Utah State University

DigitalCommons@USU

All U.S. Government Documents (Utah Regional Depository)

U.S. Government Documents (Utah Regional Depository)

1982

Land Use Inventory of Salt Lake County, Utah From Color Infrared Aerial Photography 1982

Kevin P. Price

Reynold D. Willie

Douglas J. Wheeler

Merrill K. Ridd

Follow this and additional works at: https://digitalcommons.usu.edu/govdocs

Part of the Environmental Indicators and Impact Assessment Commons

Recommended Citation

Price, Kevin P.; Willie, Reynold D.; Wheeler, Douglas J.; and Ridd, Merrill K., "Land Use Inventory of Salt Lake County, Utah From Color Infrared Aerial Photography 1982" (1982). All U.S. Government Documents (Utah Regional Depository). Paper 529.

https://digitalcommons.usu.edu/govdocs/529

This Report is brought to you for free and open access by the U.S. Government Documents (Utah Regional Depository) at DigitalCommons@USU. It has been accepted for inclusion in All U.S. Government Documents (Utah Regional Depository) by an authorized administrator of DigitalCommons@USU. For more information, please contact digitalcommons@usu.edu.

ORIGINAL PAGE IS OF POOR QUALITY E 84 10015

CENTER FOR REMOTE SENSING AND CARTOGRAPHY

UNIVERSITY OF UTAH RESEARCH INSTITUTE Salt Lake City

LAND USE INVENTORY OF SALT LAKE COUNTY, UTAH FROM COLOR INFRARED AERIAL PHOTOGRAPHY 1982

CRSC REPORT 83-2

Ву

Kevin P. Price, Reynold D. Willie, Douglas J. Wheeler, and Merrill K. Ridd

Center for Remote Sensing and Cartography University of Utah Research Institute 420 Chipeta Way, Suite 190 Salt Lake City, Utah 84108

July 1983

This project was supported primarily by the Utah Division of Water Resources, with assistance from the National Aeronautics and Space Administration (NASA Grant NAGW-95).

INTRODUCTION

Salt Lake County, Utah's major population center, continues to experience rapid urban growth. The impacts of urbanization on land use patterns and natural resources in the county are of particular interest to both state and local policy makers and planners. The effects of urban development on a dwindling agricultural land base and water resources must be assessed to allow a rational basis for future water allocation and land use planning.

OBJECTIVES AND PURPOSES

The primary objective of the project is to prepare land use maps of Salt Lake County that will be useful in land and water planning. The maps need to accurately depict at an appropriate scale the "water-related" land use/land cover types of the county in a readily usable form. It was determined that transparent overlays to U.S. Geological Survey topographic quadrangles would provide both an adequate and uniform map scale base. Once the land cover categories were decided, the interpretation would take place from color infrared (CIR) photography, and the results would be tabulated at the quadrangle and township level.

It is anticipated that the information acquired will be valuable to a variety of users. The local Soil Conservation District and municipalities may use the maps and tables as a basis for developing land use policies. The Utah Division of Water Resources will use the data in analyzing water use patterns and future needs; land use data are used in updating hydrologic inventories and for operating basin hydrologic models. County and city planners may utilize the updated maps for a variety of planning purposes. A number of other state and federal agencies and private land owners will benefit from the availability of accurate maps

of current land use. These maps will provide a basis for assessing recent urbanization trends by allowing comparisons with land use studies previously made. Finally, the maps will be used as a form of "ground truth" to calibrate Landsat digital mapping studies currently underway.

STUDY AREA

The project area includes all of Salt Lake County. Figure 1 shows the county and the 23 U.S.G.S. quadrangles used as the mapping base for the land use overlays.

METHODS

High-altitude color infrared (CIR) photography was utilized as the primary medium for land cover interpretations and delineations. CIR photography has been shown in previous studies to be an effective tool for preparing quadrangle overlays of agriculture land use and wetlands (Ridd, et al. 1980; Jaynes, et al. 1981; Jaynes and Millie 1982).

CIR photography from three recent dates was used in the project.

Because of its large scale (nominally 1:30,000) and high color quality,

CIR photography flown on August 1, 1979 was the most useful. Photography
from June 29, 1981 and June 28, 1982 allowed the means to update the 1979
photography. However, the 1981 and 1982 photography are of smaller scale
(1:65,000) and lower color quality, especially the 1982 set. The combined
use of all three dates of photography, coupled with considerable field
observation, permitted fairly accurate and current land use interpretation
and mapping.

