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Nonparam.etric Stratigraphic 
Interpretation from Drill Log Data 

U. Loll. A. Ali 

Utah Water Research Laboratory, Utah State University 

Logan UT 84322-8200 

ABSTRACT 

Near surface groundwater contamination is a widespread problem. The 
potential for contamination of deep aquifers in such areas depends on the 
vertical hydraulic gradient as well as the extent and location of interconnection 
between the upper and lower aquifers. In alluvial~ sedimentary environments, 
the geologic units are typically weakly connected lenses or layers of high or low 
conductivity with variable size~ geometry and orientation. Drill logs provide 
qualitative, local information on such aquifer heterogeneities. A binary (high or 
low conductivity) indicator function is used to describe the aquifer system. A 
nonparametric statistical methodology for assessing the probability that a 
particular location in the aquifer has high or low conductivity using drill log 
infonnation is developed. The stochastic behavior of the sedimentary process in 
the vertical is of particular interest. Example applications using data from Lake 
Bonneville deposits in Salt Lake County, Utah are presented. 
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INTRODUCTION 

Drinking water supplies in many areas are developed from deep aquifers. Shallow aquifers 

are often contaminated. As water demand increases, at least locally, hydraulic gradients that were 

historically upward are reversed. Concerns about the likely contamination of the deep aquifers 

consequently arise. In alluvial, sedimentary environments, shallow and deep aquifer systems are 

typically separated by discontinuous lenses or layers of markedly different hydraulic conductivity, 

geometry and size. Preferential pathways of varying size and orientation thus exist for the 

potential movement of contaminants through the heterogeneous aquifer system. Evaluation of 

such heterogeneities is a serious challenge. 

The primary sources of information on subsurface hydraulic properties are pump tests and 

drill logs. Existing pump test methodologies are inappropriate for the identification of subsurface 

heterogeneities since they focus on the estimation of average hydraulic parameters, the aquifer 

response to pumping is damped and is smoothed over the discontinuities in hydraulic 

conductivity. Hence pumping tests can provide only limited information as to the spatial 

variability of hydraulic conductivity. Further, the "inverse problem" of recovering a spatially 

distributed parameter set from a pump test is inherently ill-posed. Drill logs provide only local, 

qualitative stratigraphic information. The classical, geologist's stratigraphic sections based on drill 

logs provide only a smoothed, subjective interpretation of the subsurface. Extracting useful 

information from such data is clearly a challenge. 

We were interested in interpreting drill log information to identify the likely locations and 

extent of areas of high and low hydraulic conductivity. Such an interpretation could be used for 

selecting monitoring locations, designing pump tests, and improving the solution of the aquifer 

parameter identification problem. A probabilistic framework was considered relevant. A binary, 

indicator function was used to categorize drill log sections as areas of high (1) and low (0) 

conductivity. A nonparametric, statistical methodology was developed to estimate the probability 

that a particular location in the aquifer has high or low conductivity. The focus is on the 

description of a stochastic process for lens occurrence in the vertical, and an interpolation of this 

process in the horizontal. Nonhomogeneous Markov and Poisson Process models are used, with 

spatially varying, locally smoothed intensities that are estimated using Kernel methods. Example 

applications using data from Lake Bonneville deposits in Salt Lake County, Utah are presented. 
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BACKGROUND AND RELATED RESEARCH 

The situation of interest is illustrated through Figure 1. The near surface unconfmed aquifer. 

and the deep confmed aquifer have hydraulic conductivities Ku and Kc respectively that are an 

order of magnitude higher than the hydraulic conductivity K' of the intervening aquitard A binary 

classification of hydraulic conductivity (1 for Ku or Kc and 0 for K') can thus be adopted to 

reflect the potential for water flow and contaminant transport. In alluvial, sedimentary 

environments, the aquifer system is highly heterogeneous reflecting the sedimentation and erosion 

history of the environment, which is in tum influenced very locally by prior features (e.g. 

topography, stream locations) and globally by historical climatic epochs. The alluvial aquifer 

system is consequently characterized by lenses and layers of media of rather disparate hydraulic 

conductivity, and of variable size and geometry. The effective degree of hydraulic interconnection 

between the upper unconfmed aquifer and the deeper confmed aquifer depends directly on the 

lateral extent, location and thickness of the high and low conductivity lenses in the strata loosely 

referred to as the aquitard. Our particular interest was in using drill log infonnation to develop a 
preliminary assessment of the potential for such interconnection. Specifically, we were interested 

in a quantitative assessment of the following issues: 

(1) the likelihood that a high conductivity zone may exist at a certain depth in a general area. 

