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ABSTRACT
Estimation Theory Applied to River
Water Quality Modeling
by
David S. Bowles, Doctor of Philosophy

Utah State University, 1977

Major Professor: Dr. J. Paul Riley
Digsertation Director: Dr. William J. Grenney
Department: Civil and Environmental Engineering

The extended Kalman filter (EKF) is used to represent BOD, DO, and
nitrogen cycling in a 36.4 mile (58.6 km) stretch in the Jordan River,
Utah, under the assumption of steady~-state conditions. Approximate mini-
mum variance estimates of the water quality parameters are provided by the
EKF filter. These estimates are obtained through a combination of two
independent estimates of the state of the river water quality system:
(1) predictions of the system state from a "phenomenclogically meaningful”
process model of the biochemical and stream transport processes; and (2)
measurements of the water quality parameters. These two estimates are com-
bined by a weighting procedure based on the uncertainties associated with
the process model predictions and the measurements. The EKF also yields
an estimation error covariance matrix from which confidence limits for the
accuracy of the parameter estimates are obtained.

A sequential arrangement of extended Kalman filters is utilized. Each
EKF in the sequence represents a river reach for which hydraulic and water
quality characteristics are fairly uniform. Initial conditions for each

EKF are based on the final conditions of the previous EKF adjusted to

xiii



represent the effect of point loads or tributaries discharging into the
main river between the two reaches.

A trial-and-error calibration procedure is used to obtain values for
the model coefficients in the process model operated as a deterministic
model independent of the filter. Determination of values for the Q matrix
by a trial-and-error procedure is described. The approach is based on the
requirement that the mean square error of the differences between the filter
estimates and the measurements be not less than the measurement noise vari-
ance.

A property of the EKF is that information contained in the measurements
is used only in subsequent estimates of the system state. Therefore, infor-
mation in the measurements is used only downstream of the sampling point
at which the measurement was taken. To make use of the measurements in both
the up~ and downstream directions a fixed-interval smoothing algorithm (FIS)
is implemented. This technique combines state estimates from filter passes
in the up~ and downstream directions. Sequential linearized Kalman filters
are used for the pass in the upstream, or backward direction. Unlike the
forward and backward estimates of the estimation error (P), the smoothed
values are not characterized by discrete jumps at sampling points. Instead,
the estimation error rises to a peak approximately midway between sampling
locations. This characteristic indicates that when information from all
the measurements is used confidence in the estimates decreases with dis-
tance from the adjacent sampling points. Smoothed values of P are less than
the values obtained from applying the forward EKF alone; thus indicating
that the estimates obtained from the FIS are better, in a minimum variance

sense, than the estimates obtained from the forward EKF.



To assist in gaining familiarity with the filtering technique, several
sensitivity studies are performed. The sensitivity of filter estimates to
changes in the following statistics was investigated: the process model
noise variance, the measurement noise variance, the initial estimation error
variance, and the point load estimation error variance. A large value for
the process model noise variance has the effect of: (1) increasing the
rate of growth of the estimation error, and (2) placing additional weight~
ing on the measurements because the larger estimation error implies less
confidence in the process model predictions. At sampling points the mea-
surement update procedure always results in an estimation error less than
the measurement noise regardless of the values used for the process model
noise variances. Changing the values of the measurement noise affects
(1) the level of the estimation error after measurement updates, and (2)
the weighting given to measurements. A larger initial estimation error
variance gives relatively more weighting to the measurements but this
effect decreases with distance from(the‘upstream boundary. The sensitivity
study on the point load estimation error variances indicates a small, but
noticeable, effect on the estimation errors, and therefore, a slight effect
on the state estimates via the weighting procedure.

The capability of estimating model coefficients and lateral inflow
concentrations simultaneously with the water quality parameters is demon-
strated. 1In one run five coefficients in the equations describing nitrogen
cycling are estimated. This run also provides an example of filter diver-
gence.

(220 pages)
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CHAPTER 1

INTRODUCTION

Background

River water quality models can be used for many different purposes
including prediction of the effects of management strategies, and fore-
casting future levels éf pollution over the short~term or the long-term.
Water quality models are also used in stream assessment studies to assist
in understanding the important physical processes controlling stream water
quality. This task is approached by identifying diffuse and point sources
of water quality parameters,l collecting hydraulic and stream quality data,
and proposing a model of the biochemical and stream transport processes.
Typically the model is deterministic and will facilitate physical interpre-
tation of the processes occurring in the prototype system. However, sto=-
chastic considerations of the uncertainties associated with the stream
system, the data, the model, or the model responses are not usually
explicitly considered.

Aquatic or hydrologic process are inherently random in nature.
Yevijevich (1971) has explored the sources of stochasticity in geophysical
and hydrologic processes. He concluded that 'the atmosphere is the major
source of stochasticity' while "the main influence of the oceans and the
continental surfaces as well as the underground water is, however, to
attenuate the high stochasticity produced by the atmosphere.' According
to Yevjevich (1974) it is common misconception that the need for stochastic
lThroughout this dissertation the term '"parameter" denotes water quality

constituents. To avoid confusion with the constants in the mathematical
model these constants are referred to as ‘'coefficients.”



considerations is only 'temporary,' and will be replaced when the under-
lying physical mechanisms are better understood. The sequence of true
states of a natural system is a stochastic process, that is, it depends
not only on the system inputs but also on random environmental disturbances.

Available water quality and hydraulic data are always subject to un-
certainties associated with sampling procedures and analytical techniques.
Other limitations of data are that they are never continuous in time or
space, and that it is seldom possible to measure all the pertinent state
variables due to financial and technological limitations.

Mathematical models are never completely accurate representations
of the prototype system. A minimum level of prediction uncertainty will
result due to the inherent randomness of nature, even with a "perfect"
model. Riley (1970) also attributes this lack of accuracy to losses of
information about the real world system during the development of the
model. In the first place information is lost when we conceptualize what
the prototype system is like. This is because the real system must be
"viewed" through various kinds of noisy and incomplete data gathered about
the system. Another significant loss of information occurs during the con-
version of the conceptual model into a mathematical model. This loss of
information is caused by such factors as simplifications or omissions that
are necessary to make the solution of the problem mathematically tractable
or consistent with the available computing facilities. Common examples of
these factors are linearization, and the omission of a dispersion term in
the stream transport equation. The uncertainties associated with mathe—
matical models are in the variables, the model coefficients, the form of

the model, and the numerical solution technique.



Since the real stream system, the data collected from that system,
and the stream model are each thwart with uncertainties, and since incom-
pleteness characterizes the data and the stream model, it is inevitiable
that the model predictions will also be uncertain. The results from es-
timation theory that are applied in this study, provide a means for model-
ing these uncertainties. Figure 1.1 is a schematic representation of the'
occurrence of environmental disturbances in the prototype system and
noise in the measurement process. It also shows the estimation theory
technique for explicitly treating these uncertainties. The crux of the
estimation technique is the weighting procedure for combining two indepen-
dent estimates of the state of the stream system based on: (1) the measure~
ments, and (2) predictions from a model of the stream processes. These
two independent estimates are weighted according to the levels of uncer-
tainty associated with each estimate. Measurement uncertainty is specified
as a white Gaussian noise process, N(Q,R)l. Uncertainty in the process
model predictions is partially dependent on the process model uncertainty
which is specifie& by another white Gaussian noise process, N(0,Q). By
combining the measurements and the process model predictions the estimation
procedure used in this study provides approximate minimum variance esti-
mates of the true state of the stream water quality parameters, and confi-
dence limits representing the reliability or accuracy of these estimates.
The technique uses all available information, in the form of: (1) "a phenome-
nologically meaningful" process model of the stream processes; (2) measure-
ments of the water quality parameters; and (3) prior estimates of the system
state (water quality parameters) and the uncertainty with which these prior

estimates are known.

1 . e g
The underbar notation indicates a vector.
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Objective

The overall objective of this study is:

To investigate and evaluate the application of estimation theory to
river water quality modeling.

To achieve this objective a filter model is developed to represent
several water quality parameters in a real river system. The process
model is based on established deterministic techniques for representing
river water quality. Model and data uncertainty are handled through a
state estimation procedure with the result that uncertainty associated
with the final estimates is less than the individual uncertainties associa-
ted with either the process model predictions, or the measurements indi-
vidually. This is referred to as the "filtering result" and is proven in
Chapter 3. The limited availability of suitable data and computer funds

have restricted the study to a steady-state model.

Summary of Contents

Chapter 2 contains a literature review., The review is divided into
two parts: (1) a review of estimation theory, and (2) a review of the
applications of estimation theory to water resources.

The main result from estimation theory utilized in this study is the
extended Kalman filter. This and other estimation theory techniques are
described in Chapter 3. The sequential mode of application of the Kalman
filter to a river under the assumption of steady-state conditions is ex-—

plained. Also numerical and other computational aspects of the study are

briefly described.



Chapter &4 contains descriptions of the study river, the process model
and the measurement model. Details of other aspects of the problem set-up
such as point load concentrations, lateral inflow loadings, and initial
conditions also are included.

In Chapter 5 the results are presented. After a section in which
calibration of the deterministic process model is described, the technique
used to obtain suitable values for the variances in the process model noise
covariance matrix, Q, is explained. The subsequent sections contain the
results and discussion of results for: the filter run, the smoothing al-
gorithm run, several sensitivity studies, and some coefficient estimation
runs. An example of filter divergence is included in one of the coefficient
estimation runs. In the final section of Chapter 5 the computational re~-
quirements of the estimation theory techniques applied are summarized.

A summary of the research accomplished in this study is contained in
Chapter 6. 1In addition, several conclusions and recommendations for fur-
ther work are made.

Appendix A is a users manual for the computer programs written for

this project. It includes input instructions, program listings, and flow

charts.



Chapter 2

LITERATURE REVIEW

Introduction

The review of literature is divided into two parts: (1) a review of
estimation theory, and (2) a review of the application of estimation
theory to water resources. The applications reviewed in the second

section are also summarized in tabular form for easy reference.

Review of Estimation Theory

During the mid-1960's modern estimation theory techniques were exten-—
sively applied to the real-time problems of space and missile guidance and
navigation including the Apollo mission (Leondes, 1970). Gelb (1974) de-
fines estimation as:

The process of extracting information from data -- data which may

only infer the desired information and which may contain errors.

Modern estimation methods use known relationships to compute the

desired information from the measurements, taking account of mea-

surement errors, the effects of disturbances, and control actions

on the system, and prior knowledge of the information. Diverse

measurements can be blended to form "best" estimates, and infor-

mation which is unavailable for measurement can be approximated

in an optimal fashion.

Estimation problems can be classified by the relationship between times of
measurements and times at which estimation is required:

1) Filtering: Estimate the state vector, X, at time t based on

measurements up to and including time t
2) Prediction: Estimate X at time t' > t based on measurements up
to time t

3) Smoothing: Estimate X at time t' < t based on measurements up to

time ¢



The idea of obtaining approximations or estimates of unknown quantities
can be traced to the development of least squares estimation. According
to Young (1974) both Gauss (1821) and Legendre (1806) appear to have used
least squares analysis at the beginning of the nineteenth century. The
mathematical theory of probability did not exist at this time and, there-
fore, least squares estimation was formulated as a deterministic approach.
(See for example Kreider et al., 1966).

In the early 1940's Wiener (1949) solved the continuous—time problem
of linear least-squares estimation for stochastic processes. Wiener's
work was prompted by the problem of designing anti-aircraft fire-control
systems. His solution involved reducing the problem to that of solving
certain integral equations such as the Wiener~Hopf equations. However,
the frequency-domain Wiener filter did not gain much practical acceptance.
The main reasons for this were difficulties in synthesizing a suitable data
processing scheme; and, the incompatibility with practical problems of the
assumptions of stationarity and knowledge of the entire past of the ob-
servable processes. With the advent of the high speed digital computer the
effort was diverted from attempts at trying to solve the Wiener-Hopf equation
for particular problems, to a search for a time-domain algorithm which would
produce numerical estimates from numerical measurements. The search was
further stimulated by the real-time problems of space and missile guidance
and navigation.

The breakthrough came with the work of Kalman and Bucy in the early
1960's (Kalman, 1960; Kalman and Bucy, 1961; Kalman, 1963). Essentially
the Kalman-Bucy or Kalman filter is no more than a "recipe" for combining
two independent estimates of a state vector (Lettenmaier and Burges, 1976)

to provide a "best" (minimum variance) estimate of the system state



(Figure 2.1). The two independent estimates of system state are given by
(1) a "process model" based on a prior understanding of the physical sys-
tem, and (2) measurements on part or all of the state vector. These two
estimates contain levels of uncertainty. The filter combines the model
and data estimates by weighting them according to the uncertainties associ-
ated with each one. Output from the filter comprises a new improved esti-
mate of the system state and the variance assoclated with that estimate
(Moore, 1973). In contrast to the Wiener filter, the Kalman filter utilizes
the relatively flexible state-space structure and is a recursive algorithm.
Because of itg recursive nature only the most recent measurements are stored
by the computer. This feature saves computer memory and permits real-time
estimation. Although the theory of filtering is quite complex the result
is basically a pair of differential or difference equations for propagation
of the mean and covariance of the probability distribution function of the
state variables conditioned on processed past measurements.

A linear model is assumed in the basic Kalman filter. 1In the case of
a nonlinear model the computational requirements for an exact solution to
equations describing the evolution of the conditional probability density
function become dimpractical for most problems and, therefore, approximations
are used (Schmidt, 1976). The three most common approximations are: the
linearized Kalman filter, the extended Kalman filter, and the iterated ex-
tended Kalman filter. The linearized Kalman filter is linearized about an
a priori trajectory for the state vector. The extended Kalman filter is
linearized about the latest estimate of state, and the iterated extended
Kalman filter includes iterations on the estimate at each measurement until

there is little change in the estimate.
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Each of the Kalman-type filters referred to above involves minimum
variance estimation albeit approximate for the case of a nonlinear model.
Other criteria for estimation are:

1) Joint maximum likelihood (Bayesian)

2) Maximum likelihood (non-Bayesian)

3) Least squares (dynamic programming, invariant imbedding)

Because nonlinear filters differ in both the criterion of optimality
and the approximations used it is not possible to compare the different fil-
ters except through computational studies (Schwartz and Stear, 1968). Since
computational studies are based on specific problems the comparisons made
using the results of these studies may apply only to the problem considered.
Lee (1972) compared nine approximate nonlinear filters for a hypdthetical
BOD-DO river water quality problem. He concluded that for his problem the
dynamic programming least squares and the first-order minimum variance fil-
ter were far superior to the other filters on the basis of performance and
computational time. However, Lee did not consider the extended Kalman

filter.

Young et al. (1971) proposed an instrumental variable-approximate
maximum likelihood (IV-AML) technique as an alternative to the extended
Kalman filter. The IV-AML approach is a recursive time series analysis
procedure and is less flexible but computationally more efficient than
the extended Kalman filter.

The reader is referred to Lee (1972) for a fairly comprehensive histori-
cal review of estimation theory. Also of interest is a tutorial paper by
Young (1974) in which the parallelism between recursive least squares esti-

mation and Kalman filtering is discussed. Youug (1974) and Moore (1971)
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also point out that the state estimation problem may be viewed as anexten-

sion of Bayesian analysis applied to dynamic systems.

Review of the Applications of Estimation Theory
to Water Resources

In the past five years the literature has contained several examples

of applications of estimation theory to water quality and hydrologic

problems. A summary of each study is contained in Table 2.1. Several dif-
ference uses for estimation techniques in water resources problems have
been identified and form the framework for synthesizing previous work in

the following discussion.

Model identification

The process model is an essential part of the procedure for estimating
the state of a system. This model is described in the state-space form
and comprises a set of first-order, deterministic, linear or nonlinear,
differential or difference equations with an additive white Gaussiaﬁ noise
term. The initial process model may be an empirical transfer function,
or it may be based on some heuristic feeling or physio-chemical understand-
ing of the system (Whitehead and Young, 1975). Graupe, Isailovic, and
Yevjevich (1975) argue for the mathematical statistical model on the
grounds of such statistical advantages as unbiasedness convergence, and
optimality in estimating model coefficients; whereas, Young (1974) claims
that "internally descriptive' models tend to make better use of a priori
information on the physical nature of the system and thus are more attrac-
tive from the "information theoretic' standpoint. In either case estima-
tion techniques provide a means of assessing the adequacy of particular
model structures by careful analysis of the process model noise covariance

matrix (Q). Also the desirability of adding or deleting state variables
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may be assessed by studying changes in the estimation error covariance
matrix (P) {(Lettenmaier and Burges, 1976). Beck (1973, 1975) and Beck
and Young (1976) developed a process model for BOD-DO-algae interaction
in the River Cam, England, through repeated use of the extended Kalman
filter together with statistical and other tests. In a related study

(Whitehead and Young, 1975; Young and Whitehead, 1975) a rainfall-runoff

model was didentified by repeated application of the instrumental variable-

maximum likelihood technique.

Model calibration

Estimation techniques are potentially useful in model calibration.
Coefficients in the process model can be estimated at the same time as
state variables are estimated. Coefficient estimation is achieved by
augmenting the state vector with the coefficients to be estimated after
a satisfactory model structure is obtained. Usually the process model
adopted for these coefficients is based on the assumption that the coef-
ficients are constant except for model uncertainty. Lettenmaier and
Burges (1976) point out that in the context of estimation theory model
calibration is viewed in an essentially Bayesian sense in which the
actual process is well identified but calibration coefficients must be
determined. Many of the studies referred to in Table 2.1 include coeffi-
cent estimation (e.g., Beck, 1973; Koivo and Phillips, 1976). Graupe,
Isailovic, and Yevjevich (1975) handle non-—stationarity in the model co-
efficients by estimating different sets of coefficients for different
seasons. An alternative would be to identify a model to represent coeffi-
cient non—stationarity and include this as part of the process model.

Nonlinear filtering techniques are usually necessary for coefficient



Table 2.1. Summary of applications of estimation theory to water resources.

Reference

Type of Application

Estimation Technique

Lee and Hwang
(1971)

Lee (1972)

Moore (1971)
Moore and Brewer
(1972)

Moore (1973)
Brewer and Moore
(1974)

Beck (1973)
Beck (1975)
Beck and Young
(1976)

Dynamic stream model for BOD-DO using synthetic data.
Coefficient estimation and sensitivity studies on
initial state vector and a weighting matrix.

A computational comparison of 9 approximate non-
linear filter algorithms for a dynamic stream model
of BOD-DO using synthetic data. Coefficient esti-
mation and sensitivity studies. Application of
minimum variance filter to activitated sludge
process and nonlinear hydrologic process model
including coefficient estimation. Comprehensive
historical review of estimation theory.

Development of an approach for designing river water
quality monitoring systems that maximizes predictive
accuracy subject to a cost constraint. Application
of the technique to a simulated river with twelve
reaches for temperature, zooplankton, phytoplankton,
and nitrate., Illustrations of filter characteris—
tics and divergence control.

Dynamic stream model for BOD-DO-algae using field
data collected over a 2.9 mile (4.7 km) reach of the
River Cam in eastern England. Process model was

the outcome of a thorough model identification pro~
cedure. Coefficient estimation.

Invariant Imbedding Least
Squares Filter

Linearized Kalman Filter
Invariant Imbedding Least
Squares Filter

Minimum Variance Filter
and others

Extended Kalman Filter

Extended Kalman Filter

71



Table 2.1.

Continued

Reference

Type of Application

Estimation Technique

Pearce, DeGuida,

Dandy, and Moore
(1975)

Whitehead and Young
(1975)
Young and Whitehead
(1975)

Lettenmaier (1975)
Lettenmaier and
Burges (1976)

Bowles and
Grenney (1976a)
Bowles and
Grenney (1976b)

Evaluation of estimation theory as a technique for
design of sampling networks for dispersion experi-
ments in Massachusetts Bay. Filter handles temporal
propogation of the system states while spatial re-
lationships are handled separately by a finite element
method.

Dynamic stream model for flow-BOD-DO using field data
collected on a 34 mile (55 km) stretch of the Bedford-
Ouse River System, England. BOD-DO model identifica-
tion was achieved by Beck (1973). Identification of a

rainfall-runoff model was based on autoregressive-moving

average (AR-MA) methods.

Dynamic stream model for BOD-DO using simulated data.
Lucid introduction to state estimation techniques in
water resource system modeling., Discussion of diver-
gence in Kalman filter and potential uses of estima-
tion theory.

Steady-state stream model for BOD-DO and nitrogen
cycling using field data collected over a 36,4 mile
(58.6 km) stretch of the Jordan River, Utah. Compari-
son of filter estimates and results from a determinis—
tic solution of the process model. Coefficient esti-
mation and sensitivity studies on several statistics,
The final results from this study are presented in this
dissertation.

Linear Kalman Filter

Multivariable Instrumental
Variable—-Approximate Maximum
Likelihood

Linear Kalman Filter
Extended Kalman Filter

Sequential Extended Kalman
Filters

Sequential Linearized Kalman
Filters

Fixed-Interval Smoothing
Algorithm

<1



Table 2.1. Continued

Reference

Type of Application

Estimation Technique

6zg6ren, Longman,
and Cooper (1974)

Perlis and
Okunseinde (1974)

Bras and Rodriguez-
Iturbe (1975)

Graupe, Isailovic,
and Yevjevich
(1975)

Formulation of dynamic stream model for BOD-DO. A
five-day delay in BOD measurements is handled
through the use of a smoother. Artificial river
aeration is controlled by a stochastic optimal feed-
back control. ©No application is described.

Development of an approach for designing water
quality monitoring schemes subject to cost and
accuracy constraints. Application to a simulated
TOC/BOD-DO system. Current measurement of TOC and
five~day delayed BOD results combined by a scheme
that employs the projection of the delayed measure-
ment to the time of on-line estimation.

Development of an approach for "optimal' rain gage
network design subject to cost and network accuracy
constraints. Application to simulated storms.
Extension of the method to enable accuracy con-
straints to be placed on basin discharge estimated
from rain gage data via a rainfall-runoff filter
model.

Rainfall~-runoff, input-output, model applied to Karst
catchment of the TrebisSnjica River, Yugoslavia

Identification of a linear-optimal process model based

on autoregressive-moving average (ARMA) methods.
Measurement errors are filtered out by linear Kalman
filter.

Linear Kalman Filter

Multiple Linear Kalman Filters

Linear Kalman Filter

Linear Kalman Filter

o1



Table 2.1. Continued

Reference Type of Application

Estimation Technique

Koivo and Phillips Dynamic stream model for BOD-~D0O using synthetic data.
(1976) Sinusoidally varying point source of BOD and photo-
synthetic source. Coefficient estimation.

Moore, Dandy, and Development of an approach for designing sampling
deLucia (1976) programs in a completely mixed impoundment.

' Application to nutrients and algal biomass in

top two meters of Lake Washington using field data

and synthetic data.

Linear Kalman Filter

Linearized Kalman Filter

L1
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estimation because a linear process model often becomes nonlinear when
model coefficients are treated as state varilables. In addition, computer
costs increase as the order of the state vector 1s incremented. There-
fore, the amount of computational effort required for filter models that

include coefficient estimation can increase very rapidly.

River forecasting

The river forecasting problem is a "natural' application for estima-
tion theory. A filter algorithm is used to determine "best' estimates
of the system state from noisy measurements as they become available,
and from the process model conditioned on previous measurements. Most
of the river quality forecasting studies reported in the literature
have been based on a one-dimensional dynamic stream model (e.g., Lee and
Hwang, 1971; Moore, 1971; Koivo and Phillips, 1976). Due to the scarcity
of data suitable for verifying dynamic river water quality models, noisy
data often have been generated on a digital computer using a pseudo-ran-
dom number generator to introduce noyrmally distributed process model
noise and measurement noise. With the exception of Moore's work (Moore,
1971; Moore and Brewer, 1972; Moore, 1973; Brewer and Moore, 1974) synthe-
tic stream data were obtained using a model identical to the process
model. Under these conditions the filter problem is merely the inverse
of the data generation exercise. Noise effects are normally distributed
and the process model and coefficients are known exactly. Aithough re-
sults from studies utilizing synthetic data have demonstrated the applica-
tion of estimation theory to river quality forecasting the approach cir-

cumvents the vagaries of real data. Moore attempted to generate data
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that were more realistic and which, therefore, presented a more challeng-~
ing filtering problem. He did this by adding several variables to the
simulation model that were not in the process model and by adding noise
to certain model coefficients and model inputs. Thus, the filter problem
was not the inverse of the data generation problem.

Two techniques have been proposed for incorporating delayed measure-
ments into the filter procedure for river forecasting. In a theoretical
paper, Ozgdren, Longman, and Cooper (1974), formulated an approach that
makes use of a smoothing procedure to utilize the five-day delayed BOD
data. 1In another paper, Perlis and Okunseinde (1974) proposed the use of
TOC data in lleu of delayed BOD measurements. When BOD data become
available, a multiple Kalman filter model is used to combine current mea-
surements of TOC and five-day delayed BOD results by a scheme that employs
the projection of the delayed measurements to the time of on-line estima~
tion.

Estimation techniques also have been applied to the proﬁlem of
hydrologic forecasting. Lee (1972) formulated a rainfall-runoff process
model of the hydrologic system from the nonlinear Prasad (1967) model and
tested the approximate minimum variance filter model using generated data.
Bras and Rodriguez-Iturbe (1975) developed a hydrologic process model for
storms with separate stream and overland flow segments but ignoring infil-
tration. Their model is based on solutions to the kinematic wave equations
and was tested using synthetic data. Whitehead and Young (1975) used ad
hoc and time series empirical relationships in a4 rainfall-runoff process
model to represent the Bedford-Ouse River System in Eastern England. Time
series transfer function techniques (Box and Jenkins, 1970) were also used by

Graupe, Isailovic, and Yevjevich (1975) to identify rainfall-runoff re-
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lationships for a process model of the hydrology of the catchment of the
TrebiénjicaRiver in Yugoslavia. For cases where measurement errors can-
not be considered negligible the autoregressive-moving average transfer
function model is no longer linear-optimal with respect to trﬁe runoff
although it is linear-optimal with respect to runoff measurements. There-
fore, in these cases, measurement errors are filtered out using a linear
Kalman filter.

Recently, the National Weather Service, which is the Federal Agency re-~
sponsible for river and flood forecasting in the United States, has become
interested in applying estimation theory techniques to operational hydro-
logic forecasting (Hydrologic Research Laboratory, 1976). Estimation theory
techniques should improve both the accuracy and reliability of forecasts.
Accuracy will be enhanced through the objective procedure for updating
forecast model performance based on observations of river stages and other
variables that become available during real-time simulation. Reliability
will be improved as a result of reducing the uncertainity associated with
river forecasts by filtering out measurement noise. In addition the appli~-
cation of estimation techniques to real-time hydrologic forecasting will

yield confidence intervals on forecasts of the mean.

Sampling program design

Use of filtering techniques for the design of sampling programs is
facilitated by the fact that the equations for the propagation of the es-
timation error covariance matrix are independent of the values of the
actual measurements. Therefore, knowledge of the accuracy of a proposed
sampling network can be obtained a priori without measurement data. Only
the statistics of the measurement error (R) are required and these can

be determined by analysis of the sampling procedures and analytical tech-
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niques. Different measurement coefficient matrices (H) (described in
Chapter 3) can be formulated to represent different configurations of
sampling locations and different combinations of the variables to be
measured. A cost constraint may be placed on the sampling schemes re-
presented by the H matrices. The optimal sampling network is selected as
the network that provides for estimates of the variables with maximum
time between samples, while meeting a constraint on the maximum attainable
estimation error (P). A global optimum design cannot be guaranteed since
only those measurement coefficient matrices that are formulated by the
designer are evaluated. This technique for sampling program design bases
the selection of an "optimal” design on the use to which the data are to
be put, that is making estimates of the state of the system with the aid
of a priori knowledge contained in the process model. Costs associated
with different degrees of estimation uncertainty could be introduced into
the objective function. A disadvantage of the procedure is the rapid
growth in size of the state vector, and therefore, computer costs, as the
number of space points or system variables is increased.

Moore and Brewer pioneered the use of filtering techniques for the
design of water quality monitoring schemes. The approach was first applied
(Moore 1971, 1973) to four water quality variables on a river that was
divided into twelve reaches. A temporal and spatial distribution of the
measurements, and the measurement techniques to be used were determined
by the procedure.

Perlis and Okunseinde (1974) based the decision to make a measurement
on the relative savings from improved estimation compared with the cost of
measurements. Their technique yields the location of a single sampling

point and the temporal spacing of samples.
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Pearce, DeGuida, Dandy, and Moore (1975) evaluated estimation theory
as a technique for the design of sampling networks for dispersion experi-
ments. A two-dimensional finite element model is used to simulate spatial
aspects of dispersion in Massachusetts Bay. It is proposed that temporal
aspects be handled by the linear Kalman filter, thus facilitating selection
of an "optimal" sampling network.

As part of the National Eutrophication Survey, Moore, Dandy, and
deLucia (1976) used a linearized Kalman filter to evaluate sampling
frequencies in a completely mixed impoundment. In addition to model and
data uncertainty, phenomological uncertainty in the system inputs was
considered. The approach was applied to nutrients and algal biomass in
the top 7 feet (2 m) of Lake Washington using both field and synthetic
data.

Linear Kalman filter techniques are utilized in a method for
"optimal" rain gage network design developed by Bras and Rodriguez—ltufbe
(1975) with cooperation from Moore and others. The design procedure in-
cludes constraints on costs and the accuracy of mean aerial rainfall
estimates. An application was made using synthetic storm data. The de~
sign procedure is extended.via a rainfall-runoff filter model, so that
the accuracy constraint may be placed on estimates of basin discharge

which are obtained from the precipitation measurements.

Missing data fill-in

Lettenmaier and Burges (1976) propose that estimation techniques are
applicable in situations where a cause-effect model could be employed to
fill in missing observations in otherwise reasonably complete data time
series. In this way understanding of the physical system is utilized in-

stead of being largely ignored as it is in regression methods.
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Control

Moore and Brewer (1972) propose that filter models be used to obtain
"best" estimates of the state variables in an environmental system, such
as a river, and that these estimates be used to control the system via
a feedback control procedure. A theoretical example of artificial river
aeration operated by a stochastic optimal feedback control law is given

by Ozgdren, Longman, and Cooper (1974). Bras and Rodriguez-Iturbe (1975)

propose the use of estimation and control theory to determine reservoir
operating rules with the purpose of satisfying a given objective. They
point out that some difficulty might be expected because of the assymmetric

nature of the loss functions in this problem.
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CHAPTER 3

DESCRIPTION OF THE ESTIMATION THEORY

TECHNIQUES APPLIED

Introduction

In the previous two chapters the development and basic philosophy of
estimation theory are outlined. In this chapter the techniques of esti-
mation theory applied in this study are described in detail. These
techniques are:

(1) extended XKalman filter (EKF),

(2) 1linearized Ralman filter (IXF),

(3) smoothing algorithm.

In addition the sequential mode of application of the Kalman filter
to a river under the assumption of steady~state conditions is presented.
Numerical and other computational aspects of the study are briefly de-
scribed at the end of the chapter. Firstly, a simplified derivation of
the linear Kalman filter is given to provide an intuitive feeling for the

technique.

Simplified Derivation of the Linear Kalman Filter

A mathematical rigorous derivation of the Kalman filter requires
familiarity with advanced statistical theory. Barnham and Humphries
(1970) have presented a less rigorous but intuitively appealing derivation

which is reproduced as follows.
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Firstly, the case of a single state variable, X, is considered. Let
X' and X" be two independent estimates of X with variances of 6'2 and 0“2
respectively. The goal is to combine these estimates to form a weighted
mean that has the property of being the minimum variance estimate, ﬁ, of

X. A linear combination of X' and X" using a weighting factor W is form-

ed as follows:

X = (1-WX +Wx" . . . . . . .« . . . . 3.D
The expected or mean value of X is given by:

EX) = (1-W) E@')+WEEXY . . . . . . . . (3.2

By definition the variance, o2, of X is given by:

62 = E {[X - E(X)]%}
= E {[(1 - WX +WX" - (1 - HEE") - WEE"]?}
= Q-Ww2e w2z L. L ... . (5.3

To find the minimum variance estimate of W we minimize 02 with respect to

W, as follows:

2 2
%gf = -2l -We T+ W™ = 0 . . . . . . (3423
and
2.2 2
333 = 20 + 26" 20 . . . ... . (3.4b)

From Equation 3.4a W*, the minimum variance estimate of W is:

o'’
W* = —-2——‘———-~ . . . . . . . . . . . . . (3.5)

o'” + 6"2
Substituting W* into Fquations 3.1 and 3.3 yields:

X = X' =W (X" =X . . . . . . . . . . . (3.6)

A ¢ S T S € T 6
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In the Kalman filter the estimate X' is obtained from a model of the
process X, and the estimate X" is the measured value of X which is repre-
sented by Z. Now Z is considered to update X' to produce the minimum
variance estimate i.

The "filtering result" referred to in Chapter 1 states that the
variance (02) of X is always less than or equal to the variance (0’2) of
X' or the variance (0"2) of X" individually. Therefore, according to the
minimum variance criterion, the estimate X is a better estimate of X than
either X' or X". The "filtering result” for the one-dimensional case is

proven below. It can be expressed by the following pair of inequalities:
2 1
g < 0O s e e e e e e e e e e e e e e (3.8a)
o2 <" . . . . . . . ... ... ... (3.8D)

The first inequality is proven by inspection of Equation 3.7 since
from Equation 3.5 W* < 1. Proof of the second inequality procedes by
substituting Equation 3.5 into Equation 3.7 and rearranging to obtain the
following equation for ¢"?:
(c'2)?

= ——t - g B )
sz - g2

0,"2

Now the first inequality (Equation 3.8a) may be written as the following
equality in which Ac? is a slack variable:

T S 1 ¢ P 1))

Substituting Equation 3.10 into Equation 3.9 yields the following
expression:

" = o2+ . . ... .. ... (3D
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X g
and 31nce~——§-3_0 we have:

Ao

02 < 0,:'2

(QED)

Barnham and Humphries (1970) also present the multidimensional exten-

sion to their simplified derivation of the Kalman filter. This case re-

quires some matrix algebra and allows for the situation in which X' and Z

(=X") may, in general, be vectors of different orders which are related

by the coefficient matrix H as follows:

Z VHE' v e e e e e e e e e e e e e e (3D

The result for the multidimensional case is:

%
P
in which
X =
K
P -
P
P! =
P’
R =
R
T =

"

X' =K X' = 2) .« . . . e e e e . (3413)

(I-KDP' . . .+ « + .+ e e e e e e e (31D

Kalman gain matrix {(multidimensional W¥)

T 1

el @'l +R)E L . L. . . . . . .. (3.15)
estimation error covariance matrix associated with the
minimum variance filter estimates after the measurement
update (multidimensional a2)

Elx-% -1, . . . . .. .. (3.16)

estimation error covariance matrix associated with the

process model prediction before the measurement update

(multidimensional o'2)

Elx-x) -x0"1 . . . . L L. .. @3aD
measurement noise covariance matrix (multidimensional 0"2)
E[(X-2) X-271. . . . . . . . . . (318

superscript denoting matrix transpose
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For more rigorous derivations of the linear Kalman filter and its exten-
sions to nonlinear problems the reader is referred to Jazwinski (1970),

Schweppe (1973), and Gelb (1974).