The first stage of map production was to determine the categories of land use/land cover and the mapping unit detail. This was influenced by a set of priorities established at the outset of the study. The highest

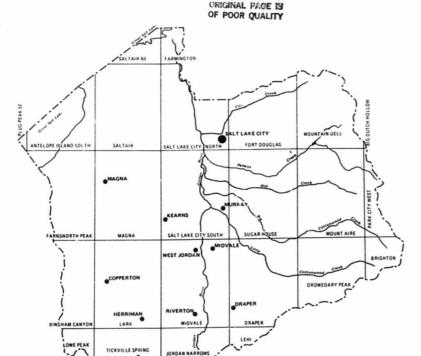


Figure 1. Salt Lake County showing 1:24,000 scale U.S.G.S. quadrangles.

level of interpretive detail was given to the land use categories found in the agricultural or urbanized portions of the county; these areas are of primary interest with regard to the consumptive use of water from surface streams and wells. A slightly lower level of mapping detail was given to wetland environments; areas to which water is not purposely diverted by man but which have a high consumptive rate of water use. The final and lowest priority for interpretive and mapping detail was assigned to upland/mountain areas. Decisions of categories and mapping unit size were made in concert with the Division of Water Resources personnel. Figure 2 shows the final categories and legend. Appendix A provides operational definitions for the categories.

Photos were interpreted on the basis of color, tone, texture, and pattern, together with features of the topographic, hydrologic, and ecological context. Several trips to the project area were made to field check draft maps. In the agricultural environment, map units were guided by field boundries so that whole fields were classified as a unit, despite whatever spatial variations exist within fields. In the urban areas, logical geometric chunks were delineated, again allowing for some internal variation per map unit. In the undeveloped areas and mountains, irregular polygons were delineated according to photo properties and field context.

With the interpretation criteria established, the next stage was to delineate aerial photograph mapping units at the final map scale (1:24,000) to correct for photographic displacement and to register interpretations with the standard \mathcal{P}_5 minute U.S.G.S. quadrangle base map. This step was accomplished, for most of the quadrangles in the county, through the use of U.S.G.S. orthophoto quadrangles. Where orthophoto quadrangles are not

ORIGINAL PAGE IS

Figure 2. Categories of land use/land cover used in the final map overlays. (See Appendix A for legend explanation)

available, the mapping was assisted by the use of a K&E Kargl cartographic projector. The projector is basically an enlarging light table which allows the user to project a photograph onto a base map to make interpretations and spatial adjustments. The mapping units were then labeled with interpretations of land cover. The minimum mapping unit size was approximately two acres, with the exception of open water which was mapped when surface area was at least 0.5 acre.

RESULTS AND DISCUSSION

The primary final products are the 23 clear overlays which correspond to the 1:24,000 scale quadrangles shown in Figure 1. Each overlay may be registered to the border lines of the corresponding U.S.G.S. quadrangle for direct reading. Figure 3 displays a reduced copy of the Midvale quadrangle overlay and legend. Figure 4 is a representative portion of the overlay at full scale.

An underlying guideline used in selecting land use/land cover categories was homogeneity in characteristics of consumptive water use. As noted earlier, despite variations of "greenness" in individual fields (due to uneven irrigation), the entire field was classed as a unit. Where adjacent fields were of the same category, the boundary between fields was not drawn in order to minimize clutter on the overlay. Thus, some of the large polygons on the overlay may represent several dozen individually interpreted, but contiguous fields of the same category. All fields of two acres or more within all polygons were independently examined and categorized. Thus, for example, alfalfa, pasture, and raw crops were grouped together under the symbol "A," on the assumption they generally require equal amounts of water. The wetland categories are consistent

ORIGINAL PAGE IS

LAND USE INVENTORY

SALT LAKE COUNTY, UTAH

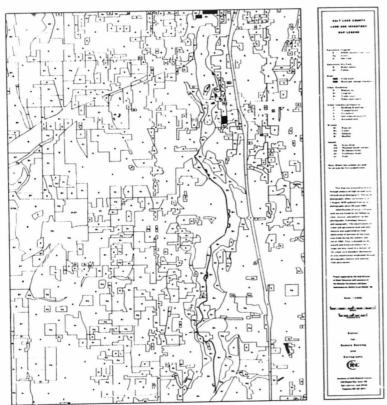


Figure 3. Reduced copy of one of the 23 quadrangles.

