103.1	1940		77.4	1985+		72.7	1990		50.6	1931
10	101.0	1935		75.8	1947		72.1	1983		50.2	1939
11.	102.0	1972		72.1	1985		73.7	1991		47.8	1932
12	101.9	1940		74.1.	1930		71.5	1980		48.9	1935
13	102.1	1937		74.0	1930		70.4	1994		50.0	1969
14	99.9	1960		68.4	1978		71.5	1992		47.1	1938
15	101.1	1962		68.4	1968		72.2	1943		49.0	1938
16	100.2	1994		72.0	1960		73.4	1995		47.5	1976
17	100.0	1934		69.0	1978		73.2	1986		47.9	1968
18	98.7	1932		69.6	1968		72.0	1934		44.9	1954
19	99.2	1961		65.7	1980		71.8	1932		47.0	1978
20	102.8	1960		71.4	1964		73.6	1961		40.0	1928
21	102.3	1960		70.0	1968+		74.3	1960		43.0	1964
22	98.9	1991		59.7	1968		72.7	1937		45.0	1933
23	98.7	1967		69.6	1968		71.4	1997		44.0	1933
24	98.9	1967		63.4	1989		70.0	1955		39.7	1928
25	99.6	1985		71.0	1933		69.6	1981		43.7	1928
26	100.5	1985		69.6	1977		73.9	1997		41.8	1992
27	98.7	1937		69.0	1977		71.1	1996		42.0	1964
28	96.6	1961+		74.6	1977		71.0	1997		42.2	1964
29	99.4	1948		68.2	1964		68.4	1981		36.8	1964
30	100.0	1954		61.2	1932		68.3	1983		38.3	1964
31	97.5	1950		69.3	1932		67.4	1997		36.6	1965
mnth	106.1	1994/4		59.7	1968/22		76.3	1995/7		36.6	1965/31

+ Also occurred in earlier years.

TABLE 4i

DAILY MAXIMUM AND MINIMUM TEMPERATURE EXTREMES, 1928-1997
SEPTEMBER

+ Also occurred in earlier years.

TABLE 4j

DAILY MAXIMUM AND MINIMUM TEMPERATURE EXTREMES, 1928-1997
OCTOBER

[^1]TABLE 4k
DAILY MAXIMUM AND MINIMUM TEMPERATURE EXTREMES, 1928-1997
NOVEMBER

D A Y	HIGH MAX	YEAR		LOW MAX	YEAR		HIGH MIN	YEAR		LOW MIN	YEAR
1	71.8	1988+		36.9	1971		51.4	1987		15.8	1971+
2	72.7	1965		33.4	1936		50.1	1988		13.8	1956
3	70.7	1965		30.0	1936		48.5	1988		5.5	1936
4	70.2	1983		33.0	1935		54.4	1977		15.0	1936
5	71.2	1945		37.0	1935		47.4	1945		18.0	1935
6	74.2	1931		32.1	1947		52.4	1966		15.6	1947
7	73.8	1931		35.5	1945		47.4	1980		19.0	1961
8	69.5	1973		34.0	1945		43.2	1974		16.7	1948
9	73.7	1958		31.6	1950		43.0	1949		16.9	1948
10	68.8	1973		34.3	1978		45.0	1944		13.4	1950
11	72.4	1954		35.2	1938		47.0	1954		17.0	1935
12	74.7	1967		31.2	1938		47.7	1953		14.8	1929
13	70.0	1953		34.0	1964		50.2	1981		14.2	1959
14	70.8	1967		33.0	1964		51.2	1953		3.2	1955
15	70.0	1941		14.8	1955		45.9	1966		-10.0	1955
16	67.5	1981		16.0	1955		49.1	1941		-13.6	1955
17	67.8	1981		27.0	1958		46.4	1950		9.6	1958
18	65.9	1995		29.9	1958		47.0	1942		5.8	1958
19	67.9	1996		27.1	1985		53.7	1996		3.0	1930
20	64.6	1966		25.5	1977		44.2	1966		2.0	1930
21	65.2	1996		24.9	1931		45.0	1974		5.2	1931
22	63.0	1933		26.8	1931		41.0	1981		3.0	1930
23	60.8	1988		25.1	1931		43.1	1965		5.4	1940
24	65.4	1995		22.4	1931		46.9	1960		0.0	1931
25	69.4	1995		26.8	1992		46.0	1960		0.8	1931
26	67.5	1949		26.8	1952		45.8	1960		2.1	1952
27	67.2	1949		25.0	1976		39.3	1955		6.0	1952
28	65.7	1932		26.8	1930		39.0	1970		7.0	1976
29	63.3	1932		27.8	1975		41.0	1945		5.2	1931
30	68.1	1995		25.8	1930		42.5	1995		6.1	1931
mnth	74.7	1967/12		14.8	1955/15		54.4	1977/4		-13.6	1955/16

+ Also occurred in earlier years.

TABLE 41

DAILY MAXIMUM AND MINIMUM TEMPERATURE EXTREMES, 1928-1997
DECEMBER

D A Y	HIGH MAX	YEAR		LOW MAX	YEAR		HIGH MIN	YEAR		LOW MIN	YEAR
1	68.5	1995		23.8	1930		39.0	1947		6.3	1991+
2	60.8	1939		23.5	1930		40.4	1977+		6.0	1934
3	59.0	1939		27.3	1963		49.0	1980		4.9	1931
4	58.4	1980		25.0	1992		47.0	1946		2.9	1992
5	59.9	1946		16.9	1972		42.2	1946		-2.8	1972
6	57.7	1987		23.4	1978		41.0	1946		8.5	1931
7	59.6	1939		19.0	1978		38.0	1983		0.8	1951
8	62.2	1939		18.2	1978		40.7	1950		-3.4	1956
9	62.2	1939		12.7	1972		48.3	1939		-11.0	1972
10	66.1	1939		7.8	1972		51.0	1929		-12.8	1972
11	61.5	1993		11.5	1972		45.0	1929		-12.0	1932
12	61.0	1995		7.9	1932		48.3	1929		-20.0	1932
13	59.6	1929		10.9	1932		45.0	1929		-21.4	1932
14	63.5	1929		15.0	1932		46.3	1977		-19.0	1932
15	58.8	1946		11.1	1972		39.4	1946		-14.7	1972
16	57.8	1939		18.2	1932		40.9	1957		-13.8	1932
17	58.0	1939		18.7	1932		37.0	1939		-4.2	1931
18	52.7	1960		23.4	1964		35.7	1955		1.0	1932
19	53.8	1955		24.8	1992		46.0	1955		-1.0	1931
20	60.6	1981		22.2	1949		40.4	1941		-6.6	1990
21	66.5	1969		11.4	1990		44.2	1964		-9.4	1990
22	57.4	1964		2.0	1990		49.1	1955		-9.8	1990
23	58.7	1933		9.1	1990		51.9	1955		-10.8	1990
24	57.0	1955		11.4	1990		41.0	1971		-6.7	1990
25	59.2	1955		18.1	1990		46.0	1955		-6.7	1930
26	60.0	1933		19.0	1970		43.0	1955		-6.2	1930
27	56.8	1933		17.8	1988		41.0	1934		-4.3	1930
28	57.2	1933		24.2	1939		40.3	1945		-9.0	1932
29	57.6	1933		20.2	1988		43.2	1996		-8.0	1932
30	55.6	1996		13.2	1990		42.3	1933		-8.6	1990
31	61.7	1996		19.8	1978		46.9	1996		-7.3	1990
mmu	68.5	1995/1		2.0	1990/22		51.9	1955/23		-21.4	1932/13

+ Also occurred in earlier years.

TABLE 5a
NORMAL MONTHLY MAXIMUM TEMPERATURE, PLUS HIGHEST AND LOWEST DAILY EXTREMES FOR EACH MONTH WITH DAY AND YEAR OF OCCURRENCE

1928-1997

| Month
 Normal Monthly
 Maximum | Highest Daily Maximum | | | Lowest Daily Maximum | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| January | 36.4 | 61.5 | 26 | 1982 | 3.6 | 12 | 1963 |
| February | 43.6 | 68.5 | 28 | 1972 | 6.0 | 7 | 1933 |
| March | 52.2 | 77.9 | 24 | 1956 | 26.2 | 4 | 1933 |
| April | 61.3 | 86.0 | 29 | 1992 | 34.9 | 1 | 1936 |
| May | 71.9 | 92.9 | 19 | 1958 | 38.7 | 2 | 1964 |
| June | 82.8 | 103.5 | 29 | $1979+$ | 48.7 | 11 | 1947 |
| July | 92.2 | 106.6 | 26 | 1960 | 62.1 | 23 | 1993 |
| August | 89.4 | 106.1 | 4 | 1994 | 59.7 | 22 | 1968 |
| September | 79.2 | 100.0 | 8 | 1979 | 41.0 | 24 | 1934 |
| October | 66.1 | 88.6 | 3 | 1963 | 29.5 | 29 | 1971 |
| November | 50.8 | 74.7 | 12 | 1967 | 14.8 | 15 | 1955 |
| December | 37.8 | 68.5 | 1 | 1995 | 2.0 | 22 | 1990 |
| Annual | 63.6 | 106.6 | July 26 | 1960 | 2.0 | Dec 22 | 1990 |

+ Also occurred on June 21, 1961.

TABLE 5b

NORMAL MONTHLY MINIMUM TEMPERATURE, PLUS HIGHEST AND LOWEST DAILY EXTREMES FOR EACH MONTH WITH DAY AND YEAR OF OCCURRENCE

1928-1997

Month	Normal Monthly Minimum	Lowest Daily Minimum			Highest Daily Minimum		
January	19.3	-21.7	25	1949	47.0	13	1980
February	24.6	-30.0	9	1933	51.3	18	1986
March	31.4	1.8	4	1966	56.0	29	1943
April	37.9	14.2	2	1936	64.1	21	1989
May	45.6	25.4	6	1965	68.7	23	1934
June	55.4	34.8	7	$1962+$	75.4	26	1981
July	63.7	40.0	1	1968	79.0	10	1956
August	61.8	36.6	31	1965	76.3	7	1995
September	51.0	27.0	18	1965	73.1	5	1978
October	40.2	16.1	30	1971	65.9	30	1950
November	30.9	-13.6	16	1955	54.4	4	1977
December	21.6	-21.4	13	1932	51.9	23	1955
Annual	40.3	-30.0	Feb 9	1933	79.0	July 10	1956

Climatological normals based on (1961-1990) period.

+ Also occurred in earlier years.

TABLE 6a
NORMAL MONTHLY MAXIMUM TEMPERATURE, PLUS HIGHEST AND LOWEST MONTHLY averages with year of occurrence

1928-1997

Month	Normal Monthly Maximum	Highest Average Maximum	Year	Lowest Average Maximum	Year
January	36.	48.1	1953	21.7	1949
February	43.6	54.1	1995	29.1	1933
March	52.2	62.0	1934	40.5	1952
April	61.3	70.7	1934	53.4	1975
May	71.9	82.4	1934	63.8	1933
June	82.8	92.2	1961	73.0	1945
July	79.2	98.2	1960	83.6	1993
August	66.1	87.5	1967	82.3	1968
September	50.8	58.3	1979	70.8	1965
October	37.8	48.1	1988	56.4	1946
November	63.6	98.2	July 1960	21.7	1994
December			28.1	1930	
Annual				Jan	1949

TABLE 6b
NORMAL MONTHLY MINIMUM TEMPERATURE, PLUS HIGHEST AND LOWEST MONTHLY AVERAGES WITH YEAR OF OCCURRENCE

1928-1997

Month	Normal Monthly Minimum	Highest Average Minimum	Year	Lowest Average Minimum	Year
January	19.3	30.9	1953	1.4	1949
February	24.6	33.6	1986	3.4	1933
March	31.4	38.9	1992	27.2	1964
April	37.9	44.0	1992	32.5	$1970+$
May	45.6	52.5	1992	40.6	1930
June	55.4	61.3	1988	47.5	1945
July	61.8	67.2	1985	56.1	1993
August	51.0	58.8	1994	53.2	1928
September	40.2	45.6	1990	43.8	1964
October	30.9	35.9	1953	33.9	1932
November	21.6	30.8	1950	19.3	1930
December	40.3	67.2	July 1985	1.4	1932
Annual			Jan 1949		

Climatological Normals based on (1961-1990) period.

+ Also occurred in earlier years.

TABLE 7
NORMAL, HIGHEST AND LOWEST MONTHLY MEAN TEMPERATURE
1928-1997

	max	year	MEN	yenr		max	year	MIN	year
JANUARY Normal Monthly Mean 27.9	39.5	1953	11.6	1949	JULY Normal Monthly Mean 77.9	81.2	1960	69.9	1993
	36.8	1994	13.2	1937		81.1	1989	73.8	1938
	36.3	1978	18.8	$1932+$		80.9	1988	74.2	1986
	35.7	1938	19.2	1944		80.7	1994+	74.3	1950+
	35.5	1956	19.5	1963		80.5	1996	74.6	1952
FEBRUARY Normal Monthly Mean 34.1	42.3	1995	16.2	1933	AUGUST Normal Monthly Mean 75.6	80.8	1994	69.4	1968
	42.2	1934	22.6	1939		78.7	1997	70.6	1928
	41.7	1958	22.8	1949		78.6	1967	70.9	1965
	41.4	1986	24.0	$1955+$		78.4	$1991+$	71.9	1964
	40.4	1976	25.3	1989		78.0	1981	72.3	1976
MARCH Normal Monthly Mean 41.8	49.3	1992	32.0	1964	SEPTEMBER Normal Monthly Mean 65.2	72.0	1990	57.5	1965
	49.2	1934	33.3	1952		71.4	1979	59.0	1970
	48.0	1978	35.1	1962		70.5	1994	59.7	1941
	47.7	1986	35.6	1948		69.7	1969	59.8	1971
	46.9	1972	35.8	1942		68.7	1938	60.0	1961
APRIL Normal Monthly Mean 49.7	57.1	1992	44.2	1970	OCTOBER Normal Monthly Mean 53.2	60.0	1988	46.6	1946
	56.6	1934	44.3	$1975+$		57.9	1950	47.1	1970
	56.0	1930	44.4	1929		57.8	1963	47.5	1971
	55.9	1987	44.8	1945		57.5	1952	47.7	1969
	55.7	1985	45.5	1933		56.7	1979	48.1	1932
MAY Normal Monthly Mean 58.8	66.7	1934	52.2	1933	NOVEMBER Normal Monthly Mean 40.8	46.1	$1995+$	31.8	1930
	65.6	1992	52.9	1953		44.3	1981+	32.4	1938
	65.1	1958	53.2	1942		44.0	1954	32.6	1994
	64.0	1969	54.3	$1975+$		43.6	1937	33.0	1931
	63.9	1985	54.7	1965		43.4	1974	34.1	1992
JUNE Normal Monthly Mean 69.1	75.7	1988	60.2	1945	DECEMBER Normal Monthly Mean 29.7	37.9	1977	18.0	1932
	74.7	1961	63.0	1944		37.8	1933	18.8	1930
	74.3	1994	63.2	$1964+$		37.1	1996+	21.0	1990
	73.5	1986	63.3	1963		36.4	1981	22.5	1931
	73.4	1996+	63.6	1947		36.3	$1939+$	22.7	1972

+ Also occurred in earlier years.

TABLE 7a
ANNUAL HIGHEST AND LOWEST AVERAGE TEMPERATURES 1928-1997

Highest Annual Average	Year	Normal Annual Mean Temperature 52.0		Year
55.2	1934		48.2	1932
54.6	1994		48.3	1964
54.3	1981		49.0	1929
54.2	1996		49.4	1955,44,30
53.8	1995,40		49.6	1942
53.6	1992,58		49.7	1931

Climatological normals based on (1961-1990) period.

