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ABSTRACT 

Estimation Theory Applied to River 

Water Quality Modeling 

by 

David S. Bowles, Doctor of Philosophy 

Utah State University, 1977 

Major Professor: Dr. J. Paul Riley 
Dissertation Director: Dr. William J. Grenney 
Department: Civil and Environmental Engineering 

The extended Kalman filter (EKF) is used to represent BOD, DO, and 

nitrogen cycling in a 36.4 mile (58.6 km) stretch in the Jordan River, 

Utah, under the assumption of steady-state conditions. Approximate mini-

mum variance estimates of the water quality parameters are provided by the 

EKF filter. These estimates are obtained through a combination of two 

independent estimates of the state of the river water quality system: 

(1) predictions of the system state from a "phenomenologically meaningful" 

process model of the biochemical and stream transport processes; and (2) 

measurements of the water quality parameters. These two estimates are com-

bined by a weighting procedure based on the uncertainties associated with 

the process model predictions and the measurements. The EKF also yields 

an estimation error covariance matrix from which confidence limits for the 

accuracy of the parameter estimates are obtained. 

A sequential arrangement of extended Kalman filters is utilized. Each 

EKF in the sequence represents a river reach for which hydraulic and water 

quality characteristics are fairly uniform. Initial conditions for each 

EKF are based on the final conditions of the previous EKF adjusted to 

xiii 



represent the effect of point loads or tributaries discharging into the 

main river between the two reaches. 

A trial-and-error calibration procedure is used to obtain values for 

the model coefficients in the process model operated as a deterministic 

model independent of the filter. Determination of values for the Q matrix 

by a trial-and-error procedure is described. The approach is based on the 

requirement that the mean square error of the differences between the filter 

estimates and the measurements be not less than the measurement noise vari-

ance. 

A property of the EKF is that information contained in the measurements 

is used only in subsequent estimates of the system state. Therefore, infor­

mation in the measurements is used only downstream of the sampling point 

at which the measurement was taken. To make use of the measurements in both 

the up- and downstream directions a fixed-interval smoothing algorithm (FIS) 

is implemented. This technique combines state estimates from filter passes 

in the up- and downstream directions. Sequential linearized Kalman filters 

are used for the pass in the upstream, or backward direction. Unlike the 

forward and backward estimates of the estimation error (P), the smoothed 

values are not characterized by discrete jumps at sampling points. Instead, 

the estimation error rises to a peak approximately midway between sampling 

locations. This characteristic indicates that when information from all 

the measurements is used confidence in the estimates decreases with dis­

tance from the adjacent sampling points. Smoothed values of P are less than 

the values obtained from applying the forward EKF alone; thus indicating 

that the estimates obtained from the FIS are better, in a minimum variance 

sense, than the estimates obtained from the forward EKF. 

xiv 



To assist in gaining familiarity with the filtering technique, several 

sensitivity studies are performed. The sensitivity of filter estimates to 

changes in the following statistics was investigated: the process model 

noise variance, the .measurement noise variance, the initial estimation error 

variance, and the point load estimation error variance. A large value for 

the process model noise variance has the effect of: (1) increasing the 

rate of growth of the estimation error, and (2) placing additional weight­

ing on the measurements because the larger estimation error implies less 

confidence in the process model predictions. At sampling points the mea­

surement update procedure always results in an estimation error less than 

the measurement noise regardless of the values used for the process model 

noise variances. Changing the values of the measurement noise affects 

(1) the level of the estimation error after measurement updates, and (2) 

the weighting given to measurements. A larger initial estimation error 

variance gives relatively more weighting to the measurements but this 

effect decreases with distance from the upstream boundary. The sensitivity 

study on the point load estimation error variances indicates a small, but 

noticeable, effect on the estimation errors, and therefore, a slight effect 

on the state estimates via the weighting procedure. 

The capability of estimating model coefficients and lateral inflow 

concentrations simultaneously with the water quality parameters is demon­

strated. In one run five coefficients in the equations describing nitrogen 

cycling are estimated. This run also provides an example of filter diver­

gence. 

(220 pages) 
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CHAPTER I 

INTRODUCTION 

Background 

River water quality models can be used for many different purposes 

including prediction of the effects of management strategies, and fore-

casting future levels of pollution ,over the short-term or the long-term. 

Water quality models are also used in stream assessment studies to assist 

in understanding the important physical processes controlling stream water 

quality. This task is approached by identifying diffuse and point sources 

of water quality parameters,l collecting hydraulic and stream quality data, 

and proposing a model of the biochemical and stream transport processes. 

Typ,ically the model is deterministic and will facilitate physical interpre-

tation of the processes occurring in the prototype system. However, sto-

chastic considerations of the uncertainties associated with the stream 

system, the data, the model, or the model responses are not usually 

explicitly considered. 

Aquatic or hydrologic process are inherently random in nature. 

Yevjevich (1971) has explored the sources of stochasticity in geophysical 

and hydrologic processes. He concluded that 'the atmosphere is the major 

source of stochasticity' while 'the main influence of the oceans and the 

continental surfaces as well as the underground water is, however, to 

attenuate the high stochasticity produced by the atmosphere.' According 

to Yevjevich (1974) it is common misconception that the need for stochastic 

IThroughout this dissertation the term "parameter" denotes water quality 
constituents. To avoid confusion with the constants in the mathematical 
model these constants are referred to as "coefficients." 
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considerations is only 'temporary,' and will be replaced when the under­

lying physical mechanisms are better understood. The sequence of true 

states of a natural system is a stochastic process, that is, it depends 

not only on the system inputs but also on random environmental disturbances. 

Available water quality and hydraulic data are always subject to un­

certainties associated with sampling procedures and analytical techniques. 

Other limitations of data are that they are never continuous in time or 

space, and that it is seldom possible to measure all the pertinent state 

variables due to financial and technological limitations. 

Mathematical models are never completely accurate representations 

of the prototype system. A minimum level of prediction uncertainty will 

result due to the inherent randomness of nature, even with a "perfect" 

model. Riley (1970) also attributes this lack of accuracy to losses of 

information about the real world system during the development of the 

model. In the first place information is lost when we conceptualize what 

the prototype system is like. This is because the real system must be 

"viewed" through various kinds of noisy and incomplete data gathered about 

the system. Another significant loss of information occurs during the con­

version of the conceptual model into a mathematical model. This loss of 

information is caused by such factors as simplifications or omissions that 

are necessary to make the solution of the problem mathematically tractable 

or consistent with the available computing facilities. Common examples of 

these factors are linearization, and the omission of a dispersion term in 

the stream transport equation. The uncertainties associated with mathe­

matical models are in the variables, the model coefficients, the form of 

the model, and the numerical solution technique. 
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Since the real stream system, the data collected from that system t 

and the stream model are each thwart with uncertainties, and since incom­

pleteness characterizes the data and the stream model, it is inevitiable 

that the model predictions will also be uncertain. The results from es­

timation theory that are applied in this study, provide a means for model­

ing these uncertainties. Figure 1.1 is a schematic representation of the 

occurrence of environmental disturbances in the prototype system and 

noise in the measurement process. It also shows the estimation theory 

technique for explicitly treating these uncertainties. The crux of the 

estimation technique is the weighting procedure for combining two indepen­

dent estimates of the state of the stream system based on: (1) the measure­

ments t and (2) predictions from a model of the stream processes. These 

two independent estimates are weighted according to the levels, of uncer­

tainty associated with each estimate. Measurement uncertainty is specified 

as a white Gaussian noise process, N(QtR)I. Uncertainty in the process 

model predictions is partially dependent on the process model uncertainty 

which is specified by another white Gaussian noise process, N(Q,Q). By 

combining the measurements and the process model predictions the estimation 

procedure used in this study provides approximate minimum variance esti­

mates of the true state of the stream water quality parameters t and confi­

dence limits representing the reliability or accuracy of these estimates. 

The technique uses all available information, in the form of: (1) "a phenome­

nologicallymeaningful" process model of the stream processes; (2) measure­

ments of the water quality parameters; and (3) prior estimates of the system 

state (water quality parameters) and the uncertainty with which these prior 

estimates are known. 

I The underbar notation indicates a vector. 
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Objective 

The overall objective of this study is: 

To investigate and evaluate the application of estimation theory to 

river water quality modeling. 

To achieve this objective a filter model is developed to represent 

several water quality parameters in a real river system. The process 

model is based on established deterministic techniques for representing 

river water quality. Model and data uncertainty are handled through a 

state estimation procedure with the result that uncertainty associated 

with the final estimates is less than the individual uncertainties associa­

ted with either the process model predictions, or the measurements indi­

vidually. This is referred to as the "filtering result" and is proven in 

Chapter 3. The limited availability of suitable data and computer funds 

have restricted the study to a steady-state model. 

Summary of Contents 

Chapter 2 contains a literature review. The review is divided into 

two parts: (1) a review of estimation theory, and (2) a review of the 

applications of estimation theory to water resources. 

The main result from estimation theory utilized in this study is the 

extended Kalman filter. This and other estimation theory techniques are 

described in Chapter 3. The sequential mode of application of the Kalman 

filter to a river under the assumption of steady-state conditions is ex­

plained. Also numerical and other computational aspects of the study are 

briefly described. 
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Chapter 4 contains descriptions of the study river, the process model 

and the measurement model. Details of other aspects of the problem set-up 

such as point load concentrations, lateral inflow loadings, and initial 

conditions also are included. 

In Chapter 5 the results are presented. After a section in which 

calibration of the deterministic process model is described, the technique 

used to obtain suitable values for the variances in the process model noise 

covariance matrix, Q, is explained. The subsequent sections contain the 

results and discussion of results for: the filter run, the smoothing al­

gorithm run. several sensitivity studies, and some coefficient estimation 

runs. An example of filter divergence is included in one of the coefficient 

estimation runs. In the final section of Chapter 5 the computational re­

quirements of the estimation theory techniques applied are summarized. 

A summary of the research accomplished in this study is contained in 

Chapter 6. In addition, several conclusions and recommendations for fur­

ther work are made. 

Appendix A is a users manual for the computer programs written for 

this project. It includes input instructions, program listings, and flow 

charts. 
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Chapter 2 

LITERATURE REVIEW 

Introduction 

The review of literature is divided into two parts: (1) a review of 

estimation theory, and (2) a review of the application of estimation 

theory to water resources. The applications reviewed in the second 

section are also summarized in tabular form for easy reference. 

Review of Estimation Theory 

During the mid-1960's modern estimation theory techniques were ext en-

sively applied to the real-time problems of space and missile guidance and 

navigation including the Apollo mission (Leondes, 1970). Gelb (1974) de-

fines estimation as: 

The process of extracting information from data -- data which may 
only infer the desired information and which may contain errors. 
Modern estimation methods use known relationships to compute the 
desired information from the measurements, taking account of mea­
surement errors, the effects of disturbances, and control actions 
on the system, and prior knowledge of the information. Diverse 
measurements can be blended to form "best" estimates, and infor­
mation which is unavailable for measurement can be approximated 
in an optimal fashion. 

Estimation problems can be classified by the relationship between times of 

measurements and times at which estimation is required: 

1) Filtering: Estimate the state vector, ~, at time t based on 

measurements up to and including time t 

2) Prediction: Estimate X at time t' > t based on measurements up 

to time t 

3) Smoothing: Estimate X at time t' < t based on measurements up to 

time t 
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The idea of obtaining approximations or estimates of unknown quantities 

can be traced to the development of least squares estimation. According 

to Young (1974) both Gauss (1821) and Legendre (1806) appear to have used 

least squares analysis at the beginning of the nineteenth century. The 

mathematical theory of probability did not exist at this time and, there­

fore, least squares estimation was formulated as a deterministic approach. 

(See for example Kreider et al., 1966). 

In the early 1940's Wiener (1949) solved the continuous-time problem 

of linear least-squares estimation for st,ochastic processes. Wiener's 

work was prompted by the problem of designing anti-aircraft fire-control 

systems. His solution involved reducing the problem to that of solving 

certain integral equations such as the Wiener-Hopf equations. However, 

the frequency-domain Wiener filter did not gain much practical acceptance. 

The main reasons for this were difficulties in synthesizing a suitable data 

processing scheme; and, the incompatibility with practical problems of the 

assumptions of stationarity and knowledge of the entire past of the ob­

servable processes. With the advent of the high speed digital computer the 

effort was diverted from attempts at trying to solve theWiener-Hopf equation 

for particular problems, to a search for a time-domain algorithm which would 

produce numerical estimates from numerical measurements. The search was 

further stimulated by the real-time problems of space and missile guidance 

and navigation. 

The breakthrough came with the work of Kalman and Bucy in the early 

1960's (Kalman, 1960; Kalman and Bucy, 1961; Kalman, 1963). Essentially 

the Kalman-Bucy or Kalman filter is no more than a "recipe" for combining 

two independent estimates of a state vector (Lettenmaier and Burges, 1976) 

to provide a "best" (minimum variance) estimate of the system state 
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(Figure 2.1). The two independent estimates of system state are given by 

(1) a "process model" based on a prior understanding of the physical sys­

tem, and (2) measurements on part or all of the state vector. These two 

estimates contain levels of uncertainty. The filter combines the model 

and data estimates by weighting them according to the uncertainties associ­

ated with each one. Output from the filter comprises a new improved esti­

mate of the system state and the variance associated with that estimate 

(Moore, 1973). In contrast to the Wiener filter, the Kalman filter utilizes 

the relatively flexible state-space structure and is a recursive algorithm. 

Because of its recursive nature only the most recent measurements are stored 

by the computer. This feature saves computer memory and permits real-time 

estimation. Although the theory of filtering is quite complex the result 

is basically a pair of differential or difference equations for propagation 

of the mean and covariance of the probability distribution function of the 

state variables conditioned on processed past measurements. 

A linear model is assumed in the basic Kalman filter. In the case of 

a nonlinear model the computational requirements for an exact solution to 

equations describing the evolution of the conditional probability density 

function become impractical for most problems and, therefore, approximations 

are used (Schmidt, 1976). The three most common approximations are: the 

linearized Kalman filter, the extended Kalman filter, and the iterated ex­

tended Kalman filter. The linearized Kalman filter is linearized about an 

a priori trajectory for the state vector. The extended Kalman filter is 

linearized about the latest estimate of state, and the iterated extended 

Kalman filter includes iterations on the estimate at each measurement until 

there is little change in the estimate. 



PROCESS 

MODEL 

r- -- - r- -

MODEL -
UNCERTAINTY 

L - - - - -, 
BEST ESTIMATE 

OF SYSTEM STATE 
~ 

FIELD 
MEASUREMENTS 

- - - - - - - -

COMPARISON OF 
EACH MODE OF 

ESTIMATION 

WEIGHTING MEASUREMENT -ALGORITHM UNCERTAINTY 

- - - - - - - - -, 
VARIANCE IN 
ESTIMATE OF 

~SYSTEM STATE 

--, 

J 
I 

J 
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Each of the Kalman-type filters referred to above involves minimum 

variance estimation albeit approximate for the case of a nonlinear model. 

Other criteria for estimation are: 

1) Joint maximum likelihood (Bayesian) 

2) Maximum likelihood (non-Bayesian) 

3) Least squares (dynamic programming, invariant imbedding) 

Because nonlinear filters differ in both the criterion of optimality 

and the approximations used it is not possible to compare the different fil­

ters except through computational studies (Schwartz and Stear, 1968). Since 

computational studies are based on specific problems the comparisons made 

using the results of these studies may apply only to the problem considered. 

Lee (1972) compared nine approximate nonlinear filters for a hypothetical 

BOD-DO river water quality problem. He concluded that for his problem the 

dynamic programming least squares and the first-order minimum variance fil­

ter were far superior to the other filters on the basis of performance and 

computational time. However, Lee did not consider the extended Kalman 

filter. 

Young et al. (1971) proposed an instrumental variable-approximate 

maximum likelihood (IV-AML) technique as an alternative to the extended 

Kalman filter. The IV-AML approach is a recursive time series analysis 

procedure and is less flexible but computationally more efficient than 

the extended Kalman filter. 

The reader is referred to Lee (1972) for a fairly comprehensive histori­

cal review of estimation theory. Also of interest is a tutorial paper by 

Young (1974) in which the parallelism between recursive least squares esti­

mation and Kalman filtering is discussed. Young (1974) and Moore (1971) 
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also point out that the state estimation problem may be viewed as anexten-

sion of Bayesian analysis applied to dynamic systems. 

Review of the Applicat~ons of Estimation Theory 
to Water Resources 

In the past five years the literature has contained several examples 

or applications of estimation theory to water quality and hydrologic 

problems. A summary of each study is contained in Table 2.1. Several dif-

ference uses for estimation techniques in water resources problems have 

been identified and form the framework for synthesizing previous work in 

the following discussion. 

Model identification 

The process model is an essential part of the procedure for estimating 

the state of a system. This model is described in the state-space form 

and comprises a set of first-order, deterministic, linear or nonlinear, 

differential or difference equations with an additive white Gaussian noise 

term. The initial process model may be an empirical transfer function, 

or it may be based on some heuristic feeling or physio-chemical understand-

ing of the system (Whitehead and Young, 1975). Graupe, Isailovic, and 

Yevjevich (1975) argue for the mathematical statistical model on the 

grounds of such statistical advantages as unbiasedness convergence, and 

optimality in estimating model coefficients; whereas, Young (1974) claims 

that "internally descriptive" models tend to make better use of a priori 

information on the physical nature of the system and thus are more attrac-

tive from the "information theoretic" standpoint. In either case estima-

tion techniques provide a means of assessing the adequacy of particular 

model structures by careful analysis of the process model noise covariance 

matrix (Q). Also the desirability of adding or deleting state variables 
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may be assessed by studying changes in the estimation error covariance 

matrix (P) (Lettenmaier and Burges, 1976). Beck (1973, 1975) and Beck 

and Young (1976) developed a process model for BOD-DO-algae interaction 

in the River Cam, England, through repeated use of the extended Kalman 

filter together with statistical and other tests. In a related study 

(Whitehead and Young, 1975; Young and Whitehead, 1975) a rainfall-runoff 

model was identified by repeated application of the instrumental variable­

maximum likelihood technique. 

Model calibration 

Estimation techniques are potentially useful in model calibration. 

Coefficients in the process model can be estimated at the same time as 

state variables are estimated. Coefficient estimation is achieved by 

augmenting the state vector with the coefficients to be estimated after 

a satisfactory model structure is obtained. Usually the process model 

adopted for these coefficients is based on the assumption that the coef­

ficients are constant except for model uncertainty. Lettenmaier and 

Burges (1976) point out that in the context of estimation theory model 

calibration is viewed in an essentially Bayesian sense in which the 

actual process is well identified but calibration coefficients must be 

determined. Many of the studies referred to in Table 2.1 include coeffi­

cent estimation (e.g., Beck. 1973; Koivo and Phillips. 1976). Graupe. 

Isailovic, and Yevjevich (1975) handle non-stationarity in the model co­

efficients by estimating different sets of coefficients for different 

seasons. An alternative would be to identify a model to represent coeffi­

cient non-stationarity and include this as part of the process model. 

Nonlinear filtering techniques are usually necessary for coefficient 



Table 2.1. Summary of applications of estimation theory to water resources. 

Reference 

Lee and Hwang 
(1971) 

Lee (1972) 

Moore (1971) 
Moore and Brewer 
(1972) 
Moore (1973) 
Brewer: and Moore 
(1974) 

Beck (1973) 
Beck (1975) 
Beck and Young 
(1976) 

Type of Application 

Dynamic stream model for BOD-DO using synthetic data. 
Coefficient estimation and sensitivity studies on 
initial state vector and a weighting matrix. 

A computational comparison of 9 approximate non­
linear filter algorithms for a dynamic stream model 
of BOD-DO using synthetic data. Coefficient esti­
mation and sensitivity studies. Application of 
minimum variance filter to activitated sludge 
process and nonlinear hydrologic process model 
including coefficient estimation. Comprehensive 
historical review of estimation theory. 

Development of an approach for designing river water 
quality monitoring systems that maximizes predictive 
accuracy subject to a cost constraint. Application 
of the technique to a simulated river with twelve 
reaches for temperature t zooplankton, phytoplankton t 

and nitrate. Illustrations of filter characteris­
tics and divergence control. 

Dynamic stream model for BOD-DO-algae using field 
data collected over a 2.9 mile (4.7 km) reach of the 
River Cam in eastern England. Process model was 
the outcome of a thorough model identification pro­
cedure. Coefficient estimation. 

Estimation Technique 

Invariant Imbedding Least 
Squares Filter 

Linearized Kalman Filter 
Invariant Imbedding Least 
Squares Filter 
Minimum Variance Filter 
and others 

Extended Kalman Filter 

Extended Kalman Filter 

t-' 
~ 



Table 2.1. Continued 

Reference 

Pearce, DeGuida, 
Dandy, and Moore 
(1975) 

Type of Application 

Evaluation of estimation theory as a technique for 
design of sampling networks for dispersion experi­
ments in Massachusetts Bay. Filter handles temporal 
propogation of the system states while spatial re­
lationships are handled separately by a finite element 
method. 

Whitehead and Young Dynamic stream model for flow-BOD-DO using field data 
(1975) collected on a 34 mile (55 km) stretch of the Bedford-
Young and Whitehead Ouse River System, England. BOD-DO model identifica-
(1975) tion was achieved by Beck (1973). ' Identification of a 

rainfall-runoff model was based on autoregressive-moving 
average (AR-MA) methods. 

Lettenmaier (1975) 
Lettenmaier and 
Burges (1976) 

Bowles and 
Grenney (1976a) 
Bowles and 
Grenney (1976b) 

Dynamic stream model for BOD-DO using simulated data. 
Lucid introduction to state estimation techniques in 
water resource system modeling. Discussion of diver­
gence in Kalman filter and potential uses of estima­
tion theory. 

Steady-state stream model for BOD-DO and nitrogen 
cycling using field data collected over a 36.4 mile 
(58.6 km) stretch of the Jordan River, Utah. Compari­
son of filter estimates and results from a determinis­
tic solution of the process model. Coefficient esti­
mation and sensitivity studies on several statistics. 
The final results from this study are presented in this 
dissertation. 

Estimation Technique 

Linear Kalman Filter 

Multivariable Instrumental 
Variable-Approximate Maximum 
Likelihood 

Linear Kalman Filter 
Extended Kalman Filter 

Sequential Extended Kalman 
Filters 
Sequential Linearized Kalman 
Filters 
Fixed-Interval Smoothing 
Algorithm 

I-' 
\.Il 



Table 2.1. Continued 

Reference 

Ozgoren, Longman. 
and Cooper (1974) 

PerIis and 
Okunseinde (1974) 

Bras and Rodriguez­
Iturbe (1975) 

Graupe, Isailovic, 
and Yevjevich 
(1975) 

Type of Application 

Formulation of dynamic stream model for BOD-DO. A 
five-day delay in BOD measurements is handled 
through the use of a smoother. Artificial river 
aeration is controlled by a stochastic optimal feed­
back control. No application is described. 

Development of an approach for designing water 
quality monitoring schemes subject to cost and 
accuracy constraints. Application to a simulated 
TOC/BOD-DO system. Current measurement of TOC and 
five-day delayed BOD results combined by a scheme 
that employs the projection of the delayed measure­
ment to the time of on-line estimation. 

Development of an approach for "optimal" rain gage 
network design subject to cost and network accuracy 
constraints. Application to simulated storms. 
Extension of the method to enable accuracy con­
straints to be placed on basin discharge estimated 
from rain gage data via a rainfall-runoff filter 
model. 

Rainfall-runoff, input-output, model applied to Karst 
catchment of the Trebisnjica River, Yugoslavia 
Identification of a linear-optimal process model based 
on autoregressive-moving average (ARMA) methods. 
Measurement errors are filtered out by linear Kalman 
filter. 

Estimation Technique 

Linear Kalman Filter 

Multiple Linear Kalman Filters 

Linear Kalman Filter 

Linear Kalman Filter 

l-' 
0\ 
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Table 2.1. Continued 

Reference 

Koivo and Phillips 
(1976) 

Moore, Dandy, and 
deLucia (1976) 

Type of Application 

Dynamic stream model for BOD-DO using synthetic data. 
Sinusoidally varying point source of BOD and photo­
synthetic source. Coefficient estimation. 

Development of an approach for designing sampling 
programs in a completely mixed impoundment. 
Application to nutrients and algal biomass in 
top two meters of Lake Washington using field data 
and synthetic data. 

Estimation Technique 

Linear Kalman Filter 

Linearized Kalman Filter 

I-' 
-....J 
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estimation because a linear process model often becomes nonlinear when 

model coefficients are treated as state variables. In addition, computer 

costs increase as the order of the state vector is incremented. There­

fore, the amount of computational effort required for filter models that 

include coefficient estimation can increase very rapidly. 

River forecasting 

The river forecasting problem is a "natural" application for estima­

tion theory. A filter algorithm is used to determine "best" estimates 

of the system state from noisy measurements as they become available~ 

and from the process model conditioned on previous measurements. Most 

of the river quality forecasting studies reported in the literature 

have been based on a one-dimensional dynamic stream model (e.g., Lee and 

Hwang, 1971; Moore, 1971; Koivo and Phillips, 1976). Due to the scarcity 

of data suitable for verifying dynamic river water quality models, noisy 

data often have been generated on a digital computer using a pseudo-ran­

dom number generator to introduce normally distributed process model 

noise and measurement noise. With the exception of Moore's work (Moore, 

1971; Moore and Brewer, 1972; Moore, 1973; Brewer and Moore, 1974) synthe­

tic stream data were obtained using a model identical to the process 

model. Under these conditions the filter problem is merely the inverse 

of the data generation exercise. Noise effects are normally distributed 

and the process model and coefficients are known exactly. Although re­

sults from studies utilizing synthetic data have demonstrated the applica­

tion of estimation theory to river quality forecasting the approach cir­

cumvents the vagaries of real data. MOore attempted to generate data 
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that were more realistic and which, therefore. presented a more challeng­

ing filtering problem. He did this by adding several variables to the 

simulation model that were not in the process model and by adding noise 

to certain model coefficients and model inputs. Thus, the filter problem 

was not the inverse of the data generation problem. 

Two techniques have been proposed for incorporating delayed measure­

ments into the filter procedure for river forecasting. In a theoretical 

paper, Ozgoren, Longman, and Cooper (1974), formulated an approach that 

makes use of a smoothing procedure to utilize the five-day delayed BOD 

data. In another paper, Perl is and Okunseinde (1974) proposed the use of 

TOC data in lieu of delayed BOD measurements. When BOD data become 

available. a multiple Kalman filter model is used to combine current mea­

surements of TOC and five-day delayed BOD results by a scheme that employs 

the projection of the delayed measurements to the time of on-line estima-

tion. 

Estimation techniques also have been applied to the problem of 

hydrologic forecasting. Lee (1972) formulated a rainfall-runoff process 

model of the hydrologic system from the nonlinear Prasad (1967) model and 

tested the approximate minimum variance filter model using generated data. 

Bras and Rodriguez-Iturbe (1975) developed a hydrologic process model for 

storms with separate stream and overland flow segments but ignoring infil­

tration. Their model is based on solutions to the kinematic wave equations 

and was tested using synthetic data. Whitehead and Young (1975) used ad 

hoc and time series empirical relationships in a rainfall-runoff process 

model to represent the Bedford-Ouse River System in Eastern England. Time 

series transfer function techniques (Box and Jenkins, 1970) were also used by 

Graupe. Isailovic, and Yevjevich (1975) to identify rainfall-runoff re-
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1ationships for a process model of the hydrology of the catchment of the 

TrebisnjicaRiver in Yugoslavia. For cases where measurement errors can­

not be considered negligible the autoregressive-moving average transfer 

function model is no longer linear-optimal with respect to true runoff 

although it is linear-optimal with respect to runoff measurements. There­

fore, in these cases, measurement errors are filtered out using a linear 

Kalman filter. 

Recently, the National Weather Service, which is the Federal Agency re­

sponsible for river and flood forecasting in the United States, has become 

interested in applying estimation theory techniques to operational hydro­

logic forecasting (Hydrologic Research Laboratory, 1976). Estimation theory 

techniques should improve both the accuracy and reliability of forecasts. 

Accuracy will be enhanced through the objective procedure for updating 

forecast model performance based on observations of river stages and other 

variables that become available during real-time simulation. Reliability 

will be improved as a result of reducing the uncertainityassociated with 

river forecasts by filtering out measurement noise. In addition the appli­

cation of estimation techniques to real-time hydrologic forecasting will 

yield confidence intervals on forecasts of the mean. 

Sampling program design 

Use of filtering techniques for the design of sanlpling programs is 

facilitated by the fact that the equations for the propagation of the es­

timation error covariance matrix are independent of the values of the 

actual measurements. Therefore, knowledge of the accuracy of a proposed 

sampling network can be obtained a priori without measurement data. Only 

the statistics of the measurement error (R) are required and these can 

be determinel by analysis of the sampling procedures and analytical tech-
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niques. Different measurement coefficient matrices (H) (described in 

Chapter 3) can be formulated to represent different configurations of 

sampling locations and different combinations of the variables to be 

measured. A cost constraint may be placed on the sampling schemes re­

presented by the H matrices. The optimal sampling network is selected as 

the network that provides for estimates of the variables with maximum 

time between samples, while meeting a constraint on the maximum attainable 

estimation error (P). A global optimum design cannot be guaranteed since 

only those measurement coefficient matrices that are formulated by the 

designer are evaluated. This technique for sampling program design bases 

the selection of an "optimal" design on the use to which the data are to 

be put, that is making estimates of the state of the system with the aid 

of a priori knowledge contained in the process model. Costs associated 

with different degrees of estimation uncertainty could be introduced into 

the objective function. A disadvantage of the procedure is the rapid 

growth in size of the state vector, and therefore, computer costs, as the 

number of space points or system variables is increased. 

Moore and Brewer pioneered the use of filtering techniques for the 

design of water quality monitoring schemes. The approach was first applied 

(Moore 1971, 1973) to four water quality variables on a river that was 

divided into twelve reaches. A temporal and spatial distribution of the 

measurements, and the measurement techniques to be used were determined 

by the procedure. 

Perl is and Okunseinde (1974) based the decision to make a measurement 

on the relative savings from improved estimation compared with the cost of 

measurements. Their technique yields the location of a single sampling 

point and the temporal spacing of samples. 
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Pearce, DeGuida, Dandy, and Moore (1975) evaluated estimation theory 

as a technique for the design of sampling networks for dispersion experi­

ments. A two-dimensional finite element model is used to simulate spatial 

aspects of dispersion in Massachusetts Bay. It is proposed that temporal 

aspects be handled by the linear Kalman filter, thus facilitating selection 

of an "opti:m.a.l" sampling network. 

As part of the National Eutrophication Survey, Moore, Dandy, and 

deLucia (1976) used a linearized Kalman filter to evaluate sampling 

frequencies in a completely mixed impoundment. In addition to model and 

data uncertainty, phenomological uncertainty in the system inputs was 

considered. The approach was applied to nutrients and algal biomass in 

the top 7 feet (2 m) of Lake Washington using both field and synthetic 

data. 

Linear Kalman filter techniques are utilized in a method for 

"optimal" rain gage network design developed by Bras and Rodriguez-Iturbe 

(1975) with cooperation from MOore and others. The design procedure in­

cludes constraints on costs and the accuracy of mean aerial rainfall 

estimates. An application was made using synthetic storm data. The de­

sign procedure is extended via a rainfall-runoff filter model, so that 

the accuracy constraint may be placed on estimates of basin discharge 

which are obtained from the precipitation measurements. 

Missing data fill-in 

Lettenmaier and Burges (1976) propose that estimation techniques are 

applicable in situations where a cause-effect model could be employed to 

fill in missing observations in otherwise reasonably complete data time 

series. In this way understanding of the physical system is utilized in­

stead of being largely ignored as it is in regression methods. 
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Control 

Moore and Brewer (1972) propose that filter models be used to obtain 

"best" estimates of the state variables in an environmental system, such 

as a river, and that these estimates be used to control the system via 

a feedback control procedure. A theoretical example of artificial river 

aeration operated by a stochastic optimal feedback control law is given 

by Ozgoren, Longman; and Cooper (1974). Bras and Rodriguez-Iturbe (1975) 

propose the use of estimation and control theory to determine reservoir 

operating rules with the purpose of satisfying a given objective. They 

point out that some difficulty might be expected because of the assymmetric 

nature of the loss functions in this problem. 
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In the previous two chapters the development and basic philosophy of 

estimation theory are outlined. In this chapter the techniques of esti­

mation theory applied in this study are described in detail. These 

techniques are: 

(1) extended Kalman filter (EKF) , 

(2) linearized Kalman filter (LKF), 

(3) smoothing algorithm. 

In addition the sequential mode of application of the Kalman filter 

to a river under the assumption of steady-state conditions is presented. 

Numerical and other computational aspects of the study are briefly de­

scribed at the end of the chapter. Firstly, a simplified derivation of 

the linear Kalman filter is given to provide an intuitive feeling for the 

technique. 

Simplified Derivation of the Linear Kalman Filter 

A mathematical rigorous derivation of the Kalman filter requires 

familiarity with advanced statistical theory. Barnham and Humphries 

(1970) have presented a less rigorous but intuitively appealing derivation 

which is reproduced as follows. 
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Firstly, the case of a single state variable, X, is considered. Let 

X' and XII be two independent estimates of X with variances of 0',2 and cr h2 

respectively. The goal is to combine these estimates to form a weighted 
A 

mean that has the property of being the minimum variance estimate, X, of 

X. A linear combination of X' and X" using a weighting factor W is form-

ed as follows: 

A 

X = (1 - W) X I + WX" 

A 

The expected or mean value of X is given by: 

Edb = (1 - W) E(X') + WE(X") 

"-

By definition the variance, 0'2, of X is given by: 

E {[ (1 - W)X ' + wx" 

(1 - W) 2 0" 2 + W 2 0' " 
2 

(1 - W)E(X') 

(3.1) 

(3.2) 

WE(X")]2 } 

0.3) 

To find the minimum variance estimate of W we minimize 0'2 with respect to 

W, as follows: 

aa2 
2(1 W) 

,2 + 2W 0',,2 0 0' = oW 
0.4a) 

and 

a2a2 . 2 2 112 = 20' I + 0' > 0 oW - 0.4b) 

From Equation 3.4a W*, the minimum variance estimate of W is: 

W* = 
,2 

0' 

(3.5) 

Substituting W* into Equations 3.1 and 3.3 yields: 
A 

X = X' - W* (X' - X") (3.6) 

0'2 = 
,2 

(1 - W*) 0' (3.7) 
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In the Kalman filter the estimate X' is obtained from a model of the 

process X, and the estimate X" is the measured value of X which is repre-

sented by Z. Now Z is considered to update X' to produce the minimum 
h 

variance estimate X. 

The "filtering result" referred to in Chapter 1 states that the 

variance (cr2) of X is always less than or equal to the variance (cr '2) of 

X' or the variance (cr"
2

) of X" individually. Therefore, according to the 

minimum variance criterion, the estimate X is a better estimate of X than 

either X' or X". The "filtering result" for the one-dimensional case is 

proven below. It can be expressed by the following pair of inequalities: 

(3.8a) 

(3.8b) 

The first inequality is proven by inspection of Equation 3.7 since 

from Equation 3.5 w* ~ 1. Proof of the second inequality procedes by 

substituting Equation 3.5 into Equation 3.7 and rearranging to obtain the 

following equation for cr" 2 : 

= 
(cr'2)2 _ cr,2 

cr,2 _ cr 2 
(3.9) 

Now the first inequality (Equation 3.8a) may be written as the following 

equality in which 8cr2 is a slack variable: 

(3.10) 

Substituting Equation 3.10 into Equation 3.9 yields the following 

expression: 

(3.11) 
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cr4 
and since ---2 ~ 0 we have: 

8cr 

(QED) 

Barnham and Humphries (1970) also present the multidimensional exten-

sion to their simplified derivation of the Kalman filter. This case re-

quires some matrix algebra and allows for the situation in which X' and Z 

(=!") may, in general, be vectors of different orders which are related 

by the coefficient matrix H as follows: 

Z 'V HX' • (3.12) 

The result for the multidimensional case is: 

in which 

K 

P 

p' 

R 

T 

" X = X' - K (H!' - !) 

P = (I - KH)P' • 

Kalman gain matrix (multidimensional W*) 

K = P'HT (HP'HT + R)-l 

(3.13) 

(3.14) 

(3.15 ) 

estimation error covariance matrix associated with the 

minimum variance filter estimates after the measurement 

update (multidimensional cr 2 ) 

P = E [(! _!) (! _ !) T ] • (3.16) 

:: estimation error covariance matrix associated with the 

process model prediction before the measurement update 

(multidimensional cr'2) 

(3.17) 

= measurement noise covariance matrix (multidimensional cr" 2) 

(3.18) 

= superscript denoting matrix transpose 
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For more rigorous derivations of the linear Kalman filter and its exten-

sions to nonlinear problems the reader is referred to Jazwinski (1970)~ 

Schweppe (1973), and Gelb (1974). 