-7-

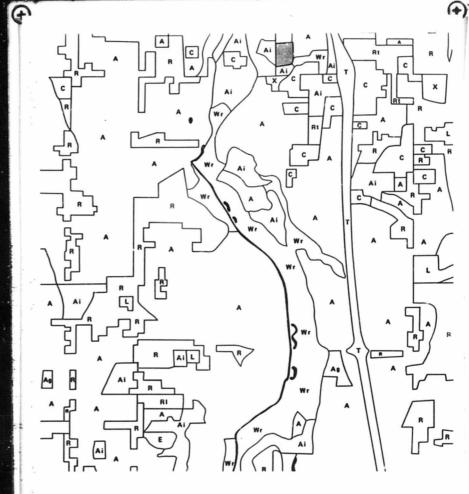


Figure 4. Full-scale sample of overlay from the Midvale quadrangle.

ORIGINAL PAGE IS OF POOR QUALITY with those of a previous study (Jaynes and Willie 1982) and could be adapted to correspond to the classification system used by the U.S. Fish and Wildlife Service (Cowardin, et al. 1979).

In most cases, land use categories identified on the larger scale 1979 photography could be verified on the 1981 and 1982 photography. A notable exception is the mapping of "Ag" or grain crops; this category could be easily detected on the 1979 photography (taken in early August when fields were being harvested and at large scale) but was confused with alfalfa and other crops on the late June photographs taken in 1981 and 1982.

Consequently, areas were mapped as grain crops if they appeared as such in 1979, and continued to appear irrigated in 1981 and 1982. The map user should be aware that the accuracy of this map class depends upon the assumption that wheat fields were not converted to other crop types in 1981 or 1982.

Acreages per land use/cover category were determined by using a computer digitizer. They were tabulated by quadrangle and further subdivided by township within each quadrangle. All acreages were double checked, both by individual polygons and in the aggregate to assure accuracy. Figure 5 depicts the townships and Appendix B lists the tabulations. Table 1 shows the totals of land use/cover type west and east of the Jordan River. It is believed by the investigating team that this inventory, both in its map and acreage table forms, is as accurate as can be done with all available photography.

FOLLOW-ON

Because of the dynamic nature of land use conversion along the Wasatch Front, and the cost of making reliable land use maps for planning purposes,

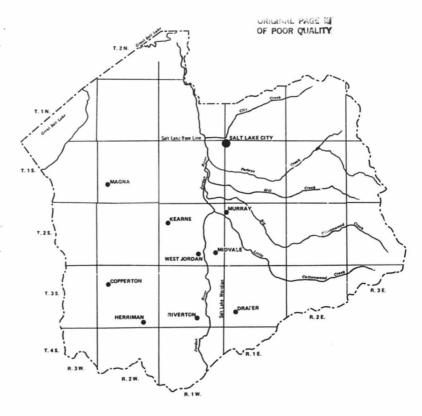


Figure 5. Salt Lake County with townships outlined.

Table 1. Acreage per land use type in Salt Lake County, 1982.

	West of Jordon River	East of Jordon River	<u>Total</u>
Agriculture, Irrigated	20,950.4	9,088.2 325.3	30,038.6 1,818.8
Ag Ai	1,493.5 12,437.7	6,862.4	19,300.1
Agriculture, Dry Farm	12,082.0		12,082.0 15,309.1
Of	15,309.1		15,305.1
Urban, Residential	10 242 6	36,914.2	56,156.8
R	19,242.6 2,153.4	2,648.3	4,801.7
R1	618.0	198.9 3,488.6	816.9 5,347.8
Rt L	1,859.2	3,486.0	3,01110
Urban, Commercial/Industria	1	10,912.9	18,958.2
С	8,045.3 5,133.5	3,278.0	8,411.5
C T E S	16,114.9	1,858.9	17,973.8 1,763.2
E	1,763.2	1,530.4	4,173.5
x	2,643.1 181.3	1,330.4	181.3
X/Ug	101.5		
Wetland	1,288.5	1,597.1	2,885.6
Wr	4,877.5	o • 25	4,877.5
Wc Ws	21,838.1		16,754.8
M M	16,754.8 387.9		387.9
M/Wc	2,645.2		2,645.2 17.6
M/Ws	17.6		5,197.6
Wc/M Ws/M	5,197.6 317.5		317.5
Wc/Ws	189.9		189.9
Ws/Wc			
Upland	34,265.7	10,149.4	44,415.1 35,874.2
Ug Um	•	35,874.2 59,976.9	59,976.9
Ud	4,440.0	36,415.0	40,855.0
Uc	4,440.0	13,410.0	13,410.0 344.5
Ur Ug/R1	344.5	2,237.5	2,237.5
Ug/Um	25,129.1	2,237.3	25,129.1
Um/Uc	15,064.2	692.0	15,756.2
Ud/Uc Uc/Ud		4,073.6 392.5	8,711.7
Water	8,319.2 26.6	242.4	269.0
Sewage Treatment	2,646.2		2,646.2
G.S.L.		200 200 49	505,944.0
TOTALS	263,777.3	242,166.7	303,34110

an efficient and cost-effective procedure is needed to map and to update the changing patterns of land use. A satellite/computer system would be ideal if sufficiently sensitive to the small field patterns involved in land conversion. The Center for Remote Sensing and Cartography (CRSC) is currently engaged in a research project to examine this possibility. Many algorithms of classification of land use and detection of changes in land use are being evaluated. If successful, the procedure can be applied along the Wasatch Front and elsewhere, as urban enroachment on farmland and open space continue.