TABLE 7b
FALL HIGHEST AND LOWEST AVERAGE TEMPERATURES (SEPTEMBER-NOVEMBER)

1928-1997

Highest Fall Average	Year	Normal Fall Mean Temperature 53.1	Lowest Fall Average	Year
56.1	1953		48.0	1930
55.8	1990		48.3	1971
55.6	1983		48.4	1961
55.1	1937		49.5	1946
55.0	1995+		49.6	1970+
54.9	1979+		50.1	1936
54.6	1933		50.2	1959

TABLE 7c
WINTER HIGHEST AND LOWEST AVERAGE TEMPERATURES (DECEMBER-FEBRUARY)

1928-1997

Highest Winter Average	Year	Normal Winter Mean Temperature 30.5	Lowest Winter Average	Year
38.0	1977-78		19.5	1932-33
37.9	1933-34		19.9	1948-49
36.3	1994-95+		23.5	1930-31
36.2	1952-53		23.9	1931-32+
35.8	1969-70		24.0	1963-64
35.4	1958-59		24.9	1972-73
35.3	1957-58		25.1	1954-55

Climatological normals based on (1961-1990) period.

+ Also occurred in earlier years.

TABLE 7d
SPRING HIGHEST AND LOWEST AVERAGE TEMPERATURES
(MARCH-MAY)
1928-1997

Highest Spring Average	Year	Normal Spring Mean Temperature 50.2		Year
57.5	1934		44.5	1964
57.3	1992		45.5	1933
53.8	1987		46.4	1955+
53.6	1994		46.5	1942
53.5	1989		47.2	1944
53.5	1985		47.4	1945
53.3	1940		47.5	1965

TABLE 7e
SUMMER HIGHEST AND LOWEST AVERAGE TEMPERATURES (JUNE-AUGUST)

1928-1997

Highest Summer Average	Year	Normal Summer Mean Temperature 74.3	Lowest Summer Average	Year
1994	78.6		1993	68.7
1988	77.7		1928	69.5
1961	77.5		1945	69.9
1996	77.2		1965	70.2
1985	76.6		1964	$70.9+$
1940	76.1		1951	71.0
1990	75.7		1950	71.4
1974	75.6			

Climatological Normals based on (1961-1990) period.

+ Also occurred in earlier years.

TABLE 8
RECORD NUMBER OF DAYS PER YEAR WITH MAXIMUM TEMPERATURES 90, 95, AND 100 DEGREES OR MORE

1928-1997

90 or Higher (1)		95 or Higher (2)		100 or Higher (3)	
82	1961	51	1961	21	1994+
77	1994	49	1994	15	$1961+$
75	1988	47	-1940	13	1931
74	1996+	46	1996+	12	$1990+$
70	1974	43	1967	11	1973+
69	1960+	40	1988	10	1996+
68	1967+	35	1979+	9	$1989+$
67	1940	34	1931	8	$1978+$
66	1979	33	$1989+$	7	1972+
63	$1990+$	31	$1990+$	6	1988+
54	Annual Average	23	Annual Average	5	Annual Average

+Also occurred in earlier years.
(1) - Only years with 62 or more days tabulated.
(2) - Only years with 30 or more days tabulated.
(3) - Only years with 6 or more days tabulated.

TABLE 9

average and greatest number of days per month with maximum temperatures 90, 95, AND 100 DEGREES OR MORE

1928-1997

Month	90 or Higher		95 or Higher		100 or Higher	
	Average	Maximum	Average	Maximum	Average	Maximum
May	1	7 in 1958	0		0	
June	8	20 in 1961	3	16 in 1961	1	8 in 1961
July	23	31 in 1960	12	23 in 1960	3	15 in 1960
August	18	31 in 1967	7	22 in 1967	1	7 in $1994+$
September	4	12 in $1979+$	1	5 in 1990	$*$	1 in 1979
Annual Average	54	82 in 1961	23	51 in 1961	5	21 in 1960

+Also occurred in earlier years.

* A high of 100 degrees was recorded on September 8, 1979 and is the only day in September ever to reach 100 degrees.

TABLE 10
GREATEST NUMBER OF CONSECUTIVE DAYS WITH A TEMPERATURE OF 90 DEGREES OR MORE

1928-1997

Days	Period	Year	Days	Period	Year
50	July 18 - September 5	1967	25	July 8 - August 1	1933
39	July 4 - August 11	1966	24	July 28 - August 24	1963
38	July 5 - August 11	1961	22	July 18 - August 8	1989
38	June 24 - July 31	1960	22	July 20 - August 10	1942
33	July 10 - August 11	1969	21	July 22 - August 11	1978
33	July 10 - August 11	1964	21	July 17 - August 6	1974
32	July 8 - August 8	1994	21	July 23 - August 12	1972
31	July 2 - August 1	1968	21	July 11 - July 31	1959
30	July 24 - August 22	1971	21	July 8 - July 28	1956
27	July 5 - July 31	1935	19	June 28 - July 16	1985
26	July 28 - August 22	1940	19	July 24 - August 11	1979

Only periods of 19 days or more tabulated.

TABLE 11

GREATEST NUMBER OF DAYS IN ONE MONTH WITH A TEMPERATURE OF 90 DEGREES OR MORE

1928-1997

Days	Month	Year	Days	Month	Year
31	August	1967	27	July	$1996+$
31	July	1960	26	July	1978
30	July	$1968+$	25	August	$1981+$
29	July	$1966+$	25	July	$1959+$
28	August	$1994+$	24	August	1996
28	July	$1989+$	21	August	1997

Only periods of 24 days or more tabulated.

+ Also occurred in July or August of earlier years.

TABLE 12
EARLIEST DATE OF OCCURRENCE IN THE SPRING AND THE LATEST DATE OF OCCURRENCE IN THE FALL OF 90 DEGREES OR MORE

1928-1997

Earliest in the Spring \qquad May 2, 1947
Latest in the Fall.
.September 30, 1957

TABLE 13
GREATEST NUMBER OF CONSECUTIVE DAYS WITH A TEMPERATURE OF 95 DEGREES OR MORE

1928-1997

Days	Period	Year	Days	Period	Year
20	July 23 - August 11	1978	11	July 11 - July 21	1933
20	July 11 - July 30	1960	10	July 20 - July 29	1945
19	July 20 - August 7	1994	10	-July 23 - August 1	1943
16	August 11 - August 26	1967	10	June 12 - June 21	1940
15	July 13 - July 27	1931	9	July 21 - July 29	1980
12	June 18 - June 29	1961	9	July 3 - July 11	1976
12	August 3 - August 14	1960	9	July 3 - July 11	1973
12	July 6 - July 17	1954	9	August 4-August 12	1972
12	July 4 - July 15	1940	9	July 11 - July 19	1934
11	August 1 - August 11	1985	9	August 14 - August 22	1932
11	July 18 - July 28	1937	9	August 9 - August 17	1996
11	July 16 - July 26	1936	9	August 20 - August 28	1997

Only periods of 9 days or more tabulated.
TABLE 14
GREATEST NUMBER OF DAYS IN ONE MONTH WTTH A TEMPERATURE
OF 95 DEGREES OR MORE
1928-1997

Days	Month	Year	Days	Month	Year
23	July	1960	18	July	$1964+$
22	August	1967	17	August	$1994+$
22	July	1961	17	July	$1976+$
21	July	$1996+$	16	July	$1985+$
20	July	$1994+$	16	June	1961
19	July	$1969+$	16	August	1996
18	August		August	1997	

Only periods of 16 days or more tabulated.

+ Also occurred in July or August of earlier years.
TABLE 15
EARLIEST DATE OF OCCURRENCE IN THE SPRING AND THE LATEST DATE OF OCCURRENCE IN THE FALL OF 95 DEGREES OR MORE

1928-1997

Earliest in the Spring.
.May 31, 1997
Latest in the Fall.
September 19, 1956

TABLE 16
GREATEST NUMBER OF CONSECUTIVE DAYS WITH A TEMPERATURE OF 100 DEGREES OR MORE

1928-1997

Days	Period	Year	Days	Period	Year
9	July 14 - July 22	1960	4	July 15 - July 18	1979
8	July 20 - July 27	1931	4	July 24 - July 27	1978
6	July 25 - July 30	1994	4	July 8 - July 11	1973
6	July 6 - July 11	1976	4	July 3 - July 6	1973
6	July 24 - July 29	1960	4	August 9 - August 12	1972
5	August 3 - August 7	1994	4	August 12 - August 15	1962
5	July 2 - July 6	1985	4	June 20 - June 23	1961
4	June 29 - July 2	1990	4	July 10 - July 13	1954
4	June 23 - June 26	1990	4	July 24 - July 27	1943
4	August 3 - August 6	1979	4	July 16 - July 19	1940
3	August 11 - August 13	1996			

Only periods of 3 days or more tabulated.

TABLE 17
GREATEST NUMBER OF DAYS IN ONE MONTH WITH A TEMPERATURE OF 100 DEGREES OR MORE 1928-1997

Days	Month	Year	Days	Month	Year
15	July	1960	8	June	1961
13	July	1994	7	August	1994
12	July	1931	7	July	$1978+$
9	July	$1989+$	6	June	1990
8	July	1976	6	July	$1985+$

Only periods of 6 days or more tabulated.

+ Also occurred in July or August of earlier years.

TABLE 18
EARLIEST DATE OF OCCURRENCE IN THE SPRING AND THE LATEST DATE OF OCCURRENCE IN THE FALL OF 100 DEGREES OR HIGHER

1928-1997

Earliest in the Spring
Latest in the Fall.
.September 8, 1979

TABLE 19
GREATEST NUMBER OF DAYS IN ONE MONTH WITH A MAXIMUM TEMPERATURE OF 32 DEGREES OR BELOW

1928-1997

Days	Month	Year	Days	Month	Year
26	January	$1949+$	17	January	1929
25	January	1944	16	December	$1972+$
25	December	1930	16	January	1950
24	January	1931	15	January	$1989+$
23	January	1973	15	December	1967
22	January	$1984+$	15	February	1950
21	January	$1985+$	14	December	$1993+$
20	December	$1942+$	13	January	$1990+$
20	January	1947	13	December	1985
19	January	1964	13	February	$1968+$
18	January	February			
17					

Only months with 13 or more days tabulated.

+ Also occurred in earlier years.
TABLE 20
GREATEST NUMBER OF CONSECUTIVE DAYS WITH A MAXIMUM TEMPERATURE OF 32 DEGREES OR BELOW

1928-1997

Days	Period	Days	Period
18	December 20, 1990 - January 6, 1991	15	December 28, 1946 - January 11, 1947
18	January 23, 1949 - February 9, 1949	14	December 23, 1987 - January 5, 1988
17	January 21, 1962 - February 6,1962	14	January 8, 1987 - January 21, 1987
15	December 16, 1985 - December 30, 1985	14	December 29, 1972 - January 11, 1973
15	January 20, 1979 - February 5, 1979		

Only periods of 14 or more days tabulated.
TABLE 21
NORMAL NUMBER OF DAYS WITH A MAXIMUM TEMPERATURE OF 32 DEGREES OR BELOW

November......... 1 day	January.........11 days	March......... 1 day
December.........9 days	February......... 4 days	Annual......... 26 days

Climatological Normals based on (1961-1990) period.

TABLE 22
GREATEST NUMBER OF CONSECUTIVE DAYS WITH A MINIMUM OF 32 DEGREES OR BELOW 1928-1997

Days	Time Period
94	November 14, 1930 - February 15, 1931
88	December 1, 1932 - March 8, 1933
85	November 20, 1990 - February 12, 1991
81	November 15, 1928 - February 3, 1929
62	January 6, 1928 - March 8, 1928
62	December 21, 1943 - February 21, 1944
61	December 31, 1984 - March 1, 1985
60	November 21, 1963 - January 19, 1964
57	December 28, 1975 - February 22, 1976
55	January 3, 1955 - February 25, 1955

Only periods of 55 days or more tabulated.

TABLE 23
AVERAGE NUMBER OF DAYS WITH A MINIMUM OF 32 DEGREES OR BELOW 1928-1997

Month	Number of Days
January	28 days
February	23 days
March	16 days
April	6 days
May	1 day
June	0
July	0
August	0
September	0
October	5 days
November	18 days
December	28 days
Annual Average	125 days

TABLE 24
GREATEST NUMBER OF DAYS IN ONE MONTH WITH A MINIMUM TEMPERATURE OF 0 DEGREES OR BELOW

1928-1997

Days	Month	Year	Days	Month	Year
15	January	1949	7	January	1973
14	January	1937	7	December	1932
12	December	1930	6	January	$1974+$
11	February	1933	6	December	1931
9	December	1990	6	February	1929
9	December	1972	5	January	$1984+$
9	January	1932	5	February	1949
8	January	1942			

Only months with 5 or more days tabulated.

+ Also occurred in earlier years.

TABLE 25
GREATEST NUMBER OF CONSECUTIVE DAYS WITH A MINIMUM TEMPERATURE OF 0 DEGREES OR BELOW

1928-1997

Days	Period	Days	Period
13	December 20, 1930 - January 1, 1931	6	January 7, 1937 - January 12, 1937
8	December 9, 1972 - December 16, 1972	6	December 11, 1932 - December 16, 1932
7	January 20, 1937 - January 26, 1937	5	December 29, 1990 - January 2, 1991
7	February 4, 1933 - February 10, 1933	5	January 17, 1984 - January 21, 1984
6	December 20, 1990 - December 25, 1990	5	January 21, 1962 - January 28, 1962
6	January 3, 1973 - January 8, 1973	5	February 7, 1929 - February 11, 1929
6	January 24, 1949 - January 29, 1949		

Only periods of 5 or more days tabulated.
TABLE 26
AVERAGE NUMBER OF DAYS WITH A MINIMUM TEMPERATURE OF 0 DEGREES OR BELOW 1928-1997

November.......... 0 days	January......... 2 days	Annual.......... 3 days
December......... 1 day	February......... less than $1 / 2$ day	

TABLE 27

FREEZE DATA -- SALT LAKE AIRPORT

FREEZE (32 DEGREES OR BELOW)					
Earliest Date in the Spring	Latest Date in the Spring	Average Date in the Spring	Earliest Date in the Fall	Latest Date in the Fall	Average Date in the Fall
March 11, 1992	May 28, 1954		Sept 13, 1928	Nov 14, 1988	
March 19, 1940	May 25, 1975		Sept 17, 1965	Nov 13, 1944	
March 21, 1989	May 23, 1966		Sept 18, 1946	Nov 11, 1987	
March 30, 1985	May 19, 1931		Sept 19, 1942	Nov 9, 1985	
April 3, 1944	May 19, 1938		Sept 19, 1964	Nov 8, 1983	
April 8, 1994	May 19, 1950		Sept 22, 1968	Nov 5, 1974	
April 8, 1981	May 19, 1960	April 30	Sept 24, 1961	Nov 3, 1940	October 15
April 8, 1973	May 16, 1955		Sept 25, 1958	Nov 3, 1992	
April 9, 1952	May 13, 1943		Sept 25, 1970	Nov 1, 1977	
April 9, 1936	May 13, 1951		Sept 27, 1934	Oct 31, 1981	
April 10, 1976	May 13, 1967		Sept 27, 1936	Oct 30, 1979	
April 13, 1987	May 11, 1930		Sept 28, 1941	Oct 29, 1993	
April 13, 1980	May 11, 1933		Sept 28, 1971	Oct 28, 1972+	
April 14, 1993					

+ Also occurred in earlier years.

*FREEZE-FREE PERIOD				
Longest		Shortest		Average Length
Days	Date	Days	Date	
236	March 12 - November 2, 1992	124	May 29 - September 29, 1954	
223	March 31 - November 8, 1985	132	May 8 - September 16, 1965	
209	March 22 - October 17, 1989	134	May 20 - September 30, 1950	
205	April 20 - November 10, 1987	136	May 6 - September 18, 1964	
203	April 8 - October 29, 1994	137	May 8 - September 21, 1968	167 days
197	April 14 - October 29, 1993	139	May 24 - October 9, 1966	
195	May 3 - November 13, 1988	139	May 2 - September 17, 1946	
195	April 17 - November 7, 1983	139	May 23 - October 8, 1982	
194	April 23 - November 2, 1940	140	May 7 - September 23, 1961	
194	Aril 21 - October 31, 1977	141	May1 - September 18, 1942	
193	May 4 - November 12, 1944 +			

*Freeze-free period is the number of days between the last freeze (32 degrees or below) in the Spring and the first freeze (32 degrees or below) in the Fall.

+ Also occurred in earlier years.