(2) the likely depth of the interface between high and low conductivity strata in a general area. 

(3) the likelihood that a transition from a low to a high or a high to a low conductivity strata may 

take place in a certain area. 

In this paper, these assessments are made directly from drill log infonnation. Integration of 

different sources of infonnation (e.g. pump tests and drill logs) may be pursued in the future. 
Some general comments regarding the attributes of ddlllog infonnation, the binary classification 

of data, scale and identifiability issues are offered in this section. A brief review of past related 

work is also offered. 

It is apparent from the list of interests above that our focus is primarily on the process in the 

vertical. We recognize that groundwater contaminant transport is a three dimensional process. 

However. the concern for deep aquifer contamination, as well as the nature of the available 

infonnation and depositional processes motivate us to look for properties of the aquifer system in 

the veJtical across the smdy area, rather than seeking a general three dimensional reconstruction of 
strata. 
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Drill log data are usually rather imprecise. The driller mayor may not adhere to Unified Soil 

Classification System (USCS), and may not be particularly diligent in recording the information. 

Even if the soil types are properly documented. direct inference of hydraulic conductivities from 

the drill log is infeasible. Johnson and Dreiss (1989) discuss two possible schemes based on 

inteIpretations of the USCS for the binary classification of drill log data into high and low 

conductivity regions. Their table 1 is reproduced as our table 1. InteIpretation (a). highlights 

layers of low conductivity and emphasizes the separation between the high conductivity layers. 

while inteIpretation (b) highlights the spatial structure of zones of high conductivity. Thus the 

choice of the binary classification scheme of material with hydraulic conductivity ranging on a 

continuum may emphasize different attributes of the data. The sedimentary process rarely leads to 

a distinct separation between two layers. The depositional process can be viewed as a time series f~i\l 

where changes are for the most part gradual. Relatively rapid depositional epochs may however 

punctuate such a time series. Such a time setjes is often nonstationary, with clustering of events, 

and variation in rates of deposition. These features are consequently imparted to the deposits and 

hence to the aquifer. 

High permeability 

Indicator=l 

ow, SW, GM, SM 

GP, SP, Ge. SC 

GW,SW 

OP,SP 

InteIpretation (a) 

InteIpretation (b) 

Low permeability 

Indicator=O 

ML,CL,OL 

MH,CH.OH 

OM, SM. ML, CL, OL 

GC, SC, MH, CR, OR 

G. gravel; S. sand; M, silt; C. clay; O. organics; W. well graded, (i.e. poorly sorted); p. poorly graded; UH, 

LowlHigb plasticity. 

TABLE 1. Indicator values for Alternative Interpretations of the united Soil Classification 

system.(Johnson and Dreiss (1989» 

The lesson from these observations is that even though a binary classification system is 

adopted here, one has to be cognizant of the fact that the classification is somewhat subjective, 
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transitions between the two states occur smoothly rather than sharply, and that statistically we 

should expect the lens occurrence process to be nonstationarity in the vertical and perhaps also in 

the horizontal. The above discussion also suggests that there are likely to be multiple scales of 

variation in the lens occurrence process, i.e. one could have fme scale (e.g. em or m) fluctuations 

between high and low conductivity media superimposed on larger scale variations(e.g. 10 or 100 

m) 

The drill hole typically samples the aquifer only t~ a few inches (em.) in lateral extent. The 

horizontal infonnation provided is consequently very local and subject to a high degree of 

variability. Given that the spacing between drill logs may range from a few meters to hundreds of 

meters, one has to be very cautious in essentially extrapolating aquifer attributes between drill 

logs. While, in a sense the drill log provides virtually continuous (in the sense that breakpoint 

infonnation is recorded) sampling in the vertical, drill holes may be arbitrarily scattered over the 

study area. Note that the data developed by the binary classification scheme reflects a 

discretization at· a thickness commensurate with computational resources available and some 

assessment of the scale of variation in the vertical that is of interest to the investigator. With 

regard to spatial interpolation we note that in general one cannot expect to resolve variation at 

scales finer than the observational scale (in the horizontal, and in the vertical). 