Results of the study in automation will be reported to the Division of Water Resources and in national professional meetings this year.

LITERATURE CITED

- Cowardin, L. M., V. Carter, F. C. Golet, and E. T. LaRoe, 1979. Classification of Wetlands and Deepwater Habitats of the United States. Office of Biological Services, Fish and Wildlife Service, U.S. Department of the Interior, Washington, D.C. 20240. FWS/OBS-79/31.
- Jaynes, Richard A., Lincoln D. Clark, Jr., and Keith F. Landgraf, 1981. Inventory of Wetlands and Agricultural Land Cover in the Upper Sevier River Basin, Utah. CRSC Report 81-6.
- Jaynes, Richard A., Reynold D. Willie, 1982. Mapping of Wildlife Habitat in Farmington Bay, Utah. CRSC Report 82-1.
- Ridd, Merrill K., James G. Christensen, Lincoln D. Clark, Jr., and Keith F. Landgraf, 1980. Uinta Basin Wetland/Land Use Study: A Merger of Digital Landsat and Aircraft CIR Techniques. CRSC Report 80-2.

APPENDIX A. Explanation of land use/land cover categories identified in map legend.

AGRICULTURE	
Irrigated	
	Alfalfa hay, this category may also include irrigated pasture
Α	Other crops, corn and truck crops
Ag	Grains, mostly wheat and barley
Aí	Idle, this category includes lots or fields which may have been irrigated in the past
Dry Farm	
D	Cropped, usually with winter wheat
Df	Fallow
WATER	
Solid black	Open water, either ponds and reservoirs or in large canals and rivers
Great Salt Lake	Saltwater of the Great Salt Lake
Zipatone	Municipal, sewage treatment
URBAN	
Residential	
R	Medium lot size (½ - ½ acre), impervious areas make up ca. 35-40% of surface cover, remainder is irrigated lawn, garden, etc. Mostly single-family homes, but also includes churches, schools, apartments, condominiums, etc.
Rt	Trailer court, small lot size, single-family trailer parks, impervious cover greater than 50%.
R1	Large lot size (often over one acre), impervious cover usually less than 20%, remainder is irrigated vegetation.
ι	Public open space, very little impervious cover (less than 10%), predominately large lawn or otherwise landscaped public or quasi-public areas including parks, cemeteries, golf courses, large schools (i.e., U of U, colleges, etc.)

Commercial/Industrial and other

Ud

Uc Ur

	С	Buildings and parking areas, may include some landscaping but impervious areas are greater than 75%
	T	Transportation corridor/facility, includes major highways railroad yards, airports, etc. $ \\$
	Ε	Excavation, includes various mining activities such as gravel pits, quarries, landfill, tailings, etc.
	S	Salt evaporating ponds
	x	Disturbed - incipient residential - comm. and other
WE	TLAND	
	Wr	Riparian, subirrigated grasses and grass-like plants, mostly comprised of areas adjacent to the Jordan River, primarily used for pasture
	Wc	Cattail, also may include bulrush
	Ws	Saltgrass, also includes some other grasses, as well as some salicornia and other forbs
	М	Mudflat areas, seasonally inundated, most often with saline water
WI	LDLAND (Upland/Mount	afn)
	Ug	${\it Grass-shrub, generally bunchgrasses \ mixed \ with \ sagebrush}$
	Um	Mountain brush or juniper, primarily oakbrush and maple on the east side of the valley, juniper and oakbrush on the west

Note: Should avoid complexes, but, when necessary, place symbol of predominate type first followed by a "/" and second symbol.

ORIGINAL PAGE 19' OF POOR QUALITY

APPENDIX B. Acreage per land use type in Salt Lake County for 1982 by quadrangle and township.