Extended Kalman Filter 

The main result from estimation theory that is applied in this study 

is the extended Kalman filter (EKF). The EKF provides for nonlinear pro-

cess and measurement models by relinearization of these models about each 

new estimate of system state as new estimates become available (Jazwinski, 

1970). A prior understanding of the behavior of the prototype system, 

in this case the biochemical and stream transport processes, is described 

by a coupled set of continuous first-order nonlinear stochastic ordinary 

differential equations of the following form: 

X(t) = f [X(t), Q(t); tJ + w(t), t > to' 

(3.19) 

in which 

t = time 

X(t) = n-vector of system state va riab les at time t 1 

!(t) = first derivative of !(t) with respect to time 

X(t
O

) mean value of the initial state vector at time to 

Q(t) = p-vector of known inputs at time t 

f[' ] = nonlinear n-vector of functions of !(t) and U(t) at time 

IThe !lA" symbol which was used above to indicate an estimator is 
now omitted to simplify the notation. Thus, X(t), which was previously 
written j, is the estimator of the true system state. 

t 
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P(to) = nxn estimation error covariance matrix at time to 

w(t) n-vector of white Gaussian noise processes 

~(t) '" N [!l,Q(t)] 

Q(t) = nxn process model noise covariance matrix at time t 

Q(t) = E[~(t) wT (t)] • (3.20) 

T superscript denoting matrix transpose X 

N[~, r] = multivariate normal distribution with mean vector ~ and 

variance-covariance matrix r 

E['] expectation operator 

In estimation theory terminology Equation 3.19 is referred to as the 

process model or sometimes, the system model. If higher-order differential 

equations are needed to describe the prototype system, these must be re­

duced to an equivalent set of fir.st-order differential equations. 

Equation 3.19 has the form of the Ito equation which, according to Unny 

(1976) is popular throughout estimation theory, optimal control, and 

stochastic stability theory due mainly to its mathematical simplicity 

and Markovian solution process. 

Measurements on hydraulic and water quality parameters are usually 

discrete with respect to time and space. Discrete measurements on the 

system state are represented by: 

~ H ~ + ~k' ~k '" N[Q, ~] 0,21) 

in which 

~ == time at the kth time point 

~ m-vector of measurements at time tk 

~ :::: n-vector of system states at time tk 

H mxn measurement coefficient matrix 
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~k = m-vector of measurement noise at time tk 

0, for all t and s (3.22) 

= measurement noise covariance matrix at time tk 

(3.23) 

Equation 3.21 is referred to as the measurement model. Alternative 

formulations of the EKF are available in which the measurement model is 

nonlinear and continuous. However, for the river water quality problem 

under consideration a linear discrete measurement model is appropriate. 

The continuous-discrete EKF algorithm is given by the following 

vector-matrix recursion equations: 

At time t k+1 prior to a measurement at t k+1 

t k+1 

X(tk+1 1 t k) = X(tkl t k ) + S f C~(t I t k). !!(t); t] dt 
tk 

(3.24 ) 

(3.25) 

At time t k+1 after a measurement at t k+1 

l -

(3.26) 

P(tk+1 1 ~+1) ::: 

(3,27) 



in which 

I 

X. 
J 

~+l 
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~ at time t conditioned on measurements up to, and 
a 

including, those at time tb where ~ is X or P 

nxn identity matrix 

Jacobian off[· ] defined by: 

a fi [.] 
ax. , for i, j 1,2, ... n 

J 

element of F[·] in ith row and jth column 

i th row of f[·] 

jth state variable in X(t) 

Kalman gain matrix at time t
k

+1 given by: 

T T 
~+1 = P(tk+1 It k ) H {HP(tk+ 1 It k ) H + ~+1}-1 

• (3.28) 

. 0.29) 

Ge1b (1974) derives Equation 3.25 which is used for propagating the 

estimation error covariance matrix (P(tk+1Itk)) associated with the pro­

cess model predictions between measurement updates. Beck and Young (1976) 

describe the function of the Kalman gain matrix as that of filtering the 

error {~k+l - HX(tk+1 It k )} in Equation 3.26, to minimize the effects of 

the measurement noise on the state and coefficient estimates. At the 

same time the filtering action should have a minimal effect on those 

random effects not attributable to measurement noise, such as those resu1t-. 

ing from environmental disturbances to the prototype system. 

It should be noted that Equation 3.27 is equivalent to Equation 3.14. 

However, according to Jazwinski (1970) Equation 3.27 is better conditioned 

for numerical computations and will tend to retain more faithfully the 
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positive definiteness and symmetry of P{t
k
+

1
]t

k
+

1
). Therefore, the 

Equation 3.27 form is used in this study. 

Due to the nonlinearities in the process model the estimates of state 

from the EKF are "best" in only an approximate minimum variance sense. 

Equations 3.24 and 3.25 are for the predictions of the state estimate 

(conditional mean) and the variance in the state estimate (estimation 

error covariance matrix) between measurements, respectively. These pre-

dictions are corrected (measurement updated) by Equations 3.26 and 3.27 

using information contained in the measurements. The EKF algorithm is 

summarized in Figure 3.1. The filter may be modified to represent biases, 

colored noise. and correlations (Schweppe, 1973). 

Linearized Kalman Filter 

The extended Kalman filter algorithm is applied to the measured data 

in a forward direction; that is, with t increasing. In order that 

smoothed values of the system state estimate and the estimation error 

covariance matrix can be obtained it is also necessary to make a back-

ward pass through the measured data. The linearized Kalman filter (LKF) 

was chosen for the backward pass since the forward estimates were avail-

able for use as an a priori trajectory about which to linearize the sys-

tem model. It is useful to redefine the system and measurement models in 

Equations 3.19 and 3.21 by making the change of variable L = T - t (Gelb, 

1974): 

~(T) ~ N [!(T), P{T)] 

Z -N-k 

(3.30) 

(3.31) 



Initial Conditions 

k = 0 
~(tk I t

k
) = !(to) 

P(tkl t
k

) = P(t
O

) 

Prediction 

.!(tk+ll t
k

) from Equation 1.24 .... ____________ ~ 

P( tk+l' t
k

) from Equation' 3.25 

Yes 

X(tk+1 f t k+1)from Equation 3.26 

(tk+ 1 Itk+1)from Equation 3.27 

No 

!( tk+ll tk+l) =.!( t k+1 ' t k) 

P(~+lltk+l) = P(tk+ 1ltk ) 

No 
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Figure 3.1. Flow diagram for the extended Kalman filter algorithm. 
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in which 

T = value of t at the end of the forward pass 

N value of k at the end of the forward pass 

The continuous-discrete LKF algorithm is given by the following 

vector-matrix recursion equations: 

At time Tk+1 "after" a measurement at Tk+1 

{- f L!(T-T IT-Tk) .Q(T-T) ;T-T] 

-F [!(T-TIT-Tk), Q(T-T); T-T] 

-X(T-TIT-Tk)]}dT (3.32) 

Tk+1 

pb(T-Tk+1]T-Tk) = pb(T-TkIT-Tk) + ~ {-F[X(T-TIT-Tk)' 

\: 
U(T-T); T-T] pb(T-TIT-T ) - pb(T-T!T-T ) 
-- k k 

FT [X(T-TIT-Tk). U(T-T); T-T] + Q(T-T)}dT (3.33) 

At time Tk+1 "prior to" a measurement at Tk+1 

!b(T-Tk+lIT-Tk+l) = !bCT-Tk+l!T-Tk) 

b b 
+ Kk+l {~N-k-l - H! (T-Tk+1 IT- Tk)} (3.34) 

(3.35 ) 

in which 

b = superscript denoting values of !. p. and K associated with 

the backward (LKF) filter 

backward time variable defined by: 



b 
Kk+1 "" 

= 

backward Kalman gain matrix at time Tk+1 given by: 

35 

(3.36) 

b T biT -1 
P (T-Tk+1IT-Tk) H {HP (T-Tk+1 T-Tk)H + ~-k-1} 

(3.37) 

Prediction and correction (measurement update) steps for the LKF are 

similar to those of the EKF and are summarized in Figure 3.2. 

Smoothing Algorithm 

Forward and backward estimates of the system state are combined using 

a smoothing procedure described by Gelb (1974). The algorithm is a fixed-

interval smoother (FIS) and is based on the assumption that the smoothed 

estimate is a linear combination of the forward and backward estimates, 

as follows: 

(3.38) 

(3.39) 

in which 

s superscript denoting smoothed values for ~ and P 

At point loads the smoothing algorithm was modified to represent the 

discrete jump in concentrations of parameters associated with the ins tan-

taneous and complete mixing of effluents or tributaries with the main 

stream. The modification consisted of calculating two smoothed estimates: 

the first, using the forward and backward filter estimates immediately 

upstream of the point load; and the second, using forward and backward 

filter estimates immediately downstream of the point load. 



Initial Conditions 

k = 0 

~b(T-TkIT-Tk) 3 E bet) 

pb(T-Tk'T-Tk) = pb(T) 

Prediction 

~(T-Tk+ll T-Tk
) from Equation 3.32 ~ __________ ~ 

pb(T-Tk+11 T-Tk) from Equation 3.33 

Yes No 

Measurement update 

b ! (T-Tk+11 T-Tk+1) from Equation 3.34 

b 
p (T-Tk+1'T-TK+1) from Equation 3.35 

No 

36 

Figure 3.2. Flow diagram for the backward linearized Kalman filter 
algorithm. 
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Sequential Kalman Filters 

Several previous applications of the Kalman filter to river water 

quality have incorporated dynamic process models. Conventional dynamic 

river water quality models are formulated in terms of two independent 

variables, space and time. However, estimation theory techniques are 

developed for only a single independent variable. To circumvent this 

problem it is necessary to define a new state vector component of order 

n for each of the r reaches of the river. Thus, a dynamic filter model 

of n water quality parameters applied to a river divided into r reaches 

would result in a total state vector of order nr. As the spatial resolu­

tion is improved, or in the case of large river systems dynamic filter 

models can have large state vectors and therefore, very high computer 

costs (Moore, 1973). 

In Chapter 2 it was observed that many of the previous applications 

of estimation theory to river water quality problems have been demon­

strated using synthetic, rather than real data. The reason for this is 

the dearth of water quality data suitable for verifying dynamic water 

quality models. It may also be due, in part, to the desire of researchers 

to determine how close filter estimates come to the true state of the 

system. This may be readily shown using synthetic data since the true 

system states are known before they are imbedded in the generated noise. 

In this study, real data from the Jordan River, Utah were used. The 

water quality data were collected for use in a steady-state determi­

nistic river water quality simulat~on model. Therefore, these data were 

collected at a time when flow conditions in the Jordan River were approxi­

mately steady-state. It was decided to use a steady-state process model 
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in this study for the following reasons: (1) since only one measurement 

vector was available at each sampling location, a dynamic model could 

not be well verified; (2) in many stream assessment studies the steady-

state assumption yields answers to management questions that are of an 

appropriate resolution, and that are consistent with data availability 

determined by fiscal and other constraints; and (3) the high computer 

costs associated with a dynamic model would be prohibitive in this study. 

Thus, the process model used represents profiles of parameter concen-

trations along the stream length. The independent variable is travel 

time, which is a surrogate for distance along the stream. 

Each river reach is represented by an EKF with constant coefficients 

characterizing the hydraulic and water quality properties of the reach. 

Figure 3.3 illustrates the sequential application of extended Kalman f~l-

ters to the hypothetical river system. At a junction between two reaches 

the state estimate (X) and estimation error covariance matrix (P) are 

given by the end conditions of the EKF immediately upstream of the junc­

tion. These values of X and P are used as the initial conditions for the 

EKF downstream of the junction. Point loads or tributaries located at 

junctions between reaches are modeled by adjusting the end conditions 

obtained from the upstream EKF before they are used as the initial con-

ditions for the downstream EKF. By assuming complete and instantaneous 

mixing with the main reiver the state vector of water quality parameters 

is modified as follows: 

= k X + k2 1 1 -u -p 
. (3.40) 

in which 

dilution factor for the main river = 8 1(8 + s ) 
u u p 

(dimensionless) 
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state estimate immediately downstream of the reach junction 

(mg/l) 

state estimate immediately upstream of the reach junction 

(mg/l) 

streamflow immediately upstream of the reach junction (cfs) 

flowrate of the point load or tributary (cfs) 

n-vector of concentrations of the parameters in the point 

load or tributary (mg/l) 

To modify the estimation error covariance matrix (P) it was assumed 

that the steady-state concentrations of the parameters in the point load 

or tributary are normally distributed random variables, that is: 

1 'V N(l , Y) 
-p -p 

in which 

1 = -p mean value of 1 (mg/l) -p 

(3.41) 

Y := nxn estimation error covariance matrix of the water quality 

parameter concentrations in point load (mg/l)2 

Noting that ~d is a linear function of ~u and..!.p' and assuming that ~u 

and..!.p are stochastically independent, the estimation error covariance 

matrix is modified using the following relationship which is based on a 

theorem in Hogg and Craig (1970): 

(3.42) 

in which 

= estimation error covariance matrix P immediately downstream 

of reach junction (mg/l)2 
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P 
u 

= estimation error covariance matrix P immediately upstream 

of reach junction (mg/l)2 

The above discussion has related to the forward EKF. When the back-

ward LKF is applied to the river system, a similar sequential arrange-

ment of LKF's is used and the effects of point loads on X are subtracted. 

P is not modified in this case since it is considered unreasonable to add 

to the estimation uncertainty above a point load when the constituents in 

the point load are advected in the downstream direction. 

Point diversions do not affect the values of X and P at the location 

of the diversion. The flowrate of the diversion is subtracted from the 

streamflow immediately upstream of the diversion. 

Numerical Aspects 

A Runge-Kutta fourth order scheme was used to perform the integrations in 

Equations 3.24.3.25.3.32. and 3.33. To assure the numerical stability of the 

Runge-Kutta and other explicit finite-difference schemes the Courant con-

ditons must be met (Stone and Brian. 1963). The Courant condition is: 

in which 

v 

~t 

~t 
v - < 1 

~x - . (3.43) 

stream velocity averaged over the stream cross section 

(ft/day) 

computational time interval (days) 

computational space interval (ft) 

This condition is guaranteed by setting ~x = v~t and then slightly ad-

justing the location of measurements. point loads, diversions, and reach 

junctions, to the nearest ~x. The spatial resolution selected was 
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consistent with the objective of the study and resulted in a time step of 

0.02 days (28.8 minutes). To improve the spatial resolution of the model 

a smaller value of ~t would be necessary. 

Computational Aspects 

The EKF, LKF, and FIS algorithms described above were programmed in 

FORTRAN computer language for the Burroughs B6700 computer located on the 

campus of Utah State University. In addition to tabular line printer 

output, the filter results were dumped onto punched cards via a data sort­

int program, PRSORT. Results contained on these cards were plotted on a 

plotter which is linked to the EAI Pacer computer at the Utah Water 

Research Laboratory. The relationships between the computer prpgrams 

developed for this study are illustrated in Figure 3.4. Appendix A 

contains a users manual for the programs and includes flow charts, input 

instructions, and program listings. 
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CHAPTER 4 

APPLICATION TO THE JORDAN RIVER 

Introduction 
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One of the initial tasks in this study was to find a river for which 

sufficient water quality and hydraulic data are available to facilitate the 

application of estimation theory techniques to water quality simulation. 

Since BOD-DO models dominate the water quality modeling literature, includ­

ing previous applications of estimation theory to water quality modeling 

(see Chapter 2), it was hoped that data for parameters other than, but 

possibly including BOD-DO, would be available. After an extensive search 

of published data the Jordan River in the north-central region of Utah was 

selected. Water quality data were derived from water samples collected 

by Hydroscience, Inc. (1976). Samples were obtained over a 24 hour period 

on September 24 and 25, 1975, and cover the lower 39.2 miles (63.1 kill) of 

the river. 

This chapter contains descriptions of the lower Jordan River Basin, 

the process model, and the measurement model. Also included are details of 

other aspects of the problem set-up such as point load concentrations, 

lateral inflow loadings, and initial conditions. 

Description of the Lower Jordan River Basin 

The Jordan River is a small but significant river originating as 

regulated outflow from Utah Lake shown in Figure 4.1. It flows for approxi­

mately 55 miles (88 kill) through a variety of land use areas before dis­

charging into the marshy zones at the southeastern end of the Great Salt 

Lake. The lower 40 miles (64 kill) which are of interest in this study, 



L _ 

--- -----

LEGEND 

GREAT 
SALT LAKE 

APPROXIMATE BOUND· 

- ARY VALLEY FILL 

'"' RIVER. MILE AT REACH 

'" BOUNDARY 

'\ SAMPLE POINT 

o I 2 3 4 
! ! f ! ! 

MILES 

JORDAN 

45 

--- r-l----------L"_-
l . . 

! \ 
\ \ 

UTAH I 

\ \ __ •• _ •• _ •• __ ._ •• _ •• ....l 

~"""---'----, 

NARROWS 

Figure 4.1. Map of the Lower Jordan River Basin (adapted from Harr 
et a1., 1971) (1 mile = 1.61 km). 
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pass through a valley area which is flanked by the Wasatch Mountains to 

the east, the Oquirrh Range to the west, and the Traverse Mountains to the 

south. Elevations range from 4,200 feet (1,300 m) on the valley floor to 

more than 10,000 feet (3,000 m) in the surrounding mountains. The valley 

floor delineated in Figure 4.1 is approximately 500 square miles (1,300 km
2

) 

in area. 

A number of irrigation canals divert water from the river at the 

Jordan Narrows for use in agricultural areas in the western and southwestern 

parts of the valley. Within the study area flow in the river is supplemented 

by several streams originating on the Wasatch Front. 

Dixon et al. (1975) identified three major land use divisions along 

the river: 

1. Upper agricultural reaches - mainly agricultural pasture land and 

small satellite communities south of Salt Lake City. 

2. Industrial and urban areas - within and adjacent to Salt Lake City. 

3. Lower agricultural reaches - north of Salt Lake County. 

Associated with these land uses are a variety of economic activities. 

Salt Lake County is a major economic center with a number of important in­

dustries. The largest of these is Kennecott Copper Corporation located on 

the west side of the valley in the Oquirrh Mountains. Other major industries 

include several sand and gravel operations, refinery operations, dairies, 

several slaughter houses, and a smelter operation. Despite a trend toward 

residential development, agriculture is still a prominent activity in the 

area. Varieties of crops grown include wheat, vegetables, and fruits. 

The river is important in that it provides: (1) water for municipal 

and industrial use, (2) irrigation water in a valley already importing water, 

(3) essential water for waterfowl management areas, (4) a convenient storm 
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and wastewater drainage system for the Jordan Valley, and (5) a potential 

recreational resource (Dixon et al., 1975). Eight municipal wastewater 

treatment plants and numerous urban stormwater drains, with perennial 

flow, discharge into the lower forty miles of the river. These loads, com­

bined with diffuse inflow from agriculture and other sources, significantly 

degrade the water quality in this section of the river. 

The Kalman filter model was applied to the lower 39.2 miles (63.1 km) 

of the Jordan River for which data were available. The river was divided 

into reaches with fairly uniform diffuse loading characteristics. Reach 

boundaries were partly determined by three major land use divisions along 

the river. Additional reach boundaries were necessary immediately down­

stream of point loads. Reach boundaries and sampling point locations are 

shown in Figure 4.1. 

Process Model 

A process model was formulated to describe biochemical oxygen demand, 

dissolved oxygen, and nitrogen cycling within the Jordan River. The six 

water quality parameters simulated by the model are listed below: 

Xl = Carbonaceous biochemical oxygen demand (BOD) (mg/l) 

X2 Ammonia nitrogen (NH
3

-N) (mg/l) 

X3 = Nitrate nitrogen (N0
3

-N) (mg/l) 

X4 
= Algae (ALG-N) (mg/l) 

X5 Organic nitrogen (ORG-N) (mg/l) 

X6 = Dissolved oxygen (DO) (mg/l) 

On the basis of data collected on the Jordan River nitrite-nitrogen 

(N02-N) is negligible. Phosphorus measurements indicated that it was pro­

bably not the limiting nutrient in algal growth. It was, therefore, decided 
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that algal growth could be represented without including phosphorus in the 

model. ORG-N excludes viable algae which are represented by ALG-N. 

Figure 4.2 shows the biochemical transformations and diffuse loads 

described by the process model equations. The nitrogen cycle is represen-

ted by four transformations: oxidation of NH
3

-N to N0
3
-N, uptake of 

NH
3
-N and N0

3
-N by algae, ALG-N becoming ORG-N as a result of the death 

of algae, and hydrolysis of ORG-N to NH
3

-N. It is assumed that the pro­

duction of NH
3

-N during BOD decay is negligible. 

Utilization of DO during nitrification and by the organic deposits on 

the stream bottom and during BOD decay are modeled. The impact on DO 

levels of photosynthesis and respiration by algae is not represented. This 

is justified because net O
2 

production is relatively small due to the highly 

turbid nature of the Jordan River which significantly increases the ext inc-

tion of light entering the river. An additional reason for omitting the 

interaction of algae with DO is the dynamic nature of the photosynthetic 

and respiratory processes; they are diurnal processes, and thus could not 

be represented by the steady-state process model. 

The one-dimensional transport equation given below forms the basis 

for the process model: 

~ Bw = _ a sx + a DAax 
+ 16.364q U + AJ -at ax ax 28.317 

• (4.1) 

in which 

X = concentration of the water quality parameter (mg/l) 

A cross sectional area of the stream (ft2) 

t = time (days) 

S streamflow rate 3 = (ft /day) 

x distance along the longitudinal stream axis (ft) 
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Figure 4.2. Schematic diagram of the water quality parameters, 
biochemical transformations, and non-point loads 
represented by the process model. 



D 2 longitudinal dispersion coefficient (ft /day) 

q = lateral inflow rate (cfs/mile) 
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U concentration of the parameter in the lateral inflow (mg/1) 

J biochemical transformations (mg/l-day) 

B 2 = stream bottom uptake of the parameter (mg/ft -day) 

w = width of the stream (ft) 

Equation 4.1 represents the temporal change in concentration of the para-

meter X within the river. The first term on the right-hand side is the 

dispersion term and describes the transport of the water quality parameter 

due to nonuniform velocity gradients in the stream profile. The second 

term represents downstream advection of the parameter in the flowing water. 

Diffuse sources of the parameter are represented by the third term in which 

the coefficient 16.364 is needed to convert q and U to consistent units. 

The fourth term represents the biochemical transformations affecting the 

parameter. 8treambed uptake of the parameter is modeled by the last term 

in which the coefficient 28.317 is needed to convert Band w to consistent 

units. 

Dixon et al. (1975) showed that longitudinal dispersion is negligible 

in comparison to advection in the Jordan River. Therefore, dispersion is 

neglected by eliminating the second term on the right-hand side of Equation 

4.1. In addition, steady-state conditions are assumed by setting Equation 

4.1 to zero. Hence the equation is simplified to: 

dX 16.364q (U - X) Bw + AJ = dx 8 28.3178 8 (4.2) 

since 

dS = q . dx (4.3) 
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The final form of the basic process model equation is obtained by changing 

the independent variable in Equation 4.2 from distance downstream, to 

travel time, using the following relationship: 

dx =: v d'; 

in which 

s = - d'; 
A 

.; = travel time ranging from 0 to M (days) 

and by assuming that: 

h 
A 

= 
w 

in which 

h = stream depth averaged over the cross section (ft) 

· (4.4) 

• (4.5) 

Substituting Equations 4.4 and 4.5 into Equation 4.2 we obtain the follow-

ing expression: 

= 
16.364q (U - X) 

A 
B 

28.317h + J • (4.6) 

The deterministic part of the process model is obtained by writing 

an equation in the form of Equation 4.6 for each of the six water quality 

parameters. These equations, modified by the addition of the process noise 

vector ~~ are contained in Figure 4.3, and are described in detail below. 

The matrix equation given in Figure 4.3 has the form of Equation 3.19. 

Linear first-order kinetics are assumed for all reactions except the uptake 

of NH
3
-N and N0

3
-N by algae which is represented by nonlinear saturation 

kinetics. It should be remembered that X now represents the derivative of 

~ with respect to travel time (.;) and not standard time (t). The Jacob-

ian matrix, F(-), of f(·) in the process model is contained in Figure 4.4. 
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Biochemical oxygen demand 

The rate of change of BOD is represented by first-order biochemical 

oxidation and contributions from diffuse sources in the following equation: 

(4.7) 

in which 

Xl = concentration of BOD (mg/l) 

U1 = concentration of BOD in the lateral inflow (mg/l) 

Kd == BOD decay rate (base e, per day) 

Ammonia-nitrogen 

Uptake of NH3-N by algae and oxidation to N0
3

-N tend to reduce con­

centrations of ammonia while hydrolysis of organic nitrogen to NH
3
-N and 

contributions from diffuse sources tend to increase NH
3
-N levels. These 

processes are represented by the following equation: 

in 

dXZ 16.364q (UZ - XZ) 
- K5ZX5 - KZ3XZ - U z (4.8) cis A 

which 

Xz = concentration of NH -N (mg/l) 3 

Xs = concentration of ORG-N (mg/l) 

Uz == concentration of NH -N in the lateral inflow (mg/l) 3 

~z == rate of decomposition of ORG-N to NH
3

-N (base e, per day) 

= 

nitrification rate (NH3-N to N0
3

-N) (base e, per day) 

uptake rate of NH3-N by algae (mg/l-day) 
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Nitrate-nitrogen 

The rate of change in concentration of N0
3
-N is influenced by the 

accumulation of oxidized ammonia, uptake by algae, and contributions from 

diffuse sources. The following equation represents these processes: 

(4.9) 

in which 

== concentration of N0
3

-N (mg/l) 

U
3 

concentration of N0
3
-N in the lateral inflow (mg/l) 

u3 uptake rate of N0
3

-N by algae (mg/l-day) 

Algae 

The process model simulates the effects of phytoplankton on the other 

water quality parameters. These effects include the uptake of nitrogen, 

by algae, and the recycling of nitrogen contained in the algal cells to 

NH3-N via the algae death process. Rate changes of concentrations of algae 

are represented by: 

= 

in which 

X4 
:; 

U4 = 

K45 = 

u 

16.364q (U4 - X4) 

A 

concentration of 

concentration of 

algal death rate 

ALG-N (mg/l) 

ALG-N in the lateral inflow (mg/l) 

(ALG-N to ORG-N) (base e, per day) 

uptake rate of NH3-N and N0
3

-N by algae (mg/l-day) 

• (4.10) 

Uptake of nutrients by phytoplankton is usually described by a 

Michaelis-Menton type hyperbola. A modified form of nonlinear saturation 
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kinetics, proposed herein, is used to represent the uptake of nitrogen by 

algae: 

u = 

in which 

= 

= 

= 

(4.11) 

maximum specific growth rate of algae (base e, per day) 

half-saturation coefficient for N0
3

-N (mg/l) 

ratio of half-saturation coefficient for N03-N to half­

saturation coefficient for NH
3
-N (approximately 2 according 

to Caperon and Meyer, 1972) (dimensionless) 

There is no yield coefficient in Equation 4.11 because all the para-

meters are expressed as nitrogen. Temperature and light factors are in-

cluded in~. Nitrogen uptake by algae is divided between the NH3 and N03 

forms by a coefficient a as follows: 

u2 == 

u
3 == 

a. = 

in which 

= 

Y = 

a u (4.12) 

(1 - a) u (4.13) 
y X

2 (4.14) 
YX2 + X3 

coefficient to divide u into u
2 

and u
3 

(dimensionless) 

weighting coefficient to indicate the preference of algae 

for NH
3
-N over N0

3
-N (set equal to 2) (dimensionless) 

The justification for Equation 4.11 is intuitative and should be 

tested experimentall~ As more nitrogen in either the ammonia or nitrate 

forms becomes available, then the rate at which nitrogen is taken up by 

algae increases. This nonlinear characteristic is well recognized and is 

represented by the conventional Michaelis-Menton equation. However, the 

role of 6 in Equation 4.11 is to represent the preference of algae for the 
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ammonia form of nitrogen over the nitrate form. This preference phenomenon 

results in the half-saturation coefficient for N0
3
-N, KS3' being approximately 

double the half-saturation coefficient for NH3-N, KS2 ' Equations 4.12 

through 4.14 are merely a way of partitioning the total algal uptake of nitro-

gen into uptake of ammonia, and uptake of nitrate. 

When NH3-N (X
2

) is zero Equations 4.11 and 4.14 become: 

u = u X4 KS3 + X2 
(4.11a) 

y = a (4.14a) 

When N0
3

-N (X3) is zero Equations 4.11 and 4.14 become: 

u = (4.11b) 

y = 1 (4.14b) 

Thus in each of these limiting cases the proposed model reduces to the 

conventional Michaelis-Menton model. As X
2 

and X3 simultaneously approach 

zero, u approaches zero but y is undefined. Therefore, care must be taken 

not to attain this situation during the simulation. In practice, it is un-

likely to occur except when the initial conditions for X
2 

and X3 are both 

set equal to zero. 

Equations 4.11 and 4.14 are illustrated in Figure 4.5 for different 

levels of NH3-N and N0
3
-N. Reference to Figure 4.5 shows that the proposed 

model yields the same values for total nitrogen uptake (u) for each of the 

following different situations: (1) NH
3
-N = 0.75 mg/l, N0

3
-N = 0.0 mg/l; 

(2) NH3-N 0.0 mg/l, N02-N = 1.5 mg/l; and (3) NH3-N = 0.62 mg/l, N0
3

-N 

0.25 mg/l. The proportion (a) of NH
3

-N uptake (u
2

) to total nitrogen up 

take (u) is different for each situation, as follows: (1) a=I.0, (2) a 

=0.0, and (3) a=0.8. 
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Organic nitrogen 

The pool of organic nitrogen is fed by the death of algae and reduced 

by hydrolysis of ORG-N to NH
3
-N. The rate of change of ORG-N with respect 

to travel time is simulated by the following equation: 

. (4.15) 

in which 

Xs = concentration of ORG-N (mg/l) 

Us = concentration of ORG-N in the lateral inflow (mg/l) 

Dissolved oxygen 

The dissolved oxygen content of a river is one of the most important 

water quality charactistics. It has minimum standards defined by law, is 

understood by the public, and is essential for oxygen consuming aquatic 

organisms. Concentrations of DO are affected by reaeration across the 

stream surface, carbonaceous oxygen demand, nitrogenous oxygen demand, 

uptake by the bottom deposits, and contributions from lateral inflow. 

The following expression is used to describe the rate change of DO in the 

Jordan River: 

dX
6 

16.364q (U
6 

- X
6

) 
+ B + K eX - X6) -

d~ A 28.317h a 6 sat KdX1 

-4.7SK23X2 (4.16) 

in which 

X6 concentration of DO (mg!l) 

U
6 concentration of DO in the lateral inflow (mg!l) 
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= 
2 uptake of DO by the stream bottom deposits (mg/ft -day) 

K 
a 

= 

= 

saturation concentration of DO (mg/l) 

reaeration coefficient (base e, per day) 

The reaeration coefficient for dissolved oxygen, K , is calculated 
a 

using a regression equation from Bennett and Rathbun (1972): 

K 
a 

0.607 
0.0203 ....:...v.,,-------,:-::-:­

hI. 689 
• (4.17) 

Bennett and Rathbun developed Equation 4.17 from a very wide range of field 

data and claim that it is "probably the best available for prediction of 

reaeration coefficients for natural streams." 

Stream temperature 

Stream temperature is treated as a known input for each reach and is 

not included in the state vector. Each of the first-order reaction rates 

are assumed to increase with temperature according to the following rela-

tionship: 

= K 6 (1..-20) 
20 

(4.18) 

in which 

KA = reaction rate 
0 per day) at A e (base e, 

K20 = reaction rate at 20
0 e (68oF) (base e, per day) 

6 empirical coefficient (dimensionless) 

A value of 6=1.08 was used to correct K
d

, K
S2

' K
23

, and K
4S 

for changes in 

stream temperature 6=1.047 was used for K • 
a 

Streamflow 

To keep down the order of the state vector, and therefore reduce com-

puter costs, it was decided not to include streamflow as a state variable. 
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Simple flow budget calculations are used to calculate the change of stream-

flow in each 6x interval: 

S = S. + q v 6t (4.19) 
out l.n 

in which 

S = streamflow out of the reach (cfs) out 

S. = streamflow into the reach (cfs) l.n 

At point loads or diversions streamflow is adjusted by the flow in the 

point load or diversion as follows: 

= S + s 
u P 

(4.20) 

in which 

sd flowrate of diversion (cfs) 

Stream velocity is calculated using the following equation: 

v 
S 

= 
A 

. (4.21) 

Stream cross sectional area (A) and depth of streamflow (h) are given as 

known inputs for each reach. An initial value of streamflow is given at 

the upstream headwater. A flow balance for the Jordan River at the time 

of sampling was provided by Hydroscience, Inc. (personal communication, 

1976). 

Limitations of the process model 

Schweppe (1973) states that filter performance is more sensitive to 

errors in the structure of the process model (and measurement model) than 

to errors in the uncertainty specifications (R, Q, and initial P matrices). 

In addition, to compensate for limitations in the process model, the value 

of Q is expected to increase as the quality of the process model decreases. 

For these reasons, some limitations of the process model are given below: 
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1. Removal of BOD by absorption and settling, and leaching of BOD 

from the bottom deposits are neglected. 

2. Since N0
3
-N is omitted, it is assumed that NH

3
-N is the limiting 

form of nitrogen. Because first-order kinetics are used, the delay associa-

ted with the development of a population of nitrifying organisms is ne-

glected. Bed contributions and leaching of nitrogen also are neglected. 

3. The algae submodel fails when population changes resulted in either 

nitrogen fixation or phosphorus becoming the limiting nutrient. 

4. Because of the data collection procedures used, the dynamic inter-

actions between algae and DO due to photosynthesis and respiration are not 

represented in the current steady-state model. 

Measurement Model 

Formulation of the measurement model is determined by the functional 

relationships between the state variables and the measurement variables. 

The five measurement variables available in the Jordan River data are 

listed below: 

Zl = BOD (mg/l) 

Z2 = NH -N (mg/l) 
3 

Z3 NO -N 3 (~g/l) 

Z4 ALG-N + ORG-N (mg/l) 

Zs DO (mg/l) 

The very small amounts of nitrite measured in the system are lumped into 

the nitrate data. Z4 is actually a measurement of organic nitrogen which 

represents the sum of X4 (ALG-N) and Xs (ORG-N). Thus, the measurement 

model is given by the following expression with the form of Equation 3.21: 
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Zl 1 0 0 0 0 0 Xl vI 

Z2 0 1 0 0 0 0 X2 v2 

Z3 0 0 1 0 0 0 X3 + v3 (4.22) 
Z4 0 0 0 1 1 0 X4 vft 

Z5 0 0 0 0 0 1 X5 Vs 

Equation 4.22 is an example of an incomplete measurement system since there 

are six state variables but only five measurement variables. 

The values of variances on the diagonal of the measurement noise co-

variance matrix (R) are contained in Table 4.1. These values are consis-

tent with values used in similar studies by Moore (1973) and Lettenmaier 

(1975). The measurement noise variances are assumed to represent errors 

in the accuracy of the analytical laboratory procedures~ and sampling 

errors due to samples being unrepresentative of either the steady-state 

conditions, or the mean concentrations of constituents across the stream 

cross section. All off-diagonal elements of the R matrix, are assumed to 

be zero since no knowledge of the correlation between measurement errors 

for different variables is available. Although program capabilities per-

mit the use of different R matrices at each sampling point, the same R 

matrix is used for each measurement. This approach is justified because 

there is no available evidence to indicate that R should be different for 

each measurement vector. 

Point Loads and Lateral Inflows 

Concentrations of the parameters in wastewater treatment plant (WWTP) 

effluents are based on typical values observed in the Lower Jordan River 

Valley. Parameter concentrations for other point loads and for lateral 

inflows are based on concentrations used in previous simulation studies on 

the Jordan River by Dixon et ala (1975) and by Hydroscience, Inc. (1976). 



Table 4.1. Measurement noise variances (R) and initial estimation error variances (P(~O) and p
b (::» in 

(mg/l)2. 

Parameters 

BOD 

NH -N 
3 

NO -N 
3 

ALG-N + ORG-N 

DO 

ALG-N 

ORG-N 

Measurement Noise Variance 

1.00 

0.01 

0.04 

0.25 

0.25 

Initial Estimation 
Error Variance 

1.00 

0.01 

0.04 

0.25 

0.125 

0.125 

'" .po. 
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Both types of data are treated as known inputs to the process model. Table 

4.2 lists the parameter concentrations for each type of point load and 

Table 4.3 contains the concentration of lateral inflows. 