Extended Kalman Filter

The main result from estimation theory that is applied iﬁ this study
is the extended Kalman filter (EKF). The EKF provides for nonlinear pro-
cess and measurement models by relinearization of these models about each
new estimate of system state as new estimates become available (Jazwinski,
1970). A prior understanding of the behavior of the prototype system,
in this case the biochemical and stream transport processes, is described
by a coupled set of continuous first-order nonlinear stochastic ordinary

differential equations of the following form:

X(®) = X0, WO ] +u®, 2,
K(tg) v N[X(e), PCed] .« . . . . . . . (3.19)
in which
t = time
X(t) = n-vector of system state variables at time t!
_g(t) = first derivative of X(t) with respect to time
:g(to) = mean value of the initial state vector at time t0
U(t) = p-vector of known inputs at time t
fl*] = nonlinear n~vector of functions of X(t) and U(t) at time ¢t

IThe "~" symbol which was used above to indicate an estimator is
now omitted to simplify the notation. Thus, X(t), which was previously
written X, is the estimator of the true system state.
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P(to) = nqpxn estimation error covariance matrix at time tO

w(t) n-vector of white Gaussian noise processes

w(t) ~ N [0,Q(t)]

Q(t) = nxn process model noise covariance matrix at time t
Qt) = Elw(t) o ()] . . . . . . . . . . . (3.20)
T = superscript denoting matrix transpose X
N[E,F] = multivariate normal distribution with mean vector y and
variance—-covariance matrix T
E[+] = expectation operator

In estimation theory terminology Equation 3.19 is referred to as the
process model or sometimes, the system model. If higher-order differential
equations are needed to describe the prototype system, these must be re-
duced to an equivalent set of first-order differential equations.

Equation 3.19 has the form of the Ito equation which, according to Unny
(1976) is popular throughout estimation theory, optimal control, and
stochastic stability theory due mainly to its mathematical simplicity
and Markovian solution process.

Measurements on hydraulic and water quality parameters are usually
discrete with respect to time and space. Discrete measurements on the

system state are represented by:

4, = BX +0,,v, " N[O,Rk] c e e e (302D

in which

H

time at the kth time point

m-vector of measurements at time tk

= n=-vector of system states at time tk

SN SR

= mxn measurement coefficient matrix
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Yy = m-vector of measurement noise at time ¢t

E[g(t)éﬁs)] = 0, foralltands . . . . . . (3.22)
Rk = measurement noise covariance matrix at time tk

R, = E[gkggsj e e .o (3.23)

Equation 3.21 is referred to as the measurement model. Alternative
formulations of the EKF are available in which the measurement model is
nonlinear and continuous. However, for the river water quality problem
under consideration a linear discrete measurement model is appropriate.

The continuous—~discrete EKF algorithm is given by the following
vector-matrix recursion equations:

At time tk+l prior to a measurement at t

k+1
L+l
Xt le) = X fe) + 5‘ fIX(e|e ), U();el de
"
N & 1)
P+l
P(t,,,lt) = P(e [t + {FIX(t|t), Ue);e] P(e|t))
+P(ele) FOIR(e|e), U()stl + Q) de . . . (3.25)

At time tk+l after a measurement at t

K+l
el = Xeale) + Ky 2 - B X L le))
S & T3
T T
Pty ey = (IR HIP( [0 (1K BY + K R

e s e e e e v ..o (3.2D)
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in which
A(ta|tb) = A at time ta conditioned on measurements up to, and
including, those at time ty where A is X or P
I = nxn identity matrix
Fl.] = Jacobian off[- ] defined by:
. = i, j = oo .« . . (3.28
Fij[ ] x> for i, j 1,2, n ( )
J
ij[.] = element of F[-] in ith row and jth column
fi[ ] = ith row of f[-]
Xj = jth state variable in X(t)
Kk+1 = Kalman gain matrix at time tk+1 given by:
T T -1
Kerr = Ploglt) B GRGe e B+ R,d
e e e e e e e e . (3.29)

Gelb (1974) derives Equation 3.25 which is used for propagating the
estimation error covariance matrix (P(tk+1|tk)) associated with the pro-
cess model predictions between measurement updates. Beck and Young (1976)
describe the function of the Kalman gain matrix as that of filtering the
error {Zk+1 - Hz(tk+1|tk)} in Equation 3.26, to minimize the effects of
the measurement noise on the state and coefficient estimates. At the
same time the filtering action should have a minimal effect on those
random effects not attributable to measurement noise, such as those result=
ing from environmental disturbances to the prototype system.

It should be noted that Equation 3.27 is equivalent to Equation 3. 14.
However, according to Jazwinski (1970) Equation 3.27 is better conditioned

for numerical computations and will tend to retain more faithfully the
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positive definiteness and symmetry of P(t ). Therefore, the

L
Equation 3.27 form is used in this study.

Due to the nonlinearities in the process model the estimates of state
from the EKF are "best" in only an approximate minimum variance sense.
Equations 3.24 and 3.25 are for the predictions of the state estimate
(conditional mean) and the variance in the state estimate (estimation
error covariance matrix) between measurements, respectively. These pre-
dictions are corrected (measurement updated) by Equations 3.26 and 3.27
using information contained in the measurements. The EKF algorithm is

summarized in Figure 3,1. The filter may be modified to represent biases,

colored noise, and correlations (Schweppe, 1973).

Linearized Kalman Filter

The extended Kalman filter algorithm is applied to the measured data
in a forward direction; that is, with t increasing. In order that
smoothed values of the system state estimate and the estimation error
covariance matrix can be obtained it is also necessary to make a back-
ward pass through the measured data. The linearized Kalman filter (LKF)
wag chosen for the backward pass since the forward estimates were avail-
able for use as an a priori trajectory about which to linearize the sys-
tem model. It is useful to redefine the system and measurement models in
Equations 3.19 and 3.21 by making the change of variable 7 = T - t (Gelb,
1974):

X(T-t) = - f_[g(T—-c), U(T-1)3 T-t] + w(T-1t), 7 < T,

X v N [X(T), (D] . . . . . . . . . . (3.30)

Zyg = HEG +Uo . o . . . . . . . . . . (3.3D)
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Initial Conditioms
k=0 _
Kt i) = X(tg)
P(tk|tk) = P(to)
Prediction
g(tk_}_ll tk) from Equation 3.24

P(tk+il tk) from Equation 3.25

easurement update

Xty 1ty

X(t. it .)from Equation 3.28
L ! POty B

P(tkﬂ 1ty 4q) from Equation 3.27

= é(t
= P(t

w1 B
! B

Last No
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k+l

k?

Yes

Figure 3.1. Flow diagram for the extended Kalman filter algorithm.



34

in which
T = value of t at the end of the forward pass
N = value of k at the end of the forward pass

The continuous~discrete LKF algorithm is given by the following
vector-matrix recursion equations:

s 111 1"
At time Tk+1 after” a measurement at Tk+1

5 5 T+l
X (T—Tk+1lT—Tk) = X (T-TkIT—rk) + S‘
T
k
{- FIX(T-1|T-1, ), U(T-7);T-7]
-F [K(T—T’T~Tk),‘g(T~T); T-7] Lgb(T—rk]T—Tk)

7§(T~T}T—Tk)]}dz e e e e e e e e e e '(3.32)

T+l
PP (T-1 = PP(T-t, |-t + J; (-FIX(T-t|T-1)),

&

U(r-1); T-7] Pb(T-t[T—Tk) - Pb(T—T]T—Tk)

1 1710

FT {g(T—T]T—Tk),Vg(T—T); T-1] + Q(T-1) }dt . . (3.33)

- At time T, ., "prior to" a measurement at T

k+ k+1

b . b el
BTty |Tny) = X[

b b
+K o 2 ~HX (T-Tk+1}T—Tk)} ... . (3.38)

b b b
P (T»Tk+1}T—Tk+1) {I-Kk+1ﬂ} P (T‘Tk+llT—Tk)

T
b T b b
{t-x By + K Re Ky - - - - - o . (3.35)

in which
b = superscript denoting values of X, P, and K associated with
) the backward (LKF) filter
T = backward time variable defined by:
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Kk T-t¢t e e e e e e e e e e e (3.36)

Kk+1 = backward Kalman gain matrix at time T 1 given by:

k+

2 PP (-1 | -1, ) B (8PP (T-t | T~ )HT + }_1
K+l ek Tk kL Ty RN-k-1

e e e e e e e e e e (3.37)
Prediction and correction (measurement update) steps for the LKF are

similar to those of the EKF and are summarized in Figure 3.2.

Smoothing Algorithm

Forward and backward estimates of the system state are combined using
a smoothing procedure described by Gelb (1974). The algorithm is a fixed-
interval smoother (FIS) and is based on the assumption that the smoothed
estimate is a linear combination of the forward and backward estimates,

as follows:

s .8 -1

(e D = PP D) BT (e ) X(e )

bt b
+P° (r le) X fedy . oo oL (3.38)
st -1 b

P (tle) = P (tkltk) + (tkltk) .- ... (3.39)

in which
s = superscript denoting smoothed values for X and P

At point loads the smoothing algorithm was modified to represent the
discrete jump in concentrations of parameters associated with the instan-
taneous and complete mixing of effluents or tributaries with the main
stream. The modification consisted of calculating two smoothed estimates:
the first, using the forward and backward filter estimates immediately
upstream of the point load; and the second, using forward and backward

filter estimates immediately downstream of the point load.
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Initial Conditions
k=0

b _

X (Tt T-7,) = X (D)

b
P {T—rle—tk) = Pb(T)

’ Prediction

Xb(T-Tk+1i T-t1, ) from Equatien 3.32

Pb(T—tk+ll T—rk) from Equation 3.33

k o= k+l

!

Measurement update

b b
%° (T - - - —
§b(T—rk+1l T—rk+1) from Equation 3.34 £ Tk'ﬂi ! Tk{"l) xe Tk“HIT Tk)
b b
PP(rer, [T = PPt I T-
) from Equation 3.35 (Tt T-Tyq) Tty T-1)

b
BTty T

Last No
k7

Yes

Figure 3.2. Flow diagram for the backward linearized Kalman filter
algorithm.
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Sequential Kalman Filters

Several previous applications of the Kalman filter to river water
quality have incorporated dynamic process models. Conventional dynamic
river water quality models are formulated in terms of two independent
variables, space and time. However, estimation theory techniques are
developed for only a single independent variable. To circumvent this
problem it is necessary to define a new state vector component of order
n for each of the r reaches of the river. Thus, a dynamic filter model
of n water quality parameters applied to a river divided into r reaches
would result in a total state vector of order nr. As the spatial resolu-~
tion is improved, or in the case of lérge river systems dynamic filter
models can have large state vectors and therefore, very high computer
costs (Moore, 1973).

In Chapter 2 it was observed that many of the previous applications
of esfimation theory to river water quality problems have been demon~-
strated using synthetic, rather than real data. The reason for this is
the dearth of water quality data suitable for verifying dynamic water
quality models. It may also be due, in part, to the desire of researchérs
to determine how close filter estimates come to the true state of the
system. This may be readily shown using synthetic data since the true
system states are known before they are imbedded in the generated noise.

In this study, real data from the Jordan River, Utah were used. The
water quality data were collected for use in a steady-state determi-
nistic river water quality simulation model. Therefore, these data were
collected at a time when flow conditions in the Jordan River were approxi-

mately steady-state. It was decided to use a steady-state process model
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in this study for the following reasons: (1) since only one measurement
vector was available at each sampling location, a dynamic model could
not be well verified; (2) in many stream assessment studies the steady-
state assumption yields answers to management questions that are of an
appropriate resolution, and that are consistent with data a&ailability
determined by fiscal and other constraints; and (3) the high computer
costs associated with a dynamic model would be prohibitive in this study.
Thus, the process model used represents profiles of parameter concen-
trations along the stream length. The independent variable is travel
time, which is a surrogate for distance along the stream.

Each river reach is represented by an EKF with constant coefficients
characterizing the hydraulic and water quality properties of the reach.
Figure 3.3 illustrates the sequential application of extended Kalman fil-
ters to the hypothetical river system. At a junction between two reaches
the state estimate (X) and estimation error covariance matrix (P) are

given by the end conditions of the EKF immediately upstream of the junc~
tion. These values of X and P are used as the initial conditions for the
EKF downstream of the junction. Point loads or tributaries located at
junctions between reaches are modeled by adjusting the end conditions

obtained from the upstream EKF before they are used as the initial con~-

ditions for the downstream EKF, By assuming complete and instantaneous
mixing with the main reiver the state vector of water quality parameters

is modified as follows:

= k. X +k 1 . . . . . . .. ... (3.40)

in which

k1 = dilution factor for the main river = Su/(Su + sp)

(dimensionless)
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k2 = dilution factor for the point load = Sﬁ/(su + sp)
(dimensionless)

_g(i = state estimate immediately downstream of the reach junction
(mg/1)

'§ll = state estimate immediately upstream of the reach junction
(mg/1)

Su = streamflow immediately upstream of the reach junction (cfs)

sp = flowrate of the point load or tributary (cfs)

'lp = n-vector of concentrations of the parameters in the point

load or tributary (mg/l)
To modify the estimation error covariance matrix (P) it was assumed
that the steady~state concentrations of the parameters in the point load

or tributary are normally distributed random variables, that is:

1 v N(1 Y e e e e e e e e e e e e 3.41
i, (”p, ) ( )
in which

1 = mean value of 1 (mg/1)

=P —P

Y = nxn estimation error covariance matrix of the water quality

parameter concentrations in point load (mg/l)2
Noting that Ed is a linear function of X, and _]:_p » and assuming that X,
and.}_p are stochastically independent, the estimation error covariance

matrix is modified using the following relationship which is based on a

theorem in Hogg and Craig (1970):

- 12 2
Pd k1 Pu + k2 Y . . IO . . . . SRR . (3.42)
in which

Pd = estimation error covariance matrix P immediately downstream

of reach junction (mg/l)2
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P = estimation error covariance matrix P immediately upstream

of reach junction (mg/1)?

The above discussion has related to the forward EKF. When the back~
ward. LKF is applied to the river system, a similar sequential arrange-
ment of LKF's is used and the effects of point loads on X are subtracted.
P is not modified in this case since it is considered unreasonable to add
to the estimation uncertainty above a point load when the constituents in
the point load are advected in the downstream direction.

Point diversions do not affect the values of X and P at the location
of the diversion. The flowrate of the diversion is subtracted from the

streamflow immediately upstream of the diversion.

Numerical Aspects

A Runge-Kutta fourth order scheme was used to perform the integrations in
Equations 3.24, 3.25, 3.32, and 3.33. To assure the numerical stability of the
Runge-~Kutta and other explicit finite-difference schemes the Courant con-

ditons must be met (Stone and Brian, 1963). The Courant condition is:

e P € N5 )
in which
v = stream velocity averaged over the stream cross section
(ft/day)
At = computational time interval (days)
Ax = computational space interval (ft)

This condition is guaranteed by setting Ax = vAt and then slightly ad-
justing the location of measurements, point loads, diversions, and reach

junctions, to the nearest Ax. The spatial resolution selected was
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consistent with the objective of the study and resulted in a time step of
0.02 days (28.8 minutes). To improve the spatial resolution of the model

a smaller value of At would be necessary.

Computational Aspects

The EKF, LKF, and FIS algorithms described above were programmed in
FORTRAN computer language for the Burroughs B6700 computer located on the
campus of Utah State University. In addition to tabular line printer
output, the filter results were dumped onto punched cards via a data sort-
int program, PRSORT. Results contained on these cards were plotted on‘a
plotter which is linked to the EAI Pacer computer at the Utah Water
Research Laboratory. The relationships between the computer programs
developed for this study are illustrated in Figure 3.4. Appendix A
contains a users manual for the programs and includes flow charts, input

instructions, and program listings.
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CHAPTER 4
APPLICATION TO THE JORDAN RIVER

Introduction

One of the initial tasks in this study was to find a river for which
sufficient water quality and hydraulic data are available to facilitate the
application of estimation theory techniques to water quality simulation.
Since BOD-DO models dominate the water quality modeling literature, includ-
ing previous applications of estimation theory to water quality modeling
(see Chapter 2), it was hoped that data for parameters other than, but
possibly including BOD-DO, would be available. After an extensive search
of published data the Jordan River in the north-central region of Utah was
selected. Water quality data were derived from water samples collected
by Hydroscience, Inc. (1976). Samples were obtained over a 24 hour period
on September 24 and 25, 1975, and cover the lower 39.2 miles (63.1 km) of
the river.

This chapter contains descriptions of the lower Jordan River Basin,
the process model, and the measurement model. Also included are details of
other aspects of the problem set-up such as point load concentrations,

lateral inflow loadings, and initial conditions.

Description of the Lower Jordan River Basin

The Jordan River is a small but significant river originating as
regulated outflow from Utah Lake shown in Figure 4.1. It flows for approxi-
mately 55 miles (88 km) through a variety of land use areas before dis-
charging into the marshy zones gt the southeastern end of the Great Salt

Lake. The lower 40 miles (64 km) which are of interest in this study,
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Figure 4.1. Map of the Lower Jordan River Basin (adapted from Harr
et al., 1971) (1 mile = 1.61 km).
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pass through a valley area which is flanked by the Wasatch Mountains to
the east, the Oquirrh Range to the west, and the Traverse Mountains to the
south. Elevations range from 4,200 feet (1,300 m) on the valley floor to
more than 10,000 feet (3,000 m) in the surrounding mountains. The valley
floor delineated in Figure 4.1 is approximately 500 square miles (1,300 kmz)
in area.

A number of irrigation canals divert water from the river at the
Jordan Narrows for use in agricultural areas in the western and southwestern
parts of the valley. Within the study area flow in the river is supplemented
by several streams originating on the Wasatch Front.

Dixon et al. (1975) identified three major land use divisions along
the river:

1. TUpper agricultural reaches - mainly agricultural pasture land and
small satellite communities south of Salt Lake City.

2. Industrial and urban areas ~ within and adjacent to Salt Lake City.

3. Lower agricultural reaches -~ north of Salt Lake County.

Associated with these land uses are a variety of economic activities.
Salt Lake County is a major economic center with a number of important in-
dustries. The largest of these is Kennecott Copper Corporation located on
the west side of the valley in the Oquirrh Mountains. Other major industries
include several sand and gravel operations, refinery operations, dairies,
several slaughter houses, and a smelter operation. Despite a trend toward
residential development, agriculture is still a prominent activity in the
area. Varieties of crops grown include wheat, vegetables, and fruits.

The river is important in that it provides: (1) water for municipal
and industrial use, (2) irrigation water in a valley already importing water,

(3) essential water for waterfowl management areas, (4) a convenient storm
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and wastewater drainage system for the Jordan Valley, and (5) a potential
recreational resource (Dixon et al., 1975). Eight municipal wastewater
treatment plants and numerous urban stormwater drains, with perennial

flow, discharge into the lower forty miles of the river. These loads, com—
bined with diffuse inflow from agriculture and other sources, significantly
degrade the water quality in this section of the river.

The Kalman filter model was applied to the lower 39.2 miles (63.1 km)
of the Jordan River for which data were available. The river was divided
into reaches with fairly uniform diffuse loading characteristics. Reach
boundaries were partly determined by three major land use divisions along
the river. Additional reach boundaries were necessary immediately down-~
stream of point loads. Reach boundaries and sampling point locations are

shown in Figure 4.1.

Process Model

A process model was formulated to describe biochemical oxygen demand,
dissolved oxygen, and nitrogen cycling within the Jordan River. The six

water quality parameters simulated by the model are listed below:

X1 = Carbonaceous biochemical oxygen demand (BOD) (mg/1l)
X2 = Ammonia nitrogen (NH3~N) (mg/1)

X3 = Nitrate nitrogen (NOB—N) (mg/1)

X& = Algae (ALG-N) (mg/l)

X; = Organic nitrogen (ORG-N) (mg/1)

X6 = Dissolved oxygen (D0) (mg/l)

On the basis of data collected on the Jordan River nitrite-nitrogen
(NOZ—N) is negligible. Phosphorus measurements indicated that it was pro-

bably not the limiting nutrient in algal growth. It was, therefore, decided
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that algal growth could be represented without including phosphorus in the
model., ORG-N excludes viable algae which are represented by ALG-N.

Figure 4.2 shows the biochemical transformations and diffuse loads
described by the process model equations. The nitrogen cycle is represen—

ted by four transformations: oxidation of NH, ~-N to NO,-N, uptake of

3 3

vNHB-N and NO3-N by algae, ALG-N becoming ORG~-N as a result of the death
of algae, and hydrolysis of ORG-N to NHB—N. It is assumed that the pro-
duction of NH3—N'during BOD decay is mnegligible.

Utilization of DO during nitrification and by the organic deposits on
the stream bottom and during BOD decay are modeled. The impact on DO
levels of photosynthesis and respiration by algae is not represented. This

is justified because net 0, production is relatively small due to the highly

2
turbid nature of the Jordan River which significantly increases the extinc-
tion of light entering the river. An additional reason for omitting the
interaction of algae with DO is the dynamic nature of the photosynthetic
and respiratory processes; they are diurmal processes, and thus could not
be represented by the steady-state process model.

The one~-dimensional transport equation given below forms the basis

for the process model:

o e )
e a( 5L 4+ 16.364q U + AJ - 'z'sf—:ﬁ N D)
in which

X = concentration of the water quality parameter (mg/1)

A = cross sectional area of the stream (ftz)

t = time (days)

S = gtreamflow rate (ft3/day)

x = distance along the longitudinal stream axis (ft)
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Figure 4.2.
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Schematic diagram of the water quality parameters,
biochemical transformations, and non-point loads
represented by the process model.
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D = longitudinal dispersion coefficient (ftz/day)
q = lateral inflow rate (cfs/mile)
U = concentration of the parameter in the lateral inflow (mg/l)
J = biochemical transformations (mg/l-day)
B = stream bottom uptake of the parameter (mg/ftz—day)
w = width of the stream (ft)

Equation 4.1 represents the temporal change in concentration of the para—
meter X within the river. The first term on the right-hand side is the
dispersion term and describes the transport of the water quality parameter
due to nonuniform velocity gradients in the stream profile. The second
term represeﬁts downstream advection of the parameter in the flowing water.
Diffuse sources of the parameter are represented by the third term in which
the coefficient 16.364 is needed to convert q and U to consistent units.
The fourth term represents the biochemical transformations affecting the
parameter. Streambed uptake of the parameter is modeled by the last term
in which the coefficient 28.317 is needed to convert B and w to consistent
units.

Dixon et al. (1975) showed that longitudinal dispersion is negligible
in comparison to advection in the Jordan River. Therefore, dispersion is
neglected by eliminating the second term on the right-hand side of Equation
4.1. 1In addition, steady-state conditions are assumed by setting Equation

4.1 to zero. Hence the equation is simplified to:

dX _ 16.364q (U-X) _ _ Bw AT

dx S 78.3178 ¥ g v+ -+ - - - - (4D
since

ds

S R T (2
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The final form of the basic process model equation is obtained by changing
the independent variable in Equation 4.2 from distance downstream, to

travel time, using the following relationship:

dx=vdg='§:dgv...............(4.4)
in which
3 = travel time ranging from 0 to & (days)

and by assuming that:

h=;..................(4.5)
in which
h = stream depth averaged over the cross section (ft)

Substituting Equations 4.4 and 4.5 into Equation 4.2 we obtain the follow-

ing expression:

dX _  16.364q (U - X) B . 3

d_E; = A ~ 38.317h R )]

The deterministic part of the process model is obtained by writing
an equation in the form of Equation 4.6 for each of the six water quality
parameters. These equations, modified by the addition of the process noise
vector w, are contained in Figure 4.3, and are described in detail below.
The matrix equation given in Figure 4.3 has the form of Equation 3.19.
Linear first-order kinetics are assumed for all reactions except the uptake
of NH3—N and N03-N by algae which is represented by nonlinear saturation
kinetics. It should be remembered that_i now represents the derivative of

X with respect to travel time (&) and not standard time (t). The Jacob-

ian matrix, F(+), of f(+) in the process model is contained in Figure 4.4.
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Biochemical oxygen demand

The rate of change of BOD is represented by first-order biochemical

oxidation and contributions from diffuse sources in the following equation:

X _ 16. 3649 (Ul - Xl)

dg - A - del - » - . . . - . . . (4- 7)
in which

Xl = concentration of BOD (mg/1)

U1 = concentration of BOD in the lateral inflow (mg/1)

Kd = BOD decay rate (base e, per day)

Ammonia-nitrogen

Uptake of NH_~N by algae and oxidation to NO,~N tend to reduce con-

3 3

centrations of ammonia while hydrolysis of organic nitrogen to NH3—N and

contributions from diffuse sources tend to increase NHB—N levels. These

processes are represented by the‘following equation:

dX2 16.364q (U2 - Xz)

aE = A - K52X5 - K23X2 - u2 « e e e s (4.8)
in which

X2 = concentration of NHB—N (mg/1)

XS = concentration of ORG-¥ (mg/1)

U2 = concentration of NHB—N in the‘lateral inflow (mg/1)

s
~o
I

rate of decomposition of ORG-N to NH3-N (base e, per day)

s
[#%)
0

nitrification rate (NH3-N to NO3-N) (base e, per day)

u, = uptake rate of NH,-N by algae (mg/l-day)

3
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Nitrate-nitrogen

The rate of change in concentration of N03~N is influenced by the

accumulation of oxldized ammonia, uptake by algae, and contributions from

diffuse sources. The following equation represents these processes:

dX3 16, 364q (U3 - X3)

e = A + K23X2 SUy e e e e e e (4.9)
in which

X3 = concentration of NO3-N (mg/1)

U3 = c¢concentration of NO3—N in the lateral inflow (mg/1)

ug = uptake rate of N03-N by algae (mg/l-day)
Algae

The process model simulates the effects of phytoplankton on the other
water quality parameters. These effects include the uptake of nitrogen,
by algae, and the recycling of nitrogen contained in the algal cells to
NH_ ~N via the algae death process. Rate changes of concentrations of algae

3

are represented by:

d¥,  16.364q (U, - X,)

dz = Y - K&SXQ + u s e e e e e e (A1)
in which

X4 = concentration of ALG-N (mg/l)

U4 = concentration of ALG-N in the lateral inflow (mg/l)

K45 = algal death rate (ALG-N to ORG-N) (base e, per day)

u = uptake rate of NH,~N and NO,-N by algae (mg/l-day)

3 3
Uptake of nutrients by phytoplankton is usually described by a

Michaelis-Menton type hyperbola. A modified form of nonlinear saturation
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kinetics, proposed herein, is used to represent the uptake of nitrogen by

algae:
BX, + X
w = KS3iBX'23+K3 Y % €D
in which
i = maximum specific growth rate of algae (base e, per day)
- KSB = half-saturation coefficient for NOB—N (mg/1)
B = ratio of half-saturation coefficient for NO3—N to half-

saturation coefficient for NH,_,-N (approximately 2 according

3
to Caperon and Meyer, 1972) (dimensionless)

There is no yield coefficient in Equation 4.11 because all the para-

meters are expressed as nitrogen. Temperature and light factors are in-

cluded in {i. Nitrogen uptake by algae is divided between the NH3 and NO3

forms by a coefficient a as follows:

7 u, = ou T Y V)
u = (I -a)u T C T )
3
Y %,
X o T €90 F/S ]
YXZ + X3
‘ in which
o = coefficient to divide u into u, and uy (dimensionless)
Y = weighting coefficient to indicate the preference of algae

T for NHS—N over N03—N (set equal to 2) (dimensionless)

The justification for Equation 4.11 is dntuitative and should be
tested experimentally. As more nitrogen in either the ammonia or nitrate
forms becomes available, then the rate at which nitrogen is taken up by

.. algae increases. This nonlinear characteristic is well recognized and is

represented by the conventional Michaelis-Menton equation. However, the

role of B in Equation 4.11 is to represent the preference of algae for the
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ammonia form of nitrogen over the nitrate form. This preference phenomenon

results in the half-saturation coefficient for NO3—N, K

double the half-saturation coefficient for NH3~N, K

93’ being approximately

g2° Equations 4.12
through 4.14 are merely a way of partitioning the total algal uptake of mnitro-

gen into uptake of ammonia, and uptake of nitrate.

When NH3~N (XZ) is zero Equations 4.11 and 4.14 become:

u = ﬁ-——-ﬁi—“~ X, '« v e e e e e e e e e (4.112)
KS3 + XZ 4
Y = 0 . . . e e e e e e e e e e e (4.14a)
When N03-N (X3) is zero Equations 4.11 and 4.14 become:
u = ﬁ——x&— X, « v o« 4 e e e e .o . (4.11D)
KS2 +X, T4
y = 1 e e e e e s e e e e e e e (4.14Db)

Thus in each of these limiting cases the proposed model reduces to the

conventional Michaelis-~Menton model. As Xé and X3 simultaneously approach

zero, u approaches zero but y is undefined. Therefore, care must be taken
not to attain this situation during the simulation. In practice, it is un-

likely to occur except when the initial conditions for X, and X, are both

2 3

set equal to zero.
Equations 4.11 and 4.14 are illustrated in Figure 4.5 for different

levels of NH3—N and NO3~N. Reference to Figure 4.5 shows that the proposed

model yields the same values for total nitrogen uptake (u) for each of the

following different situations: (1) NH,-N = 0.75 mg/l, NO,~N = 0.0 mg/1;

3
-N = 1.5 mg/1l; and (3) NB

3

37N = 0.62 mg/1, N03—N =

3~N uptake (uz) to total nitrogen up

(2) NH,~N = 0.0 mg/1, NO

3 2
0.25 mg/1l. The proportion (a) of NH

take (u) is different for each situation, as follows: (1) a=1.0, (2) «

=0.0, and (3) a=0.8.
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Qrganic nitrogen

The pool of organic nitrogen is fed by the death of algae and reduced

by hydrolysis of ORG-N to NH,-N. The rate of change of ORG-N with respect

3

to travel time is simulated by the following equation:

dXS 16.364qg (U5 - XS)

& = A -+ K45X4 - K52X5 e e s e e . (6.15)
in which

X5 = concentration of ORG-N (mg/l)

U5 = concentration of ORG-N in the lateral inflow (mg/1)

Dissolved oxygen

The dissolved oxygen content of a river is one of the most important
water quality charactistics. It has minimum standards defined by law, is
understood by the public, and is essential for oxygen consuming aquatic
organisms. Concentrations of DO are affected by reaeration across the
stream surface, carbonaceous oxygen demand, nitrogenous oxygen demand,
uptake by the bottom deposits, and contributions from lateral inflow.

The following expression is used to describe the rate change of DO in the

Jordan River:

dx, ) 16.364q (U, ~ X,) . 5 b )
dg A 28.317h a%esar X6 - KgXy
"4,75K23X2 N N R )
in which
X6 = concentration of DO (mg/1)

U6 = concentration of DO in the lateral inflow {(mg/1)
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uptake of DO by the stream bottom deposits (mg/ftz-day)

o]
It

6
X6sat = saturation concentration of DO (mg/l)
Ka = reaeration coefficient (base e, per day)

The reaeration coefficient for dissolved oxygen, Ka’ is calculated
using a regression equation from Bennett and Rathbun (1972):

0.607

_ v
Ka = 0,0203 hl.689 O 9 W)

Bennett and Rathbun developed Equation 4.17 from a very wide range of field
data and claim that it is "probably the best available for prediction of

reaeration coefficients for natural streams."

Stream temperature

Stream temperature is treated as a known input for each reach and is
not included in the state vector. Each of the first-order reaction rates

are assumed to increase with temperature according to the following rela-

tionship:
- (A-20)

KA - KZO 6 - - . . . - - . . . - (4- 18)
in which

KA = reaction rate at A°C (base e, per day)

KZO = reaction rate at 20°C (680F) (base e, per day)

6 = empirical coefficient (dimensionless)
A value of 8=1.08 was used to correct Kd’ KSZ’ K23, and KQS for changes in

stream temperature 0=1.047 was used for Ka'

Streamflow

To keep down the order of the state vector, and therefore reduce com~

puter costs, it was decided not to include streamflow as a state variable.
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Simple flow budget calculations are used to calculate the change of stream-

flow in each Ax interval:

SOut = Sin T T < (4.19)
in which

Sout = gtreamflow out of the reach (cfs)

Sin = streamflow into the reach (cfs)

At point loads or diversions streamflow is adjusted by the flow in the

point load or diversion as follows:

Sd = Su + sp i T (4.20)
in which
S =

d flowrate of diversion (cfs)

Stream velocity is calculated using the following equation:

v=-§..................(4.21)

Stream cross sectional area (A) and depth of streamflow (h) aregivenas
known inputs for each reach. An initial value of streamflow is givenat
the upstream headwater. A flow balance for the Jordan River at the time

of sampling was provided by Hydroscience, Inc. (personal communication,

1976).

Limitations of the process model

Schweppe (1973) states that filter performance is more sensitive to
errors in the structure of the proceés model (and measurement model) than
to errors in the uncertainty specifications (R, @, and initial P métrices).
In addition, to compensate for limitations in the process model, the value
of Q is expected to increase as the quality of the process model decreases.

For these reasons, some limitations of the process model are given below:
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1. Removal of BOD by absorption and settling, and leaching of BOD

from the bottom deposits are neglected.

2. Since NO,~N is omitted, it is assumed that NH_~N is the limiting

3

form of nitrogen. Because first-order kinetics are used, the delay associa~

3

ted with the development of a population of nitrifyving organisms is ne-
glected. Bed contributions and leaching of nitrogen also are neglected.

3. The algae submodel fails when population changes resulted in either
nitrogen fixation or phosphorus becoming the limiting nutrient.

4, Because of the data collection procedures used, the dynamic inter-
actions between algae and DO due to photosynthesis and respiration are not

represented in the current steady-state model.

Measurement Model

Formulation of the measurement model is determimed by the functional
relationships between the state variables and the measurement variables.
The five measurement variables available in the Jordan River data are

listed below:

Z, = BOD (mg/1)

z, = NH3—N (mg/1)

Zy = NO N (mg/1)

z, = ALG-N + ORG-N (mg/1)
Z; = DO (mg/1)

The very small amounts of nitrite measured in the system are lumped into
the nitrate data. Z4 is actually a measurement of organic nitrogen which
represents the sum of X& (ALG~N) and X5 (ORG-N). Thus, the measurement

model is given by the following expression with the form of Equation 3.2l:
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j .

z, 1 0 0 0 o oflx vy
z, o 1 0o o o ofx, Vo
Zyl = {0 0 1 0 0 OfX;l | |v3 Ce e (h22)
Z& 0o 0 o 1 1 0 Xﬁ} vy
Ze 0o 0o 0 0o o 1|lx vs

Equation 4.22 is an example of an incomplete measurement system since there
are six state variablesbut only five measurement variables.

