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1. Overview and Background of Originally Proposed Research 

On the Colorado Plateau, precipitation comes either from winter storms generated in the Gulf of Alaska or 
from summer convection storms generated by the Arizona monsoon system. Understanding the current 
seasonal and regional patterns of precipitation inputs into an ecosystem has ramifications at several levels: 
on carbon and mineral cycling at the ecosystem level, on biodiversity at the community level, and on 
productivity and adaptation at the population and species levels. The interior deserts of Arizona, Nevada, 
and Utah represent the driest regions of western North America, resulting from a combination of 
rainshadow effects and either the southern limits of winter moisture input or the northern limits of summer 
moisture input or both (Houghton 1979, Comstock and Ehleringer 1992). Shifts in strengths of storm
generating conditions in the Pacific and in the Gulf influence both the magnitude and seasonality of soil 
moisture availability (Bryson and Lowry 1955, Mitchell 1976) and therefore constrain periods of primary 
productivity activity in these aridland ecosystems (Caldwell, 1985; Caldwell and Richards, 1989; 
Dobrowoski et aI., 1990). One major consequence predicted by global climate change scenarios is a 
change in monsoonal (summer) precipitation (Schlesinger and Mitchell, 1987; Mitchell et aI., 1990); it will 
increase in some areas and decrease in others. A second is increased soil temperatures and increased 
interior drought associated with ocean-land temperature disequilibrium (Rind et aI., 1990). 

This PER project focused on the influence of variations in summer moisture input on structure-function 
relationships within a cold desert ecosystem on the Colorado Plateau. Our primary field sites were located 
at Stud Horse Point, Utah, located on the Utah-Arizona boundary in the Glen Canyon National Recreation 
Area and at the Arizona monsoon boundary region. 

2. Report on the Research Conducted 

During the past three years of this project, we have focused on several key areas as described in the 
original proposal. This section that follows is written as a review, providing both the 
background and interpretation associated with our recent contributions. The 
references in italics at the end of each section refer to the specific publications in 
section 3 that have been published from this DOE research. 

Southeastern portions of Utah (northwestern portions of the Colorado Plateau) form a broad northern 
border for the region influenced by the Arizona monsoonal system (Bryson and Lowry 1955, Mitchell 
1976). Annual precipitation across Colorado Plateau ecosystems ranges 100-400 mm (Houghton 1979). 
While on average approximately half the annual moisture is from summer moisture events, the year-to-year 
variability is high and depends on the intensity of the Arizona monsoon system that develops in a 
particular year (Houghton 1979, Adang and Gall 1989, Moore et al. 1989). Variations in the intensities and 
predictability of summer rain should have significant impacts, since water is the single most important factor 
influencing primary productivity in these aridland ecosystems (Ehleringer and Mooney, 1983; Smith and 
Nowak, 1990). Pack rat midden data indicate that central and northern Utah had an extensive summer
precipitation climate several thousand years ago (Betancourt et aI., 1990; Cole, 1990), but the onset of 
regional summer drought is less clear. 

There is also evidence indicating pronounced fluctuating climates over the past several hundred years -
shifts in both the amount and timing of precipitation events; the consequences have been both increases 
and decreases in precipitation from current conditions. Stine (1994) observed that two extended 
droughts of 140-200 years occurred in the western US earlier in this millennia. He suggested that the 
Pacific High Pressure may have been located farther north than at present, diverting northward winter 
storm systems. A more northward position for the Pacific High may have allowed summer monsoonal 
moisture to move farther north into the Intermountain West. Rose and Lindstrom (1994) have confirmed 
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the,se pattems in other lakes of the Sierras, as well as indicating that similar patterns on a smaller scale have 
occurred since the 1300's. Feng and Epstein (1994) reported a shift in the hydrogen isotope ratios of 
bristlecone pine tree rings several hundred years ago that is consistent with a reduction in summer 
precipitation in Sierra Nevada Range. Coltrain (1994) reported that corn, once common, disappeared from 
the diet of native Americans living on the eastem shores of the Great Salt Lake approximately 700 years 
ago. Lack of com could indicate a loss of summer preCipitation. Quercus turbinella is a common shrub 
oak, whose northern distribution is limited by its dependence on summer precipitation (Nielsen and 
Wullstein, 1983; Ehleringer and Phillips, 1995). While its current northern distribution limit is in southern 
Utah, hybrids with Q. gambelii can be found as far north as Salt Lake City (Cottam et aI., 1959), nearly 500 
km farther north; this migration may have been in response to a decrease in summer monsoon incursions. 
Lastly, Lanner (1974) reported relict P. edulis in the northern portions of the Wasatch Range 200 km north 
of the main northern distribution limit. These pattems suggest a relatively recent loss of reliable summer 
moisture in the northern habitats leaving only the relictual populations in isolated sites. Using tree-ring 
chronologies Taylor and Rose (1992) reconstructed climatic conditions on the Colorado Plateau and 
observed recurring 20-80 year drought cycles over the past two millennia. These drought cycles are of 
long enough duration to influence aridland vegetation composition, especially the dynamics of 
herbaceous perennial vegetation components, which tend to be shorter-lived. 