Мар	Antelope	Island So.	· B1	inghem Cany		Brig	hton		Draper	
Symbol Symbol	TIN R3W	T1S R3W	T2S R3H	T3S R3M	T45 R3W	T2S R3E	T3S R3E	T2S R1E	T3S RIE	T2-35 R2E
Α								443.7	1.338.3	
Ag								18.4	60.6	
A1								649.0	2,819.0	
D										
Df										
R						367.5		3,630.2	5,526.3	
R1								253.1	240.1	
Rt								19.2		
L								166.3	352.5	
С				47.6		11.6		158.3	274.6	
T	120.0								-	
Ε	114.8			4,776.0	511.0			125.0	130.3	
s	891.0			1						
x	33.10							174.3	655.4	,
X/Ug										
Wr										
Wc										
Ws	171.2	169.7								
н.	843.3	2,849.5								
N/Wc	0.010	210.310								
M/Ws	287.4	5.2								
Wc/M	40.11	-								
Ws/M	57.8	510.3								
Wc/Ws										
Ws/Wc										-
Ug				302.5	15.2			824.7	899.9	_
Um								398.7	1,292.6	627
Ud						640.2	357.0	30.5	2,795.0	1,581
Uc						3,693.0	1,969.0	33.3	1,583.3	3,113
Ur						217.0	315.0		.,,,,,,,,,,	742
Ug/R1						-17.0	515.0			/46.
Ug/Um								77.1	1,922.8	
Um/Uc			751.0	909.4	10.4				.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Ud/Uc			3,289.0		486.2					
Uc/Ud			3,209.0	3,139.0	400.€					
Water		132.4		20.1		42.4	41.7		23.4	
Sew.T.		132.4		20.1		76.4	41.7		25.4	
G.S.L.										
		_								
Totals	2,485.5	3,667.1	4,040.0	11,214.6	1,022.8	4,971.7	2,682.7	6,968.5	19,914.1	6,063.

Deciduous forest, mostly aspen.

Rock

Coniferous forest, mostly spruce-fir

APPENDIX B. Acreage per land use type in Salt Lake County for 1982 by quadrangle and township.

Map Symbol	Oraper (cont) T4S		Dromeda	-		Farmington	Farswort		Fort Douglas	
2)MDO I	T4S R1E	T25 R2E	T2S R3E	T3S R2E	T3S R3E	T2K R1W	TTS R3W	T2S R3M	TIN	TIN RZE
A	107.8						104.0			
Ag	28.0									
A1	56.4									
0										
Df										
R	101.8								935.0	
13	29.6									29.5
Rt										
L									257.8	
c	6.1			20.8	145.0		509.3		60.3	
T							872.6			
E							2.846.4			
s										
x							17.4		5.8	
X/Ug										
Wr										
Wc						400.4				
Ws						726.5	882.1			
н						891.8	380.2			
M/Wc						155.8				
M/Ws						35.1	305.7			
Wc/M										
Ws/M						31.0	47.2			
Wc/Ws						68.3				
Ws/Wc						115.9				
Ug	365.0						6,029.0	586.0	793.5	
Um	400.0	98.2							6,738.6	1,067.4
Ud -	459.0	1,636.4	241.4	2,801.0	645.0	. 5	47.0		5,051.0	3,379.3
Uc		1,094.7	1,232.2	6,282.3	942.3				961.0	524.0
Ur		3,480.4	1,225.2	4,218.2	770.0					
Ug/R1				4 15			ola.			4
Ug/Um							101			
Um/Uc							324.0	5,543.0		
Ud/Uc								3,727.0		
Uc/Ud										
Water	0.6	22.3		34.5		1,803,4	108.4		22.3	
Ser.T.							5.4			
G.S.L.						111.0	1,961.0			
Totals	1,554.3	6,332.0	2,698.8	10,356.8	2,502.3	4,339.2	14,392.7	9,856.0	14,825.3	5,000.6

ORIGINAL PAGE IS OF POOR QUALITY ORIGINAL PAGE 19 OF POOR QUALITY

APPENDIX B. Acreage per land use type in Salt Lake County for 1982 by quadrangle and township.