The values of variances on the diagonal of the measurement noise co-
variance matrix (R) are contained in Table 4.1. These values are consis—
tent with values used in similar studies by Moore (1973) and Lettenmaier
(1975). The measurement noise variances are assumed to represent errors
in the accuracy of the analytical laboratory procedures, and sampling
errors due to samples being unrepresentative of either the steady-state
conditions, or the mean concentrations of constituents across the stream
cross section. All off-diagonal elements of the R matrix, are assumed to
be zero since no knowledge of the correlation between measurement errors
for different variables is available. Although program capabilities per-
mit the use of different R matrices at each sampling point, the same R
matrix is used for each measurement. This approach is justified because
there is no available evidence to indicate that R should be different for

each measurement vector.

Point Loads and Lateral Inflows

Concentrations of the parameters in wastewater treatment plant (WWTP)
effluents are based on typical values observed in the Lower Jordan River
Valley. Parameter concentrations for other point loads and for lateral
inflows are based on concentrations used in previous simulation studies on

the Jordan River by Dixon et al. (1975) and by Hydroscience, Inc. (1976).



Table 4.1. Measurement noisevariances (R) and initial estimation error variances (P(ﬁo} and Pb(E)) in

(mg/1)2.
Initial Estimation
Parameters . Measurement Noise Variance Error Variance
BOD 1.00 1.00
NH3—N 0.01 0.01
N03—N 0.04 0.04
ALG-N + ORG-N : 0.25 -
DO 0.25 0.25
ALG~N - 0.125
ORG-N - 0.125

79
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Both types of data are treated as known inputs to the process model. Table
4,2 lists the parameter concentrations for each type of point load and
Table 4.3 contains the concentration of lateral inflows.

If point load pérameter concentrations had been measured at the time of

sampling, then the variances in the estimation error covariance matrix of

point load parameter concentrations (Y) could be set equal to the measurement

error variances in R. Since point load parameter concentrations were based
on typical values, measurement errors are not appropriate and, therefore,
all elements of the Y matrix are set equal to zero. However, the effects
of point load uncertainty on filter estimates (X) and on the estimation
error covariance (P) are shown by a sensitivity study on the diagonal
elements of Y. The results of this sensitivity study are reported in Chap~

ter 5.

Initial Conditions

Prior estimates of initial conditions, consisting ofjg (EO) and P (EO),
were made at the upstream boundary located at river mile 39.2 (63.1 km).
Measured values of the water quality parameters‘at river mile 39.2 (63.1 km)
are used for:X (EO). The measurement noise variances are used for P (EO) |
(see Table 4.1) implying that the initial conditions,:g (50) are known with
the accuracy of the measurements. As a first approximation, the measure-
ment noise associated with ALG~N + ORG~-N was divided equally between ALG~N
and ORG~N in P (EO). The covariances were neglected and hence the off-

diagonal elements of P ng) were set equal to zero.



Table 4.2, Concentration of the parameters in point loads and tributaries

in mg/1.
BOD NHB—N NOS—N ALG~N ORG~N DO
Wastewater treatment plant 60.0 12.0 5.0 0.0 0.0 3.95-6.0
Tributary 5.0 0.5 2.0 0.0 0.0 7.0
Agricultural return 10.0 1.0 2.0 0.0 0.0 7.9

Table 4.3. Concentration of the parameters in the lateral inflow and bot-
tom deposits.

Diffuse Source Parameter Concentration River Miles®
Ul BOD 8.0 mg/l 39.2-30.0
12.0 mg/1 30.0-16.7
50.0 mg/1 16.7-12.0
0.0 mg/l 12.0- 2.8
U2 NHB—N 0.2 mng/l 39.2-31.7
) 0.4 mg/l 31.7-30.0
0.5 mg/l 30.0~28.9
0.75 mg/1 28.9-12.0
- 0.0 mg/l ' 12.0- 2.8
Uy NO,-N 1.5 mg/l 39.2-12.0
6.0 mg/l 12.0- 2.8
= U, © ALG-N 0.0 mg/l 39.2- 2.8
Ug ORG-N 0.0 mg/l 39.2- 2.8
” Ug DO 7.3 mg/l 39.2-25.0
7.6 mg/l 25.0-16.7
7.5 mg/l 16.7- 2.8
B BopP 0.0 mg/ftg—day 39.2-16.7
121.0 wg/ft"~day 16.7- 2.8

8] mile = 1.61 km

b1 mg/ft®-day = 0.092 mg/m2-day
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CHAPTER 5

RESULTS

Introduction

In this chapter the results from the application of estimation theory
to the Jordan River are presented and discussed. The computer runs are
broken into three groups:

1. Basic runs.,

2, Sensitivity runs.

3. Coefficient estimation rums.

Brief descriptions of the individual runs performed in each of these
groups aré contained in Table 5.1. After a section in which the calibration
of the deterministic process model 1s presented, the technique adopted for
obtaining suitable values for the variances in the process model noise
covariance matrix (Q) is described. The following sections contain the re-
sults and discussion of results for: the filter run, the smoothing algorithm
run, several sensitivity studies, and some coefficient estimation runs. An
example of filter divergence is included in one of the coefficient estimation
runs. In the final section of this chapter the computational requirements of
the estimation theory techniques applied are summarized.

Calibration of the Deterministic
Process Model

Values for the reaction rates and coefficients in the process model were
approximated from values reported in the literature. These values were re-
fined through a trial-and-error calibration procedure in which the process

model was run as a separate deterministic model without the measurement update



Table 5.1.

Key to the computer runs.

Run Group Run? Description
Basic 2 Calibration of the deterministic process model
8 Application of the extended Kalman filters
10 Application of the smoothing algorithm
Sensitivity 11 Sensitivity on the process model noise variance for NH3—N
12 Sensitivity on the initial estimation error variance for NO3—N
13 Sensitivity on the measurement noise variance for ALG-N + ORG-N)
14 Sensiti&ity on the measurement noise variance for NH3—N
19 Sensitivity on the estimation error variance for the point load at
20 river mile 31.7 (51.0 km)
Coe?fic%ent 15 Coefficient estimation for K23
Estimation
16 Coefficient estimation for K&S
17 Lateral inflow concentration estimation for N03-N
18 Lateral inflow concentration estimation for NHS—N
21 Coefficient estimation for the nitrogen cycle coefficients

(K

23> K450 Kgos fis and Kgq)

8Runs 1, 3-7, 9 and many other unidentified runs are not described in this report. These runs were
performed during the course of finalizing the runs that are present herein.

89"
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and estimation error covariance propagation steps. Final values for each
of the reaction rates and model coefficients are contained in Table 5.2.
These values were used for the subsequent Kalman filter rums. A possible
criticismof the use of the data for calibrating the process model is that
the predictions from the process model are now dependent on the data, and
hence are not independent estimates of the system state. However, there
is no alternative since only one set of data are available.

The difference of the two orders of magnitude between the calibration
value of the half-saturation coefficient for NOB—N, (KS3=0.015 mg/l), and
the combined level of NHB—N (XZ) and NOS—N CX3) in the Jordan river (0.0 -
2.5 mg/l), indicates that saturation kinetics for algae (Xg) are unnecessary
in this application. This is clearly illustrated by reference to Equation
How-

4.11 which tends toward a linear function in X, when (Xz + X3)>>K

4

ever, the algae submodel was left in the general nonlinear form for this

83°

study.

Results from the calibration of the deterministic process model (run 2)
are given in Figures 5.1 through 5.7. The model was run between river mile
39.2 (63.1 km) and river mile 2.8 (4.5 km), the locations of the extreme
upstream and downstream sampling sites. Below river mile 2.8 (4.5 km) the
river enters a marshy area where the total flow divides into many channels.
Abrupt changes in the concentration profiles are due to the complete and
instantaneous mixing of point loads. Measured values are indicated by ''y"
symbols. A fairly good agreement between model predictions and measured
values is indicated for each of the water quality parameters in Figures 5.1
through 5.7.

The BOD profile rises sharply just below river mile 30.0 (48.3 km).

Thereafter high levels of BOD are waintained by wastewater treatment plant



Table 5.2. Reaction rates and model coefficients from the calibration of the deterministic process

model.

Symbol Units Value River miles
™

Kd base e, per. day 0.7

K23 base e, per day 0.3

Kg3 mg/1-N 0.015

K45 base e, per day 0.04 ? 39.9-2.8

Ks, base e, per day 0.1

X6sat mg/l—O2 7.9

8 dimensionless 2.0

Y dimensionless 2.0 S

N 3.0 39.2-16.7

" base e, per day {i 1.5 16.7- 2.8

81 mile = 1.61 km

0L
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(WWTP) effluents and lateral loading. Upstream DO levels are supersaturated
but quickly return to the DO saturation of 7.9 mg/l. Subsequent variations
in DO concentration can be attributed mainly to BOD, nitrification, and
benthic demands offset by reaeration. Predicted DO levels fall slightly
below measured values around river mile 20.0 (32.2 km); this may be due to
under-estimates of the assumed level of DO in the tributaries and lateral
inflow.

Variation in the NH_-N profile is similar to the variation in the BOD

3

profile due to similar loading patterns. N03~N levels steadily increase

along the study reaches. Both NHé-N and NOB—N are influenced by the algal
uptake of nitrogen.

Figure 5.5 shows the deterministic process model predictions for
(ALG-N + ORG-N) compared with the measured values. Along the lower half
of the study section a reduced maximum specific growth rate for algae was
indicated by the observed values of (ALG-N + ORG-N) and by the nitrogen
uptake predictions. The river becomes relatively deep, and turbid in this
section. On this basis the maximum specific growth rate, ;, was halved
below river mile 16.7 (26.9 km) (see Table 5.2). Figures 5.6 and 5.7 show
the deterministic process model predictions for ALG-N and ORG-N, respect-
viely. ALG-N and ORG-N were separated by simulating the algal death process.
These results indicate that an increasing concentration of algae is associated
with a decreasing concentration of organic nitrogen.

Determination of Process Model
Noise Variances

The process model noise covariance matrix (Q) contributes to the

calculation of the estimation error covariance matrix (P), and thereby,



,»-_,.,A_m‘

74

to the weighting procedure by which filter estimates are obtained from a
combination of measurement values and the latest prediction of state from
the process model. If Q is too large, implying a high degree of uncertainty
in the process model, the filter estimates will follow the measurements too
closely. On the other hand if Q is too small, unrealistically optimistic
values for P will result (see Equation 3.25). This in turn results in the
decay of the Kalman gain matrix (K) and thus the measurements are almost
entirely ignored (see Equation 3.26). Under these circumstances measure-
ment updating is ineffective and the filter estimates can diverge from the
true state of the system.

According to Jazwinski (1969) the process model noise 'is a fiction
designed to account for system (process) model errors which are non-stationary
and generally of rather low frequency." This statement would appear to indi-
cate that the task of determining a Q matrix is a formidable task, and
indeed it is. It appears that unlike R, Q can rarely be established from
experience. There are basically two approaches to obtaining Q, neither
of which has a strong theoretical basis:

1. Trial-and-error.

2. Adaptive filtering.

The trial-and-error approach is used in this study and is described
first. For completeness a brief discussion of the philosophy of adaptive

filtering follows.

Trial-and-error approach

The basis of this approach is that Q should be selected such that the
mean square error of the differences between the filter estimates and the
actual states of the system is consistent with the measurement noise vari-

ance in the R matrix for each measured variable. When synthetic data are
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used it is possible to calculate the true mean square error because the
actual state of the system is known. However, in applications to real
systems the actual state of the system is the subject of estimation, and is
therefore, unknown. In such cases the mean square error of the differences
between the filter estimates and the actual system states is approximated
by the mean square error of the differences between the filter estimates

and the measurements, and is calculated as follows:

1 X 2
MSE;, = gy I [zk’i—xi(tkhk)] R G 8 B
k=1
in which
i = subscript denofing the ith measurement variable
MSEi = mean square error between the difference of the filter

estimates and the measurements for the ith measurement
variable (mg/l)2
The trial-and-error process used for determining Q in this study is

summarized in Figure 5.8, R is estimated from the literature. In this
study P(EO) is set equal to R since the extreme upstream measurement vector
is used as the initial condition, K(gO), of the upstream Kalman filter.
An arbitrary initial value of Q is used for the first run of the filter
model. Then, for each measurement variable, the calculated values in MSE
are compared with the measurement noise variances in R. If MSEi is less
than the measurement noise variance for the ith measurement variable, the
corresponding variance in Q is decreased. A decrease in § will reduce the
estimation error covariance (P), give more weighting to the process model
estimates, and thus increase MSEi. 1f MSEi is much greater than the measure-
ment noise variance for the ith measurement variable, the corresponding

variance in Q is increased. Consequently, P is increased, less weighting is
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given to the process model estimates, and hence MSEi is reduced. The amount

by which variances in Q must be changed is established by trial-and-error.
Interaction between the variables complicates the procedure. For example,

it will be shown later in this chapter that an increase in the process model
noise variance for NH3-N resulted in a decrease in the MSE for‘(ALG~N + ORG-N).
No attempt was made to estimate values for the off-diagonal elements of the

Q matrix.

If, by varying Q, it is not possible to increasg MSEi to the measure-
ment noise variance for the ith measurement variable, then the value of
the measurement noise variance should be reviewed. It may be that the
measurement noise variance is too large for the data and, therefore, can
be reduced. Another factor to consider is how good an estimate of the true
MSE is the calculated MSE? 1t was observed that when the MSE was calculated
for different sections of the river, the results varied by up to an order of
magnitude.

A disadvantage of using the trial-and-error approach is that only a
single value for Q is obtained. This value is used over the entire river
system and may result in larger values of P in some reaches than would be
obtained if Q were allowed to vary. The single value of Q is inevitably
a compromise between different Q values that would be more satisfactory in

particular reaches.

Adaptive filtering approach

Several different adaptive filtering procedures are described in the
control and estimation theory literature. In contrast to the trial-and-
error approach described above, adaptive filtering provides a mechanism

for simultaneously estimating the Q matrix and the system states, based
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on feedback from the residuals (Jazwinski, 1969; 1970). To give statis-
tical significance to changes in Q, several measurements are processed,
and the estimates smoothed, before § is changed. The measurements are
then reprocessed, thus introducing a lag time into real time estimation.
To reduce the lag time short sequences of residuals are used. Therefore,
the adaptive filter approach never "learns" Q. Jazwinski (1969) points
out that this is a desirable feature because of the non-stationary and
low frequency characteristics of process model noise.

A problem with adaptive filters is that a single large residual can
result in a large value for Q which dies away slowly under the influence
of smaller residuals. To avoid this problem Nahi and Schaeffer (1972)
have designed a decision-~directed adaptive filter. Their technique tests
to determine the likelihood of a measurement coming from a distribution
with the calculated estimation error covariance. On the basis of this
test a decision is made as to whether or not to adjust Q.

Adaptive filtering is not used in this study because too few data are
available on the Jofdon River. In this situation the estimated values
of Q would remain highly dependent on the initial values used for Q at

the upstream boundary.

Results from the Extended Kalman Filter

Run 8 is the basic computer run using the final value of Q obtained
from the trial-and-error procedure. Approximately twenty computer runs
were necessary before an acceptable value for Q was found. Table 5.3 con-
tains the final values of the variances in Q. Table 5.4 contains the mean
square error of the differences between filter estimates and measurements

for each measured parameter and for each computer run.



Table 5.3. Process moael noise variances (Q) in
(mg/1-day)

Paranmeter Variance
BOD 30.00
NH3-N 0.40
NO3~N 0.01
ALG-N 0.08
ORG~N .08
DO 0.10




Table 5.4. Mean square error of the difference between the filter estimates and the measured values in

(mg/1)“.
Mean Square Error (Filter A Measured) for Each Computer Run
Measurement|Measurement
Variable Noise Run Run Run Run Run Run Run Run Run Run Run Run Run
Variance 8 108 11 12 13 14 15 16 17 18 19 20 21b
BOD 1.00 1.103] 2.399 {1.103(1.105{1.103 1.103 11.102{1.103/1.103{1.10311.079/1.0641.142
(0.536)
NH3—N 0.01 0.0451 0.098 | 0.0030.043,0.044 0.000C0.045 0.04610.044|0.043|0.044(0.0430.305
(0.022)
NOB-N 0.04 0.0241 0.041 [0.02310.01610.031 10.025 10.02210.0240.01210.02110.02310.02310.174
(0.009)
(ALG-N+
ORG-N) 0.25 0.2581 0.222 | 0.225|0.018 0.03830.189 0.304 10,256 (0.125{0.218|0.219|0.208(7.524
(0.075)
DO 0.25 0.659} 0.482 (0.669|0.64710.663 [0.673 10.536 0.6601|0.671{0.663|0.658(0.658|0.405
(0.063)

%These values were calculated over river miles 39.2 (63.1 km) to 19.4 (31.2 km). The values in
parentheses are based on results from the smoothing algorithm which was applied over river miles 39.2
(63.1 km) to 19.4 (31.2 km).

bThese values were calculated over river miles 39.2 (63.1 km) to 6.4 (10.3 km).
“MSE = 0.00000 and R for NH3-N in run 14 is 0.00001.
9 for (ALG-N + ORG-N) in run 13 is 0.01.

08
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that, for run 8, the MSE is greater than the corresponding measurement
variance for all the measured parameters except NO3-N. Since all the
available literature pointed to a measurement variance of about 0.04
for NO3—N, it was not reduced below that value. When the process model

variance for NOB—N was reduced to zero the filter estimates of ORG-N

became significantly negative. Therefore, as a compromise, Q for N03—N

was set equal to 0.01, even though R remained greater than MSE for NOB—N.
This is an example of "over-fitting'", in that the process model fits the
data to within the accuracy of the data itself. The explanation for

this case of over-fitting may be that the closeness of the filter estimates
to the measurements is a chance occurance that would not be expected if
more sampling points were available.

Profiles representing one standard deviation of the estimation error
variance are taken from the diagonal of the P matrix and are contained in
the upper parts of Figures 5.9 through 5.15. Measurement noise variances
are indicated by "y symbols at the one standard deviation level. Profiles
representing the EKF estimate (conditional mean) of each of the state
variables are contained in the lower parts of Figures 5.9 through 5.15.
These figures also contain the results from run 2 to facilitate a com~
parison between the results from the purely deterministic process model
and the results from the EKF. Measured values are indicated by "y"
symbols. (ALG-N + ORG-N) results in Figure 5.13 are obtained by adding
the individual EKF estimates for ALG-N (XA) and ORG-N (XS). The follow-
ing equation is used to calculate the estimation error of (ALG-N + ORG-N)

(Hogg and Craig, 1970):

2. 2 1/2 ~
04+5 = (GZ; + (55 + 2‘}(45) B & '3
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in which

04+5 = one standard deviation for the estimation error variance
of (ALG-N + ORG-N) (mg/l1)

02 = estimation error variance for ALG-N from the P matrix
(mg/l)2

0? = estimation error variance for ORG-N from the P matrix
(mg/1)°

Y45 = estimation error covariance for ALG-N and ORG-N from the

P matrix (mg/l)2

The initial values of the estimation error shown in the upper plots
are determined by the initial variances assigned to P(EO). Estimation
errors then grow or decay in the downstream direction according to Equation
3.25. 1In the case of BOD (Figure 5.9), for example, the estimation grows,
whereas for DO (Figure 5.10) the estimation error decays to almost zero.
The growth or decay in P depends on the size of Q (see Table 5.3) and the
signs on the elements of the Jacobian matrix, F (see Equation 3.25 and
Figure 4.4). More specifically, an explanation for the decay of P for
DO is that the reduction of DO concentrations is very well represented
by the DO process model. Therefore, as estimation of DO proceeds down-
stream the confidence with which it can be said that DO approaches its
saturation concentration, actually increases. 1In contrast the confidence
associated with the estimates of other water quality parameters decrease
with distance downstream from a measurement. This decrease in confidence,
or increase in P, indicates that, for these parameters, the process model
introduces uncertainty into the estimates as the distance downstream in-

creases.
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At river mile 35.1 (56.5 km), the location of the first sampling
point, the estimation error drops abruptly to below the measurement error
in accordance with Equation 3.27. This is an example of the "filtering

result" whereby P(& after the measurement update is less than

k+llgk+l)’
either the measurement error, or the process model estimation error
P(gk+11£k) before the measurement update.

Between sampling points the estimation error grows or decays from
the updated value of P at the nearest upstream sampling point. The
evolution of P between sampling points is modified by the introduction
of estimation error associated with point loads as described by Equation
3.42.

In this run the estimation error covariance matrix associated with
point loads (Y) is set equal to zero for each point load. An example of
the impact of a point load on the estimation error is the small decrease
in P at river mile 31.7 (51.0 km) between the first and second sampling
points. In reality it is unreasonable to expect a decrease in P when a
point load is added. A better representation woﬁld be for P to increase,
which would require a non-zero Y matrix. If the point load parameter con-
centrations are measured at the time of sampling, Y could be set equal to
the measurement noise variances (R). In the absence of point load measure~
ments Y may be determined by trial-and-error. Y should be varied until P is
at least equal to, and preferably a little greater than its value immediately
upstream of the point load. This approach would require several more
computer runs after the Q matrix is established. The increase in P values
brought about by the introduction of the point load estimation error will

result in decreased values of MSE. There is a possibility that the new
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MSE will be unacceptable and therefore necessitate further refinements of
Q. Changes in Q may then require changes in Y and so the entire trial-
and-error procedure for Q may be considerably lengthened by adding a
trial-and-error determination of Y for each point load. To reduce computer
costs in the present study it was decided not to estimate the Y matrices.
Also it was decided that the assignment of arbitrary values to Y would be
not better than having Y equal to zero. However, a sensitivity study
described later in this chapter does illustrate the effect of a non-zero
Y matrix.

A comparison of the deterministic process model predictions (rum 2)
and the EKF estimates (run 8) shows the effects of updating the process
model predictions with information contained in the measurements. At
sampling locations the EKF estimates change abruptly toward the measured
value in accordance with Equation 3.26. The relative weight given to
measurements and process model predictions to obtain the updated EKF
estimate is determined by the relative valﬁes of R and P(§k+i| gk)
respectively., It is interesting to note the effect on the size of
measurement updating of the decreasing P value in the downstream direction
for QLG-N + ORG-N) (Figure 5.13). The residuals between measurements and
filter predictions are greater downstream than upstream and yet the size
of measurement updates of the filter estimate are approximately the same.
This characteristic results because R remains constant while P decays,
implying greater confidence in the process model predictions in the down-
stream reaches. At several locations a sampling point coincides with a
point load with the result that the measurement update and instantaneous
and complete mixing of the point load are superimposed on the profiles

contained in the figures.
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Because the filter estimates have been obtained to satisfy an
approximate minimum variance criterion, an interpretation of every change
in the profiles of EKF estimates in terms of the underlying physical
processes or loading patterns, should be avoided. For example, one would
not expect a discrete jump in the actual parameter concentration at a
sampling location. This limitation will he somewhat modified by the
application of a smoothing algorithm described in the next section.

In general, the differences between the filter estimates and determin-
istic predictions are relatively small. Greater differences between the
deterministic and filter results would be expected if the filter had been
run on a data set other than the one for which the process model was
calibrated. Howevér, the differences between the filter estimates and
deterministic predictions for ALG-N and ORG-N do require éome explanation
(Figures 5.13 through 5.15). A relatively large measurement variance for
(ALG-N + ORG-N) appears to be the underlying reason for the departure of
EKF estimates from the measurements and the deterministic predictions. By
conslidering the magnitude of the measurement noise, the deterministic pre-
dictions must be classed as a case of "over-fitting''. ORG-N (Xs) estimates
became negative over several of the downstream reaches. Although this is
clearly an undersireable feature in the case of constituent concentrations

no effort was made to keep X. non-negative since the worst negative estimate

5
was quite small {(about 0.1 mg/l).

Results From the Smoothing Algorithm

By using the fixed-interval smoothing algorithm (FIS) all the measure-
ments are used to estimate the state of the system at each location. In

contrast only those measurements upstream of a location are used to estimate
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the state of the system when the forward EKF alone is used. The smoothed
estimates are always equal to, or better than, the filtered estimates in

the sense that the smoothed values for P are always equal to, or smaller
than, the EKF values for P. A possible result of this reduction in P is

that the positive-definite property of P will be lost during smoothing.

This actually occurs during on attempt at smoothing the entire river

system [river miles 39.2 (63.1 km) -~ 2.8 (4.5 km)} and led to severe
divergence in the filter estimates. To avoid divergence a new value for

the Q matrix should be established. Because of the prohibitive computer cost
that would be associated with establishing a new Q matrix, the FIS was applied
to only the first half of the river {river miles 39.2 (63.1 km) to 19.4

(31.2 km)], for which the Q matrix used in run 8 could be used without
divergence occuring.

The initial conditions, the R and Q matrices, and the values for
the coefficients in the process model are identical in basic EKF run
(run8 ) and in the forward EKF of the Smoothiﬁg run (run 10). Thus, the
results from the forward filter in run 10 are identical to those in
run 8. The problem set-up for the backward IKF is the same as for the
forward EKF with the exception that new initial conditions,.ﬁb(i), are
specified at the downstream boundary. The initial state vector, §P(E)
is set equal to the measurement vector at river mile 19.4 (31.2 km), and
Pb(E) is based on R and is equal to P(&O) {see Table 4.1).

Smoothed estimates and their associated estimation errors are con-—
tained in Figures 5.16 through 5.22. 1In addition, the forward EKF esti-
mates and backward LKF estimates are included; although their inclusion
results in three overlapping traces, it is felt that a careful compar-

ison of the traces is informative.
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When examining the results from the backward LKF it must be
remembered thdt it proceeds in the upstream direction. Thus, the estima-
tion error grows or decays in the upstream direction until a sampling
location is reached. At sampling locations a measurement update step
reduces the estimation error to below the measurement noise. Unlike the
forward and backward values of P, the smoothed values are not characterized
by discrete jumps at sampling points. Instead, the estimation error rises
to a peak approximately midway between sampling locations. This charac~
teristic indicates that when information from all measurements is used,
the confidence in the estimates decreases with distance from the adjacent
sampling points. Smoothed values of PS are less than the forward values
indicating that better estimates are obtained from the smoothing algorithm
than from the forward EKF. Although Pb is not directly adjusted for the
effects of the point load estimation error, these effects are included
indirectly through relinearization of the backward filter about the for-
ward values for P. A distinct example of this is at river mile 31.7
(51.0 km).

As with the backward estimation error, the effects of measurement
updating on the backward estimates must be interpreted in the upstream
direction. Values of the smoothed estimates generally lie between the
forward and backward estimates. The use of information contained in
measurements in both the up-and downstream directions is indicated by the
absence of discrete jumps in the smoothed estimates at sampling points.

Values of MSE. for both the forward EKF and the FIS are contained in
Table 5.4 under run 10. Firstly, it is interesting to compare EKF values

of MSE in run 10 with those obtained in run 8. The difference is due
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entirely to the fact that run 10 was performed over only the upstream
half of the river while run 8 included the entire study length.
For BOD, NH

-N, and NO_-N this comparison indicates that the forward

3 3

EKF estimates are closer to the measurements in the lower half of the
river. TFor (ALG-N + ORG-N) and DO the comparison indicates that the
forward EKF estimates are further from the measurements in the lower
half of the river. It is interesting to note that MSE for NOS—N is
slightly greater than the NO3—N measurement noise variance for the
forward EKF estimates in run 10 indicating that over-fitting does not
occur in the upper half of the river.

Values of MSE calculated using the smoothed estimates are all
significantly less than those calculated for the forward EKF over the

same length of the river. With the exception of NH_-N, MSE values for

3
the smoothed estimates are less than the corresponding measurement noise
variances. This characteristic indicates that the smoothed estimates
obtained in run 10 are "over-fitted." To avoid over-fitting the
process model noise variances in Q should be reduced. However, in this

study computer funds were limited, and so a new Q matrix was not de-

termined from the FIS.

Sensitivity Studies

To assist in gaining familiarity with the filtering technique,
several sensitivity studies are performed. The sensitivity of filter
estimates to changesin the following statistics is investigated: the
process model noise variance, the measurement noise variance, the
initial estimation error variance, and the point load estimation error
variance. Table 5.5 contains the values of the statistics used in the

sensitivity runs.



Table 5.5.

Values of the statistics used in the sensitivity rumns.

Q2 2 A T2
Statistic (mg/1-day) (wg/1) (mg/1) (mg/1)
Water Quality parameter NH3—N NH3-N ALG-N + ORG-N N03~N All parameter
Run 8 14 13 8 8
Low Statistic 0.4 0.00001 0.01 0.04 See Table 5.6
value
value
Intermed- Run - - - - 19
iate value Statistic — o - —— See Table 5.6
value
High Run 11 8 8 12 20
value Statistic 4,0 0.01 0.25 2.25 See Table 5.6
value

L6
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Sensitivity study on process model
noise variance

The significance of the process model noise covariance matrix (Q)
is discussed earlier in this chapter in the section describing the
method used for determining values for Q. In this sensitivity study the
filter model was run for two different values of NH3—N process model

noise variance. In run 8 the NH3-N process model noise variance is

0.4 (mg/l—day)2 and in run 11 it 1s 4.0 (mg/l—day)z.
Figure 5.23 contains profiles of filter estimates and estimation

errors for NH3~N obtained from runs 8 and 11. Estimation errors grow

much faster with the larger value of Q used in run 11. However, measure-
ment update always reduces the estimation error to less than the measure-

ment noise variance for NHB-N. The higher value of Q used in run 11

signifies less confidence in the process model for NHB—N than in run 8.

Therefore, filter estimates from run 11 follow the NHB—N measurement more

closely than filter estimates from run 8. The MSE for NH3—N is reduced

from 0.045 (mg/l)2 to 0,003 (mg/l)2 by changing ¢ from 0.04 (mg/l—day)2

to 4.0 (mg/l-day)z. In addition, the reduced confidence in the NHB—N
process model affects the MSE of linked parameters, notably (ALG-N + ORG-N)
for which MSE is reduced from 0.258 (mg/1)2 to 0.222 (mg/l)z.

Sensitivity study on measurement
noise variance

The significance of the measurement noise covariance matrix (R) is
also discussed earlier in the section describing the method used for de-
termining values for Q. Sensitivity studies were performed on the

measurement noise variance for NH3~N and for (ALG~N + ORG-N).
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NH3~N Two different values of NHB—N measurement noise variance

were used, namely, 0.01 (mg/l)2 in run 8 and 0.00001 (mg/l)2 in run 14.

From Figure 5.24(a) it can be seen that the estimation errors are
identical for both runs until the first sampling point is reached. At
this and each subsequent sampling point the estimation error is reduced
to below the new measurement noise variance indicated by the lower
series of "x" symbols. When the distance between successive sampling
points is greater than about three miles the estimation errors converge
for both values of R.

The effect of the lower value for R is similar to the effect of
the higher value for Q in run 11. That is, because the smaller wvalue
of R signifies higher confidence in the measurement, it therefore,
implies in relative terms, less confidence in the process model. Thus,
the profiles of filter estimates for runs 11 and 14 are quite similar
(compare Figures 2.23(a) and 2.24(a)). In run 14 the measurement update
steps result in filter estimates that follow the measured values even
closer than in run 11. This is because although the weighting is "tipped"
in the same direction for runs 11 and 14, the degree of weighting is
different for each run. The MSE for NH3~N in run 14 is reduced to almost
zero and the MSE for (ALG-N + ORG~N) is reduced from 0.258 (mg/l)2 in
run 8 to 0.189 (mg/l)2 in run 11.

ALG~-N 4+ ORG-N The measurement noise variance in run 8 is 0.25

(mg/l)2 and in run 13 it is 0.01 (mg/l)z. The initial wvalue of P(go) is
equal to R for (ALG-N + ORG~-N) in both runs. Hence the profiles in
Figures 5.25(a) start at different values. Measurement updates for each

run reduce P below the value of R for that run. In fact, values of the
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estimation error variance calculated using Equation 5.2 are negative
after the measurement update at several of the sampling points. It is
emphasized that the variances in the P matrix remained positive throughout
run 13 for each state variable taken separately. It is the variance of
the combination of ALG-N and ORG-N that becomes negative when calculated
using Equation 5.2. These negative variances were set equal to zero for
the purpose of plotting Figure 5.25(a). Estimation errors for runs 8
and 13 do not appear to be converging downstream at river mile 10.0
(16.1 km). For run 13, in which confidence in the measurements is
higher than in run 8, the estimates are closer to the measurements than
in run 8. MSE for (ALG-N + ORG-N) in run 13 is reduced to 0.038 (mg/l)2
which is greater than the corresponding R value of 0.01 (mg/l)z. The
filter estimates for (ALG-N + ORG-N) are more appealing for the view-
point of obtaining predictions as close to the data as possible. How-
ever, acceptance of the results in run 13 as "better" than those in

run 8 implies acceptance of the lower value for R which is not supported
in the literature.

Sensitivity study on the initial
estimation error variance

In the basic filter run the initial estimation error variance is
equal to the measurement variance on the basis that a measurement vector
is used to establish the initial state vector [Zkgoi]. Thus, for run 8
the initial estimation error variance for NO3—N is 0.04 (mg/l)z. If no
measurements are available at the upstream boundary we would probably

place less confidence in the initial condition for the process model.

This is done in run 12 for which the initial estimation error variance
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on N03—N was set equal to 2.25 (mg/l)z. By doing this greater weighting
is given to the first few measurements (Figure 5.26(b)). As more
measurements are processed the confidence in the process model grows and
hence, P declines (Figure 5.26(a)). After river mile 15.0 (24.2 km)
there are no discernable differencesin either the filter estimates or

the estimation error variances for the two runs in which different values
of P(io) were used.

Sensitivity study on point load
estimation error variance

In this sensitivity study three different values were used for the
estimation error variance (Y) associated with the point load located at
river mile 31.7 (51.0 km). The values used for Y are listed in Table 5.6.
In run 8 Y is equal to zero. The variances for Y in run 20 are double
the arbitrary values used in run 19. Sensitivity results for NO3*N are
shown as they are typical of the results obtained for the other parameters.
Figure 5.27 shows that in run 8 the estimation error (P) is decreased
when Y is zero, and increased by differing magnitudes for rums 19 and 20.
However, the effect on P is negligible after the next measurement update.
The filter estimates of NO3—N are very slightly weighted towards the
measurements at this sampling point for runs 19 and 20. However, the
difference in estimates between run 8 and run 20, which results in the
larger P value, is only 0.007 mg/l. Therefore, for practical purposes,
the effect on the N03—N estimates is negligible in this example.