Water sources of plants and climate change 

Plants do not fractionate against D or 180 during water uptake, and therefore the isotopic composition of 
water in roots and suberized stem tissues is an integrated measure of the water uptake patterns of the 
roots (White et aI., 1985, Dawson and Ehleringer, 1991; Dawson and Ehleringer, 1993). The analysis of 
stable isotope ratios of xylem sap then provides a quantitative measure of the water sources currently 
used by plants. This approach has been used to describe short-term, temporal patterns of water uptake 
by species as well as the differential use of soil moisture resources by species in a habitat (reviewed by 
Ehleringer and Dawson, 1992; Ehleringer, Hall, and Farquhar, 1993). 

There is niche differentiation with respect to soil moisture use in Utah arid land and semi-arid woodland 
ecosystems. Not all perennial species respond equally to summer moisture inputs. Ehleringer et al. 
(1991) showed that following summer rains several of the woody perennial shrub species in a Colorado 
Plateau desert scrub ecosystem were not using that moisture input. Other woody perennials in this 
ecosystem derived 20-70% of their transpiration water from the upper soil layers wetted by summer rains. 
The CAM, annual, and herbaceous perennial components of the ecosystem relied on moisture derived 
from summer rains. Similar water-source partitioning has been shown to occur in the pinyon-juniper 
woodland (Flanagan et aI., 1994; Evans and Ehleringer, 1994), sagebrush steppe (Donovan and 
Ehleringer ,1994), and oak-maple woodland (Phillips and Ehleringer, 1995). If monsoonal boundaries 
move, then it is particularly important to know if the dominant species located on the boundaries will be 
sensitive to this change. Based on field observations, Ehleringer et al. (1991) suggested a differential 
sensitivity among vegetation components, implying possible long-term instability in current species 
composition with a shift in precipitation input patterns. 

We established field experimental systems with which to examine mechanistic aspects and ecological 
consequences of variation in the capacity to take up summer moisture on plant performance. These 
included an experimental watering system in southern Utah for looking at naturally-established plants, a 
community-level system in southern Utah which included all of the dominant species, and an individual 
field container system at the University of Utah which focused on key species. All three designs included 
systems with the ability to add isotopically-labeled water in a manner analogous to natural precipitation. At 
the University of Utah site, this also includes the possibility to introduce labeled water at different soil 
depths. Over a 2-year period, we conducted a field irrigation experiment to quantify timing and ability to 
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take up moisture from summer rain events. We simulated a 25-50 mm increase in summer rains during July 
and September on five dominant perennials. We took advantage of the fact that the stable isotope ratios 
of precipitation at our study site differed between winter and summer precipitation events (Fig. 1). By 
isotopically enriching the hydrogen isotope ratio of artificial rain events, we could distinguish among deep 
soil (winter-recharge water source) and our artificial summer rain event that wetted the upper 20-50 cm, or 
combinations thereof as the water source used by a plant (Fig. 2). These results confirm that some 
dominants, such as Atriplex, did not uptake moisture from the upper 20-50 cm, despite the observations 
that live roots were present in those soil layers. Instead Atriplex continued to use moisture from deeper 
soil layers. In contrast, Co/eogyne derived a significant fraction of its moisture from the upper layers 
wetted by a summer rain. 

Although soil moisture from upper soil layers may not have been used equally by all species (Line et al., 
1996), there were significant changes in leaf carbon isotope discrimination (6.), indicating that "set point" 
acclimation for gas exchange [see next section for explanation] had occurred during the summer. 
However, because there were parallel changes in 6. within each plant as resource levels changed, the 
ran kings of set pOints among genotypes and species remained constant as predicted (Fig. 3) (Ehleringer, 
1993a, 1994). As higher 6. values tend to indicate less photosynthetic stomatal limitation, it is likely that 
herbaceous perennials had greater rates of carbon gain than did the woody perennials. 