TABLE 28
GROWING SEASON DATA -- SALT LAKE AIRPORT
1928-1997

Minimum Temperature Base	Latest in Spring	Spring Average	First in Fall	Fall Average
32 or below	May 28, 1954	April 30	September 13, 1928	October 15
28 or below	May 9, 1930	April 12	September 18, 1965	October 25
24 or below	April 21,1982	March 24	October 17,1964	November 9
20 or below	April 10,1933	March 10	October 25,1932	November 22
16 or below	April 5,1955	February 24	October 30, 1971	November 28
10 or below	March 19,1965	February 9	November 3,1936	December 11

Minimum Temperature Base	Minimum Length of Growing Season		Maximum Length of Growing Season		Average Length
	Period	Days	Period	Days	Days
32 or below	$\begin{gathered} \text { May } 29 \text { - September } 29 \\ 1954 \end{gathered}$	124	March 11 - November 3 1992	237	167
28 or below	$\begin{gathered} \text { May } 9-\text { October } 16 \\ 1930 \end{gathered}$	159	February 8 - November 3 1992	270	199
24 or below	$\begin{gathered} \text { April } 17 \text { - October } 29 \\ 1960 \end{gathered}$	194	January 27 - November 26 1934	302	226
20 or below	$\begin{gathered} \text { April } 2 \text { - November } 2 \\ 1936 \end{gathered}$	213	January 26 - November 30 1934	307	254
16 or below	$\begin{gathered} \text { April } 2 \text { - November } 2 \\ 1936 \end{gathered}$	213	$\begin{gathered} \text { December } 21 \text { - December } 5 \\ 1977-1978 \end{gathered}$	348	278
10 or below	February 28 - November 18 1929	262	$\begin{gathered} \text { November } 22-\text { February } 1 \\ 1994-1996 \end{gathered}$	436	310

Growing season is the number of days between the last selected minimum temperature base in the spring and the first selected minimum temperature base in the fall.

FIGURE 5
SALT LAKE CITY AIRPORT SEASONAL PRECIPITATION RECORD
1928-1929 to 1996-1997 (Water Year)\#

TABLE 29
MAXIMUM AND MINIMUM TOTAL ANNUAL PRECIPITATION BY CALENDAR YEAR 1929-1997

Maximum Annual Precipitation				Normal Annual Precip.	Minimum Annual Precipitation			
Amount	Year	Amount	Year		Amount	Year	Amount	Year
24.26"	1983	19.87"	1970		8.70"	1979	10.11"	1933
22.86"	1982	19.40"	1986		8.99"	1966	10.34"	1935
21.55"	1984	18.87"	1993	16.18"	9.29"	1988	10.69"	1990
21.11"	1968	18.79"	1941		$9.36{ }^{\prime \prime}$	1939	10.72"	1958
20.39"	1973	18.49"	1944		9.42"	1931	10.87"	1989

Normal annual precipitation from Climatological Standard Normals (1961-1990).

TABLE 30*
THE AVERAGE TIME INTERVAL (RETURN PERIOD) BETWEEN THE OCCURRENCE OF THE LISTED PRECIPITATION AMOUNTS AND THAT OF AN EQUAL OR GREATER AMOUNT 1929-1970\#

Return Period (Years)	5 minutes	10 minutes	15 minutes	30 minutes	1 hour	2 hours	24 hours
1	.03	.06	.08	.13	.19	.28	.65
2	.15	.24	.29	.36	.45	.58	1.34
5	.24	.40	.48	.62	.74	.89	1.79
10	.30	.52	.64	.85	1.02	1.17	2.10
50	.43	.81	1.12	1.63	1.93	2.02	2.81
100	.48	.95	1.38	2.09	2.49	2.51	3.13

[^2]| 1 | 1933-34 | 8.16 | 69 |
| :---: | :---: | :---: | :---: |
| 2 | 1978-79 | 8.19 | 68 |
| 3 | 1930-31 | 9.27 | 67 |
| 4 | 1965-66 | 9.53 | 66 |
| 5 | 1987-88 | 9.94 | 65 |
| 6 | 1959-60 | 10.43 | 64 |
| 7 | 1986-87 | 10.71 | 63 |
| 8 | 1989-90 | 10.88 | 62 |
| 9 | 1988-89 | 10.99 | 61 |
| 10 | 1932-33 | 11.28 | 60 |
| 11 | 1939-40 | 11.34 | 59 |
| 12 | 1960-61 | 11.43 | 58 |
| 13 | 1953-54 | 11.78 | 57 |
| 14 | 1938-39 | 12.00 | 56 |
| 15 | 1942-43 | 12.14 | 55 |
| 16 | 1991-92 | 12.18 | 54 |
| 17 | 1954-55 | 12.24 | 53 |
| 18 | 1945-46 | 12.35 | 52 |
| 19 | 1952-53 | 12.37 | 51 |
| 20 | 1962-63 | 12.43 | 50 |
| 21 | 1955-56 | 12.53 | 49 |
| 22 | 1957-58 | 12.81 | 48 |
| 23 | 1993-94 | 12.84 | 47 |
| 24 | 1937-38 | 12.87 | 46 |
| 25 | 1980-81 | 13.04 | 45 |
| 26 | 1935-36 | 13.37 | 44 |
| 27 | 1936-37 | 13.42 | 43 |
| 28 | 1934-35 | 13.65 | 42 |
| 29 | 1971-72 | 14.03 | 41 |
| 30 | 1958-59 | 14.12 | 40 |
| 31 | 1950-51 | 14.18 | 39 |
| 32 | 1947-48 | 14.36 | 38 |
| 33 | 1931-32 | 14.54 | 37 |
| 34 | 1976-77 | 14.90 | 36 |
| 35 | 1995-96 | 14.99 | 35 |
| 36 | 1929-30 | 15.13 | 34 |
| 37 | 1928-29 | 15.16 | 33 |
| 38 | 1941-42 | 15.49 | 32 |
| 39 | 1949-50 | 15.50 | 31 |
| 40 | 1963-64 | 15.58 | 30 |
| 41 | 1990-91 | 15.61 | 29 |
| 42 | 1973-74 | 15.64 | 28 |
| 43 | 1944-45 | 16.04 | 27 |
| 44 | 1975-76 | 16.31 | 26 |
| 45 | 1966-67 | 16.35 | 25 |
| 46 | 1979-80 | 16.73 | 24 |
| 47 | 1968-69 | 16.75 | 23 |
| 48 | 1948-49 | 16.83 | 22 |
| 49 | 1961-62 | 16.88 | 21 |
| 50 | 1984-85 | 17.26 | 20 |
| 51 | 1974-75 | 17.54 | 19 |
| 52 | 1969-70 | 17.76 | 18 |
| 53 | 1940-41 | 18.17 | 17 |
| 54 | 1996-97 | 18.47 | 16 |
| 55 | 1956-57 | 18.77 | 15 |
| 56 | 1946-47 | 18.83 | 14 |
| 57 | 1967-68 | 18.84 | 13 |
| 58 | 1943-44 | 18.85 | 12 |
| 59 | 1977-78 | 19.23 | 11 |
| 60 | 1992-93 | 19.24 | 10 |
| 61 | 1951-52 | 19.29 | 9 |
| 62 | 1970-71 | 19.86 | 8 |
| 63 | 1982-83 | 20.58 | 7 |
| 64 | 1964-65 | 20.79 | 6 |
| 65 | 1994-95 | 20.97 | 5 |
| 66 | 1972-73 | 22.26 | 4 |
| 67 | 1985-86 | 23.40 | 3 |
| 68 | 1983-84 | 23.82 | 2 |
| 69 | 1981-82 | 25.15 | 1 |

WATER YEAR PRECIPITATION 1928-1997

TABLE 32
NORMAL, MAXIMUM AND MINIMUM MONTHLY PRECIPITATION TOTALS
1928-1997

	max	yenr	MIN	vear		max	year	MIN	year
JANUARY Normal Monthly Total 1.11	3.23	1993	. 09	1961	JULY Normal Monthly Total 0.81	2.57	1982	T*	1963
	3.14	1940	. 17	1935		2.52	1962	. 01	1947
	3.09	1996	. 34	1948		2.17	1951	. 02	1960
	2.87	1980	. 39	1945		1.92	1945	. 04	1988+
	2.73	1953	.41	1966		1.72	1984	. 05	1958
FEBRUARY Normal Monthly Total 1.23	3.22	1936	. 12	1946	AUGUST Normal Monthly Total 0.86	3.66	1968	T*	1944
	2.84	1969	. 13	1988		3.28	1945	. 02	1996
	2.32	1968	. 27	1931		3.06	1930	. 03	1985+
	2.25	1980	. 35	1990+		2.94	1932	. 07	1967
	2.20	1958	. 39	1953		2.64	1983	. 10	1975
$\left\lvert\, \begin{aligned} & \text { MARCH } \\ & \text { Normal Monthly } \\ & \text { Total } \\ & 1.91 \end{aligned}\right.$	3.97	1983	. 10	1956	SEPTEMBER Normal Monthly Total 1.28	7.04	1982	T*	1951+
	3.67	1944	. 14	1965		4.07	1973	. 02	1952
	3.56	1952	. 20	1955		2.80	1970	. 03	1974
	3.47	1978	. 48	1934		2.75	1986	. 05	1987+
	3.44	1975	. 56	1997		2.55	1991	. 06	1932
APRIL Normal Monthly Total 2.12	4.90	1944	. 45	1981+	OCTOBER Normal Monthly Total 1.44	3.91	1981	0	1952
	4.57	1974	. 46	1989		3.70	1984	T*	1978+
	4.55	1986	. 59	1977		3.61	1946	. 01	1988
	4.43	1984	. 64	1985		3.23	1971	. 17	1935
	3.86	1963	. 65	1954		2.79	1949	. 18	1944
MAY Normal Monthly Total 1.80	4.76	1977	T*	1934	NOVEMBER Normal Monthly Total 1.29	2.96	1994	. 01	1939
	3.99	1993	. 01	1940		2.63	1985	. 03	1976
	3.68	1995+	. 14	1972		2.57	1934	. 05	1943
	3.39	1986	. 18	1969		2.52	1973	. 10	1959
	3.37	1957	. 19	1929		2.46	1992	. 13	1929
JUNE Normal Monthly Total 0.93	2.93	1947	T	1994	DECEMBER Normal Monthly Total 1.40	4.37	1983	. 08	1976
	2.83	1969	. 01	1946+		3.82	1964	. 10	1986
	2.78	1944	. 03	1988		3.22	1972	. 13	1989
	2.73	1967+	. 04	1958		2.90	1951	. 28	1962
	2.61	1964	. 06	1978+		2.80	1970	. 37	1980

(T) A trace means too small to measure.

Annual average 16.18 inches based on (1961-1990) period.

+ Also occurred in earlier years.

TABLE 33
MAXIMUM AND MINIMUM WATER YEAR PRECIPITATION
1928-1929 through 1996-1997

$\begin{gathered} \text { Maximum } \\ \text { Seasonal } \\ \text { Precipitation } \end{gathered}$	Year	Normal Water Year Precipitation16.18"	Minimum Seasonal Precipitation	Year
25.15"	1981-1982		8.16"	1933-1934
23.82"	1983-1984		8.19"	1978-1979
$23.40^{\prime \prime}$	1985-1986		9.27"	1930-1931
$22.26{ }^{\prime \prime}$	1972-1973		$9.53{ }^{\prime \prime}$	1965-1966
20.97"	1994-1995		$9.94{ }^{\prime \prime}$	1987-1988
20.79"	1964-1965		10.43"	1959-1960
20.58"	1982-1983		10.71"	1986-1987

Water year begins October 1 and ends September 30.
Normal water year precipitation based on Climatological Standard Normals (1961-1990).

TABLE 34a
GREATEST 24-HOUR PRECIPITATION (Inches)
(Midnight to Midnight)
1928-1997

	JANUARY		FEBRUARY		MARCH		APRIL	
$\begin{aligned} & \mathrm{D} \\ & \mathrm{~A} \\ & \mathrm{Y} \end{aligned}$	$\begin{aligned} & 24-\mathrm{HR} \\ & \text { PCPN } \end{aligned}$	YEAR	$\begin{aligned} & 24-\mathrm{HR} \\ & \text { PCPN } \end{aligned}$	YEAR	$\begin{aligned} & 24-\mathrm{HR} \\ & \text { PCPN } \end{aligned}$	YEAR	$\begin{aligned} & 24-\mathrm{HR} \\ & \text { PCPN } \end{aligned}$	YEAR
1	. 20	1940	. 43	1989	. 59	1977	. 95	1984
2	. 75	1940	. 89	1936	1.11	1941	1.57	1986
3	. 45	1940	. 40	1945	. 66	1938	. 73	1994
4	. 27	1978	44	1976	. 63	1938	. 67	1947
5	. 81	1987	. 47	1974	. 55	1978	76	1941
6	. 41	1944	81	1969	48	1930	62	1929
7	. 52	1993	. 32	1950	. 50	1960	. 58	1946
8	. 56	1975	. 65	1959	. 59	1986	94	1949
9	. 51	1993	. 41	1976	. 64	1987	1.19	1974
10	. 26	1968	. 36	1947	. 65	1952	1.54	1974
11	. 46	1997	44	1995	. 82	1990	27	1970
12	. 43	1932	. 64	1952	. 47	1944	. 65	1944
13	. 28	1971+	. 60	1970	1.56	1944	. 98	1972
14	1.36	1953	. 54	1987	41	1960+	1.01	1952
15	. 91	1995	. 55	1936	. 92	1963	. 51	1969
16	. 56	1956	44	1969	53	1975	1.12	1941
17	. 73	1996	. 49	1955	. 61	1968	. 89	1953
18	. 60	1953	. 78	1980	. 43	1937	1.07	1959
19	. 61	1973	. 38	1974	. 68	1983	. 95	1984
20	. 56	1962	. 90	1934	. 69	1946	90	1932
21	. 53	1953	45	1979	. 71	1980	. 56	1962
22	. 81	1951	. 50	1996	. 83	1964	1.00	1957
23	. 52	1967	. 72	1930	. 88	1949	1.46	1958
24	. 54	1934	. 55	1943	. 66	1952	. 70	1945
25	. 67	1996	. 90	1969	. 68	1975	1.62	1976
26	. 44	1969	. 51	1981	. 55	1981	. 69	1962
27	. 61	1956	41	1947	. 81	1940	. 66	1970
28	. 45	1965	. 30	1930	. 51	1963	. 62	1970
29	. 49	1980	. 16	1940	. 73	1967	. 91	1951
30	. 30	1996			. 72	1948	. 50	1953
31	. 48	1939			. 78	1936		
max	1.36	$\begin{aligned} & 1953 \\ & / 14 \mathrm{~h} \end{aligned}$. 90	$\begin{aligned} & 1969 \\ & 125 \mathrm{th} \end{aligned}$	1.56	$\begin{aligned} & 1944 \\ & 13 \mathrm{th} \end{aligned}$	1.62	$\begin{aligned} & 1976 \\ & 125 \mathrm{th} \end{aligned}$

+ Also occurred in earlier years.

TABLE 34b

GREATEST 24-HOUR PRECIPITATION (Inches)
(Midnight to Midnight)

[^3]TABLE 34c
GREATEST 24-HOUR PRECIPITATION (Inches)
(Midnight to Midnight)
1928-1997

+ Also occurred in earlier years.