In the case of ALG-N, filter estimates are affected by changes to

the variances in Y (see Figure 5.28). The estimation error variance of

ALG~-N is not affected directly by changes in the point load estimation
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Table 5.6. Estimation error variances (Y) for the point load located at river mile 31.70
(51.0 km).
Estimation error variance (mg/l)2
Other runs

Parameter Run 19 Run 20 (including Run 8)
BOD 50.0 100.0 0.0

NHB—N 1.0 2.0 0.0

NOB—N 2.0 4.0 0.0

ALG-N 0.0 0.0 0.0

ORG-N 0.0 0.0 0.0

DO 16.0 32.0 0.0

S0t
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error variances of ALG-N since these remain zero for all three runs
(see Table 5.6). However, the estimation error variance of ALG-N is
indirectly affected through the measurement updating process. The in-
creased uncertainty in the process model prediction of the other para-
meters causes an increase in the estimation error associated with ALG-N
and similarly ORG-N which is not shown here. The reason for the
estimation errors of ALG-N and ORG-N remaining changed, while the effect
on the estimation error of other parameters dies out, is probably due
to the relatively high measurement noise variance for (ALG-N + ORG~N).
As a consequence of the increased estimation errors the estimates for
ALG~-N and ORG~N in runs 19 and 20 are weighted more toward the measure-
ments than was the case in run 8. Thus, MSE for (ALG-N + ORG-N) was
reduced in runs 19 and 20 compared with run 8 (see Table 5.4). This
reduction of MSE resulting from changes in ¥ reinforces the suspicion
that a simultaneous trial and error determination of Q and Y for each

point load would be a much larger task than for Q alone.

Coefficient Estimation

The extended Kalman filter is a potentially useful tool for model
calibration. Coefficients in the process model can be estimated at the
same time as state variables are estimated. Although this method of
parameter estimation is statistically less efficient compared with other
techniques it does have the advantage of providing information on the
variation of the coefficient with respect to the independent variable,
in this case distance along the stream (Beck and Young, 1976). Coef-

ficient estimation is achieved by augmenting the state vector with the
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coefficients to be estimated. For each additional state variable this
involves adding an additional equation to the process model, and an
additional row and column to the process model noise covariance matrix.

A process model of the following form is used for each of the coefficients

estimated in this study:

»

X7 = 0 + @7 T S )

in which

B e
i

first derivate with respect to travel time of

X7 which is the coefficient to be estimated

This process model indicates that X, does not change with travel time

7

except in a manner that can be described by the white Gaussian noise

process, Other process models for X, may be used if appropriate.

7° 7

X7 is substituted into the other process model equations in place
of the coefficient to be estimated. A result of treating some of the
model coefficients as state variables is that a linear process model
usually becomes non-linear. The initial state vector and the initial
estimation error covariance matrix are augmented to accommodate the
additional state variable. Since measurements are not available for
model coefficients the measurement vector is unchanged, but a column of
zeros 1s added to the right-hand side of the H matrix to keep Equation
4.22 consistent. The Jacobian matrix is also modified to reflect the
changes to the process model.

The three coefficient estimation runs are described below. K23 ‘

is estimated by run 15, and K,_ by run 16. In run 21 five of the co-

45
efficients (K23, K45, K52, U, KSB) in the equations describing the
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cycling of nitrogen are estimated simultaneously with the six water
quality parameters. In addition two runs for lateral inflow concen-
tration estimation are also described. Lateral inflow concentration

for NO,~N is estimated by run 17 and for NH

3 -N by run 18.

3
A fresh determination of the Q matrix was not undertaken for any
of these runs. An arbitrary value for the process model variance
associated with each coefficient estimated is assumed and the same
value is used for the initial estimation error variance. These values

are given in Table 5.7. The results from the coefficient estimation runs

could be improved by refining the Q matrix.

X . .
23 estimation

Filter estimatesfor K the nitrification rate, are shown in

23°
Figure 5.29. Figures 5.30 through 5.33 contain results from some of the

parameters using the filter estimates of K23' Down to river mile 20.0

(32.2 km) the estimates of K23 are close to the calibration value of

0.3 per day. After river mile 20.0 (32.2 km), Kz estimates decline,

3

become negative,and then rise to approximately 0.4 per day. A comparison
of the MSE for run 15 and the MSE for run 8 indicates a substantial de~-

cline in the MSE for DO when K23 is estimated. Inspection of the DO

profiles from run 15 (Figure 5.30) indicates a rise in DO below river
mile 20.0 (32.2 km) compared to the estimates from run 8. It appears

that the filter estimates of K23 may result largely from the reduction

in MSE that can be obtained by changing the DO estimates.

In terms of the chemical processes a negative value for K,, implies

23

denitrification. However, the near saturation levels of DO indicate that

denitrification should not be taking place in the prototype system.
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Table 5.7 Process model noise variances (Q) and initial estimation error variances (P(§;)) for the coeffi-
cients and lateral inflow concentrations estimated in runs 15 through 18 and 21.
Units of P(£ )

Lateral Inflow Concentration or Model Coefficient Variances? 0 Variance Run
U2 NH3~N concentration in lateral inflow (mg/1)2 0.04 18
U3 NOB—N concentration in lateral inflow (mg/l)2 ) 2.25 17
K23 Nitrification rate (per day) 0.09 15 and 21
K45 Algal death rate (per day)2 0.01 16 and 21
%52 Rate of decomposition of ORG~N to NHB—N {per day)z 0.01 21
u Maximum specific growth rate of algae (per day) 3.00 21
KSB Half-saturation coefficient for NOS—N (mg/l)2 0.0002 21

#he units of process model noise variance are obtained by dividing the units of P(gg) by (day)z. For
example the units of process model noise variance for U2 are (mg/l—day)z.

01T
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Therefore, from a chemical viewpoint the filter estimates of K23 are un-

acceptable. These results show the need for a technique for constraining
state variables to a reasonable range of values. The effects of the

filter estimates of K23’ on the estimates of NH_-N, NO,-N, and ALG-N, are

3 3

shown in Figures 5.31 , 5.32,and 5.33 respectively. Slight increases in
the estimation errors are caused by the introduction of estimation error
associated with K23, compared to run 8 in which K23 was treated as deter-

ministic.

K45 estimation

Figure 5.34 shows the filter estimates of the algal death rate, qu,
compared with the constant calibration value of 0.04 per day. Down to
approximately river mile 16.0 (25.8 km) the filter estimates are very
similar to the calibration value. Downstream of river mile 16.0 (25.8 km)
the filter estimates jump to 0.08 - 0.10 per day. It is of interest to
note that the calibration value of the maximum specific growth rate for
algae below river mile 16.7 (26.9 km) is half of the upstream value.
Perhaps the increase in filter estimates of the algal death rate is re-
lated to the change in the algal growth rate. Filter estimates for ALG-N
and ORG-N based on the filter estimates of K45 are given in Figures 5.35
and 5.36, respectively. For example, the increased algal death rate

just below river mile 16.0 (25.8 km) results in lower estimates of ALG-N
and higher estimates of ORG-N. However, there is little change to the
magnitude of (ALG-N + ORG-N}. The effect of introducting uncertainty
associated with K into the estimation error of ALG-N and ORG-N is

45

shown by the increase in P values for both parameters.
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Estimation of the nitrogen
cycle coefficients

In run 21 five coefficients pertaining to the nitrogen cycle part
of the process model are estimated. Filter estimates for the coefficients,

and K are contained in Figures 5.37 through

Kogo Kys0 Koos W,

5.41. In each figure the calibration values of the coefficient are

namely, g3’

shown. For K23 and K&S the results of the previous coefficient runs are
also shown to facilitate comparison. As with the other coefficient
estimation runs, the values used for the Q matrix could be improved. 1In
this run the need for improving Q is dramatically illust?ated by the
divergence of filter estimates (see Figures 5.42 through 5.47). At
river mile 5.8 (9.3 km), the estimation error wvariance for NH3-N becomes
negative and hence the P matrix is no longer positive-definite. Rather
than attempt to change Q in such a way that divergence is avoided, it
was decided to stop the run immediately before loss of positive-definiteness
in P and use the results as an illustration of divergence. Thus run 21
covers river miles 39.2 (63.1 km) to 6.4 (10.3 km).

The onset of divergence is caused by the decay of P for NH,~-N (see

3
Figure 5.44) which results in greater‘weighting for the process model
predictions. Filter estimates for ammonia diverge from the measured
values and also, presumably, from the true state for ammonia. Signifi~
cant measurement updates are still taking place below river mile 10.0
(16.1 km) but these are not sufficient to overcome the divergence. To
prevent divergence the Q matrix should be increased so that estimation

errors are maintained at higher levels which are presumably close to the

true values of P. The starting point in this example would be to increase
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the process model variances associated with the coefficients. This

would raise the estimation error of NH_-N and hence reduce the weighting

3
on the process model predictions.
Divergence in the other water quality parameters appears to be
strongly related to the divergence of NHB-N. It is interesting to note
that the filter estimates for BOD are unchanged. This is the case
because in the process model BOD is independent of all the other water
quality parameters and also independent of each of the five ccefficients
estimated in run 21.
In the presence of divergence it is not possible to draw conclusions
about the values estimated for the five coefficients. It is noted however, that
before divergence becomes severe, the estimates of K23 and K45 from run 21

are similar to those in runs 15 and 16, respectively (see Figures 5.37

and 5.38, respectively).

NOB—N lateral inflow estimation

Non~point sources of pollution are diverse and difficult, if not
impossible, to measure. In conventional river water quality modeling
the assignment of concentrations to various parameters in lateral inflow
is an art which at best requires the exercise of engineering judgment,
and which at worst is arbitrary in nature. Therefore, any light is
welcome that can be thrown on the levels of the concentrations through
the coefficient estimation procedures of the EKF.

The filter estimates for UB’ the lateral inflow concentration of
N03—N,show the general trend of higher levels upstream, and lower levels
downstream. The trend was observed in other studies on the Jordan

River, and is used for the calibration in this study (see Figure 5.48).
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Results for the other water quality parameters affected by the estimation
of U3 are shown in Figures 5.49 through 5.52. The estimation errors

from NO,-N, ALG~N and ORG-N are increased by the introduction of U, un~—

3 3

certainty and consequently filter estimates for the parameters are closer

to the measurements.

NHB—N lateral inflow estimation

9 the lateral inflow concentration of NHS-N,

are in quite good agreement with calibration values except below river

The filter estimates for U

mile 12.0 (19.3 km) (see Figure 5.53). It is interesting to note that

the 0.8 mg/1l level estimated by the filter below river mile 12.0 (19.3 km)
is similar to the 0.9 mg/l level found by Dixon et al. (1975) for these
reaches. However, in the calibration of the deterministic process model
other available evidence pointed to a negligible concentration of NHB-N
in the lateral inflow of this downstream stretch of the Jordan River.

The results of other water quality parameters affected by the estimation

of UZ are shown in Figures 5.34 through 5.57.

Computational Requirements

Figure 5.58 provides a comparison of the computational require-
ments for the techniques applied in this study. The comparison is in
terms of the cost of the computer runs, adjusted to account for the
different lengths of the river represented in some runs. The basic
filter run costs almost double the cost of the deterministic process
model run. The smoothing run costs approximately four times the cost

of the deterministic process model run.
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Some researchers have reported that computer costs for filter
techniques are proportional to the cube of the order of the state
vector. However, the three different size state vectors used in this
study point to a relationship between the order of the state vector

and computer costs that involves an index of less than 2.
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CHAPTER 6

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

Summary

The extended Kalman filter (EKF) is used to represent BOD, DO, and
nitrogen cycling in a 36.4 mile (58.6 km) stretch in the Jordan River,
Utah, under the assumption of steady-state conditions. Approxi@ate mini-
mum variance estimates of the water quality parameters are provided by the
EKF filter. These estimates are obtained through a combination of two
independent estimates of the state of the river water quality system:

(1) predictions of the system state from a "phenomenologically meaningful”
process model of the biochemical and stream transport processes; and (2)
measurements of the water quality parameters. These two estimates are com—
bined by a weighting procedure based on the uncertainties associated with
the process model predictions and the measurements. The EKF also yields

an estimation error covariance matyix from which confidence limits for the
accuracy of the parameter estimates are obtained.

A sequential arrangement of extended Kalman filters is utilized. Each
EXKF in the sequence represents a river reach for which hydraulic and water
quality characteristics are fairly uniform. Initial conditions for each
EKF are based on the final conditions of the previous EKF adjusted to re-
present the effect of point loads or tributaries discharging into the main
river between the two reaches.

A trial-and-~error calibration procedure is used to obtain values
for the model coefficients in the process model operated as a deterministic
model independent of the filter. Determination of values for the Q matrix

by a trial-and-error procedure is described. The approach is based on the
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requirement that the mean square error of the differences between the filter
estimates and the measurements be not less than the measurement noise variance.

A property of the EKF is that information contained in the measurements
is used only in subsequent estimates of the system state. Therefore, infor-
mation in the measurements is used only downstream of the sampling point at
which the measurement was taken. To make usé of the measurements in both
the up~ and downstream directions a fixed-interval smoothing algorithm (FIS)
is implemented. This technique combines state estimates from filter passes
in the up~ and downstream directions. Sequential linearized Kalman filters
are used for the pass in the upstream, or backward direction. Unlike the
forward and backward estimates of the estimation error (P), the smcothed
values are not characterized by discrete jumps at sampling points, Instead,
the estimation error rises to a peak approximately midway between sampling
locations. This characteristic indicates that when information from all
the measurements is used confidence in the estimates decreases with dis-
tance from the adjacent sampling points. Smoothed values of P are less than
the values obtained from applying the forward EKF alone; thus indicating
that the estimates obtained from the FIS are better, in a minimum variance
sense, than the estimates obtained from the forward EKF.

To assist in gaining familiarity with the filtering technique, several
sensitivity studies are performed. The sensitivity of filter estimates to
changes in the following statistics was investigated: the process model
noise variance, the measurement noise variance, the initial estimation error
variance, and the point load estimation error variance. A large value for

the process model noise variance has the effect of: (1) increasing the rate

of growth of the estimation error, and (2) placing additional weighting on

the measurements because the larger estimation error implies less confidence
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in the process model predictions. At sampling points the measurement up-
date procedure always vresults in an estimation error less than the measure-
ment noise regardless of the values used for the process model noise vari-
ances. Changing the values of the measurement noise affects (1) the level
of the estimation errér after measurement updates, and (2) the weighting
given to measurements., A larger initial estimation error variance gives
relatively more weighting to the measurements but this effect decreases
with distance from the upstream boundary. The sensitivity study on the
point load estimation error variances indicates a small, but noticeable,
effect on the estimation errors, and therefore, a slight effect on the state
estimates via the weighting procedure.

The capability of estimating model coefficients and lateral inflow
concentrations simultaneously with the water quality parameters is demon-
strated. 1In one run five coefficients in the equations describing nitrogen
cycling are estimated. This run also provides an»example of filter diver-

gence.

Conclusions

The following conclusions have been developed from the results and
experience gained during this study:

1. A steady-state filter model has been developed which is capable

of immediate application to any stream for which the process model des-
cribed in Chapter 4 is suitable, and for which the appropriate measure~
ments are available.

2. In general, the filter estimates were quite similar to the deter-

ministic process model estimates with the exception of ALG-N and ORG-N.
The differences for these parameters are due to information contained in

the measurement vector Z, and the relatively low confidence placed in the
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measurements of (ALG-N + ORG-N). This illustrates two important reasons
for using estimation theory, namely: {(a) to make use of the information
content of the measurements, and (b) to allow for an explicit treatment of
the uncertainties associated with the system, the model, the data, and the
model responses.

3. Estimation theory provides values for the estimation-error as-

socliated with filter estimates. Values of the estimation error covariances
matrix (P) varied from a coefficient of variation of almost zero for DO

to a coefficient of variation in excess of 1.0 for ALG-N and ORG-N (see
Figures 5.9 through 5.15). These values are potentially useful for estab-
lishing tolerances on stream quality standards which are reasonable in
terms of our ability to estimate the true state of stream water quality
using available measurements and current understanding of the stream pro-

cesses expressed in the form of a mathematical process model.

4, Apart from the determination of approximate minimum variance esti-
mates of the true state of a river water quality system, the current model

could be used to design a stream sampling program, Under the assumption of

steady~state conditions the location of sampling points and the parameters

to be measured could be determined. This could be achieved by formulating
constraints defining the maximum acceptable estimation errors associated with
each parameter, and by locating sampling points such that these constraints
are met. The estimation errors depend on the spacing of sampling points

and are independent of the actual measurement values. Therefore, no data

are required to design the stream sampling program. However, a trade-off
relationship exists between the spacing of sampling points and the adequacy

of the process model. 1If a poor process model is used, then estimation errors

grow rapidly, and more frequent samples are required to meet the estimation



138

error constraint. In contrast less frequent samples are needed to meet
the constraint if a precise process model is used because in this case, esti-
mation errors grow at a slower rate.

5. The estimation theory techniques applied herein are not suitable for

long~term forecasting or for predicting the effects of management changes on

the river water quality system. The reason for this is simply that measure-
ments, needed for updating, do not exist in either of these situations. How-
ever, indirect benefits may be gained through using the EKF for model identi-
fication, or for estimating coefficients and lateral inflow concentrations prior
to long~term forecasting or management runs using the deterministic process
model alone.

6. Application of the fixed-interval smoothing algorithm reduced the es-

timation error variances but smoothed estimates are not significantly differ-

ent from the filtered estimates. However, an advantage of applying the

smoothing algorithm to the steady-state problem is that the abrupt changes
in both P and X are smoothed out as a result of using the information éon—
tained in the measurements in both the up-~ and downstream directions.

7. The determination of suitable variances for the Qmatrix appears to
be a significant and complex step in applying the EKF. Experience does not
seem to help in establishing a Q matrix a priori. The problem becomes more
complicated if an estimation error covariance matrix for each point load
also is estimated. Whenever the model structure is changed, a new Q matrix
should be determined. Also, the Q matrix that worked satisfactorily for
the filter run was found to be unsuitable for a smoother run on the entire
study section of the Jordam River.

8. Use of the EKF¥ for coefficient estimation requires a fresh deter-

mination of the Q matrix. This is partly because process model noise vari-

ances for the new state variables must be estimated and also because the
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process noise variances of the original state variables may be reduced to
offset the introduction of process model noise via some of the model co-
efficients. In addition, initial values for the estimation error covariance
matrix must be estimated when coefficients are estimated. A trial-and-error
determination of P (§£;) and Q may require several computer runs. Filter
estimation for a single model coefficient may be largely determined by the
previous calibration values for the coefficient. This conclusion is based
on the results for K&S' Estimates of state variables are unconstrained and
unrealistic values of model coefficients may result. An example of this,

is the negative values obtained for the nitrification rate, KZS'

9. The sensitivity study on the point load estimation error variances

showed that the impact on both filter estimates and estimation errors can

be noticeable. Hence, the need for considering the accuracy with which the

concentrations of point load constituents are known, is demonstrated.
This approach could be used to assist in establishing tolerances on efflu-
ent standards.

10. Computer costs associated with estimation theory techniques are

higher than the costs of running the corresponding process model as a purely
deterministic model. Costs rise as the number of state variables are in-
creased. In addition, the trial-and-error determination of suitable values
for the Q matrix can be a very expensive task. However, the additional
computer costs should be weighed against the utility that can be derived
from the estimation error covariance matrix and the improved estimates of

state (coefficients and lateral inflow concentrations).

Recommendations

The following recommendations for further work are based on the ex-

perience gained during this study:
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1. During filter runs estimates for ORG-N, K23, and K52 became nega-
tive. In each case, these negative values did not have a valid physical
interpretation. Therefore, it is recommended that a modification to the

EKF should be explored, in which state variables can be constrained to lie

within a reasonable range of values.

2, Determination of suitable values for the Q matrix was found to be a
costly and complex process. The trial-and-error technique adopted in this
study could be developed into an automatic search procedure to satisfy an
objective function based on thé closeness of MSE to the corresponding
variances in R while satisfying the constraint that MSEi 2 Rii for all
measured variables. However, this procedure would lead to a single value

for ¢ to be used throughout the filter run. If more data are available than

was the case in this study, it is recommended that adaptive filtering
techniques be explored as an approach for simultaneously estimating Q and

the state vector. A decision-directed adaptive filtering algorithm such

as that by Nahi and Schaeffer (1972) is recommended.

3. The applicability of the current filter model should be extended
to allow for the simulation of river systems that include tributaries.
Also, streamflow should be added as a state variable if computer funds are
sufficient to run the filter with the expanded state vector. In this way
uncertainties in streamflow will be incorporated into the estimation errors
of the water quality parameters.

4. Consideration should be given to adding other water quality para-

meters to the state vector. Computer costs may be reduced by breaking the

state vector into independent components and running each component as a

separate model (Lettenmaier, 1975). For example, a state vector containing

streamflow, stream temperature, BOD, DO, NH,-N, NO -N, ALG-N, ORG~N and

3 3
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coliform, could be divided into: (a) streamflow-stream temperature, (b)
streamflow-BOD- DO-nitrogen cycling, and (¢) streamflow-coliform.

5. To extend the EKF technique to situations in which dispersion is
an important stream transport process two possibilities exist: (a) a fil-
ter capable of modeling the second-order advection-diffusion equation could
be developed; and (b) a mathematical procedure suitable for transforming the
second-order advection-dispersion equation into first-order differential
equations could be developed. Pimentel and Brewer (1975) have developed such
a transformation for dispersion alone but their procedure does not cover

the combined advection-dispersion situation.

6. The application of estimation theory to other types of water re-

sources problems should continue. 1In particular, the problems of real

time, short-term river flow forecasting, and reservoir operation appear to
be promising possibilities.

7. The model for algal uptake of nitrogen in the ammonia and nitrate

forms (Equations 4.11 and 4.14) should be tested using laboratory experi-

ments.
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APPENDIX A

USERS MANUAL FOR COMPUTER PROGRAMS

Thres~ .omputer programs were developed for this study. The relation-
ships between the programs are illustrated by Figure 3.4. EKFIKF is the
filter model including the extended Kalman filter (EKF), linearized Kal-
man filter (LKF), and fixed interval smoothing élgorithm (FIS). Results
from filter runs are written onto a computer disk storage device, sorted
by the data sorting program (PRSORT), and dumped onto punched cards.

These punched cards are subsequently read by the plotting program (P)
which produces continuous plots of the filter results. This appendix is

divided into three parts:

Page
I. Filter model (EKFLKF) 149
II. Data sorting program (PRSORT) 187

III. Plotting program (P) 193



I. TFilter Model (EKFLKF)

Overall flow diagram of filter model (Figure A-1)

Input data and decision parameters for filter model (Table
A=

Definition of sta « = :ctor, measurement vector, input vector,
and model coefficienc vector “n this study (Table A-2)

Program listing of filter model
Sample input for filter model

Sample output from filter model

149

Page
150

154

162
164
179

181



Forward Extended Kalman Filter

Figure A-1,

l Read § Initial input

l

! Read I River system input

l

| Initiatization

K=2

Assign river system input for

Kth point

Calculate number of time steps
to Kth point

Predict Kth point from (K-1)th
paint using Equations 3.24 and
3,28

Kiir point
u sampling point
o

Measurement update at Kth
point using Equations 3.26

amd 3.27

Cumulate MSE (forward filter -
measured)

Overall flow diagram

of filter model.
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0,
:

\ Print EKI° results for K point ]

Kth point
4 point foad
L)

Completely mix point load

|

Print results for Kth point
downstream of point load

Kth point
a diversion
2

Subtract diverted flow

Kth point
the end point
2

Plot EKF results

l

Caleulate and print MSE (for-
ward filter - measured)

®
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No

Yoy

Write summary of results 1o
disk for input to PRSORT

()
x

‘ Read I Initial smoother input l

Assign river system input for
Kth point

Predict Kth point from
¢K + i)th point using Equa-
tions 3.32 and 3.33

Kih point
a sumpling point
k4

Measurement update at Kth
point using Equations 3.34
and 3.35

Cumulate MSE (backward
filter - measured )

Backward Linearized Kalmon Filter

=K-1
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Smoother

Print LKF results for Kth point

Kth point
a point load
9

Completely mix point load

‘in reverse’

Print results for Kth point
upstream of point load

Smooth estimates by com-
bining forwara ar-d backward
results

Write summary of results for
Kth point to disk for input
to PKSORT

Yes

Calculate and point MSE (back-
ward filter-measured)
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Table A-1, Input data and decision parameters for filter model (EKFLKF).

I. Initial input

1. (HDG(I), I = 1, 12) - Format (12A6)

1-72

HDG(I)

2. (XLABEL(I), I = 1, 12) ~ Format (1246)

1-72
3. N, L, IPI, IOUT,
1-10
11-20
21-30
31-40
51-60
61-70

71-80

XLABEL(I)

IC, NNN, IJK - Format
N

L

IPL

10UT

IC

NNN

IJK

Run heading

Label for x-axis of plotted output
(4110, 10X, 3110)

Order of state vector

Order of measurement vector

Frequency of time steps to be plotted
Frequency of time steps to be printed
Number of model coefficients

Number of state variables plus number of dependent variables

]

0 Filter option

[

1 Deterministic process model option

4. NPLT, IU, IQ, NXNK, IOSMTH, IODPLT, IPS - Format (7I10)

1-10

11-20

NPLT

j81)

Number of state variables to be plotted

Number of input wvariables

74T



21-30

31-40

41-50

51-60

61-70

5. NMSTS2 - Format

1-10

6. T1, RMI, DT, QSTM - Format (4F10.0)

1-10

11-20

21~30

31-40

1Q

NXNK

TOSMTH

IODPLT
IPS
(110)

NMSTS2

T1
RMI
DT

QSTM

0 Print hydraulic variables
1 Do not print hydraulic variables

Numbers of state variables that are water quality para-

meters and not model coefficients augmenting the state
vector

0 Forward EKF only

1 Smoothing option using end conditions of forward EKF
for initial conditions of backward LKF

2 Smoothing option and read initial conditions for
backward LKF

1

= 0 Do not plot results
1 Plot results

= { Do not print results

= 1 Print Results

Number of the measurement at which alternative estimate of
mean square error should commence

Initial time (days)
River mile at upstream boundary
Time step (days)

Streamflow at upstream boundary (cfs)

133



7. (IOPT(I), I =1,4), TOPTQ, IOPTR, IOPTPL - Format (7I10)

1-10 IOPT(1) = 0 Entire H ms+rix input
= 1 Only diago:i .l of H matrix input

11-20 T {2) = 0 Entire Q mairix input
= 1 0.ly diagonal of Q wmairix input

21-30 IOPT(3) = 0 Entire R matrix inpur
= 1 Only diagonal of R mai ix input

31-40 IOPT(4) = 0 Entire initial P matrix input
= 1 Only diagonal of initial P matrix input

41-50 IOPTQ = 0 Only one Q matrix input
=1 A different Q matrix input for each reach

51-60 IOPTR = 0 Only one R matrix input
=1 A different R matrix input for each sampling point

61-70 TOPTPL = 0 Y matrices not input (assumed identically zero)
= 1 Y matrices input for each point load

(Card 8 is repeated for (NPLT+1) labels varying I)
8. (YYLABE(I,J), J = 1,9) - Format (9A6)

1-54 YYLABE(I,J) Label for y-axis of plotted output
9. (xHDG(I), I = 1, (NPLT+l)) - Format (10A8)

1-8 XHDG(1) Brief heading for lst state variable

9-16 XHDG(2) Brief heading for 2nd state variable

etce.

9¢T



10.

i1.

12.

13,

(ZHDG(I), I = 1,1) - Format (10AS8)
1-8 ZHDG(1) Brief heading for lst measure.: it variable

9-16 ZHDG(2) Briei heading for 2nd meas. ement v.giable

etc.
(YMINI(I), I = 1, (NPLT+l)) - Format (8F10.0)
1-10 YMIN1I(L) Minimum y-value f . plot of lst stai var.able
11-20 YMIN1(2) Minimum y-value for plot of 2nd state variable
ete.
(YMAX1(I), I = 1, (NPLT+l)) - Format (8F10.0)
1-10 YMAX1(1) Maximum y-value for plot of lst state variable
11-20 YMAX1(2) Maximum y-value for plot of 2nd state variable
ete.
(CHDG(I), T = 1, IC) - Format (10AB)
1-10 CHDG(1) Brief heading for 1lst model coefficient

11-20 CHDG(2) Brief heading for 2nd model coefficient

etc.

161



14. (UHDG(I), I = 1, IU) ~ Format (10A8)

1-10 UHDG(1) Brief heading for lst input variable
11-20 THDG{2) Brief heading for 2nd input variable
etc.
(IOPT(1) = 0 Card 15 is repeated for L rows of HH varying I
IOPT(1) = 1 Card 15 contains the diagonal elements of HH)

15, (HH(I,J),J = 1, N) - Format (8F10.0)
HH(I,J) Measurement coefficient matrix

(Omit card 16 if IOPTQ = 1
IOPT(2) = O Card 16 is repeated for N rows of Q varying !
I0PT(2) = 1 Card 16 contains the diagonsl elements of Q)
16, (Q(1,J),J = 1, N) - Format (8F10.0)

2
Q(1,n) Process model noise covariance matrix (mg/l - day)

(Omit card 17 if IOPTR = 1

IOPT(3) = 0 Card 17 is repeated for L rows of R varying I
IOPT(3) = 1 Card 17 contains the diagonal element of R)
17. (R(1,J), J =1, L) - Format (8F10.0)

R(I,J) Measurement noise covariance matrix (mg/l)2
18, (XX(1,1), I = 1, N) - Format (8F10.0)

1-10 XX(1,1) Initial mean value for the lst state variable at upstream
boundary (forward EKF run) (mg/l)2

11-20 XxX(2,1) Initial mean value for the 2nd st%te variable at upstream
boundary (forward EKF run) (mg/l)

etc,

Pt
wn
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IT.

(TOPT(4) = O Card 19 is repeated for N rows of P varying I
I0PT(4) = 1 Card 19 contains the diagonal elements of P)
19. (P(1,3), J =1, N) - Format (BF10.0)

P(1,T) Initial estimation error rovariance mat:ix at upstream

boundary (forward EKF run) (. 1)

River system input

Cards in subsections A through E contain the input data necessary to describe the different
types of points on the river system. The cards must be arranged in the order in which the poiun.
occur in the real river. A point load must precede each new reach. A zero flowrate sh- i be
assigned to this point load if it does not exist in the real river.

A. Beginning of reach

20. "R", RM2, (C(I,1), I =1, IC) - Format (Al, F9.0, 7F10.0/(8F10.0))

1 "R" Card identifier for reach
2-10 RM2 River mile at upstream boundary of reach
11-20 c(1,1) Value of lst model coefficient for reach beginning at RM2
21-30 c(z,1) Value of 2nd model coefficient for reach beginning at RM2
etc.

21. (U(i,1), I =1, IU) - Format (8F10.0)
1-10 (1, Value of 1lst input for reach beginning at RMZ
11-20 oz, Value of 2nd input for reach beginning at RM2

etc.

651



(Omit card 22 if IOPTIQ = 0)
22. Same as card 16

B. Sawmpling point

23. "M, RM2, (z(1I,1), I =1, L) - Format (Al, ¥9.0, 7F10.0/(8F10.0))

1 M
2-10 RM2
11-20 7¢1,1)
21-30 2(2,1)
etc.

(Omit card 24 if IOPIR = 0)
24, Same as card 17

C. Point load

25. "P", RM2, QPL, (PL(I,1), I =

1 "ph
2-10 RM2
11-20 QPL
21-30 PL(1,1)
31-40 PL(2,1)
etc.

Card identifier for sampling point
River mile at sampling point
Value of lst measurement variable at RM2

Value of 2nd mecasurement variable at RM2

1, NXNK) - Format (Al, F9.0, 7F10.0/(8F10.0))
Card identifier for point load
River mile at point load
Flowrate of point load (cfs)
Concentration of lst water quality parameter in point load (mg/1)

Concentration of 2nd water quality parameter in point load (mg/1)

09T



(Omit card 26 if IOPTPL = 0)
26. (YPL(I,I), I =1, NXNK) - Format (8F10.0)

YPL(I,I) Diagonal elements of estimation error covariance matrix
of water quality parameter concentration in point lead (mg/l)

D. Diversion

27. UD", RM2, QDIV, - Format (Al, F9.0, F10.0)

1 "ph Card ideutifier for diversion
2-10 RMZ River mile at diversion
11-20 QDIV Flowrate of diversiun (cfs)

E. End point
28, "EY", RM2 - Format (Al, F9.0)

1 gy Card identifier for end point
2-10 RM2 River mile at end point

IIT. Initial smoother input

(Omit cards 29 and 30 if IOSMTH not equal to 2)
29. (XB(1,1), I = 1,N) - Format (8F10.0)

1-10 XB(1,1) Initial mean value for the lst state variable at downstream
boundary (backward LKF run) (mg/1l)

11-20 XB(2,1) Initial mean value for the 2nd state variable at downstream
boundary (backward LKF run) (mg/l)

etc.
30. (PB(I,I), I = 1, N) - Format (8F10.0)

PB(I,T) Diagonal elements of initial estimation error covariance matrix
at downstream boundary (backward LKF run) (mg/1)2

9T



Table A-2. Definition of state vector, measurement vector, input vector, and model coeffi:sient wactor.
Computer Text

Vector mneumonic Symbol Definition B its

State X(1,1) X1 Estimated concentration of LOD in the strr )
X2, X2 Estimated concentration of NH3~N in the st am mo/1
X(3,1) X, Estimated concentration of N03—N in the stream g/l
X(4,1) X, Estimated concentration of ALG-N in the stream mg/1l
X(5,1) X5 Estimated concentration of ORG-N in the stream mg/!
X(6,1) Xﬁ Estimated concentration of DO in the stream mg/1

Measurement Z{1,1) Z.t Measured concentration of BOD in the stream my/1
Z(2,1) Zy Measured concentration of NHB—N in the stream mg/l
Z(3,1) 23 Measured concentration of N03~N in the strear np /1
Z{4,1) Z& Measured concentration of (ALG-N + ORG-N; M /L

the stream

Z(5,1) Z5 Measured concentration of DO in the stream mg/ L

Input UL, U1 Concentration of BOD in lateral inflow mg/l
Uiz, U2 Concentration of NH3—N in lateral inflow mg/1
U3, U3 Concentration of N03~N in lateral inflow mg/1
U4,1) 36 Uptake of DO by stream bottom mg}ftzwday
u(s5,1) q Lateral inflow rate cfs/mile
U6, 1) Y Stream temperature deg. C
u(7,1) A Cross sectional area of stream ft2
U(8,1) h Stream depth averaged over cross section ft
U(9,1) Ug Concentration of DO in lateral inflow mg/1 k=

P




Table A-2. continued.