If point load parameter concentrations had been measured at the time of 

sampling, then the variances in the estimation error covariance matrix of 

point load parameter concentrations (Y) could be set equal to the measurement 

error variances in R. Since point load parameter concentrations were based 

on typical values, measurement errors are not appropriate and, therefore, 

all elements of the Y matrix are set equal to zero. However, the effects 

of point load uncertainty on filter estimates (10 and on the estimation 

error covariance (P) are shown by a sensitivity study on the diagonal 

elements of Y. The results of this sensitivity study are reported in Chap-

ter 5. 

Initial Conditions 

Prior estimates of initial conditions, consisting of X (~O) and P (~O), 

were made at the upstream boundary located at river mile 39.2 (63.1 km). 

Measured values of the water quality parameters at river mile 39.2 (63.1 km) 

are used for! (~O). The measurement noise variances are used for P (~O) 

(see Table 4.1) implying that the initial conditions, X (~O) are known with 

the accuracy of the measurements. As a first approximation, the measure-

ment noise associated with ALG-N + ORG-N was divided equally between ALG-N 

and ORG-N in P (~O). The covariances were neglected and hence the off­

diagonal elements of P (~O) were set equal to zero. 
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Table 4.2. Concentration of the parameters in point loads and tributaries 
in mg/l. 

BOD NH -N 3 NO -N 3 
ALG-N ORG-N DO 

Wastewater treatment plant 60.0 12.0 5.0 0.0 0.0 3.95-6.0 
Tributary 5.0 0.5 2.0 0.0 0.0 7.0 
Agricultural return 10.0 1.0 2.0 0.0 0.0 7.9 

Table 4.3. Concentration of the parameters in the lateral inflow and bot­
tom deposits. 

Diffuse Source 

U 
1 

U3 

U4 

Us 

U6 

B 

Parameter 

BOD 

NH -N 
3 

NO -N 
3 

ALG-N 

ORG-N 

DO 

BODb 

Concentration 

8.0 mg/l 
12.0 mg/l 
50.0 mg/l 
0.0 mg/l 

0.2 mg/l 
0.4 mg/l 
0.5 mg/l 
0.75 mg/l 
0.0 mg/l 

1.5 mg/l 
0.0 mg/l 

0.0 mg/l 

0.0 mg/l 

7.3 mg/l 
7.6 mg/l 
7.5 mg/l 

0.0 2 

121.0 
mg/ft2-day 
mg/ft -day 

a1 mile = 1.61 km 

b1 mg/ft2-day = 0.092 mg/m2-day 

River Milesa 

39.2-30.0 
30.0-16.7 
16.7-12.0 
12.0- 2.8 

39.2-31.7 
31. 7-30. 0 
30.0-28.9 
28.9-12.0 
12.0- 2.8 

39.2-12.0 
12.0- 2.8 

39.2- 2.8 

39.2- 2.8 

39.2-25.0 
25.0-16.7 
16.7- 2.8 

39.2-16.7 
16.7- 2.8 



\. . 

CHAPTER 5 

RESULTS 

Introduction 

67 

In this chapter the results from the application of estimation theory 

to the Jordan River are presented and discussed. The computer runs are 

broken into three groups: 

1. Basic runs. 

2. Sensitivity runs. 

3. Coefficient estimation runs. 

Brief descriptions of the individual runs performed in each of these 

groups are contained in Table 5.1. After a section in which the calibration 

of the deterministic process model is presented, the technique adopted for 

obtaining suitable values for the variances in the process model noise 

covariance matrix (Q) is described. The following sections contain the re­

sults and discussion of results for: the filter run, the smoothing algorithm 

run. several sensitivity studies, and some coefficient estimation runs. An 

example of filter divergence is included in one of the coefficient estimation 

runs. In the final section of this chapter the computational requirements of 

the estimation theory techniques applied are summarized. 

Values for the reaction rates and coefficients in the process model were 

approximated from values reported in the literature. These values were re­

fined through a trial-and-error calibration procedure in which the process 

model was run as a separate deterministic model without the measurement update 



Table 5.1. Key to the computer runs. 

Run Group 

Basic 

Sensitivity 

Coefficient 
Estimation 

Runa 

2 

8 

10 

11 

12 

13 

14 

19 ) 
20 

15 

16 

17 

18 

21 

Description 

Calibration of the deterministic process model 

Application of the extended Kalman filters 

Application of the smoothing algorithm 

Sensitivity on the process model noise variance for NH
3
-N 

Sensitivity on the initial estimation error variance for N0
3

-N 

Sensitivity on the measurement noise variance for ~LG-N + ORG-N) 

Sensitivity on the measurement noise variance for NH
3

-N 

Sensitivity on the estimation error variance for the point load at 
river mile 31.7 (51.0 km) 

Coefficient estimation for K
23 

Coefficient estimation for K45 

Lateral inflow concentration estimation for N0
3
-N 

Lateral inflow concentration estimation for NH
3
-N 

Coefficient estimation for the nitrogen cycle coefficients 
(K23 , K45 , K52 , ~, and KS3) 

aRuns 1, 3-7, 9 and many other unidentified runs are not described in this report. These runs were 
performed during the course of finalizing the runs that are present herein. 

'" 00 
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and estimation error covariance propagation steps. Final values for each 

of the reaction rates and model coefficients are contained in Table 5.2. 

These values were used for the subsequent Kalman filter runs. A possible 

criticismof the use of the data for calibrating the process model is that 

the predictions from the process model are now dependent on the data. and 

hence are not independent estimates of the system state. However, there 

is no alternative since only one set of data are available. 

The difference of the two orders of magnitude between the calibration 

value of the half-saturation coefficient for N0
3
-N, (KS3=0.015 mg/l) , and 

the combined level of NH
3
-N (X2) and N0

3
-N (X3) in the Jordan river (0.0 -

2.5 mg/l) , indicates that saturation kinetics for algae (X4) are unnecessary 

in this application. This is clearly illustrated by reference to Equation 

4.11 which tends toward a linear function in X
4 

when (X2 + X3»>KS3 ' How­

ever, the algae submodel was left in the general nonlinear form for this 

study. 

Results from the calibration of the deterministic process model (run 2) 

are given in Figures 5.1 through 5.7. The model was run between river mile 

39.2 (63.1 km) and river mile 2.8 (4.5 km), the locations of the extreme 

upstream and downstream sampling sites. Below river mile 2.8 (4.5 km) the 

river enters a marshy area where the total flow divides into many channels. 

Abrupt changes in the concentration profiles are due to the complete and 

instantaneous mixing of point loads. Measured values are indicated by "X" 

symbols. A fairly good agreement between model predictions and measured 

values is indicated for each of the water quality parameters in Figures 5.1 

through 5.7. 

The BOD profile rises sharply just below river mile 30.0 (48.3 km). 

Thereafter high levels of BOD are maintained by wastewater treatment plant 
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Table 5.2. Reaction rates and model coefficients from the calibration of the deterministic process 
model. 

Symbol Units 

Kd base e, per. day 

K23 
base e. per day 

KS3 mg/l-N 

K4s base e, per day 

Ks2 base e, per day 
X 6sat mg/l-02 

f3 dimensionless 

y dimensionless 

]1 base e, per day 

a1 mile = 1.61 km 

Value 

0.7 

0.3 

0.015 

0.04 

0.1 

7.9 

2.0 

2.0 

{ 3.0 
1.5 

River milesa 

39.2-2.8 

39.2-16.7 
16.7- 2.8 

-....J 
o 
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(WWTP) effluents and lateral loading. Upstream DO levels are supersatu~ated 

but quickly return to the DO saturation of 7.9 mg/l. Subsequent variations 

in DO concentration can be attributed mainly to BOD, nitrification, and 

benthic demands offset by reaeration. Predicted DO levels fall slightly 

below measured values around river mile 20.0 (32.2 km); this may be due to 

under-estimates of the assumed level of DO in the tributaries and lateral 

inflow. 

Variation in the NH
3
-N profile is similar to the variation in the BOD 

profile due to similar loading patterns. N0
3
-N levels steadily increase 

along the study reaches. Both NH
3
-N and N0

3
-N are influenced by the algal 

uptake of nitrogen. 

Figure 5.5 shows the deterministic process model predictions for 

(ALG-N + ORG-N) compared with the measured values. Along the lower half 

of the study section a reduced maximum specific growth rate for algae was 

indicated by the observed values of (ALG-N + ORG-N) and by the nitrogen 

uptake predictions. The river becomes relatively deep, and turbid in this 

section. On this basis the maximum specific growth rate, ~, was halved 

below river mile 16.7 (26.9 km) (see Table 5.2). Figures 5.6 and 5.7 show 

the deterministic process model predictions for ALG-N and ORG-N, respect-

viely. ALG-N and ORG-N were separated by simulating the algal death process. 

These results indicate that an increasing concentration of algae is associated 

with a decreasing concentration of organic nitrogen. 

Determination of Process Model 
Noise Variances 

The process model noise covariance matrix (Q) contributes to the 

calculation of the estimation error covariance matrix (P), and thereby, 



74 

to the weighting procedure by which filter estimates are obtained from a 

combination of measurement values and the latest prediction of state from 

the process model. If Q is too large, implying a high degree of uncertainty 

in the process model, the filter estimates will follow the measurements too 

closely. On the other hand if Q is too small, unrealistically optimistic 

values for P will result (see Equation 3.25). This in turn results in the 

decay of the Kalman gain matrix (K) and thus the measurements are almost 

entirely ignored (see Equation 3.26). Under these circumstances measure-

ment updating is ineffective and the filter estimates can diverge from the 

true state of the system. 

According to Jazwinski (1969) the process model noise "is a fiction 

designed to account for system (process) model errors which are non-stationary 

{- and generally of rather low frequency." This statement would appear to indi-

cate that the task of determining a Q matrix is a formidable task, and 

indeed it is. It appears that unlike R, Q can rarely be established from 

experience. There are basically two approaches to obtaining Q, neither 
r -

\ -
of which has a strong theoretical basis: 

1. Trial-and-error. 

2. Adaptive filtering. 

r - The trial-and-error approach is used in this study and is described 

first. For completeness a brief discussion of the philosophy of adaptive 

filtering follows. 

L 
Trial-and-error approach 

The basis of this approach is that Q should be selected such that the 

mean square error of the differences between the filter estimates and the 

actual states of the system is consistent with the measurement noise vari-

ance in the R matrix for each measured variable. When synthetic data are 
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used it is possible to calculate the true mean square error because the 

actual state of the system is known. However, in applications to real 

systems the actual state of the system is the subject of estimation, and is 

therefore, unknown. In such cases the mean square error of the differences 

between the filter estimates and the actual system states is approximated 

by the mean square error of the differences between the filter estimates 

and the measurements, and is calculated as follows: 

in which 

1 N 
E 

N-1 k=l 

i = subscript denoting the ith measurement variable 

MSE. = mean square error between the difference of t~e filter 
1 

estimates and the measurements for the ith measurement 

variable (mg/1)2 

(5.1) 

The tria1-and-error process used for determining Q in this study is 

summarized in Figure 5.8. R is estimated from the literature. In this 

study P(~O) is set equal to R since the extreme upstream measurement vector 

is used as the initial condition, X(~O), of the upstream Kalman filter. 

An arbitrary initial value of Q is used for the first run of the filter 

model. Then, for each measurement variable, the calculated values in MSE 

are compared with the measurement noise variances in R. If MSE. is less 
1 

than the measurement noise variance for the ith measurement variable, the 

corresponding variance in Q is decreased. A decrease in Q will reduce the 

estimatio~ error covariance (P), give more weighting to the process model 

estimates, and thus increase MSE .. If MSE. is much greater than the measure-
1 1 

ment noise variance for the ith measurement variable, the corresponding 

variance in Q is increased. Consequently, P is increased, less weighting is 
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given to the process model estimates, and hence MEEi is reduced. The amount 

by which variances in Q must be changed is established by trial-and-error. 

Interaction between the variables complicates the procedure. For example, 

it will be shown later in this chapter that an increase in the process model 

noise variance for NH
3
-N resulted in a decrease in the MSE for (ALG-N + ORG-N). 

No attempt was made to estimate values for the off-diagonal elements of the 

Q matrix. 

If, by varying Q, it is not possible to increase MSE. to the measure-
1 

ment noise variance for the ith measurement variable, then the value of 

the measurement noise variance should be reviewed. It may be that the 

measurement noise variance is too large for the data and, therefore, can 

be reduced. Another factor to consider is how good an estimate of the true 

MSE is the calculated MSE? It was observed that when the MSE was calculated 

for different sections of the river, the results varied by up to an order of 

magnitude. 

A disadvantage of using the trial-and-error approach is that only a 

single value for Q is obtained. This value is used over the entire river 

system and may result in larger values of P in some reaches than would be 

obtained if Q were allowed to vary. The single value of Q is inevitably 

a compromise between different Q values that would be more satisfactory in 

particular reaches. 

Adaptive filtering approach 

Several different adaptive filtering procedures are described in the 

control and estimation theory literature. In contrast to the trial-and-

error approach described above, adaptive filtering provides a mechanism 

for simultaneously estimating the Q matrix and the system states, based 
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on feedback from the residuals (Jazwinski, 1969; 1970). To give statis­

tical significance to changes in Q, several measurements are processed, 

and the estimates smoothed. before Q is changed. The measurements are 

then reprocessed t thus introducing a lag time into real time estimation. 

To reduce the lag time short sequences of residuals are used. Therefore~ 

the adaptive filter approach never "learns" Q. Jazwinski (1969) points 

out that this is a desirable feature because of the non-stationary and 

low frequency characteristics of process model noise. 

A problem with adaptive filters is that a single large residual can 

result in a large value for Q which dies away slowly under the influence 

of smaller residuals. To avoid this problem Nahi and Schaeffer (1972) 

have designed a decision-directed adaptive filter. Their technique tests 

to determine the likelihood of a measurement coming from a distribution 

with the calculated estimation error covariance. On the basis of this 

test a decision is made as to whether or not to adjust Q. 

Adaptive filtering is not used in this study because too few data are 

available on the Jordon River. In this situation the estimated values 

of Q would remain highly dependent on the initial values used for Q at 

the upstream boundary. 

Resu1 ts from 

Run 8 is the basic computer run using the final value of Q obtained 

from the tria1-and-error procedure. Approximately twenty computer runs 

were necessary before an acceptable value for Q was found. Table 5.3 con­

tains the final values of the variances in Q. Table 5.4 contains the mean 

square error of the differences between filter estimates and measurements 

for each measured parameter and for each computer run. 
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Table 5.3. Process mo~el noise variances (Q) in 
(mg/l-day) 

Parameter Variance 

BOD 30.00 

NH -N 
3 

0.40 

NO -N 3 0.01 

ALG-N 0.08 

ORG-N 0.08 
• c 

DO 0.10 



Table 5.4. Mean s~uare error of the difference between the filter estimates and the measured values in 
(mg/l) . 

-
Mean Square Error (Filter ~ Measured) for Each Computer Run 

Measurement Measurement 
Variable Noise Run Run Run Run Run Run Run Run Run Run Run Run Run 

Variance 8 loa 11 12 13 14 15 16 17 18 19 20 21b 

BOD 1.00 1. 103 2.399 1.103 1.105 1.103 1.103 1.102 1.103 1.103 1.103 1.079 1.064 1.142 
(0.536) 

O.OOOe NHrN 0.01 0.045 0.098 0.003 0.043 0.044 0.045 0.046 0.044 0.043 0.044 0.043 0.305 
(0.022) 

NOrN 0.04 0.024 0.041 0.023 0.016 0.031 0.025 0.022 0.024 0.012 0.021 0.023 0.023 0.174 
(0.009) 

( ALG-N+ 
ORG-N) 0.25 0.258 0.222 0.225 0.018 0.03s:I 0.189 0.304 0.256 0.125 0.218 0.219 0.208 7.524 

(0.075) 
DO 0.25 0.659 0.482 0.669 0.647 0.663 0.673 (1.536 0.660 0.671 0.663 0.658 0.658 0.405 

(0.063) 

aThese values were calculated over river miles 39.2 (63.1 km) to 19.4 (31.2 km). The values in 
parentheses are based on results from the smoothing algorithm which was applied over river miles 39.2 
(63.1 km) to 19.4 (31.2 km). 

bThese values were calculated over river miles 39.2 (63.1 km) to 6.4 (10.3 km). 

cMSE = 0.00000 and R for NH3-N in run 14 is 0.00001. 

dR for (ALG-N + ORG-N) in run 13 is 0.01. 

<Xl 
o 
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that, for run 8, the MSE is greater than the corresponding measurement 

variance for all the measured parameters except N0
3
-N. Since all the 

available literature pointed to a measurement variance of about 0.04 

for N0
3
-N, it was not reduced below that value. When the process model 

variance for N0
3
-N was reduced to zero the filter estimates of ORG-N 

became significantly negative. Therefore, as a compromise, Q for N0
3

-N 

was set equal to 0.01, even though R remained greater than MSE for N0
3
-N. 

This is an example of "over-fitting", in that the process model fits the 

data to within the accuracy of the data itself. The explanation for 

this case of over-fitting may be that the c.loseness of the filter estimates 

to the measurements is a chance occurance that would not be expected if 

more sampling points were available. 

Profiles representing one standard deviation of the estimation error 

variance are taken from the diagonal of the P matrix and are contained in 

the upper parts of Figures 5.9 through 5.15. Measurement noise variances 

are indicated by "X" symbols at the one standard deviation level. Profiles 

representing the EKF estimate (conditional mean) of each of the state 

variables are contained in the lower parts of Figures 5.9 through 5.15. 

These figures also contain the results from run 2 to facilitate a com-

parison between the results from the purely deterministic process model 

and the results from the EKF. Measured values are indicated by "X" 

symbols. (ALG-N + ORG-N) results in Figure 5.13 are obtained by adding 

the individual EKF estimates for ALG-N (X
4

) and ORG-N (X
5
). The follow­

ing equation is used to calculate the estimation error of (ALG-N + ORG-N) 

(Hogg and Craig, 1970): 

• (5.2) 
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Figure 5.14. Basic EKF results for ALG-N 
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= one standard deviation for the estimation error variance 

of (ALG-N + ORG-N) (mg/1) 

= estimation error variance for ALG-N from the P matrix 

2 
(mg/1) 

= estimation error variance for ORG-N from the P matrix 

2 (mg/1) 

= estimation error covariance for ALG-N and ORG-N from the 

P matrix (mg/1)2 

The initial values of the estimation error shown in the upper plots 

are determined by the initial variances assigned to p(~O)' Estimation 

errors then grow or decay in the downstream direction according to Equation 

3.25. In the case of BOD (Figure 5.9), for example, the estimation grows, 

whereas for DO (Figure 5.10) the estimation error decays to almost zero. 

The growth or decay in P depends on the size of Q (see Table 5.3) and the 

signs on the elements of the Jacobian matrix, F (see Equation 3.25 and 

Figure 4.4). More specifically, an explanation for the decay of P for 

DO is that the reduction of DO concentrations is very well represented 

by the DO process model. Therefore, as estimation of DO proceeds down-

stream the confidence with which it can be said that DO approaches its 

saturation concentration, actually increases. In contrast the confidence 

associated with the estimates of other water quality parameters decrease 

with distance downstream from a measurement. This decrease in confidence, 

or increase in P, indicates that, for these parameters, the process model 

introduces uncertainty into the estimates as the distance downstream in-

creases. 
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At river mile 35.1 (56.5 km), the location of the first sampling 

point, the estimation error drops abruptly to below the measurement error 

in accordance with Equation 3.27. This is an example of the "filtering 

result" whereby P(~k+11~k+1)' after the measurement update is less than 

either the measurement error, or the process model estimation error 

P(~k+11~k) before the measurement update. 

Between sampling points the estimation error grows or decays from 

the updated value of P at the nearest upstream sampling point. The 

evolution of P between sampling points is modified by the introduction 

of estimation error associated with point loads as described by Equation 

3.42. 

In this run the estimation error covariance matrix associated with 

point loads (Y) is set equal to zero for each point load. An example of 

the impact of a point load on the estimation error is the small decrease 

in P at river mile 31.7 (51.0 km) between the first and second sampling 

points. In reality it is unreasonable to expect a decrease in P when a 

point load is added. A better representation would be for P to increase, 

which would require a non-zero Y matrix. If the point load parameter con­

centrations are measured at the time of sampling, Y could be set equal to 

the measurement noise variances (R). In the absence of point load measure­

ments Y may be determined by trial-and-error. Y should be varied until P is 

at least equal to, and preferably a little greater than its value immediately 

upstream of the point load. This approach would require several more 

computer runs after the Q matrix is established. The increase in P values 

brought about by the introduction of the point load estimation error will 

result in decreased values of MSE. There is a possibility that the new 
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MSE will be unacceptable and therefore necessitate further refinements of 

Q. Changes in Q may then require changes in Y and so the entire trial­

and-error procedure for Q may be considerably lengthened by adding a 

trial-and-error determination of Y for each point load. To reduce computer 

costs in the present study it was decided not to estimate the Y matrices. 

Also it was decided that the assignment of arbitrary values to Y would be 

not better than having Y equal to zero. However, a sensitivity study 

described later in this chapter does illustrate the effect of a non-zero 

Y matrix. 

A comparison of the deterministic process model predictions (run 2) 

and the EKF estimates (run 8) shows the effects of updating the process 

model predictions with information contained in the measurements. At 

sampling locations the EKF estimates change abruptly toward the measured 

value in accordance with Equation 3.26. The relative weight given to 

measurements and process model predictions to obtain the updated EKF 

estimate is determined by the relative values of R and P(~k+ll ~k) 

respectively. It is interesting to note the effect on the size of 

measurement updating of the decreasing P value in the downstream direction 

for ~LG-N + ORG-N) (Figure 5.13). The residuals between measurements and 

filter predictions are greater downstream than upstream and yet the size 

of measurement updates of the filter estimate are approximately the same. 

This characteristic results because R remains constant while P decays, 

implying greater confidence in the process model predictions in the down­

stream reaches. At several locations a sampling point coincides with a 

point load with the result that the measurement update and instantaneouS 

and complete mixing of the point load are superimposed on the profiles 

contained in the figures. 
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Because the filter estimates have been obtained to satisfy an 

approximate minimum variance criterion, an interpretation of every change 

in the profiles of EKF estimates in terms of the underlying physical 

processes or loading patterns, should be avoided. For example, one would 

not expect a discrete jump in the actual parameter concentration at a 

sampling location. This limitation will he somewhat modified by the 

application of a smoothing algorithm described in the next section. 

In general, the differences between the filter estimates and determin­

istic predictions are relatively small. Greater differences between the 

deterministic and filter results would be expected if the filter had been 

run on a data set other than the one for which the process model was 

calibrated. However, the differences between the filter estimates and 

deterministic predictions for ALG-N and ORG-N do require some explanation 

(Figures 5.13 through 5.15). A relatively large measurement variance for 

(ALG-N + ORG-N) appears to be the underlying reason for the departure of 

EKF estimates from the measurements and the deterministic predictions. By 

considering the magnitude of the measurement noise, the deterministic pre­

dictions must be classed as a case of "over-fitting". ORG-N (X
5

) estimates 

became negative over several of the downstream reaches. Although this is 

clearly an undersireab1e feature in the case of constituent concentrations 

no effort was made to keep X5 non-negative since the worst negative estimate 

was quite small (about 0.1 mg/1). 

Results From the Smoothing Algorithm 

By using the fixed-interval smoothing algorithm (FIS) all the measure­

ments are used to estimate the state of the system at each location. In 

contrast only those measurements upstream of a location are used to estimate 
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the state of the system when the forward EKF alone is used. The smoothed 

estimates are always equal to, or better than, the filtered estimates in 

the sense that the smoothed values for P are always equal to, or smaller 

than, the EKF values for P. A possible result of this reduction in P is 

that the positive-definite property of P will be lost during smoothing. 

This actually occurs during on attempt at smoothing the entire river 

system ~iver miles 39.2 (63.1 km) - 2.8 (4.5 km») and led to severe 

divergence in the filter estimates. To avoid divergence a new value for 

the Q matrix should be established. Because of the prohibitive computer cost 

that would be associated with establishing a new Q matrix, the FIS was applied 

to only the first half of the river ~iver miles 39.2 (63.1 km) to 19.4 

(31.2 km»), for which the Q matrix used in run 8 could be used without 

divergence occuring. 

The initial conditions, the Rand Q matrices, and the values for 

the coefficients in the process model are identical in basic EKF run 

(run 8) and in the forward EKF of the smoothing run (run 10). Thus, the 

results from the forward filter in run 10 are identical to those in 

run 8. The problem set-up for the backward LKF is the same as for the 

b 
forward EKF with the exception that new initial conditions, X (~), are 

specified at the downstream boundary. The initial state vector, !b(3) 

is set equal to the measurement vector at river mile 19.4 (31.2 km), and 

pb(~) is based on R and is equal to P(~O) (see Table 4.1). 

Smoothed estimates and their associated estimation errors are con-

tained in Figures 5.16 through 5.22. In addition, the forward EKF esti-

mates and backward LKF estimates are included; although their inclusion 

results in three overlapping traces, it is felt that a careful compar-

ison of the traces is informative. 
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When examining the results from the backward LKF it must be 

remembered that it proceeds in the upstream direction. Thus, the estima-

tion error grows or decays in the upstream direction until a sampling 

location is reached. At sampling locations a measurement update step 

reduces the estimation error to below the measurement noise. Unlike the 

forward and backward values of P, the smoothed values are not characterized 

by discrete jumps at sampling points. Instead, the estimation error rises 

to a peak approximately midway between sampling locations. This charac-

teristic indicates that when information from all measurements is used, 

the confidence in the estimates decreases with distance from the adjacent 

sampling points. s Smoothed values of P are less than the forward values 

indicating that better estimates are obtained from the smoothing algorithm 

than from the forward EKF. Although pb is not directly adjusted for the 

effects of the point load estimation error, these effects are included 

indirectly through re1inearization of the backward filter about the for-

ward values for P. A distinct example of this is at river mile 31.7 

(51.0 km). 

As with the backward estimation error, the effects of measurement 

updating on the backward estimates must be interpreted in the upstream 

direction. Values of the smoothed estimates generally lie between the 

forward and backward estimates. The use of information contained in 

measurements in both the up-and downstream directions is indicated by the 

absence of discrete jumps in the smoothed estimates at sampling points. 

Values of MSE for both the forward EKF and the FIS are contained in 

Table 5.4 under run 10. Firstly, it is interesting to compare EKF values 

of MSE in run 10 with those obtained in run 8. The difference is due 
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entirely to the fact that run 10 was performed over only the upstream 

half of the river while run 8 included the entire study length. 

For BOD, NH
3
-N, and N0

3
-N this comparison indicates that the forward 

EKF estimates are closer to the measurements in the lower half of the 

river. For (ALG-N + ORG-N) and DO the comparison indicates that the 

forward EKF estimates are further from the measurements in the lower 

half of the river. It is interesting to note that MSE for N0
3
-N is 

slightly greater than the N0
3
-N measurement noise variance for the 

forward EKF estimates in run 10 indicating that over-fitting does not 

occur in the upper half of the river. 

Values of MSE calculated using the smoothed estimates are all 

significantly less than those calculated for the forward EKF over the 

same length of the river. With the exception of NH
3
-N, MSE values for 

the smoothed estimates are less than the corresponding measurement noise 

variances. This characteristic indicates that the smoothed estimates 

obtained in run 10 are "over-fitted." To avoid over-fitting the 

process model noise variances in Q should be reduced. However, in this 

study computer funds were limited, and so a new Q matrix was not de­

termined from the FIS. 

Sensitivity Studies 

To assist in gaining familiarity with the filtering technique, 

several sensitivity studies are performed. The sensitivity of filter 

estimates to changesin the following statistics is investigated: the 

process model noise variance, the measurement noise variance, the 

initial estimation error variance, and the point load estimation error 

variance. Table 5.5 contains the values of the statistics used in the 

sensitivity runs. 



Table 5.5. Values of the statistics used in the sensitivity runs. 

Statistic 
Q 2 

(mg/l-day) 
R 2 

(mg/l) 

Water Quality parameter ALG-N + ORG-N 

Low Statistic 0.4 0.00001 0.01 value 

Intermed-
iate value Statistic 

ya~ 

High 1 8 

value Statistic 4.0 0.01 0.25 
value 

P(SO) 2 
(mg/l) 

0.04 

2.25 

Y 2 
(mg/l) 

All parameter 

See Table 5.6 

19 

See Table 5.6 

See Table 5.6 

\J;J 
"-J 



Sensitivity study on process model 
noise variance 
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The significance of the process model noise covariance matrix (Q) 

is discussed earlier in this chapter in the section describing the 

method used for determining values for Q. In this sensitivity study the 

filter model was run for two different values of NH
3
-N process model 

noise variance. In run 8 the NH
3
-N process model noise variance is 

2 2 
0.4 (mg/l-day) and in run 11 it is 4.0 (mg/l-day) . 

Figure 5.23 contains profiles of filter estimates and estimation 

errors for NH
3
-N obtained from runs 8 and 11. Estimation errors grow 

much faster with the larger value of Q used in run 11. However, measure-

ment update always reduces the estimation error to less than the measure-

ment noise variance for NH
3
-N. The higher value of Q used in run 11 

signifies less confidence in the process model for NH
3
-N than in run 8. 

Therefore, filter estimates from run 11 follow the NH
3
-N measurement more 

closely than filter estimates from run 8. The MSE for NH 3-N is reduced 

222 
from 0.045 (mg/l) to 0.003 (mg/l) by changing Q from 0.04 (mg/l-day) 

2 to 4.0 (mg/l-day) . In addition, the reduced confidence in the NH
3
-N 

process model affects the MSE of linked parameters~ notably (ALG-N + ORG-N) 

for which MSE is reduced from 0.258 (mg/l)2 to 0.222 (mg/l)2. 

Sensitivity study on measurement 
noise variance 

The significance of the measurement noise covariance matrix (R) is 

also discussed earlier in the section describing the method used for de-

termining values for Q. Sensitivity studies were performed on the 

measurement noise variance for NH
3
-N and for (ALG-N + ORG-N). 
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NH
3
-N Two different values of NH3-N measurement noise variance 

were ~sed, namely, 0.01 (mg/l)2 in run 8 and 0.00001 (mg/l)2 in run 14. 

From Figure 5.24(a) it can be seen that the estimation errors are 

identical for both runs until the first sampling point is reached. At 

this and each subsequent sampling point the estimation error is reduced 

to below the new measurement noise variance indicated by the lower 

series of "XII symbols. When the distance between successive sampling 

points is greater than about three miles the estimation errors converge 

for both values of R. 

The effect of the lower value for R is similar to the effect of 

the higher value for Q in run 11. That is, because the smaller value 

of R signifies higher confidence in the measurement, it therefore, 

implies in relative terms, less confidence in the process model. Thus, 

the profiles of filter estimates for runs 11 and 14 are quite similar 

(compare Figures 2.23(a) and 2.24(a». In run 14 the measurement update 

steps result in filter estimates that follow the measured values even 

closer than in run 11. This is because although the weighting is "tipped" 

in the same direction for runs 11 and 14, the degree of weighting is 

different for each run. The MSE for NH
3
-N in run 14 is reduced to almost 

2 
zero and the MSE for (ALG-N + ORG-N) is reduced from 0.258 (mg/l) in 

run 8 to 0.189 (mg/l)2 in run 11. 

ALG-N + ORG-N The measurement noise variance in run 8 is 0.25 

2 (mg/l) and in run 13 it is 0.01 (mg/l)2. The initial value of pesO) is 

equal to R for (ALG-N + ORG-N) in both runs. Hence the profiles in 

Figures 5.25(a) start at different values. Measurement updates for each 

run reduce P below the value of R for that run. In fact, values of the 
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estimation error variance calculated using Equation 5.2 are negative 

after the measurement update at several of the sampling points. It is 

emphasized that the variances in the P matrix remained positive throughout 

run 13 for each state variable taken separately. It is the variance of 

the combination of ALG-N and ORG-N that becomes negative when calculated 

using Equation 5.2. These negative variances were set equal to zero for 

the purpose of plotting Figure 5.25(a). Estimation errors for runs 8 

and 13 do not appear to be converging downstream at river mile 10.0 

(16.1 km). For run 13, in which confidence in the measurements is 

higher than in run 8, the estimates are closer to the measurements than 

in run 8. MSE for (ALG-N + ORG-N) in run 13 is reduced to 0.038 (mg/l)2 

2 
which is greater than the corresponding R value of 0.01 (mg/l). The 

filter estimates for (ALG-N + ORG-N) are more appealing for the view-

point of obtaining predictions as close to the data as possible. How-

ever, acceptance of the results in run 13 as "better" than those in 

run 8 implies acceptance of the lower value for R which is not supported 

in the literature. 

Sensitivity study on the initial 
estimation error variance 

In the basic filter run the initial estimation error variance is 

equal to the measurement variance on the basis that a measurement vector 

is used to establish the initial state vector [(E,;oD. Thus, for run 8 

2 the initial estimation error variance for N0
3

-N is 0.04 (mg/l). If no 

measurements are available at the upstream boundary we would probably 

place less confidence in the initial condition for the process model. 

This is done in run 12 for which the initial estimation error variance 
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2 
on N0

3
-N was set equal to 2.25 (mg/l). By doing this greater weighting 

is given to the first few measurements (Figure 5.26(b»). As more 

measurements are processed the confidence in the process model grows and 

hence, P declines (Figure 5.26(a». After river mile 15.0 (24.2 km) 

there are no discernable differencesin either the filter estimates or 

the estimation error variances for the two runs in which different values 

of P(~O) were used. 

Sensitivity study on point load 
estimation error variance 

In this sensitivity study three different values were used for the 

estimation error variance (Y) associated with the point load located at 

river mile 31.7 (51.0 km). The values used for Yare listed in Table 5.6. 

In run 8 Y is equal to zero. The variances for Y in run 20 are double 

the arbitrary values used in run 19. Sensitivity results for N0
3

-N are 

shown as they are typical of the results obtained for the other parameters. 

Figure 5.27 shows that in run 8 the estimation error (p) is decreased 

when Y is zero, and increased by differing magnitudes for runs 19 and 20. 

However, the effect on P is negligible after the next measurement update. 

The filter estimates of N0
3
-N are very slightly weighted towards the 

measurements at this sampling point for runs 19 and 20. However, the 

difference in estimates between run 8 and run 20, which results in the 

larger P value, is only 0.007 mg/l. Therefore, for practical purposes, 

the effect on the N0
3

-N estimates is negligible in this example. 

In the case of ALG-N, filter estimates are affected by changes to 

the variances in Y (see Figure 5.28). The estimation error variance of 

ALG-N is not affected directly by changes in the point load estimation 
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Table 5.6. Estimation error variances (Y) for the point load located at river mile 31.70 
(51.0 km). 

Estimation error variance (mg/I)2 

Other runs 
Parameter Run 19 Run 20 (including Run 8) 

BOD 50.0 100.0 0.0 

NH -N 3 1.0 2.0 0.0 

NO -N 3 2.0 4.0 0.0 

ALG-N 0.0 0.0 0.0 

ORG-N 0.0 0.0 0.0 

DO 16.0 32.0 0.0 

I-' 
o 
\.Jl 
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error variances of ALG-N since these remain zero for all three runs 

(see Table 5.6). However, the estimation error variance of ALG-N is 

indirectly affected through the measurement updating process. The in­

creased uncertainty in the process model prediction of the other para­

meters causes an increase in the estimation error associated with ALG-N 

and similarly ORG-N which is not shown here. The reason for the 

estimation errors of ALG-N and ORG-N remaining changed, while the effect 

on the estimation error of other parameters dies out, is probably due 

to the relatively high measurement noise variance for (ALG-N + ORG-N). 

As a consequence of the increased estimation errors the estimates for 

ALG-N and ORG-N in runs 19 and 20 are weighted more toward the measure­

ments than was the case in run 8. Thus, MSE for (ALG-N + ORG-N) was 

reduced in runs 19 and 20 compared with run 8 (see Table 5.4). This 

reduction of MSE resulting from changes in Y reinforces the suspicion 

that a simultaneous trial and error determination of Q and Y for each 

point load would be a much larger task than for Q alone. 

Coefficient Estimation 

The extended Kalman filter is a potentially useful tool for model 

calibration. Coefficients in the process model can be estimated at the 

same time as state variables are estimated. Although this method of 

parameter estimation is statistically less efficient compared with other 

techniques it does have the advantage of providing information on the 

variation of the coefficient with respect to the independent variable, 

in this case distance along the stream (Beck and Young, 1976). Coef­

ficient estimation is achieved by augmenting the state vector with the 
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coefficients to be estimated. For each additional state variable this 

involves adding an additional equation to the process model, and an 

additional row and column to the process model noise covariance matrix. 