TABLE 35
RECORD MAXIMUM PRECIPITATION FOR SPECIFIED TIME PERIODS

Month	$\begin{gathered} 5 \\ \text { Minutes } \end{gathered}$	$\begin{gathered} 10 \\ \text { Minutes } \end{gathered}$	$\begin{gathered} 15 \\ \text { Minutes } \end{gathered}$	$\begin{gathered} 30 \\ \text { Minutes } \end{gathered}$	$\begin{gathered} 1 \\ \text { Hour } \end{gathered}$	2 Hour	3 Hour	*24 Hours
January		$\begin{gathered} .10 \\ 13 / 1971 \end{gathered}$	$\begin{gathered} .12 \\ 14 / 1980 \\ 8 / 1975 \\ 13 / 1971 \end{gathered}$	$\begin{gathered} .22 \\ 14 / 1980 \end{gathered}$	$\begin{gathered} .39 \\ 14 / 1980 \end{gathered}$	$\begin{gathered} .58 \\ 14 / 1980 \end{gathered}$	$\begin{gathered} .78 \\ 14 / 1980 \end{gathered}$	$\begin{gathered} 1.36 \\ 14 / 1953 \end{gathered}$
February	$\begin{gathered} .13 \\ 6 / 1950 \end{gathered}$	$\stackrel{.25}{6 / 1950}$	$\begin{gathered} .26 \\ 6 / 1950 \end{gathered}$	$\begin{gathered} .28 \\ 6 / 1950 \end{gathered}$	$\begin{gathered} .31 \\ 6 / 1950 \end{gathered}$	$\begin{gathered} .60 \\ 6 / 1969 \end{gathered}$	$\begin{gathered} .64 \\ 6 / 1969 \end{gathered}$	$\begin{gathered} 1.05 \\ 25-26 / 1958 \end{gathered}$
March	$\begin{gathered} .33 \\ 2 / 1989 \end{gathered}$	$\begin{gathered} .43 \\ 2 / 1989 \end{gathered}$	$\begin{gathered} .45 \\ 2 / 1989 \end{gathered}$	$\begin{gathered} .50 \\ 2 / 1989 \end{gathered}$	$\begin{gathered} .53 \\ 1 / 1989 \end{gathered}$	$\begin{gathered} .55 \\ 2 / 1989 \end{gathered}$	$\begin{gathered} .64 \\ 7-8 / 1960 \end{gathered}$	$\begin{gathered} 1.83 \\ 13-14 / 1944 \end{gathered}$
April	$\begin{gathered} .11 \\ 28 / 1973 \end{gathered}$.15 $24 / 1951$ $30 / 1936$	$\begin{gathered} .20 \\ 23 / 1965 \end{gathered}$	$\begin{gathered} .33 \\ 23 / 1958 \end{gathered}$.44 $25 / 1976$ 23/1958	$\begin{gathered} .80 \\ 23 / 1958 \end{gathered}$	$\begin{gathered} .95 \\ 23 / 1958 \end{gathered}$	$\begin{gathered} 2.41 \\ 22-23 / 1957 \end{gathered}$
May	$\begin{gathered} .30 \\ 26 / 1941 \end{gathered}$	$\begin{gathered} .44 \\ 26 / 1941 \end{gathered}$	$\begin{gathered} .47 \\ 26 / 1941 \end{gathered}$	$\begin{gathered} .48 \\ 26 / 1941 \end{gathered}$	$\begin{gathered} .48 \\ 26 / 1941 \end{gathered}$	$\begin{gathered} .52 \\ 10 / 1946 \end{gathered}$	$\begin{gathered} .71 \\ 19 / 1957 \end{gathered}$	$\begin{gathered} 2.03 \\ 15-16 / 1942 \end{gathered}$
June	$\begin{gathered} .26 \\ 24 / 1936 \end{gathered}$	$\begin{gathered} .32 \\ 15 / 1956 \end{gathered}$	$\begin{gathered} .36 \\ 24 / 1936 \end{gathered}$	$\begin{gathered} .46 \\ 24 / 1936 \end{gathered}$		$\begin{gathered} .63 \\ 21 / 1948 \end{gathered}$	$\begin{gathered} .75 \\ 21 / 1948 \end{gathered}$	$\begin{gathered} 1.88 \\ 21-22 / 1948 \end{gathered}$
July	$\begin{gathered} .50 \\ 13 / 1962 \end{gathered}$	$\begin{gathered} .92 \\ 13 / 1962 \end{gathered}$	$\begin{gathered} 1.26 \\ 13 / 1962 \end{gathered}$	$\begin{gathered} 1.79 \\ 13 / 1962 \end{gathered}$	$\begin{gathered} 1.94 \\ 13 / 1962 \end{gathered}$	$\begin{gathered} 1.99 \\ 13 / 1962 \end{gathered}$	$\begin{gathered} 1.99 \\ 13 / 1962 \end{gathered}$	$\begin{gathered} 2.35 \\ 12-13 / 1962 \end{gathered}$
August	$\begin{gathered} .34 \\ 19 / 1945 \end{gathered}$	$\begin{gathered} .52 \\ 4 / 1954 \end{gathered}$	$\begin{gathered} .78 \\ 4 / 1954 \end{gathered}$	$\begin{gathered} 1.08 \\ 4 / 1954 \end{gathered}$	$\begin{gathered} 1.31 \\ 4 / 1954 \end{gathered}$	$\begin{gathered} 1.50 \\ 4 / 1954 \end{gathered}$	$\begin{gathered} 1.53 \\ 4 / 1954 \end{gathered}$	$\begin{gathered} 1.96 \\ 26 / 1932 \end{gathered}$
September	$\begin{gathered} .35 \\ 14 / 1977 \end{gathered}$	$\begin{gathered} .45 \\ 14 / 1977 \end{gathered}$	$\begin{gathered} .57 \\ 14 / 1954 \end{gathered}$	$\begin{gathered} .62 \\ 14 / 1977 \end{gathered}$	$\begin{gathered} .63 \\ 14 / 1977 \end{gathered}$	$\begin{gathered} .74 \\ 26 / 1982 \end{gathered}$	$\begin{gathered} .97 \\ 26 / 1982 \end{gathered}$	$\begin{gathered} 2.30 \\ 26-27 / 1982 \end{gathered}$
October	$\begin{gathered} .12 \\ 7 / 1993 \\ 2 / 1976 \end{gathered}$	$\begin{gathered} .23 \\ 7 / 1993 \end{gathered}$	$\begin{gathered} .32 \\ 7 / 1993 \end{gathered}$	$\begin{gathered} .45 \\ 7 / 1993 \end{gathered}$	$\begin{gathered} .71 \\ 7 / 1993 \end{gathered}$	$\begin{gathered} .83 \\ 10 / 1947 \end{gathered}$	$\begin{gathered} .95 \\ 10 / 1947 \end{gathered}$	$\begin{gathered} 1.76 \\ 17-18 / 1984 \end{gathered}$
November	$\begin{gathered} .10 \\ 17 / 1948 \end{gathered}$	$\begin{gathered} .18 \\ 17 / 1948 \end{gathered}$	$\begin{gathered} .19 \\ 17 / 1948 \end{gathered}$	$\begin{gathered} .21 \\ 17 / 1948 \end{gathered}$	$\begin{gathered} .33 \\ 15 / 1952 \end{gathered}$	$\begin{gathered} .53 \\ 15 / 1952 \end{gathered}$	$\begin{gathered} .59 \\ 12 / 1964 \end{gathered}$	$\begin{gathered} 1.13 \\ 16 / 1954 \end{gathered}$
December		.10 $23 / 1982$ $23 / 1964$	$\begin{gathered} .13 \\ 5 / 1956 \end{gathered}$	$\begin{gathered} .22 \\ 5 / 1956 \end{gathered}$	$\begin{gathered} .30 \\ 23 / 1964 \end{gathered}$	$\begin{gathered} .52 \\ 12 / 1937 \end{gathered}$	$\begin{gathered} .66 \\ 12 / 1937 \end{gathered}$	$\begin{gathered} 1.82 \\ 28-29 / 1972 \end{gathered}$
Annual	.50 July 13 1962	.92 July 13 1962 1962	1.26 July 13 1962	$\begin{gathered} 1.79 \\ \text { July } 13 \\ 1962 \end{gathered}$	1.94 July 13 1962 1962	1.99 July 13 1962		$\begin{gathered} 2.41 \\ \text { April } 22-23 \\ 1957 \end{gathered}$

Period of record 1936-1991. \qquad .excluding 1938-1940.

[^4]TABLE 36
AVERAGE AND GREATEST NUMBER OF DAYS PER MONTH WITH AT LEAST $0.01,0.10,0.50$, AND 1.00 INCH OF PRECIPITATION
(MIDNIGHT-MIDNIGHT)
1928-1997

Month	0.01 inch or more			0.10 inch or more			0.50 inch or more			1.00 inch or more		
	Avg Days	Most Days	Year	Avg Days	Most Days	Year	Avg Days	Most Days	Year	$\begin{aligned} & \text { Avg } \\ & \text { Days } \end{aligned}$	Most Days	Year
Jan	10	16	1993	4	9	1993	0	3	1953	*	1	1953
Feb	9	15	1993	4	10	1940	0	3	1936	0	0	----
Mar	10	17	1975 +	5	12	1983	1	3	1977+	*	1	1944+
Apr	10	16	$1978+$	5	12	$1963+$	1	5	1944	*	2	1974+
May	8	17	1995+	4	10	1981+	1	3	1993 +	*	2	1957
Jun	5	17	1967	3	8	1969	*	2	1964+	*	1	1985+
Jul	4	12	1936	2	6	1965	*	3	1951	*	1	1969+
Aug	6	13	1945	2	7	1982	*	3	$1971+$	*	2	1945
Sep	5	15	1982	2	10	1982	1	5	1982	*	2	1982+
Oct	6	13	$1981+$	4	12	1981	1	3	1984+	*	1	$1993+$
Nov	8	17	$1994+$	4	9	1985+	1	3	1955	*	1	1992+
Dec	10	24	1983	5	14	1983	*	3	1964	*	1	1972+
Annual	91	140	1983	43	71	1983	6	12	1977+	1	4	1957+

+ Also occurred in earlier years.
* Average is less than $1 / 2$ day.

TABLE 37
greatest number of consecutive days with a trace or more
1928-1997

Days	Period	Total Rainfall
24	November 17 - December 10, 1983	$2.19^{\prime \prime}$
18	December 22, 1991 - January 8, 1992	$.75^{\prime \prime}$
18	January 28 - February 14, 1984	$.34^{\prime \prime}$
17	December 15 - December 31, 1968	$1.13^{\prime \prime}$
16	February 11 - February 26 1936	$2.04^{\prime \prime}$
16	April 17 - May2, 1951	$2.62^{\prime \prime}$
16	February 8 - February 23, 1986	$.80^{\prime \prime}$
15	December 16 - December 30, 1985	$.23^{\prime \prime}$
15	January 24 - February 7,1979	$.12^{\prime \prime}$
15	February 5 - February 19, 1978	$1.56^{\prime \prime}$
15	January 19 - February 2, 1969	$1.23^{\prime \prime}$
15	March 28 - April 11, 1958	$1.57^{\prime \prime}$

Only 15 or more days tabulated.

TABLE 38

GREATEST NUMBER OF CONSECUTIVE DAYS WITH . 01 INCH OR MORE OF PRECIPITATION
1928-1997

\# Days	Period	Total Rainfall
10	February 14 - February 23, 1980	$2.12^{\prime \prime}$
9	December 19 - December 27, 1983	$1.78^{\prime \prime}$
9	December 19 - De 2 mber 27, 1981	$1.34^{\prime \prime}$
9	May 20 - May 28, 1962	$1.56^{\prime \prime}$
9	December 29 - January 6, 1940	$2.66^{\prime \prime}$
8	October 11 - October 18, 1993	$1.02^{\prime \prime}$
8	June 3 - June 10, 1984	$1.73^{\prime \prime}$
8	September 26 - October 3, 1983	$1.47^{\prime \prime}$
8	November 22 - November 29, 1977	$.41^{\prime \prime}$
8	January 4 - January 11, 1975	$.98^{\prime \prime}$
8	October 24 - October 31, 1971	$2.10^{\prime \prime}$
8	February 17 - February 24, 1968	$.93^{\prime \prime}$
8	March 27 - April 4, 1958	$.87^{\prime \prime}$
8	May 13 - May 21, 1949	$2.27^{\prime \prime}$
8	January 8 - January 15, 1949	$.86^{\prime \prime}$

8 or more days tabulated.

TABLE 39

GREATEST NUMBER OF CONSECUTIVE DAYS WITH . 10 INCH OR MORE OF PRECIPITATION 1928-1997

\# Days	Period	Total Rainfall
7	September 24 - September 30, 1982	$4.79^{\prime \prime}$
6	May 3 - May 8, 1993	$3.56^{\prime \prime}$
6	January 6 - January 11, 1993	$1.85^{\prime \prime}$
6	May 30 - June 3, 1944	$2.32^{\prime \prime}$
5	May 22 - May 26, 1995	$1.45^{\prime \prime}$
5	October 29 - November 2, 1992	$1.92^{\prime \prime}$
5	May 14 - May 18, 1977	$2.76^{\prime \prime}$
5	April 22 - April 26, 1971	$1.32^{\prime \prime}$
5	April 26 - April 30, 1970	$2.20^{\prime \prime}$

5 or more days tabulated.
TABLE 40
GREATEST NUMBER OF CONSECUTIVE DAYS WITH . 25 INCH OR MORE OF PRECIPITATION 1928-1997

\# Days	Period	Total Rainfall
5	May 14 - May 18, 1977	$2.76^{\prime \prime}$
5	June 3 - June 7, 1945	$1.64^{\prime \prime}$
4	May 3 - May 6, 1993	$2.69^{\prime \prime}$
4	May 6 - May 9, 1986	$2.55^{\prime \prime}$
4	April 27 - April 30, 1970	$2.05^{\prime \prime}$
4	May 21 - May 24, 1968	$1.62^{\prime \prime}$
4	November 18 - November 21, 1950	$1.18^{\prime \prime}$

8 or more days tabulated.

TABLE 41
GREATEST NUMBER OF CONSECUTIVE DAYS WITHOUT EVEN A TRACE OF PRECIPITATION 1928-1997

\# Days	Period
62	September 12 - November 12, 1952
30	August 18 - September 16, 1944
30	September 20 - October 19, 1978
29	June 18 - July 16, 1944
29	January 2 - January 30, 1961
28	June 27 - July 24, 1931
28	October 3 - October 30, 1933
27	September 13 - October 9, 1942
27	June 25 - July 21, 1963
27	July 30 - August 25, 1985
26	May 2 - May 27, 1934
26	November 7 - December 2, 1936
26	August 30 - September 24, 1943
26	August 12 - September 6, 1950
26	August 23 - September 17, 1962
26	October 15 - November 9, 1962

TABLE 42
greatest number of consecutive days without measurable precipitation, BUT INCLUDING TRACES

1928-1997

\# Days	Period
63	September 11 - November 12, 1952
61	June 25 - August 24, 1963
56	June 2 - July 26, 1935
56	July 21 - September 17, 1944
52	September 14 - November 4, 1958
45	June 14 - July 28, 1959
44	October 28 - December 10, 1939
42	June 3 - August 14, 1978
42	September 20 - October 31, 1978
38	August 30 - October 6, 1943
38	September 5 - October 11, 1987
37	September 22 - October 28, 1964
37	August 21 - September 23, 1933
36	August 12 - September 15, 1993
35	December 27 - January 30, 1961
35	August 21 - September 24, 1979
35	August 8 - September 11, 1988