Computer Text
Vector mneumonic Symbol Definii on Units
Model c(l,1) Kd BOD de«ay rate base e, per
Coefficient day
c(2,1) K52 Rate of decomposition ot ORG-L 1. NH3—N hase e, per
day
Cc(3,1) K23 Nitrification rate (NH3-N to N03wN) base e, upr
i day
C(4,1) K45 Algal death rate (ALG-N to ORG-N. base e, per
day
c(5,1) - Blank
C(6,1) Kg3 Half-saturation coefficient fovw N03—N mg/1
c(7,l) 1 Maximum specific growih rate of algae base e, per day
Cc(8,1) B Ratio of half-saturat ion coefficient for dimensionless
NO.,-N to half-saturation coefficient for
3
NH_ -N
3
Cc(9,1) X6sat Saturation concentration of DO mg/1
c(10,1) 4.57 mg 02/mg N dimensionless
Cc(11,1) — Blank
c(12,1) Y Weighting coefficient to indicate the prefer- dimensionless

ence of algae for NH3—N over N03—N

£9T



4. Program listing of filter model.

Loewwx TO IMPLENENT CONTINUOUS~DISCRETE EXTENOEQ KALMAN FILTER

<
<
4

500
501
02

505
507
508
509
511
515
517

518
519
522
523
529
530
531

ON RIVER WATER QUALITY PRUBLEN
WITH A) FIRST ORDEH NONLINEAR PROCESS QOYNAMICS
B) LINEAR MEASUREMENT LYNAMICS

REAL ID/KK,KKT
OOUBLE PRECISION XHDG»ZHDE» CHEG,UHDG

COMMON/B1/G(20,20)» QC20¢2C) sHK{ 20,203 pRC200 2012 XX (205 1) P (200 2015

1020013 10€20020)0 FHT( 20,203 ,PHIDE20,20) 4P 1€ 20 ,20) »

FFC20,20) 9 FFT(2Co 2020 DUNL (205 20)0 PRMOOC 400, 1) »H (20,205

UHOGC20) » DUNINL (20s 7005 UC20,1)»

DUMZ(20,203 »OUM3( 20,200 ,KKC20,20) KKTL20, 20)»

ZL20, 1) oRHS (A QO L Do FPCAGOAL1)» HOG(12)» XUABEL12) o

YLABELUSY wACLOK%),YPCI00) ,YMOL100) »YUC1001,YLC100)

COMMDN/ B2/X (1001, FCE0,1)0 RECA 2400, COOLSTC6 12 PLE20Os L) #
XHOGL20)» THOG(20I2YIP(20s 100) A TTH{20, 1000 Y YUL20r 1005
YYLEZ2Co 1003 »YYNAXCZCI-YYMINC2O) »TYLABECZO,9 ) YNINIC 20D,
YHAXLCZO) »CC2U» 1Y »ICPTCA) SLHOG(Z0Y»CODECT 0 ARHENC 70 )5
JOUT, IPLT s JTaNN» TAHEsN- Lo DT REI A NNNA TP, TOU T RT 5o ST 1s
JT2KaRML RN VELsRPs 11,12, TR NPLTAOSTHsXRHANPLT 15 1@

COMNON/BI/GINC2C 2027 0 »RIN(Z (20,700, OUNINC2G» 70X+ KRCHCT OIS T X

CONMON/B&/PBI(20s 201,05 THST LB (0 XIST(12,65C3,VELSTL300 ),
XXSTCL2, 30000 PPBICAU0,1)» KR>RHSTC2051 3,
P10GL20)sPDGLZO)» IP S, NXNK,FHSEZ(2L5 13, RHSTS 2,
TOSHTH, YPLE20220) » Y INC2 00 703 FMSECZ0. 1), NBS TS,
PBIMOOC20020) pRRILA 5200 ,X5( 2001 3o PEMDOC 205200 »
PBIIC20+20) »RINY(20,20),P51¢20,200,P5¢20,2005 XS1C20 vl }x
XBC20+1)-XBEC20 41 )r FHST (3003, XPHOD( 20, 1) RTSTCTOI o1 TaXT

COMMON/BS/PST(12, 12,300)

COMMON/B6/P1STC12012, 200)

0 R

LS Y

OATA COOLST/'RY,* MY ,¢Pe, YEs 308,10 1/
DATA 471045 Y

FORMAT(1246)

FORMATCBI10)

FORMATCIH1, 12A6/

«1HU,ISHORDER OF SYSTEM/NUMBER OF STATES N=, 18/

+1H +3ISHNUNBER OF UBSERVAHBLE OLTPUTS L=ria/s
«1H +ISHPLOT INVERVAL 1Pl =5187
+1H »3SHPRINT INTERVAL 10UT =, 187
«1H +ISHINITIAL TINE (DAYS) T1=,¥F8.2/7

#LH »3SHINITIAL RIVER MILES RHI=»F8.2¢
«lH »ISHINIT1AL STREANFLDW {CF$) QS TM=,FB.2/7
elk S3ISHCOMPUTATIONAL YIME SYEP {DAYS) (T=»F3.4/3
FORMATC IHO» 20HCOEFF IC XENT VECICR C/ 3

FORMAT(IHCs 22HV-C OF PROCESS MITSE e/)
FORMATC1HO» 21HOBSERVATION MATFIX HHZ)

FORMATCLHC, 26HV=C GF OBSERVATION NOISE R/3
FORMATC1HO,32HIC FOR ERROR COVARIANCE MATR1IX P/)
FORMATC(BF10.0)

FORPATCIML, STHINITIAL CONCITICNS
<l #5001H=}}

FORMATU10A8)

FORMATC 110 27HIC FOR ESTIMATE 0F STATE XX/)
FORMATCIHG, SHYNIN I/

FORMATCIHO» SHYHAX 1/}

FORMAT(ALSF3.Cs 7F 10.0)

FORMATOIHO, IDHCONZE NOT RECOENISED)
FORKATOIH »ALF9.2-10F104371H » 10X, 10F10. 3

TIHE»FR.4s TH RMeFB.3/

532 FORMATCIHOs 1OHRIVER MILE, 10(2X,A8)/1H » 10X 10(2Xs A8 )}

933 FORMATCIHO»7O0HESTINATE OF STATE AFTER PUINT LOAD IS TASTANTAMEOUSL
- COMPLETELY HIXEDR/)

534 FORMATCIH1-ABHRIVER SYSTEP LAYOUT», MYQRAULICS AND LOACING DATAS
»IH #68{1H )

535 FORMATCOIHO, 7T6HERROR COVARJANCE MATRIX AFTER POTNT LGAC IS INSTANTRX
«HEOQUSLY COMPLETELY MIXED/)

536 FORKATCIHO 2XsBHU=VECTOR, 10210 AB)/ 1IN » 10Xs 10C2Xr 48 ))

837 FORMATCLIH »9X»1HU-10F 10.3/71b »10X,10F10.5)

538 FORMATC(IHO» 1OHMEAS VECTR, 10(2X%,A8)3/1H » 10X» 10(2Xs 48))

539 FDAWATCLIHOA 1OHPTLE & DIV 7Xe3rCFS,9(2X,A8)/71H » 10X, 10(2Xs A3))

540 FORMATCLIHO» 13HSINGULAR RIANV/)

560 FORMAT(Z2HOZ»3HIT=,T14s JHRM=s FL (o Sa 4HVEL=rF 10.502HA=5 F1G. 55 ZHK=»
«ISs6HCODE= ,A L)

561 FORMATCIHL, 214»F10.5, 1424 1)

562 FORMATOLH » 12,013, 12Z-8F9.5,2(2% 4F 5.5))

963 FORMAT(SI ks 6F10.3)

964 FORMATCLIH »GHMEASTS-10F10.5)

565 FORMATCIS»8F%.4)

570 FORMATC(IHI» 1198 K IX 1 X1 Pl XX P
« XB L4 XB1 iR} X51 P51 xS
« PS27)

571 FORMATC 141, 69HHMEAN SQUARE ERRCR (UBSERVED ~ FILTER) PSEC(NMSTS), ¥
«SECNNSTSZ2), Re Q73

C eev INPUT=INITIAL

READ 500»(HDG(I}r 1=1+12)

READ 500, (XLABEL(I),I=1,12)

READ SOLsoNsUs IPIs IOUT »KRs ICoNAN, T UK oNPLT# [0 2195 AXNK-ICSHTH, 1O0PLES

- KW»1PS»NMSTS2

READ 515»T1»RMI0T»QSTH

PRINT S02,CHOGCII»E=1512) wN sl sIPI»10UT» T1»RMI,ASTH,CT

READ SO1»CLUPTCIN»I=154)»10PYLs JOPTRA JOPTPL

NPLYI=NPLT+1

OO 15 I=1eNPLTIL

READ S00s (YYLABECI» J),J=1,%)
15 CONTINUE

READ S18s(XHOGCI),I=1+RELT1)

READ S18.(ZHDGUIY-I=1,L)

READ S1S-(YMINIC(II-I=S1,NPLTL)

PRINT 522

CALL MOUTCYPINLANPLTI-1,2+X00CaXHOG Y

READ SI15, (YMAXICI)-I=1.0PLT 1}

PRINY S523

CALL MOUTCYHAXIANPLTI-102»XKOCo XHOG)

READ 518+ (CHOG(IX»1=1,1C)

READ 518r{UHDGCII 1=1,1U)

PRINT 508

TALL HINCHHSL o NLOPTC 1323228000 XHOG )

IFCIDPT QaNELDXGOTGO 20

PRINT 507

CALL MINCOsr Mo Rs TOPTC(2)» 35 XHLG »XHOG)
20 IFCIOPTRLNELDDIGOTD 29

PRINT S5C

CALL MINCR,LoLa I0PTU3)e 35 ZHEG ZHDE)

g 23 l=1sL

00 22 J=1»0

RINVC s JE=RII,J}
22 CONTINUE
23 CONYINUE
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25

CALL ®INVSRIRINVWML,D)

FFCATSCLILLTL LaCE~&ZIPRINT SoC
READ 15,(XXC121)5T=1sN)

CALL MINCFo HaRa 10PTL4D» (o XHDG »XHDG)

£ sas INPUT=RIVER SYSTESR

&5

o

80

9%
4

PRINT 534

PRINT §32,0CA0GEI)s In101C)
PRINE S%6.(UHOGCIInlatell)
PRINT 5353 ,C XHUGCT Yo I='LeN)
PRINT S38,02003¢1) e Ixful}

K=0
. K120
K=K+)
READ 529, CODE (X)s RHIN(K)» (DUMINCI »K)» I=1,7)
IFCCODECK ). £Q.CODLSTC13I5CTC 70
TF(CODETK)LED.CODLSTC 2X)60T0 &0
IFCCOBE{X).EQ.CODLST( 33)GCTIO 50
IFCCODE(K).EQ.CODLSTC A))GLTO 100
IFCCOOE (N ). EQ.CODLSTC(HFIGOTD §5
PRINT 530
sTop
* REACH
IFCIC.GT PIREAD 515, CLUMINC 1o X e =8,1C)
PRINT S31#CODECK) »RNTMEKD » COUNENC T, K2 21 =1 ,00)
READ 515, COUMINICTaK) pE=1411)
PRINT 537,(BUNINL(1+K)r1= 10 10D
IFCIOPT Q. EL1)GOTO 77
PRINT 507
CALL MINCQy NeNo IDPTC2)» 35 XHEG »XHOB)
0O 79 I=1.M
DO 78 J=1oN
[JLISEFITSEL T £33 ]
CONTINUE
CONTINUE
K1xKleg
KRCHEK] )=X
60TO 65
* MEASUREMENT
TIF(LLGT o7 IREAD S15,(OUMIN(IoK), [x3sL)
PRINT S31,COUELK) o RMINCK) S ( DUFINC T, XY 12100 )
IFCIOPTR, ME.1)6QT0 67
PRINY $09
CALL NINCRoLsLs IOPTCY )3, ZHOG » ZHOS)
06 89 I=1,M
00 88 Ja1.N
RINCI-J+K)=RC153)
CONTINUE
COMTINUE
GOTO 65
» POLINT LDAD
IFCHPLT 6T 7IREAD S15oCOUPIN LRI »1=8 p{NXMK¢1))
PRINT 531,C00EC(K),REINCK) »EDONIRC Lo K} o Io1 - O NXNK +1 3}
1FCIBPTPLLEC. 02 GOTO 85 .
CALL NINCYPLs WXNK NXNKs 15 25 XH DG X HDGY
00 93 f=1.NXNK
YINCL#K )= YPLCTS 1)
CONTINUE
GOF0 65
* DIVERSTOM

(2]
»

100

C een

©
*

140

©
»

e
»

143
130

£ enn

[

165

170
r2

PRINT S31+CO00E(K) » RHIN(KDI LOUMING]L #K)
G070 65

END POINY

KY=K

XK1T=K1

PRINT 531 .C00ECK)»RNINCK)

INITIAL ISAYION

TOENTITY MATRIY

00 140 I=1.K

1041, 11 =1,

CONTINUE

TRANSPOSE HH

CALL HTRANS(HH)HHT Lo X)

NO=NNN~N

T=T1

I1=1

NM=Ha N

NH5TS=0

STORAGE ARRAYS

NIST(1) =1

RMSTL 1) =RMI

OSTMSTC 1) 2Q5TH ' i
VELSTOE )= Q5 THeB64 G0/ COUMINICT, 1) 35280, )
X45=XXC ks 13 2XX¢ 50 1)

KISTCHPLT 1o 1) °X 45

XASTONPLY 14 1) =X 45
PSTONPLTLIANPLTEo1 J=PCar &) 4P {5,504 22 PL4r5)
PISTUNPLY Lo NPLT1s 13 =P (4,4 34 PCEx5) 42 4P (A »5)
DO 150 I=1,N

XISTCIL 1) =XAC 10 1)

XXSICIs1)aXXCIe 1)

DO 185 Joie N

PSTUI 01 )2PCs J)

RIST(1. 3, 13=P (1, 0)

CONTINUE

CONTINUE

EXECUTE C~D EXF UVER R¥3 T0 RP2

ASSIGN INPUT-RI¥VER SYSTEM REALY FOR LXECUTICN

K=0

Ki=D

JTZ=1

RNZ=RHY

LLELH

RM1=RN

Tisy

K=Keg
IFCCODECK)I.EQ.CODLST( 1))G0TL 170
RMZ=RNINCK)
IFCCODECN ) EQ.CODLSTC2IIGLTU 130
IFCCOBECK ). EQ.CODLETC 3D XG0T 29¢
G070 215

REACH

80 172 I=1siC

CUl»1)=0UNI N £0 KD

COMTINUE

.00 173 T=is 1

U2 )= DUNINILTSK)
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173 CONTINUE 230

174

175

ws

180
185

190

195

205

215

217

220
225

.

TFCIQLEQ. 1DWRITECE, 7Y CODEAK Dr ST 20 Tr RN e USTHo UCS» 1) WEL
IF(R.ER1)GOTO 174
NEIST(K)=NTST(K-1}

Ki=Ki+1

IFEKLI.EQ.XK1T)6OT0 1485

KRH IS K VALDE FOR REACH CHARICTERISTICS ¢ .
KRH=KRC H{K1+1) 240

IF(K.NELIIGOTC 165

INITIALYSE DEPENDENY VARTABLES & PRINT INITIAL CONDITIONS
TIF DG« EICALL EQNDEP(XXSP,CHBT)

PRINT 5177 1»RNI

PRINT 519

CALL HOUYCXXo NNN» 1420 XHDG o XHOG)

PRINY S11 245
CALL MOUTCPNNN-NNN,3+XHOG» XHEG) 250

INITIALISE PLOTTING YARIABLES

TF(NDWGTe CICALL EQNDEPIXX P »C o013

X€1)=0.

XAS=XAChs 1D 4XXC50 1)

XECNPLT Lo 1) %X 45

PONPLTIANPLTI)=PC &e 43 4PLS 2504 20PC 45 5)

DO 178 I=ls NPLTL

YYMEI o1 )%XXCT0l)

YYPCIo1)=XXCIn 1Y

TYUCT # 1 )= XY (10l )4 SQARTLPCI LI D)

FYLAEwE 3= XX €T 1 )=5QRT (PCI, 1)

TR MO, 1300 YYRAXC I I IRAXLTI=YYR(T, 1)

TFCYYUCT, DIGTLYYHARK LRIV YN AXCId=YYUCL 1) e
TFCYYRCT 1)L TOYYHINC DD DY YN INCT )= YY MC Lo 1)

CFCYYLCTo 1) oL TLYY RINC DY YN INCD)=YYLCTn 1)

CONTINGE

G070 165

MEASUREMENT

00 18% I=lslL

ZC1o1D=DUNINC LY KD

CONTINUE

6010 215

POINT LOAD

00 195 [=2s (NXNK¢ 1)

T1=f=1

PLUIL 1 IZDUMINCI- KD

CONTINGE

QPL=DUM INCT,K) 35)
IFCIOPTPL.EQ.QIGOTD 215

00 20% I=te NXNK c
YPLCIP 1= YINCINK) 363
CONTINUE

NUMBER OF TINE STEPS

VEL=QST Mo 86 408.7C UC 75 1) #5280.)

*

T2=T1sC RN 1=~ II/VEL [T
NTSSTFIXCCTZ=T113/D0T)

1FINT S. GY.0YGOTO 220 %00
NTSTCK)=NTST(K~1)

1FCCO0ECK ). EQ.COCLSTC2IIGLTO 225
TF(CODE (RIS EQ.COOLSTC AP IGLTY 240

IFCCODERK )uEG.CODLSTCADIGLTO 400

IFCCODECK). EQ.CODLST(3))GOTD 160

JT1=3T2e1

GOTO0 230 hE
IT1=4T12

CALL SCDEKF

NTST(K)=3T2

IFCCOOECK )L EQ.CODLSTC 3D IGATO 240
TFCCOOEAKRD.EQ.CARLSTCSIINI YO 260

{F(X. EQ.KYIGOYD 500

GOTO 3165

COMPLETELY M1X POINT LOAD

GSTHI=QSTHeQPL

DO 250 I=1sNXNKK

XXCIs12=CQSTHOXXCO I+ 1D ¢PLL 15 13 =QPL)/ QS THY
PUIeI3=PCIr Do (QSTH/OSTHID @ 020 YPLUT A1 Do CUPLZOST HE J o ny
00 24% J= s NXNK

IFCIER.3I6N0T0 245

PLLaS)=PLLn JI*CASTH/QSTRI I #22

CORTINUE

CONTINUE

QSTH=QS TN]

QSTHSFLIYI=LSTH

FFCIQ.EQ. IDWRITECE» FICODECK I » JTZ5 T» RMSQST Mo QPL
X&5=XNC 45 13 4XX(Sy 1)

XAXCNPLYT 10 1)=X45

PUNFLEL>RPLTIISP 45 4 +P (50 5)430P{4s5)
IF(IPS. EQ.0)GOYD 270

PRINY 533

CALL MOUT(XXwNwls 2o XHEG»XHDED
IFCIIE.EQ.1D60T0 270

PRINT 5395

CALL MOUTCP+NoN» 3, XHOG» XHEG)

d¥=57e1

JPLY=JPLY #1

XEITI=RUI~RN

KhS=XXChs 1¥#XXLSs 1)

KNLHPLY 10 13X 45

PUNPLTIRPLTII=PL 4o 4) +P(545 )4 20F( 4 5)

D0 350 I=1,NPLTY

XXSTCIr IV D= XXCI-1 )}

PSTCIX+1T)=P{Lsl)

CYP(LadTI=XXE 10 1D

YYUCT o 2T =XXC1a 13 4SRRTIPLILT))

YYLALI Y ) =XXC 1o 1) ~SQRYCPUL-TY)

MALISYEAREI S{QTRY]
TFCYYUCT T3 GT Y YMAXCIDDYYRARC DY YULL LU T)
IFCYYLCEs JT) L LT WY THIRCEIIYYRIAC L= Y YLCL» U T3
CORTINGL

G010 1635

SUBTRACT DIVERTED FLODW

RETH=US THARUNING]L o)

IFCIQ.EQ. DIARITECHr /) CODECK 3 JTZ0 To AM Q5T Ny BUMI NC 14 X)
G0To 165

PLOT RESULTS

TFCIO0PLT.LEQ. 0)GOTO & €0
05 450 l=1.NPLT1

DO A10 J=te dT
YHESISYTHET D)
PLII=YYPCT. 0
YUCHI=YYUCTL D
LEDETYLCL. D

CONTINUE

YHAX=YMAXLICT)
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420

L = T §

425

o

430
450

T ae

460

470

£ »e

AB0

€ ee

490

491

492

93

YRIN= YMINIC L)
TFCTYMAXT D) LGT. YHAK )Y NAX=YY MAXC I)

LFCYYMINCEN A LT YHIND YMIN= YT RINC D

00 A20 Ja1, 9

YLABELCJ) sYYLABEC L, 3}

CONTINUE )

IFCIIR.EQL1)GOTO 425

PLOT PREGICTED VALUES ¢ STARD JRD DEVIATION -

L g n.xunuuatt.vunvnnumu,rueu.HDG»-X%:
PLOT PREDICTED YALUES = STANDZRD. DEVIATION = C

CALL PL36CC SToRnXoXC1) oXCIT) #XLABEL S YL oY MEN, YMAX S Y LABEL» HDGr ~195)
PLOT NEASURED YALUES ~ M

CALL PL36CC JTo ArX o XCT3oXCIT) wXLABELS YH Y NI N YMAX» Y LABEL, 406y =212)
PLOT UPDATED STATE ESTINATES =« €

CALL PL3ECC JTs Ao Xo XU 13 oXCIY) o XLABELS YP s YHI Ho YHAX »¥ LABELs HOG» 1573
CONTIMIE

.

-

"

* MWEAM SQUARE ERROR (OQBSERVED = FILTER)

IFCIJK.EG.1)GNID 480
NNS=NNSTS»HNH5152

00 470 I=1st -
FHSECTS 1) sFMSECTL 1) AONNSTS~ D)
FHSE2(L»1 ¥ FNSE2C 15 1) /KNS
CONTINE

PRINY S7L

CALL MOUT(FNSEsLys 102, 2H0622HDE)
CALL MOUTCFMSEZoLeRs22ZH0G, ZHCG)
BRINT S09

CALL MOUTCR-LoLs3s7HDGoZHDG Y
PRINY 507

CALL MOUTCQ/N»N,3oXHDGoXHOG?

* SHOOTH ESTIMATES

PRINT 57r¢

IFCIOSM THLEQ. 0)GOYD 49O
CALL SHOOTH

GOT0 459

* PRINT SUMMARY OF DUTPUY TC LINE PRINTER AND DISK IF ESTIMATES NOT
SKOCTHED

K [=K¥

KI1=KTY

DO A7 ITY¥=1,372

IT=JT2~ 11T+

COD=CODLSY(6)

IFONTST(KI).LT.ITIGOTO 492

COO=CONECRD)

LR 8 34

KI=K[~]

GOYO 491

Ix=4e [T =3

PRINT Se0 ITo RRSTCITI»VELSTCITIASTNSTLITIAKILHCOL
NRITECKN, 56 1D IX,ITeRNSTCLIY) X 1L,C0D

TFCCUD. RELCODLSTLZ)IGDTC 453

PRINT SEA-(DUMINCI>KILIol=1,L)

WRITE (KN, S65IXT 1 COUNINCT XTI s tx1a0)

DO 49% Ixi.N

PRINT SE2mKTleTXp LoXISTCI»IX)»SORTCPISTCLoloITI Yo XXSTCIITY,

495

A7
499

-
CONTINUE

SURTIPSTCI,1#17))

NRIYE(KH’S&I)KIloerlox!S?(Iol!)-SORI(FlSY(!yIr!I,‘

SERTCPSTC 10 2T D)

=N+l

PRINT SE2,KI51Xs ToPLSTCARSoITIAPSTCALGIT)
HRITE(KWNsSHIIKTI L, IX2ToPISTCAL S ITDoPST (405, 1IT)
CONTINUE

LOCK X%

stop
END

THYLL

T3,
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€ v« STATE ESTIMATE PROPAGATIGHh X1
C X1:XXx +INTEGRALCTT TO T) OF F
Caven EONTINGOYL=NISLALTE EXTOCNCET KALMAY FILTER IFCIJK.NELLIGNTY 145
TMOD=TI
DFPAL L)eKXpur Y 00 120 I=1,M
0TI PACCITITN KHYG » JHD T, CHCC,UHDG XPMCD (1»1)=XX(1,1)
. 120 CONTIHUE
COMMGNS 2L /G(200 20550 20.2C) sHE(R20520)0R (29,2005 XX(2Cr 1) 4P (20,20 )» 00 130 KSEL=1,4
. X1025:1),10(2C 202, FHTC 20,20 ,PHODC 20,20) 5P 1020,20), 1X=4x [T +KSEL=7
. FEE20020)F FT(2C-200oCUML(20,2C ), PPHODC 400G, 1) ,H(20,29 )0 CALL EQNICXPMDDU»CoF ohsVEL)
. UHIGC20) DUMINIC2Cr 1C)#'1C 2051 ), CALL RUNGECKSEL »N»OT,F,XPFOL, THCO»T I»XX»RK1)
. DUH2(20,20) »0LM 220 420) #KKC20420) »KKT (205 20)» 00 125 I=1.N
. 2023013 sRUSCLCO, 1), FPC40D,1),HDGL 12D, XL ABFLE12), X1STCI» IX¥=XPrODC L, 1)
.. YLABELC(9),AC1C4S),YPLI00)»YHT100),YHC10C)»YLL100) XXSTL Lo 1T)=XPHODC TS 1)
COMMON/B2/X(100),F(20,1),RK(4,400),CODLST(6),PL(2051)» 125 CONTINUE
- XHIG20)» ZHOG(2C) »YYP (20, 100)»YYK(20,100)»YYUC20,100)» 130 CONTINUE
. YYLCZCr 100 »YYMAXC2C)»YYMINC20) »YYLABEC20+9)s YHINIC(20), 00 14¢C I=1,N
. YMAY1(20),C(20,13,ICPTL4)»CHOG(20),COOEC7 0) sRHINCT70 }r X1CI,1)=XPHOO(I»1)
- JOUT» JPLY» T NN ToNCoNsLs OToRHISNNNo1PLATOUTSNT S, JT1s 140 CONTINUE
. JT2eKsRHLsRM2,VELSR¥sT1 s T2, IJKs NPLT»QSTHs KRHs NPLT 1 1Q D0 143 I=1,N
COMMON/B3/QINC2Cs 205700 »RINC2(s20+70)»0UMIN(20570)s KRCHC(70) 51X XXCIe 1) =X1C151)
COMMON/B4/PEIC2C, 200, CSTHST(3(0)» X1ST(12, 65 C)»VELST(300), 163 CONTINUE
- XXSTC12,300),PPELIC4C0,1)»KN,RH51C20,1), GoTa 300
. P10G(20), PDGC20)s IP S» NXMC,FHSE2(20-1 5 NMS TS 2,
. LOSMTHy YPLC20,20) »YIN(20,70), FMSEC20,1)sNFSTS, C &+« ERROR COVARIANCE PROPAGATION Fl
. PBIMIO(20,20),RK1C4 +2C)»XSC20,1),PBHIO(20,20) c P1=P+INTEGRALCTI TO T) CF (FFsP+P«FFT+Q)
. PBL1IC20,20),RINV(Z20,20),P51(20,20)»PS(20520)»X51(20,1)» 145 THOO=TI
. X8(02051),%XB1(20,1),FHST(300), XPHOD(20,1)s NTSTL(7D),1T» KT 00 160 I=1,h
COMMON/B5/PST (12, 12,300) XPMOD (I,1)=XX(I,1)
COMMON/BE/P1STC 12412, 200) 00 150 J=1,N
[J=(I-1)sN+J
503 FORMAT(1HO, 20HOBSERVATION VECTOR 2/) PP{IJ,1)=PCI, )
504 FORMAT(1HO, 12HTIME STEP NC»I5,9H TTMEsF8.6s7TH RMsFB.3/1F & PMOD(L,J)=P([sJ)
«4901H*)) 150 CONTINUE
516 FORMATC(1HO» 23HHH«P1wHHT+R IS SINGUL 8R/) 160 CONTINUE
520 FORMAT(1HO»33HUPDATED ERRCR CCVARIANCE MATRIX P/) 0C 210 KSEL=1,4
521 FORMATC1HO, 28HUPDATEO ESTIEATE OF STYATE XX/) IX=4# [T+KSEL=7
527 FORMATC1HO»36HPREDICTED ERROR COVARIANCE MATRIX P1/) CALL EQN2(XPMDO UsCoFFshs VEL)
528 FORMATC1HO, 30HPREDICTED ESTIMATE OF STATE X1/) C « FFep
CALL MMULTCFF,PMO0,DUMI,NsNsN)
C =+ TIME LOOP c « P«FFT
CALL MTRANSC(FF,FFT+N,N)
iP=0 CALL HMHULTCPHOD +FFTsDUMZ,KsNsN)
Jout=0 c * DUM3I=FF «P+P#FF T +Q
JPLT=0
IT=JT1=1
50  IT=IT+1 DUM3C(I,J)=0UMI(T, J) +DUK2CTo ) CIT o)
IF(NTS.NE.D)GATO 60 [J=C1-1)aN+ )
IFCIJK.EQ.0)GOTO 300 RHSCIJs 1) =DUM3CL. J)
GOTO 260 170 CONTINUE
60  T1=T 180 CONTINUE
T=T+0T CALL EQN1CXPHOD»U»C-F ohsVEL)

LYY INT

SR

QSTH=QSTM#U(S,1 )% VEL*DT

RM=RH=VEL#DT

TFCIQ.EQ. 1IWRITEC6, /) CODECK), IT,ToRH,QSTH,ULS,1 )0 VEL
RHSTCTT )=RM

QSTHSTCIT)I=QSTH

VELSTCET)=VEL

JOUT=J0UT +1

JPLT=JPLT +1

CALL RUNGECKSELN»DT,F»XPFOCs THODAT I-XX»RK1)
CALL RUNGECKSEL»NN»DT,RHS,PPHCD,THOO,TI »PP»RK)
00 200 I=1,N

X1STCI,IX)=XPNOOCI» 1)

XXSTCI, IT)=XPMOOCI, 1)

00 190 J=1,N

IJ=(I=1)¢Ns¢ J

PMODCI» J)=PPHOD(IJ» 1)

P1ST(T»J,IT)=PHOD(I,»J)

891



190
200
210

220
230

244
250

L1

iz X2

260

e

0

(s XXz

o
»

280
290

C wse

PSTLL«dr 1 T1=PHOD( 1, J)
CONTINUE

CONTINUE

CONTINUE

00 230 I=1.M
X1CI» 1) =XPHOOCE #13

00 220 J=1p N

P1{le J¥=PRODC 10 D)
CONTINUE

CONTINUE

SKIP UPDAYE IF NO OBS5ERVAYION AVAIL #8LE
00 250, I=1.N

XXLI212=X1C151)

00 260 Js1oW

PLIsJI=PL(I,0)

CONTINUE

CONTINUE

GOTO 300

KALMAN GAIN HATRIX KK
KK=PLeMHT #{HH*P L« HHT# R} wn =1
(FCIJK.EQ.1IGOTO 305

CALL WHULTOHHSPLs DUMTALaNSN)
CALL MHMULTCQUNLSHHT»OUN1sLohoL)
CALL MADSUB(DUNLs Rs DUKI»L oL #1)
CALL MINVSRCDUM1sLo0)
[FLABSEDY.LT. 1. CE~45IPRINT 51€
CALL MHULTCHHT,OUML,OLNI KoLy L)
CALL MHULTCPLOUM 1, XKoN-NoL)

STATE ESTIMATE UPOATE XX
XX=X1¢KKe(Z=H)» H=HHwX1

CALL MHULTCHH X1eHaLloBsl)

CALL MADSUB(Z»H,DUMIsLsla=1)
CALL MMULTOKKDUNI,OUFLsNsLs1)
CALL HADSUB(X1,OUMIsXXaNelsl)

ERROR COVARIANCE UPDATE P
P=CI0“KKeHHI®P 1o CIO=K KW HH ) T¢K Ko R KK Y
KK*ReKK T

CALL HTRANSCXXK, KX ToN,L)

CALL MMUL T(R,KX T, DUMLsLoLeN)
CALL NMULT(KK,DUK 1sBDUMLI,N,L N
(ID-KK*HH)T

CALL NMULTUKK»HHs DUMZsNel s N)
CALL MAOSUBCIC,DUMZ»OUNZINsNr~1)
CALL MYRANSCDUMZ, DUM3,h,ND

CALL MMULTCPLAOUMIDUNZ«NoN«N)
CALL MNMULTCOUMZ,DUMRISPohoheb)
CALL MADSUBEP.NUM1sP, NoN» 1)

DO 290 1=1,MN

XXSTULs IT)=XX 01,1

DG 260 J=1sk

PITUL2JolTI=PLIsd)

CANTINUT

CORTINUE

CALCULATE M{AN SQUARE ERRCF (LBSERVEQ = FILYCRY

FHSE=FHSE 4L I=HHeXX) ve 2

295

298
€ eas
300
C oene
309
307

310
315

318

32s

£ wan

3130

335
336

CALL MMULTCHH, XX, OUML /L oN21)

CALL KAOSUBCZ,DUMI,DUMIAL»1,-1)

00 295 I=1,L

FMSELLa 13 =F MSECT 1) 40 UNLCIp 1) #e2
CONTINUE

NM3TS=NMSTS ¢}
TFONMSTS. LT JNMSTS23GGTO 30

DO 298 I=1sL
FHSEZ(Le1)=FMSE2CT,1) ¢DUHI( Ty 1) we?
CONTINUE

CALCULATE OEPENDENT VARJABLES 2 THEIR NEAN SQUARE ERRORS
IFINDLGT.0)CALL EGNDEPCXX,P»C,0T)
PRINT RESULYS

[FCIPS.EQ.0)GOTEL 307
IF(NTS.NE.0)GCTD 310
IFCIJRLEQLDIGETID 336
IFCIPS.EQ.0)GOTD 330

GOTg 32%

IFCITLEQ, JT2IG0TD 315
TF{JOUT L 7. I0UTIG0TO 330

PRINT 504+1T,ToRH

JOUT=0

TFCIIKGEQL1IGCTO 318
IFCCODECK)JER.CODLSTU2)LARCLITLEQLITRIGETO 320
FRINT 527

CALL MDUT(PsNNN-NNN»3»XHOG, XH(G)
PRINT 528

CALL NOUTCXXo NNNs 1¢ 2s XHOG S XHOE)
GOT0 330

PRINT 527

CALL MOUT{P1,NeNr 35 XHOG#XHCG)
PRINT 528

CALL MOUT(X1rK>1s20 XHCGAXKDG)
FRINRT 503

CALL MUY (ZsLe1+2,20DG,IHCG)
PRINT 520

CALL MOUT (P, NNNoNNNs3 yXHOE, XHEG)
PRINT 521

CALL MOUTOXXs NNN» 10 24 XHDCoXFD E}

STORE RESULTS FOR PLOTTING

IFCIPLEQ. LIGOYO 336
IFINTS.EQ.0)IGEYD 335
IFCIYLEQ.JUT2IGOTD 335

IFCIPLY WLTLIPI)GOTD 00
PIENIE N

X{JTI=RMI=-RHM

JPLY=0

X65aXKCbr 134X K50 1)
XXCNPLT 14 1) =X45
PANPLYLSNPLT13=P04s ) #(XX (i rl JAXABY 4x2¢ PUS»SI ol XG5 21 3/ X Sy2en 2
G0 350 I=1,aPLTL
YYPCI»JTI=XX{1r 1)
TYULTAdT)=XXC L 1)4SARTLPC I 1))
YYLCIdT)=XXCTe DI ~SQRT(PCIA I
ALISTR AR IO SIG TR