A process model of the following form is used for each of the coefficients 

estimated in this study: 

o + IN.
7 

(5.3) 

in which 

. 
X

7 
first derivate with respect to travel time of 

X7 which is the coefficient to be estimated 

This process model indicates that X
7 

does not change with travel time 

except in a manner that can be described by the white Gauss~;n noise 

process, w7. Other process models for X
7 

may be used if appropriate. 

X
7 

is substituted into the other process model equations in place 

of the coefficient to be estimated. A result of treating some of the 

model coefficients as state variables is that a linear process model 

usually becomes non-linear. The initial state vector and the initial 

estimation error covariance matrix are augmented to accommodate the 

additional state variable. Since measurements are not available for 

model coefficients the measurement vector is unchanged, but a column of 

zeros is added to the right-hand side of the H matrix to keep Equation 

4.22 consistent. The Jacobian matrix is also modified to reflect the 

changes to the process model. 

The three coefficient estimation runs are described below. K
23 

is estimated by run 15, and K45 by run 16. In run 21 five of the co-
A 

efficients (K23 , K45 , K52 , ~, K
S3

) in the equations describing the 
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cycling of nitrogen are estimated simultaneously with the six water 

quality parameters. In addition two runs for lateral inflow concen-

tration estimation are also described. Lateral inflow concentration 

for N0
3

-N is estimated by run 17 and for NH
3
-N by run 18. 

A fresh determination of the Q matrix was not undertaken for any 

of these runs. An arbitrary value for the process model variance 

associated with each coefficient estimated is assumed and the same 

value is used for the initial estimation error variance. These values 

are given in Table 5.7. The results from the coefficient estimation runs 

could be improved by refining the Q matrix. 

estimation 

Filter estimates for K
23

, the nitrification rate, are shown in 

Figure 5.29. Figures 5.30 through 5.33 contain results from some of the 

parameters using the filter estimates of K . Down to river mile 20.0 
23 

(32.2 km) the estimates of K
23 

are close to the calibration value of 

0.3 per day. After river mile 20.0 (32.2 km), K
23 

estimates decline, 

become negative, and then rise to approximately 0.4 per day. A comparison 

of the MSE for run 15 and the MSE for run 8 indicates a substantial de-

cline in the MSE for DO when K
23 

is estimated. Inspection of the DO 

profiles from run 15 (Figure 5.30) indicates a rise in DO below river 

mile 20.0 (32.2 km) compared to the estimates from run 8. It appears 

that the filter estimates of K
23 

may result largely from the reduction 

in MSE that can be obtained by changing the DO estimates. 

In terms of the chemical processes a negative value for K
23 

implies 

denitrification. However, the near saturation levels of DO indicate that 

denitrification should not be taking place in the prototype system. 
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Table 5.7 Process model noise variances (Q) and initial estimation error variances(P(~» for the coeffi­
cients and lateral inflow concentrations estimated in runs 15 through 18 and 21. 

Lateral Inflow Concentration or Model Coefficient 
Units of P(I;O) 
Variances'i Variance Run 

2 0.04 18 U2 NH
3
-N concentration in lateral inflow (mg/l) 

2 U3 N0
3
-N concentration in lateral inflow (mg/l) 2.25 17 

2 K23 Nitrification rate (per day) 0.09 15 and 21 
2 

K45 Algal death rate (per day) 0.01 16 and 21 
2 

KS2 Rate of decomposition of ORG-N to NH
3
-N (per day) 0.01 21 

2 
lJ Maximum specific growth rate of algae (per day) 3.00 21 

KS3 Half-saturation coefficient for N0
3
-N (mg/l) 

2 0.0002 21 

~he units of process model noise variance are obtained by dividing the units of P(I;O) by (day)2. For 
example the units of process model noise variance for U2 are (mg/l-day)2. 
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Figure 5.31. Coefficient estimation for K23 
- NH3-N results (run 15) 
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Therefore, from a chemical viewpoint the filter estimates of K
23 

are un­

acceptable. These results show the need for a technique for constraining 

state variables to a reasonable range of values. The effects of the 

filter estimates of K23 , on the estimates of NH
3
-N, N0

3
-N, and ALG-N, are 

shown in Figures 5.31 • 5.32,and 5.33 respectively. Slight increases in 

the estimation errors are caused by the introduction of estimation error 

associated with K
23

, compared to run 8 in which K
23 

was treated as deter­

ministic. 

K45 estimation 

Figure 5.34 shows the filter estimates of the algal death rate, K
45

, 

compared with the constant calibration value of 0.04 per day. Down to 

approximately river mile 16.0 (25.8 km) the filter estimates are very 

similar to the calibration value. Downstream of river mile 16.0 (25.8 km) 

the filter estimates jump to 0.08 - 0.10 per day. It is of interest to 

note that the calibration value of the maximum specific growth rate for 

algae below river mile 16.7 (26.9 km) is half of the upstream value. 

Perhaps the increase in filter estimates of the algal death rate is re­

lated to the change in the algal growth rate. Filter estimates for ALG-N 

and ORG-N based on the filter estimates of K45 are given in Figures 5.35 

and 5.36, respectively. For example, the increased algal death rate 

just below river mile 16.0 (25.8 km) results in lower estimates of ALG-N 

and higher estimates of ORG-N. However, there is little change to the 

magnitude of (ALG-N + ORG-N). The effect of introducting uncertainty 

associated with K45 into the estimation error of ALG-N and ORG-N is 

shown by the increase in P values for both parameters. 
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In run 21 five coefficients pertaining to the nitrogen cycle part 

of the process model are estimated. Filter estimates for the coefficients, 
A 

namely, K
23

, K
45

, K52 , ~, and KS3 ' are contained in Figures 5.37 through 

5.41. In each figure the calibration values of the coefficient are 

shown. For K
23 

and K45 the results of the previous coefficient runs are 

also shown to facilitate comparison. As with the other coefficient 

estimation runs, the values used for the Q matrix could be improved. In 

this run the need for improving Q is dramatically illustrated by the 

divergence of filter estimates (see Figures 5.42 through 5.47). At 

river mile 5.8 (9.3 km), the estimation error variance for NH
3
-N becomes 

negative and hence the P matrix ~ no longer positive-definite. Rather 

than attempt to change Q in such a way that divergence is avoided, it 

was decided to stop the run immediately before loss of positive-definiteness 

in P and use the results as an illustration of divergence. Thus run 21 

covers river miles 39.2 (63.1 km) to 6.4 (10.3 km). 

The onset of divergence is caused by the decay of P for NH
3
-N (see 

Figure 5.44) which results in greater weighting for the process model 

predictions. Filter estimates for ammonia diverge from the measured 

values and also, presumably, from the true state for ammonia. Signifi-

cant measurement updates are still taking place below river mile 10.0 

(16.1 km) but these are not sufficient to overcome the divergence. To 

prevent divergence the Q matrix should be increased so that estimation 

errors are maintained at higher levels which are presumably close to the 

true values of P. The starting point in this example would be to increase 
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Figure 5.43. Estimation of the nitrogen cycle 
coefficients - DO results 
(run 21) (1 mile = 1.61 km). 

1.5 

i , .. J 
--~ 

-+--+ R..t-el 
1< MST ERROR 

~ 
Ei eI.5 

~ 
- eI.eI 

'til. 111 ".0 2!Il.11) le1.eI 0.111 

RIVER MIlES FR<J1 (HRT SFL T Lft\E 

(a) Estimation and measurement errors 

a.eI 
--~ 

+-t- R..t-el 

~ " MEAST 

:z 2.111 

~ " " 

~ _ 1.21 
:z 

i 
l1I.eI 

'til. 21 ".eI 2!Il.0 1111.111 111.111 

RIVER MIlES FR<J1 GFERT SFLT Lft\E 

(b) Filter estimates and measured values 
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(run 21) (1 mile = 1.61 km). 

I-' 
N 
I-' 



1.51----------------~ 

fUII8 
+---I- IUel ::z 

~ 1.0 )( MST ERROR 

~ 
0

0
•
5 1 ~ 

~ ~;.~~ 
... 0 • .1 

1jiI.1!! 

a.1!! 

~ 
::z 2.0 

~ 

~ _ 1.0 
:z 

~ 
Z 

f I I' , 

E0.1!! 20.0 10.0 
RIVER MILES F'f01 ll£AT SA...T l.A«E 

(a) Estimation and measurement errors 

-- fUII8 

+-+ IUel 
" MEAST 

0.1!1 

0.0 +---~-____,--~--_.--~--_.__--~-__l 
311J.0 all. I!! 10.0 1!!.0 

RIVER MIlES FRCt1 ll£AT SA... T l.A«E 

(b) Filter estimates and measured values 

Figure 5.45. Estimation of the nitrogen cycle 
coefficients - N03-N results 
(run 21) (1 mile = 1.61 km). 
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the process model variances associated with the coefficients. This 

would raise the estimation error of NH
3
-N and hence reduce the weighting 

on the process model predictions. 

Divergence in the other water quality parameters appears to be 

strongly related to the divergence of NH
3
-N. It is interesting to note 

that the filter estimates for BOD are unchanged. This is the case 

because in the process model BOD is independent of all the other water 

quality parameters and also independent of each of the five coefficients 

estimated in run 21. 

In the presence of divergence it is not possible to draw conclusions 

about the values estimated for the five coefficients. It is noted however, that 

before divergence becomes severe, the estimates of K23 and K45 from run 21 

are similar to those in runs 15 and 16, respectively (see Figures 5.37 

and 5.38, respectively). 

N0
3
-N lateral inflow estimation 

Non-point sources of pollution are diverse and difficult, if not 

impossible, to measure. In conventional river water quality modeling 

the assignment of concentrations to various parameters in lateral inflow 

is an art which at best requires the exercise of engineering judgment, 

and which at worst is arbitrary in nature. Therefore, any light is 

welcome that can be thrown on the levels of the concentrations through 

the coefficient estimation procedures of the EKF. 

The filter estimates for U
3

, the lateral inflow concentration of 

N03-N,show the general trend of higher levels upstream, and lower levels 

downstream. The trend was observed in other studies on the Jordan 

River, and is used for the calibration in this study (see Figure 5.48). 
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Results for the other water quality parameters affected by the estimation 

of U3 are shown in Figures 5.49 through 5.52. The estimation errors 

from N0
3
-N, ALG-N and ORG-N are increased by the introduction of U

3 
un­

certainty and consequently filter estimates for the parameters are closer 

to the measurements. 

NH
3
-N lateral inflow estimation 

The filter estimates for U2, the lateral inflow concentration of NH
3
-N, 

are in quite good agreement with calibration values except below river 

mile 12.0 (19.3 km) (see Figure 5.53). It is interesting to note that 

the 0.8 mg/1 level estimated by the filter below river mile 12.0 (19.3 km) 

is similar to the 0.9 mg/l level found by Dixon et al. (1975) for these 

reaches. However, in the calibration of the deterministic process model 

other available evidence pointed to a negligible concentration of NH
3

-N 

in the lateral inflow of this downstream stretch of the Jordan River. 

The results of other water quality parameters affected by the estimation 

of U2 are shown in Figures 5.54 through 5.57. 

Computational Requirements 

Figure 5.58 provides a comparison of the computational require­

ments for the techniques applied in this study. The comparison is in 

terms of the cost of the computer runs, adjusted to account for the 

different lengths of the riVer represented in some runs. The basic 

filter run costs almost double the cost of the deterministic process 

model run. The smoothing run costs approximately four times the cost 

of the deterministic process model run. 
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Some researchers have reported that computer costs for filter 

techniques are proportional to the cube of the order of the state 

vector. However, the three different size state vectors used in this 

study point to a relationship between the order of the state vector 

and computer costs that involves an index of less than 2. 
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CHAPTER 6 

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

Summary 

The extended Kalman filter (EKF) is used to represent BOD, DO, and 

nitrogen cycling in a 36.4 mile (58.6 km) stretch in the Jordan River, 

Utah, under the assumption of steady-state conditions. Approximate mini­

mum variance estimates of the water quality parameters are provided by the 

EKF filter. These estimates are obtained through a combination of two 

independent estimates of the state of the river water quality system: 

(1) predictions of the system state from a "phenomenologically meaningful" 

process model of the biochemical and stream transport processes; and (2) 

measurements of the water quality parameters. These two estimates are com­

bined by a weighting procedure based on the uncertainties associated with 

the process model predictions and the measurements. The EKF also yields 

an estimation error covariance matrix from which confidence limits for the 

accuracy of the parameter estimates are obtained. 

A sequential arrangement of extended Kalman filters is utilized. Each 

EKF in the sequence represents a river reach for which hydraulic and water 

quality characteristics are fairly uniform. Initial conditions for each 

EKF are based on the final conditions of the previous EKF adjusted to re­

present the effect of point loads or tributaries discharging into the main 

river between the two reaches. 

A trial-and-error calibration procedure is used to obtain values 

for the model coefficients in the process model operated as a deterministic 

model independent of the filter. Determination of values for the Q matrix 

by a trial-and-error procedure is described. The approach is based on the 
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requirement that the mean square error of the differences between the filter 

estimates and the measurements be not less than the measurement noise variance. 

A property of the EKF is that information contained in the measurements 

is used only in subsequent estimates of the system state. Therefore, infor­

mation in the measurements is used only downstream of the sampling point at 

which the measurement was taken. To make use of the measurements in both 

the up- and downstream directions a fixed-interval smoothing algorithm (FIS) 

is implemented. This technique combines state estimates from filter passes 

in the up- and downstream directions. Sequential linearized Kalman filters 

are used for the pass in the upstream, or backward direction. Unlike the 

forward and backward estimates of the estimation error (P), the smoothed 

values are not characterized by discrete jumps at sampling points. Instead, 

the estimation error rises to a peak approximately midway between sampling 

locations. This characteristic indicates that when information from all 

the measurements is used confidence in the estimates decreases with dis­

tance from the adjacent sampling points. Smoothed values of P are less than 

the values obtained from applying the forward EKF alone; thus indicating 

that the estimates obtained from the FIS are better", in a minimum variance 

sense, than the estimates obtained from the forward EKF. 

To assist in gaining familiarity with the filtering technique, several 

sensitivity studies are performed. The sensitivity of filter estimates to 

changes in the following statistics was investigated: the process model 

noise variance, the measurement noise variance, the initial estimation error 

variance, and the point load estimation error variance. A large value for 

the process model noise variance has the effect of: (1) increasing the rate 

of growth of the estimation error, and (2) placing additional weighting on 

the measurements because the larger estimation error implies less confidence 
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in the process model predictions. At sampling points the measurement up­

date procedure always results in an estimation error less than the measure­

ment noise regardless of the values used for the process model noise vari­

ances. Changing the values of the measurement noise affects (1) the level 

of the estimation error after measurement updates, and (2) the weighting 

given to measurements. A larger initial estimation error variance gives 

relatively more weighting to the measurements but this effect decreases 

with distance from the upstream boundary. The sensitivity study on the 

point load estimation error variances indicates a small, but noticeable, 

effect on the estimation errors, and therefore, a slight effect on the state 

estimates via the weighting procedure. 

The capability of estimating model coefficients and lateral inflow 

concentrations simultaneously with the water quality parameters is demon­

strated. In one run five coefficients in the equations describing nitrogen 

cycling are estimated. This run also provides an example of filter diver­

gence. 

Conclusions 

The following conclusions have been developed from the results and 

experience gained during this study: 

1. A steady-state filter model has been developed which is capable 

of immediate application to any stream for which the process model des­

cribed in Chapter 4 is suitable, and for which the appropriate measure­

ments are available. 

2. In general, the filter estimates were quite similar to the deter­

ministic process model estimates with the exception of ALG-N and ORG-N. 

The differences for these parameters are due to information contained in 

the measurement vector ~, and the relatively low confidence placed in the 
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measurements of (ALG-N + ORG-N). This illustrates two important reasons 

for us estimation theory, namely: (a) to make use of the information 

content of the measurements, and (b) to allow for an explicit treatment of 

the uncertainties associated with the system, the model, the data, and the 

model responses. 

3. Estimation theory provides values for the estimation-error as­

sociated with filter estimates. Values of the estimation error covariances 

matrix (P) varied from a coefficient of variation of almost zero for DO 

to a coefficient of variation in excess of 1.0 for ALG-N and ORG-N (see 

Figures 5.9 through 5.15). These values are potentially useful for estab­

lishing tolerances on stream quality standards which are reasonable in 

terms of our ability to estimate the true state of stream water quality 

using available measurements and current understanding of the stream pro­

cesses expressed in the form of a mathematical process model. 

4. Apart from the determination of approximate minimum variance esti­

mates of the true state of a river water quality system, the current model 

could be used to design a stream sampling program. Under the assumption of 

steady-state conditions the location of sampling points and the parameters 

to be measured could be determined. This could be achieved by formulating 

constraints defining the maximum acceptable estimation errors associated with 

each parameter, and by locating sampling points such that these constraints 

are met. The estimation errors depend on the spacing of sampling points 

and are independent of the actual measurement values. Therefore, no data 

are required to design the stream sampling program. However, a trade-off 

relationship exists between the spacing of sampling points and the adequacy 

of the process model. If a poor process model is used, then estimation errors 

grow rapidly, and more frequent samples are required to meet the estimation 
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error constraint. In contrast less frequent samples are needed to meet 

the constraint if a precise process model is used because in this case, esti­

mation errors grow at a slower rate. 

5. The estimation theory techniques applied herein are not suitable for 

long-term forecasting or for predicting the effects of management changes on 

the river water quality system. The reason for this is simply that measure­

ments, needed for updating, do not exist in either of these situations. How­

ever. indirect benefits may be gained through using the EKF for model identi­

fication. or for estimating coefficients and lateral inflow concentrations prior 

to long-term forecasting or management runs using the deterministic process 

model alone. 

6. Application of the fixed-interval smoothing algorithm reduced the es­

timation error variances but smoothed estimates are not significantly differ­

ent from the filtered estimates. However, an advantage of applying the 

smoothing algorithm to the steady-state problem is that the abrupt changes 

in both P and X are smoothed out as a result of using the information con­

tained in the measurements in both the up- and downstream directions. 

7. The determination of suitable variances for the matrix appears to 

be a significant and complex step in applying the EKF. Experience does not 

seem to help in establishing a Q matrix a priori. The problem becomes more 

complicated if an estimation error covariance matrix for each point load 

also is estimated. Whenever the model structure is changed, a new Q matrix 

should be determined. Also, the Q matrix that worked satisfactorily for 

the filter run was found to be unsuitable for a smoother run on the entire 

study section of the Jordan River. 

8. Use of the EKF for coefficient estimation requires a fresh deter­

mination of the Q matrix. This is partly because process model noise vari­

ances for the new state variables must be estimated and also because the 
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process noise variances of the original state variables may be reduced to 

offset the introduction of process model noise via some of the model co­

efficients. In addition, initial values for the estimation error covariance 

matrix must be estimated when coefficients are estimated. A trial-and-error 

determination of P (~O)and Q may require several computer runs. Filter 

estimation for a single model coefficient may be largely determined by the 

previous calibration values for the coefficient, This conclusion is based 

on the results for K
4S

' Estimates of state variables are unconstrained and 

unrealistic values of model coefficients ma~ result. An example of this, 

is the negative values obtained for the nitrification rate, K
23

• 

9. The sensitivity study on the point load estimation error variances 

showed that the impact on both filter estimates and estimation errors can 

be noticeable. Hence, the need for considering the accuracy with which the 

concentrations of point load constituents are known, is demonstrated, 

This approach could be used to assist in establishing tolerances on efflu­

ent standards, 

10. Computer costs associated with estimation theory techniques are 

higher than the costs of running the corresponding process model as a purely 

deterministic model. Costs rise as the number of state variables are in­

creased. In addition, the trial-and-error determination of suitable values 

for the Q matrix can be a very expensive task. However, the additional 

computer costs should be weighed against the utility that can be derived 

from the estimation error covariance matrix and the improved estimates of 

state (coefficients and lateral inflow concentrations). 

Recommendations 

The following recommendations for further work are based on the ex­

perience gained during this study: 
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1. During filter runs estimates for ORG-N, K23 , and K52 became nega­

tive. In each case, these negative values did not have a valid physical 

interpretation. Therefore, it is recommended that a modification to the 

EKF should be explored, in which state variables can be ~~~~~~ to lie 

within a reasonable range of values. 

2. Determination of suitable values for the Q matrix was found to be a 

costly and complex process. The trial-and-error technique adopted in this 

study could be developed into an automatic search procedure to satisfy an 

objective function based on the closeness of MSE to the corresponding 

variances in R while satisfying the constraint that MSE. ~ R' i for all 
1 1 

measured variables. However, this procedure would lead to a single value 

for Q to be used throughout the filter run. If more data are available than 

was the case in this study, it is recommended that adaptive filtering 

techniques be explored as an approach for simultaneously estimating Q and 

the state vector. A decision-directed adaptive filtering algorithm such 

as that by Nahi and Schaeffer (1972) is recommended. 

3. The applicability of the current filter model should be extended 

to allow for the simulation of river systems that include ~~~~~~. 

Also, streamflow should be added as a state variable if computer funds are 

sufficient to run the filter with the expanded state vector. In this way 

uncertainties in streamflow will be incorporated into the estimation errors 

of the water quality parameters. 

4. Consideration should be given to adding other water quality para­

meters to the state vector. Computer costs may be reduced by breaking the 

state vector into independent components and running each component as a 

separate model (Lettenmaier, 1975). For example. a state vector containing 

streamflow, stream temperature, BOD, DO. NH
3

-N. N0
3

-N, ALG-N, ORG-N and 
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coliform, could be divided into: (a) streamflow-stream temperature, (b) 

streamflow-BOD- DO-nitrogen cycling, and (c) streamflow-coliform. 

5. To extend the EKF technique to situations in which dispersion is 

an important stream transport process two possibilities exist: (a) a fil­

ter capable of modeling the second-order advection-diffusion equation could 

be developed; and (b) a mathematical procedure suitable for transforming the 

second-order advection-dispersion equation into first-order differential 

equations could be developed. Pimentel and Brewer (1975) have developed such 

a transformation for dispersion alone but their procedure does not cover 

the combined advection-dispersion situation. 

6. The application of estimation theory to other types of water re­

sources problems should continue. In particular, the problems of real 

time, short-term river flow forecasting, and reservoir operation appear to 

be promising possibilities. 

7. The model for algal uptake of nitrogen in the ammonia and nitrate 

forms (Equations 4.11 and 4.14) should be tested using laboratory experi-

ments. 
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APPENDIX A 

USERS MANUAL FOR COMPUTER PROGRAMS 

Thrfc .. omputer programs were developed for this study. The relation­

ships between the programs are ~11ustrated by Figure 3.4. EKFLKF is the 

filter model including the extendeG Kalman filter (EKF) , linearized Kal­

man filter (LKF), and fixed i~terva1 smoothing algorithm (FIS). Results 

from filter runs are written onto a computer disk storage device, sorted 

by the data sorting program (PRSORT), and dumped onto punched cards. 

These punched cards are subsequently read by the plotting program (P) 

which produces continuous plots of the filter results. This appendix is 

divided into three parts: 

I. Filter model (EKFLKF) 

II. Data sorting program (PRSORT) 

III. Plotting program (P) 

149 

187 

193 
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Table A-I. Input data and decision parameters for filter model (EKFLKF). 

I. Initial input 

l. (HDG(I), I = 1,12) - Format (12A6) 

1-72 HDG(I) Run heading 

2. (XLABEL(I), I = 1, 12) - Format (12A6) 

1-72 XLABEL(I) Label for x-axis of plotted output 

3. N. L, IPI, lOUT, Ie, NNN. IJK - Format (4110, lOX, 3110) 

1-10 N Order of state vector 

11-20 L Order of measurement vector 

21-30 IPI Frequency of time steps to be plotted 

31-40 lOUT Frequency of time steps to be printed 

51-60 Ie Number of model coefficients 

61-70 NNN Number of state variables plus number of dependent variables 

71-80 IJK = 0 Filter option 

= 1 Deterministic process model option 

4. NPLT, IU, IQ, NXNK, IOSMTH, IODPLT, IPS - Format (7110) 

1-10 NPLT Number of state variables to be plotted 

11-20 IU Number of input variables 

I-' 
VI ..,.. 



21-30 IQ 

31-40 NXNK 

41-50 IOSMTH 

51-60 IODPLT 

61-70 IPS 

5. N~1STS2 - Format (110) 

1-10 NMSTS2 

6. Tl, RMI, DT, QSTH - Format (4FlO.0) 

1-10 Tl 

11-20 RMI 

21-30 DT 

31-40 QSTM 

= 0 Print hydraulic variables 
= 1 Do not print hydraulic variables 

Numbers of state variables that are water quality para­
meters and not model coefficients augmenting the state 
vector 

= 0 Forward EKF only 
1 Smoothing option using end conditions of forward EKF 

for initial conditions of backward LKF 
= 2 Smoothing option and read initial conditions for 

backward LKF 

= 0 Do not plot results 
= 1 Plot results 

= 0 Do not print results 

1 Print Results 

Number of the measurement at which alternative estimate of 
mean square error should commence 

Initial time (days) 

River mile at upstream boundary 

Time step (days) 

Streamflow at upstream boundary (cfs) 

i-' 
U'l 
U'l 



, -

I· 

7. (IOPT(I), I = 1,4), IOPTQ, IOPTR, IOPTPL - Format (7110) 

1-10 IOPT( 1) 

11-20 I: if' (2) 

21-30 IOPT(3) 

31-40 IOPT(4) 

41-50 IOPTQ 

51-60 IOPTR 

61-70 IOPTPL 

o Entire H matrix input 
= 1 Only diagoi ciL of H matri" input 

o Entire Q mai_rix input 
= 1 0 ~y diagonal of Q matrix input 

= 0 Entire R matrix input 
1 Only diagonal of R TI1R.i ,lX input 

o Entire initial P matrix input 
1 Only diagonal of initial P matrix input 

o Only one Q matrix input 
1 A different Q matrix input for each reach 

o Only one R matrix input 
1 A different R matrix input for each sampling point 

o y matricf'~; not input (assumed identically zero) 
1 Y matrices input for each point load 

(Card 8 is repeated for (NPLT+1) labels varying I) 
8. (YYLABE(I,J), J = 1,9) - Format (9A6) 

1-54 YYLABE(I,J) Label for y-axis of plotted output 

9. (XHDG(I), I 1, (NPLT+1)) - Format (10A8) 

1-8 XHDG( 1) Brief heading for 1st state variable 

9-16 XHDG(2) Brief heading for 2nd state variable 

etc. 

f-' 
\J1 
0\ 



10. 

11. 

12. 

13. 

(ZHDG(I), I = 1,L) - Format (10A8) 

1-8 ZHDG( 1) Brief headiug for 1st measure,. ,tt variable 

9-16 ZHDG(2) Brie ,. heading for 2nd meas.; ement "'Liable 

etc. 

(YMINI(I) , I = 1, (NPLT+l» - Format (8FI0.0) 

1-10 YMINl(l) Minimum v-value f plot of Is t: SLl L. val 11>'1 e 

11-20 YMIN1(2) Minimum y-value for plot of 2nd st8te var,iable 

etc. 

(YMAXl(I), I = 1, (NPLT+l» - Format (8FI0.0) 

1-10 YMAXl(l) Maximum y-value for plot of 1st state variable 

11-20 YMAXl(2) Maximum y-value for plot of 2nd state variable 

etc. 

(CHDG(I), I 1, IC) - Format (10A8) 

1-10 CHDG(I) Brief heading for 1st model coefficient 

11-20 CHDG(2) Brief heading for 2nd model coefficient 

etc. 

I-' 
VI 
"-.l 



14. (illlDG(I), I 

1-10 

11-20 

(IOPT(l) = 0 
IOPT(l) = 1 

15. (RR(I ,J) ,J 

1, IU) - Format (10A8) 

illlDG(1) Brief heading for 1st input variabJe 

illlDG(2) Brief heading for 2nd <input variable 

etc. 

Card 15 is repeated for L rows of HH varying I 
Card 15 contains the diagonal elements of RR) 

1, N) - Format (8FIO.0) 

RR(I,J) Measurement coefficient matrix 

(Omit card 16 
IOPT(2) == 0 
IOPT(2) = 1 

16. (Q(I,J),J 

if IOPTQ == 1 

(Omit card 17 
IOPT(3) = 0 
IOPT(3) == 1 

Card 16 is repeated for N rows of Q varying 
Card 16 contains the diagonal elements of Q) 

= 1, N) - Format (BPIO.O) 

Q(I,J) Process model noise covariance matrix (mg!l - day)2 

if IOPTR == 1 

17. (R(I,J), J = 

Card 17 is repeated for L rows of R varying I 
Card 17 contains the diagonal element of R) 

1, L) - Format (8FIO.0) 

R(I,J) 

18. (XX(I,l), I = 1, N) - Format (8F10.0) 

1-10 XX(l,l) 

11-20 XX(2,1) 

etc. 

Measurement noise covariance matrix (mg/1)2 

Initial mean value for the 1st state variable at upstream 
boundary (forward EKF run) (mg/l)2 

Initial mean value for the 2nd state variable at upstream 
boundary (forward EKF run) (mg/l)2 

f-' 
VI 
co 



(IOPT(4) = a 
IOPT(4) = 1 

19. (P(I,J), J = 

II. River system input 

Card 19 is repeated for N rows of P varying I 
Card 19 contains the diagonal elements of P) 

1, N) - Format (8FIO.O) 

~" 

P(I,J) Initial estimation error i')V8r~An1e mati Ix at upstream 
boundary (forward EKF r1ln) (',' I) 

Cards in subsections A through E contain the input data necessary to describe the different 
types of points on the river system. The cards must be arranged in the order in which the poin. 
occur in the real river. A point load must precede each new reach. A zero flmvr.ate f;h· d be 
assigned to this point load if it does not exist in the real river. 

A. Beginning of reach 

20. URI!, RM2, (C(I,I), I 1, IC) - Format (AI, F9.0, 7FIO.0/(8FIO.O» 

1 "R" Card identifier for reach 

2-10 RM2 River mile at upstream boundary of reach 

11-20 C(1,I) Value of 1st model coefficient for reach beginning at RM2 

21-30 C(2,I) Value of 2nd model coefficient for reach beginning at RM2 

etc. 

21. (U(I,I), I = 1, IU) - Format (8FIO.0) 

1-10 U(1,I) Value of 1st input for reach beginning at P~2 

11-20 U(2,I) Value of 2nd input for reach beginning at RM2 

etc. I-' 
VI 
'-0 



? 

(Omit card 22 if rOPTQ 0) 
22. Same as card 16 

B. Sampling point 

23. "M", RM2, (Z(r,l), r = I, L) - Format (AI, F9.0, 7F10.0/(8F10.0» 

1 "Mit 

2-10 RM2 

11-70 Z(1,1) 

21-30 Z(2,1) 

etc. 

(Omit card 24 if rOPIR = 0) 
24. Same as card 17 

C. Point load 

25. lip", RM2, QPL, (PL(l, 1), I 

1 "p" 

2-10 RM2 

11-20 QPL 

21-30 PL(1,1) 

31-40 PL(2,1) 

etc. 

Card identifier for' sampling point 

River mile at sampling point 

Value of 1st measurement variable at RM2 

Value of 2nd measurement variable at RM2 

1, NXNK) - Format (AI, F9.0, 7FIO.0/(8F10.0» 

Card identifier for point load 

River mile at point load 

Flowrate of point load (cfs) 

Concentration of 1st water quality parameter in point load (mg/l) 

Concentration of 2nd water quality parameter in point load (mg/l) 

I--' 
0\ 
o 



(Omit card 26 if IOPTPL = 0) 
26. (YPL(I,I), I = 1, NXNK) - Format (8FI0.0) 

YPL(I, I) Diagonal elements of estimation error covariance matrix 
of water quality parameter concentration in point load (mg/l) 

D. Diversion 

27. liD", RM2, QDIV, - Format (Al, F9.0, FlO.O) 

1 "D" Card idelltifier for diversion 

2-10 RM2 River mile at diversion 

11-20 QDIV F10wrate of diversiull (cfs) 

E. End point 

28. "E", RM2 - Format (AI, F9.0) 

1 "E" Card identifier for end point 

2-10 RM2 River mile at end point 

III. Initial smoother input 

(Omit cards 29 and 30 if IOSMTH not equal to 2) 
29. (XE(I,I), 1= 1,N) - Format (8FI0.0) 

1-10 

11-20 

etc. 

30. (PB(I,I), I = 1, 

XB(I,I) Init-ja1 mean value for the 1st state variable at downstream 
boundary (backward LKF run) (mg/ 

XB(2,1) Initial mean value for the 2nd state variable at downstream 
boundary (backward LKF run) (mg/l) 

- Format (8FIO.0) 

PB(I,I) Diagonal elements of initial estimation error covariance matrix 
at downstream boundary (backward LKF run) (mg/1)2 

I-' 

'" I-' 



Table A-2. 

Vector 
State 

Measurement 

Input 

Computer Text 

X(2,I) X2 
X(3,I) X, 

X(4,I) 2\.4 

X(S,I) Xs 

X(6,1) 

Z(l,I) 

Z(2,I) 

ZO,I) 

Z (4, 

Z (S, 1) 

U(l,I) 

U(2,I) 

U(3,I) 

U(4,1) 

U(S,I) 

U(6,I) 

U(7,I) 

U(8,I) 

U(9,1) 

ZI 

2 
2 

24 

Zs 
UI 
U2 
U3 
B6 
q 

A 

A 

h 

U6 

measurement vector and model ,'tent ','ector. ,---

Definition Its 
.~,.------

Estimated concentrat ion ;,iJn in the stH c;/] 

Estimated concentratIon oi NH
3

-N in the ::;1 «1m '1)0/1 

Estimated concentration of N0
3

-N in the stTl~Am 

Estimated concentration of ALG-N in tht: ..;tream 

Estimated concentration of ORG-N in the stream 

Estimated concentration of DO in the stream 

Dg/l 

mg/I 

mg/l 

mg/1 

Measured concentration of BOD in the stream m6/l 

Measured concentration of NH
3
-N in the stream mg/l 

Measured concentration of N03-N in the stl''''AI' mf 1l 

Measured concentration of (ALG-N + ORG-N) 111\' i l 

the stream 

Measured concentration of DO in the stream mg/l 

1 

mg/l 

mg/1 

Concentration of BOD in lateral inflow 

Concentration of NH3-N in lateral inflow 

Concentration of N0
3
-N in lateral in low 

Uptake of DO by stream bottom 2 ft -day 

Lateral inflow rate 

Stream temperature 

Cross sectional area of stream 

Stream depth averaged over cross section 

Concentration of DO in lateral inflow 

cfs/mile 

deg. C 

ft 2 

ft 

mg/l I-' 
0'\ 

"'" 



Table A-2. 

Vector 

Model 
Coefficient 

continued. 