TABLE 42a
CHANCES OF MEASURABLE PRECIPITATION ON ANY GIVEN DAY OF THE YEAR BASED ON 1928-1997 PERIOD OF RECORD

Day	January	February	March	April	May	June
1	24.3\%	27.1\%	27.1\%	35.7\%	30.0\%	34.3\%
2	30.0\%	34.3\%	52.9\%	40.0\%	22.9\%	27.1\%
3	31.4\%	21.4\%	38.6\%	24.3\%	21.4\%	24.3\%
4	32.9\%	24.3\%	27.1\%	22.9\%	27.1\%	27.1\%
5	38.6\%	24.3\%	38.6\%	24.3\%	27.1\%	24.3\%
6	24.3\%	31.4\%	22.9\%	28.6\%	32.9\%	25.7\%
7	25.7\%	27.1\%	20.0\%	30.0\%	31.4\%	30.0\%
8	30.0\%	35.7\%	22.9\%	27.1\%	37.1\%	27.1\%
9	24.3\%	30.0\%	21.4\%	37.1\%	24.3\%	30.0\%
10	34.3\%	28.6\%	24.3\%	32.9\%	31.4\%	22.9\%
11	40.0\%	28.6\%	40.0\%	31.4\%	24.3\%	12.9\%
12	31.4\%	38.6\%	25.7\%	22.9\%	28.6\%	22.9\%
13	35.7\%	34.3\%	41.4\%	21.4\%	20.0\%	17.1\%
14	32.9\%	38.6\%	41.4\%	28.6\%	22.9\%	15.7\%
15	35.7\%	30.0\%	28.6\%	18.6\%	31.4\%	15.7\%
16	37.1\%	35.7\%	25.7\%	21.4\%	32.9\%	20.0\%
17	31.4\%	40.0\%	37.1\%	31.4\%	24.3\%	17.1\%
18	34.3\%	42.9\%	25.7\%	37.1\%	21.4\%	14.2\%
19	31.4\%	28.6\%	30.0\%	38.6\%	24.3\%	11.4\%
20	30.0\%	28.6\%	21.4\%	30.0\%	25.7\%	11.4\%
21	28.6\%	25.7\%	25.7\%	35.7\%	25.7\%	12.9\%
22	32.9\%	35.7\%	28.6\%	34.3\%	25.7\%	11.4\%
23	40.0\%	34.3\%	40.0\%	30.0\%	24.3\%	8.6\%
24	35.7\%	27.1\%	42.9\%	30.0\%	30.0\%	15.7\%
25	28.6\%	25.7\%	32.9\%	42.9\%	24.3\%	10.0\%
26	24.3\%	30.0\%	25.7\%	35.7\%	25.7\%	14.3\%
27	31.4\%	28.6\%	31.4\%	37.1\%	31.4\%	11.4\%
28	40.0\%	22.9\%	24.3\%	40.0\%	22.9\%	2.9\%
29	28.6\%	25.0\%	35.7\%	40.0\%	22.9\%	8.6\%
30	30.0\%		35.7\%	31.4\%	27.1\%	7.1\%
31	32.9\%		35.7\%		31.4\%	

TABLE 42b
CHANCES OF MEASURABLE PRECIPITATION ON ANY GIVEN DAY OF THE YEAR
BASED ON 1928-1997 PERIOD OF RECORD

Day	July	August	September	October	November	December
1	8.6\%	18.6\%	12.9\%	17.1\%	24.3\%	34.3\%
2	7.1\%	15.7\%	17.1\%	21.4\%	24.3\%	27.1\%
3	10.0\%	12.9\%	14.3\%	18.6\%	24.3\%	24.3\%
4	11.4\%	24.3\%	17.1\%	21.4\%	22.9\%	32.9\%
5	7.1\%	18.6\%	18.6\%	14.3\%	20.0\%	24.3\%
6	10.0\%	20.0\%	18.6\%	14.3\%	20.0\%	24.3\%
7	12.9\%	10.0\%	14.3\%	25.7\%	32.9\%	32.9\%
8	15.7\%	17.1\%	14.3\%	18.6\%	25.7\%	20.0\%
9	12.9\%	18.6\%	11.4\%	22.9\%	17.1\%	28.6\%
10	15.7\%	11.4\%	20.0\%	21.4\%	25.7\%	27.1\%
11	15.7\%	17.1\%	20.0\%	12.9\%	30.0\%	27.1\%
12	15.7\%	24.2\%	18.6\%	25.7\%	30.0\%	25.7\%
13	8.6\%	17.1\%	17.1\%	27.1\%	30.0\%	27.1\%
14	10.0\%	27.1\%	15.7\%	20.0\%	30.0\%	14.3\%
15	15.7\%	25.7\%	10.0\%	24.3\%	27.1\%	22.9\%
16	15.7\%	22.9\%	10.0\%	25.7\%	22.9\%	25.7\%
17	18.6\%	20.0\%	17.1\%	15.7\%	38.6\%	31.4\%
18	12.9\%	21.4\%	22.9\%	20.0\%	35.7\%	24.3\%
19	18.6\%	22.9\%	22.9\%	18.6\%	27.1\%	32.9\%
20	12.9\%	14.3\%	28.6\%	18.6\%	31.4\%	24.3\%
21	17.1\%	17.1\%	17.1\%	15.7\%	28.6\%	31.4\%
22	15.7\%	15.7\%	15.7\%	14.3\%	27.1\%	32.9\%
23	18.6\%	12.9\%	22.9\%	18.6\%	17.1\%	35.7\%
24	15.7\%	18.6\%	20.0\%	18.6\%	30.0\%	25.7\%
25	18.6\%	18.6\%	22.9\%	15.7\%	28.6\%	34.3\%
26	15.7\%	18.6\%	12.9\%	17.1\%	25.7\%	30.0\%
27	10.0\%	.17.1\%	18.6\%	22.9\%	27.1\%	28.6\%
28	14.3\%	20.0\%	14.3\%	30.0\%	27.1\%	38.6\%
29	18.6\%	20.0\%	12.9\%	24.3\%	20.0\%	41.4\%
. 30	20.0\%	8.6\%	21.4\%	22.9\%	21.4\%	32.9\%
31	17.1\%	10.0\%		28.6\%		27.1\%

FIGURE 7
SALT LAKE CITY AIRPORT SEASONAL SNOWFALL RECORD 1929-1930 to 1996-1997 (Season)

The snow season extends from July 1 to June 30. The normal annual snowfall at Salt Lake City International is 64.5 inches. Normal annual snowfall based on (1961-1990) period.

TABLE 43
NORMAL, MAXIMUM AND MINIMUM MONTHLY SNOWFALL (INCHES)
1928-1997

	max	year	M	year		max	year	ma	year
JANUARY Normal Monthly Total 12.7^{*}	50.3	1993	0.1	1961	JULY Normal Monthly Total 0.0				
	45.0	1996	2.4	1938					
	32.3	1937	2.5	1935					
	30.4	1967	2.8	1970					
	30.1	1949	3.7	1948					
FEBRUARY Normal Monthly Total $9.3^{\prime \prime}$	27.9	1969	T	1953	AUGUST Normal Monthly Total 0.0				
	27.5	1989	0.3	1957					
	22.6	1996	0.4	1988					
	20.9	1936	0.8	1963+					
	20.1	1944+	0.9	1931					
MARCH Normal Monthly Total 11.6^{n}	41.9	1977	0	1993	SEPTEMBER Normal Monthly Total 0.2"	4.0	1971	0	$1995+$
	35.6	1952	T	1940+		2.2	1965		
	33.5	1964	0.2	1992		1.0	1978		
	30.8	1944	0.4	1959					
	25.3	1962	0.6	1955					
APRIL Normal Monthly Total 7.3^{n}	26.4	1974	0	1954+	OCTOBER Normal Monthly Total $2.1^{\prime \prime}$	20.4	1984	0	1993+
	25.1	1984	T	1989+		16.6	1971	T	$1994+$
	23.6	1970	0.1	$1994+$		10.4	1957		
	21.8	1955	0.2	1969		8.3	1961		
	15.5	1958	0.3	1981		6.0	1972		
MAY Normal Monthly Total $1.1^{\prime \prime}$	7.5	1975	0	1994+	NOVEMBER Normal Monthly Total 6.5^{n}	33.3	1994	0	1939
	5.3	1965+				27.2	1985	T	1997+
	5.0	1983				19.5	1973	0.1	1995
	4.6	1978				18.5	1931	0.4	1953
	2.9	1955				18.0	1975	0.6	1987+
JUNE Normal Monthly Total 0.0					DECEMBER Normal Monthly Total $13.7^{\prime \prime}$	35.2	1972	0.9	1962
						34.3	1948	1.0	1937
						34.2	1983	1.2	1976
						33.3	1968	1.4	1995
						27.3	1932	1.7	$1989+$

Hail not included. Climatological normals based on (1961-1990) period.
(T) Trace means too small to measure.

+ Also occurred in earlier years.

TABLE 44
MAXIMUM AND MINIMUM SEASONAL SNOWFALL
1928-1929 through 1996-1997

Maximum Seasonal Snowfall	Winter Season	Normal Annual Snowfall 64.5"	Minimum Seasonal Snowfall	Winter Season
117.3"	1951-1952		16.6"	1933-1934
110.8"	1973-1974		18.5"	1939-1940
98.7"	1992-1993		30.1"	1940-1941+
98.0"	1983-1984		30.2"	1980-1981
91.3"	1943-1944		31.3"	1960-1961
89.2"	1968-1969		31.4"	1942-1943
88.2"	1948-1949		33.9"	1930-1931

Normals from Climatological Standard Normals (1961-1990).

+ Also occurred in previous years.

TABLE 45a
GREATEST 24-HOUR SNOWFALL (Inches)
(Midnight to Midnight)
1928-1997

	JANUARY		FEBRUARY		MARCH		APRIL	
D A Y	$\begin{aligned} & \text { MAX } \\ & 24-H R \\ & \text { SNOW } \end{aligned}$	-YEAR	$\begin{aligned} & \text { MAX } \\ & 24-H R \\ & \text { SNOW } \end{aligned}$	YEAR	$\begin{aligned} & \text { MAX } \\ & 24-H R \\ & \text { SNOW } \end{aligned}$	YEAR	$\begin{aligned} & \text { MAX } \\ & 24-H R \\ & \text { SNOW } \end{aligned}$	YEAR
1	4.6	1937	10.9	1989	7.3	1977	6.0	1984+
2	9.0	1993	5.0	1936	10.1	1977	9.6	1955
3	6.3	1944	7.0	1936	4.2	1962	7.2	1983
4	3.3	1929	6.0	1938	3.0	1938	3.9	1947
5	6.1	1987	6.2	1974	2.4	1980	3.1	1997
6	7.6	1967	7.9	1969	4.0	1930	3.1	1968
7	7.7	1974	3.3	1990	2.0	1945	0.5	1982
8	6.4	1985	8.5	1959	2.6	1958	0.9	1984
9	8.4	1993	4.5	1965	4.8	1948	9.0	1929
10	4.0	1968	7.7	1984	7.4	1962	11.8	1974
11	7.5	1993	5.1	1995	11.0	1952	2.3	1991
12	5.7	1932	7.7	1952	1.8	1964	3.8	1974
13	3.0	1971+	5.8	1968	9.4	1944	7.9	1972
14	8.5	1953	7.2	1944	9.3	1944	3.0	1995
15	4.9	1991	3.1	1978	7.9	1964	2.2	1967
16	6.9	1955	4.2	1992	5.6	1958	4.2	1941
17	10.0	1996	3.1	1955	6.3	1968	3.7	1944
18	5.0	1964	7.4	1961	2.1	1968 +	6.5	1972
19	7.5	1973	2.4	1989	6.1	1983	2.1	1987
20	9.7	1962	3.9	1985	4.4	1944	5.4	1968
21	4.5	1953	3.1	1975	6.4	1980	4.5	1968
22	5.4	1949	9.9	1994	11.5	1964	1.8	1970
23	5.5	1950	6.4	1956	3.0	1996	10.1	1958
24	6.4	1996	5.1	1972	4.7	1952	1.6	1945
25	13.4	1996	8.3	1969	4.5	1975	8.5	1975
26	4.7	1969	6.0	1996	4.2	1981	8.1	1955
27	5.1	1980	6.3	1947	2.6	1981	6.3	1991
28	5.8	1933	3.0	1930	3.0	1987	6.4	1970
29	9.9	1980	T	1984+	8.2	1967	5.8	1967
30	4.2	1996			5.2	1980	3.5	1970
31	6.8	1939			8.0	1936		.
mnth	13.4	$\begin{aligned} & 1996 \\ & / 25 \mathrm{th} \end{aligned}$	10.9	$\begin{aligned} & 1989 \\ & \text { /1st } \end{aligned}$	11.5	$\begin{aligned} & 1964 \\ & 122 \mathrm{nd} \end{aligned}$	11.8	$\begin{aligned} & 1974 \\ & \hline 10 \mathrm{th} \end{aligned}$

Hail not included.
(T) Trace means too small to measure.

+ Also occurred in earlier years.

TABLE 45b
GREATEST 24-HOUR SNOWFALL (Inches)
(Midnight to Midnight)
1928-1997

Hail not included.
(T) Trace means too small to measure.

+ Also occurred in earlier years.

TABLE 45c

GREATEST 24-HOUR SNOWFALL (Inches)
(Midnight to Midnight)
1928-1997

	SEPTEMBER		OCTOBER		NOVEMBER		DECEMBER	
$\begin{aligned} & \mathrm{D} \\ & \mathrm{~A} \\ & \mathrm{Y} \end{aligned}$	$\begin{aligned} & \text { MAX } \\ & \text { 24-HR } \\ & \text { SNOW } \end{aligned}$	YEAR	MAX 24-HR SNOW	YEAR	$\begin{aligned} & \text { MAX } \\ & \text { 24-HR } \\ & \text { SNOW } \end{aligned}$	YEAR	$\begin{aligned} & \text { MAX } \\ & \text { 24-HR } \\ & \text { SNOW } \end{aligned}$	YEAR
1			0.7	1971	2.9	1956	7.3	1982
2			T	1971	5.5	1957	4.5	1952
3			T	1969	3.1	1973	2.0	1971
4			0		3.0	1940	8.7	1948
5			T	1941	5.0	1947	7.8	1996
6			T	1970+	2.6	1986	6.1	1956
7			T	1970+	4.6	1945	4.5	1994
8			T	1961	2.9	1966	10.5	1985
9			T	1973 +	2.0	1935	5.5	1931
10			T	$1969+$	4.8	1978	4.0	1949
11			0		4.7	1985	9.5	1968
12			T	1969	5.1	1985	4.0	1993
13			3.6	1966	8.3	1994	7.3	1994
14			0.1	1969	6.9	1955	2.6	1948
15			0.2	1984	9.5	1958	3.2	1992
16	T	1946	T	1984+	5.0	1994	8.5	1967
17	2.2	1965	4.8	1984	11.0	1930	8.8	1970
18	1.0	1978	13.8	1984	4.1	1985	3.7	1977
19			T	1984+	6.9	1941	5.2	1951
20			2.5	1996	7.0	1946	6.6	1967
21			2.0	1961	4.3	1961	4.0	1979
22			0.5	1995	3.6	1992	4.7	1987
23			T	1975+	3.0	1931	3.8	1948
24	T	1984	6.6	1956	4.9	1951	7.6	1932
25	T	1986+	1.2	1996	5.7	1944	5.9	1943
26	T	1934	1.6	1984	7.0	1973	4.3	1936
27			5.8	1971	4.6	1960	8.1	1948
28			6.3	1961	3.5	1975	12.6	1972
29	T	1950	3.5	1972	5.3	1991	8.0	1936
30	4.0	1971	2.2	1981	4.2	1967	5.8	1992+
31			8.5	1971			4.7	1965+
mnth	4.0	$\begin{aligned} & 1971 \\ & 130 \mathrm{th} \end{aligned}$	13.8	$\begin{aligned} & 1984 \\ & / 18 \mathrm{~h} \end{aligned}$	11.0	$\begin{aligned} & 1930 \\ & / 17 \mathrm{~h} \end{aligned}$	12.6	1972

Hail not included.
(T) Trace means too small to measure.

+ Also occurred in earlier years.