691



337
339

140

39
400

L1149

>

TFCOODEIK A MELCIDLSTC21. R TT (KRELJTRIRUTE 540
TFCICED W4 0RTLEDLSIGETD 24¢
;F(I.EQ.NPLfllﬁﬂlC 137

i=]
IRAR RIS SR EI OB
YIMEL, 313220010 1)
G010 3139
YYMENPLTY0dT)=/0ha))
[FOYYHOL- dT ) fT oY YMAX CIDYEYMAXCTI) 5Y YMLT »JT)
FECYYMOL, ST LF Y YSTHOT D) YYPIM I =YYR{L 2T
FROYYJOLa ST 0T o Y YNAX LD DY Y PARCI =Y YULTWI T
TFCYYLOT s UT S LT FYRINCTI Y YNIACTD2Y YL (L ,UT)
CONTIHUYT
IFCNIS.E0.0IGLTD 480
VEL=0S5THeB6 400, F(U{7,1)9528G,)
PERFORM A FURTHER TIME S$TEP IF RM WILL EE CLOSER TO RM2 AFIIR
TIME ST€P THAN HCFORL
TFORHLL T RU2I6DTE 450
HMRM2 =RH~RBM P
IFERMRMZLGTYELaDT=RANENZIGOTID 58
LFCIT € Q. JT23450T0 480
d1z2=171
TFEIPLT WJEQ.CIIP =L
TFCCUBECR YA FQ.COBLST{2)IGETE £60
THUJPLT .08, 0I6UTT 480
GLTO 319
END UF TIKRE Loop

RETURN
END

Cowns

597
509
511
515
517

519
533

535

546
547
548
549
550
552
553
560

561
562
563
564
569
a71

SUBRJUTERE MOuT s

SHOOYMIAS V5 [THEM COPEIRNTRG FORWAHD ARL JACKAAYG £5T10
FOuwans = PIATE RS rALKMAMN FILTIR
HACKRAARL = 10 (IREARISOT SALMAN FILIFR

FOAL 15sE%, 5T
DEUnLt PATLISTION XHOL »ZEDC, CHEG,UNDG

COMMONZBLAGLZ0-7C) e 320 2¢3 M (205200 RI20s203, XXL200 1) ,P U200 203,
XIC7a el 3o [B(2Cr 20 o vBTC 204203 P EOOL20,20) ¢ 7 702200
FEL20.203+FFTI(2Ce 53 LUNMI(20,2G )2 PPROCIAD L, 1) »1l20-20),
UHEGIZ20 o DURINI(20- ¢33U0 70,1 30
DUMPC20,2 33 # TR IC20 0201 »ERLR0 0200 KKT (2715 20 30
IAS-A7TE S PR SRS R IS AT I B L U a s k4 PRI ARI NS i J
YLARI 15, A (T LEEI»YPCI00Y »YHMUTI00) »YUCIGE »YLLILD)

COMMRR/BZ/8CICO FUZ0,1) e RUELA 40O P CUNLST (R IPPLL20r ),

Xu3GE2N e ZHEG(20) aYYP {20, 100 » Y YH(Z0, 1003 »¥YU(205 10103 »
TYLEZNA 10D »YYMAKC20Y»YYRINC(2C) o YYLABEC 209, YMINIC(20 )
YHAXICZ20) aCE20, 1)« LLPTUAISLHOG( 20, COREC(T O »RUIKITO D,
JOUT»UP LT e JYaNN2ToNEeNs Lo CT0RMISNRNSIPL, 1 DUTANT 50 JT 10
JIZoK pRMISRPZVELSRFATLT 2, TIKs HPLT »QSY ¥, KRHWNPLTL# TQ

COMPON/RIZGINIZC, 2007 CYLRINCZ (20,7 0)»0UMINT200 700 KRINETOI P 1 X

CONMOR/BA/PBI(ZCr 200 GHTMETLI (A, XIST (12, €503, VELST (300
XX51C12-300),PPELC400,1)sKRRNSI(2001 0,
PI0GL20YsPOG(2C)IP S» AXNKSFMEEZ(20s 1) 2 NHS TS 2»

IOSHTH, YPLLU 2020 oY INC20, 70 Y- FMSEL20, 1)+ NNS TS,
POIMDD(Z0,20) »RX1 (4200 X5020 1 ¥POUDD(20220)»
PEII(20220) hRINVCZ0 203 P S1(20, 203 PS(20» 20322X51(20 013,
XBL20+3) 9 XB1(2Z0s 1 3e RMST (3003« XPPODUZ0, 1 3s ATST L7}, T T KY
COMMONZBS/7PSTUL2, 12,300
COMMON/ BEZPISTC 1212, 200}

e v E s Se e e

R

FORMATCIHC, 224V -C OF PRCCESS MGISE Q)
FORMATCIHE, 26HV=C OF OBSERVATION NGISE R/
FORMATCIHO, 33HIC FOR CRROR COWARIANCE HATRIX PB7)
FORMAT(BF 16.0)

FORHAT{IHO, 27HINITIAL CONCITIONG
~iH s50ULH»)

FORMATOIHO, 27HIC FOR ESTIMATC OF SYAIF XB/)

FORMATCIHO, 7QHEST IMATE CF STATE AFYER POINY LOAD IS TYHNSTANTANEQUSL
Y COMPLETELY MIXEQ/)

FORMATC1HCs, 76HERROR COVARIANCE MATRIX AFTER POINY LOAT S INSTANTA
SNEOUSLY COMPLEYELY MIXEL/)

FORMATCIHO» 23HSINGULAR PL AT *2£07+106/)

FURMATC1HOs 2LHSTHGULAR P AT Y280 41/}

FORMATO1HO» 26HSINGULAR PSE AT 280' ¢10/)

FORMATC 1HO» 23HSTNGULAR PS AT 'ZEC*+ 13/)

FORMAT 1HO» ZZHSINGULAR PS5 AT '360%7+27)

FORMATC 1HO, 23HSINGULAR FBU AT *1280%+37)

FORMATL 1HC, 25HSINGULAR PB1] AY *280%¢187)

FORMATCZHOZ s SHIT= 5] 4s IHRH = FI LS &HVEL= oF 10.5,2H0=y F10.55 ZHR= »
+I5#BHCRDE= »A1X

FORMATOIR2, 2140 F1 0.5, [4ehl)

FORMATIIH » 120135 12s4F 945020220 4F G531}

FORMATC 314, 6F 10432

FORMATUIH »6HMEASTS,10F10.5)

FORMAT(IS,0FP 43

FORBATCIH 1, TIHMEAN SQUARE EFRRCR (OUBSERVED ~ IMDOTHER) NS ECNMSIS),
o MSECNMSTSZ2)s Re Q7%

TIKE »F 8.4 71 RMsFB.3 7/

OL1



C »es

20

30
40

50

60
rTo

[

80

%0

100

175

ire

178
17y

150

.

»

IKITIALISATION

iCi=0

Py=ylz

IX=4e 71~}

KELTS=(0

00 20 I=1,1

FMSECIr 1320,
FHSEZ (I »12=0,

CONTINUE
IFCIQSMTHLER.2IGOTO S0
00 40 I=1.N

B 1XSXXSTCI, 1Y)
XBIC1,1)=XISTCL LI XY

DO 3G J=1.R
PRItLsdI=PSTLI, JstH)
PRLECI» J3=PISTCIs U [T
CONTINUE

CONTINUE

GOI10 80

READ S15,(X8(1s13,121,N)
CALL KIRCFBI,Nats 1504 XHEGS XEDC)
00 70 I=1.N
KBECIa1)=XBLLa1)

00 KO J=L.N

PBIICTL JI=PBICE-J)
CONTIHVE

CONTINUE

ASSIGN INPUI~RIVER SYSTEM REALY FOR EXECUTTON

K=KT

KRH=K

VEL=VELST(IT)

T=0¥+ (V=)

PRINY S17,T HMSTCIT)

PRINT 519

CALL MOUTCXB, NNH» 15 79 XHUG, X+D E)
PRINT 511

CALL ROUTCPAI-NHN,NNN»3»XHDG» ¥HDG)
GO1D 260

Icr=1

K=K

KP=gP=1

IFCCODE(KPY .NELCADLETLLIICOTO 100
REACH

KRpg=np

DO 175 1=1,1C
CUI,13=DUNINCTI, KRH)

CONTINUE

DB 176 ls1ety

UCI» ¥ =DUXINLLT R RM)

CONTINUE

GoIn 179

IF (. EQKRHIGATO %0

K=K~1
TFCCO0EARILEQLLOOLSTI2IIGLTC 180
IFCCODECRILEQ.CNOLSTO 23 36LT0 199
LCIn Z1s

MEASURE »E N1

00 139 I=ist

165

2]
-

180

195

Cowe

215

218

220

22%

240

245
250

[

260

270

242

-

ZL1a1V=0URIAI I, K)
CONTINGE

60T0 €13

POINT LOACD

D0 195 I=2.,WPLTH
Iiai-1
PEOIL,1 s QUMINIT, K3
CONTIRUE
YPL=DUKINCGL»K)

EXLCUTE BACKWARD C-0 LINEARISED KALMAN FILTER

NUFBER OF TIME STCPS
HYS=NTSTIK+ 13 =RIST(X)

ITY=NTS

TFONTS.LELOIGOYD 220

[11=0

ITI=TIT+2

CALL LDEKI™

IFCITTLNELNTSIGOIC 2680
IFCCODEARILEQ.COOLSTU 2 10 225
IFACODE(KILEQLCODLSTL 233 10 242
GUTD 260

CALL LDEXFU

<1l 260

COMPLETELY ®IX PODINY LOAL ' IN REVERSE®
ASTH=QS THSTCIT?

Q8T RI=0STP=QPL

DO 250 I=1.NXNK

XBLL.1} CRYMMXBU L 13 -PLCT, 1) uQPFL )/ QB THE
0t 245 » MXHK

PHTCI-):=P3I0T0 J) 2 (A3 TRICETHL Juel
CONTIYNGE

CONTINUE

IFCIPS.YQ.03GATE 250

PRINT 523§

CALL MOUTEX3oM. 1,20 XHOLoXHCO)

PRINY 531y

CALL MDUTIPRI NN, 3sXells¥r{G)

SHMUUTH - COMIINE FORWEND ANE FACKMARD AT IMATES

0 260 I=1sn
X1EL-13=%15TCL, 7K}
XXCLrE)=xXSTCI, 00

DO 270 J=leN
PIClrid=PISTCIaa, 1T
PLI-p:PSTCEadnll
PA{NCRT20)=PAIILT, 3}
PA*EI(1,J¥sF3ICLr I}

LONTINUE

PUGL Y sP I D)

RIS SR S PR

LONYINGE

LR TE-EE S C RS ]

PASEP (L5}

CALL PINVSR{PN<2Y
TFLABSUC) LT 1. CF ~4h3 P05 T 4 j
CALL MINVSR{PHMID NG}
TFCABSIR) LTt CE ~und P oIV Uhg
ICCITTLHELNTISINIT Y 387

LT



-

-

(%21

360

3ro
350

C wan

400

410

HUE S LTty
TRCuLei ver, 000t P14

[N L0 B T P )
PULING =R AN PNy

LALL MIAVIFIP LaNa DY
FROABSCUD LU BL L O a5 PR IN T hue
CALL PADSUIIPI»PUYUT.PS 1 hshe 1)
CALL MINVLRIPS] 4403
LFQASSEN) (LYo ta O =3 5IPRINT 54
PLINV=P NV PUL Ny

CALL ®IASP IV aT 4ITaNa 1)
TFEABS(BI LT 1 {E =4I PRINT 5
CALL PAGSURIP PRI RLOsFSalahal
LALL ®INVSRIPS.%s 0}
LFCABSCDILLT. L CE~45)PRINT 54§
XS=PS e {PIRV «XX+PBIINVaXEL )

CALL MMUL TUP, XX sDUMI»NaNs 1)

CALL ®MULTCPBIHOU s XBLAOUMZ Na by 1)
CALL MADSUBLOUM L, DUMZ,DUM 1, Ry 10 1)
CALL MMULTOPS,DUM{, XSoNaNA1)
XSE=PSI«(PLINVe X1 4PDINVeXR)

CALL HAULTUPLSX1sBUMLAN,N2T)

CALL MHULTCPORGO, XB,0UK20 Ay Ry 1)
CALL MADSUSCOUM1s DUMZ yDUM s NsIst)
CALL MMULTCPSE-DUMLaXSEaNeN#1)
GCTO 40C

H
3

2 UTHER

PSIN¥=P INVePBINV

CALL MAOSUH(P,PHMGOWPSehshrl)
CALL RINYSRIPS, N, D}
IFCABSTD) JLTA 1. CE~ASIYPRINT S5¢
XS=PSo4CPINV aXX+PRINVSXB)

CALL MHULTC(P»XXsDUHLsKaRs 1}
CALL WMULTCPBNOD, XBrDUHMZs Rahs 1}
CALL MADSUBCOUHI» DUNZ»0UM1+Ne1s1)
CALL HHULT(PS»DUMIsXSaNaNs1)
XS1=XSs PSE=PS

00 380 I=1sN

XS1CIs12=X501el)

B0 370 J=1sk

PS1CL e )=PS(1sJy

CONTINUE

CONTINUE

PRINT SUMPARY OF QUTPUT TC LIME PRINVER AND DISK

COD=CODLSTL(S)

IFCNTST(KY.EQ.1TICOD=CODE (K )

PRINT S60,ITsRUSTCIT) »VEL»GSTFSTCIT 3o Ks COC

WRITE(KW 561 IXsITHRESTCET YK L0

IFCCO0.NE.CODLSTC2))60T0 410

PRINT S64+0Z0Irldal=lsl)

MRITE(XW-S65) I (20t 13aTa0l)

0D 420 I=1sN

PRINT S62+KoIXele X111 2e SARTCPIOGL 1)), XXLI 120 SORT(POG(IN) A

. XEBLI13» SORTCPHICI AT 1) XBI o1 ), SORTEPBIIC I 1T 00 XS 1L Lot) s
. SARTEPSIC 21D oXSC e 1IHSORTIPSULLIN)

WRITEARKW, 5633 N, IX#I-X10Ts 13 o5CRT(PIOGUIDISXXC s 1)5SQRTCPOGL 1) 3y
- XBLL o1 ) o SORT(PRICININI LKA IN- I, XB UL Ir 1)

. SORTAPAITCIa 13, X51015 1S GRF(PSIL T IIIAXSLT 41 )y
B CORTOPSUTL L0

42  CONTIRUE
I=h+l
PRINT 9562 4K oIXols F149»P45.PEL (4553, PBIL (4B FSLAS ) PG 0k -4
ARTTE(K W S6 3N Ka IXr D 2P 145+ PAS, FEIL4s 53 »PRITLErB)aP 8L &n B s

473

IFCICTLERL0IG0TL 90

IFCITTLLYWNYSIGCIO 218

TF(RBTLL0T0 175

MEAd SQUARE EHRCR (OBSERVED = SBUOTHIRY

NMG=NMGTS~N¥5TS2~1

Bl a7qg T=irL

FREAIA 1) =F #S0CL, 1Y ZORMETE- 1)
FRSEZLI A1) ENSL2( 14 1) /NPD
CONTINUE

PRINT 571

CALL HOUT(FPSES» Ly 102, 2HDG«7HDCY
LALL MDUTIFPSEZsL el «2,ZHEC, ZHLG)
PRINT 509

CALL MOUTCRALAL»3I»ZHDGH ZHOGD)
PRINT 507

CALL MOUTCOsNSNI»XHOGS XHLG Y

RETURN
END

&3
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SUBRDUT INE LDEXFP

Cewas CONTINUDUS~OISCREYE BACKNARD LINCARISLO KALMAN FILTER - PREDICTION

s X Ra Nyl

S04

827
528

.

120
160

162

163
164

| S

»

REAL ID,KK,KKT )
DOUBLE PRECISION XHOG »ZHOE» CHEGHUHOG

COMNON/ B1/G(20»2005 Q020,203 pHE(202203 2R €200 2009 XX (205 1)+ PL20s 20)5
X102021)r 10205202, #HE(20220) 4PMOB{20,2 03P 1€ 20,20},
FFC20,20)»FFTC200 20 )s DUNLE2D) 203, PPHOOC 400s 1)+ HI2Cr 20)»
UHDGC 203 » DUMINL €205 J0)» UL 201 3s
OUM2E20,202 sOUN3IL20 s20) »KKC20,20) sXKT (205 20)»

’ 2C20#1) pRHSCAD0, 135 PPLLDOS1)s HOGL12)» XL IBEL(12) 5
YLABEL(9)2AC 10453, YPL1003 »YMCL100) »YUCI0M) AYLL100)

CONNON/BZ/X(100 20 FC20,1) RK(4 24000 COOLST(6I#PLC20, 1) s
XHDGL20) » ZHOGC2C) » Y YPL20+ 3003 »Y YH(20,100) »¥Y YU (20,100),
YYLC2C, 100 o VYMAX 2L, YYHINCZ20I Y YLABEC 20,90 YHINIC20),
YHAXICZ20) rC(202 1)1 CPYC&) 4CHOGCR0)»CODELT Q) »RNINCTO )s
JOUTs JPLToIToNNr I oNTo Nl OV RMI o NNN# LPY 2 TOUTS NTS» JT s
JTZ.KoRBLoRIZ>VEL SRV, TLoT2, JIK NPLT» QST Hs KRHA NP LT 1y 1Q

CONHON/BI/ZQINL2Gr 2007 01 »RINC2 (2207 0) +DUMINCR20, 703, KRCH(Z 0D I X

COMMON/BA/PBL(20s 200 QSTHST(I (D), XI5T(12,650),VELSTC300),
XXSTC1Z+300),PPBIC4 (0511 KNARHS1{20+1)5
PIDGEZ0)»POG(20 s LR SsNXMK A FHSEZC20,1 Y s NNS TS 2,

TOSHTH» YPLC 20,200 »Y INC202TO VS FMSEC201) kNHS TS,
PBIMOOC20,20) sRKE (4 +203sXS5(20,1), PBROOC20,20),
PBLICZ0,20) sRINVC 20,203 ,PS1C20,20),PS(20020)2K51(201)0
XBLZ0r1 > XBLC20s1)s RHSTCI00 Y, XPHDOC20 1 2o NTST(70),1T,KT
COMMDN/B5/PST(12, §25300)
CORMOR/B6/PISTC1201 2¢ 200) ¢

R PR PR

22 ke e

FORMATULHOS LZHYINE STEP NC» 15 45K
WhICTH) )

FORMAT( LHC» 37HPREDICTED ERROR COVARIANCE MATRIX PB17)
FORHATCLHO» MHPREQICTED ESTIMATE OF SYATE X817)

TIMESFBubs 7TH AR FE.37LF &

STATE ESTINATE PROPAGATION $1
ABL=X B¢ INTEGRALCTE T I) {F (~F-FFx(XE=X))
ERROR COYARIANCE PROPAGATIDN PBII
PBIT=PBI+INTEGRAL(TY TO T} CF (~FF+PB-PBeFFT+Q)
IHo0=Y1

1T=11-1

DG 160 I=1sN

KPMODCI»1)5XXCT 2}

00 15¢ J=1.4

Ty2(=13eNey

PPBICII 13=PR LI, o)

PRINIDUL, J3=PBILLs )

CORTINUYE

CONTINUE

00 210 K3Ei=114

IX=4e [TRSELS2Z

IFCKSEL GT. 130010 162
LFCCODECK #1 1L EQLCNOLST(ZIIGLT L 164
00 ol I=1.8

XICEn 12 =X18TU LM (XY

CONTINUE

GUT0 1g A

25 165 T=1.N

XICTw 1o XXSTL (1T 1)

CORTENUE

168

i70

175
160

190
200
210

224
230

400

-

.

"

VEL=VELSTC(IT)

CALL EGNICXIsUsLrFoNa YEL)

CALL EQN2(XI»UnCoFFONSVEL )
FEx(XB-X)

CALL MAOSUB(XPNOD-X1,DUMLI,NsL,-1)
CALL MMULT(FFSDUM I»DUPLs kN 1)
RHS 1= (=F=FF o XB~X))

00 370 I=1»N

RHSLCI» 1) ==F(T» DI =0UMICLs 1)
LCONTINUE

FFaPR

CALL NMULTCFFPBIROD»DUML NN oK)
PBEFFT

CALL MIRAKNSUFFAFF T, Ne N)

CALL MMULT(PBIMOD»FFToQUMES heNaN)
RHS={~FFe«PB-PBaFFI+Q)

00 180 I=1.N

D0 175 J=1»N

DUMBCIx J)=~DUMICT 2 )= 0UN2CI,0)4+Q0 s J)
TdsCi=3)sNey

RHSCLde 13=0UM3CI, J)

CONTIRUE

CONTINUE

CALL RUNGECKSEL»N-DT» RHSI,XPMCO»TMOC,TI #XXsRK1)
CALL RUNGECKSEL NN, OT »RHS)PPHLO,THOCATI,PPBI, KD
00 200 [=1,H8

00 190 J=1,¥

Td=Cinl)aNsJ

PBINGOCI» J)=PPHODCIJ 1)

CONTINUE

CONTINUE

CONTFINUE

00 230 I=1sN

XBLCI,13=XPHODCL. 1)
EBLL,1)=XBICE 1)

00 220 J=1.N

PBLECL, J2=PBIMDDCE, )
PAICI,3)=P311(I,0)

CONTINUE

CONTEIRUE

IX=1K~1

PRINT RESULTS

IFCIPS.E£Q.03G0TD 400

T=07+¢17T~1)

PRINT 504, 17sTHRHGTLITY

PRINT 527

CALL KDUTC(PBLT,NNNsNNR, 5 5HEG oXEDG
PRINT 528

CALL BOUT{XBI-HANKL»2,XHLCs XHLG)

RETURN
END

1Al



SUBROUTINE LOEKFU

Coeons CONTINUOUS=DISLRETE BACKMARE LINEARISED KALMAN FILVER ~ UPDATE

oo

on

o

oo

503
520
S£1
552

-

.

»

»

.

REAL IDWKX,¥KT
OOUALE PRECISION XKDG»ZHDGs CHLGLUHDG

COMMON/BL/GC20,20) 500205200 o HE (205205280200 20) 2 XX (205 1} 45 (03220,
X3C20213» I0C20520)5 FHTCZ0 203 ,FRO0C20,20) P11 20,203,
FECP20220)2FFIL2C 2000 DUN1C200 203, PRRDCC 400, 1) oHIZ0, 70 )
UHBGC20) - DUFINIL2Ca FCI2UC 20413,

QUN2C20,20) »OUMICZ0,2C)»KK{Z200202 5KKT (204 20 )
2026413 pRHSCA GO 1X0PPL4O0 1) MDGLIZ Y, XLABEL(12)
YLABELU9) sAC104 %) YFUICOY 4 YHO 100D »YUCL0O0I »YLL10D)

COMMUN/ B2/XT1003e FC 205100 RKCA 4003 COBLST (61, PLLZCr 104
XHDGL 20 » ZHDG(2C) »Y YPL20» 1003 5YYR{20100) ,YYUL20,100)»
YYLC20s 10032 YYHAX(2 ()4 YYMINC20)»YYLABEC2059)+ YRINI( 20
YHAXI(20)+C(205 1)2ICPTIA) »CHDGUZ202+CODECT O) sREINCTO 2s
JOUTS JPLT»JTsNN» TaNCsNaLo DTS RMINNN1PL, L DUT, NI Ss JT 14
FIZ oK s RMYSRMZ,VELARFSTLaT 25 LUK NPLY S GSTHs KRHS APLT 1, 10

COMMON/BI/QINC2Cs 2047 02 RINCRL,20270) s DUMTNC2G, 70> KRIH(TOIAT X

COMMON/B&/PBIL2G, 200, QS TNSTLR (03 X1STC12,65C)2¥ELSTL300),
XXSTC12,300),rPPBICA{O,13,KNIRHS1€2051)s
PLOG(20)»POG(20)s [PEANXNK,FHSER(20,1) #NF5T52,

TOSHTHs YPLCZ0,20) oY IKCZ0, 70, FHSECZDa 13 oNPETS
PRIKGNU20+20) »RK1{4 20),XSC20+1 ) PENACI20,20)»
PRLIC2G,20) »RINVE2G 220 +P51420,203,P5(20,20),%51402041)s
XBC20+11»s XBI(2021 3o FHSTCICO ) XPROCI 20,1 Ja NTSTCTO0) 5 I T2 KT
COMMUN/BS/PST(12» 1243C03
COMMOMZB6/PIST(125125 300}

R PO

PRI IR ERY

FORMATU EHO- Z0HOBRSERVATION VECTOR 2/)
FORMAT{ tHO» 34HUPOATED ERRCR CCVARIANCE MATRIX PEH/Z}
FORMATC1HO, ZBHUPDATED ESTIMATE OF STATE X8/)
FORHATCLIHO» ZIHSENGULAR PBI AT 'O ¢6/)

RALHAN OAIN MATRIX

KK=PBIo A Tw (HHOPE 1eHHTOR) sa =}
CALL MMULTCRH,PBLT,DUNISL ¢KsNY
CALL MMUL T(DUML-HHT, OUMLoLrNsL)
CALL MADSUB{DUMI»R»OUMLsL #L-1)
CALL MINYSH(DUM1,L»8)
IFCABS(DY.LTL 1 CE~453IPRINT 55%
CALL MMULTCHHT,DUMLLDUMI KoLsL)
CALL MMULTCPOLII#DUNIsKKSNaNSL)

STATE ESTIMATE UPDATE X€
XB=XB1+ KK« 2~HH+XB1)

CALL MHULTCHH,XBI HoL »Nsl)
CALL NADSUBEZ,4,0UNLsLs1s%1)
CALL MRULT(KK.DUM 1,DUMIoNsLs1D
CALL MADSUB(XBL.DUMI»XBsNslsl)

CRROR COVARIANCE UPDATE PE
PeClD~KEehH)ePILT #C [O~KK=FHIT ¢KK&RaKKT
KK*ReRKT

CALL PIRANS(KK»KKTuNsL)

CALL HMULTCR,KXKToQUMIoLoL#R}

CALL MMUL TLKKQUMI-DUMISN LK)
CIC-KKaHH)T

CALL MMULTUKK HHe DUMZaNsL oN)

C owew

180

295

98

300

CALL PACSUBUINWNUMZ,0U¥2,hnbs "

CALL HIPARZCOUMD, CUMS ohoo k)

CALL FHULY(PIIT,0U4T DURS N N 00
CALL M%IL YCBIMZ aDUMSS PBI, Mubha b

CALL BAGLuudf Ul 20U e PBIsRw Dy 12

PRINT RLSULTS

IFCIRSOEO.GISTI0 109

FRINY 503

CALL MAUTC(Z L »1+2+24D0G4ZRHEG)
PRINY 520

CALL HOUTCPBINNNANKNN 32 XEDGs XHOG)
PRINT 521

CALL HBUTEXBe BNN» 15 2, XHDG o XHDG)

CALCULATE HEAN SQUARE ERRCR ((USERVED ~ SHOUTHER)

FUSE=FMSE+{ Z~HHeXBYes 2

CALL MMYLTCHH,X3, DUSL LN, 1)
CALL MADSUB(Z,OUR1-DUMLI L1 s~1)
00 295 I=1sL

FHSEC T, 1)F MSECTs 1I4DUMIC TS 1) ex2
CONTINUE

NMSTS=NKSTS #1
1FCNMSTS. GT (NHSTS2360 10 3CO

00 298 1=1,L

FMSER(I w1 )=FNSE2( T 13 ¢0UMIC T 1) 0 g
CONTINUE

RETURN
(.01

711



Cawen

20

L wnw

Comee EQUATIONS FDR DEPENOENT VARIAPLES CALCULATED FROM STATE VARIABLES

-

-

SUBHLUTISE oM (K eUsl o7 ohrWEL )

EQUATIONS F 1P FLEPINTS OF F VECTOR

DISFNGITN Y026, 1000200 13 0F (205 13 »U (2001 )

D6 20 z1aN

Fels1=0,

CONTINIE

NITRIGLN CYCLING AND BOE-CO Ih JORDAN RIVERs UTAH» USH

A=U{7,1)

HEUEB,1)

Q=UlS21)8R64006.75240.

QGA=G/A

T=UCeas1)

CO=Cl1s1) el . 0RwaCT=20.)

C52=012+10%1.08ss(T=20.)

C23=C(321 301 . 08%0(T1-20.)

Ca5=Clhaldel 082e(T=20.}

C1=C013213%1.084a(7=20.)

CE=Cl14,1301.0850(T=20.)

C220C15,1)In1.08e2(T~20.)

Ch=Cl16v1)e1.08ea{T~20.)

CS5=00171091,08e2(T~20.)

Co6=Cl18s1221.0820(F=20.)

VELFS=YEL*5280./86400.

CA=20u L 4oV ELFSew L 607 7He v 168541404 72a( [=204)

AA=CUI2 o1 )eXC2r 1) 4X(3,1)

BB=C{6s 114CIB»1)» X2, 1) +X(3+1)

CC=ClBs LIMX(21 38 X035 1)

CCOAM=CC/ AN

TH=CO1P 1 )eX(2,1)7 A

Fllatde=COXC1r1)=ClaXC1r 1) 4CL01s 1) "X (101 )) #QDA

FARs1I=CS5 24 X050 1) =C23 X (2, 1)=C2aX (251 )= TH&C (7 o1 INCCDAARXCLrl) +
(U(2r1)=X(2»1))Q0A

FelolymaCIex(3e1)4C230X (22100 (3~ THISNCCTH1) sCCOARNKCL A1 )0
(UC3»E¥~X(3s1))QCA

Flarlds=ChsXChs 13 4CCT o 1) COOARRX Ly 1D=CAS#X (h ol I=X( 45" 11 2Q0A

FSs13=CataX(hrt)=C52aX(5,1)=L55X (5,1 )=X(5, 1) %004

FLeol)=CAslCi B DI=XC6,1 ) =COrRCI» 1I=C{L8r1) 2L 236X (2010
COEAXIG6 1 I~UCA, 132028317 ¢H )= (U (D1 )=X(6p 1))+ Q0A

FECZe19=04

RETURN

£EMD

-
SUBROUTINE EQNOEP(XX.P,C.LT)

RETURN
END

Casnn

40

C wwa

SUBRDUT INE LON2IXsUsCsFFrhs VELD

ECUAYIONS FOR ELEMENTS OF FF FATRIX

DIMENSION X(20,1),0(20.1)»FFU20-20),01020,1)

00 S0 L=1.N

DG 40 J=1.N

FFCL, J)=0.

CONTINUE

CONTINUE N

NEITROGEN CYCLING AND BOD=CO Ih JORDAN RIVER, UTAH, USA

A=y(7»1)

LESSCTAN

Q=U(S,1)086400,752840.

QLA=Q74

T=Ui{bs1)

CO=CC1, 13%1.0822(T~20.)

CH2=C{2+1)%1.0B**(¥~20.

C23=C{3+13%1.08%e{T~20.)

CaS5=Clanal)n1,0822(T-20.)

C1=C{13513%1,08»2(T=20.)

£2=C{1hr 1301, 082¢(T~20.)

C3=CC15,1)e1.082+(T-20.)

C4=Cl1b #2134 1.08+0{T-20.)

CH=C{17 ¢1d¥ 1, 0B+ (T=20.)

CoH=C{IB8s1I%1.08sa{T=20.)

YELFS=VEL#5280./86400.

CH=20 L T4eVELFS*e 607 /Han1,685¢1,047#x(1=204)

AR=CC12-1)0X(221) 4X(351)

BB=CCE, 1} 4C (82120 X(25 1) ¢X (351

CC=C(8s 1) 2X(2,12eX(351)

CCOAR=CC/ AN

BBCC=BB+CC

BB2=80~P8

AFZBB2=AASAABB2

TE=CCi22304%X(2, 1) 744

FFQ1, 1) =~L0-C1-00A

FP(2,2)==C23=C2-QO0A~(CLT, 1220 (12, 1o)X (4 »1 JFAARBB2 )
CCC6- 1340 (8513222, 122804 %(3,1)+B8CCY

FRQ2r 31 2=CCUT,130CULI2,130 X2, 1D oXCh» 1)/ AR2BB2 I

(CCe»1)+A42¢0BCC)
FEC2ra3=THOCUT, 1) 20 L0AR
FF(2x83=052
FFU3p23=(C23-CC70 132X Uhs $ 37 AATBBY 3
CECE2 1 #C {8,130 XTU35 1) 24~ CU 12,13+ XE3L 1) #BBLC)

FFE3233=~C3-0DA~{C{75 12X (41 )7AR2882)

CC{Be 12 X35 1)+ AA-CAC12- 130X {25 13X BBCC)

CFFL3e4)s{1le~THI #C{7 4120 CCCAR

FECap22=Cl6 1350075 1)+C(8, 120304, 1)/BB2
FFOe DI =FF4s 23/C(851)

FFOL 4 a=CaB=00A=C4+C (7,1 )0 CCLAR
FF(5,4)=Ca5

FFL5,8)=~C52~C5-Q0A

FF{6s 1) ==C0

FF(6,2)=~C(10s1¥+C23

FFC626)=~CA~CH~QOA

RETURN

END

SLT



Cosny

9601

4«0
50

60
80

Caene

%000
9002
9003

20
25
30

SUSROUTINE WINCAR oLLs Ko ICTAG »10U Ty AHDG »CHDG)

TO RCAD MATRIX ASCLLsHM)

TF IOIAG=1 ONLY OIAGOML ELEMEATS ARE REAC
IF 16UY GUL 1 PRINT SATRIX

DOUBLL PRECISIDH RHDG,CHDC
DIMENSINM AAL2G,20)sRHDGC 2030 CHOGLZ0)
FORMATCBF 10.0}

IFCIDIAG=1310.%¢, 10

D0 20 T=1stLL

READ S001sCAALT 1 ), d=1sMK)
CONTINUE

6O0T0D 60

00 SO I=1-LL

00 40 J=1sHM

AACE,J2=0.