Computer 
mneumonic 

C(l,l) 

C(2,1) 

C(3,l) 

C(4,1) 

C(S,1) 

C(6,1) 

C(7,1) 

C(8,l) 

C(9,1) 

C( 10,1) 

C(ll,l) 

C(l2,1) 

Text 
Symbol 

Kd 

KS2 

K23 

K4S 

Ks3 

II 

S 

x 6sat 
4.S7 

y 

Definii. ,on 

BOD de'~ay ra te 

Rate of decomposition ot ORG'N " NHj-N 

Nitrification rate (NH
3

-N to NO:;N) 

Algal death rate (ALG-N to ORG-h" 

BlAnk 

Half-saturation coefficif'nt r,'i N0
3

-N 

Maximum specific gruwih filte uf algae 

Ratio of half-saturat Ion coefficient for 
N0

3
-N to half-saturation coefficient for 

NH -N 
3 

Saturation concentration of DO 

mg 02/mg N 

Blank 

Weighting coefficient to indicate the prefer­
ence of algae for NH

3
-N over N0

3
-N 

Units 

base e, pe r 
day 

hase e, per 
day 

base e, Il r 
day 

base e, per 
day 

mg/l 

base e, per day 

dimensionless 

mg/l 

dimensIonless 

dimensionless 

f-' 
0\ 
W 



4. Program listing of filter model. 

c·-.· c 
c 
c 

500 
501 
502 

505 
50T 
50S 
509 
511 
515 
517 

TO IMPLEMENT CONTINUOUS-DISCRETE EXTENDED KALMAN rlLTER 
ON RIYER WATER QUAL ITY PROBlH 
WITH A) FIRST ORDER NCNlUOR PROCESS DYNAMICS 

BI LINEAR HE ASUREHEHT In"l CS 

REAL ID,KK.KKT 
DOUBlE PRECIS 10 N XHllG .ZHDE. CH tG.U HOG 

COMMONI 81/G(2 0,'20 •• Q( 20,2C) "Hh( 20,,2 O),.R (20. 20),. XX(Z 0,.1),.P (20. 20), 
X II 20.1 I. [0 (20. 20 I.tHT< 20 ,20 I .PHO Q( 20.201.p I( 20 ,201, 
Ff( 20,,20),F' F'T (2 e. 20 1f, DU HI (ZO. 20). PPHOO( 400, 1) ,HelO .. 20)' 
UHOG( 20 I. DUMINI (20. 10" U( 20, I)' 
OUHZ( 20,201 .OUM 3( 20 .ZOI .KK( 20.Z 01 .KKI (20. ZO I, 
Z(la", 1) ,RH$ (400.1)" PPC4 00, I), HOG( 12) .. Xl -'BEL (12) ,. 
YLA anI 9 I .A (I 04 ~ I .fPI 1001 .1 H( 1 DOl .YU( 1 DOl • Y UIOO I 

COMNONI BUX(I 00 I. r( 20.1 I. RKU .400" COOL SH6 I. PL< 2 O. II, 
XHOG( 20" 2M OC (2 0 I.np 120.100 I. YrM( 20.1 DOl • YVU 12 0.1001. 
nL (Z e. 1001. UM U (Z Cl, UM [N (201. YVL ABE( 20 ,91. 1M IN I< ZO), 
UAXI (201.C (zo. 11.1 [PH 41 .CHO G( ZO" CODE (1 a I.R HI H( TO I, 
Jour. JPlT "JT,.NN" T ,NC,N.LI' or,R liII ,NNN#l PI "I au h NT S,,JT 110 
JT2,.K.RH1,.R"2,YEl,R~,.rl.T2,.IJK,.NPlT,.QST",.~R~,.NPlTl,.IQ 

COMMON/B3/QIN(ZC.ZO.TOI,RIN(Z(.ZO.TOI.OUH[NI20.TOI,KR(H(TOI.[X 
COHMOHI B4IPBI (Z 0, ZO I, os TMS T U (OJ. Xl ST I! Z. 65 01 ,VEL ST <3 00), 

XXS f( 12,300 hPPBI (4:00,,1 h KthRHS IC ZO~l h 
P 10G( ZO I. POG( 20 h If~, HXNK ,r.SEZ(Ze, II ,NMS TS 2, 
IOSJ4TH, YPL( 20.20),Y UH20, 70), fHSE(2G~ 1) .N!o!S tS" 
P 81 MOO( ZO.z 01, R KI<4 .20 I ,x S( 20, I "PO HOO( ZO ,201, 
PBIl< 20 _20) .RIN';( 20 .20') ,.PSI (20.20)" PS(20" 20)_ XS 1( 20' .. 11. 
XB( ZI).I I, xa I( 20, I ,. ~HST! 300), XPMOO( 20. [ I,' T STerol. 1 T. ~I 

COHMON/B5/PSI([Z. tZ,3001 
COMHONI B6/P IS H 12.12, !OOI 

DATA COOlST/'R."'M1,.1P'~'Ef"'Ct,. '/ 
DATA 14/10"5.' '/ 

or SYSTEM/NU_SER Of STOTES N:. [81 
.IH ,35MNUMBER OF OOIE~VAalE OLTPUTS Lo.ISI 
.IH d5HPlOI INTERVAL IP[~.[61 
.IM .35HPRINI INTERVAl lOUI~. 
.IH ,35HINlTIAL liME (DAYS) 11~. 
.IH d5H[NlTIAl RIVER "ILE~ RMI:.fS.V 
.1" .35HINITUL STREAMFLOW ICru QSIH:.r6.21 
.n ,35HCOMPUIATIONAl liME STEP (OAYSI CT~.f3.41l 

FORHAT< IHO. 20HCOEFrlC IEHI VEe ICR CII 
FORHAT(IHC,Z2HV-C OF PROCESS .OlSE QIl 
rORHHe IHO. 21HOSSERYA liON .AnIX HHII 
FOkHAT( IHC.Z6HY-C OF DaIERVAIIO. NO[SE RIl 
rORHAT( IHOd2HIC FOR ERROR COVARIANCE HATRIX PI) 
r OR HA f( 8r 10 .0 ) 
fORP'ATClHl,?7H[t.{It14l CONClTICNS TIH[,n~.",.7H fHhf8.51 

.1 H .. 5 O( IH") } 
~16 
519 

529 
530 
531 

FORMAHIOA8) 
FORHAn IHO~27HIf. fOR ESTIf'A1E Of sr.er( XXI) 
rORMAT( IHO. 5HY~IN III 
fOftMA T( 1HO" '3ti'fH U. 11} 
fORHAT(Al,.f9.C, 'F 10.0') 
fORHATeIHO,19HcnDE NOI RECOCNISEDI 
fORMATC1H .. Al~f9 .. 2~IGfIO.l/lH ~10X,10flO.l) 

53" 

535 

536 
537 
536 
539 
540 
560 

561 
562 
563 
564 
565 
STO 

571 

C ••• 

15 

20 

22 
23 

A6 )) 
IS T ~S TANTANEOUSl 

.Y COHPLETElY HIXEO/) 
rORMAICIHl,46HRIVER SYSTE~ LAYOUT. HYORAUllCS AND lO'CI"G DATAl 

.. It! 1'48(lH.» 
rORMAHIHO.r6HERROR COVAR[ANC! MATRIX ArTER POlh! lOAC IS INSTA~T> 
.~EOUSLY CQHPLETEL Y H[ XEDI I 

F'ORHAH IHOJI 2X,,8HU-VEC IOR.IO C2 h A81/111 ,.10X~ 10(2:( • .tiS)) 
rORMAHIH ,9X.!HU.lorI0.3/1h .IOX,IOflO.31 
rORMAHIHO,IOHHEAS YECIR,loeZX,A81/tH ,IOX,IO(ZX,ASII 
F'ORHAHIHO',.10HPTlD & DIV,,7Xd ... crs.9(2X,A81/lH ~lOX~10(2)(~Aa)) 
fORMAHIHO.IlHSINGULAR R['VII 
F'ORHA T< 2H02 ~3HIT:, I It,. !HRM;,. F'1 (. 5, ~H VEl.::,f 10.S .ZHQ =. F 1 c. 'j~ 2HK=,. 

.15,6HCOOE' ,All 
fOR~Af( lHt.214,rl0.S, 14,Al) 
fORHAT(lH "I2,,[5,,12~4f9,.S~2(2),4FS .. '5») 
fORMAT< 31 •• 6rI0.ll 

lH ,6HMEASTS,10rIO .. 'j) 

15,8f9." 
FORMAf(IHI. 119" K IX [ XI PI xx 

• XB PB XBI PB I XSI PSI XS 
• PSII) 

FORMAHIHl.69HHEAN SQUARE E~R(R (OBSERVED - fILTERI 'SE(NHSTS),' 
.SE(NMSIS/Z)' 

INPUT-INITIAl 

READ 500.eHOGCIJ.I·ldZI 
READ 500. CXLA BE L< 1l'[=1.t21 
R(AO 501, th l, IP r,. lOUT ,KR .. IC ,N"'" I JK ,NPL r .. 10,. I Q, hX NK .. I CS MI H" 10 CPlI ~ 

K",lPS,.~HSfS2 
REAO 515,.Tl~R"I .. OT,.QSTM 
PRINT 502~( HOG( 0 .. 1=1,.12) ,~ .. l ,IPI,.10UT .. T1 ,RMhQSIH .. CT 
READ 501,(10PT(!),.[=1,.4hlOprC,IOPTR"IoprPl 
NPll1=NPU+1 
00 15 1=!.NPlf! 
REAO 500'" (YYLA6E( ["J),J=1,9) 
CONTINUE 
REAO 518,,(XHOG(1)~I=1,.NPlTl} 

(lHOG(I)"I=l~l) 

PR[NT 522 
CAll 

523 

CYHI NICII. 1= I,NPLf II 

MOUT (Y~AX l .. NPl fl .. l ,,2 "X~O (, XHOG ) 
REAO 518,,(CHOG(U,.1=1 .. [C) 
HAD 516,{UHOG([I.t=I.!U) 
PRtNI ')08 
CAll MIN(HH,.L~~hl0Pf( U~3.l"'O(~XHOG) 
Ire IOPIQ."E.O)GOIG 20 
PRINI 507 
CAll MIN(Q~~,~"TOPf(2)"3,)tir::G,XHOG) 
Ir([OPIR.NE.JIGOTD 25 
PRI~T 5C9 
CAll M[N('l,l~l, rOPT( 3J. 3,ZHC1j,ZtlOG) 
00 23 I:I.L 
00 ?2 J=lol 
RINve I.J).RU,Jl I-' 

0-­
+.' 



,-

CALL "INVSRIHINV.L.)) 
Ir("3S(t) .. LT.l .. 0E"4~)rRTNl 'Sltt 

2'5 READ !t'l.(X)H 1.1)'·r=1 ,10 
CALL "" N( F. »"N. I()PT( 4)" (. Jt-tOG , U\O fa 

C ••• INPUT-RIVER STSTE" 

C 

C 

~S 

10 

11 

73 ,., 

SO 

Ill' 

" 89 

t: ,. 

u 
c 

PRl"r 5J4 
P'tt Nf 532 ,,( CtfOe;( I) .. IllII1 .. Ie) 
PRnH ~'6..(UHOC.{I hI-l .. IU) 
PRINT '.>n .. ()(HOGfll .. r='hN) 
PRINT 'i 3&,,( 1 .. 0:;(1). I"" ltwL) 
<=0 
Kl=O 
1:1(+1 

READ ~29. CODE 01:), RM IH(K). (DUM INn.I() .. 1=1.1) 
IHCOOElKI.EO.COOLSTlIII:;CIC 10 
IFICOD{CKI.EO.COOLSf(21IGOTD eo 
IFICOO[(K).EO.COOLSTI 3))6CIO so 
lfICOO£IK).EQ.COlIlST! 411GCTO 100 
IF(CDDEIKI.[Q.CDDlST('IIGOTO S5 
PRINT 530 
STOP 

• IIEACH 
II'(IC.GT.UREAO SIS.I,CUMIN( 1 ••• hl=8.ICI 
PRI NT 531 .COIlEU), RNn! KI • (DUUN! 1 •• 1 .I =1 .1 CI 
READ ~15.IDUIIIN1CI.KJ .1=!.t~1 
PRUT 531.CmtMUIIIoKI>I= hlul 
lFClOPTQ.iIE.'lIGOTO 77 
PRIMT 501 
CALL MI"(Q.N.N.IOPT(21.3.rHOG.~HOGI 
DO 79 IzI.N 
DO 78 J-l.,. 
QINC!.J.KI·Q(I.JI 
COMII HUE 
tONTINUE 
11-11:1·1 
KRtNeKl I". 
GOTII '5 

• MEASUREMENT 
IFIL. GT .1IREAD 515.( OIlMIM II .K1. I- 8. Ll 
PRIIIT 53hCIlOUl(hRMI.flU),(OUUM(I.') .I~I.L) 
II'CIOPTR.II£ .tlGOTO 87 
PRUT 509 
tALL III( R.t.L. IOPIU I. 3.1HOG .1NOG) 
00 89 I-hN 
DO os J-l.11 
R INCI.J.K I-ftC I.J) 
COIITUU[ 
tOMTINUE 
60TO 65 

• POINT lOAD >, 

If'( IIPLT.6T .rIRE All 515 .CDUPJ"(.l.KI.I -8.( IX 11K -III 
PRIIT 531.COOECKI.ftHlIIK) .uoNun. ~"I "l.eNUK'I)) 
1t'<IOPTI'1..[1}.0IGOTO·l>5 ." 
tALL MIIUYPL.IIltIlK. IUK.I. !.·XHCG.XNDGI 
00 93 l-l.IIXIIK 
'fINChK)-'Il'LC b U 
tOUUUE 
&010 65 

• D l'fEll 51011 

95 PRINT S3hCOOEIU.R~IN!KI.OUMIUI.K) 
QOTO 6") 

C • END POINT 
100 Kf=K 

K IT=K I 
PRINT 531.rOOE!K~.R~IHU) 

INITI AllSAT!ON 

• IDENIITY NATRn 
DO 140 I:I.N 
10CIdl=l. 

I~O CONTINUE 
C • TRANSPOSE IIH 

CAll MTRANS(HH.HHT.l.~1 
NO=HNII-H 
T:II 
JT=1 
HIII=,.*. 
NMSTS=O 

• STORAGE AR~AYS 
IIIST! 11=1 
R"Sle lI=RMI 
QSTMSI( II-OHM 
VEL SH1I- QST".86~ 10. HOUM 1M 111.11 .s zan> 1 
X45~XXC 4_ l)+XX.( t). I) 
XIS H NPl T I. II "HS 
nSTUPLTt.II"US 
PS T (NPl It " .. PI.. Jl,.1 )·PC 4 .. ,,) .P(5 .. ~ h 2* P( It. 5) 
PIS T( NPlT 1,. NPl Til 1) =P(I.,.4 ).P« ~,,5).Z.P U ... 5) 
DO ISO l'bN 
lUSH 1.Il-XX( 1.11 
XXSHI.lI-XXI!.ll 
DO 14l!: J= 1" iii 
PSTU.J.l)·P(I.J) 
!'IST( 1o.l.II"'(I.JI 

14; C DNTI NU E 
150 CONTI HUE 

C·" EXECUTE c-o EKF UVER R"1 TO R_2 

C ASSIGN INPUT-RU£R SYSTEM REA.tr FOR lXECUTlCN 
~=O 
Kt*O 
JTZ=I 
IINZ=RIII 
RM=RMI 

165 RMl=RN 
HoT 
1(;:;".1 
IfCCOllECKI.EQ.CODLST! 11 IGun 110 
RHZ=RMIHU) 
I f(CODE(K I. !Q.CODLS f( Zl IGOIU 180 
II'CCODEIKI.[Q.COOlST(!IIGOTO 190 
GOTO 215 

C • REACH 
170 DO 172 [~1. IC 

CO.II=oo"11I( loKI 
112 CONTINUE 

, 00 115 [-bIU 
un.1 "OIlIllNt(IoKl 

~ 

'" Ul 



113 

174 

CONTI NUE 
!FIU.E Q. Il W~ IT £I 6.11 CODE I K I. JTh r. All .Ost II. U15. 11. VEl 
IrlK. EQ.IIGOTO IT, 
NTSTUI-"'STIK-n 
K1*"«1+1 
tFUI.EQ.Jl" GOTO 165 
Kill! IS K '#ALOE FOR IlEACH CH_R,CTERISTICS 
KPII=KRCHIU'II 
IFIK.ME.IIGOTC 165 

• INlTlALtSE DEPENDENT WAIIUBLE~ & PRINT INIrUl CONDITIO~S 
IFIIIO.GT.,ICALL EQNDEPIXX.P.C.DTI 
PRINT 511.IIoRMI 
PRINT 519 
CALL MOUTlU.NNN.I.2.XHDG.XMOGI 
PRINT 511 
CALL HOUTIP.NNfI.NNN.3.XHDG.XH£GI 

C • INITIAL ISE PLOTTING VARIABlES 
175 IrlMO.GT.(lCALL EQNOEPIu.P.C.DU 

Xf! IxO. 

11& 

US·XX( •• \l.UIS. U 
XXINPLn.llaU'5 
PfMPlll.NPl TO=P( _. U .P( 5.5 )+2*P(.,,. 5) 
DO 11e l'bHPlTl 
TYII(IrII"XH 1.11 
TY'(I.l)3.)(["I) 
nun .11' XY 11.11' SQllf(PII .1)) 
HLII.I I' ~X(J.I I-SORT IPI 1.1 JI 
I FUUI b II.GI. H MAX( IIIOIIAX 111* HMII.\I 
IfUYUl10 II.GT.YTMAXlIIIYTMAXIlI'HUI 1.11 
I renNII.II.LT.n", NI II HT" INIII.nlll 1.11 
IF(YYUIoII.LT.H~INI IIIHIlIN 11I-YYLIl. \l 
CONTINUE 
GOlD 165 

C • MEASUREMENT 
180 00 16~ t~l.l 

l( 1.1 I. DU HI 1111. n 
165 CONTINUE 

GOTO 215 
C • POINT LOAD 

190 on 19~ 1*2,. (NXNK. U 

195 

t 1=1-1 
Pl( 11.1 )=DUHJ N( [.'0 
COIIT! HUE 
QPl,.=DUM IfU l.tO 
IHIOPIPL.EO.OIGOTO 215 
00 20~ Jz ito NXNI< 
YPL(I.Il~YlNI I.~I 

205 CONTI HUE 
C • NUMBER OF TIME STEPS 

215 VEL=QSTM.e640e.IIUC7.lIoH80.1 

217 

220 

225 

T Z'T 1'1 RM I-RUI/VEL 
NTS=UI X«H-TlllDTI 
IHNTS.GT.OIGOTO 220 
IITS f( ~I'N TS TI K-ll 
IFCCOOEIKI.EQ.COClSn21IGCrO 225 
HICOOECKI.EQ.COOlST< UIGCTO UO 
IHCOD(CK I.Eij.COOlST< 4'IGCTO 400 
IHCOOEU).EQ.CODlSH511GOIO ~60 

.JTt-JTZ.t 
GOTO ZIG 
JT I=.JT 2 

Z30 CALL SCDEKF 
"TST( K1-JT2 
IHCOOEIKI.EQ.COOlSH31IGOTO 240 
tHCOOEI~I.Eo.tt,nlSrI511r.'~ro !60 
IFIK.EQ.KTI~ltTO .co 
GOTO 165 

C • CONPLETELY NIX POI_r LOAD 
240 QSIMl.QST".QPL 

00 250 I-I. NXNK 
XX( 1.11=1 OS T"'XXI I. II+PlI I. J) 'OPLII OS TMI 
P II.II'PI to "o( OS IN/OST"""2 "Pl(! .1 I' IQPL/Q~I NII"2 
00 24'5 J::hNXNK 
IFlI.(O •• HGOTO 245 
P(l.J).P( {!If J) *( QSTH/QSTH1) •• Z 

2.5 COMT!IIUE 
250 CO"" NUE 

QSIM=OS 1M I 
QSTNSTlITl=QSTM 
I FlIO.E O. IIwR ITEI 6. II CODE U I. JT2. T. R'hOST M. OPL 
X.5=XXI •• II'XXIS.II 
XHNPll h 11=145 
P(NPltl.NPLTI1::P( •• 4)+P(5.5).~*P(4.5) 
IFIIPS.EO.OIGOTO 210 
PRINT 533 
C_Ll HOUT<XX",N.h2.XHEG",XHOU 
IFlIJK.EQ.IIG010 ,10 
PRINT 535 
CAll MOUHP.N",I'4",!",XHOG.XHOG) 

213 JI=JT'1 
J~LT=JPLT'I 
XlJTI=~"I-RM 
X45-=XX( 4,. U+XU5" I J 
XUHPlf 1" U=X4'S 
P(M'l T1 ,!CPl TI )=P( •• 4) .P(5,.5 h i:*P( 4.~) 
00 l50 l-toNPUI 
XXST({"[T)%XX([,,tl 
PSfll.I.!TI=PII.11 
fYP(1",JT)wXx( I,. U 
HUH .JTl .X Xllo1I+SQ~H PI 10 III 
Y YL( I .JT) =X xc h 1) "SQRT( P( 1,. 0.) 
fYM(ll1.1f)*X'(I .. tt 
IFI HU( I. JTl. ~I ."HAX( I II lHHI !I'YfUII.JTl 
IFIYYlI t. JTI.U .TTM INII 1I1HI M II=HlIl.J Tl 

15) CONTlNVr. 
GOTO 165 

C • SUBIRACT DIYE~TED FLOW 
16) OST"~QSTH.OU"IN(l",~) 

IFf IQ.E O.II.~ IT'( 6. /) CODE IK h JT2. I. 11M .OST H. OVMI N( 10 ~I 
GOlO 165 

C ... PlOf R(SULTS 

400 IF([OO~LT.fO.OIGOTO HO 
00 450 f=t",NPlfl 
00 41 0 J= 10 JI 
YK(Jl=HMCI.Jl 
YP<JI=yYP(f.JI 
TU< JI=HU( I.JI 
Yl(JI·ynl!.JI 

410 CONnNUE 
YMAX=fHAX l( I) 

...., 
0\ 
0\ 



420 

TNlM- Til 1111« II 
InTTMAXf 1I.6T. YIIAI""AX''''U( n 
IF(TTIIIM(II.LT.TMIIIIYIIIN_""I'CII 
00 ~O J-l., 
TLABELI JloTYLA8E( 10 Jl 
CONTINUE . 
IF (I,n. EQ.IlGQTO 42~ 

C 0 PLOT PREOltTEO VALUES. SlHOIRO OEVIAT 1011 - C 
CALL Pll(OCI Jr. •• I,U 1l.x(JTI"UBEL.YU.'"IN.YMAI.YlAe£l,~DG.-I951 

C 0 I'lOT I'REO IClEO YA'lUES - STUD IRD. DE YUlIO. - t 
tALl 'l3UC JTo A ••• 11 11 .x (JTI .XU8EL. YL .f "' N. 'M AX., U eEl. ~DG. -1!15 I 

C • PLOT MEASURED VALUES - M 
425 CALl Pl3& « JT. Ao X ,I( 1l.I(J TI .ILABEl. YII.f MI N. '" AI. YlA BEL. HOG. -21t I 

C • Plor UPDATED ST UE ESTIMUES • E 
430 tAll 1'l36CI Jr. A ... X( lloUJ 1I .ILABEL. YP .,"IH. 'MAloY LABEL. HOG. 1911 
450 CONTI flUE . 

t ••• NEAll SQUARE ERROR (OBSERVED - FILTER) 

460 IF(JJK.[Q.lIG", 0 4S0 
NIIS=NIISfS-NIIS '~2 
00 410 l-lol 
FIISEI r. lI-F IIS[( t. 1111 ~"SU-II 
FIISE211.II-FMSEtll.IIINIIS 

410 CONTIIIUE 
pRlftr 511 
talL IIOUT( rIlSE.l. 10 2.ZHDG.ZHDEI 
CAlL 1I0Uf(F IISEt .l.I.2 _ZHOG. ZHCG I 
PRlftT 509 
CAll MOUT(R.L.l.3.1HOG.ZHOGl 
PRINT 507 
CALL MBUf(Q"N.thl.XtolDG"XHOGl 

C·" SMOOTH EST! MATES 

480 PRINT 570 
IFlIOSMTH,EO.OIGOTO 490 
C All SMOOTH 
GOTO 499 

t ••• PRINT SUMMARY or OUTPUT TO LIME PRIIlTER UD DISK IF rSTlH'HS HOT 
C SMOOTHED 

490 K I2U 
11:11=)1;' 
DO 497 ITT- t.JTl 
IT=JTl-lTTt 1 
COD=CODLST!61 

491 If(NTSJ(~l).LT.ITIGOTO 492 
COO=CO~EUll 
KII-KI 
01=.1-1 
GOTO 491 

4n IX=4-"'3 
PRUT 560.1 To RHSTllTl.YEl SHI n .QSTKS I( IT "KI 1> CO[ 
WR ITE U W. 5& JlII.IT. R" STU U ,~I1.COO 
IF(tOD.NE.COOLST(lIIGDTC 4'3 
PRINT 5U.IOO_IN( 1..1 1l.1=t.1I 
NR lTE IKW. 56SUIIo IOU" IN( I.K 1110 1= I.ll 

.93 00 49! Ia b" 
P R f fliT '5 E2 _III. J 1 • t X, I .. w: 1 Sf ( I ,. t )I) , S OR T ( P1 Sf (1 .. I .1 T) ) .. XX Sf ( t , t T) .. 

495 

497 
499 

SQRHpSTlI.I.!T)) 
WR nElU.S6 UKII. IX .1.I1S1I I. Ill. so RT (PIS HI. [, J 

SQRH PSt! 10 I. IT II 
CONTINUE 
I:'Hl 
PRIMT ~ E2 .'01,1 X.I,PlSl( .. ,5 ,,1 ThPST(4., ... I') 
III IrE (tUh '5' ]utJ 1, IX.I,P IS f( 4" ~. IT ).PS T( 4.'5, IT) 
CONTINUE 
LOCK KN 

STOP 
END 

"~d'( t· iT). 

t-' 
0'\ 
-..J 



c ..... • 

50l 
504 

516 
520 
521 
527 
526 

Ct •• 

50 

60 

,L'i"r: Jf 1 ~.c- ,', ~r 0(1 

r.r:"T:·~.,,~IJ',·r.['l::'~lT. lXr:_t,Cll I'AL~.\\! r!lT[R 

'l r Al 1.1. PI ,{, !';( r 
f)':'Pl!:. PHI,!~" .<H'1G-iH[JC.ClICC,\.Jf.lDG 

eliot '1f; "iI .~ 1 I L ( ? 0 .. ~o ) , Q ( 20 .. 2 C ) .. H H20, 2 0 ) .. q <2 'J .. 20 ) .. X X (2 C .. 1 ) , r ( 2 a • ?v ), 
t. l( ?:) • 1 ) .. 10 ( 2 C, .. 0 ) , t- H T( 20 ,2 [)) .. P 1'10 D ( 70,2 I)) , P l( 2 ~J .21) ) , 
F" r ( ?O, 2 0) .. F" F" T <? C .. ?O ), CU I'll (7!) .. ?C ) .. rp ... o J( 40 C, 1) .. tH 2 O,?) ). 
lJl\)S(20),i1U"'I~1 (2C, ie),'J( 20 .. 1), 
[)UI<I?( 70,2',)) ,DI.'1~( ~O ,20),r(1'I.(~0,20) .KKT (20 .. 20), 
1 (7'). 1) .. R Y'i (4 CO • 1 ) .. FP (40,) .. 1 ) .. 1-10 G l 12), XL .ftfHL (12) , 
Y LA 9[ LC q ) , A ( 1 C4 ~ ) , Y PliO 0) .. Y 1'1 ( 100) , Y U ( 10 C) , Y LC 100) 

CO fo! 1'10 f,j I B 2 I K ( 11)0 ), F ( 20, 1 ), R K (4 ,400 ) .. CO DL S T (6 ), PL (l A .. 1) .. 
XHJr.C 20), ZHOG(lC) ,YYP(20, 100J .. YY~(?!), 100) .. YYU (20 .. 100). 
YYl (2C .. 101) .. YYt-I.n (2 () ,YYM IN(20) ,YYl A8[(20,9), YM INl(?O) .. 
YMA)'1(20) .. C(20 .. 1),ICPT(4) ,CI-IOG(20) .. COOE(70) ,Rl'ltN(70)r 
J au T .. JP LT , J T .. tm .. l , N C, tt .. L, 0 T , ~ HI , N NN .. 1 Pl. I au T .. NT S, JT 1 .. 
JT2.K .. RMl.RM2,VEL .. P."',Tl,T2, IJK .. NPLT .. QST "1 .. KRt-! .. NPLT1, IQ 

COM 1'10:'11 B i I Q [N ( 2 C .. 20 ,7 0) .. R I h (2 ( .. 20 ,7 0) .. au MIN (20 .. 70 ), K R (H ( 70) .. I x 
C Ofo!MO NI 04/P I) I (2 C, 20 ), as TM S T< 3 (0)' Xl S T ( 1 2, 65 0 .. V El S T ( 300) .. 

X X S l( 12 • .J 0 0 ) .. PP e I (4 (0 • 1 )., K W .. R HS l( 20.t ) .. 
P 10 G( 20) .. PO G C 20 ), IP~, t-ox M .. F MS f2 (20, ; \ , ~ MS TS 2 .. 
lOSIoITI-I. YPL( 20,20),Y INC20 .. 70) .. FHSE(2(). 1) .NI"S TS. 
PBIMOO( 20,20),RKl(4 ,20,XS(20 .. 1 ) .. PBMOO(20,20) .. 
PB1 IC 20 .. 20) .. RIN'i( 20 .. 20) .. PSl (20 .. 20) .. PS(20 .. 20) .. XSl( 20,1), 
x A( 20,1 ) , X B l( 20 .. 1 ) .. f M S T C 3 00 ) .. 'CP HO D( 20 , 1 ) .. T\ T S T (7 ()) .. IT .. K T 

COMMON/B5/PST(12,12 .. 300) 
COHMOh/96/P1ST< 12,12 .. ~OO) 

FORMAHIHO.20HOBSERVATlON VECIOR 1I) 
rORHAHIHO,12HTIHE STEP NC .. I5,9H TTHE .. F8.I",7H RI'I .. F8.3/1t-, 

.4 9( 1H") ) 
rORMAT<lHO .. 23HHIi .. Pl.HHT+R IS ~INGUL"R/) 
FORMAHIHO.JlHUPOATEO ERROR CCVARIANCE MATRIX PI) 
FORMAHIHO.26HUPOATEO ESTI~ATE OF STATE XXI) 
FORMAHIHO.J6HPREOICTEO ERROR COVARIANCE HURIX PIli 
FORHAH IHO. lOHPREOICTEO EST IHHE OF SIAIE XII) 

TIME LOOP 

I p. 0 
JOUI=O 
J PL I = 0 
IT=JTI-I 
IT=IT'I 
[F(NIS.HE.OIGOIO 60 
[f([JK.EQ.OIGOTO 300 
GOTO 260 
TI=T 
T.: T +0 T 
QSTM:zQSTH+U(S .. 1 ).VELtDT 
RM=RM-VEL.oT 
IF ( [Q.E Q. IlWR ITE( 6.1) CODE (K I. IT. T.R H. QS TM. U (5.1 I. VEL 
RMSHTT)=RM 
QSIlISH IT )=QSTM 
VELST (I TI=VEL 
JOUT=JOUT'I 
JPLT=JPLT.I 

C 
C 

120 

125 
110 

140 

14l 

145 

ISO 
160 

110 
160 

SIAIE ESTI"ATE PROP'G"IG~ n 
Xl::XX+INrEGRAUTT TO T) OF F 
IrUJK.~E.1)'::ir.Tr:! 14'5 
TM:JJ~ Il 
00 120 1~1.' 
XPHCD(J.I)~XX(I'[) 

CONTIr~UE 
00 150 KSEL;I,4 
lX=4 t IT+KSEl-' 
CALL EQNl(XPH'11,U,C,f .. h,VEl) 
CAll RUNG[(KSEl,N,QT .. f,XPf'O[, THCD,T I,XX .. RIH) 
00 125 I~I.N 

XIS T( I, I X ) = X? "'.0 0 ( 1, I ) 
XXST( I, IT )=XP~OO(T, I) 
CONIUWE 
CONIlNUE 
00 14C f=I.N 
XHI .. I)=XPMOOfI,l) 
CONTI NUE 
00 14l I=I.~ 
XX(I,1)=Xl(I,1) 
CONIINUE 
GOIO lOO 

ER~OR COVARIANCE PRQP'-GATI0h PI 
P1=P+INTEGRAL(TI TO T) CF (Holp+p .. rfT+Q) 
THOO=II 
00 160 I=I.~ 
XP~OO (1 .. 1 )=XX (1 .. 1) 
00 150 J= 1 .. to: 
IJ=(I-1 )tN+J 
PP(IJ .. l)=P(I,J) 
PHOO( I,J)=PCI,J) 
CONTINUE 
CONIlNUE 
OC 210 KSEL=1 .. 4 
IX=4"IT+KSEl-7 
CALL EQN2(XPMOO,U .. C,fr .. t-o .. 'iEl) 
rF·p 
CALL HMULT(fF,PMOO .. OUH1 .. N,N.N) 
P .. FfT 
CALL HTRANSCFf .. FFT .. N .. N) 
CALL MHUL T< PHOO .. f FT ,DUM2 .. t.; .. t., T\) 

t OUM.J=-FF.P+P.FFT+Q 
00 180 1=1 .. 1<4 

00 170 J=I,N 
o UI1 HI .. J) =0 UI1l( I, J) +0 U~2 ( I, J» t C (I ,J ) 
IJ=(1-1 ).N+J 
R H S ( I J. 1l = 0 UM 1 ( I. J ) 
CONIINUE 
CONT INUE 
CALL EQNl(XPHOO .. U .. C .. F,~,VEl) 
CALL RUNGECKSEL .. N .. OT,F .. XPI"O[,lHOO,T I,x,(,RK1) 
CALL RUNGE(KSEL .. NN .. OT,RHS,PPM(O,lHOO,TI .PP .. RK) 
00 200 I=I.N 
XISH I.IX)=XPMOO( 1.1) 
XXSH I. I I )=XPHOO( 1.1l 
DO 190 J=I .. N 
IJ=(I-l ).N+J 
PMOO( I .. J) =PPHOO( I J, 1) 
P1ST(T,J .. IT)=PMOO(I .. J) 

r-' 
0-
00 



190 
200 
210 

220 
230 

C 

240 
250 

C 
C 

260 

PS III.Jd TI=PMODC!. J) 
CO~TI "UE 
CONTINUE 
CONT[ HUE 
00 no 1= I.N 
Xl( I .. U-XPMOO( [",1) 
00 220 J= I. N 
PHl.J)-P"OOCI"J) 
CO~TI~UE 
CONTINUE 

SKIP UPOHE IF HO OBSERVAlIOH AYAIUBL( 
00 250.1*1.11 
lXI 1.11 =X I( 1.1l 
002'40 J-l,.fi 
P!{'JI=PI(J.JI 
COHTI~E 

~ALHAH GAIN MATRIX K~ 
KI<=Pl*HMT >It, HH*Pl*HHT+ R) *.-1 
IFCIJK.EO.IIGOTO 505 
CAll M~Ull(H~,P1Jl'DUKl,.lJl'N,N) 
CAU NNULT<OUNI.HHT.OUHI.L.~.ll 
CAll KAOSUBCOUH1.R.DUKl.l.l.l) 
CALL HUVSR(OUMI.l.OI 
IFIABS(O).LT.I.CE-45IPRIHT 51E 
CAll MMUlTCHHT.OUM1.OUMJ;"h.l"U 
CAll HHUl TCP1,OUM I.KK.H.thl) 

C SlATE ESTIMATE UPDATE xx 
C XX=Xl+KK*CZ-Hh H.:HH*Xl 

CAll KHULf(HH'Xl.H.l.~.1) 
CALL HAOSU8(l .. H.OUK1"l,1.~1) 
CALL HHULTCKK,OUHl.OUl'l.thL,l J 
CAll HAOSUBCXl.ou"tt.XX,N. hU 

C ERROR C OUR IANC E UPOATE P 
C P=(10"'KK*HH)-'Pl*C IO""'KK*Hti)T+KI\*RtotKKT 
C KK-R.KK f 

CALL HfRANSCKK"Kl<. hN"l) 
CALL HKUlTCR,KKhOUHl.L,L .. N) 
CALL HHUlT(KK.OUkJ.OUKl.N.l .. ~l 
( lO-KK*HtlH 
CALL HHULTCKfC.HH,OUHZ"N.L"N) 
CAll MAUSUa([C,OU~2.0UM2,N,N,-1) 
CALL "fRAhSCOUH?"OU"3,h,~) 
CAll HHUlHP1,OUH1JlOUM3,.tht\"N) 
CAll MHULf{OUM2,OIJ"3,fJ,t,.,~.~) 
CALL MAOSUBCP"OllHI"P"N,N,S} 
00 290 1::: l,,~ 
XXSl( I, IT )=xxn ,,1) 
00 2bO J=l>h 
P5T{ f "J.( O;PCl ,J) 

280 CUN n.ur 
290 COHTI our 

CALCULATE MrA' SQUARE ERRCP «(eSERVED - F!LTeRI 

fMSf ;.FH$[.q ;'->iHtrX X) tr1l> 2 

CALL MMUlHHthXXJI'OUH1,L,N,1) 
CALL HAOSUB(Z,DUHI,QUHt,lJl'l,-l) 
00 295 I=I.L 
FMSE( l",t)=FHSE(I .. 0+OU"I(I.,.1)"2 

295 CONTINUE 
NNS TS=NNS TS-I 
IF(NHSTS.LT.NHSTS2)GOTO 5eo 
00 298 I=I.L 
FHSE2(I ",,1 )=FHSEZC III' U .DUHIC r, U .... 2 

299 CONTINUE 

C ••• CALCULATE DEPENDENT VARIASLES & THEIR N£H SQUARE EnRORS 

300 IF(NO .. GT.O)CALL [ONO(PCXX.P,C ,OT) 

C ••• PRINT RESUlYS 

305 IFIIPS.EQ.OIGOTO 301 
IF!NTS.HE.OIGerO 310 

301 IF(!J~.£Q.O IGCIO 336 
IF(JPS.EO.OIGOTO 130 
GOro 325 

310 1fT IT.EQ.JT21GOTO 315 
IFCJOUT.LT.IOUTIGUTO !30 

315 PAINT 50 fulT.f.RK 
JOUT·O 
IFIIJK.EQ.IIGCTO He 
IF(COOE(KI.EO.COOL5r(21.A~C.IT.EQ.Jr2)GOTO 320 
PR!NT 521 
CALL HOUTCP.NNN,NNN.3 .. XHOG .. )"HCG. 