TABLE 45D

Dates of First Measurable Snowfall in SLC

 1928-1997| September 17, 1965 | November 2, 1973 | November 16, 1968 |
| :---: | :---: | :---: |
| September 18, 1978 | November 2, 1957 | November 16, 1962 |
| September 30, 1971 | November 4, 1959 | November 17, 1987 |
| October 11, 1997 | November 4, 1948 | November 17, 1953 |
| October 13, 1966 | November 4, 1942 | November 17, 1928 |
| October 14, 1969 | November 4, 1933 | November 18, 1979 |
| October 15, 1984 | November 5, 1947 | November 18, 1941 |
| October 20, 1996 | November 5, 1940 | November 19, 1992 |
| October 20, 1949 | November 6, 1986 | November 19, 1934 |
| October 21, 1961 | November 6, 1945 | November 20, 1990 |
| October 22, 1995 | November 8, 1983 | November 22, 1993 |
| October 22, 1935 | November 9, 1985 | November 23, 1980 |
| October 24, 1975 | November 10, 1964 | November 30, 1967 |
| October 24, 1970 | November 10, 1938 | November 30, 1954 |
| October 24, 1956 | November 11, 1955 | December 4, 1976 |
| October 26, 1989 | November 11, 1931 | December 6, 1932 |
| October 27, 1991 | November 12, 1951 | December 7, 1974 |
| October 27, 1982 | November 13, 1944 | December 23, 1937 |
| October 27, 1929 | November 13, 1930 | December 25, 1943 |
| October 28, 1972 | November 14, 1988 | December 25, 1939 |
| October 29, 1981 | November 14, 1958 | |
| October 31, 1977 | November 14, 1950 | |
| November 1, 1946 | November 15, 1963 | |
| November 1, 1936 | November 15, 1960 | |
| November 2, 1994 | November 15, 1952 | |
| Average Date of First Measurable Snowfall in SLC is November 6 | | |
| 70 Years of Data | | |
| 42 Different Dates | | |

SLC FIRST MEASURABLE SNOW

1928-1997

TABLE 46
GREATEST SNOWFALL (INCLUDING ICE PELLETS) IN ANY 24 HOURS AND GREATEST DEPTH OF SNOW ON THE GROUND

1928-1997

Month	Greatest Snowfall in any 24 hour period			\#Greatest Depth of snow on ground		
	Amount	Days	Year	Amount	Days	Year
January	$\begin{aligned} & 10.7^{\prime \prime} \\ & 9.7^{\prime \prime} \\ & 9.7^{\prime \prime} \\ & 9.0^{\prime \prime} \\ & 8.5^{\prime \prime} \end{aligned}$	$\begin{gathered} 28-29 \\ 20 \\ 2-3 \\ 6-7 \\ 14 \end{gathered}$	$\begin{aligned} & 1980 \\ & 1962 \\ & 1993 \\ & 1967 \\ & 1953 \end{aligned}$	$\begin{aligned} & 25^{\prime \prime} \\ & 23^{\prime \prime} \\ & 17^{\prime \prime} \\ & 13^{\prime \prime} \\ & 12^{\prime \prime} \end{aligned}$	$\begin{gathered} 12 \\ 23-24 \\ 31 \\ 7 \\ 29-30 \end{gathered}$	$\begin{aligned} & 1993 \\ & 1949 \\ & 1937 \\ & 1967 \\ & 1980 \end{aligned}$
February	$\begin{aligned} & 11.9^{\prime \prime} \\ & 9.9^{\prime \prime} \\ & 8.8^{\prime \prime} \\ & 8.7^{\prime \prime} \\ & 8.6^{\prime \prime} \end{aligned}$	$\begin{gathered} 1-2 \\ 22 \\ 10-11 \\ 14-15 \\ 4-5 \end{gathered}$	1989 1994 1984 1944 1974	$\begin{aligned} & 17^{\prime \prime} \\ & 15^{\prime \prime} \\ & 13^{\prime \prime} \\ & 11^{\prime \prime} \end{aligned}$	$\begin{gathered} 1-2 \\ 1 \\ 2,4 \\ 3 \end{gathered}$	$\begin{gathered} 1949 \\ 1937 \\ 1989+ \\ 1936+ \end{gathered}$
March	$\begin{aligned} & 15.4^{\prime \prime} \\ & 13.9^{\prime \prime} \\ & 13.8^{\prime \prime} \\ & 11.8^{\prime \prime} \end{aligned}$	$\begin{gathered} 13-14 \\ 1-2 \\ 10-11 \\ 21-22 \end{gathered}$	$\begin{aligned} & 1944 \\ & 1966 \\ & 1952 \\ & 1964 \end{aligned}$	$\begin{aligned} & 14^{\prime \prime} \\ & 11^{\prime \prime} \\ & 9^{\prime \prime} \\ & 8^{\prime \prime} \end{aligned}$	$\begin{gathered} 2 \\ 2 \\ 10 \\ 11-12 \end{gathered}$	$\begin{gathered} 1977 \\ 1966+ \\ 1962+ \\ 1990+ \end{gathered}$
April	$\begin{gathered} 16.2^{\prime \prime} \\ 11.1^{\prime \prime} \\ 10.7^{\prime \prime} \\ 9.7^{\prime \prime} \end{gathered}$	$\begin{gathered} 9-10 \\ 22-23 \\ 25-26 \\ 27-28 \end{gathered}$	$\begin{gathered} 1974 \\ 1958 \\ 1984+ \\ 1970 \end{gathered}$	$\begin{gathered} 12^{\prime \prime} \\ 10^{\prime \prime} \\ 9^{\prime \prime} \\ 8^{\prime \prime} \end{gathered}$	$\begin{gathered} 10 \\ 23 \\ 2 \\ 28 \end{gathered}$	$\begin{aligned} & 1974 \\ & 1958 \\ & 1955 \\ & 1970 \end{aligned}$
May	$\begin{aligned} & 6.4^{n \prime} \\ & 5.3^{\prime \prime} \\ & 5.0^{\prime \prime} \\ & 4.9^{\prime \prime} \end{aligned}$	$\begin{gathered} 4-5 \\ 5 \\ 11 \\ 2 \end{gathered}$	$\begin{aligned} & 1975 \\ & 1965 \\ & 1983 \\ & 1964 \end{aligned}$	$\begin{aligned} & 5^{\prime \prime} \\ & 4^{\prime \prime} \\ & 3^{\prime \prime} \\ & 2^{\prime \prime} \end{aligned}$	$\begin{gathered} 2 \\ 5 \\ 4-5 \\ 11 \end{gathered}$	$\begin{gathered} 1964 \\ 1978 \\ 1975 \\ 1983+ \end{gathered}$
September	$\begin{aligned} & 4.0^{\prime \prime} \\ & 2.2^{\prime \prime} \\ & 1.0^{\prime \prime} \end{aligned}$	$\begin{aligned} & 30 \\ & 17 \\ & 18 \end{aligned}$	$\begin{aligned} & 1971 \\ & 1965 \\ & 1978 \end{aligned}$	$\begin{aligned} & 4^{n} \\ & 1^{n} \end{aligned}$	$\begin{aligned} & 30 \\ & 17 \end{aligned}$	$\begin{aligned} & 1971 \\ & 1965 \end{aligned}$
October	$\begin{gathered} 18.4^{\prime \prime} \\ 8.5^{\prime \prime} \\ 6.7^{\prime \prime} \\ 6.3^{\prime \prime} \end{gathered}$	$\begin{gathered} 17-18 \\ 31 \\ 31-1 \\ 28 \end{gathered}$	$\begin{aligned} & 1984 \\ & 1971 \\ & 1956 \\ & 1961 \end{aligned}$	$\begin{aligned} & 14^{\prime \prime} \\ & 8^{\prime \prime} \\ & 6^{\prime \prime} \\ & 4^{\prime \prime} \end{aligned}$	$\begin{aligned} & 18 \\ & 31 \\ & 24 \\ & 29 \end{aligned}$	$\begin{aligned} & 1984 \\ & 1972 \\ & 1956 \\ & 1972 \end{aligned}$
November	$\begin{aligned} & 11.0^{n} \\ & 9.9^{\prime \prime} \\ & 9.3^{\prime \prime} \\ & 8.8^{\prime \prime} \\ & 7.5^{\prime \prime} \\ & 7.0^{\prime \prime} \end{aligned}$	$\begin{gathered} 17 \\ 14-15 \\ 12-13 \\ 18-19 \\ 19-20 \\ 20 \end{gathered}$	$\begin{aligned} & 1930 \\ & 1958 \\ & 1994 \\ & 1985 \\ & 1992 \\ & 1946 \end{aligned}$	$\begin{gathered} 11^{\prime \prime} \\ 10^{n} \\ 9^{\prime \prime} \\ 8^{n} \\ 7^{\prime \prime} \end{gathered}$	$\begin{gathered} 19 \\ 15-16 \\ 23-24 \\ 15 \\ 26-27 \end{gathered}$	$\begin{gathered} 1985 \\ 1958 \\ 1992 \\ 1955 \\ 1973+ \end{gathered}$
December	$\begin{aligned} & 18.1^{\prime \prime} \\ & 13.4^{\prime \prime} \\ & 10.7^{\prime \prime} \\ & 10.5^{\prime \prime} \end{aligned}$	$\begin{gathered} 28-29 \\ 16-17 \\ 7-8 \\ 27-28 \end{gathered}$	$\begin{aligned} & 1972 \\ & 1970 \\ & 1985 \\ & 1948 \end{aligned}$	$\begin{aligned} & 16^{\prime \prime} \\ & 15^{\prime \prime} \\ & 14^{\prime \prime} \\ & 13^{\prime \prime} \end{aligned}$	$\begin{gathered} 28 \\ 29 \\ 25 \\ 25-28 \end{gathered}$	$\begin{gathered} 1948 \\ 1972 \\ 1932 \\ 1983+ \end{gathered}$
Greatest	18.4"	Octobe	, 1984	25"	Janu	1993

+ Also occurred in earlier years.
\# Greatest snow depth in a given snow episode.

TABLE 47
EARLIEST AND LATEST DATE AND AMOUNT OF MEASURABLE SNOWFALL (0.1 INCH OR MORE) AND THE AVERAGE DATE OF THE FIRST MEASURABLE SNOWFALL 1928-1997

Earliest Fall Date and amount of Snowfall		Latest Fall Date and amount of Snowfall		Latest Spring Date and amount of Snowfall	
Date	Amount (Inches)	Date	Amount (Inches)	Date	Amount (Inches)
September 17, 1965	2.2 "	December 25, 1943*	$5.9{ }^{\text {n }}$	May 18, 1977	0.5"
September 18, 1978	1.0"	December 25, 1939	0.5"	May 18, 1960	1.0"
September 30, 1971	4.0 "	December 23, 1937	$1.0^{\prime \prime}$	May 17, 1971	1.4"
October 11, 1997	0.3"	December 9, 1949	3.6 "	May 15, 1978	$4.4{ }^{\text {n }}$
October 13, 1966	3.6 "	December 7, 1974+	$2.4{ }^{\prime \prime}$	May 11, 1983	5.0"
October 14, 1969	$0.1{ }^{\prime \prime}$	December 4, 1976	0.3"	May 11, 1967	$1.0^{\prime \prime}$
October 15, 1984	0.2"			May 10, 1953	0.1 "
October 20, 1996	2.5"			May 8, 1993	1.0 "
October 20, 1949	1.0"			May 8, 1930	$1.0^{\prime \prime}$
October 22, 1995	0.5"				

Average Date of first snowfall \qquad November 6th (1928-1997)
Average Date of last snowfall. April 18th.

TABLE 48
GREATEST NUMBER OF CONSECUTIVE DAYS WITH 1.0 INCH OR MORE OF SNOW ON THE GROUND 1928-1997

Days	Period
86	November 17, 1930 - February 11, 1931
83	December 20, 1983-March 11, 1984
82	December 9, 1932 - February 28, 1933
77	December 14, 1948 - February 28, 1949
66	December 22, 1988 - February 25, 1989
61	January 9, 1985 - March 10, 1985
57	December 13, 1990 - February 7, 1991
54	December 28, 1972 - February 19, 1973
54	January 3, 1955 - February 25, 1955
52	December 30, 1992 - February 19, 1993

TABLE 49

AVERAGE, MAXIMUM AND MINIMUM NUMBER OF DAYS WITH MEASURABLE SNOWFALL BY SEASON

1928-1929 through 1996-97

Maximum Number of Days		Average Number of Days	Minimum Number of Days	
Days	Season		Days	Season
63	1983-1984	36	9	1939-1940
56	1992-1993		11	1933-1934
52	1973-1974		18	1946-1947
51	1963-1964		21	1958-1959
50	1978-1979+		22	1962-1963+
48	1984-1985 +		23	1993-94+

TABLE 50
MAXIMUM SNOWFALL FROM ANY SINGLE STORM\#
1928-1997

Amount in Inches	Duration of snowfall	
	Began	Ended
23.3"	1:10 pm January 6, 1993	11:05 am January 10, 1993
21.6 "	March 12, 1944	March 15, 1944
$19.8{ }^{\text {²}}$	1:30 pm January 24, 1996	11:18 pm January 25, 1996
18.4"	5:04 am October 17, 1984	10:35 am October 18, 1984
18.1"	1:03 pm December 28, 1972	1:30 pm December 29, 1972
17.4"	5:43 am March 1, 1977	3:35 am March 3, 1977
$17.4{ }^{\prime \prime}$	6:02 pm April 9, 1974	8:20 pm April 10, 1974

\#Storm total not limited to 24 hours.

TABLE 51
AVERAGE, MAXIMUM AND MINIMUM NUMBER OF DAYS WITH MEASURABLE SNOWFALL 1928-1997

Monthly Average	Monthly Maximum		Monthly Minimum	
	Days	Year	Days	Year
September Average *	1	1978+	0	$1995+$
October Average *	$\begin{aligned} & 6 \\ & 4 \\ & 3 \end{aligned}$	$\begin{gathered} 1971 \\ 1984 \\ 1996+ \end{gathered}$	0	1994+
November Average 4	$\begin{aligned} & 13 \\ & 11 \\ & 10 \\ & 9 \\ & 8 \\ & 7 \end{aligned}$	$\begin{gathered} 1994 \\ 1985 \\ 1975+ \\ 1988+ \\ 1978+ \\ 1992+ \end{gathered}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 1976+ \\ & 1995+ \end{aligned}$
December Average 8	$\begin{aligned} & 21 \\ & 15 \\ & 14 \\ & 13 \\ & 12 \end{aligned}$	$\begin{gathered} 1983 \\ 1951+ \\ 1970+ \\ 1973+ \\ 1969+ \end{gathered}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 1962+ \\ & 1995+ \end{aligned}$
January Average 9	$\begin{aligned} & 19 \\ & 17 \\ & 16 \\ & 15 \\ & 14 \end{aligned}$	$\begin{aligned} & 1993 \\ & 1979 \\ & 1937 \\ & 1949 \\ & 1932 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{gathered} 1961 \\ 1953+ \\ 1940+ \\ 1994+ \end{gathered}$
February Average 6	$\begin{aligned} & 15 \\ & 12 \\ & 11 \\ & 10 \end{aligned}$	$\begin{gathered} 1993+ \\ 1960+ \\ 1985 \\ 1984 \end{gathered}$	$\begin{aligned} & 0 \\ & 1 \\ & 2 \end{aligned}$	$\begin{gathered} 1953 \\ 1973+ \\ 1991+ \end{gathered}$
March Average 5	$\begin{aligned} & 17 \\ & 15 \\ & 13 \\ & 12 \\ & 11 \end{aligned}$	$\begin{aligned} & 1977 \\ & 1964 \\ & 1952 \\ & 1944 \\ & 1938 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 1993+ \\ & 1994+ \\ & 1991+ \end{aligned}$
April Average 3	$\begin{gathered} 11 \\ 8 \\ 7 \\ 6 \end{gathered}$	$\begin{gathered} 1970 \\ 1984 \\ 1991+ \\ 1967 \end{gathered}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 1989+ \\ & 1994+ \end{aligned}$
May Average *	$\begin{aligned} & 3 \\ & 2 \end{aligned}$	$\begin{gathered} 1975 \\ 1993+ \end{gathered}$	0	$1995+$

[^5]TABLE 52
AVERAGE AND MAXIMUM NUMBER OF DAYS WITH SNOWFALL (INCLUDING ICE PELLETS) OF 1 INCH OR MORE AND 3 INCHES OR MORE

Month	Snowfall 1 inch or more 1928-1997			Snowfall 3 inches or more 1951-1997		
	Average Days	Maximum Number		Average Days	Maximum Number	
		Days	Year		Days	Year
September	*	1	$1978+$	*	1	1971
October	*	3 2 1	$\begin{aligned} & 1996+ \\ & 1991+ \\ & 1973+ \end{aligned}$	*	$\begin{aligned} & 2 \\ & 1 \end{aligned}$	$\begin{aligned} & 1984+ \\ & 1972+ \end{aligned}$
November	2	$\begin{gathered} 10 \\ 8 \\ 7 \\ 6 \end{gathered}$	$\begin{array}{r} 1994 \\ 1985 \\ 1931 \\ 1975+ \end{array}$	1	$\begin{aligned} & 5 \\ & 3 \\ & 2 \end{aligned}$	$\begin{aligned} & 1994+ \\ & 1978+ \\ & 1992+ \end{aligned}$
December	4	$\begin{aligned} & 15 \\ & 9 \\ & 8 \end{aligned}$	$\begin{gathered} 1983 \\ 1932 \\ 1972+ \end{gathered}$	2	$\begin{aligned} & 5 \\ & 4 \\ & 3 \end{aligned}$	$\begin{aligned} & 1972+ \\ & 1982+ \\ & 1970+ \end{aligned}$
January	4	$\begin{gathered} 11 \\ 9 \\ 7 \end{gathered}$	$\begin{gathered} 1993 \\ 1949+ \\ 1967+ \end{gathered}$	2	$\begin{aligned} & 5 \\ & 4 \\ & 3 \end{aligned}$	$\begin{gathered} 1993+ \\ 1965 \\ 1980+ \end{gathered}$
February	3	8 7 6	$\begin{gathered} 1989+ \\ 1976 \\ 1979+ \end{gathered}$	1	4 3 2	$\begin{gathered} 1969 \\ 1995 \\ 1993+ \end{gathered}$
March	3	$\begin{gathered} 10 \\ 9 \\ 8 \end{gathered}$	$\begin{gathered} 1964 \\ 1977+ \\ 1962 \end{gathered}$	1	5 4 3	$\begin{gathered} 1977 \\ 1952 \\ 1980+ \end{gathered}$
April	1	$\begin{aligned} & 6 \\ & 5 \\ & 4 \end{aligned}$	$\begin{gathered} 1974 \\ 1984+ \\ 1991+ \end{gathered}$	1	$\begin{aligned} & 4 \\ & 3 \\ & 2 \end{aligned}$	$\begin{aligned} & 1984+ \\ & 1974+ \\ & 1995+ \end{aligned}$
May	*	$\begin{aligned} & 3 \\ & 1 \end{aligned}$	$\begin{gathered} 1975 \\ 1993+ \end{gathered}$	*	1	$1983+$
Season	18	$\begin{aligned} & 32 \\ & 27 \\ & 26 \\ & 25 \\ & 24 \end{aligned}$	$\begin{gathered} 1983-84+ \\ 1975-76 \\ 1992-93+ \\ 1932-33 \\ 1994-95 \end{gathered}$	8	$\begin{aligned} & 15 \\ & 14 \\ & 13 \\ & 12 \\ & 11 \end{aligned}$	$\begin{gathered} 1951-52 \\ 1973-74 \\ 1994-95 \\ 1968-69+ \\ 1992-93 \end{gathered}$

* Average is less than $1 / 2$ day.
+ Also occurred in earlier years.
\# Snowfall season extends from July 1 through June 30.