For all species, the capacity to take up moisture from the surface layers was greater in September, a cooler 
month, than it was in July. We find it quite interesting that these woody perennials would differ in their 
capacities to take up summer moisture at different times during the summer [some species increased 
summer rain uptake from 16% to 52% between July and September]. The suggestion that soil 
temperature may playa role in water uptake has received limited attention in the literature. Ehleringer et al. 
(1991) observed that woody and nonwoody perennials had the same capacity to take up moisture during 
the winter-spring months; it is only during the summer months that we see this life-form distinction. One 
possible explanation is that many of these woody perennials do not maintain surface roots for water 
uptake during the summer. Root excavation studies, however, showed that all of these species had some 
live roots in the upper soil layers (Phillips and Ehleringer, unpublished obs.). Perhaps these upper layer 
roots were involved in nutrient uptake. Flanagan et al (1992) had investigated summer moisture uptake in 
a nearby pinyon-juniper woodland over a two-year period. Consistent with our observations, they 
observed less summer moisture uptake by Juniperus osteosperma in 1989 (a warm summer) than in 1990 
(a cooler summer). Ehleringer and Dawson (1992) hypothesize that woody perennials in these 
ecosystems may be allocating carbon belowground to those rooting zones most likely to have the 
greatest likelihood of moisture on a long-term basis. As such, if the probability of summer moisture in the 
upper soil layers is sufficiently low, the amount of water uptake through time per carbon invested in roots 
may be greater to the plant if available carbon was allocated to roots in deeper soil layers. 

A second possible explanation is that high soil temperatures during the summer, combined with late 
spring drought before the monsoon rains arrive, had inactivated the shallow-depth roots and prevented 
root regrowth in these upper soil layers. Caldwell and colleagues have shown a seasonal progression of 
fine root production into deeper soil layers for shrub and grass species in nearby sagebrush steppe 
ecosystems (Fernandez and Caldwell, 1975; Caldwell, 1985; Caldwell and Richards, 1986) where summer 
rains are uncommon. Perhaps when summer moisture was applied in our experiments, the soils were 
then too warm to reactivate the fine surface roots in some species. This would provide a simple 
mechanism for why some species responded to rain in spring and in late summer, but not in midsummer. 
There is evidence to suggest that this may be the case. In a study of fine root mortality in sugar maples, 
Hendrick and Pregitzer (1993) observed that higher root mortality in the upper soil layers was associated 
with warmer soil temperatures. However, several of the species in our study also commonly occur in more 
southerly habitats with a greater fraction of the annual rains from summer monsoons. It may well be that 
there is substantial population-level variability in the response to summer rains. Ehleringer and Dawson 
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(1992) cite juniper data showing a latitudinal-gradient response to summer rains. Williams and Ehleringer 
(1996) have also shown similar population-level differences in the response to summer rains for Pinus 
edulis and Juniperus osteosperma. We hypothesize that temperature differences may be the major factor 
responsible for such difference in uptake of summer rain by desert shrubs between July and September. 

Elevated soil temperatures and an inhibition of root activity in the upper layers are likely to playa significant 
role in determining species interactions and competition for water, especially since arid lands of the 
Colorado Plateau represent a convergence of flora from different regions and evolutionary histories. We 
hypothesize that the degree to which plants shift to deeper soil layers for moisture during the summer will 
be proportional to soil temperature in the upper soil layers. A mechanistic approach to understand what 
environmental factors increase a plant's sensitivity to stress will be critical if we want to predict the 
sensitivity of these ecosystem components to change. Woody perennials also differed in summer water 
uptake in a way that is consistent with the hypothesis that soil temperature may playa direct role in the 
capacity to take up surface moisture. Consistent with this is the recent observation that altered soil 
temperature plays a direct role in shifting life-form dominance within a community (Harte and Shaw, 1995). 
This area of research is likely to shed new insights into why some perennial species are extremely 
sensitive to temperature, which may ultimately result in their being out-competed by other perennial 
and/or weedy species that are able to take up soil moisture from the upper layers. 

[Publications arising from research on this topic are 162, 180, 190, 194, 197, 198] 

Mechanistic basis for variation in carbon isotope discrimination 

We continued to examine the general hypothesis that leaf intercellular carbon dioxide is a measure of the 
metabolic set point in plants and its ramifications for response to climate-induced stresses (Ehleringer, 
1993, 1994). This parameter is measured most easily in an integrated manner through carbon isotope 
discrimination. This concept for integrating plant behavior continues to be supported by our field 
experiments. Plants irrigated increase their carbon isotope discrimination as predicted by our models 
(most recent is Ehleringer, 1994). This approach has been adopted by a number of other laboratories 
who find that stable isotopes provide a valuable approach for scaling physiological processes to the 
population and ecosystem levels. We have also examined the isotopic composition of respired carbon 
dioxide, to insure that leaf-level measurements adequately reflect the gas exchange processes (Lin and 
Ehleringer, 1996). This parameter does not necessarily tell you direct information on the absolute 
metabolic rate, but rather tells you of the constraints imposed by integration among metabolic 
components. In the case of plants, this is the interactions between those structural components involved 
in water flux (uptake, transport, loss) and those components involved in carbon dioxide flux (light
harvesting structure, enzymatic activity, gas diffusion). Our efforts at understanding tradeoffs between 
productivity and water stress tolerance among components of the ecosystem appear to fit this broader 
picture. 