Мар	Fort Daug	las (cont		rdan Narro	MS.		*			
Symbol Symbol			14-55	T4S	I	t		Lark		
	T13 R1E	T1S R2E	RIW (west)	RIW (east)	T4S R1E	125 R3W	R2W	RIW	T3S- R2W	T35
A			2,297.6	1,036.	122.0		24.5		nas.	535
Ag			12.6							102
A1	73.1		428.4	522.	8.1					384
0			146.1				1,641.1	213.3		6,337
Df			154.1				2,274.0	71.2		6,198
R	1,029.9		123.9	23.	16.3		89.0			237
R1 -	52.9	32.3	159.4							1
Rt										
L	354.4		3.2	31.						15.
С	784.3		67.0	98.7	6.1				5.0	
T				83.1	7.3					
E				355.6	27.6		53.8		710.0	2,004
s										1
X	76.6		52.4	4.0	4.0					-12.
X/Ug			_							9.
Wr			288.2	228.8						
Ис										
Ws										
н										
H/Wc										
H/Ws										
Mc/M										
is/M										
ic/Ws										
is/Vic			-							
Jq	211.2		4,984.4	1,679.1	777.4		3,600.9	23.9	90.0	5,819.5
in in	1,659.0	348.0	-	42.8	74.3					
ld	177.0	846.0					_			
lc lr			4,440.0							
lg/R1					-				-	
lg/Um										50.5
lm/Uc			-		-					
d/Uc						374.0	796.0		446.0	1,114.0
ic/Ud			-							
ater	2.7		22.5				\rightarrow	\rightarrow		
ew.T.	7.7		23.2	9.9			-	_		38.0
.S.L.				-			-	\rightarrow		
_										
otals	4,421.1	1,226.3	13,180.5	4,115.2	1,043.1	374.0	8,479.3	308.4	1,251.0	23,298.3

APPENDIX B. Acreage per land use type in Salt take County for 1982 by quadrangle and township.

Map		Lark (c			Lehi	Lowe Peak		Magna		
Symbo1	T3S R1W	T4S R3W	T4S R2W	T4S RIM	T4S R1E	T45 R3M	TIS R3W	TIS R2W	TIS RIW	125 R3W
A	17.9		61.6		23.0			2,521.0	73.3	
Ag	16.7		13.8	66.5				139.1		
A1	42.9			2.3				2,081.6	474.0	
0	160.3		593.2	15.2				135.3		
Df	310.4		230.8					455.0		
R	27.9							2,883.2	161.2	
R1								8.9		
Rt								9.1		
L	95.7							192.7	10.7	
С			6.1				108.7	386.7	19.9	
T							49.7	376.3		
E		30.5	4.4			78.9	458.1	2,464.9		
5										
X	40.1						17.5	1,065.6	21.9	
X/Uo	81.4									
Wr										
Mc								80.9		
Ws								3,029.5		
м								1,130.5	15.9	
M/Wc										
M/Ws										
Wc/M										
Ws/M										
Wc/Ws										
Ws/Wc										
Ug	111.2		251.2		694.2		258.0	836.7		
Um					2,766.0					
Ud					204.0					
Uc										
Ur										
Ug/R1			294.0							
Ug/Um										
Um/Uc		79.5	689.0			1,638.0	78.4	34.9		665.0
Ud/Uc						2,403.0				
Uc/Ud										
Water	6.2							165.3	2.3	
Sew.T.										
G.S.L.										
Totals	910.7	110.0	2,144.1	84.0	3,687.2	4,119.9	970.4	17,997.2	779.2	665.0

ORIGINAL PAGE IS OF POOR QUALITY

ORIGINAL PAGE IS

APPENDIX B. Acreage per land use type in Salt Lake County for 1982 by quadrangle and township.

_ L	Magna	(cont)	Midvale Midvale									
Map Symbol	T2S R2W	T2S R1W	T25 R1W (west)	T2S R1W (east)	TZS R1E	T3S RTW (west)	T3S R1W (east)	T3S R1E	T45 R1W (west)	T45 RIW (east)		
A	21.6	104.5	1,631.3	169.4	200.1	7,615.8		1,608.6	845.1	254.		
Ag		8.1	117.9			602.8	151.0	54,7	54.2	3.		
A1	6.3	26.5	455.2	100.6	21.3	1,266.0	472.0	39.9	167.8	74.9		
0	30.2	1,012.9	175.3			1,245.3						
Df	112.2	3,437.5	227.1			814.7						
R	352.5	1,251.6	1,536.9	763.2	658.1	2,197.1	234.8	995.2	157.0			
R1			155.6		17.5	_	40.3	83.8	92.3			
Rt			134.0	7.6			71.5					
L	45.1	9.9	173.4	44.9	7.3	275.1		71.6				
c	1.5	716.8	236.7	349.4	114.3	127.5	249.4	56.6	4.6			
T			302.0	104.0			240.0	33.7		6.0		
E		470.7	7.8	318.4		55.2						
5						16.7						
X	78.8	300.2	41.1	17.2	3.9	20.9	6.3	20.7				
X/Uq						90.5						
Wr			152.0	129.3		301.3	789.7	4.3	181.3	29,7		
Wc										3611		
Ws .												
м												
M/Wc												
M/Ws												
Wc/M												
Ws/M												
Wc/Ws												
Ws/Wc												
Ug		7,131.9	14.2			691.6	143.6	64.1	27.2	84.7		
Um												
Ud												
Uc												
Ur												
Ug/R1												
Ug/Um								22.8				
Um/Uc		807.0										
Ud/Uc												
Uc/Ud												
Water		1.2	2.2	6.4	1.3	5.6	11.2	10.4	7.3			
Sew.T.				24.0			14.3					
G.S.L.												
Totals	648.2	15,278.8	5,362.7	2,034.4	1,023.8	16,838.6	4,936.4	3,066.4	1,536.8	453.0		