TABLE 53
AVERAGE AND GREATEST NUMBER OF DAYS WITH THUNDERSTORMS AND HAIL 1928-1997

Month	Thunderstorms			Hail		
	Average Days	Greatest Days	Year	Average Days	Greatest Days	Year
January	0	2	1987+	0	2	1969+
February	0	4	1936	0	2	1950
March	1	5	1958	0	2	1961
April	2	7	1930	1	3	$1973+$
May	5	13	1980	1	3	1980+
June	5	19	1967	1	4	1944
July	7	14	1985+	0	2	1969
August	8	16	1952+	0	2	$1991+$
September	4	10	1937	0	2	1973
October	2	6	1983+	0	2	1945
November	0	3	1971+	0	1	1983+
December	0	3	1964	0	3	1964
Annual	34	57	1983+	3	13	1945

+ Also occurred in earlier years.

TABLE 54

AVERAGE RELATIVE HUMIDITY* BY TIME PERIODS
1951-1997

Month	5 am MST	11 am MST	5 pm MST	11 pm MST
January	79%	71%	69%	79%
February	78%	64%	59%	77%
March	71%	52%	47%	68%
April	67%	44%	39%	61%
May	65%	39%	33%	58%
June	59%	31%	26%	49%
July	52%	27%	22%	42%
August	54%	30%	23%	45%
September	61%	35%	29%	54%
October	69%	43%	41%	66%
November	75%	58%	59%	74%
December	79%	70%	71%	79%
Annual	67%	47%	43%	63%

*Relative humidity is the most common form of measuring water vapor in the air. Expressed as a percentage, it denotes the amount of moisture in the air, compared to the maximum amount of moisture the air can hold at a given temperature.
A relative humidity of 100% indicates a saturated air mass.

TABLE 55
SUNSHINE, SKY COVER, AND HEAVY FOG

		Sky Cover (Sunrise- Sunset)				Heavy Fog		
			Average Number of Days					
Month	Avg. Pct of Possible Sunshine	Avg Amt of Sky Cover (tenths)	Clear	Partly Cloudy	Cloudy	Average Number of Days	Greatest Number of Days	Year
January	45\%	7.3	5	6	19	5	21	1931
February	54\%	7.1	5	7	16	2	13	1985
March	63\%	6.7	7	8	16	0	5	1984
April	68\%	6.4	7	9	14	0	2	1958
May	73\%	5.7	9	10	12	0	2	1964
June	80\%	4.3	14	10	6	0	0	---
July	83\%	3.6	17	10	4	0	0	----
August	82\%	3.7	16	11	5	0	0	----
September	82\%	3.7	17	8	5	0	0	----
October	72\%	4.7	14	8	9	0	1	1971+
November	53\%	6.3	8	7	15	1	4	1968+
December	43\%	7.2	6	7	18	4	14	1980
Annual	67\%	5.6	125	101	139	12	37	1931

Period of Record:

Average percent of possible sunshine....
January through June: 1936-1939; 1942-1995.
July through November: 1935-1938; 1942-1995.
December: 1935-1938; 1941-1995.
Average amount of sky cover (sunrise to sunset): 1936-1995.
Average number of days of clear, partly cloudy, and cloudy and average number of days with heavy fog: 1929-1995. Greatest number of days with heavy fog: 1928-1995.

Sky cover is expressed in a range from 0 (for no clouds) to 10 (for sky completely covered by clouds).
Clear. \qquad ... $0 / 10$ to $3 / 10$ sky cover.
Partly cloudy....4/10 to 7/10 sky cover.
Cloudy............ $8 / 10$ to $10 / 10$ sky cover.
Heavy fog is defined as fog reducing visibility to $1 / 4$ mile or less.

+ Also occurred in earlier years.
Total sunshine available at Salt Lake City is 267,341 minutes per year.

TABLE 56a
AVERAGE, MAXIMUM, AND MINIMUM NUMBER OF DAYS IN MONTH WITH CLEAR, PARTLY CLOUDY, AND CLOUDY SKIES

JANUARY - JUNE
1928-1997

+ Also occurred in earlier years.
Clear skies defined as $0 / 10$ to $3 / 10$ sky cover.
Partly cloudy skies defined as $4 / 10$ to $7 / 10$ sky cover.
Cloudy skies defined as $8 / 10$ to $10 / 10$ sky cover.

CLEAR						PARTLY CLOUDY					CLOUDY				
MONTH	Average	Maximum/Year		Minimum/Year		Average	Maximum/Year		Minimum/Year		Average	Maximum/Year		Minimum/Year	
JUL	17	25	1978	9	1987+	10	19	1960	3	1955	4	10	1987	0	1956+
		24	1955+		1966+		17	1966+	4	1978+		9.	1985+	1	1969+
		23	1942+	11	1937		16	1984	5	1993+		7	1986+		
AUG	16	26	1944	3	1930	11		1982	4	$1933+$	5	13	1930	0	1985+
		25	1933+	4	1929		18	1929	5	$1978+$		11	1968	1	1974+
		23	1993+	6	1982		17	$1945+$	6	$1993+$		10	1957	2	1995+
SEP	17.	27	1933	3	1940	8		1940	2	1933	5	15	1959	0	1962
		26	1962+	7	1986		15	1976	3	1979+		14	1982	1	1974+
		25	1979+	8	1982			1978	4	$1975+$		13	1961		
OCT	14	24	1952	5	1957	8		1963+	2	1942	9	17	1993	1	1929
		23	1933	7	1993+		12	1995+	3	1994+		16	1972	2	1952
		21	1954	8	1982+		11	1957+	4	1991+		15	1994+	3	1965+
NOV	8	22	1936	0	1988	7	13	1932	2	1944	15	24	1970	3	1929
		19	1939+	2	1983		12	1967	3	1994+		23	1994+	4	1936
				3	1985+		11	1969+	4	1979+		22	1983	5	1954+
DEC	6	15	1960	0	1950	7		1939	1	1985+	18	29	1983	9	1939
		14	1959	1	1983+		12	1940+	3	1963+		28	1950	10	1960
		13	1956+				11	1970	4	1982+		27	1985	11	$1953+$
ANNUAL	125	188	1933	88	1967	101	$\begin{aligned} & 16 \\ & 3 \end{aligned}$	1930	70	1979	139	182	1983	87	1933
		162	1929	89	1981		$\begin{aligned} & 13 \\ & 4 \end{aligned}$	1941	78	1964		172	1981	91	1939
		156	1952	94	1982		11 7	1967	83	1978+		163	1978+	96	1929

+ Also occurred in earlier years.
Cloudy skies defined as $8 / 10$ to $10 / 10$ sky cover. 80

Partly cloudy skies defined as $4 / 10$ to $7 / 10$ sky cover.
Clear skies defined as $0 / 10$ to $3 / 10$ sky cover.

TABLE 57
AVERAGE WIND SPEED, PREVAILING DIRECTION, FASTEST MILE, AND PEAK GUST

	*February 1930- December 1997	
	Average Speed MPH	Prevailing Direction (1)
	7.5 mph	SSE
February	8.2 mph	SE
March	9.3 mph	SSE
April	9.6 mph	SE
May	9.5 mph	SE
June	9.4 mph	SSE
July	9.5 mph	SSE
August	9.7 mph	SSE
September	9.1 mph	SE
October	8.5 mph	SE
November	8.0 mph	SSE
December	7.5 mph	SSE
Annual	8.8 mph	SSE

	*July 1935 - December 1997				*August 1954 - December 1997			
	Fastest Mile (2)				Peak Gust (3)			
	Speed MPH	Direction	Day	Year	Speed MPH	Direction	Day	Year
January	59(3)	NW	10	1980	69(3)	NW	10	1980
February	56(3)	SE	18	1954	54(3)	S	1	1989+
March	71(3)	NW	10	1954	62(3)	S	2	1974
April	57	NW	11	1964	69	W	22	1961
May	57	NW	21	1953	69(3)	SW	28	1989
June	63	W	3	1963	94	NW	3	1963
July	51	NW	25	1986	74	NW	18	1981
August	58	SW	6	1946	74	NW	13	1978
September	61(3)	W	3	1952	71(3)	NW	5	1972
October	67(3)	NW	27	1950	71(3)	NW	5	1967
November	63(3)	NW	11	1937	59(3)	NW	4	1968
December	54	S	25	1955	60	N	15	1981
Annual	71(3)	NW	March 10	1954	94	NW	June 3	1963

+ Also occurred in earlier years. *Period of Record
(1) The prevailing direction is the most frequent observed direction from which the wind blows during a specific time period.
(2) Fastest mile is the fastest one minute observed wind speed taken from a multiple register that contains a time record of the passing of each mile of wind.
(3) Wind gusts are reported when rapid fluctuations in wind speed result in a variation of 10 kts (11 mph) or more between peaks and lulls. The duration of each gust is usually less than 20 seconds.

An official wind gust must be recorded on an instantaneous wind-speed recorder. This type of instrument was not available at Salt Lake International Airport until August 15, 1954. Hence, the periods of record for fastest mile and peak gust differ, and should be taken into account when using this table. (Note that the record fastest mile for March is much higher than the record peak gust. This is because an actual measurement of the gust on an instantaneous wind-speed recorder was not available at that time.)

TABLE 58
PRESSURE RECORDS
SEA LEVEL PRESSURE
1928-1997

Month	Highest	Day	Year	Lowest	Day	Year
January	31.01	1	1979	29.04	12	1932
February	30.83	8	$1989+$	29.08	6	1937
March	30.78	11	1951	29.07	2	1989
April	30.58	6	1939	29.14	22	$1960+$
May	30.50	15	1970	29.11	29	1988
June	30.39	15	1981	29.17	22	1944
July	30.36	12	1989	29.30	4	1986
August	30.33	31	1987	29.39	31	1944
September	30.52	25	1970	29.33	4	1970
October	30.67	31	1981	29.23	29	1935
November	30.89	23	1938	29.02	30	1982
December	31.09	8,9	1956	29.01	1	1982
Extremes	31.09	December	1956	29.01	December	1982

STATION PRESSURE
1928-1997

Month	Average	Highest	Day	Year	Lowest	Day	Year
January	25.84	26.39	28	1962	24.85	12	1932
February	25.79	26.38	12	1943	24.92	6	1937
March	25.68	26.30	11	1951	24.99	10	$1954+$
April	25.68	26.19	6	1939	25.03	11	1935
May	25.66	26.14	15	1970	25.16	23	1953
June	25.69	26.04	22	1964	25.11	8	1944
July	25.73	26.07	8	1959	25.30	8	1954
August	25.74	26.01	20	1961	25.32	29	1932
September	25.76	26.16	25	1970	25.25	2	1936
October	25.79	26.26	19	1964	25.12	29	1935
November	25.79	26.38	23	1938	25.10	15	1952
December	25.83	26.43	8,9	1956	24.98	30	1951
Extremes	25.75	26.43	December	1956	24.85	January	1932

+Also occurred in earlier years.
*Highest and lowest station pressure tabulations discontinued January 1971. The average station pressure values in this table have been continued through the present.

TABLE 58a
AVERAGE MONTHLY STATION PRESSURE REDUCED TO SEA LEVEL

January	30.16	May	29.96	September	30.07
February	30.11	June	29.99	October	30.11
March	29.98	July	30.04	November	30.11
April	29.98	August	30.05	December	30.15

TABLE 59
NORMAL, HIGHEST AND LOWEST HEATING DEGREE DAYS BY MONTHS AND YEAR OF OCCURRENCE (BASE 65 DEGREES)

1928-1997

Month	Normal	Highest	Year	Lowest	Year
July	0	23	1938	0	$1995+$
August	0	49	1968	0	$1995+$
September	108	239	1965	7	1979
October	373	573	1946	158	1988
November	726	995	1930	559	1995
December	1094	1459	1932	835	1977
January	1150	1658	1949	784	1953
February	865	1363	1933	637	1934
March	719	1016	1964	484	1934
April	464	619	1970	268	1934
May	215	415	1933	56	1934
June	51	185	1945	0	1977
Annual	5765	6875	1932	4590	1934

TABLE 60
NORMAL HIGHEST AND LOWEST COOLING DEGREE DAYS BY MONTHS AND YEAR OF OCCURRENCE (BASE 65 DEGREE) 1928-1997

Month	Normal	Highest	Year	Lowest	Year
January	0	0	\cdots	0	---
February	0	0	\cdots	0	$\cdots--$
March	0	0	\cdots	0	---
April	0	25	1987	0	$1993+$
May	23	181	1934	0	1953
June	174	334	1988	40	1945
July	400	510	1960	178	1993
August	329	489	1940	185	1928
September	114	208	1979	21	1965
October	7	29	1963	0	$1994+$
November	0	0	$\cdots--$	0	---
December	0	0	--	0	\cdots
Annual	1047	1549	1994	616	1965

Climatological Normals based on the (1961-1990) period.

+ Also occurred in earlier years.
NOTE: Heating and cooling degree days are used as an indication of fuel and energy consumption. One heating or cooling degree day is given for each degree that the daily mean temperature departs below or above 65 degrees respectively.