A major assumption of the models linking carbon isotope discrimination to the intercellular carbon dioxide 
concentration is that there is no major secondary fractionation after the first photosynthetic carboxylation 
event. One possible pathway for fractionation that had not been examined was dark respiration. We have 
just completed a study looking at the possible steps in mitochondrial respiration (Lin and Ehleringer 
1996). We can detect no carbon isotope fractionation during respiration using a variety of substrates in 
both C3 and C4 plants. Whole-leaf experiments also suggest that there is no fractionation during dark 
respiration. Thus, it would appear that we are safe in our assumption that fractionation by RuBP 
carboxylase is the primary discrimination step in plant carbon isotope discrimination. 

[Publications arising from research on this topic are 163, 164, 168, 170, 171, 172, 174, 176, 179, 191, 
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193, A, and D] 

Nutrient cycling in arid zones 

Cryptobiotic soils composed of cyanobacteria, lichens, and mosses occur throughout arid ecosystems. 
The cryptobiotic crust can be as thick as 10 cm and is held together by cyanobacteria that exude a 
gelatinous sheath binding both microorganisms and soil together (Belnap and Gardner, 1993). 
Undisturbed soils of the Colorado Plateau are dominated by these cryptobiotic crusts (Harper and Marble, 
1988; West, 1990; Belnap and Gardner, 1993). Disturbance through trampling by cattle and man disrupts 
function of this fragile soil component. Much of the uncertainty surrounding ecosystem nitrogen inputs 
into arid ecosystems concerns the potential contribution of nitrogen-fixing organisms within the crust to 
the total nitrogen inputs (West, 1990). While the dominant cyanobacteria and the common lichen Collema 
are capable of nitrogen fixation, their contribution to the nitrogen pools has been recently questioned 
(West, 1990). Evans and Ehleringer (1993) used nitrogen isotope ratios to show that these organisms 
were the primary nitrogen sources into Colorado Plateau ecosystems. Furthermore, they showed that 
disruption of the crust resulted in a net loss of nitrogen from the ecosystem with the remaining soil 
nitrogen and its nitrogen isotope ratio linearly related as predicted by Raleigh distillation. Thus, nitrogen 
isotope ratios of soils were strongly correlated with nitrogen mineralization rates and the vegetation 
nitrogen isotope ratios become a reliable estimator of soil nutrient quality (Evans and Ehleringer, 1994). 

The contributions of cryptobiotic crusts to nitrogen input in arid lands and its disruption by anthropogenic 
activities have important implications for the nitrogen cycle in arid regions (Evans and Ehleringer, 1993). 
The physical destruction of cryptobiotic crusts through livestock trampling (Fig. 4) can eliminate the 
predominant source of nitrogen input. In the long term, removal of this nitrogen input source, coupled 
with continuous gaseous losses of nitrogen from the ecosystem, will ultimately decrease the amount of 
nitrogen available for plant growth. Crust recovery is slow (Belnap, 1990), and so in effect the nitrogen 
cycle is broken, with Significantly reduced nitrogen inputs but continued and possibly accelerated rates of 
nitrogen loss from the system (Evans and Ehleringer, 1993). As indicated in Fig. 5, this degradation leads 
to decreased fertility and ultimately in degradation of community structure and shifts in composition 
towards species that are either capable of nitrogen fixation or are tolerant of low nitrogen availability. 

[Publications ariSing from research on this topic are 167, 185, 186, 187, and B] 

Ecological scaling 

Questions of scale predominate ecology, especially in trying to understand the impact of ecophysiological 
processes at the canopy, ecosystem, and regional levels. In 1993 we finished a volume (Ehleringer and 
Field, 1993) in which we examined how to scale across various levels of ecological organization, including 
an examination of what processes are scalable, how the interactions among components change across 
ecological scales, and the roles of integrating tools such as models and stable isotope analyses. Also in 
1993, we published a second volume that further explored the stable isotope components as they relate 
to ecophysiology and scaling to ecosystem processes (Ehleringer, Hall, and Farquhar, 1993). 

[Publications arising from research on this topic are 158, 161, 166, 178, and 191] 
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