ORIGINAL PAGE IS

APPENDIX B. Acreage per land use type in Salt Lake County for 1982' by quadrangle and township.

Map Symbol	Midvale (cont)		Mount	ain Dell			Moun	t Aire		Park City West
39H001	T45 R1E	TIN R2E	TIN R3E	T1S R2E	T15 R3E	T15 R2E	T1S R3E	T2S R2E	T25	TIS
A	206.1		1		The state of the s	1	135	MZE	R3E	R3E
Ag					_	_	+	+	+	-
Ai	15.7					_	_	_	-	
0					_	_	+	+	+	
Df					1		+	+	· ·	
R	29.8		1		_	_	_	+	-	
RI	20.0					134.0	1	+	100.0	
Rt					_	134.0	+	+	189.6	36.7
L				76.6		91.0	1	+		
c				5.6		5.7		+	+	
Т	10.0			59.3				1.1	-	
E				1	- 26.1	239.3	35.3	+		
s						1		+		
x					1	_		-	-	-
X/Ua				_		+	-	-	-	
ir					_	+	-	 	-	
ilc						+	-	-	_	
ds					·	+	-	-		
4					_	+		-		
1/Wc				-				-	-	
I/Ws					†				-	
ic/M									-	
is/M					_	_			-	
ic/Ws									-	
Is/Wc									-	
lg					_			-		
lm I		4,584.0	14.2	3,077.3	636.0	3,253.0	801.0	10.4	-	
ld		10,864.4	2.818.9	699.1				19.4		
lc		1,098.0	2.010.3	077.1	9/3.3	3,657.1	1,779.6		3,013.7	1,282.0
r		11070.0				3,037.1	1,7/9.6		1,907.6	1,288.2
g/R1								1,408.4	_ 7.0	
g/Um									-	
m/Uc								_	-	
d/Uc		692.0						_		
c/Ud		W32.V						2		
ater	2.7	12.4		88.8				2,958.6		
ew.T.		16.9		00.8					2.7	2.4
.S.L.										
otals	284.3	17,387.2	2,833.1	4,006.6	1,633.4	13,846.3	5.913.5	11,644.7	5,120.6	2,609.3

ORIGINAL PAGE IS

APPENDIX B. Acreage per land use type in Salt Lake County for 1982 by quadrangle and township.

Map	Park City West (cont)				Salta	ir				Saltair NE
ymbo1	T2S R3E	T1-2N R3W	T2N R2W	T2N R1W	TIN RIW	T2N R2W	T15 R3W	T15 R2W	T1S R1W	T2N R2W
	110				9.7	798.5		136.5		
lg .								30.8		
Ní.					9.9	618.4		191.1	12.6	
,										
of										
2	170.0					3.5		1.2		
21	11010							9.8		
Rt										
_										
c	5.4				23.1	325.6		75.2	12.8	
T	7.1				8.9	185.0	32.4	205.3	12.1	
E						732.3	23.6	140.5	55.1	
5							143.5	712.0		
x .					32.1	23.8				
X/Ua										
Wr.										
WC WC	-		554.7	35.5	213.5	2,463.5				710.
		290.8	761.0	130.9	73.9	9,094.6	21.1	2,110.8	125.8	662.
Ws	-	583.1	1,882.1	28.1		3,500.4	42.2	1,536.9		2,584.
M/Wc	-	303.1	1,002.1			37.7				
		15.9			113.2	458.5				
M/Ws	-	13.9				17.6				
Wc/M		87.2	135.5	6.9	310.2	1,777.9				27.
Ws/M	-	67.2	133.3	0.7	9.0	240.2				
Wc/Ws	-				12.9	61.1				
Ws/Wc	-				- 1212					
Ug	-									
Um	2 407 0									
Ud	3,487.0									
Uc	1,241.5									
Ur	_									
Ug/R1		_								
Ug/Um										
Um/Uc										
Ud/Uc										
Uc/Ud		178.7	1,226.0	47.3	231.1	2,582.2				854
Water		1/8./	1,220.0	77.3	231.11					
Sew.1		-								574
G.S.L		1,155.7			1,047.5	22,920.8	262.8	5,150.1	218.4	5,412

APPENDIX B. Acreage per land use type in Salt Lake County for 1982 by quadrangle and township.