CONFINUE

CONTINUE

READ 9001rCAACT a1}, I=1sLL)
IFCIOUT=1)R0s70570

CALL MOUTCAA,LL MM, EOUT#RBGGH CHOG)
RETURN

END

BUBROUTINE MOUTCAA,LL-¥Fy TCUT SRHD G, CHOG)
TO PRINT MATRIX AACLL#HW)

IF I0UT=2 PHINT RON HEABIRGS

1F [DUT=3 PRINT RON & COLUMK HEADINGS
GOUBLE PRECISTON RHOGACHOG

OIMENSIOR AA{20,203,RHDG(20)»CHOGCZO)
FORMATLI# »12FL1C.5/)

FORMATCIH »10%, {1(2Xs 283D

FORMAT(LIH »AB»2Xs 11F1 0.5/ 1K1 OXA11F 10,57)
IFCIDUT .GT. 126010 29

00 10 I=1.LL

PRINT 9000, CAACTAJY s =1aNM)

CONTINVE

RETURN

IFCI0UT LEQ. 2)GOTD 25

PRINT 9002, (CHOGC I ,pd=1sN¥)

00 30 Ixi.ti

PRINT 9O003+RHOGCTIY» (ANCErd) edslnMNY
CONTINUE

RETURN

ENG

Coanns

€ owar

10
20
30
C wae

S0

69
70

IR TIYY

10

20

40

50

SUURACUTINE MADSUUC AR, EB.L0» LL #M¥ I NA )

T4 ABD 9P SUSTRRACT SATFICES JC(LUCMMEI=ARCLL#94PI N A B LL sH )

DINERSTON ANIG,203,9E020.20) 4LCL 20,200
TFENAS)S0450,10

AOOLT ION

DO 30 f=lell

00 20 Jxl.M¥

CCULe ) =AAC T, D #BBCL, N)
CIONTINWL

CONTIAUE

RETURN

SUBTRACTION

DO 70 I=ioLL

0D 60 J=1oH¥

CCUI» 3y =AACT,UF=BBL L, )
CONTINUE

CONTINUL

RETURN

END

SUBROUT INE MMULTUAABBsCCoLLe PHANNY

TO FORM MATRIY PRODICT COCLLeANI=AACLL«MH I»BEINNWNK)
DIMENSION AA(20520)»BB(20,2C) +CCC20,203»AL020420)4B2020220)4

. €1620,2¢C)
GO 30 J=isMM

00 20 I={-LL
AL Y =ARCTed)
CONTINUE

00 30 K=]1+NN
B1UJrK) =8B I KD
CONTINUE

00 40 1=1.LL

00 40 J=1,NK
CiClr ) =0,

00 40 K=1wn
CiCIa3)=ClEIrddea 2CI,KIaB1{Ks J)
CONYINUE

00 50 I=lsLL

00 S¢ J=1s8N
CCCTadd=C il In )
CONTINUE

RETURN

END

9.1



Lwows

10
20

Cawnn

10

15

20

30

35

4G

&5

SUBROUTINE MTRAKSCAA, AT,LL, MN)

TO TRANSPDSE MATRIX AACLL*MP) AND THUS OBTAIN ATCHMeLL)
DIMENSION AALZ0,2C)sAT€20,20)

08 20 tslaLL

O L J=1eMK

ATCUs LX=RAC 10 )

CONTIRUE

CONTIKRUE

RE TUHA

[}

SUBRDUT INE RUNGECKSEL,RLYS-0T,FYT,YNOD, THOD,T0s YO,RKD
FOURTH OROER RUNGE-KUTTA AL(OFITIHM FOR INTEGRATION OF VECTOR FYT
DIMENSIDN FYTCA001), YNOODLACO 5135 YO L4001 ), AKCA 2400
GOYOU$0,2€s 30440} +NSEL

DTA=DT/ 3.

THOD=TO+0TA

DG 15 I=1,NOYS

RECLe 1) =FYTCL1)

YHUDUI» 1)=Y0ULy 13 4DTA*RKIL, 1)

CONYINUE .

RETURN

DTA=DT/ 3.

TROD=TO42.aDTA

DO 25 YT=1.R0YS

RKC2,1)=FYTE€N+1)

YHODCI» 12=YDCL, 1 2=OTASRKC ks 13 D ToRK(2, 1)

CONTI NUE

RETURN ‘

TNDO=Y0+07

00 35 I=1.H0YS

REC3 1DFYTLIA1)

YHODC L, F3=Y00T, 134D T (RKC1, 1 =RKC 25 1ISRKI 3, D)
CONTINUE

RETURN

TRDD=Y0+0 T

BTA=0T/8.

DC 45 1=1.NOYS

RKCH» II=FYTELL1)

YHODCL 135Y0U I L0 TAMCRKL Lol o3 sRKCZ5 1343 #RKC 3,1 J0RNCA,I D)
CONTLNUE

RETURN

END

GO AN ODNONNOO00OMO000NNONM NN

LR e R W]

10
15

20

L2 ¥2¥z]

25

SUBROUTINE MInY

PURPOSE
INVERT A SATRIX

USAGE
CALL MINVSPEAWN:B,L ¥}

DESCRIPTIDN OF PARMETERS
A = IKPUT MATRIXe DESTROYED IK COMPUTATION #NC REPLACES BY
RESULTANT INVERSE.
QROER OF YATRIX &
RESULTANT DETERMINART
HORK YECIOR OF LFRGTH N
WORK VECTIR OF LEMNGTH W

E RT3
toF o

REMARKS
HATRIX A KUST B8E & GENEFRAL MATRIX

SUBROUTINES AND FUNCTION SLBPROGRAMS REQUIRED
NOME

KETHOO
THE STANDARS GAUSS~JORDAN METHOD IS USEQ. THE ODETERMINAMY
15 ALSO CALCULATYED, & DETERRINAT OF ZERD INOICATES THAT
THE MATRIX 15 SIRGULAR.

R LR LR R R L R TR R R N LR LR RIS

SUBROUY INE HIKVCA-NsDLoM)
DINENSION AC13.LC13,H(1)

RN N AR A AR RN S RN GO AN IR AN A U T PR AR B G AN KRR ERRE S s

SCARCH FOR LARGEST ELENENT

0=1.0

HK=~N

00 80 KX=I,N
HE=NK N
L{KI=K
MIKI=K
KK=HK +K
BIGA=ACKKY
00 20 J=K,R
1Z=N*(J~13
00 20 I=K.,N
LJ=1Z+1

LFC ABS(BIGAI = ABSEACII)Y) 15,20, 20
BIGA=ALIN)
LEgy=1
KtKy=J
CONTINUE

INTERCHANGE ROWS

J=LiK)

IF CJ=K} 35,35,25
KI=K=§

00 30 I=i,N
KI=KI+N

INA



2 ¥2XaXa!

coo

oo

o

oo

«0

&5
46

48

50

55

60
62

65

ro
75

80

HOLO- =A(KT) [ FINAL ROW AND COLUMN INTERCHANGE
JI=KI=Kes ¢
ACKII=ACID) K=N
ACJT) =HODLG 100 K=(K=-1)
IF(K) 150,150,1€5
INTERCHAKGE COLUMNS 105 I=L(K)
1F(I-K) 120,120,108
I =H(K) 108 JO=Ns(K=1)
TFCI=K) 45,45,59 JR=N*(I-1)
JPNs(I=1) 00 110 J=1,N
DO 40 J=1,N JK=Ja ey
JK=NK ey HOLO=ACJK)
J1=0P ey JI=JR+J
HOLO==A (JK) ACIK) == ACJT)
ACJK =AU 110 ACJIY =HOLD
ACJD) =HOLD 120 J=MCK)
IF(J=K) 100,100,125
DIVIDE CILUMN BY MINUS PIVCT (VALUE OF PIVOT ELEMENT IS 125 KI=K=N
CONTAINED IN BIGA) 00 130 I=1,N
KI=KIeN ’
IF(BIGA) 48,46, 48 HOLD=ACKI)
0=0.0 JI=KI=K¢J
RETURN ACKI)==ACJD)
00 S5 I=1sN 130 ACJI) =HOLD
IFCI=K) 50,%5,5¢ 60 T0 100
IK=NK+I 150 RETURN
ACTK)=ACTE) JC=ATGA) ENO
CONTINVE
REDUCE HATRIX
DO 65 [=1.N
IK=NK +1
HOLD=ACIK)
1J=1-n
00 65 J=l.N SUBROUTINE MINVSRCA,L,D)
[J=1JeN . Ceess TC CONVERT PATRIX A TG VECTOR AA, INVERY AA IN SUBRGUIIRNE MINV,
IFC1=K) 60s65-6C [ t CONVERT INVERSE BACK TO MATRIX 4
IFCJ=K) 62,65.62 DIMENSION A(20,20),LL (20),HP(20)s AACA00)
KJ=1J-1+K 90 20 I=1,L
ACIJ)I=HOLD»ACKIICACTIY) 0¢ 10 J=1,L
CONTINUE [J=CJ=1)sLel
AACTII=ACT, )
DIVIDE ROK BY PIVOT 10 CCNTINUE
20 CONTINUE
KJ=K=N CALL HINV(AA,L,DsLL-HH)
00 7S J=1.N 00 40 I=1,L
KJ=KJIN 00 30 J=1,L
IFCJ=K) 70, 75.7¢C [J=(J=1)eLe]
ACKJIY=ACKI) ZB1GA ACIoJ)=AACTY)
CONTINVE 30 CCNTINUE
40 CONTINVE
PRODUCT OF PIVOTS RETURN
ENOD

0=0«BIGA

REPLACE PIVOT BY RECIPFOCAL

ACKK)=1.0/B1GA
CONTINUE

8.1
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5. Sample input for filter
NITROGEM CYCLING AND A0C~00 IN JOFD/AN RIVER, UTAM, WUSA: EXTENQED KALMAN FILTCR R zg.0
(F=MEBOURCDWF=EZTIMAITDLC-C +STO DEVIN 3 E-ST0 DEVIND 39.2+RIVER MILE§ 2
6 ] 1 1 5 1e 6 0 ]
6 9 [ 5 ¢ 1 ] o 12
9 7.27
o 3902 JOEn 29 H 26.7
¢ 1 1 [} c a P 26.5
EICCHEMTCAL DXYGEN NEMAND  KOL  MU/L R 26453
SRR TA NITROGEN  NH3-N Ma /L 2
NLIPATE NITRGGEN NOS-N MG/t M
FLANXTON A5 NITHOBER ALG=N MG /L 12
URGANIC NITROLI A MCT/L T2z
OISSOLVED OXYhi bk 00 MGAL g 26
URG~K 3 ALC~H  ¥G/L R 26.0
BAD  MI3-N  ADI=N  ALG-K  (RG-N 0OALG+DRGN 2
BOL  NH3=N  NUS=MALG +DRGA 00 g
[ [ 0 [ ° o 0 [ 12
z20 3 3 3 3 14 3 7a.27
KD Kb 7 A23 K45  ELANK KS{NG3) NU~HATY BETA 00 SATMGOZ/MGN P 25,
DL AKK GAMMA K1 KE X3 K& K5 K6 R 25.0
LAY BOOLAT NHINLAT NCINBOTOZOMC LAY INF W TEHP XS~AREA W OPTH LAY DC 2
' 0
N 12
1 7 .58
1 1 [ 23.7
1 H 22.8
30, .h .01 .8 .08 o1 P 22.6
1.0 .01 .04 .25 .25 R 2z.6
& .01 1,03 .1 .5 13 2
1. .01 00 .125 L1235 .25 0
It 33.2 -7 ot 30 S0k L 019 § 12
? 7.9 4.57 4 ] 0 a 7.58
0 g o o 2242
8 2 1,50 o 1t 20 40 1.2 P 22
2,27 i 27240
0 37.2 -5 2
] 35.14 6 .01 1.80 .6 9.7 4
0 34,2 -4 £z
W 3147 20 10 1 ? 7.9 {58
R 3147 -7 .1 «30 «04 - 015 3 L 2.4
2 7.5 &.57 2 o [ 0 ¢ 2. &
o 0 o [ Z2let
8 -t 1.50 0 1y 20 G0 1.2 ¢
r.er n
N 3p 6.5 03 1.5 .8 & 12
[ 30 ~1a0 7458
e 30 [ ¢ 20
L ic.o .7 ot <30 04 015 s R ac.0
2 7.9 4,57 2 0 0 0 ¢
0 0 ] ¢
17 .5 1.50 0 30 20 60 1.1 12
1.z 7.8
u 29.6 13.5 1.8 1.63 “9 7.7 19.4%
P 28,9 3 60 1z 5 $.95 [ 18,7
R 28,9 .7 .1 .30 .04 D15 3 taer
2 7.8 .57 H o 9 o ¢
0 o 0 "
12 W7 1.5 [\ 3¢ 20 60 [P 12
127 [
[ 8.20 10 -6 1.72 iole 7.6 ° P83
2 28 0 N 1ae T

model.

» b

.1

LT

1.5

60

.57

B

1.1

| I

4B

1.5

.7
(343
w1

o7
19

L84
-l

<30

1.84
1.97

30

.07
420
30

-3¢

Lo fth
¢

N

04

<04

30

1]

20

7e2

et

29

- 015
0

70

- 015

015
100
«ALS

0o

« 015

16%

“ 815

w

2.0

3.9%

641
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b+ e ~ B 4

TwIxX

T EZTITTX

12
7 .58
18.1
1€.1

[
N~
¢« pes ¢ N

-
Vi

[}
LMOONQGVTVMUNOON

-
N e =y
¢
[« .30

[

LUV BN B BV I Tt

LI SR TR T Y T Y

2NN~

L I T T

-
¢ N D= VOONVYONWMNWVMINOOMND

75

.01

.1
& .57

105

60

4 .57

1.5

2.28
<04

=30

121
12
.30
121
2.06

.30

121

2.05
2«10

-30
121
«30

121

2.07
2+19
2.30
2+26

.30

20

20

2¢

20

20

Se 4
25

180

0 0
275 3.6
7.9

- 015 3
0 0
275 3.6
«J15 1.5
0 0
100 2.2
6

«015 1.5
0 0
100 2.2
7

. 015 1.5
0 0
160 242
7«9

« 015 1.5
0 0
100 2.2
015 - 1.5
0 0
100 242
3.95

. 815 1.5
¢ 0
100 2.2



6. Sample output from filter model.

MITFCGEM CYCLYAG AML BCL~CC IMN JOCRCAN RIVEF, UTAF, LSA: EXTEMCED KALFAN

ORLEF CF SYSYER/PUNFEER CF STATES N= €
NUPEER (F C(BSFRvsBLE OQUTFUTS Le £ o T
PLOT IMTERVAL Ifl= 1
PRIMT IFLERVIL (L= S !
INITIAL RIPE AL AAS) 1= €.0¢
INIVIAL EIVER FPILES Fhl= 15.8¢
INFTI#L STREBPFLOW (LF§) L5Tpe 25.00

COPFLIATAICMAL TIrE STEF (CMIE) L= Q.CE0C

YHIME
ECC follLel
hi2ep CL000C6
LYS2 81 t.000cCcC
FLGe R 5335241
CEGe b f.000C
ol f.000CC
ALGACRED [ A4 144
Yerrl
€CL et {0Ce
ME2* D 1.0(CGe
MCIep Tl(0LC
ALG™ A hr3 18144
CFG* b B TS 141
o 16,000CC
ALCeCREP a0 0CC

OBSEFVATLICN $RTIFLY HF

(191 LLE AG3~b sE~N (FG-h £

8ce 1.0L04¢C 0.00CCC C.CC0CC €.0CCC0 L.0000C G.000C0
(3304 r.cqocd 1.00CCC G.C00CC t.C6C00 0.CC000 0.0060($
LSS fo.eiece €.000(C 1.6C0C< C.006C0 0.0¢¢C0 0.0G0(C
ALCHCREN [EY 48141 C.0LCCC Q.CCoCl 1.00CC0 1.0CCCC 6.0640(¢
[N 3 r.000c¢ C.0G0EC 0.C00CC G.66060 0.0C0G6 1.000(0C

¥e( CF FFICESS MUISE Q

act hE3-t AC3=p ELC"M [§ 20K tC

(L HEye8144 €.000CC 8.6C0CC C.eCOLG c.0CcCco ¢.0C0CC
FE3~t (328244 0+40CC0 £.0006¢ $.66G0C0 6.0CC00 d.GG0CC
A3} feg{oCe C.00CC0 C.C10CC CeCCCCO 0.¢C00¢ 0.000CC
ELE=A faliocc g.00CCC g.0C0C¢ C.Ce0L0 C.CC0CC 0.0C0CC
Che=t (48244 C.000€(¢ G.(C0C0 0.0CC00 0.CeG00 0.000C0
cr fel(OCC [N e 444 C.CL0CC 0.0GCCO 0.0C000 d.366C¢C

VoC (F CESERVITI(M MISE R

14 ME2=p AG3=b  FLGHORGN £c

ECL t.000C0C C.00CCC 0.600CC C.00CC0 €.0{0CO
brZed [ 18344 C010CC G.CC0CC C.00060 ¢.0(000
L38.44 LEE S S 241 €000l R R1:144 00000 0.0CCCO
ALCHCRER foGLhee C060C¢ C.0C0CC Cez5CC0 G.{coce

|6 tL.ecacc ¢.00C60 ¢.Lc000 Ca0CCEO GezE0CO

181



RIVEF SYSTEF LAYLLY, HYCFALLICS ANL LOBLINC CaATH

PRSI OSSR A AR RS AN A I F A A AN R A AR A RS SRS S A ARARSRSAARASY

RIVEF PILE
L=VECI(R
PTLC 8 Clv

MEAS VEWUIFR
R 5.aC

mVOoOXO
i~
~
.
n
©

TOOX
-
~
.
~
<

DoOoX
Y AY Ra
~
.
~
(=]

oo
S
YL

TOIEXTX
N RY RY R

AY RS RY

0 Vo

T x
~oAy
—
.
»~
o

KL
ELAMY
141 8CC

CFS
ECL
C.7CC
€.0CC
€.0(C
~E.00CC
€.CCC
“4.0CC
2C.0CC
C.7CC
€.0CC
8.0CC
€.5CC
“16C.0(CC
Ca06(C
Ce7CC
€.0(C
12.0¢C
11.5C¢C
2.0(0C
C.7CC
c.0CC
12.0€0
1€.CCC
C.0CC
0.7¢C
G.00C
12.0CC
15.GCC
7.0C¢C
Ce7(C
C.0CC
1Z2.006¢C
C.0C¢C
Ce7(CC
0.0CC
1z2.0CC
C.CCC
Ca7((C
C.0CC
leoCCC
15.0CC
5.80C
12.6CC
0.7CC
CeCCC
12.0CC
“1C.0(CC
T.0(C
C.7CC
C.G(¢
12.0CC
1¢.8C¢C
£4.0CC

KoZ
CAPPE
LAT Nh2pM

£CC
LY g
0.1(C
¢.0CC
0.2C0

c.c1c

10.0(CC
Co1((
2.CCC
0eb(C
0.C2C

0.CCC
Co1(C
2.0(C
0.5¢C
1.6(C
€G.C(CC
C.10C
2.CCC
Ge750
0.€6CC
0.CCC
C.1(¢C
2.00C
0.75C
1.20C
€C.CCC
0.1¢6
e.CCC
C.75¢C
c.c(C
c.1(C
2.0 C(
0.75C
C.CCC
0.1(C
2.C(C
0.75¢C
0.€CC

12.2(C

K221
K1
LAT NO2M

MhZ-h
MC3-A
6.3C0
0.0¢C
1.5¢€¢

1.8CC

1.0(€8
C.3CC
€.0CC
1.50¢
1.54¢C

0.0C¢
C.3CC
€.0(C
1.5C¢
1.62¢
12.0CC
0.3CC
€.0CC
1.5C¢C
1.7:2¢
C.0CC
Ca3CC
C.00¢
1.5¢6
1.8€C
12.0C¢C
C.3CC
C.0CC
1.5CC
C.0(C
C.30C
¢.0CcC
1.5CC
€.0CC
C.30C
€.00C
1.5CC
1.84¢
1.97¢C
C.50¢
C.3CC
C.0CC
1.5¢¢

12.0C¢C
Ce3CC
€.0C¢
1.5CC
c.02¢
ce2CC

K45
¥
eCTreLrcC

LY
ALCHCFCN
C.C40
¢.CCo
0.CC0

C.€C0

e (S
CeCLd
0.CC0
0.C00
C.ECQ

0.(60
C.Ce0
0.CC0
0.0G0
€.5C0
S.( (0
0.040
0.CC0
G.CCO
1.1C0
0.¢C0O
C.C4C
C.CC0
0.¢C0
C.E00
-£.00C
C.C40
¢.CCo
C.CC0
C.CCO0
0.C40
¢.0C0
c.C(0
0.CC0
0.C40
C.CC0
c.CcCc
¢.9¢0
C.eC0
ee((C
C.C40
0.C00
€.CCO

5.€00
C.CL0
G.CCC
¢.CCO
C.4C0
1.0(CC

LT
K2
LET IMF

ELC-}
Cc
€.CCL
C.0C¢
11.000

S.7CC

€.000
£.C(C
€¢.000
11.000
€.0CC

¢.000
£.00C
(.CCC
XC.000
7.760
C.CC0
£.000
0.0G0
20.CCC
7.€(C
¢.CCO
£.000
C.CCo
31¢.000
7.200
C.CCC
£.0CC
€.CC0O
26 .0C0
(.CC0
.00
0.000
1C.C(C
C.C(C
£.0C0
C.C(C
2(.00C
7.4G0
7.400
(.C(C
£.C(C
C.000
2(.CCC

€.0C0
£.6(C
C.cC8
2C.CCC
7200
C.cCcC

KECAOY)
k4
h TEPP

CRC=N

0.015
c.0CC
20.0(C

0.6CC
C.015
0.0¢0
20.0C0

0.4CC
C.Ci1S
0.000
20.0(C

0.0C0
¢.015
€.0C¢C
£0.0C0

C.CCC
0.015
0.6CC
20.0C0

€. CCC
0.015
0.0CC
2G.0CC
0.0C0
0.015
0.0(¢C
2C.0C¢C
0.6C¢C
$.015
0.0CC
Z0.6CC

c.CCC
0.015
0.0CC
ee.cCC

0.CCc
C.01%
0.0G0
20.06¢

0.000

Hu-t4t
ke
XE-4FES

L

3.CCC
C.CCC
4C.C(C

7.5(CC
T.Cr¢
0.0(¢%
€0.CCC

g.6CC
1.0(C
¢.0(C<
€0.GCC

1.55¢C
3.66C
C.CC(
60.0CC

C.C(C
1.00¢
€.CCC
70.0C¢

1.6¢8(C
3.0(C
C.C(C
76.6((
€.0(C
2.6(C
CeG(C
100.0(¢
0.CCC
.G
0.CCC
160.C0CC

7.0CC
3.0C¢
g.CC¢
1¢C.C(C

r.5cC
1.0(C¢C
0.0¢(¢
1€65.C(CC

7.3CC

EELA
h CF1F

2.0C0
9.0
1.2(0

2.€C0
0.0C0
1.2(0

2.000
¢.0¢0
1.2¢0

2-C(0
0.600
1.2(0

2.6C0
0660
1.500

2.GC0
C.C(0
1.0

2.0C0
¢.000
2.0C0

c.C(0
C.€C0
2.0(0

2.0(0
C.CC0
2.000

2.6C0
0.0¢0
Z.5(0

€C sM
L#1 CC

7.9C0

PGCZ7FEN

4570

4.5170

44570

4.570

4.570

4.512¢C

4.57¢C

4«570

81



TETXXTX b -2 LT X2TX me X = bR 3 b = -3 rxTX

mx

14 .4¢€
1E.7¢C
1£.7¢

L
1€.:¢
1E1¢

i
1t.1¢€
18.1¢

L
17.:¢
1€.d¢
1€.7¢
1€.7¢

L
1€.240
[ L Y2

i | A

Ca7¢¢
C«0C0
1240CC
G.0CC
0e7C0
C.00¢
1240(C
11.50¢
1c.cct
C.7(C
C.0CC
12.0C¢C
ZCa004
Ce?(C
Ca0CC
Le40C0¢
15.6C0
Ce7€C
Ga0C0
1240CC
14.5(C
“117.0CC
CetCC
Calll
G060
*0.00C
Sl
ve7{(
C.00C
SC.00C
13.0¢C
18.0CC
[ R
C.00C
£C.0(C
1€.0€0
1€.0CC
16.0CC
Ce7¢C
Ge0CC
£G.0CC
c.0CC
0.70CC
c.0cc
C.00C
12.5G¢
12.8C¢
1245C¢
1146CC
E.0CC
Ca7CC
Ga0CC
C.aC¢C
14.00¢

=

0.10¢
2.00C
C.7:C
0.6C0
Ca1(C
EebCC
0.758
1.7¢¢
EC.e((
G.1€C0
2.0(C
R.75¢
€0.0¢¢
C.1(C
2.0¢(
Y. 256
G.0¢C
ge1(C
24CLG
C.7%L
1.7¢0

[ RY144
0. 1(¢
2+CL(C
ge5¢C
£C.CLC
g.10C
2.00C
G758
la€(C
5.€(¢C
0.1¢(¢C
E.60C
0.25¢C
1.5¢¢C
1.76¢
5.CCC
Q.30C
2.0CC
0.75¢
0.CCC
€.1(¢C
2.0C¢
g.(CC
l.4(C
1.4(¢
1.£0C
1.€60¢
EQ.(CC
C.1CC
2400
[ PR 24
1.2¢C

[ 143
C.0C¢C
1.5CC
0.06¢
C.3(C
€.00C
1.5¢C6
leBE(
12.0¢0¢
g.36C
0.00¢C
1.50¢C
12,0606
€.30¢C
{.00C
1.5€6
G.5C¢
§.3CC
€¢.00¢C
1.5¢C¢C
£.0C¢

£.00¢C
¢.36¢C
4.00C
1e5€¢C
12.00¢C
Ce36¢
Ca0C¢C
1.5CC
Z.06C
C.5C¢C
C.3CC
0.00¢
1.5¢¢C
Z2+05¢C
2.10¢
€.50C
{.30C
€.00¢
1.5¢¢
€.00C
C.30C
¢.0CC
C.00CC
€e07¢C
z.15%C
é.3(C
€+2€C
1z.0CC
€.30C
C.00¢C
G.0CC
Z2.25¢C

C.CL0
c.CC0
¢.C00
0.C60
C.C40
€.0C0
0.600
G400
£.¢C0
0.C40
g.Co0
€.CC0
S.0(¢
0.C40
c.c(C
0.€LC
Z2.C00
0.C40
[ 244}
g.0C0
1.7¢0

c.CC0
C.C40
0.L00
121.0€0
5.0€0
0.840
C.CC00
121.000
0.800
z.C¢C0
C.C40
0.C00
121.6¢C0
C.E€0
C.5C0
2.0C0
0.040
CeCCO
121.CC0
0.C00
C.C40
C.0(0
121.€00
€¢.500
0.5¢C0
C.4C0
g.eC0
S.C(C
C.040
0.0Co
121.C00
z.CC0

£.000
c.ccc
2€¢.000
4.000
£.000
€.000

28 .060 -

1.000
¢.0CC

2.000 .

¢.0C0
20000
[ 14]
5.000
C.00¢C
{000
€.0C0
$.000
{.CC0
e{.0L(¢C
7.0¢C0

C.00¢C
Z.500
{.000
2.00¢
[N 144
£.560
{000
2.000
T.0C0
¢.0C0
cs50C
040
1.000
b3 141
5.8¢0C
¢.000
Z.5C0
€.066
21,000
€.000
£.5C0
C.CC¢
€.0C0
€500
£.2(C
£.6CC
€.100
€.C0¢
L.50¢
0.00C
€.000
L.7CC

€.01%
0.0¢0
20.0¢4
Q.606
0015
0.0¢0¢

-2G. 000

0.CC0C
L0125
0.0CC
0.0CC
0.000
0.019
0.0(¢
20+0646
0.0(¢C
0.015
8.060
£0.0CC

0.0C0
G015
6.8(C
0.00¢
0.0C0
£.815
C«0(0
20.0¢0

€.00¢C
Q.015
GulilC
20.00¢C

c.CCC
¢4.015
4.6(C
204000
0.0¢¢C
CeQ1%
04060
€0.0CC

g.000
€.Q1%
0.0(¢
e0.0CC

3.0 (C
0.0¢C

1€8.04¢C

- Ge€ (£
3.0C¢
CG.CCC

ET15.0€¢

€.00CC

~3.0L0

C.00¢
215.00¢
6088
. 0L
€.0CC
215.00¢
7.9¢¢
LXL 41
8400C
E15.60C

g.0€C
1.5CC
[ L 244
160.0(C
£.0CC
1.54C
Co0CC
100.4CC

7T.C(C
15CC
CLel
108.0¢¢C

T.5(¢
1.5(C
Ge6GL
100.0C¢
0.CCC
1.5(¢C
0.0CC
1CC.CCC

LER 211
1.50¢
a0 (¢
16e.0CC

2.0C0
0.0C0
2,500

£+000
0.CC0

Y 24

240600

€.CC0
3.800

e (O
C.CL0
3.£00

i.6C0
G 0(0
3.6¢0

2.000
£.000
2.200

wb i

Q.CC0
2.2(0

2+6C0

B 11

.20

€. (0
GGt
2.2C0

2.0€0
0.000
£.200

2+€C0
€.0(0
z.2€0

749CC
T.58C
rT.9€0
7580

749¢CC
TEE0
T.8¢€4
7.584
7e8¢0

7TH5EC

T.9CC
T.500
7T.9C0

T.5¢C¢

7.9(C

7.5¢8

4.570

4.570

45170

4.570C

4.510

k510

445370

k570

45170

4.500

wt

€8T



INITIAL CUMCIYICHS TIPE  (.C(CC Fr  39.200

LR R A R N Y Y P e R R T R TR R

IC FEF ESTIMITE (F STATE XX

elc haCLO(C
L0 ] CeClCCC
LC2=» TC30(CC
LG} f.106C¢C
CRG~ A C.3{CCC

tc 17.04C(CC

IC FOFR EFFRCR CCVARTANCE FATRIX F

et N 2B AC3=b ALC*N

ELL 1.04C(¢ C.0C0(C C.C00(C C.C{CL0
$E3~) f.CLn(e ¢.010¢C €.0C0CC 0.0CCC0
AC3~p Ca€L0CC Ce00CLC Qe aQ( o6 (L0
ALG-% €.{L00¢ CO00CC ¢.CC0CC Ge.1e5C¢C
CRE=p faiace c.00CCC G.0C0CC €. 00000
[ r.0r0ce [ YRR f.0c0¢C C.0CC00

(FG= 4
€.400¢¢
0.6C000
0.0C000
CCEOLC
0.12500
g.Ccc00

£c
[0 1244
0.000(C
04000CC
0.00CCC
g.0C0CC
0.2840C¢

781



MEAM SELIRE EFRCF (LESERVEL ~ FILTEFR)

8CtC

[ 308 ]
(3524}
ALC+{FC}
49

ECL
PEID
AC3~a
ALE+CRCH
[c

tel(Z7¢
CaQbdse
falzrs(
teztez?
r.€c8€7
Cail€k%
CaGlEST
Cellzls
Ca2145¢
P EEThE

VoC CF CESERMVITIAN ACISE R

ECC

| 4
PCIp
ALCeLFCH
94

;184
11144
t.000C0
.6e00C
c.reoce
Ce0L0(¢C

Vel CF PRLCESS pLSE

(394
hE2ap
AG3=h
BLG=}
CFCe?

£c

8eL
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188

Start

Read I Card input

Read II Disk input generated
by EKFLKF

Punch heading card

Punch river miles at measure-
ments

Punch measurements

Punch XF, forward EKF
estimates

Yes

No

No

Punch XS, smoothed estimates

d & 5,

Figure A-2. Overall flow diagram of data sorting program.



No

Yes

Punch XB, backward LKF
estimates

Punch PF, estimation error
for XF

No

Yes

Punch PS, estimation error
for XS

No

Yes

Punch PB, estimation error

for XB
‘ Stop ’

189



Table A-3. Input data and decision parameters for data sorting program (PRSORT).

I. Card input

1. IRUN, N, L, KW, IOPT - Format (8X, A2, 4110)

9,10
11-20
21-30

31-40

41-50

II. Disk input

IRUN

N

L

KW

I0PT

Run number identification
Order of state vector
Order of measurement vector

Number of computer output unit to which sorted data is to be
written for subsequent input to plotting program (P).

Deterministic process model results only (XF)

Forward filter results only (XF, PF)

Forward filter and smoother results only (XF, PF, X8, PS)
Forward filter, smoother, and backward filter results (XF,
PF, X8, PS, XB, PB)

o

FA SNV I N I

These data and decision parameters are generated by the filter model (EKFLKF).
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3. Program listing

Cwnew PROGRAM TO SORT OISK STORED OLTPUT FROM FILTER MOOEL IN

[

20

30

32

35

L]

PREPARATICN FOR PLOYTING ON URRL COMPUTER

DIMENSION RMCOI0CH e REMIS0) e 2012500 XF (20, 3003 +PFC204300 0,
X5020,3C0),PSE20»30()sXB20+300)» PR(ZC, 3002 »
. RUNLCS0I, 2110 SO FFAS (3003, PSAS(300),PB4A5{300)

DATA CODEMs PNt/

FORMATUIL »4XsLasF 105,400 412
FORMAT(SX,8F%.4)

FORMATCI2X»6F 10.3)
FORMATUSX»ThsFL1CaSs kX oAL)
FORMAT(8X,A2,5110)

FORMATL THRUHN, A2, SHRHN 41 7F &a 1)
FORMATL JHRUNS AZo1HTS 1 222H2 1 LF7.3)
FORMATC THRUN» A2 »SHRHM r17F4a1)
FORMATC IHRUNS A2 oA HI# 124 2HXF »1(F 2. 3)
FORMATC JHRUNs A2+ 1 HI» 1 25 2HPF »1(F7.3)
FORMATC IHRUNs A2 LHI»12,2HX5,1(F7.3)
FORMAVC IHRUM» A2, 1 HI»E 20 2HPS I (F 7.3}
FORMATUSHRUNPAZs1HIAE2,2HXB A 1(F 7. %)
FORMAT O IHRUNS A2, 14T, 1 25 2HPB»1CFT. 3)
FORMATCI7H PROGRAR COMPLETE)
FORMATC JHRUNS SX A2, GHIOPT » 16+ MHIT M, 17 SHN T2 517, 6HKROT YP2 T4}

INeuT

FRUH CARDS
READUS» 904 IRUN »NAL KW, 2OPT
Ni=Ns1

FROW DISC STORAGE

REAQCS, 900IKRDTYPNT» RMINT Y LLL0E
IRABELYS

NTI=NT~1

NT2=2eNT

NT2 1=NT 21

(Tu=0

IFCCO0E JNE.CODEMIGOTC 2¢
ITH=ITHeL

RMNCITHI=RHINT}
REAGCO- 901 CZULITHI, 110 L)
IF(KROTYP,E0.2)C0T0 100

CARD TYPE 1

00 30 Is1«N

READL 8- 9023 XF I oNTZ 1) 4PFCIANTEL)» XFUISNTZ Y» PFCILNTZ)
LONTINUE

READC 8. 902)PFASINT2 1) +PFASINTEY
DO 50 Js1.NTH

I¥=NT=J

1T2=2e17

IT21=1T2~1
REAQ(B. 0V ITT-RMCIT) »CODE
IF{CODE .NELCODEKIGDTR 35
1Tr=1TH el

LLLISRLBELT ISR}

READCB. 90 1IC2LL-1TH}, 1=101L)

00 &40 Ts1.N

READCBs 902IXF (L s TT2 1) PFCIp ITELIAXF (11 T2 2,PFLILIT2)
CONTINUE

of data sorting program.