Our discussion thus far suggests that an atteinpt at a recovery of the stochastic structure of 

variation in the vertical, followed by an interpolation of the parameters of such a model in the 

horizontal may be superior to a direct attempt to interpolate the binary information in all three 

dimensions. Lattice models (Cressie, 1991, Chapters 6 and 7) are sometimes used to study spatial 

variability. We found the majority of such models unattractive for our problem upon comparing 

the assumptions on stationarity and underlying Gaussian or other pre-specified structure with our 

conceptual observations above. 

A problem rather similar to the one considered in this paper was studied by Johnson and 

Dreiss (1989). We refer the reader to their paper for other work in the same general area, that is 

less closely related to the objectives of our paper. They used indicator Kriging to interpret drill log 

data sets to reconstruct the three dimensional spatial variability of sedimentary environments. 

Indicator Kriging (Journel, 1983, 1989, Isaaks and Srivastava, 1989) is a stochastic interpolation 

procedure, that interpolates the binary indicator data to effectively assess the probability of 

exceedance of the threshold used to originally classify the data into the binary scheme. Kriging 

entails tWo primary activities. The first is the inference of an appropriate variogram from the data, 
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and the second is the use of this variogram together with the data to develop a Best Linear 

Unbiased Estimate (and its mean square error) of the parameter of interest at a given location. 

Second order stationarity of the increments of the spatial random field is typically assumed. While 

Kriging is de facto synonymous with geostatistics. critical reviews of its strengths and 

weaknesses are offered by [Yakowitz. 1985] and by Owosina et al (1992). In the three 

dimensional spatial estimation situation considered by Johnson and Dreiss (1989) we question (1) 

the ability to effectively identify the correct variogram from the data, (2) the ability to address the 

nonstationarity and stochastic anisotropy of the process, (3) the ability to estimate the mean 

square error (MSE) of estimate given that the variogram is incorrect. and (4) whether the striking 

differences in sampling density in the vertical and the horizontal are properly accounted for. The 

variogram is critical for effective Kriging. Johnson and Dreiss report that (1) they used a three j~!i 

dimensional. nested, spherical variogram, (2) the range of the variograms estimated by them for 

their data was very sensitive to the orientation of the search plane reflecting a marked anisotropy 

in the data, and (3) the nugget was a relatively large fraction of the sill, suggesting weak 

observational scale dependence. Issues related to nonstationarity of the field were not addressed 

by them. From the discussion in Owosina et al (1992) we note that (1) the identifiability of the 

correct variogram from a set of parametric choices is poor even in the two dimensional. isotropic 

case, (2) the correct fonn of the variogram can give the right estimate. but with the wrong mean 

square error, (3) an incorrect variogram can lead to a total breakdown, and (4) the choices (IRF 

and Universal Kriging) in the nonstationary case are hard to successfully implement [yakowitz, 

1985] and Owosina et al (1992) propose Kernel regression methods as a nonparametric 

alternative to Kriging. We note that Joumel (1989) advocates a nonparametric approach (in his 

view Indicator Kriging instead of Ordinary Kriging) for spatial estimation problems. In this paper 

a nonparametric estimation framework is developed that addresses ( in the context of our 

objectives) some of the objections raised in this paragraph. 

METHODOLOGY 

Two separate, nonparametric models are developed and presented. The first model (NMP) is 

an extension of a nonhomogeneous Markov process based on counting processes pioneered by 

[Aalen, 1978]. It is used to estimate the intensity of transition between two states (e.g. low to 

high conductivity) at a given depth and related measures such as the transition probability 

(integrated intensity over an interval). The second model (NPP) is a two stage model, that treats 

the occurrence of high conductivity material as a nonhomogeneous Poisson process in the 

vertical, and then uses a local regression scheme to estimate the rate of the Poisson process at any 

given depth at a location of interest using the rates estimated at the first stage at each of the drill 
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sites. The formulations (NPP-I) and (NPP-2) are presented for this model. This model may be 

used to estimate the probability of high conductivity material over a user specified interval in the 

vertical at any location within the study area. Both models are nonparametric and employ kernel 

function estimators. They differ in their structure and implementation. 