Map			Salt La	ke City No	orth	Salt (Salt Lake City South			
Symbo1	T2N R1W	TIN RIW (west)	TIN RIW (east)	TIN RIE	TIS RIW (vest)	TIS RIW (east)	TIS RIE	TIS RIW (west)	TIS RIW (east)	T1S R1E
A	70.9	1,515.8			171.5			636.4	68.4	
Ag		8.6						183,4		
Ai		1,627.2	432.9		346.7			3,829.1	773.4	6.5
D										
Df										
R		428.0	1,475.0	407.1	458.8	385.2	146.0	3,445.6	588.7	1,565.6
21		50.1								
Rt		55.3			41.5			207.1		. 5.1
L		84.0	183.1	58.7	22.3		13.3	409.3	91.4	86.7
c		645.4	1,044.0	122.8	401.0	385.5	552.7	3,497.5	2,479.4	770.0
T		1,526.0	376.3		792.0	188.6		394.0	613.0	26.1
E		3.0	314.6		52.2			307.9	21.9	
s										
X		195.7	95.4		29.3			381.5	189.5	
X/Ua										
Nr.								75.2	86.7	
tie	16.8	402.1								
Ws	792.7	1,653.4			1,142.1					
9	167.1	242.7						76.6		
1/7/c		124.0			70.4					
11/2/5	143.3									
Wc/M										
Ws/M	252.2	1,954.4								
Wc/Ws										
Ws/Wc										
Ug			1,269.9	371.5						
Um			146.4	952.0						
Ud										
Uc										
Ur										
Ug/R1										
Ug/Um										
Um/Uc										
Ud/Uc										
Uc/Ud										
Water	44.6	792.6	16.0	0.5				37.9	3.9	
Sew T.			69.2					21.2	66.2	
G.S.L.										
Totals	1,487.6	12,589.2	5,422.8	1,912.6	3,528.4	1,481.1	712.0	13,502.7	4.982.5	2,460.4

ORIGINAL PAGE IS OF POOR QUALITY

ORIGINAL PAGE IS OF POOR QUALITY

APPENDIX B. Acreage per land use type in Salt Lake County for 1982 by quadrangle and township.

i	Salt Lake		h (cont)		Sugar	house		Tickville Spring		
Map Symbol	T2S R1W (west)	T2S R1W (east)	T25 R1E	T1S R1E	T1S R2E	T2S k!f	T2S R2E	T4S R3W	T4S R2W	T4S R1W
A	1,750.9	308.8	64.0	19.4		605.8				6.
Ag	115.7					8.9				20.4
Ai	467.7	285.9	52.4	56.5		402.0				
0	28.5								345.0	46.8
Df	593.0								383.5	
R.	5,883.3	1,268.5	1,110.3	8,890.5		6,596.0			4.3	
21	167.8		29.8	258.9		1,054.9			100	
31	171.0	61.1	34.4							
L	521.4	47.0	200.0	1,033.7	6.2	293.2				
c	389.6	734.5	545.5	949.7		475.5				
	257.2	483.2	52.7	451.0	52.2	154.9				
E	213.6	105.2	12.1		92.8	-				
5						1				
X I	225.6	26.1	3.5	56.7		191.0			83.3	
f/Ua										
ur I	290.5	328.6								
uc .										
Ws										
9									1	
N/Nc										
11/Ws										
Wc/M										
Ws/M										
Vc/Vs										
Ws/Wc										
Ug				1,113.6	71,1	785.9			3,081.7	410.2
Um				2,300.0	2,819.0	1,143.6	615.7		7.1001.1	414.2
Ud				70.0	700.7	907.6	915.5			
Uc				70.0	420.0	307.0	50.5			
Ur					460.0	208.8	817.7			
Ug/R1						200.0	w//./			
Ug/Um				116.2		98.6				
Um/Uc						30.0		608.0	10,175.0	86.5
Ud/Uc								000.0	14-1/3-4	DQ.3
Uc/Ud							1,115.0			
Water	8.5		1.6	4.4		15.2	1,113.0			
Sew.T.	0.5	68.7	,,0			13.2				
G.S.L.		20.7								
Totals	11,085.3	3,717.6	2,106.3	15,320.6	4,162.0	13,297 3	3,517.9	608.0	14,075.4	570.0