50

103

133

132

135

140

153

200

202
203

¢ osax

284

205

210
220

434

"

REAOt8-902)PF&S(1t21)»PFh“(1I<)

IFCITVLLEG ITTIGOTO 32

ITTi=I7Y

CINTIHUE

GCTO 200

CARD TYPE 2

0C 130 I=1,X

READC 8,902 XF (Lo NYZD) wPFCIS RT 2L XF UL SN T2 35 PFLT#NT2 )0
. XECLANTZL pPBOI RTZIY- XBLT AR T2, PRCL T2 ),
. XSCIoNTZL) wPSUISATEL)s XS (LA NTZ Dr PECLANTY2)
CONTINGE
READCSs 902IPF A5 INTZ2 1) vPFRECRTZ)»PBASINT 21 )o PBAS(NTZ ), PSASINT21)»
- PSAS(NT2)

00 150 J=1.NT2

IT=NT=J

IT2=2417

t121=1r12~1

READUB, 903 ITY»RNCLTICLOE

1FCCOOE (NELCODEM)IGOTE 135

1TH=[TH+]

RHNCI TR )=RACIT)

READCB« 01 (2L ITMI-I=101)

OC 14C I=1,N

REAGCB» 902IXF QoI Y2 1) oPFLI> ITZLI XF(Io L U2 PFUT 21 1230

. XB{T.IV213 «PBLI, ITZL}»XBLTLLU2),PBULLIT2 )Y
. XSUTPETE1I»PECIS ITZE)» X501 2 12 PRUT AT TR

CONTINE
READCBPCRIPFASTITZ I PFLS{ITZI,PEASCTYZI )»PBERSCIT2),PS4SLIT2I),
. PS4ASCIT2)

IFCITTLLERITTIGOTY 132

ITT1=177

COHTINVUE

REVERSE URODELR OF RMM AND Z BRFAYS

00 203 IT=1,1TN

ITR=ITM~IT+]

RMMILIT I=RRMCETR)

00 202 I=1,L

21CEy LT 3= 74 T ITHY

CONTINUE

CUNTINUE

CALCULATE ALG=N & NRG-N YALLEC AND PUNUHE SORTED DATA ONTO CARDS

ARITE(R W, SHOFIRUNSIUOP T [T AT RRDT P

RN AT MEASURUNENTS

1¥2=¢

ITi=1720e1

ITZ=IT1¢e1b

IFCITH=-IY 2388002204220

1v2=1TH

HRITE (KK SSOYIRUNCCHHBLITI 1)1 ¥=1T - IT2)
IFCIT2.NE L ITHIGTITE 205

MUASURE MERT S

S 260 I:1sL

112=0

IT1002+1

1120719

IR CTEM~ 172260075 0n 285¢
S FER R R

161



250
260
L]

2n

280
293

T3

300

312

320

330

340

e

400

413

422

430

&4

e

492

502

512

529

53]

603

WRITELKW: 551V IRUNS L, CZICL 1T oL T=1T 10 72D
IFCIT2.RELTTNIGCT D 235
CONTINUE

L1

112=0

[Ti=]T2et

112=1T1¢16

IFCNT~1T2)286,290,290

1T2=NT

WRITE (KW, 9523 IRUN»CRRCIT) L1 Y= 7L, IT2)
IFCIT2.NE-NTIGBTD 270

X¥

00 300 J=1.M72

XFECNL e d J=XF (ka2 Yo XFC(S,4)
CONTINUE

0O 340 I=1.M1

112=0

ITi=112¢1

112=111+9
TFINT2~1123320,3304330
1722012

HRITE (XM, S5 3VIRUNS IS CKF (T2 IT) o R T=IT 11T 2)
IFCITZ.RELNTZIGETE 310
CONTINUE
IFCIDPTLEC.1YCOTG 700
IFCIOPTEQ. 20 €010 600

XS

00 408 J=1,NT2
XSENI»II=XE (42032 X8(5.0)
LONTIHUE

D0 440 I=1.N1

112=0

IT1=1T24+3

IT2=1T1¢9

TFANYT 2= 1T2)420% 430,43¢C
IT2=hT2

BEITE(RW 955 TRUN 1> OXSUL, 1D # 11T 1, 072D
IFCIT2.RELNTZICT0 410
CONTINGYE ,
IFCIOPTLES.3ICNIN 600

L33

DL 49C¢ ss1enT2
XBENLed Y XA (2 J ) KE5 040
CONTI NUT

DB %40 Y=1,Nt

1123

ITE=1T2Z ¢}

LIZ2=1 1140
IFERT2=TT0 513, 528.520
1¥2=NnT2

HBITUAR ML SO TR UN « Lo (0L, E D) 2 ITR LT L0200 2)
TROT20N0 NI 3 (T 00
<CONTIAUE

By

0C 350 Jsledtb
PHINL S 1o SOPILPFaw gl ae e v T {Gs w2 42aP FASTIN)

350

E{]

3N

380

39

-

445

45}

460
470

535
542
553
560
573

00

133

CONTINUE

B0 390 I=1,K1

112=0

ITi=1T2¢1

172=TT11+%

IF(NT2~1IT2) 370,380, 38C
[12=NT2

MRITE (XM 9S4 IRUNS T, (PFELSIY) »1T=1T 1, 1T 2D
IFCIT2.RELNTZIGCTO 360
CONTIRUE
IFCIOPT.EQ.2)EQTO 700

PS

00 445 J=1,NT2

PSCNL aJ)=SRRT (P S &s JI#4 2+ PSS, JIne232 05450000
CONTINUE

00 480 [=1,N1

112=0

IT1=1T2+1

IT2=1T1+%

IFONT 2= 1T 214605 470> 470

112=NT2

NRITE(KM» 9SBIIRUNS Io{PSLESsIT) 212 1F 11T ED
IFCIT2.NELNT2IGETO 45¢

CONTINUE

IFCIOPY.EQ.3)COTD 700

lid:1

00 535 Je=IsNT2
PBINL»J)=SORT(PRIAs J) 2 22 PE (S » 40 22 +2+P B4 SLUI)
CONTIANUE

0L 570 IclsNl

172=0

ITisIT2¢1

112211199

IFINF2=17T23550.560,56¢

IT2=NT2

NRITL (KW, 958) IRUNT»(FULT1T31T=IT 1,172}
IFCIT2.NE.RTZIGITO Sag

COMTLNUE
IFORMLEQ.BILOTO 750
K¥=6

GCTQ 204

PRINT 359

S1gP

END
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III. Plotting Program (P)

Overall flow diagram of plotting program (Figure A-3).

Input data and decision parameters for plotting pro-
gram (Table A-4).

Program listing of plotting program.
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Figure A-3.

< Start ’

Read I Initial input

Plot axes, scales, and labels

Yes

No

Read II Measurement data

Plot measurements

Read III Filter results:
X values

Read III Filter results:
Y values

Plot filter results

Another

set of filter results

to be plotted
?

Overall flow dlagram of plotting program.
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Table A-4. Input data and decision parameters for plotting program (P).

* Cards 4, 7, 8, 9, and 11 are generated by the data sorting program (PRSORT) from results obtained from
the filter model (EKFLKF).

I. Initial input

1. 1IPM, NVX, NVY, PUY, XL, YL, XMAX, XP, YP, YMAX, XVALl, XMIN, YMIN -~ Format (3I5, 10F5.0)

1-5

6-10
11-15
16~20
21-25
26-30
31-35
36~40
41-45
46-50
51~55
56-60

61-65

IPM

NVX

NVY

PUY

1L

YL

XMAX

YP

YMAX

XVALL

EMIN

YMIN

0 No measurements to be plotted
1 Measurements to be plotted

[}

Number of A4 fields required to read x-axls heading on card 5
Number of A4 fields required to read y-axis heading on card 6
Number of data units between major ticks on y-axis

Length of x~axis in inches

Length of y-axis in inches

Maximum value of river mliles on x—axis

Plotting window in x-direction in inches

Plotting window in y-direction in inches

Maximum value of y-axis

Maximum value of x-axis

Minimum value of x-axils

Minimum value of y-axis
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2.

NDX, NDY, XT, H2T, CHT, HTL, XVAL, YVAL - Format (2I5, 6F5.0)

1-5
6-10

11-15

16-20
21-25
26-30

31-35

36~40

NGX, NGY, NSKX, NSKY, NSMBL, ISZ

1-5

6-10

11-15

16-20

21-25

26-30

NDX
NDY

XT

H2T
CHT
HTL

AVAL

YVAL

NGX
NGY
NSKX
NSKY

NSMBL

ISz

Number of decimal places in x-axis labels

Number of decimal places in y-axis labels

Title location in inches from left-hand edge of plotting

window

Size of characters
Size of characters
Size of characters

Data units between
origin of graph

Data units between
of graph

-~ Format (6I5)

in axis label
in title
in axis labels

left~hand edge of plotting window and

bottom edge of plotting window and origin

Number of minor ticks between major ticks on x—axis

Number of minor ticks between major ticks on y-axis

Label every NSKXth major tick on x—axis

Label every NSKYth major tick on y—axis

tnou

1, !

W B k= O

No symbol plotted

'+' symbol plotted
¥x' symbol plotted
'V' symbol plotted

Size of symbol in the number of 2/100 inch units

96T



11,

ITM, NT2 - Format (25X, 15, 5%, 1I5)
26-30 I™ Number of measurements to be plotted
36-40 NT2 Number of calculated points (filter results) to be plotted
(FMIX(I), I = 1, NVX) - Format (NVXwxA4)
FMTX(I) x-axls heading written as a format statement
(FMTY(I), I = 1, NVY) -~ Format (NVYxA4)

FMIY(I) y-axis heading written as a format statement

Measurement data

(Omit cards 7 and 8 if IPM = ()

7.

*

(X(1), I =1, ITM) - Format (10X, 17F4.1)

11-14 X(D River mile at lst sawmpling point

15-18 X(2) River mile at 2nd sampling point
etc.

(¥(1), 1 =1, ITM) - Format (10X, 10F7.2)

11-17 Y(1) Measured value at lst sampling point

18-24 Y(2) Measured value at 2nd sampling point

etc.
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111, Filter results

9.  (X(I), T =2, NT2, 2) - Format (10X, 17F4.1)
11-14 X{(2) River mile at first and second points to be plotted
15-18 X(4) River mile at third and fourth points to be plotted
etc.

(Cards 10 through 12 are repeated for each set of results to be plotted)

10. NTITLE, NVT, NSMBL, ISZ, NSK, YT, XS, YS - Format (5I5, 3F5.0)

1-5

6-10
11-15
16-20
21-25
26-30

31-35

36-40

NTITLE

NSMBL

1S5z

NSK

YT

X5

YS

0 No title to be plotted
1 Title to be plotted

It

Number of A4 fields required to read title on card 12

Symbol to be plotted (see card 3)

Size of symbol in the number of 2/100 inch units

Plot symbol at every NSKth calculated point

Title location in inches from bottom edge of plotting window

Standby position for pen in inches from left-hand edge of
plotting window

Standby position for pen in inches from bottom edge of plotting
window
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*
11. (Y(1), T =1, ¥T2) - Format (10X, 10F7.2)
11-20 Y(1) Calculated value at first point
21-30 Y(2) Calculated value at second point

etce.

(Omit card 12 if NTITLE = 0)
12. (FMTT(I), I = 1, NVI) - Format (20A4)

FMIT(I) Title written as a format statement
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By
k4
503
dve
Qoe
gwn7
e

L wee

881

L oves

3. Program listing of plotting program.

DRt wTER L V(R

Flmvarty v, 17F4,1)
LIS RS FE IR LE 3]
FrWwvaT L2748 takh, 0
FOrMATLTS, 15F 5, ")
FaRr AT (2%%, 15,52, 7%}
FardY {115,137 5, 1)
FRREATI18]N]
FORrAT(BIn, 14Fh, 2]

INETTAL Iabgoe

TYPE ©%4

FORS ATISAMCUMPLETELY NEw CARA DECK FEJULIRED » SET UF PLOTTER/)
REAN (6,08 IPM VX, MVY , PUY 2L, YL, ¥ AR XP, YP, YMAN  XVELY, XMIh, YHIN
REAN(B, DRI DK NTY  XT, H2T, CHT ST, XVA(L, YVAL

BEAL (6,937 INEX NG Y, ASRY, HEKY NSHEL, 182

REAC (8,904 [TH, NT?

NTYERTY2s2

InSan

PLOTTING

SETUP AXES,SCALES,TITLE,FTC
Neg

Jyny

NEK=1
NL{~Eag
NAXISs{
NGRIDm=Y
NLABXWY
NLABYwi
NTITLE«Q
ANGT®3,2
PUXs1e,9
X3e2,0
Y8sg, 0
XREF®A,
YREFsp,.2
XNe@, 8
YNRg,?
ENDu1,0E38
Nlsy

MINDs!

CALL GRAPH(X, Y N, J¥,NSK NLINE, NSMBL,NAXIS,NGRID,NLABX,NLARY,
*NTITLE, XY, YT, HET, ANGY NGX NGY NDX NDY, 382, CHY, PUX, PUY, XL, YL, X3,YS,
ANYX NVY NYT  XMIN, XMAX ML, XREF; YREF X VAL, YVAL , XP, YP XN YN, END,
CYMIN YMAX, NI, MINO , NSKX, NSKY , XVAL1Y
JYmg
NAXI§w@

HGRIDwR
NLABYX 32
NLABY=Q

23T Cavew POUSEAS Y PLOT RESULTS FROM FILTER MO0k

L e MPARNRFUECTS w [ISCRFYE PLNTS
TF(IPY,ER, 2823T 2¢r
PEAN(E, G (x (), 121,17
BEACTE, 02 ) (v (T, Tayg, 1TV
oIS Ist,ive
Y{lYsxvaLy=x (1}
1R CaNTINUE
Nste
NTITLFaC
Call GRAPHIY, Y, h JY NSK N THE NEHEL  NEXIS, NGRIL, LAY X KL ARY,
CNTLTLF XY YT, ~ 2T, ANLT  MGX  NGY  NDX, NDY, TSZ,CnT ,PUX,PUY, XL YL, X8, ¥S,
CNVEGNVY VY x YT, (M AY  HTL  XREF, VREF X VAL, YVAL, XP,YP, XN, YN, END,
CYHLE L YRAX T VIR, MK URKY, XVALT)

£ *+ LINE PLOTS

2en SEAD(6,900) (v(I), 1#g,~12,2)
DO 205 12,1729
Tisl=)
X(I1YmY (1)

205 CONTIABE
0O 214 Tag,nTR
X{I)eyvVaLiwx (1)

218 LONTINUE

229 TYPL 9%4

4854 FORMAT(45RCARY NECK FOR MEW Y QFQUIHED = SEY P PLOTTER/)
Fayst @&
READ{A,9BEIMYITLE , NVY, NEMBL, 152, NSK, YT, XS, Y8
READILS,9B1) (Y (1), IRr1,2T2)
NaNT?
NLINE®Y
CALL GRAPHIX,Y,N, JY NSK,NLINE,NSMRL,NaX]S,NGRID, NLABX,NLABY,

NTITLE, XT, YT, 2T, ANGT  NGY NGY, NDX MDY TSZ, CHT PUX, PUY, XL s YL, XS, TS,

LYY NYY  NVT, I N, XMAX  HYL , XREF, YREF , XVAL, YVAL, XP, YR, XN, YN, END,
CYMINGYMAX,# D, S IND NSKX, KSKY, XVALY)
IF CINS, E0.0)60TD 220

386 STOR
END

00z
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SUBNTLTINE Goabr
SUBRAUTINE GOAPA{X, ¥, 0 J¥, HEX N INE NSHEL , MAXTS , MERTD, %LARY, upady,
TNTITLE, XY, ¥T, 42T, ANGT UORY NOY WY, u3Y, 182, CHT , FuX, PLy, ¥l vL, X5, Y8,
DMV K M VYUY Y [h XM AY  m T XPER,YREF  XVAL, ¥V AL, XP, Y0, ¥, Y, b,
Jyupr, yMad T, ATN0, HERX, LERY, XVALY)
TLAENSTOM X {5) ¥ L), Py (28], F Ty [25), FUTTLO%) FRLa(42),8-3L (1)
CIAERSIN® ¥ (17 Y 1), FrTe(as) ,FHIY(25) ,FATT (53] FxL3(aC)
X A%uD ¥ ARF TME 0ATE YR BE PLATYED, N IS Tdb hyuPER OF JaTs PT§
JY TS TwE AD OF THE ¥ yam BETLG PLOTYRD JhENL MORE Tmah } BLGTTES
IF NLINE ® 2 BOIxY BLOT NEYHBL = SYHBNOL CDDE (& Yo {2}
* 1 LINE PLDTY
BAXIE = 2 nn 0T DRss AYIS
® 1 DRax AXTS 4ITH YICK MaR¥S& PUY EVERY XIKC ANU YIMD
NGRID » A G 0T PRas GRID
B 4 DKa~ GRIN « USE SAME INCREMENTS O8 Y AND v aXIS &8 YICKS
e =i ENCLOSE PLAT AKEA PO NOT DRAA GRID
NLABX w ) JUST PLOT VALUES WITM TICK MAPKS IF NaXIS » |
® 2 DO NOY LARFL ARSCISSA
* § LABEL aBSCIS%a A~ND IF TICKED PLOT VALUES
w 7 LABEL ABSCISSA AND PLY 3 CrhaR LABELS BETALE! TICKS
INSTEAL OF VALUES
JUST PLAT VALUES WITH TICK HARKS IF C4LLED FOR
0N KJT LABEL ¥ AXIS
e La8EL ¥ AMIS AND IF TICKED PLOT VALUES
HTITLE = & pn KOT PLAT GRSPH TITLE
L] PLOT GRAPN TITLE
T o« OLOT SYNBOL BEFDRE PLOTTING TITLE
{XT,Y7) STARTING POSITION FOR PLOTTING TITLE IN INCHES
K2T AND ANGT ARE CHaRAaCTER WY AND ANGLE FOR PLOTTING TITLE
NGX 1§ N0 0F TINKS TO SKIP BEFORE WRITING VALUES ON ARSCISSa
NGY IS MO OF TICXS 70 §xIP SEFORE WRITING ValLUuES On ¥ AXIS
NOX = NG OOF PLACES TO RIGRT OF DECIMAL PT FOR PLOTTING X valugs
NDY ® MO OF PLACES 19 QIGHT OF DECIMAL PT FOR PLOTTING Y vALUES
182 s SIZE ARGUMENT FAR PLOTTING VALUES AND SYMAOL IN uUNITS OF ,05
AINC ® INCRFMENT ON X AXTS FOR TICKS A0 GRIO IN INCHLS
YINC o INCREMENT ON Y AXIS FOR TICKS AND GRID IV INCHLS
PUX IS PLCTTIANG UNITS PER M&AJNR GRID FOR LABELLING X
PUY 18 PLOTTING UNITS PER MAJNR GRID FOR LARELLING Y
¥l AND YL a~F LENGTW OF ¥ AND ¥ AXIS IN INCHES
(X5,Y8) IS LOCATION OF WEXT STANDBY FROM CURRENT REF I INCRES
FMTY 18 FORUAT OF x LAREL AND MUST BF LESS THAN 99 ChARALTERS
FMTY I8 FORMAT OF ¥ LAREL AND MUST BE LESS THAN 90 CRAPACTERS
FHTT IS FORMAT OF TITLE AND 4uST BE LESS THAN 95 CHARAUTERS
MY¥X IS NO OF VARIABLES IN FORMAY FOR XLABEL LE 25
NVY 18 NO DF VARIARLES IM FORMAT FOR YLABEL LE 25
HYT IS NO OF VARIABLES IN FORMAT FOR TITLE LE 23
SCALF = SCALE FACTOR IM ¥ = PROBLEM UNITS/INCH
YSCALE & SCALE FACTRR Ik ¥ » PROBLEM UNITS/INCK
(XREF,YREFY IS REFERENCE POSITION IN INCHES FROM STAnGBY
CHT a {/2 WY OF CWMAKACTERS TO BE PLOTTED WITH PLTEXT
(Xval,YvaL) PROBLEN UNITS AT (XREF,YREF)
XP w PLOT SI7%E (POSITIVE INCHES IN X DIRECTION FHOM REFERENCE)
YP » PLOT SIZ7E (POSITIVE INCHES IN ¥ NIRECTION FROK REFERENCE)
XN % PLOT SIZE (NEGAYIVE INCHES IN ¥ OIRECTION FROM REFERENCE}
YN ® PLOT SIZE (NEGATIVE INCHES IN Y OIRECTION FROM REFEREACE)
END TS HISSING OATA On ¥ CHARACTER TEST, IF ¥ VAL GE ExD THEN

NLARY & =
s

3 -

h c ATAPW NE Y 48 X P AYITA¥LTIC PAPf .

ATE S MY R T THAY AP E

AT T8 Cuar VY Fre Cpgay Are LAty 0F A¥e S
¥eIh ARG YWEL Anf£ WP R*0 Mag OF ¥ JATE
¥hpe o an o yMiy APE eIy Lr MAX FAN Y 3aTa
TTOT® STANTYLC O ELRAENT TR RESLE BLATTIAA weIF KT LF » SET Iy
MINT LS TREYLe s FOF ANt §TING VAL TR ONE LESS TREAN ZMIr T4 TeE
SCALF @rurrse = IF BF { THEW 6D JURT UTRALRLTSE 00 T AN JusT
Nk 18 w0 HE BT TP PUNT CEFAVE PLOTTIAL A S¥oRm

SRV IUAKY

NSK¥YELEKY

VT, LE. Y 18y

SIlxNTeg

IF (Y 67410 T3 197

CaLCnLaTh vSratf, vS§CaLe, ¥IsC, anD YINC

BALL ACAL(YSCALE  XTINE, NEX, XHAY X MTN, XYVAL, YL, PUX, MIND)

CORALL SMALCYSCALE ¥ TRC, MGY, YRAN YHIN, YVAL YL, PUY, TNt )

PG
o
c
4
C
t
€
C
Cew
Cee
L
C
1
4
533
3
[
200
[
Pl
11
<
5
¢
1@
13
16

1F s3% & CF SWIP APIVIMG FEADY PLRTITER, ETC
facT PISEN

J .z

M 3

TYPE 52

EORRATIAGRPE LY BLOYTER 4T S§TannAgy ROSITIUN » RSP/Y
ey 28p22

CALL SHYSET

ALl PLYSET{YSCALE ,YSCALE, XREF ,YPEF (VAL ,YVAL, ¥P,YP, X5, Y3
CuFlix TO SLF IF LEED T€ =FaD TITLES
FonraAT{2"04)

IF{JY,AT,1Y £ 10 1t
TFOYITLE  NE, o AND G JYERL 1) READ(S, 2R2){FHTT(I), 184, NVT)
IF{MLABR,GE, 1) READ(S,2¢f) (FHTX(I],18],4VY)
IFINLABY (EN, D  AND, JY, b0, 1) READ(A,222) (FXLB(I3,1%1,47)
TR {RUARY (ER 1IREAD (K, 287 (FHTY (1), T2],HVY]
ORAW AXTS IF <AXIS §T @

CALL PEsUP

IFLNAYYSYIT?R, 74,8

ThLl INPLET (0,0

HXRXL/XINCS, %

TP (NSKY LY, 2y uSuyyeny

NYSYL/YINGH,S

IF (NSKY, LY, PINSRYYURY

IF(AE L EQAINY ]

IF(O ¥, EQuPInyel

IXHelR2e2

QI57=182

CaLl GSTZE(182)

CALL CHBIZE(CHT,2,)

DiAR X AXIS

CALL PENDN

IFCNLABX) 15,194,158

CALL INPLOT(XL.O.)

G0 YO 4@

Y iRA,wRISTw, p8w2,¢{HT

CALL QSIZE(IxN)

CALL ¥WMa®x

caLy GSIZE(1SZ)

CaLL PENUP

VAL®XVAL teXvaL

XDXwNGYX

10¢
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GECLPL B%0HTw SwXIRoxDY

IF(ALABX,.GT,1) GO fr 18

Yyug,

CALL CHECY C¥SCALE, VAL, ¥X, VAL, RKCOL,NDX)
YiwyYmCHTw(RCOL ) Ix B

CapL IRFLAT(X1,Y1)

CaLl PLYVAL(VAL,NDX)

CALL INPLOT(e,,0,)

TALL PENDN }
D0 33 Is), My
Riay

XxaxTHL*R]

Cali INPLGT(¥X.®.)

Call XMARK

IF{niaex3ga, 9,27

CHECK TO SEE IF WEED TR PLOT wal
IF(ROR (T NGXY NF LU 60 Th 33
CALL GSIZE(1x4)

CALL ¥MaPRx

CALL BSIZE(ISL)

IF(RLARX LF 1) BN TO 25

CaLL PENUP

X1y X=BxCL

CALL INPLOT(X1.Y1}
LIs(20])/NEXw]

IF(LILGT.39) A0 Ty 28
XLBX1sFXLE(LY)

XLUX2RFYLRL{LTY+1}

CALL PLTEXT

ALK ¥LRX)

Gh T0 28 -

IF(MON LT, H8KRE) ,NE,2)60 10 32
CALL CHECK {wySCALE, XVALY, XX, VAL, 3NCOL,R0OX)
XIa¥XwChTe (PNCOLmL, 3o B

CaLL PENUP

CALL INPLOT(X1,¥1)}

Call PLTVaAL (val ,NDX)

CaLL IMPLOT(¥x.8,)

CALL PENDK

CONTINUE

Cal L PENIP

CALL TNPLOT(2,:9,)

no ¥ AxIS

CaLL PFrON

IF(LLABYISP, 45,80

Capl. IrPLOTLR,,¥L)

GO T3 75

Call GSIZECIN™)

CALL YMaRg

CaLL SSTZEC(ISZY

CaLl PFuye

VALWYVAL

vYysp,

CALL CHECR (YRCALE, YVAL, YY VAL, RNCPL,NAY)
X{ap ,m] Sl t W alnTulrnT=uls/is 7?5
ISLIVITE R
CALL INPLOY(R1.2,)

CALL PLTVAL(vaL, N7 Y)Y
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TaLL INPLBT(7,,2,)

Call PENDN

GO 63 Isi,mY

Rl

YYsYINCeR]

Catl INPLET(2,,YY)

CALL YMaRK

IFP (NLARYISS, A5,83

CHECK TD SEF IF NEER TQ PLOT WAL
TF(MOD(INGY) NE, ) GOYD 68
CalL SSITF Iy

CALL YHaRK

Call @517t ¢IsZ)
TF{MADLT, NSRYY] NE, BYGA YD 8%
CaLy CHECKTYSCALE, YVAL, YY, VAL, HHCOL, DY)
Y187, wt BeRNELLOCRTo(MTaRIEZe 29
IFEARS XY, 6T ARS(XIMaX)) Xi"axsx]
CaLl PENUP

CaLl THPLOT(Xi,YY)

CALL PLTVAL (VAL,%0Y)

CaLl INPLOT(2,.7Y)

CaLL PENDH

CONTIalb

CaLlL PENUP

SF& YF GRIf ralLE™ FOF
IF(NGRIDT ®4,170,28
NYANEINGY

TF (RY LE.n) nirEy

MYINYINGY

IF (MY, LE.2) nys!

M B Tel,hx,2

DIRTenGY

XiuXINCe®Y

fALL IMPLUTIXL, %))

faLL PENON

CaLt THPLOT(x{,YL}

CaLl PELF

Lal«l

TFL, T, NXY 47 T BA

Ll eAnY

XyaxIare®

CALL TNFLTY{¥L,YL)

Capi ZENTR

Capp IMPLOT YL, 18

CALL RENUR

CONTIHEF

0 A YEi,e¥,2

PIsTe

YiwyY Lo}

Sapl TRPLET L, Y0

CﬁLL BN

faLy INMPLOT(¥L, Y1)

ALL BE Qe

L=i+1

LR ORI S R

PrmL ey

Y=Y YO e

Ay, INPLET Lo Y DY

PAPER
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CALL PENON

CALL INPLOT(®,,Y1)

CALL PENUP

CONTINUE

IF(NAXTS)95,08,08

CALL INPLOT(XL P.)

CALL PENON

CaLL INPLOT(2,,08,}

CALL INPLQT(ﬂ.oYL)

Call PEND

CaLL INFLOTthcVLS

CALL INPLOT(XL(0,)

PLOT X AND Y DATA

CALL PENUP
IF(JY,LE.2)6070 121

XXX (NT)

YYSY(NT)

IF{vY,LE,0,) GO TO o8
IF(YY,GE,ENDY GO TO 98
CALL PLOT(XX,YY)

CALL OSIZE(ISZ)

NSMENSEMBL (NI}

CALL SYMBOL (NSH)

CALL 3YMBOL (NSMBL}

CALL SYHBL (NSMBL)

CALL PENON

00 128 IWNIT,N
IF(NLINELEC,P) CALL PENUP
¥xux(1)

Yysy (1)

IFLvy,LE.0,) 60 TO 12¢
IFCYY, GE,END) 6O TD 120
CALL PLOT(XX,YY}
IF(NLINE,GT,P) CALL PENDN
NSMeNENBL (1)

CALL SYMBOL (NSM)
IFEMOPCI NEN) LEQ,B) CALL SYMBOL (NSHEL)
IF (MDD (I 4NSK) LEQ, @) CALL SYMBL (NSMBL)
CONTINUE

CaLl PENUP

TF{JY,GT,1) 6O TO 150
IF(NAXTE) 149,148,122
LABEL ABSCISSA

TF(NLARX) 134,130,125
ALRARNVY =%

CHLE]  BsRLonTL

IF(OHL (6T, (XL =¥N)IPAISE 1
X1m(XL=CHLY*, 5

YIND, w, B80S, eLHTuuY
CALL CHSTIZE(KTL,2,)

TaLL INPLOT(X1,Y1)

CaLy PLTEXT

ADR FMTX

LAdEL ¥ ayI§
TF{NLABY) 140, 142,135

CALL CHSTZF(HTL,84,)
RLadir,V1-5

CHLEL  EoR whT

PAGE & c GRAPH OF ¥ V& X O ARITRMETIC PAPER

c

IP(CHL(GT, (YL=¥\)) PAUSE 2
Yiw[YL=CHLY® 5
X1MX1MAY =3, #C8T=HTL
CALL INPLOTIXL Y1)
Capl PLTEXT
ADR FMTY
TESY TO SEE IF NEED GRAFR TIYLE
148 IFINYITLE} 145,159,148
PLOT YITLE
145 CaLL INPLOT(XT,YT)
JFLJY,6T,1360 T0 t5e
IF(NTITLE,GT.Q) GO YO {47
CALL OSIZELISY)

Ce»  CALL §YMBOL (WSMBL)

[

CALL SYMBL {NSHBL)
CALL PERUP
X{aXTe, 1 *RISY
CALL INPLOT({X1.,YY}
147 CaLL CHSIZE(HET,ANGT)
Cali PLYEXT
ADR FHTT
150 CALL INPLOT(XS,/Y3)
WRITEQUT SCALE FACTORS
WRITE(6,4080) YMIN,YHAX,PuY,¥YSCALE

428 PnRMATt;xSHH!N -F1o 2,5%5nMAX ¥F13,2,5X5NPUY sFL2, 2 SAISCALE =

1F12.3)
RETURN
END

€07
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ki
35
L1

S.ERTUTERE Te Cnifw val o A RET MY SF QUL S
TUTINE LedUr OFECAIE v AL, 22, AL R GEIL )
VAL RIIAL2Rs Tl

AT R

IFmZLE, #Y6s 10 20
CORRE Re12 wp(=rn7Y
IFCARSIVALY, L E,009R) nn T4 23
TEQvALY21,P3,¢2

VALSVALwLLR®

a5 TN 24

JALSVELSTORN

G0 T 24

NCOLEZ

vaLe?,

50 YD %e
NEOL*#ALOD I {A8S (VALY)
IF(NCOL) RS, 25,30

NCO{ #2

59 T0 3%

NCOQLEHCOL o2,

IF (VAL LY, B, % NEOLar{OL#y
PNCOLONGOLeNDZ

RETURK

END

tigh

a3
e

w

12
15

SUAPTANRAY Tr Cal{ SCALF FACYIRS

SUBRNUTINE SCal {ZSCALE, ZINE,MGT, ZRAX, 2MIN, 2VAL, 2L ,PLZ,NIND)

TELRINALLY 1) GO TP S

1 TMIN T3 BFLOe ZVaL THEN ADJUST ZyAL DOWMWARD TO EVENTUALLY

INCLHUDE ZMIN IF SINT RF
HAVLRZMINRLY
RyLshRv(

IVaL=RVL¥PUZ
IF(ZMINZVAL) 10, 15,15
TVALSZVAL=PLY

GO 10 &

RuBEZFAX®IVAL
NDIVERNG/PUZ
PRIVENDIV

IMX L RRDIVEPUZOIVAL

IE(ZMX L LT, ZMAX)NDIVRRD IV

ANGIMMGT

REIVeNDIV
ZSCALEWPUTRDIV/TIL
ZINCSZL /A (RDIVSRNGZ)
RETURY

EnD

C SUBROUTINE TO MakE MULTIPLE

12
kid

SUBROUTINE SvuBL (NBVRL)
IF (NSHBL,LT,1?160 TC 19
KaNSHBL /12

LeMOD (NSMBL, 12)

Call 3YMBOL(K}

CALL SYMBOL(L)

G0 Tn 20

CALL SYMBOL(NSMBLY
RETURN

END

SMBL PLNTS IF NSMBL

26T,

12

%0¢
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