HS PRINT 528 
CALL Mouro:x.NNN, .,Z .. XHOG.Xf.OC) 
SOTO BO 

320 PRINT 521 
CALL "'OUr(pl,~.'i .. J .. XHOG.)I,HC(j) 
PRIN' 528 
CAll HQUT(Xblbh2 .. XHCG,XHOG) 

525 PRINT 50] 
C ALL ~ou r C 1.L rl .. Z ,ltU')(i" lH CG) 
PRINT 520 
CALL M'O\JT(P"NN~.NNN,3.XHO{;,,)"Ht(j) 
PRIMI 521 
CALL HOUTCXX.NN~, 1 .. 2,XHDC.J~DC) 

C ••• STO~E RESULTS FOR PLOTT lOG 

330 IF( IP.EO. IIGOTO H6 
IF(I/TS.(Q.OIGOTO H. 
If(IT.EQ.JT21GOTO 335 
If(JPLl.LT.IP[)GOTO 400 

355 
35. XI 

JPLT=O 
X45o;XXCft.l)+)(XC5.1) 
XXlNPLf I. !)=H5 
P (t.lPL T 1 JlNPL Tl ):ep( 4,.,,) *C XX CIt .. l )fU 5) •• 2+ PC '3,50).( XX <5,,1 )1 1(4'3)'u 2 
00 350 1·1. ,PLH 
Y YP C I" J T) =X X( X. t) 
Hun. J TI :XX! [.II+S QR 11 PC I, Il I 
nUI.JTl=Xx![.!)-SQRT(P(I,1)1 
YYM(t,JT);XX{ t. U ...... 

0\ 
\0 



%F(r;r)OE()(} .. hE..C·)OlSf(2}.CR.fT~"'E .. .Jl?)r'flTC 31t0 
If<!.[~ .... OR. r.£·).~IG[lO !H 
(F(I .. .[:.l.IiPt,rl'GGlr. 337 
I ! 0 I 
1 F ( I • 01 .6)! I:: I" 1 
Y yw ( 1, J r i = 1 ( t 1, 1) 
lIOfO B'/ 

H1 1'HltHPLfldT);;;I.(luli 
B9 rF(HH!I.JII.r,I.YYKA'!llllY_U(I)"lYM({.JT) 

1 r ( Y't' ~ ( :" J t ) .. Lt. Y 1'1'4 TN n ) ) Y Y t'I H l ) .: l' YtH % .. J 1) 

l40 If,n.J,!.JII.'d.Y''.XIIllYHAHlloYYUII.JTl 
Ir(Y't'U r, JT J.Lf.f1'MtNCIHY,p.llHl).:Y'(L(l ,JT} 

~:,:) CflNTI'Wf 
400 IF(NIS.EO.OIGOIO 400 

VEL::QST1hA6400"/(U{ 1, 1).15280 .. ) 
"(~FORM A FijRIHFR TIME SJ[P IF RM "ILL el CLOSER TO R.? HlrH 
f UtE" r,r(p rHA~ H(HJqr 
IrCQ'H .. lI .. ((M2)G1)TO 4'50 
I~ Mit HZ;;f{ H'" (1I1? 
lF t RHRM2',,(,T.VEL a OI-RHFI'IZ)GOIO '5C 

4t,~J IrCll.(Q .. JTZ)'JOfO IdW 
.1T 2::1 T 
IFIJPL! .EO.CIIP'I 
IFrCUOEc.I.rQ.[OOLSJ(21IGU£ ,60 
If (JPlI .fQ. O)GUTO itl}O 
GeTO H tj 

ENO Of lI~r LOOP 

I.eo lHTUHN 
[NU 

S Vii r, J,II t~. [. ')"i f':r 

c .... • S"II::::1HIf\/:i '! ' •. ~TTHH frr-If,.lr.{~ FCRI./"'J..II) Af\l 3At:'<tiA~;: !~rt,,·l 

r{J1h.Ali~ ~,(t~i[lr.!) r"ALI'At. nlllR 
IJACJ{.oj,i><r, .. ( .. ( l1"'EARI~r' J{.All'At>. f}tifR 

;~r;"l l:i,f(~,~1(r 

OCU'~lt IL1fr:tSI(;~j XHI)L,lt<OG,CHCC .. UI.OG 

C r)M"lO'U IH IG (2" 0",10} ,'H 20 d t) .. p. (20 .. 70) .. R (20,20) .. XX (? I). I 1 .. p tZ!J .. ?'J ) .. 
)( 1( ?'J , 1 )" ro ( 7 C l' ;c 0 ) ....... T ( 20 _? 0) .. P foIO ()( 20,? (}) ,: " :'>fl p 2' 0) , 
rnZ0.2:01 .FFl C?C. "; h~U~l (?O .. Z(;),PI'J.!:[)O(4l)t;. t, ~!d?O .. ?O), 
Uh[)'i(?(l),rJurtIN1(?r. t::) .. U( ?Orl}, 
:JU"1?( 20,;' II tr:c~ H !'(l .20 J ,rOd 7.0 .. 20) ,I( ~T U '), ('!) ),. 

l<21) .. I). fl.' ·lldt'(l,O{),l) .. I-<DGflZJ,XI : "l,<1(,). 

'(LA'}·":.; !,(ll4~),Yr(IOO),YI't(100)''('J(lGG),Yl(1(,n) 

C Ort'1C'U liZ'': ( I CC ), f ( (0 d ),. RI< (it ,it CO) ~ CD Ol ST (b ), Pl (2 0 .. 1) .. 

x hi) G ( 2() .,. lJ.! cc ( 2 C ) .. Y YP (20 .. 1 CO) .. Y 'ffoli (Z ,) .. 10 (l) .. 'f Y U (j! 0, 10 fJ) .. 

Y Yl (l fl .. 10')} .. Y 'HI _ X (Z (' ) , Y 'fH IN ( 2 (')) , Y Yl A8 [( 20 ,9 ), YM r'~ l( 20 ), 
Y MA x:1 (2 C) • C ( 2 C,. 1 ) , I (P T ( ,.) .. C HO G( 20 ),. en CE (70) ,R I'! I t. [ 70 ), 
J /)U f .. JP l T , J 1 , Nti .. T ... N [ .. ~ .. l, C f , R"1 , N 1m,. 1 P 1 ,IOU 1 , N I ~ .. Jf 1 .. 
Jf2 .. 1< .RMI ,Rp.I?V£L,Rh T1,T 2, TJK .. NPL! .QST fl. KRH,~P LT 1, TQ 

COMfoIO~1 93/0 HH 2 C. (I.), r Cl .. R IN (2 ( .. 20 ... 10) "OUM INC zo ... 10 ,. KR (H (70), I x 
COHMON/04/PfH (2 C, 20), c!t T.I>f S J (3 (0)' Xl S J (1 Z, E5 (;) .. V EL ST (300)" 

XXS1< 12 .. 100),PPBl(lrtOO,1 ).KW.R~4Sl(20,1), 
p 10 G ( 20 ), PO G ( 2 C ), IP ~, !>,X HK .. r MS ['2 (2 (~ 1) .. N HS T 5 2', 
1 OSHl H. YPl( 20 .Zt) ,'f HHZO, Ttl), fHSE (20 .. 1), fH!S fS .. 
POI ~OO( ZO",2 0) ,RKI h .ZO, xs (20, 1 l~ pe :100( 20 ,.(10), 
POlt< 20 ,,2 0) .ft IN \'( '(0 ,(0) .PSI (2 O. lO), PS (20 .. 20) .. xs lC 20.!). 
X Bt 20..a ), )( B 1< 20. 1 ) .. ~H 5 f ( 3 00 ). xr foIO O( ?o. 1 ) .. to. f Sl ( r Q),. T T" Kl 

COM~O"B5/P5f( H. l~dCO I 
COHloIO~/Bb/PI5l< 12r12., !OO} 

SOl fOR"AT< IHQ.22HV-C OF PRECESS ~OI5[ Of) 
509 FOR'~ATC 2HC .. 2&HV-C OF OBSERVJiT JOt-. NOISE R/) 
511 fOR"AT!IHQ.BIIIC fOR ERROR CO;ARlANCf HATRIX Pijl) 
515 fORHATISFIO.O) 
517 fORHAT(IHo.nHI~ITIAL CONCllleNS IlMl.f8.4.1H RH.r8.31 

.IH ~50(IH.» 
519 fORHAHIHO.21~IC FOR ESTI_ATE OF SHT( 'B/) 
513 FORMAHIHQ.rOHEHIHATE or STAlE AFI£P POINT LOAD IS THSTANfAHOUSL 

.Y COMPLETELY HI(EOI) 
535 rOR~'T<IHC.16HERROIf COVARIHn HAIRIX AFHR POI~T LOAC IS INSIA.fA 

.NEOUSLY COHPLETELY HUEon 
546 fORHAHIHO.2IHSINGULAR PI AT '210"1011 
547 fCRHAHlhO.21HSIHGULAR P _T 'cBO' tIl) 
546 FORHAl( IHO.24HSINGULAR PSI AT '280' tlOI! 
549 FORH"HIHO,23H5r~GULAI1 PS Af '2~()t.U/) 
550 FORHAHIHO,22HSINGUlAH PS Al 'S&0'.2/) 
552 F"ORMAHHiO .. 23HSINGUlAR Far AT 'Z60'*3/) 
553 fOR~Al( IHC.z5HSINGULAR PBII AT '280'0181) 
5&0 fORMAT( 2'H02,. 3Hl T=, [it,. !f1RH=, F"1 c. 5,. 4HV( L=,f 10 .. '5 .. 2HO=,. F1 0 .. 5" 2HK= • 

• 15.6HCOOE" .AIl 
5&1 FORHAHIH2 .. 214,fIO.'5,14.Al) 
562 f"ORHAHtH .. 12,11 ... 12 .. 4F9 .. 5,2(Z) .. 4FS.5») 
563 fORHAT( 114.6fIO.11 
564 fORHAH1H .!iH~EA5!S.IOfI0.5) 

565 FORHAHI5.8r9.41 
571 FORHAHIHI.7IHHEAN SQUARE r"R(R rOBSERVED - 5HDOHERI HSHNHSrs}' 

.. HS£(lU>!STS/2). R .. ~/) 

..... 
-..J 
o 



C ..... [NITlAl.lt.,HIO~ 

I e I =0 
1 T :JT l: 
I X;;. 4'- TT'" S 
NM;)T5;0 
Of) 20 1~1,1. 

FH$(hl);O .. 
Hlsn' cr, 1 ):()" 

70 (o,nl"U£ 
lrIlOSHIH.(O.21GOI0 50 
00 \0 1=1," 
xSt I ~ 1) ;;;x:c') HI .. It) 
XffHld )<tX1ST(!,IX) 

30 J::.1 .. N 
(("J)=PST( !,J# ff) 

Pin H J, J) =P t Sf( III J,. [I } 
30 eONIINuE 
\0 Cn~IINU[ 

GOlD 80 
50 READ ~tS#(X9(I,HIII=1,N) 

tAll to!lh(pal,fhN,.1.0~XHCG"X"D() 
00 70 I=I.N 
X B 1 ( I ~ 1 );;; XB { t ~ 1 } 
00 ~o J=I.N 
POIHi,.J)=P8Itl .. J) 

60 CONTI NUL 
70 CONIlNUI 

C ••• ASSIGN INPUI-RIVER SYSIEM R£'CY fOR EXECUTION 

60 K =K I 
KRU-::t( 
VEL=VEL STU f) 

1=01'(\ I-II 
PRINT 51Td,Ql'fST( U) 
PRINI 519 
CALL "O!JT(XIj..~NN .. J,.(,XHOG~XI--OE} 
PRINI Sl1 
CALL fo(OUT(P9[.~NN,NNfrt,3,.XHDG, ):HCGl 
GOIO 260 

'0 I C 1=1 
KP=K 

100 KP=KP-I 
If (CO DE (K n . N( • en OL S J( 1" co 10 1 CO 

.. Rt: ACN 
KRtp,ItP 
00 US 1= blC 
C(I,l);OU"l"'i( 1,KR}O 

175 CONII hUt: 
00 176 1= I. IU 
U ( I ~ II '" tlU to t ~1 n ,It Ihi) 

17& CONIINUI. 
GOIO 1" 
IF(K.[Q."RHIGOIO 90 
K "'1'1;-1 
IF(COO(KI.(Q.eOOl~f(?I)G(fC 160 
If(C(lO(I() .. E\;I.C:JOlSH !»GCTO 19') 
GCIn Z1 "i 

C .. M[ASUR£"'l~r 

180 00 IS"> t::l.l 

l( 11l11:::0UfofIM htc:) 
165 ec.rINUE 

GOlD <15 
C • POINI LO'O 

190 00 195 I=?,.Plll 
1'1-1 

19S 
.K) 

C ••• EXfCUIE BACKWARO C-O Llh,(~Ql;)£O KlLIo':AN rIlTER 

C NueilER or 11"[ SI(PS 
215 NrS'NrSI!'+lI-NISll~1 

I TT=NTS 
Ir(NTS.l£.O~QTO r2D 
111'0 

218 ITT=lfl" 
C'LL lOf"'" 
1ft III.NLNISlGOrC ,60 

220 rr(CflOf(KI.EQ.COOLSI(211 lC 
if{C-OOEtK}.£O.CODLSf{ !)'l1C 
GUTO 2lo0 

?? S CAlL LOEKrU 
.J.OTO 260 
CCHPI.£:TElY "'iX POII11T lOAC 'l~ f\£VERSE' 

24D QSI'"~SJ"Sf( I n 
QSTHJ :;OST~-OPL 
00 250 [. I. NX'K 
X Bt I" U :; ( C5 TM lOX 0 ( l, 1) -PL t 1. 1) .Q FL )/ ~s Hi 
DC ('45 J:: h NXWI. 
f·€1 J{ !,. J};. Pd H 1_ j) • ( Q:;. T"!./' 5 H'I ) ... (' 
CONI['O[ 
CO~TINur 
Ifnps.rtJ.O)Cf}r~ z');,) 

PR! J\j r S! 3 
CAll ioI 0 U I t X :l, rt. } .. 2. XH CL • x I'l C ( ) 
rR'INT S!'> 
CAll HtlUr{PI~!.N,~,S,X ... [C~)f!-rGI 

[ .... ~"'llorH" COto:~tNr. fOfilctl.l[ #~( FlCI'i'MAfH' f~Ti:'HT[S 

260 on 280 l~l.~ 
)'l(t.l)'=XlSJ{ l,JX) 
)'X{J.II::"XSHI.lT) 
DC ?TC J=l,~ 

P l( 1, . .d ~p 1 Sf( t .. 1. 11 ) 
PC :.J)""SH t,Jdf) 
P iH H/\ {H 1 _ J ) =p A 1 f{ ! ~ J) 

P4I"f!J(!,J );:1:9 J( 1. J) 

210 (C'IINUE 
Pl;JG< I).;PH I. I) 
,to"{ 1) :.:P( 1. l) 

2tl:J to ... r (Nll[ 
i l 14'5=f'1 (1.0.',,11 
r'45:;P(4.~) 

CALI. "'I~v'ilHf'.\*I.)) 
If(ABSc'C).Lr.1.Cf "'4""}";l~~ T <·4 i 
CIILl "lrNVS~(?H~'Jn,'t.:~) 
If(4US(C) .. 1.1.1.G ~ .. ·,)f·-:\r ",), 
[r{ITr .. N(."lrS}I~:'T'"' H,~ 

...... 
"-I 
I-' 



C 
C 

160 

17D 
18D 

;f! ','.: ''''1. ',i .:,':i.\.'d/ :J l::,r tr .!t.S 
I F ( 'J;'l. i :. • " . )', (. r " ~'J ~ 

I !":p., l lAo:"~ 

:",1 [1-.,:: ;'1 r~tJ t f··\ t,.. y 
1_ I.l t .. If, II ~,f.' , P 1 .. ~.j_ r: ) 
ir{AB'i.(~J)~ll.!.CI .... it·»Pf..I'Il "itf 
CAll )4A!)~lH(?hf"~Y(I·l,P:;l.~,f, .. l) 
tAll '4f"llV:,R'IP,)l .'1,,1)) 
lFfAlj',(!)}.lT.l.C! -~'dPRPd ';ld 
P.dNY::Pl'!ClJfPUII~V 

(All ""t"''''IPi":U'<lOt.) ... N.f') 
H{A&S{{}} .. lr.t.(1-4f'J)pp.I~r ~')! 

CAll flAGSU'1(P"pqt!tt.O .. rs,,,N ... r. ... l) 
S,R(PS .. *'h C) 
.. t.T .. l .. tf""4~)P"INT ';4!i 

~'li:p~*(Plt\V.XX.pall~V.Xel ) 
CAll M+tUlf(P .. O ... f)U~l ... ",.N ... I) 
CAll fIIHUlf(PUH10U,.XB1,.Ol,;MZ,.N .. t. .. I) 
CAll HAD:iUB(OUt11 ... 0UI<12,.OlJHbN., 1.1) 
CAll H"'ULHrS,.OUH1 .. XS,'N.N.,1) 
XSl::I'Sl*(PlnH*Xl.PIJI~v.Xe) 
CALL Hl'IUlHP1 ... XhOUllrll,.N,N,1) 
CAl.l MHUlI(P3HOQ .. X9,.OUM2 .. t.,~, 1) 
CAll MAOSLJd(QUi'lhOUH2,OUHt.N,.1,1) 
CAll ",HUl HPS1.OU"'1 ~XS1.N,.N ... l) 
GOIO 400 

2 tiTHER 
PS I NV'PlN V+PS I NV 
CALL HAOSlH3CP ... PfH100,.PSlr't .... t. .. l} 
CALL MINYSR(PS"tb 0) 
IHASS(0).Ud.OE-451PRINI 55( 
XS·PS*( PI HV -XX+PB t "Y.:(8) 
CAll HHOlT(P~XXIr'OOH1Ir'N,.N,1) 
CALL HHOlT(P9MOO,XB,OUH2.t.#~ ... 1) 
CALL HAOSU8(OUH1,.OUM2,OUH1,N,l.1) 
CALL HHUll(PS,.OUHf#XSIr'~ .. h#l) 
XSI'XS. PS!=PS 
00 180 1=10" 
XS I (1.1 )·XS (1.11 
DO 370 J=l.h 
PS 1<1,J )=PS (I ,JI 
CONTI NUE 
CONTI NU E 

c .*. PRINT SU~~ARY OF OUTP~' TC LI~E PRlhTER AND DISK 

40D COO=CODlSH61 
IF(NIST(KI.[Q.IT)COO;COOE(~) 

PR INT 56001 T. qNSI( I II .v(L. ~ SHS T( Ill. K. CO C 
WRITE(kW.~61)IX.IT.RKST(ITI.K 

IFICOO.NE.COOLSH2l1GOTO 410 
PRINT S&4,(Z(!.11,.I*1.l) 
ilRI TE 01,.,,. S()S)l(" (Z (f.l )1' Ini I" l) 

410 DD 4Z0 l*t.N 
PRINT 56f.K.lx.I.UII.11.SQ5TIPIOGIIlI. 

1811 .11. SQRT(PBI 11 .!II.lSI ([.1 
SQRT1PSlC 1.llhXS( I. Il. SQR rc PSCI.l)j 

ORITEIU. 56ll K.1l .I.X 1C J, Il.S~RT( PI 0&11 ) hU( I. U.S ORH POG( n !. 
ISC I Ir't)II'SQfH(peI( (Ir'r ') .K", x ... I,. leal< h 1) I' 

J (1 I' I) ),). S l{ 1,1) ,5 c~ f( PS H r I' 1) L. XS fl rl h 
1,1) ) 

42) Cr.~TI!liU£ 

c *.* 

loS) 

47) 

';)62 .If,!):...! .. Fi4'j,P4':uPEi{4.5},PHll {/o 5hFS(4,S ).~'S ,{ 
,oj ~ I T[ (K ", ')6 UK,. 1 x, r ,P 14 '.), P4 ~ I' FE H 41 'j) ,P e1 Ii 4, ') ... v $( 4t "::) 

~lP 

MrAN ERRCR (,)6SERHO - SMUOTHfRI 

III ,",5 -::N k$ TS"hi ... 5 TS z ... 1 
T-I • 
l):::f <1, Uf( I\MHS-U 

f"1.SflO 11 )-:::.f.'1Sl'?( 1 .. t> "''''~ 
CCNTINUE . 
PRIN1 ;71 
CJll HOU'(f~SE,l,I.2,2~OG.7~O() 
CIilL ~OUT(r"SE2,l.1.2,ZHCC,ZH(Ci) 
PRINI 509 
cnl ~OUr(R,L,t..3~ZtiO!,i.ZHCG) 
PRINT 50r 
C"'ll MOUr(O,.~ .. No .. 3,XHOG"XHCGl 

RETUR~ 

E NO 

.< ) 

I-' 
-....J 
N 



SU8ROUIINE lOEKFP 

C .... CONTINUOUS-OISCROE 8ACKWARC LlHEARISEO KALMAN fILTER - PREOICIION 

REAL to "Ie K .. KK T 
DOUSLE PREC IS ION XHOG. ZHOG, CH [G,UHOG 

COHI10HI81/G (20.20),. Q( 20,.20) ,HH 20 JIO Z O>,R (20. 20), XX (2" 0 .. 1)" P (20,20), 
X it 20,1 ), 10 (ltl,. 20" t-Hf( 20 ,20) .PHOO(20,2 o),P 1( 20 .. 20) .. 
f'r( 2Q .. 2:0)"rrf(20, 20 )JlOUHl (20,,20)'PPMOO( 400" 1) .. H(ZO, 20), 
UHDG( 20 t .. OUMI Nl (20, 10) .. U( 20 .. t h 
OUMZ( 2(h 20) ,DUM 3( 20 ,20),1( II{( 20,2: 0) ,tOH u~o" 20 ), 
Z (20, 1) ,RHS (4 00,.1), PP(400.1), ~OG( 12). Xl.SEl (J 2) .. 
llA BEl( 9J,A!I 04!} .YPI 100) • 1 M( 100) ,lUI 100) • Yl( 100 I 

COMMON/all X(100),. F( 20,1), RK (4 "400),, COOlSf (6 h Pl (2 0,. 1),. 
HinGe 20) "lH 0(;;(2 C) flY lP(tO, 100) ,'( '1"(20, 100) ",( '(0 (20,,100) .. 
YYl(2C. lOOI.UN H (2(l.UN IN( 201 ,r lUBE( 20.9). l~ IN I( 20). 
lMAXl( 20) I>C (20. 1) Jl'1 (P f( 4) ,CHOC( ZQhCOOE C7 0) .. R"I N( TO ). 
JOUh JPLT ,..JT ,NN,. 1,N!:, N,l .. OT,. RMI,. NNNIOI PI,. lOUT .. NT $, JT 110 
J'Z,K,R"1,R~2,YEl,R~,Tt.T2,IJK,NPlr,QS(H,KRH.hPlfl,IO 

COHMON/altO IN (2 C, 20,7 OJ,R lHe 2 (I' 20,70) ,DOM IN (20, 70), KR CH (70)" I x 
C OMMONI B4IPSI (Z 0,20). os TM S f(3 (0). XI Sf <12. ~5 0) .VEl SI (J 00). 

XXS f( 12,300) ,PPB 1 (' (0,1). KWJI'RHS 1< 21).1 ), 
p 10G( 20'). PDG( 20}" IP ~, fiX ttlt ,rHSE2 (20, 1). NMs·rs 2, 
I OSHTH, 'l'Pl( 20.ZQ).'I' IN(ZO, 70 h fMS(20, 1),N.,,5 IS, 
PBI HOO( ZO,ZO) ,RKt (4 .20) ,XS( ZO.l ), PBMOQ( 20 ,20), 
POt I( 20,20),R IN ve 20 .20) ,P51(20, 20), P5(2 0,20), XS H 20.1 ), 
(1)( 20,1 h XB 1C 20. t )JI' ~MST (300 h XP MOO(20, 1 h NT Sf (70),1 T, itT 

COHHON/85/PSTCIZ.12.300) 
C DMHDfil 86/P IS H 12.12. !OOI 

504 fOftHAf<1HO,12HfIH£ STEP NC,15 .. 9ti n,.E,F8.t.,,7H RH.F8.5/1t- .. 
.49( IH-») 

527 FORHAI(IHC.37HPREOICTEO ERROR COVARI'NCE MATRiX PBl/) 
526 fORHAHIHOdtHPREOICI(O [STIHHE or HAlE XBII! 

C STAlE ESlINAT£ PROPAe'TlON 51 
C X61=XB'INIEGRAlITI TO I) Cf (-f-ff.(XE-x)) 
C ERROR COVARIANCE PROP'G'TIOh PBll 
C PBII=PBI>lNTEGRAUII TO T) cr (-ff'PS-PB.rfroO) 

TMO=1l 

150 

IT=IT-t 
DO I6n l=hM 
XPMOO(J.l )=XXlI 01) 
00 150 J=\ •• 
IJ:::([-1 hNtJ 
prBHtJ,l)=P~HI,J) 

I,J);:.PRICI.J) 

1~0 CONTI~UE 
00 2\ 0 K5rl =\ •• 
lX::::4-n'"'KSEl+2 
IfIKS(L .GT.UGOlO 162 
lV{COOE(r;+ll .. Eo .. cnOlSH2»)G(T( 164 

1b2 0(1 lb~ 1:: l .. N 
. X1(ldJ"'Xl~T(t.{Xl 
16l cn'T 

16 S 
16t. i) iJ 16'\ 1= 1, '" 

X It I~ ll=XXST( to' IT+l) 
ttl" ('ON11~Uf 

C 

C 

C 

168 

170 

VEl=VEtsIII Tl 
CAll EON1(Xj,U~C,f,,~# VEL) 
CALL EQN2(Xl,U,C,rr"N,Vn) 
FFoIXS-x) 
CAll HAOSUBO;PHOO,.Xb'()U~l"N"l ,.-u 
CAll "HUlHrr.OUH I,OUP01,t-IJlltrI,1) 
RHS I=I-r-FF -OS-Xl) 
00 170 I-::]'N 
RHS l( III 1 )= ... n T,. U-OUHU t,ll 
CDNTlhUE 
fr.PB 
CAll "HUL T( rr "PSI MOO. DU fit 1 .N,N liN) 
P BoFFf 
C"ll MfRANS(FF'"rF'T,N,N) 
CAll HMUl Tt pa 1140lhrrT .OUH 2" h. tt" N) 
RH5'I-ffoP6-PBoffr+Q) 
00 160 1=11,,. 
00 175 J'hN 
DUH 3( I,. J) :;:"'OU'i 1( I II J)'" OU"2 ( I.J )tQ( 1. J) 

IJ=(I-}'*N"J 
RHSIIJ.Il=OUH31l.JI 

175 CONTIHUE 
160 CDNr I NUE 

C All RUNGE( KSEL.H.O r, RHSl" XPHCO, um (i. T I ,xx, RK 1) 
C All RUNG£:( f{SEL ,tiN, or "RHS ,PfM'(O,T MOe,. TI ,PPB I, IOoe:) 
00 200 I'I,N 
00 190 J=I.' 
IJ=(I"'l ).N+J 
PSINOOII.J)=PPHOOIIJol) 

190 CONIINUE 
200 CONTINUE 
210 CONIINUE 

00 210 l;::hN 
XSllloll·XPHOOII.ll 
X8([.1);X81(I~1) 

00 220 J=I.N 
PBII( I. JI=PSI~OOI loJ) 
P8I(I,J)=PSll(I,J) 

220 CONTINUE 
730 CONTINUE 

IX=IX-I 

PRINT RESULTS 
IflIPS.CO.O)GOIa 400 
T =OT· (l f-I) 
PRINT 504,1 r.T,RHSf(IT) 
PRINT 527 
CAll HOUT(PIH T.NNN,NN"'~ ~- xHtG ,XfiDIJ> 
PRINT 526 
CAlL "'OUT(xB1.NN~.l~l .. XIiCC,XHCG) 

400 R(lURN 
ENO 

I-' 
-..J 
W 



Cltltlt .. 

~uapOuT t "IF. LO[ll:fU 

CG"H·wous-rllsr.~ETE S'CKI"R( llNE.RIHO '~L"" fiLTER upo;t t 

peAL IO .. /,\/,\,HT 
OOU~L[ PRECISro, XHOG .. 1HDC,CHtG .. UHOG 

COM~Ohl BI/G(20, 20), il( 20 .. 2 C) .. HI-( 20 .. 20) .. fHZ 0 .. ZO), XX (2 0,1).6- (to .. ??), 
X H 20 .. 1), [0 (20,20 h Hi T< 20 ... 20) ,f'MDO( 20, 2 0) .. P 1( 2;) ,Z~I), 
f' H?O .. lO),f fT (2t, 20), DUH1 (20,20) .. PP~O 0( .. 00 .. 1) .. rH20, ~/O i, 
uItOt'](?O)"OU"Ifril(lC_ iC) .. !J( 20,1), 

20 .. 20) ,OUH 3( cO _2C) .. 1( 1« 20.2 0) ,KI(I (20, 20). 
I) II' RHS (4 CO.l h pp (it 00 _I ), HOG( 12., XL.8 [l (12) .. 

Y LA 8[ L ( 9) , A ( 10 It ! ) , 'r' f ( lC 0) , Y H ( 10 0) _ Y U{ 100') .. Y L ( laO) 
COHHOtU BZ/X t 1 00 h fe 20,1) .. RK (4,"00), COOL ST C6 l .. PL (ze .. 1). 

XHOG( 20) "ZHOG (2 C J ,,'r' VP{20 .. 100) .. 'r''r'~(20 _100, ,'r' YIJ (20. 1 00). 
'r''r'L (20 .. 100) ,.'r''r'H AX (2 () ,.YYH IN( 20), Y YL ABE( 20.9), Y"'ltil( '10), 
'r' HA Xl (20),C (lO. 1).1 CP T( 4) ,CHDG( 20), CODE (7 0) ,R pH N( 70 ), 
J au r _ JP l T , J T,. NN ... r , .. c" ~, L. Dr , R ., I ,. N NN , 1 PI, 1 DU T, Pi r $, Jf 1, 
JT2,.1'\ ,RH 1 .Rtl/2.VEl ,.R .... T 1 .. T 2,. lJK. tiPLf "QST M" KRH" "p l ThIll 

COHKONI 8110 IN (2 C,. 20,70),. R tN (2 e. 20.7 0) ,IlUH TN( 20 .. 70)" KR (H (70), I X 
C OHMONI B4/P f! l( ZG. 20 I. QS IN SI (3 10l. XI 5 Tl12. 65 CI.VEL Sf! 300 I. 

X XS T( 1 Z , 3 00 ).. PP e 1 (4 (0,11, t( w. R HS lC 20,1 ),. 
)"POG( 20 » .. [P ~,Nl( NK ,.fMSE2 (2 0, 1 ). NI"S TS2, 
YPL( 20 ... 2C) ,,'r' HH20, 70), rf'ts[( 2),1) ,Nt'S TS, 

PB[ HOI)( 20.20) .. Rt( 1 (4 ,20), )(S( 20,1 "PBMO IJ{ 20,(0), 
PtH H ~o ,,20) .. R IN \'( 20 ,20),P $1 <20, 20), PS(20, 20), xs l{ 20,1 ). 
X8(20,,11,XBlClO.1 h~"St(3CO), :CPHOCCZO,l ),NtST(70), [I .. Kf 

COI'IKOtt/B5/PSl(1? .. 12J13 
C OMMONI B6/P 15 l! 12.12. 

503 fOR.'" IHO. lO"ORSERV' TlON VEC TOR U I 
'20 fOR.ATC1HO.30HUPO.I[O ERRCR CCV'RIANC[ MATRIX PSII 
52! fOR.Al!IHO.26HUPOAT[O [511'''£ Of STATE xsn 
551 fORMAl( 1HO,.21USINGIJLAR PBI At '0' +6/1 

KALMAR C.IN .AlRI X 
KK=PBl·HHT·(HU·P~ IHtHHR) .... 1 
CALL HMUli(Htl.PBll,.OUHl"L .. N.,.N) 
CALL HHUL1(OIJH1 .. HHr,OIJHI"L"hJlL) 
CALL HAOSIJIHOUH 1_ R,. OUI11 ,.l .. L.l ) 
CALL HINVSR(OUMI.L.OI 
IrCABSIUI.LT.I.'E-45}PRINT 55, 
CALL MHULHHHT_OU.,1,.OUH1"FIi.L .. U 
CALL MHULHPUll .. OUHl,KK,.N,.N ... l) 

SUTE ESTI.ATE UPOATE Xf 
XB=XBltKK*(Z-HH.XBl) 
CALL Hfo1ULHHH,XSJ"H"L .. N.l) 
CALL tfAOSlJlHZ,.H"OUHl,.l"l,"l) 
CALL MHIJLT<KK"OUHhOUHl"N,.L.I) 
CAll ~ADSUlHXal,OUHt...a"N,.l,.l) 

ERROR COVARIARCE UPOAlE PE 
P =( to-K K-hH)- Pi) 11 *( IO-KK*I<H H tl(t(*R_ KK I 

* KI<*R*KK r 
CALL ~rRAHS(KI(.KKf.H"L) 
CAll "MULHR .. KKT"OUHl,.l,.L .. N) 
CALL ~~ULI'KK,.OU"1,IlUH1,N,l.HJ 

* (IC-I(I(-HH)f 
CALL MHULf(JI;K,HH .. DUH2,.N.L,.N) 

tALL 
C'LL 
CALL 
CALL 
tALL 

I-'ACSU!H 1·1~I)U"I?OUI-'2d, .. ~,·, 
HT PA ~$( ilU"!;J, C\,.i1'\3 ,tot. ) 
¥l':lJL y< P,lll .1)!J"11, lJU~5.:-O.\ ,t, I 
1'1:,,\111 f(l}JM-c~i)II~I,PBI,"'I\.,") 

loIAG.'lId{{'f'l PfJU~J}.Pi31,,..f>~ I) 

r'>RPIT ~C~uL('J 

Jr(Jf').~O.O)r,r:;T(l IOQ 
rR 1 Nl 'j 0') 
CALL ~f)UTCI.Ld .. ?l"OG.lIHG) 
PRINT ;20 
CALL XOUT(P&I.NI>Jf\t,NNN.3#xt-OG_ XIi\)Gl 
?fHNT 521 
C"LL HOUHtB .. N.N.~. I, Z.XHOG .. Xt-O(i.) 

C ... CALCULATE ~E" SQU'RE ERRCR (C~SERV£O - S"OCI"fRI 

C FHSE=fHS(+(1-HH.XliD u 2 
100 CAll fo1l14UL HHH,Xa,OIJ'11,L,N.11 

CALL I'rAOSU&CZ"rJUHl,.[')UHl,L.t ... U 
00 (;!. L 

ll::;fKS[{h U+OUHHt"U"2 
295 CCNH"U( 

,.STS'NHSIS H 
Ifl'HSIS.GT.N'STS2)GOTO JCO 
00 298 I;I.L 
fMSE2 (1 .. 1 )=fHSE 2( I .. n +OUfo1 J( T" J) .... :2 

296 CQijllNUE 

lOO RETURN 
00 

f-J 
-....J 
.t:-



~:H U .• u.c .. r .l\ .... H) 
cu •• £C:IjAT{fI~~c, f If' fU "':'!rtTS Df F vECTOR 

o r ~ f N'J 1 ... ~ y r ;,> (}. I I • t { ? '1 • 1 ) ~ r (2 ( • 1) .. U (20, 1 ) 
iJ() (iO :;)."l 

f ClJO 1 ):;. c. 
20 r,[~II~IJE 

t: .. - IilTiiJGlN r.YCLI·~r, 'liD 80[-[0 (f\. JORf).AN RrYER~ UTAH, us.& 
A=U(7tl ) 
H=UU!J01 ) 
O=Uf5.1 )-p':f)400./,)2dO. 
QGA·O/A 
T·UC6.1l 

1 .. I) -I .OR - -( T'" 20.} 
(2,,11-1.06" (" T-20 .. ) 
(l,d )-1 ~08 .. ( 1-20.) 
('.l)*1.06··(T-20.) 