TABLE 61

WARMEST AND COLDEST SUMMER SEASONS (JUNE, JULY, AUGUST) WITH THEIR AVERAGE MEAN TEMPERATURE AND AMOUNT OF PRECIPITATION RECEIVED DURING THE PERIOD 1928-1997

Warmest			Climatological Normals for Summer Season		Coldest		
Year	Mean Temperature	Precipitation (Inches)			Year	Mean Temperature	Precipitation (Inches)
1994	78.6	0.67"	Temperature	Precipitation	1993	68.7	$2.98{ }^{\prime \prime}$
1988	77.7	0.29"	74.3	2.60"	1928	69.5	$1.31{ }^{\prime \prime}$
1961	77.5	1.83"			1945	69.9	7.93"
1996	77.2	0.52"			1965	70.7	5.45"
1985	76.6	$2.18{ }^{\prime \prime}$			1964	70.9	$3.04{ }^{\prime \prime}$
1940	76.1	0.59"			1944	70.9	2.82"
1990	75.7	$1.76{ }^{\prime \prime}$			1932	70.9	4.58"
1974	75.6	0.78"			1951	71.0	4.05"
1960	75.5	0.74"					

TABLE 62
WARMEST AND COLDEST WINTER SEASONS (DECEMBER, JANUARY, FEBRUARY) WITH THEIR aVERAGE MEAN TEMPERATURE, TOTAL SNOWFALL, AND DAYS WITH SNOW DURING THE PERIOD 1928-1929 TO 1996-1997

Warmest					Coldest					
Year	Mean Temp	Total Snow (Inches)	\#Days with Snow	Total Pcpn (Inches)	Year	Mean Temp	Total Snow (Inches)	\#Days with Snow	Total Pcpn (nches)	
$1977-78$	38.0	$39.3^{\prime \prime}$	28	$5.21^{\prime \prime}$	$1932-33$	19.5	$66.2^{\prime \prime}$	36	$3.77^{\prime \prime}$	
$1933-34$	37.9	$13.6^{\prime \prime}$	9	$3.77^{\prime \prime}$	$1948-49$	19.9	$74.7^{\prime \prime}$	36	$5.58^{\prime \prime}$	
$1994-95$	36.3	$38.0^{\prime \prime}$	22	$4.32^{\prime \prime}$	$1930-31$	23.5	$15.0^{\prime \prime}$	15	$1.51^{\prime \prime}$	
$1937-38$	36.3	$15.9^{\prime \prime}$	15	$2.71^{\prime \prime}$	$1928-29$	23.9	$24.2^{\prime \prime}$	25	$2.13^{\prime \prime}$	
$1952-53$	36.2	$25.2^{\prime \prime}$	8	$4.28^{\prime \prime}$	$1931-32$	23.9	$41.9^{\prime \prime}$	31	$3.09^{\prime \prime}$	
$1969-70$	35.8	$22.7^{\prime \prime}$	20	$3.87^{\prime \prime}$	$1963-64$	24.0	$39.1^{\prime \prime}$	30	$2.06^{\prime \prime}$	
$1958-59$	35.4	$29.9^{\prime \prime}$	15	$3.55^{\prime \prime}$	$1972-73$	24.9	$59.7^{\prime \prime}$	22	$5.62^{\prime \prime}$	

Climatological Normals for Winter Season				
Temperature	Snow (Inches)	\#Days with Snow	Precipitation	
30.5	$35.7^{\prime \prime}$	23	$3.74^{\prime \prime}$	

Climatological Normals based on (1961-1990) period.

TABLE 63
WARMEST AND COLDEST SPRING SEASONS (MARCH, APRIL, MAY) WITH THEIR AVERAGE MEAN TEMPERATURE AND AMOUNT OF PRECIPITATION RECEIVED DURING THE PERIOD 1928-1997

Warmest				Climatological Normals for Spring Season			Coldest			
Year	Mean Temp	Precip (inches)	Snowfall (Inches)				Year	Mean Temp	Precip (Inches)	Snowfall (Inches)
1934	57.5	0.93"	2.0 "	Temp	Precip	Snow	1964	44.5	7.72"	40.7"
1992	57.3	3.93"	$0.6{ }^{\prime \prime}$	50.2	5.83"	20.0"	1933	45.5	5.69"	4.7 "
1987	53.8	4.72"	5.1 "				1955	46.4	3.59"	$25.3{ }^{\prime \prime}$
1994	53.6	5.51"	3.2"				1942	46.5	$6.03{ }^{\prime \prime}$	11.4"
1989	53.5	4.06 ${ }^{\text {² }}$	2.1 "				1944	47.2	10.24"	37.2"
1985	53.5	5.39"	8.7"				1945	47.4	3.76"	20.2"
1940	53.3	2.69"	T				1965	47.5	4.46"	8.8'

TABLE 64

WARMEST AND COLDEST FALL SEASONS (SEPTEMBER, OCTOBER, NOVEMBER) WITH THEIR AVERAGE MEAN TEMPERATURE AND

 AMOUNT OF PRECIPITATION RECEIVED DURING THE PERIOD 1928-1997| Warmest | | | | Climatological Normals for Fall Season | | | Coldest | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | Mean
 Temp | Precip (inches) | Snowfall (Inches) | | | | Year | Mean
 Temp | Precip (Inches) | Snowfall (Inches) |
| 1953 | 56.1 | $1.41^{\prime \prime}$ | 0.4" | Temp | Precip | Snow | 1930 | 48.0 | 5.08" | 15.9" |
| 1990 | 55.8 | 2.49" | $4.8{ }^{\prime \prime}$ | 53.1 | $4.01{ }^{\prime \prime}$ | $8.8{ }^{\prime \prime}$ | 1971 | 48.3 | $6.01{ }^{\prime \prime}$ | 26.0" |
| 1983 | 55.6 | 4.88" | 5.9" | | | | 1961 | 48.4 | 3.85" | 19.4" |
| 1937 | 55.1 | $3.76{ }^{\prime \prime}$ | T | | | | 1946 | 49.4 | $5.35{ }^{\prime \prime}$ | $9.5{ }^{\prime \prime}$ |
| 1995 | 55.0 | $2.71{ }^{\prime \prime}$ | $0.6{ }^{\prime \prime}$ | | | | 1970 | 49.5 | 6.68" | 1.0" |
| 1979 | 54.8 | 2.32" | $4.6{ }^{\prime \prime}$ | | | | 1941 | 49.6 | 4.62" | 11.1" |
| 1933 | 54.6 | 1.49" | $1.0^{\prime \prime}$ | | | | 1936 | 50.1 | 2.84" | 6.5 " |

TABLE 65
HOLIDAY WEATHER INFORMATION
1929-1997

	Avg Max Temp	Avg Min Temp	High Max Temp	Date	Low Max Temp	Date	High Min Temp	Date	Low Min Temp	Date	Chnc of .01 inch or more pcpn	Pct of days with 0.1 inch or more snow	Max 24 hour snow	Date
NEW YEARS DAY January 1	35	19	58.1	1943	14.2	1979	42.0	1934	-4.0	1931	25\%	22\%	$4.6{ }^{\prime \prime}$	1937
PRESIDENTS DAY February 18 February 25	46	26	64.8	1958	29.1	1955	42.9	1982	5.9	1975	$\begin{gathered} 33 \% \\ \# \end{gathered}$	$\underset{*}{21 \%}$	2.7"	1942
EASTER SEASON March 15 - April 15	57	35	83.7	$\begin{gathered} 4 / 7 \\ 1930 \end{gathered}$	27.2	$\begin{aligned} & 3 / 27 \\ & 1975 \end{aligned}$	61.8	$\begin{aligned} & 4 / 12 \\ & 1992 \end{aligned}$	10.0	$\begin{aligned} & 3 / 19 \\ & 1965 \end{aligned}$	$\begin{gathered} 30 \% \\ \# \end{gathered}$	$\begin{gathered} 13 \% \\ * \end{gathered}$	11.8	$\begin{aligned} & 4 / 10 \\ & 1974 \end{aligned}$
MEMORIAL DAY Last Monday in May	76	49	92.7	$\begin{gathered} 5 / 31 \\ 1956 \\ + \end{gathered}$	52.0	$\begin{aligned} & 5 / 30 \\ & 1937 \end{aligned}$	66.6	$\begin{aligned} & 5 / 27 \\ & 1974 \end{aligned}$	32.4	$\begin{aligned} & 5 / 28 \\ & 1954 \end{aligned}$	$\begin{gathered} 26 \% \\ \# \end{gathered}$			
INDEPENDENCE DAY July 4	90	62	101.8	1936	72.1	1993	70.9	1988	46.7	1938	10\%			
PIONEER DAY July 24	94	65	105.4	1931	73.5	1993	77.2	1953	50.2	1954	17\%			
LABOR DAY First Monday in September	84	56	98.0	$\begin{gathered} 9 / 4 \\ 1950 \end{gathered}$	57.3	$\begin{gathered} 9 / 1 \\ 1973 \end{gathered}$	71.3	$\begin{gathered} 9 / 4 \\ 1978 \end{gathered}$	38.6	$\begin{gathered} 9 / 3 \\ 1961 \end{gathered}$	$\begin{gathered} 17 \% \\ \# \end{gathered}$			
UTAH STATE FAIR September 1-15	83	54	100.0	$\begin{gathered} 9 / 8 \\ 1979 \end{gathered}$	54.9	$\begin{gathered} 9 / 5 \\ 1970 \end{gathered}$	73.1	$\begin{gathered} 9 / 5 \\ 1978 \end{gathered}$	32.2	$\begin{aligned} & 9 / 13 \\ & 1928 \end{aligned}$	$\begin{gathered} 16 \% \\ \# \end{gathered}$			
HALLOWEEN October 31	59	36	72.0	1990	35.1	1971	53.2	1990	17.5	1935	28\%	6\%	8.5"	1971
THANKSGIVING DAY November $22-28$	46	28	68.6	$\begin{gathered} 11 / \\ 25 \\ 1960 \end{gathered}$	22.5	$\begin{gathered} 11 / \\ 24 \\ 1931 \end{gathered}$	46.9	$\begin{gathered} 11 / \\ 24 \\ 1960 \end{gathered}$	0.0	$\begin{gathered} 11 / \\ 24 \\ 1931 \end{gathered}$	$\begin{gathered} 26 \% \\ \# \end{gathered}$	$\begin{gathered} 19 \% \\ * \end{gathered}$	7.0"	$\begin{gathered} 11 / \\ 26 \\ 1973 \end{gathered}$
CHRISTMAS DAY December 25	36	20	59.2	1955	18.1	1990	46.0	1955	-6.7	1930	34\%	30\%	5.9"	1943

\# These percentages relative to the probability of precipitation on any one day of the given period.

* These percentages relative to the probability of snowfall on any one day of the given period.
+ Also occurred on May 27, 1951.

WHITE CHRISTMAS OCCURRENCES IN SALT LAKE CITY

1928-1997

NUMBER OF YEARS WITH TRACE OR MORE FALLING 34 OUT OF 70 YEARS $=49 \%$ OF THE TIME

NUMBER OF YEARS WITH 0.1 INCH OR MORE FALLING 20 OUT OF 70 YEARS $=29 \%$ OF THE TIME

NUMBER OF YEARS WITH 0.5 INCH OR MORE FALLING 14 OUT OF 70 YEARS $=20 \%$ OF THE TIME

NUMBER OF YEARS WITH 1 INCH OR MORE FALLING 10 OUT OF 70 YEARS $=14 \%$ OF THE TIME

NUMBER OF YEARS WITH 2 INCHES OR MORE FALLING 6 OUT OF 70 YEARS $=9 \%$ OF THE TIME

NUMBER OF YEARS WITH 3 INCHES OR MORE FALLING 4 OUT OF 70 YEARS $=6 \%$ OF THE TIME

NUMBER OF YEARS WITH 5 INCHES OR MORE FALLING 1 OUT OF 70 YEARS $=1 \%$ OF THE TIME

NUMBER OF YEARS WITH TRACE OR MORE ON THE GROUND 46 OUT OF 70 YEARS $=66 \%$ OF THE TIME

NUMBER OF YEARS WITH 1 INCH OR MORE ON THE GROUND 32 OUT OF 70 YEARS $=46 \%$ OF THE TIME

NUMBER OF YEARS WITH 3 INCHES OR MORE ON THE GROUND 18 OUT OF 70 YEARS $=26 \%$ OF THE TIME

NUMBER OF YEARS WITH 5 INCHES OR MORE ON THE GROUND 9 OUT OF 70 YEARS $=13 \%$ OF THE TIME

NUMBER OF YEARS WITH 10 INCHES OR MORE ON THE GROUND 1 OUT OF 70 YEARS $=1 \%$ OF THE TIME

NUMBER OF YEARS WITH NO SNOW FALLING OR ON THE GROUND 18 OUT OF 70 YEARS $=\mathbf{2 6 \%}$ OF THE TIME

NUMBER OF YEARS WITH NO SNOW ON THE GROUND 24 OUT OF 70 YEARS $=34 \%$ OF THE TIME

NUMBER OF YEARS WITH A TRACE OR NO SNOW ON THE GROUND 38 OUT OF 70 YEARS $=54 \%$ OF THE TIME

NUMBER OF YEARS WITH NO SNOW FALLING
36 OUT OF 70 YEARS $=51 \%$ OF THE TIME
NUMBER OF YEARS WITH A TRACE OR NO SNOW FALLING 50 OUT OF 70 YEARS $=71 \%$ OF THE TIME

CLIMATOLOGICAL STATISTICS FOR CHRISTMAS DAY

Average Maximum Temperature 36 degrees.
Average Minimum Temperature 20 degrees.
Highest Maximum Temperature Ever Recorded was 59 degrees in 1955. Lowest Minimum Temperature Ever Recorded was -7 degrees in 1930.
Lowest Maximum Temperature Ever Recorded was 18 degrees in 1990.
Highest Minimum Temperature Ever Recorded was 46 degrees in 1955.
Greatest Snow Depth ever was 14 inches in 1932....but 13 inches was on the ground in 1983.
Greatest 24-hour Snowfall on Christmas Day was 6 inches in 1943.

WIND CHILL CHART

Equivalent Temperature (${ }^{\circ} \mathbf{F}$)

	Calm	35	30	25	20	15	10	5	0	-5	-10	-15	-20	-25	-30	-35	-40	-45
	5	32	27	22	16	11	6	0	-5	-10	-15	-21	-26	-31	-36	-42	-47	-52
	10	22	16	10	3	-3	-9	-15	-22	-27	-34	-40	-46	-52	-58	-64	-71	-77
Wind Speed (mph)	15	16	9	2	-5	-11	-18	-25	-31	-38	-45	-51	-58	-65	-72	-78	-85	-92
	20	12	4	-3	-10	-17	-24	-31	-39	-46	-53	-60	-67	-74	-81	-88	-95	-103
	25	8	1	-7	-15	-22	-29	-36	-44	-51	-59	-66	-74	-81	-88	-96	-103	-110
	30	6	-2	-10	-18	-25	-33	41	-49	-56	-64	-71	-79	-86	-93	-101	-109	-116
	35	4	-4	-12	-20	-27	-35	-43	-52	-58	-67	-74	-82	-89	-97	-105	-113	-120
	40	3	-5	-13	-21	-29	-37	-45	-53	-60	-69	-76	-84	-92	-100	-107	-115	-123
	45	2	-6	-14	-22	-30	-38	-46	-54	-62	-70	-78	-85	-93	-102	-109	-117	-125

[^0]: IHE DAILY VALUES PRESENIED IN THESE TABLES ARE NOI SIMPLE MEANS OF OBSERVED VALUES IHEY ARE INTERPOLATED FROM THE MUCH LESS YARIABLE MONIHLY NORMALS BY USE OF THE NALURAL SPL LNE FUNCIION. 1 IN $I E A P$ YEARS USE THE FEBRUARY ALSO COMPUIED USING THE ANDUDS SPINE FUNCII ON AND DO NOY EKHISIT IHE IYPICAI DAILY RANDOM PATIEANS HOHEYERE THEY MAY EE USED IO COMPUIE NORMAL PAECIPITATION OVER TIME INTERVALS.

[^1]: + Also occurred in earlier years.

[^2]: * This table, for example, states that the average time interval is 100 years before 0.48 inches of rain or more falls at the Salt Lake Airport in a 5 minute period, or 0.95 inches or more in a 10 minute period, or 1.38 inches or more in a 15 minute period, etc. In another example, the table also states that about once in every 10 years it is possible for 0.30 inches or more of precipitation to fall at the Salt Lake Airport in 5 minutes, 0.52 inches or more in 10 minutes, or 0.64 inches or more in 15 minutes, etc.
 \# This table was compiled using hourly data and Pearsons distribution system by Mr. A.L. Zimmerman, former Hydrologist in Charge of the Colorado Basin River Forecast Center.

[^3]: + Also occurred in earlier years

[^4]: * Not confined to midnight-midnight.

[^5]: * The average number of days with measurable snowfall is less than 1 day.