ModelNMP 

The general approach here is to model the process of transitions between the two states (high 

and low conductivity) in the vertical as evident from the drill log information. An estimator that 

smooths the transitions recorded in the drill log counts in the vertical and in the horizontal is 

developed. Our development of this model has been directly influenced by [Keiding. 1989] who 

based their work on Danish hospital admission and discharge data on the developments in [Aalen, 

1978]. We follow their notation for the most part. Let us presume that we sample each drill log 

over an interval 0 to ~ at a spacing dz (say I), thereby creating a data set oflength (n*nz), where 

n is the number of drill logs. and nz (=Zldz) is the number of observations generated in the 

vertical. To allow for surface topographic variations, and variability in the depth drilled at each 

hole, this index set and number of observations nz would need to be properly adjusted. 

The two states of the Markov Process are I corresponding to high conductivity and 0 

corresponding to low conductivity. We are interested in the transitions in the vertical between 

these two states. To ease the presentation, we shall first consider statistical homogeneity and 

complete spatial randomness in the horizontal. In this case, the statistical attributes of the aquifer 

are the same at any location in the study area, and vary only by depth. Depending on the relative 

observational and study scales, this may not be unreasonable for some situations. Also for non 

point soUrce contamination of the upper aquifer, one may simply be interested in an areal average 

probability of high conductivity sections of the aquitard at some depth. 

Define Y I (z) as the total number of drill logs recording state I at depth z, and YO(z) = n(z) -

Y I (z) as the number of drill logs in state 0, where n(z) is the total number (out of n) of valid drill 

logs at the depth z. Derme counting processes NO I (z) and N I O(z), that count the number of 

subscripted transitions in [O,z]. Assuming that Y k(z) > 0 for all z, (Le. a transition is possible out 

of state k), one can derme the following: 

~(z) 
z 

= J a (u)du 
o kl (1) 



A~(z) 
J 

z 
= I dN (u) I Yk(u) 

o k:l 

k:l m. 
= L J 

z7~zYk(zr) 

7 

(2) 

where Ak:l(z) is the integrated transition intensity from state k to state I, from 0 to z, uk:l(z) is the 

k-I transition intensity at depth z. z!:I is the jth depth at which a k-l transition takes place, and m~ 
J J 

is the number of such transitions (generally 1). 

IfYk (z) is zero for some z, no drill logs are in state k at depth z, and obviously a transition 

out of state k at depth is not possible. Also, the transition probability into state k at depth z is 

zero. Only transitions l-k and I-I need to be considered at depth z in this situation. 

(3) 

where h is a bandwidth. K(u) is a kernel function, and u=(z-2jkl)lh. 

The kernel function is a symmetric probability density function, that has the role of a weight 

function in this context The transition intensity at z is estimated through a weighted average of 

the relative number of transitions in a neighborhood of z. that is determined by the bandwidth h. 

As the bandwidth increases, one averages over a larger interval and the variance of the estimate 

decreases, while its bias increases. Silverman (1986) presents a very accessible monograph that 

focuses on kernel density estimation and on problems similar to the one posed here. Silverman 

shows that the choice of a kernel function is not critical in terms of the mean square error of 

estimate. The choice of a kernel function can thus be based on other criteria such as computational 

and smoothness considerations. It is desirable to use kernels with compact support (i.e. defmed 

on a closed interval, e.g. [-I, I]) to minimize boundary effects in our situation. Boundary effects 

arise because at the boundaries (O:S z:S h, and Z-h:S z:S h), we do not have a full complement of 

observations on both sides of the point of estimate. This leads to a biased estimate unless the 

symm~tric kernel used in the interior is appropriately modified. The kernel used in the interior by 

[Keiding, 1989] is the mean square error (MSE) optimal kernel given by Epanechnikov: 

: ,. 
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K(u) = 0.75 (1 - U
2) if lui ;S;;1, 0 else (4) 

This kernel has discontinuous derivatives at the ends of its support, leading to discontinuous 

derivatives of the estimated function. One can alternately use the bisquare kernel to address this 

issue, without much increase in the MSE. This is given as : 

15 2-.2 
K(u) = 'i6(1-u ) 

(5) 

[Keiding, 1989] used a method to adjust for boundary bias that is due to [Gasser, 1979 ]. 

However, one can use boundary kernels given by [MUller, 1991], or use reflection to account for 

boundary effects. Reflection augments the data set by reflecting points across each boundary (e.g. 