1;C ( U, 1 )·1 .06 .. ( r -2 0 .. ) 
14,11*1.06"(T-20.) 
15,,1)*1.06··(1-20.) 
1&,,1)·1 .. 06 •• (1-20. ) 

C5"'C( 11,1 h1.08"-(T-20·.) 
C6=C( 18,1 )·1.08" (T"20.) 
Y£LfS'YEL.S280./86400. 
C~~20.1T •• VElfS· •• &07/H •• l.68~.1.047 •• (1-20.) 
A,bCt 12_1 I.X( 2 ... U+X(l,,1) 
9S==C(& .. U+C(8d)1IoX(Z .. U+XCl"I) 
CC=C(S .. 1)*X(2,1HX(J,,1l 
CCDAhCC/AA 
Tt1~C(I?d)·X(2.1)/AA 

f (l, II· -C 0* ~ ( I. Il-C 1* XC 101 I H LI I. I I -XCI, 1 II *QDA 
F(2.1 ).:C5Z·X(5" ll-C23-X(2, 1 )-(2-)((2,1 )-lH-C(7,,1 )"CCOA".X( 4.1) + 

IUI2.! I-~( 201ll*ODA 
F (3,1). -C 3· X( 3. 1) f C 23 - X (2,1 )e (1 .-lH ) .. C (7,1) .e CO AA. X (4 . .t )+ 

(UIl.lI-~( l. III*QO 
f (4,1 ).: -C 4- XC 4" U tC( T.1)* ceOA ,. X(4, 0"C45 *X U.1 ) .. X( 4.'"1) -QOA 
r (5, 1 )=C41) .. X( 4, U -C ~2.X(S ,,1 )-(5 -x (5.1 )""X( '5. u .. " OA 
fl6, I I:CAoI CI 9, II-X(6.1 II -CO*.( h I I-CIl 001 I *C Z3*XC2.t 1-

C6 -XI6.1 )-UU, 1111 26 .31T*H I- IU(9.1 )-XI 6, I I )* QOA 
F'(T.I)~O. 

RETURN 
END 

... 
SUIROUTI.E E.IO[~(X~,~.C.CTI 

c .... EOUTlO.S Filii OEPEIIOEU URIAI!lES CilLCUUIEO fROM SUTE VARIABLES 
REtURN 
END 

c ..... " 

40 
50 

C ••• 

SU8ROUT lNf lQN2(X.u .. c,rr .. ~.IJEl.) 
E~UATIONS rOR EHHENTS or H lATRiX 
o {HENSION X(20 .. 1) .(20.1) .rf( '0 ... 20),U (20 .. 1) 

DO SO I"I.N 
on 40 J=l "N 
fFlI,JI"O. 
CONTINUE 
CONflNUE , 
NITROGEN CYCLING AND BOO-OO H JOROAN RIV£R. UTAH. USA 
A~Ul7dl 

H"U(B.I ) 
Q~U(5)1 I*S6400.15Z80. 
o CA~QIA 
r~U(6,11 

U*1.0(h-(1"'20 .. ) 
)·1 .. 08·*(T"20. ) 
)"1.08"·(f~20.) 

(1.,,1 ).1.0e.*(T .... 20.) 
13 .. 1 ).1.06 Iu (T-20.) 
14 .. 1).I.08*.(T-20 .. ) 
15,1 )*1.06"·(T-20.) 
1& ,,1 ). I. 06 •• (1-20. ) 

C5~CI1T,II*1.08 .. (T-20. ) 
C&;C( 18,,1 ),q. 08 u( T-20 .. ) 
V ELf'S ~HL -S28 0 .16 6400. 
C~:: 20 .174*V£l,...fS·" .607 IH ... 1 ~ 68 Sal. 04 7*. ( 1- 20.) 
AA;C( 12.111 ).X(2, U tXC3.') 
90;C( Ell' 1).C (6.1'. X (2. 1) +X 0111 ) 
CC=CC& .. 1).X(2,1 hX( 3.1) 
CCOAA=CCtAA 
BBCC=BB*CC 
BB2~66*RB 
AlZ 68 Z~ AA >U_ BS 2 
H=C( 12.1 h~IZ'( llAA 
Hlt.II=-CO-CI-OOA 
fFI2.21--C2J-C2-QOA-ICIT.11>CI12.!I*xI4.11/AA!IB2)* 

(((6" 1) II(,C6.1 ).X(2, 1) "AA+ J(( 310 1) -S8Ce) 
fF( 2,.J)~ .. (C (1.1). C( 12 .. 1)1t X(2, 1) *)(4,,1)1 AA2:982)* 

(C(&.ll·Ah·9BCC) 
HI!. 41-1 ~*C( 7, !I-t COAl 
HIZ,SI=C52 
ff( 3. 2)=( C23"C( 7. ll11X (4~ 1)t AA :2882). 

([«(., 1)*C (8 ... 1 )ltX{ ,3, 1) eAA-C( 12.1 ).)1:( ~ .. 11"99C C) 
H I3dl=-CJ-OD~·(C(7. 1} *X 14.1 II "28 82 I' 

(C( 6" U lit" (3.1 )* AA"C (U~, 1) -X (2, l ) .. aa CC ) 
ffCh4):;:( 1.-lH) .C(7.1 )eCC(A A 
ff( I., 2) =C (6 ~1'. C( 7. 1) ItC (a, 1 )*)1( 4.1) 18 B2 
rf( 4, 3)z:ff(4, 2')/C(8,1) 
HI 4. U"- t4 5- qO A- C 4 .C 17 .1 1* CC (AA 
H(5,41=C4S 
HI 5, SI ""C5 2- CS-Q OA 
fF I 6. II--CO 
H(6, 21 =-CI 10.1l* C2l 
rfI6.61=-CA-C6"QOA 
RETURN 
END 

..... 
"-.J 
V1 



C*·** 
C 
C 

900 I 

10 

20 

10 

.0 
50 

60 
70 
80 

C*· ** 
C 
C 

9000 
9002 
9003 

10 

20 

25 

30 

SUfsRlJur PH "'PH AA .. ll.. .. JIll(. lei AGo .leu T:I' RHOG.C HDG) 
TO R(AD ","TR!,; Af>(lL*I1M:) 
If 10lA&=1 0.NU fJIAGO'AL tLEH£flIS ARE'REAC 
If !!JUT G[ I PHI'! "AlUX 
DOUBLE PRfC [SjlHi FtHOti.CHOC 
01 "(HS! nN U( 20 .lO"R~DG( 20). CHOG (2 0) 
fOR"AII8fI0.OI 
IfIiOIAG-llIO.IC.IO 
00 20 T=l,lL 
HEAD 9001.(AA(!,JJ.J::hfolH) 
CO""NU[ 
(,010 &0 
00 50 I =I.ll 
00 40 J=iPl1" 
AA(l.JJ=O. 
CONJINUE 
CONIINUE 
READ 9001dAACI,I}.(:h-ll) 
[F'( IOUf ""1 )ftOJl rO.70 
CALL HOUr(AA.lL.HH.IOUT.R~OG.CHOGI 
RETURN 
END 

.. ,fI. ICUT ,RHO&"r.HOG) 
-MM) 

If lour=2 PHlhT ROW HEAOlhGS 
If IOUT=l PRINT ROW ~ COL~Mh .EADINGS 
DOUBLE PRlCIS!ON RHOG.C~OG 
o I"ENSI ON AA{ 20.20 I,R HOG( 20 I. tHOG (20) 
fORHATllH .tlflC.~1l 

FORHAHIH "10x,,lH2x,"au 
FORHATllH • A8.n. UFI 0.5/1~.1 (X.IIF IO.5f) 
If (! OU I • G I • 1) GO I a 2 'J 
00 10 I=l>ll 
PRun 9000"UA(tjtJ),J=1"HtO 
CONTINUE 
REI UR N 
IfIlOUI.EQ.2IGOla 25 
PRINT 9002.(CHOG(J).J;:l,H~) 
00 30 [-l,ll 
PRrNT 9003,RHOC(t),(AHt,J).J=1.JoUt) 
CONIINUE 
RETURN 
[NO 

[:~( ""AJSlJ:j(A~ .. E8 .. (("lL#lo1.w,,~.A-;,) 
c ...... Tn ADO 'lP SU3T..?IlCT toIATFfCE5 ::f.(ll.'l1'Ml;A,l(ll."4"')IN,a'~11H1(ll./>I'!"} 

OIH£NSI":;~ A.H2(!,i!Ci,i2C20,20} ,C[(2(j.?:» 
rf('AS),O,~O, 10 

(; .... 400J.T [ON 
10 DO, 30 I =loll 

00 20 J;;I,JH' 
CC<I,Jl=AA( 1,J)+BB( 1,Jl 

20 CuNI !,.ut 
10 CONTI'UE 

RETURN 
C *** SUB1RAC nON 

50 00 70 1= I.LL 
01) 60 J=l.HfoI 
CC!I.JI="! I,JI-BB(I.JI 

60 CONTINUE 
70 CONIINUE 

RETURN 
E NO 

SUf.H~OUrrt4E HHULH AA,aa,CC.ll"foM,NN) 
c-.. ,.· TO fOR", MUR!'( P~OUJC T CC(ll.t.~)::AA(Ll"MH )*BtHHM*N") 

o ltolENSHlN AA( 2011'20).8 B( 2011'2 C) ICC( 20 .20) .. AH 20 ,(0),,8 lC 20,20). 
C1I20.2el 

10 00 30 J=I.HH 
00 20 1=I.LL 
All (,J)=A'( 1>J1 

20 CONTlNUt 
00 30 N=!>NN 
B II J. NI =BB! J. NI 

30 CONTINUE 
00 .0 I=I.LL 
00 40 J=lJ'NN 
ClIl.JI=O. 
00 40 N=I.H" 
CH("J):;Cl(lJ'J)+AHhK).BUK"J) 

40 CONIlfWE 
00 50 I=l.ll 
00 50 J=I.NN 
CCIl.JI=Cl( I.JI 

50 CONTINUE 
RETURN 
END 

r-o 
'-J 
0-



SUBROUTINE MTRANS(AA,AI,LL","H) 
t ...... fa 1RANSF'OS( I(l.rRIX AJ(llll"O') AND II-US OBIAIN AHMM.ll) 

OIH[N'lln~ AA(20 •• nn .. AH20 .. 20) 
00 ?O f;I,LL 
Dn I:. J::b,!'!M 
H(J.ol)=AA( 1,.1) 

10 
20 C eN II NU r 

"E TU~" 
no 

SUBRDur HH RUNG[( I'(SfL ,~CY s, or ,FYI, V MO(h 1HOD"T 0 .. rO,RK) 
C .... fOURTH ORDER RUNGE-KUllA n(oFlIHH FOR INTEGRATION OF VECTOR FYT 

o IHEHSI DN f yt (400" 1), n~oo (,. CO"I), va (400 lI1 )" ftK (4,,400) 
GOTD( 10"2(,,, 30#40)",KSEL 

10 OTA=OTn. 
THOO=TO+OTA 

15 I =I.NOYS 
l.d)=fYl(l1'1 ) 

rHoDe III 1 ):::ro( 11' 1} +01 A -RK( h 1) 

IS CONTI NU E 
RETURN 

20 OTA=OT/I. 
IMOO=TO'2.*OTA 
00 25 1=I.NOYS 
RK(2l1J),=FYT((#l ) 
YHDO( II' 1 );VO( III t )"'0 IA *RJ{( I", U fOl*RK (2,. [ ) 

25 CONT! NUE 
R[TURN 

30 TMOO=TO+OT 
00 35 I=I.NOYS 
RK{311'1):fVT<I",1) 
VHOO( II' 1 )=YD( II' U +Oh. (RK( 1 I' U -ftU 2. I)+Rtu 3", J» 

35 CONT! NUE 
R[TURN 

40 TMOO=TO+OT 
OH=OT/S. 
DC 45 1 = 1 ItN OY S 
RIH4, D=Fn (1#1) 
V MDO( 1# 1 )-= V Q( 1# 1) .. 0 I A • ( RK ( 1.1)' 3. '*R "( 2 It 1) '3 ... RK ( 3 ... [ )+ RK ( 4,. I » 

45 CONTiNUE 
RETURN 
END 

SU8.';uTI 'C "I," 

PURPOSE 
INVfRI • <AT"I. 

USAGE 
CALL Mlp..VSP(A.N,[l,l,Jq 

DESCRIPTION OF PAR_.CHRS 
I~pul HAHn. OESTR(YEO [~ CO.PUTHION >NC REPLACES BY 
RESULTANT I~VERH. 

N ORDER OF ~AIRIX A 
o RESULTANI OETER.I"'T 

C L WORK VUIOR OF [fNGT" N 
C "WORK V(CIOR Of LOGTH N 
C 
C REHARKS 
C H.TRn • MUST BE • GENE"L HATRIX 
C 
C SUBROUIlNES 'ND FUNCflON Sl8PROGRAHS REQUIREO 
C NONE 
C 
C HETHDD 
C THE STANn."", GAUSS-JORD'N HEl~DO IS useo. HE OHERMINHT 
C IS ALSO CALCULATED •• OETE"MHAT or ZERO INDICATES THAT 
C THE HATRIX IS SINGULH. 
C 
C •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
C 

c 

SUBROUTINE HINVI •• N.O.L.HI 
o IHENSION AI I I.t( II.H(1) 

C .............................................................. . 
c 
C SEARCH fOR lARGEST ElEHENT 
C 

C 

0-1.0 
NK=-N 
00 80 K=I.N 
NK=NK'N 
UK 1=. 
HI K) = K 
KK=HK +. 
BIGA=AlKKI 
00 20 J=K,N 
II=N> IJ-ll 
00 20 I=K.lI 
IJ=IZ+I 

10 In ABSIBIUAl- ABS(AIIJll) 15.20.20 
15 BIGA=A([J) 

U.I= I 
HrKl=J 

20 CONTINUE 

C INTERCHANGE ROWS 
C 

25 

J <UK) 
IF (J-KT 35.35.25 
K I=K-H 
DO 30 1=I.N 
KI=KI'N 

...... 
-..J 
-..J 



C 

HOLD· -ACII:!) 
J I =1<1-11'. J 
A(y'J):A(JIJ 

~O ACJI) :t10LO 

C IN'fRChA~(Jf COLUHNS 
C 

C 

31) I :H( 11:) 

IFCI-X) 4'5.4'>d'\ 
Hi JP=-N"(J-l) 

00 40 ·J=.J.N 
JI(=N~.J 

J 1= JP.J 
HOlO=-AeJK) 
A(JK)=A(Jl) 

40 A{Jl) =HalO 

C OIYIOE tlUJ"N RV "I~US PIV(T (VALUE OF PIVOT [LOEhT IS 
C r.fJ'4rAINEU IN HIGA) 
C 

"5 (FUJIGA) 48.4f.,4H 
~& 0'0.0 

R[lUHN 
48 no 51) l:l.N 

IF ( I-I() '5 O. C:<j ,') C 
'50 1 K= NI(.1 

A( II()=A (III')/C -tlT(;A) 
5') CONT I NUE 

C 
C R(f)UC( HATruX 
C 

c 

00 6'3 (= 1. N 
11(= NI(.1 
HOLD:::A( lr() 
I J'I-N 
00 &~ J'I.N 
I J= I J.N 
IFe I-K) bO.6'5.bC 

60 U"(J-K) 6Z,6'5.Il? 
6Z r(J=IJ-I.1( 

ACIJJ=HOLO"ACKJhA( IJ) 
&, CONTINUE 

C OIYIOE HOW ~V PIVOT 
C 

KJ=I(-N 
00 75 J=l.N 
r(J=r(JtN 
IF(J-K) 7C,7'5,7C 

70 A(I\J)=A(KJ)/HI~A 
75 CONTINUE 

C 
C PHaOUCT or PIYOTS 

80 
C 

D=01llBIGA 

REPLACE PIVOT B'I' RECIPI'OCAL 

ACto;l()zl.O/B IGA 
CONTINUE 

FINAL ROW ANa COLUNN INTERCHANGE 

K 'N 
lOa K·(K-Il 

(f (~) 150,1 ';0,1 C5 
lOS I'L(KI 

IFO-KI 120.120.108 
108 J g. N- (K -I I 

JR=N-(I-II 
00 11 0 J= I. N 
JK=JQ+J 
HOLO=A(JKI 
J I=JR+J 
AlJKI=-A(J.1 I 

110 A(JII =HOLO 
120 J=N(KI 

IF(J-K) 100,100.12'5 
125 KI=K-N 

00 130 I=I.N 
KI=KI+N 
HOLO=A! KI I 
JI=KI-I'\+J 
AlKII=-A(JII 

130 A(JIl =HOLO 
GO TO 100 

150 RETURN 
ENO 

SUBROUTINE MINVSRCA.L,o) 
C ....... Tt CO~VERI I'ATRIX A TG VECTOR AA, INVERl AA IN SUARCUlIM. MtNV, 

, CONVERT INVERSE BAO TO H~HIX A 
DIMENSION A(20,ZO)'LL(20).M"'(20)..AAC400) 
00 20 I=I.L 
DC 10 J=l,L 
IJ=(J-l )1IIl+[ 
AA( IJ)::.A( I.Jl 

10 CCNTlNUE 
20 CONTINUE 

CJLL HINV(AA.L.D.LL,HM) 
0040I=I.l 
00 30 J=I.L 
IJ=(J-l )·L+I 
ACI.J)-=AA(IJ) 

30 CCNTINUE 
~o CONTINUE 

RETURN 
ENO 

f-' 
-..J 
00 



5. Sample input for filter model. 

NlT~OG"1 crCLlN" AND 900-00 IN .QFOIN RIHR, UTAH, USA: EXTENDED "ALMAN fILTER 28.0 .7 .1 .30 .0' .015 
o·;;"t.nuRCO.r~E'::lI"Alro .. r.-I·.STO O(Vlh l (·510 OEVTN) 39 .. 2-flIVEFt !oIILE~S 2 r ... 9 .. 57 2 0 

~ S I 1 S Ie 6 0 0 C 
6 0 6 0 I 6 12 .T~ 1.5 50 20 TO I. S 
9 1.27 
0 !Y.? .C?O 29 26. I 15 I. ? I. R& • R T.2 
0 I 1 1 26.5 7 1:' 5 L.9<) 

HIU,HEI'!ICAl OX'fGfll '}(Ii .... ;D ~oc M(Jl • T .1 .04 .015 1 
"~·"'!"IA NITRO(IEt'I ~'H-P-j jo(f,/l T. , 4 .~7 ? 0 0 
Nill'A tC NITRC(I(t. NOI-N _0 II 0 0 

,o~ A~ NtTl(Qr,[~ Alr;, .. t.j: Me II 12 .15 1.5 H lC 7 C 1.5 
Ie N[J'ROf,1 II 11 C/l r .. 7: l 

" 00 MGII 26 C 
PI&/L lb.C • I .1 

' " .0' .015 
BOD MJ3-N ~o 1- N ALG-~ (HG-N OOALG.QReN 2 7.9 4.5' 2 0 
BOC ~H 3"'N I'HU-t,I\LG +O.J(G~ 00 0 0 0 

0 0 0 0 0 0 12 .T5 1.5 10 20 100 2.0 
~o l 5 1 1 I' 1 T.lI 

I':'li' KZl ~LAN" KS(N03) MU-HAT 6nA 00 SATHG02/MGN P 75. 0 
DlANK GA"" A '1 " J K4 KS "6 R 25.0 · , .t .50 .0' ./)11i 

LAl /JOOLAI N"INIAT IICINRQ1020H( 1>1 IHF W T(MP XS-ARF. A 1/ 0 PTH tAT OD 2 7. S " aS7 2 0 
I J 0 

12 .75 1.5 2C 70 100 2.0 
1.<)8 
2 J.' I, .f, l.B4 • 0 , .. 

I 22.8 q • . ~ .9 t .91 . ~ '.4 
lO. · . .01 .0 " .06 .1 27. & 12 , ., 7 
1.0 .0 I • 0' .25 22.6 .7 .1 .3 [) .c • .015 

4 .01 1.03 .1 13 < ,. '; 4", ~" ? 0 
1. .01 .0. .125 0125 .~S 0 C 0 

39.2 • 7 .1 .lO .0' .015 12 ., '.) I. ;, 20 2C 10 a 2.0 
7. 1.9 , .57 7. 0 , .58 
0 0 0 2? .? -IJ 
6 .2 1.50 I I 20 40 1.2 U. 1 60 1/ , J • J') 

, .27 27.0 • 7 .\ . \ 0 "' (.4 .015 \ 

17 .2 -a ? 7. < 4.'" 2 0 
H 35.1 6 .0 I 1.80 .6 9.7 0 0 
0 34.2 -, 1 ? .TO t.', 7e !l 165 
~ ll.7 20 IQ I 7. 1.9 ( .',8 
R H.7 · , .1 dO .0, .015 .\ ? to. 4 I C. 8 l.t ,":.C? I .. ;:; 

2 1. , 4.57 7. 0 0 ? I .. fo '" I;.:' Z,.lO 7.1 

0 0 0 ::'1 .. 4 · , .1 • Ie ~ U I, .015 
6 · . 1.50 Il 20 SO 1.2 2 ,. < 4 .. 1);[ 

1 .. 2' 0 
H lO 6. S .In 1.5' .S 12 ." l.t, Z'l 20 1~5 ? .., 

0 30 -100 , .. ~i3 
10 0 en " lC.O · , .\ dO .0' .01' l C. 0 ,I .1 .10 .0' .1)1 ~ 

? 7.9 4.57 2 0 , !.1 4.':17 
0 0 0 .J 0 

11 · , 1.50 30 20 &0 \. , !? • '5 1.5 ,C (' C !', 1.6 
, .21 , .. ");{\ 

29 .. f. !J.' I ." I.ol .9 7.7 19 .. 4 11 .. ') I. "{ t. II h ! . 

2R.9 l &0 12 5 ) .9<) f> 1 R. 7 \0 hO 1<" 
2 P. 9 .7 .1 .lO .0' 001') P 1 (1" 7 .1 .J .0' • rl '; 

2 7.9 4..<)7 7. 0 !.4 4. <.' i-' 
0 0 0 ,) t, " 12 ." 1.5 lO 20 60 1. 1 1;;' .r' l .. (' .'t ('I .... ~"' " \0 

, .21 7 .. ', .', 
,8 .. 20 10 .0 1.1? 1.1- '.6 t 8 .. ~ ;.: 0 \ n 1:' 

28 0 1,)",1 · ' •• 1 .{;; 



180 

2 7" 4.57 2 0 0 0 
0 J 0 

12 .75 1.5 0 20 20 275 3.6 
7.58 

P 11:1.1 15 '5 .5 2 7.9 
R 15.1 .7 • 1 .3 C .04 .015 ~ 

2 7. I] 4.57 2 C 0 0 
0 0 0 

12 .75 1.5 20 20 275 3.6 
7.58 

M 17.2 14.5 1 .70 2.00 1. 7 7 
iJ 16.7 - 317 
p 10.7 I) 

R 10.7 .7 .1 .30 .04 .015 1.5 
2 7.9 4.57 2 0 0 0 
0 0 0 

50 .75 1.5 121 3 20 100 2.2 
7.5 

p 16.2 6 60 12 5 6 
R 16.2 .7 • 1 .30 .04 .015 1.5 

2 7. I] 4.57 2 0 0 0 
0 0 0 

50 .75 1.5 121 3 20 100 2.2 
7.5 

H 15.5 13 1.6 2.06 .8 7 
P 15 18 5 .5 2 7 
R 15.0 .7 .1 .30 .04 .015 1.5 

2 7. '; 4.57 2 0 0 0 
0 0 0 

50 .75 1.5 121 3 20 100 2.2 
<J- _ 7.5 

H 14. 16 1.5 2.05 .8 5.6 
H 12.6 16 1.7 2.10 .5 5.8 
P 12.4 10 5 .5 2 7.9 
R 12.4 .7 • 1 .30 .04 .015 1.5 

2 7. '9 4.57 2 0 0 0 
0 0 0 

50 .75 1.5 121 3 20 100 2.2 
7.5 

P 12 0 
R 12.0 .7 .1 .30 .04 .015 1.5 

2 7.9 4.57 2 0 0 0 
0 0 0 
0 0 121 0 20 100 2.2 

7.5 
H 10.5 13.5 1.4 2.07 .9 5.5 
11 9.2 12.8 1.4 2.19 .9 5. 3 
H 8.3 12.5 1.8 2.30 .4 5.6 
H 6.2 11. I) 1.6 2.26 .6 6.1 
P 5.9 2 60 12 5 3.95 
R 5.9 .7 .1 .30 .04 .015 1.5 

c . 2 7.9 4.57 2 0 0 0 
0 0 0 
0 0 121 0 20 100 2.2 

7.5 
H 5.1 14 1.2 2.29 2. 4.7 
£ 2.8 

14.2 1. 3 2.28 1. 3 • 1 5.4 
1. .01 .04 .125 .125 .25 

L _ 



1-

6. Sample output from filter model. 

HflF(~(. CltllhG _.t 8([-C( I~ J(~(_~ ~I\EF, UT_~. l~_: EXlf.CED M'l~'~ 

GR[EF (f SYSlft'tU~fER (f Sl'lES ~. 
N~~£E~ (f (eSf~~;9lE OUlfUlS l-
Pl(l l~llR~_l IFI-
PRJ~l JIIE~¥'l I(tl' 

co 

I 
1 

IhJlIH IHE''UHSI 11' 
INI1Hl fhH ~IlE~ HI' 
INlll_l !tRE'~fL[W (CrS) ~ST~. 
C(~fLI#T'(~_l TilE SIEf (C'\~l Ct. 

C.O~ 
!S.'( 
;2 9 .00 

O.C"OC 

Y~H I 

HC r.ClCCC 
H~'~ f..C,OCO 
• C 3' ! r .OU(( 
HG-~ r.(lO(C 
(H' • r .eUleC 

[( r.(HOCC 
AU «~O r.((oce 

Y~OI 

HC cr.C(O(C 
~ ~ 3' ~ !.((COC 
H!'~ ~.CH(C 

H~'~ '.G<O(( 
(FG' ~ '.C(OCC 

[( Il.ClO(C 
AU+(H! !.OlO(( 

08SE'~#TIC~ "IFl) ~~ 

H[ U~·~ H3-~ 
BCt 1.e(0(C ° .ocoee o.ccoce 

H !. ~ r.ClC(C I.OOCCC a.cooee 
H!" r.«oce e.o(((e l.ceOC( 

AU.(~O C.ClOCO C .oc((e o.eeoee 
(( r.c(oc( C.OGCOO O.COO« 

V-( (f FE [CESS HUE, Q 

8([ U~·~ H3-~ 

ElL ,f.((cec c.occce o.CCOC( 
H3'! r.c(Occ o.~oc'o c.CGOGC 
~n·. r.o(oeo c.occeo C.CI0C( 
~u·~ r.c,oe( o.occec o.c(o" 
CH'~ r.c(OcC C .oooeo O.UlO(O 

([ r.ClOC~ ( .CCCCC o.ccoe( 

V-( (f (tSE~\III(h ~(ISE R 

HE-" 
~.o(ceo 
e.cocoo 
C.((Geo 
1.0(eCO 
o.occeo 

HC-II 
(.C((to 
C.1l GC CO 
(.CCC(O 
(.CHCO 
O.OCCOO 
O.OCCCO 

ee( H!-~ H3-. , lG'Il~Hj 
H[ t.«o(e c.occee o.cooe( ( .0«(0 

H!' I f.etOC( C .00CCC c.CCOCC c.oeOGO 
H!" • r.cucc C.occet 0.(40CC c.ccceo 

AU<UU r ./aoce (.0"« t.CCOCC (.<~IlCIl 
[( r .«oce o.oocco o.(COOO (.occco 

nG"~ [( 
c.(ccce o.oaoco 
o .(COOO o.oooee: 
o.ccoco o.oooeo 
1.((CCC o.OOO(C 
O.C(OOO I.OOCCG 

(~6'~ t( 
(.tcoco o.o(c(o 
c.Heoo o .Cl:O(G 
0.(0000 O.OCOC( 
C .«oce (I.O(OCC 
o.ceoao o .OOOCO 
O.C(OOO O.leocc 

[C 
(.«(1(0 
O.C(O(O 
o .cecco 
C .((OU 
C.'~(lCO 

'--.. ...-

I-' 
00 
I-' 



HI\EF ~1~TE~ l~I[LT. HY[FALLIC~ A~[ LOA[I~( C~TI 
•••• 'l1li •••••••••••• 'l1li .............................. ., 

RhH HLE H ~~" ~2~ ~~5 'H ~H~O!) "b-t-" tflA !;( SA T tGCU~H 
HHr CH~_ ~ I H n ~~ ~~ IE 

L-HCHR LA 1 BC [ L AT h~ ~ ~ LAT ~OH eeHHH LAT IH ~ THP H-IFEI ~ [f H Lll CC 

Pile & [j~ CF~ HC ~ ~ ~ -~ H ~ - ~ IL(-~ (H-~ [( 
H[~~ wElH E([ H!-'· H3-~ nl+(F(~ [( 
R 3S .<C C. 7C C o _ICC e.3ct C • C 40 ~ _ C C e 0.015 3.CCC 2.~CO 7.9CC ~_570 

C.OCC '.CCC o .OCC C.C co C .0 e 0 c.occ o.cec O.C(O 
e.occ o .£CO 1.5CC O.c CO 11.000 'O.OCC H.O(( I. <CO 7 .<10 

0 ~7 .<0 -f.OCO 
H ? ~ .1 G E.OCC o .ClC 1_8Cl C • f CO S .7 C C 
0 !4.<C -4.0CC 
P 31 .; C 2C.ocr H .ecc I .0 C C t • ( (C C.OOO O. CCC 7.9CC 
R ! 1.1 C C.7CC o .I<C C • 3C ( C • C LO ~ .C(O C.015 !. C r C 2.CeO 7.9CC 4.~ 10 

C.OCC 2. C CC C .OC C O.CCO C .000 O.OCO 0.0«; O.OCO 
e.o cc O. HC 1.50C O.COO II.OCO 'O.OCO ~O.CCC I.HO 7.,10 

H H.lC E.~CC o • C ! C 1.54C C .fCO E .0 C C 
0 3(.l C -Ice.occ 
P H .(e c.oec O.CCC O.OCC o.(eO C .OC 0 O.OCC o .He 
R !( • (C C.7CC Col (C C.3C( C • ( 40 ~ .OCC C.CI~ !. C (e 2.0CO 7.HO ~.510 

C.OCC 2. C CC C.OCC O.CCO C • C C C O.OCO 0.0 ec C.O(O 
I'.OCC O.~CC 1.5Ce O.OCO H .OCO 'O.OCO to.Ct( I. ! C 0 7.'1C 

H • Sot( 1!.5CC I. EtC 1.6!C C.HO 1.7CO 
P <E .S C !.OCC EO.CCC IC.OCC ~. C CO C • C C 0 O.OCO 3.SSC 
R U.S C C.7CC Col CC o • 3C C 0_C40 5.0eO 0.01 5 ! .G(( 2_C(0 7.9 CC ~.510 

C.OCC 2.CCe C.OCC o.ceo o .OCO C.O(C C.C (( O.C(O 
I"OCO O.7~0 1.5Ce 0.((0 !( .eco ,o.oeo 60.CCC 1. !CO 7.<iC 

H ,l . ~ C !C.O(C O. HC 1.7CC I.ICO 1.HO 
P <E .l C C.OCC o.ecc C .OC C 0.0 CO C .CCO C.CCC C • C (C 
R <t.te 0.7CC C .ICC C dCC C .nc ~ .000 0.015 ! .CCC •• CCO 7.9CC 4.510 

C.OCC 2.CC( C.OC( C .( CO ( .CCO O.CCC '.CCO 0.0(0 
I'.OCC o .7 5C 1.5CC o .cto 3C .000 20.0CO 70.0CC 1.5(0 7.270 

H <t .i C 15.eCC I. CCC 1.8EC C .tOo 7.200 
P 2E • ~ C 1.0CC H.C(e IC.OCC ·~.HC ( .CC C e.e(e !.9~( 
R H .~O C.7(C O.ICO C dec C.C40 ~.CCC 0.015 3.0(C 2.0(0 7.9CO 4.510 

C.OCC ,.((C C .oe ( O.(CO C .CC 0 o.oce C.C(C C.C(O 
l I'.OC( C.7~( I. 5C ( c.CCO !C .OC 0 <C .0rG 7G.C ( I.S(O 1. < 10 

P H .'0 C.OCC C.C(C C.OCC C.((O ( • C C 0 o.OCO C.OCC 
R <t • C C C.7ce C .ICC e .HC O.C 40 ~ .OC 0 0.015 !.OCC 2.CCO 7.gec 4.51C 

O.OCC , • C C C c.OCC O.OCO 0.000 o.OCO C.C(C C.O(O 
1< .0 e 0 0.7~C 1.5CC C • C CO !C .ecc 2e.OCC 100.OCC 2.0CO 7. ClO 

P C ~ ., c C.CCC C.CCC C .0 C C O.CCO C • C C C o.OCC o.CCC 
R ,~ ., C C.7CC o .ICC C • 3C C 0.C40 ~ .OCO 0.015 ~ .,,( •• C(O 7.9CO 4.510 

C .0 CC 2.CCC C.OCC c.C(O C • C (0 O.OCC O.CCC C.OCO 
lC.cce 0.7~C I .5C C C .( ec H .OCC a.ccc Ico.cec 2.CCO 7.~ec 

M ,~ .1 C 15.0CC o .HC 1.84, C.9 CO 7.400 
H ,,~ • t c >.ecc C. >CC 1.97C C.fOO 7 • 4C 0 
P <<. .tC 12.0CC 5. C C C C.5CC < • C C C C • C C 0 C.CCC 7.ecc 
R «.to o .7 C C C.ICC C • 3C C C .C 40 5 .CC C 0.015 3.0ce 2.0(0 7.9CO ~.510 

C.CCC '.CCC C.OCC o .COO (.000 o.oec o.cce c.cco 
I, .0 C C C.7~C I. 5C C C .C CO 2( .oec H .CCC lCC.C(C 2.0CO 7.~EC 

0 "c • c c -~C.OCC 
f-J P « .l 0 7.0 C C fe.CCO I<.OCC 5.tOO C .OCO o.ecc ~. 9 ~ ( co R < t. .l C O.7CC C. 1 C C C.3( C C • C '0 ~ .C C C c.O IS ~ • C (C '.CCO 7.9CO 4.510 N 

C.OCC 2.ceO C .OCG C.C co C .CC;J O.OCO o .OC' o.OCO 
L 1<.OCC C.7~C 1.5CC C.CCO 2C .CCC 'O.CCC IE~.CCC <.~CO 7.~ec 

" <1.(( 10.8ce 1. I( C <.oa C .4(0 7.2CO 
P 'I.H ~4.0ec 12.HC '.2CC ~.CCC C • C C C O.OCO 103 CC 



r r- r --1 r-- r-- r- r~-I r- -. r--- -I J --1 

R U .~( C .1(( 0.1 (( e. 3( ( C.( LO ~ .000 C.O 1 ~ !.e«( 2.0CO 1.9(C 4.510 
e.o CO 2.C(C C.OC( c.cco C.CCC 0.0(0 O.O(C 0.0(0 

l 1<.0( C.l~C 1.5e( C .(00 2( .oeo 20.0(0 1E~.C(( 2.~CO 1.~fC 
P H.4( C.OCC O.HO O.OGG o.eco G.OOO o .iCG e.~H 
R H .(C o .no C.HO C. HC C.c 40 ~.O(O 0.015 3.0 (0 .. eco 7.9CO 4.510 

C.OC( ~ .C(C C.OCC C.O CO ( .oeo o.OU o.ec( O.CCO 
l H .O(C 0.150 1.5ec 0.000 20.000 i~A(G H!.OH ! .HO 1.HO 

" 1S .~C 1I.5CC 1.1(C 1.8E( o .4U 1 .ae 0 
p H.H IC.C(( EC.C« 1~.OC( ~.C (0 C.OCC o .cco £.e«( 
R It .1 C C.l(C O.ICO o .3ec 0.e40 ~ .oeo '-o-OI~ -.I.etO --2.0 eo 1.9(0 4.510 

e.occ 2.C(e o.ooe o .coo ( .oeo o.oco c .Gtc C. C CO 
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Table A-3. Input data and decisi~arameters for data sorting program (PRSORT). 

I. Card input 

1. I RUN , N, L, KW, lOPT - Format (8X, A2, 4110) 

9,10 I RUN 

11-20 N 

21-30 L 

31-40 KW 

41-50 IOPT 

II . Disk input 

Run number identification 

Order of state vector 

Order of measurement vector 

Number of computer output unit to which sorted data is to be 
written for subsequent input to plotting program (P). 

; 1 Deterministic process model results only (XF) 
; 2 Forward filter results only (XF, PF) 
= 3 Forward filter and smoother results only (XF, PF, XS, PS) 

4 Forward filter, smoother, and backward filter results (XF. 
PF, XS, PS, XB, PB) 

These data and decision parameters are generated by the filter model (EKFLKF). 

I-' 
'-0 
o 



3. Program listing of data sorting program. 

c •••• PROGRAM TO SORT DISK STOR[D OlTPUT FROM fILTER MODEL IN 
PREPARATION fOk PLOTTING ON U~Rl COMPUTER 

o I"EN51 ON RM( 10 C. ,RM'if(SI) "l( 1 (, SO), X'F (lO" 100) ,PF( 20 ~ 300); 
X5( 2'0 "lCO)'PS( 20,. 30 UII'X8( 2'0,,100 h PO( 20, laC),. 
R""H SO)" ZI (1 0, ~o '* 'fitS (300), PS45(300)' PS45 (,JOO) 

DATA COOEH"M'I 

900 rOfU!fAftl1,.4X#{4,F lO .. "i,4X,_t) 
901 FORHA j( 5X .8F9 •• , 
902 FORHATI12x.6fI0.H 
903 fORHATl5X,H.fIC.5.U.AIl 
90' fORHAl(8X.A2.5110. 
950 fORMAf(!HRUN,A2,,5HAHH ,11F4.11 
951 fORHATIlHRUN,AZ.IHI.IZ.2Hl ,Ufldl 
952 fORHAl( lHRUNoAZ.5HRH .llf4dl 
953 fORHAl( lHRUN. A2" HI'[ Z.ZHXf.1 (f I. H 
954 fORMATllHRUN.AZ.IHI.IZ.ZHPf.!(f/.31 
955 fORMA j( I"RUN. A2 .. HI,J 2.2HXS.1 (f I.ll 
956 fORMAl( lHRUN.AZ.IHI.I2.2HPS.1 (f/.H 
951 fORMAT( 3HRU,.,A2.1HI ... 12112HX8,lCF1.3' 
958 fORMATIIHRUN.AZ.INt.IZ.2HPB.I(FTd) 
959 fORHAHIIN PROGRAM COMPUTE) 
960 fORHA H ]HRUN, 51,1. 2, 4Hl0PT,. t Ell' !HIT M, 11 ,3HN T2 .11,&HKROT YP, r 4) 

I~PUI 

fRON CARDS 
R (AO( ,)" 904) 1RUN "t,j"L,.1( w,. lOP T 
,. I=N+ 1 

fRaN 01 SC SIORAGE 
REAO( 8. 900) KROIYP .NT. RM( N !l.c (DE 
ITT I'HI 
NII'NI-l 
NI2'Z'NI 
NIZ I=NI Z-I 
I I H=O 
[fleOOE .NE.COOEHICOIO ZO 
IT ".IT"'1 
RHH( t I" )=RM(NI) 
RHO( O. 90 1)(Z( [.[ IM,.I'to II 

ZO If(KRDIYP.EO.2IGOTO 100 
e • eAHO TYPE 1 

00 30 l'IoN 
REAO( &, 902) XF (I ,.NTZl) "PF( I, .. T 21), XF (I ,tHZ ), PF (I,N T2 ) 

30 CONTINU£ 
REAoe th 90Z)PF \tH N f2U ,Pf4!( NT 2) 
00 50 J=IoNlI 
II=NT-J 
1T2=Z*11 
liZ I'll 2-1 

32 REAO(6.9011ITI.RMIITl.COC[ 
If(COOE.N[.COOEHICOIO 35 
II~'ITH" 
RHHIlIHI=qH(ITl 
READI8.901l<Z(l.II .... I·I.ll 

35 00 40 I=IoN 
R EAD( 8,. 902 n.r ( I .} T 21l "PF ( J, IT a ), ~F (I" I T2 ), PF (I" I rz ) 

40 CONTINUE 

50 

REAO(8.902IPF4SIl 1211.PF4~( IHI 
If( ITT! .E~.ITTlGOTO 12 
ITTI=ITT 

c ,. elRO TYPE 2: 
10) DC 130 1= 1. N 

902) Xf' n "tU2l) "Pf'(" H21) .. wf (l .... T2 h Pfn "N T2)", 
XS (l "H r2 U ,.p B( I" He () .. l(B ( [,N 12 ),PS( I "tI r2 ),. 
xsnlll'fiHZU "P!:( .,UB h wS (hNT?), PS(I"NJ2) 

III CO_liHUE 
R£AD( 8.902 )pn5INIZ II .pn ~( H" I .PS4S( NI 2l1. PS'S(N IZ I. PS45 IN IZ1). 

PS45(NIZI 
00 ISO J=l.NII 
I I=NI-J 
112=2.11 
1121=112-1 

132 READ(8.903IlTr.RNllll.CCOE 
IHeOOE .NE.COD£HIGOIO ll, 
I TM=I1H.1 
RMMIIIM ,oRHU!) 
REAO( I)., 90 1) (I( I,J TN)" 1::.l"l) 

13S DC 140 [=hN 
REAO(lh902)XfO .. ITZl),Pf(hH 1),XFO,1T2),PfO,lrZ), 

XS(T.[TZ]),P8{I .. n 1)"X8(I,,[12)"PS(I,112)' 
),Stt.lTzn,p~(I .. I1 1)..XS(bl12)",PSO",ITZ) 

140 C CNII .u r 
READ( (IT21),PFl,'5{ iT2),.P84'5( TT2l ),P8 .. 5(1 r2)'PSIo!C;(IT21),. 

(! 12) 
IfII1Tl.E~.ITTJGOIU Il2 
ITTl=ITT 

15) CCNTI.UE 

~EVERSE UROl. Gf RM" .'0 Z 'R~.'S 
200 00 203 1T=loll" 

llR=I1M"IT'! 
RM"I( IT ).RNH ITRI 
00 2'02 I; 1, L 
1 H}' IT );7.( II' nIH 

202 C(NII"UF. 
203 CCNTIOUE 

C u* CALCUlATE AlC."N + nq(j"'N VHl.E~ AND PONet- SDRff]) I)A1A O~IO tARrs 

204 liRI TE (tI: w" (60) lRt.l~..t DP T, (T to.. H (, J(ROT lP 

RM AT MfASUROlNf 5 
112=0 

205 Ill::.ITZH 
IT2:·[Tltlb 
If(ITP'I-{ln:?lO_?20.2?J 

no 1l2~11" 
22D IIIR!TfOu .. ,9S0) If.!lJti.( -I'H~l(I 1).11=1T1. IT?> 

IF (IT Z. ~[. II" F,rr r 20> 

Ht:;\~UHfMt ~TS 
Jr ('() ell, 1. 
IT 2-=0 

23':1 I T I: ! T? tl 
I I(':-! Tl .9 
If( Il"''''IT')?4ih'''t{:.I'>C 

2/.:1 ! T~:J 1,0\ 

~ 
\0 
~ 



C 

C 

Z50 

260 

Z" 

zuo 
Z9, 

300 

3D 

lZD 
330 

340 

400 

41) 

42J 
430 

44:> 

WfnfE(I(IiI ... 'tSUUft/N,I,,( ZU 1,. 11),1 T=lT 1,. IlZ) 
If( ITZ.N£.IIHlr,UO 235 
CONTINUE 

RH 
IIZ·O 
ITl=lr2·1 
112'111'16 
[feNI-1 [2 )2eO.Z90.Z?0 
112=HI' 
!CRl IE (JOh 9-32) IRUH,e RMCI 1),. I I:. Irt. IT 2) 
IF< IIZ.HE.HIlGOIO 210 

Xf 
00 300 J= I.NIZ 
Xf'C Nl,J )s-Xf(4lJJ) .Xf (5,J) 
CONTINUE 
00340 I'I.NI 
112=0 
I H'I 12'1 
IIZ=III.9 
lFeNI Z-1I21320. 3l0. 330 
112'N12 
WEO IE not, '953) IRON" 1,,( XF (I" I 1) ,,11= IT 1 .. IT 2) 
If<lT2.NE.NI2IfiCTC liD 
CONTINUE 
If(IOPI.B.IHOIO 700 
IF( [OPI.EO. Zl (010 &00 

xs 
DO 400 J-I.NT2 
XStNl,.J )~)(S UJOJ). X$(S ~J) 
CONTiNUE 
00 440 I=I.NI 
IT 2 =0 
I I 1=1 TZ'I 
112=1 Tl'9 
IF 011 (1- n 2) 42,1" It H' .. 43 C 
lT2=NT2 
"~1 TE(t( W,,9,)'illlHU~# t,( x:S( I" (1) #1 1;: IT 1, IT 2) 
If CTT2.NE.N Ill{;CI 0 410 
C (NT! ~ur 
IftlQPl.[G .. nrOHl 600 

Xl! 
DC 490 J= I.NT? 
X8{ ttl,J ) - x;1 (" ~ J ) I Xd (') ~J) 

49) CONTINur 
o [l .; {Q I'" I,,~, 1 
I 1211'0 

50) 11I-1T2.\ 
112: fIt. \.j 
1Ft NT 7- I tn') t J. ",? C, 'i .? ( 

51:> If2=t.I2 
52:> IfRI 1(1\ w • .;',t) D)',. 1 ~( '(:it l,! f) ,IT: 111. If2) 

I F{ H 2'''''4'::: .. , L:' )., fTC ~oc 
'533 ':ONTt~Ur 

el" 
6u:) DC ~')(l J=l";,,f: 

Pt {"O .. .1 .;·SQ~' {f'i'\ It_ .I)";?Hr (Sd)"'''?.f2*PH'HJ) 

l50 CONTINUE 
00 390 I. I. ~I 
112=0 

3&) 1I1.IIZ'1 
112.11 1*9 
If( NT2- Il2) 370,. 3S('!' j8C 

37) IIZ=NI2 
380 WR ITE (JUh 954) IRUN,!,( Pf (I,. I H,1 T= IT t, n?) 

[Fe IT2.NE.NTZ)GCTO 360 
39' CONTINUE 

IF ClO PT .(O.2HOTO 700 

PS 
00 445 J'I.NTZ 
PSi( H!,.J )=SQRT (PS( lu J) ... Z+ PS (5,J) •• 2.' '!' S4 5( J) 1 

445 CONTINUE 
00480 I'I.NI 
IIZ·O 

<51 I TI =112 >1 
I T2=1 Tl *9 
IF ( NT Z- IT 2) 460,. "7 u, 47 () 

460 112=N12 
470 WRIT[CKW,9S&)IRUN,[.,(PS([,I n 1'11= IT 1 .. IlZ) 

IFllTZ.NE.NI21GGTO 4H 
483 CONTI NUE 

IFIIOPT.EQ.lHOIO 700 

PB 
00 515 J=IoNT2 
PB( Nl "J).:: SORT (pa( It" J) •• 2+PP (5 "J)*.2 +Z*P eltS{ J» 

555 CONTINUE 
DC 570 I=I.NI 
I T2=0 

54) 111=1T2<l 
112=111,9 
IF(NTl-ITZ)550"S60,,5&C 

55) I T2 =NTZ 
5&0 W1H H (K W, 95 e) {RUN..I,{ F(J (I, I II ,,1 T= IT 1" IT 2) 

IfIlTZ.NE.NTZ)G(lO 540 
573 CONTINuE 
rOJ If(KW.(O.&)GOTO 750 

KW=G 
204 

7~) rPINI 959 

SlOP 
E NO 

I-' 
\.0 
N 



1. Overall flow diagram of plotting program (Figure A-3). 

2. Input data and decision parameters for plotting pro­
gram (Table A-4). 

3. Program listing of plotting program. 
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Read I Initial input 

Plot axes, scales, and labels 

Yes 

Read II Measurement data 

Plot measurements 

Read III Filter results: 
X values 

Read III Filter results: 
Y values 

Plot filter results 

Yes 

Figure A-3. Overall flow diagram of plotting program. 



Table A-4. Input data and decision parameters forylotting program (P). 

* Cards 4, 7, 8, 9, and 11 are generated by the data sorting program (PRSORT) from results obtained from 
the filter model (EKFLKF). 

I. Initial input 

1. IPM, NVX, NVY, PUY, XL,YL, XMAX, XP, YP, YMAX, XVAL1, XMIN, YMIN - Format (315, 10F5.0) 

1-5 IPM = 0 No measurements to be plotted 
= 1 Measurements to be plotted 

6-10 NVX Number of A4 fields required to read x-axis heading on card 5 

11-15 NVY Number of A4 fields required to read y-axis heading on card 6 

16-20 PUY Number of data units between major ticks on y-axis 

21-25 XL Length of x-axis in inches 

26-30 YL Length of y-axis in inches 

31-35 XMAX Maximum value of river miles on x-axis 

36-40 XP Plotting window in x-direction in inches 

41-45 YP Plotting window in y-direction in inches 

46-50 YMAX Maximum value of y-axis 

51-55 XVAL1 Maximum value of x-axis 

56-60 XMIN Minimum value of x-axis 

61-65 YMIN Minimum value of y-axis 

f-' 
\.0 
VI 



2. NDX, NDY, XT, H2T, CHT, HTL, XVAL, YVAL - Format (215, 6F5.0) 

1-5 NDX 

6-10 NDY 

11-15 XT 

16-20 H2T 

21-25 CHT 

26-30 HTL 

31-35 XVAL 

36-40 YVAL 

Number of decimal places in x-axis labels 

Number of decimal places in y-axis labels 

Title location in inches from left-hand edge of plotting 
window 

Size of characters in axis label 

Size of characters in title 

Size of characters in axis labels 

Data units between left-hand edge of plotting window and 
origin of graph 

Data units between bottom edge of plotting window and origin 
of graph 

3. NGX, NGY, NSKX, NSKY, NSMBL, ISZ - Format (615) 

1-5 NGX 

6-10 NGY 

11-15 NSKX 

16-20 NSKY 

21-25 NSMBL 

26-30 ISZ 

Number of minor ticks between major ticks on x-axis 

Number of minor ticks between major ticks on y-axis 

Label every NSKXth major tick on x-axis 

Label every NSKYth major tick on y-axis 

= 0 No symbol plotted 
= 1 '+' symbol plotted 
= 2 'X' symbol plotted 
= 3 'V' symbol plotted 

Size of symbol in the number of 2/100 inch units 

I-' 
1.0 

'" 
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* 4. ITM, NT2 - Format (25X, IS, 5X, IS) 

26-30 ITM Ntrmber of measurements to be plotted 

36-40 NT2 Number of calculated points (filter results) to be plotted 

5. (FMTX(I), I = I, NVX) - Format (NVX;hA4) 

FMTX(I) x-axis heading written as a format statement 

6. (FMTY(I), I = I, NVY) - Format (NVY*A4) 

FMTY(I) 

II. Measurement data 

(Omit cards 7 and 8 if lPM = 0) 

* 

y-axis heading written as a format statement 

7. (X(I), I = I, ITM) - Format (lOX, 17F4.1) 

* 8. 

11-14 

15-18 

etc. 

XO) 

X(2) 

River mile at 1st sampling point 

River mile at 2nd sampling point 

(Y(l), I = I, lTM) - Format (lOX, 10F7.2) 

11-17 Y(1) Measured value at 1st sampling point 

18-24 Y(2) Measured value at 2nd sampling point 

etc. 
I-' 
\0 
-.J 



III. Filter results 

* 9. (X(I). I 

11-14 

15-18 

etc. 

2, NT2. 2) - Format (lOX, 17F4.1) 

X(2) 

X(4) 

River mile at first and second points to be plotted 

River mile at third and fourth points to be plotted 

(Cards 10 through 12 are repeated for each set of results to be plotted) 

10. NTITLE. NVT. NSMBL, ISZ, NSK, YT, XS, YS - Format (SIS, 3FS.0) 

1-5 NTITLE 

6-10 NVT 

11-15 NSMBL 

16-20 ISZ 

21-25 NSK 

26-30 YT 

31-35 XS 

36-40 YS 

= 0 No title to be plotted 
= 1 Title to be plotted 

Number of A4 fields required to read title on card 12 

Symbol to be plotted (see card 3) 

Size of symbol in the number of 2/100 inch units 

Plot symbol at every NSKth calculated point 

Title location in inches from bottom edge of plotting window 

Standby position for pen in inches from left-hand edge of 
plotting window 

Standby position for pen in inches from bottom edge of plotting 
window 

...... 

'" 00 



* 11. (Y(I), I = I, NT2) - Format (lOX. lOF7. 2) 

11-20 

21-30 

etc. 

Y(l) 

Y(2) 

(Omit card 12 if NTITLE = 0) 

Calculated value at first point 

Calculated value at second point 

12. (FMTT(I). I = 1, NVT) - Format (20A4) 

FMTT(I) Title written as a format statement 

I-' 
\0 
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3. Program listing of plotting program. 

:. ! ',~ ..... '"'' , .' ':' C;:" I;: :\... ':"; F·';' '! L ~: ;, 

'( f 1'<':. , ~ , ... ( ,,'! ," :; 

:H',' ~ ~"A,.tl:~,l't 

::<C"1 r' q'"Hft/(,t:"C'1 
1?;. r: t<I'"~T!eT"'f!~I..~ 

~1'3 41 (l5d5F~.'\) 
c1v~ JR'ATr'2~:t,tc,~:t_ro;) 
9~F, 1l'::>(·-'T(:!T"".t1},:,S.,11 
91f'7 J:'r;~"4"f1'il~} 
~vf- "C~".Hr~r!J,11F~ •. ~) 

c.·. 1"111YAl. I"'P\.'" 

TYPE !':~i 
9~t FO~~ AT(~'''i-1C(J'''PL£T!l.Y t.:fllll C~R!i DECK :;olE~Ulkt:D .. Sc.T 

REAl') «(5, 9~b) I r"', 'Po' X ,"'iVY, PUV.:tL, VL, Y'1AX I XP, YP, YI-'A't t 

~EA~(~,gA?'~n.,N~"XT,H2T,C~T/~TL,XVAL,'VAL 
CJEA,f, (Ii ,gj" ~G)(, 'lG 'i, ~,Sj\. 'i, ~ISIl V INS~3L, I SZ 
PE ~c (~. gA4) IT". HT< 
~T.~;T2/2 

I~5.~ 

P~OTTI oG 

C SET')" AXES,8CALES,TlTLE,tTC 
~.~ 

JV.I/ 
'.151<-1 
NL.ll'.E'a0 
NUIS,! 
NGRIO.-\ 
NLAB~ol 
NLABf.) 
oTt TU'e 
A~GT·0.0 
PUXol~.0 
XS.1t,'i; 
YS.@.PI 
XRfF.ill.0 
YRff-".0 
XN·~,e 
Y~.0.e 
!NO o l.0E38 
NIo! 
MINOo) 

PLOTTERI J 
l , X"'1lf'., V111'" 

CALL GRAPH (X, "~' JV, NSO, o~I'E, NS"B~, NAX IS, NGRID, oL AB x, oLAB Y, 
,NTl TL.E, XT, VT, H2T, ANGT t NGX, NGY ,NDX, NOY, lSI,CHT, PUX f PUY, XL, YL, XS, YS, 
.NVX.NVV,NVT,XMIN,~HAX,HTL,XREF,YAEF,XVAL.,YV~L,Xp,yP,XN,VN,ENO, 
• VlIIN, YMAX, NI ,MIND, NSKX. oS.,, xv '1.1) 
Hoi 
NAxUo0 
NGRIOoP 
N~ABXo0 
NLABV.f! 

"'bGf 

1 ~ '\ 

r:; •• _. ~.,(!~!(~" T' PLOT RI::SIJL rs PROM F'IL fER !11Jri1::1.. 

.. :::rSC;';>f'f~ PLI;TS 

~n 1'5\' I=ld T ' 

Y(1).XVAL1"X(1~ 

~!Tl'l'Lfa,' 

t! -1, 

C~LL GPA~K ('I(, '1, ~." JY, "l~K J \II.. PIE, "-!SI-l~LJ Nt.X IS, NC~ Iv, ~1! .. At'X, "'LAPY, 
• ~T tTL}: f}lT ,'1'1', ,,21. At<.f,T ,H';X ,~GY ~t.lO~ ,NCY, rC;ZtC..,T ,P'Jl(,plvY, YL r Vl, XS, 1'5, 
.>,JVX,I;!VV, h:.v", ):"'1 'j, .,f'!'A}'; >-'TL,l(.CllF f '(i>F.F'. XVA.L, YVAL, xP,YPtl(N, '1''.1, EN~I 
• Y~l;", Y""AX,i. i, "'1',:), ~,';J('i ,"5"1(1(, XVAL 1} 

I .. ISE PLOTS 
2fi'iiA QEAO~Ii,9~A' (v(Jl ,1-2,,,-T:2,2) 

CO 2P1!'j I-",t.TZ,2 
II -I-I 
X(lIl-X(Il 

~()!5 to"'lT!'-,IIE 
CO 2'~~ I-lthT:=' 
X(O·,V.L)-X(Il 

21~ COI\ITTNI!E 
22'QI TYPIc 9!"i4 
.~. 'OR".r(.5.C'~" ~EC' .O~ oE' , Q.~uI'E) - SET ~p PLorTER/) 

PAtJSf 1 ~ 
~EAOt~fgA£'~TITLE,NvTfNS~BL,ISZ,NS~,VT,XS,YS 
QEAD (6,90)) (Y (I) ,1-). 'T2) 
N_NT? 
~LlNE.\ 
CAL.L GRAPH (x, y, N, J¥ f Io,ISK, NL.INE, NS~FlLI NU!IS, NGR IO t 'lL.AfH:, Io,ILA8Y, 

."'iTl TLF., XT , YT, 1"12T, A1-.GT, "iGX, NGY, 1110 X ,IIIOY, !SI, CHT, Pl,lX,P\JV, XL., YL, XS, Y$, 
• "l\fX ,1.J\fV ,~VT I y",,>1t-:, XMAX ,HTL, )(REF, Y~EF, XVAL, VVAL, XP, yO I XfJ, V·~ ,END, 
• V~l', YMAX,t 1,,;111.0, ~5\( X I f"Sk Y, XV AL 1) 
IF(I'S.Ea.~IGaTD II~ 

M0 STOP 
Eon 

N 
o 
o 



PiG!:. r,oI.'AP,.. n 'f vC; )( ON A~lT.-!~t:TIC PAP'''::ioi: 

c... ')U~~rLTI'jE GOCt.PI"I 

SL't;:(')VT PIE r;o,t.P'"' (:>: f Y';" JV f ·!S< f '-:L IhE, NSf"SL, t'AX IS, 
1"4 TIT L f. , II T , VT , .-! 2T , p. ~J r; T , !' r,1I , ""G Y I ... f\ ~ , .J j Y , 15 Z t CH T,P \ I x, >'It 
;? ~jl, • I L \I Y I ~l II T , )( .. 1 f. , 'i lot A II , M; T L t xp~ F , VilE' F , X V A L , Y V AL , X \.' lTD, )" • f '!' '!l t: >.: • 
~Y't4I", VMAX ,1:1, lI}:Q,'~S!(~ 1',~t(V, 'iVAL 1 j 

C·· !';If1E~S!C~1 X(!),Yrt'tl:' .. 't'lC2Ijl,F~'1'f(25)tF"ITT!,·.),fiL~{4?),';S,'·~L(l) 
OI:1Ef.l5-I"ll: Y(1J,Y(1),F'"'T)'(~5},'L1TYC25},F"TT(tt5),FXL3(di) 
)( A';f) Y AJOF T~t OATA F'; at PLt.TTf"J. L; It; 'trle. 1'oU"'[,EI< CF HTla P"!S 
Jy 1$ "~f t .. !J .jF THf 'f VAt+ ~EIt,o;; PLOTTf.LI i1hEf~ "'PRE T"I.Af." 1 QoLljTTE"" 
IF \Ll'.~ s ,~ ;.nI'-:'t FLCT I~SV!~aL a SY;1ao!. (DOE (If. Tn 1~j 

a I LINE Pln' 
C ';AX!5 _ 11 1)0 'JOT D~A"" AXIS 
C • , t:'lkA.( AYIS ""In· 'tICi( MAR'<5 PqT 'Vf.R'1 YINe A~H; VI~t; 
C \!GIotIO .... to 'JOT !;Rho! r,PIt' 
C t OIiA .. GIHn • '.'~f· 5A'1E I~jCREHfkTS O~ '( t.N~} 'r AXIS 4$ TICXS 
t -I f __ CL05[ PLnT .IiE' 00 '~T O~4. G"IO 
C 'LAax a -I JUST PLO' V'LUES "IT" TICK "AP'S If ""n$ a 
C !1, DO NOT LARFL AFiSCISSA . 
C 1 LABEL '~SCIS5A .'0 IF TICK£O PLOT VAL'JES 
Co, l AeEL ASseiSS' ANO P~T ~ C"'. LASEl' ~ET.tE' TICKS 
C INSTEAC !'"IF VALlJE!; 
C 'LA~V • -\ JUST PLOT VALUES WITK TICK 'ARKS IF CALL[O F(). 
C • on hOT LUf_L VAnS 
C I LAeEL v "15 A'D IF TICKED PLOT V'LU(S 
C IITITLF. * -,' On ~OT nOT GRAPH TITLE 
Cal PL0T GRAP~ TITLE 
C * -I 0LOT S'"BOL ~fFORE PLOTTI.G TITLE 
C tXT, VTl 5TAkTlNr. POHTU" FOR PLOTTING TITLE I' INckES 
C 1oI2T A~O A~IC;T ARE CJ.oIAQACTEP I-tT .4-..0 A~GLE FOR PLOTT] NG T1 TU: 
C NGX IS "~ Of nr.KS TO sqP 3EFORE .'ITI'G VALUES ON A~SC!S5. 
C NG' 15 NO OF TICKS TO snp BEFORE willTH,G VALuES ON , AXIS 
c 'OX. NO OF ~L.ACES TO RIGhT OF DECIMAL PT FOR PLOTTI'r. X VALUES 
C NOV' NO Of cLAn:S T~ qlGHT OF OECI"AL PT FOR ~lOTTI'. , .'L'JES 
C ISZ a -HZ! A.(,U~ENT FlIP PlOTTI~G VALUE' AND SY"90L IN O'ITS OF .~5 
C "ltNC • I~C~F"(NT ON X U:jS FOR TICKS ANO GRIO IN INCr(l5 
C VlNC 0 INCOE"E'IT ON V HIS FO~ TICKS A>lO GRID IN INCMtS 
C put 15 PLl'TTl,G U'IT~ PER "AJO~ G'<IO FOR LABELLING I 
C PUY IS PLOTTING UNITS Pt.R MAJOR GRIO FOR LlHELLING V 
C XL AND VL .·f LENGT~ OF • ANa' AXIS IN INCHES 
C CXS"~l IS LOCATION OF' 'DT ~T"06Y FROM CUR~f"T R~F IN I',CMES 
C FHTI IS FDR"AT OF x LA~EL ANn MUST BE LESS THA' 9~ ChARACTERS 
C "MTV IS Fn.'AT OF V LA5EL AND MUST BE LESS THAN 90 CHA.'CTERS 
C FMTT IS FOR"AT OF TITLE ,NO -V5T 8E lESS THAS 99 tMARA,TERS 
C '!VX IS NO nF VARIABLES IN FORMAT FOR XLASEL I.E 25 
eNVY IS NO Of VARIA~LES I" FORMA' FOR VLABEL I.E 25 
C NVT IS NO OF VARIABLES IN 'OOMAT FOR TITI.E LE 25 
C YSCALf • SCAU FACTOR IN X - PROBLEM UNITS/INCH 
C YSCALE • srALo FACTn. I~ Y _ PROBLEM UNITS/INCH 
C (XREF. YREF) 15 REFERENCE POSITION I~ INCHES FRO" SU,08Y 
C CHT • II? ~T nF C"A~ACnRS TO 8E PL.OTTED WITH PLTEX' 
C (XUL,YV4L) .ROeLE~ UNITS AT CXREF"RE'1 
C xp 0 PLOT sat (POSITIVE INCH~S IN x nIRECTIO~ F~OM RI:".~E'CEI 
C Yp • PLOT SI7f. (POSITIVE INCHES IN v OIRECTlO'l FRON REFE.E~CE) 
C XN • PLOT SIZE (NEGATIvE INCHES IN X OIRECTION FROM REFEREhCE) 
C YN a PLOT ~IZE (NEGATIVE INCHES IN Y OI.ECTIO·' FROM REFERE'CEI 
C ENO !S "ISSlN.; DATA 0' V CHARACTER TEST. tF Y VAl. G~ E'G TME" 

PAr;" '.:.:,H'..I ''If. If ,,~ ~ 'j", A. .... :'I'·,y~TIC p~c:~ 

Co. 

'If'-' I A "t· )' ... t I 
I(~. 1 It t. • Y" ~ '( 
. r <': <:: T 4~T!' 

"! ~ [~"PT 1 r 
"C'A F P'-I:Tf'E 
,"\'S;; IS r.f' r:f .. is 
"·SI<.'Y~·:!--K"l 
\lS:I< v1 =t.SK Y 

tF('.!.LF.,n ,t­
~,I I c'\ I. J 

!.!.:~h, ;;J: AnS 
i :"IF y ·~A" '-

'IAX 1=""" Y JltTA 
-·IF 'I Lf r· SET '1*1 

'T~ A\ Z"-ft. l:~ 11"'c 
C(' ','IT J,t)J-JSi 

6Y,'POl,.. 

C.* IFUY,r.T.O·..!''' Tj \;"1' 
C t:.ALCIILATf V:t;r.,\LE, VSCALL, )"!NC, A~ID YI:-.;C 

~C;.,L ('VS.~"Lf , '(It-C, t~(':'i, X~A1( I k'-1!L.l, XVAL, 'ilL f Pl.:X, ~Ifl.tu) 
~r:A!, (\-Sr.AL.[, vp C,NCY, '1~ltx, V"'l~, YVAl, Yl,Pt'Y tMII-! , 

~1o,.IP r,PITP'(' Io<EAOt Plr:TTE~f ETC 

.2 . ~ 
f'r?t' 5;"l.~ 

~~3 I:'Ck'~A"'o.gr,Pf.:!o·'·V l"-ILIjTTfR: AT ST.1k1VH POHT!~/>,o .. RSP/) 
'JC T 25~lo:1 

CALL S8VSn 
':A!.L Pt. TI5E"T 0 sC ALr. f vsr.at £, ~"E.F, YPEF I t'JAL,'" VAl,)'P, vP, Y~f V'" 

CliFtl< H' 5LF If I.EEI'} Tr "F.a;'l TITLES 
29'(:1. F'UI(~·AT(2~A4) 

I"CJv,r.T.1\ <0 TO 11 
4 IF" P'T! TLF.. r..E."~. A"t:), J"V .E-I1.l) QEA{J (5, 2~~) (ffofTT (!), 1-1 ,;-.IV n 

IF'("'ILI.9i.&E,t) ;:'EA(I(I;,<tf) (FMTX(I),I_l/kIV~) 

zr. (~lASY .E!'J.' .,Hd>.JY .to.l) ~e:4.n (iii, 2~o2I) (FXLB 01, I -1, d~) 
11 TF(;':lARV.fP..t)Rt:.1:>Ct',2l?r) (F'f1TVCI),Isl,NVYj 

:')RAw AXIS IF ~AXIS liT ~ 
CALL PF~UP 
IF(~4r!S)7f"i'';,5 
tALL I"JPU,r((.>.,~.j 

~lX.XL/Xll!fC"'.~ 
IF t~I,C;j( Y.L T .. \") ~Sl( X'ill:'a' 
~Y.YL/YI\:C"'.5 
!F (NSi< V.l T ,I") :-;13)( YVa":Y 
IF'("~.EQ.f))N·.r.l 

IF(·,Y.I:Q.~};'IY·l 

IXr1a!SZ·' 
°!SZaISZ 
C4LL aSHf. CIH) 
CALL C"SIZE (C~T ••• I 
OHAh X AXl~ 
CALL PfND" 
IrCNLA8"1~tI~,15 

10 CALL I~PLOT('L.r,) 
GO TO .e 

15 Ylae.-rusz •• p!5"2._C IolT 

I~ CALL aslZE(lxHl 
CALL :t!o'tAQiP( 
CALL OsrZE(ISZl 
C4LI. PENUP 
VAL_XVAL.l_X'OL 
XOXoNGX N 

o 
I-' 



PAGE t;~AP"" OF '1 \IS 1. 

(i -CL -1. e*r.I-!T .... ,.~! ~C .xnx 
IF(o.LAe-X.GT.l) ('0 fr' 1P­
.y.~ . 

'"!T~~ET!C -APER 

CALL r.HfCP'(yt;CALe:,VAL1W')(,VjL/J:iNCOL,~D)() 
't l*t'i-Ct-4T. (~!iC('\L-l.'''_~ 

17 CA .. L l"rLnT eX!, Y I J 
CALL PLTvAL(VAL,N'r,) 
CALl. INP)'OT(P.,0.} 

if! tAL.L PENn" 
on 3~ I.l,~u' 

~1'1 
X)(.)'It~t.·~I 

CALL INPLOT(yxf£l'.) 
CALL )f"'A.Q~ 

IF(ut..AeX)2",~ 1,2~ 
CHtC' TO SEE IF 'Jf.H TO PL~T VAL 

~~ Ir(H':l~rI.Nr.X~.NF.~') ron TI1 3~ 
CALL GSIZE (IX") 
CALL yNAP( 
CALL QS17EllSlJ 
If' (t"LARX .LF .. tJ Gn TO 25 
CALL ."UP 
~l·YX-r.XCL 
CALL I"PLOTC'!,YIl 
LI.(2·!l/Nh.-r 
IF(Ll.GT.39) ~o T() 2A 
~L~Xl.FXLP(Lll 
XLtU'2.F1LP (L ,. ... 1) 

CALL "L TEXT 
.~" YLP,! 
GO TO 28 

25 IFlMonn,~:~kX'()."'If:.!A1GO TO 3~ 
CALL CIoIE (':P( (-YSC ALE f :tVA!.. 1, xx, VAL, K~.CIjL, 1\;)Y) 
~l·YX-C~T.(P~COL·l.'·.A 
CALL PENU. 
CALL I~PLOT(XI,V11 
CALL Pt,.TV't (YAL,NO~) 

26 CALL !"PLOT(n.<:.l 
C4..L.L pF.",n~, 

~~ CONT!'Uf 
1I1\i\ C'LL PEl'llljP 

CA.L.l rNPLr)T(ii'.,~I.} 
DO Y HIS 
CAL.L PF'''O~ 
IF (t.LAf!),)5c-,4~, ~.' 

,5 C ... I. r>0LrT(c •• YL) 
GO Tn 7~ 

5. CAU Q~!ZE(I'-') 
CALL yf044,J?", 

CALI. ';;~lz€ (!~V 
CALL PP"JP 
VAL.."'YAL. 
yy.~. 

CAL.L Cto!fC~ (Y~CAI..E,Y"AL.,Yy,VAL,I(NC("lL.,N"n 
ltl.? ... 1.~*" .. C ~l.CI1T ... Ct-T-HISl •• ~~ 
It 11"l,U~.Xl 

CAL.L. I~PL(''I'('l:l''',J 
CAL.L. DLTVAl (V~LI\j~Y) 

PAGE tt;11APj./: OF Y vS ~ I"lllj A~ITI1I'1(TIC PAPER: 

CAL.L INPL~T (~.,;t,) 

CAl.I. Pf,ON 
De 65 1_1,"''( 
Ill. 1 
YY_VINe·RI 
ClLL INPLeTt •• ,'" 
CALL V.A.' 
IF (NLAPV155,1'i;,~5 
CH~tK TO SEf IF' t.IEEC TO PL.~T VAL. 

55 IF(.OC(I,NGYl.N,.") C.OTO ~5 

CALL Q~IZHn" 
CALL YM:A~jI( 

CALL QSIl, tlSl) 
fF'("'''(\CI_NSlif.Y·O.NE.li'lGn T(" ~!) 

CAL.L. CjolEC~("'5CALE''''VALrYy,VALt;.r·,COI.., .. !)Y) 
)' 1 .;'. -\ .o!'\.~'Ct:L *Cl1T_C »1T -~lSZ*."" 
IF{A.~S('(t).''T.U~SO:P~.X)) :(1'';4.X-X1 

CA!..L PF.NtiP 
CAU T"PLOT(YI.VV) 
tALL PL.TVAI.(VA.L,fiCYj 
CAL.L INPLriT(~.,Yn 

CALL PEN~N 
~, CONT!~Ut 

7~ CALL PfNUP 
SEt IF GJ:(I!' t':A.LLE'" FO;: 

?F. IF(~"i.~I;;) 1.74~lrol'f;t!l' 

a~ ~'I(."'~)~:('~Y 

.~ 

!F (t~~.LE.V" 'Itlq 

Uya~'/hGY 

IF(1<I'r'.Lf.!'1 ',.tV.' 
"il B~ TI: 1, '" II f 2 
QI.!*~~X 
r1_xrNC. Q I 

I'-.IPUJT('( 1,".) 
Pf~~~ 

CALL T~!Pl.r.'T():'lIYL) 

CALL P::t, it-
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