Zi is augmented by -Zi - reflecting across the boundary at 0). The real and the reflected data are 

then used to form the estimate, with modifications to recognize the increased sample and domain 

size. Reflection is appropriate if the derivative of the target function is zero at the boundary across 

which reflection takes place. MUller's (1991) boundary kernels are derived from asymptotic MSE 

minimization considering the asymmetric neighborhood of estimation. MUller's boundary kernels 

corresponding to the two kernels given above are : 

Left Boundary Epanechnikove kernel 

I 1-q 2 1-q. I 
IS ft(q,u)=6(1+u)(q-u) 1 3 ~ 1+5(1+q) +10(1 )2 u} 

e (1+q) l +q J 

Left Boundary Bisquare kernel 

I I 
K (q,u)=30(1+u)2(q-u)2 1 ~1+7(11-q)2+14 1-q 2u } 

left (1 +q)5 I + q (1 +q) I 
Where: 

z-Zj 
U=-

h 
q=~ 

Right boundary kernels are defined as: 

Kright(q,u)=Kleft(q,-u) 

(6) 

(7) 

(8) 

In general the reduction in boundary bias by modifications of the estimator is typically offset 
~ by an increase in variance, and one should be cautious in interpreting results in the boundary 
lili region. 

:~I 

U 

- i r .. 
l' ,'* 

The bandwidth h may be selected by minimizing the Mean Integrated Square Error (MISE) 

through cross validation (see Silverman 1986, Rarnlau-Hansen, 1983 and [PatH, 1992]) : 
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Zl 

MISE = E f rlX{z)- o;{z)]2 dz 

Zo (9) 
over an interval [ZOo zl] that excludes the boundary region. The MISE is estimated through cross 

validation as: 

where: 

where: 

(2) T.I -t=l T.I -z z- t=l 
K (I J ~ = K(_i_ ).K( j ) 

h h h 

~A 1 ~ ~ ~_Z:l m2(~) 
~fI:iZ;.) = h(n-l) ~ .L. K( h )._.2 -kI . 

1 1=1 J=I:1!i I k(Z,j ) 

(1O) 

ell) 

(12) 

(l3) 

This yields a global or fIxed ban~width for the estimator. One can select local or variable 

bandwidths that depend on the intensity and location as well (see for example. [Miiller and Wang. 

1990 ]. and [Abramson. 1982 ]). 

The transition probabilities can be evaluated by using the basic idea that follows from the 

state transition probability for a Markov chain is that: 

Let Yk(21) is the total number of drill logs recording state k at depth zl 

Let Mkl{Zi) is the number of drill logs recording state k at depth zl that changes to state 1 at 

depth z2. then a one step transition can be described as: 

Pkl{21.Zi+l) = Mkl(Zi) , Yk(21) 

A two step-transition is described as: 

Pkl(zl' z3) = probability (in state 1 at depth 21+3' in state k at depth 21) 

= P cc{Zi.Zi+ l)*P cs{Zi+ 1·21+2) + P cs(21.Zi+ I )*P ss(zi+ 1·21+2) 
Generally. two state n-step transition probability matrix can be described by the following: 

~iH 
.': 

it , " 

: ,j 

. I 
' . ..-1 
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n 

~( ZI' Zn) = IT (I+A~(Zi» 
i=l (14) 

where 

I ~ 1- yJ,) 
A 

I+AA(z.) = 
1 I ~. 

I Yt (z.) 
(15) 

Example applications and implementation details of the above approach are presented in the 

section on Model Applications. 

The one dimensional model of [Keiding, 1989] that has been presented so far can be extended 

to the spatial case in the following manner. Conceptually, the model thus far does a simple 

average of all transitions in the study area and a weighted average or smoothing of transition 

counts in the neighborhood of z in the vertical.. The estimator for transition intensity is thus local 

in z but just a global average in x,y. The generalization we consider still focuses on transitions in 

Z, but allows the transition intensity to vary over the location in the x,y plane. We employ the 

kernel function again to develop a local average at (x,y) in a manner similar to the smoothing in z. 

Conceptually, this boils down to defining an area in the neighborhood of the point (x,y) at which 

the estimate is needed and using that data to develop the local estimate. We can estimate the 

integrated transition intensity as : 

A~ (z) 
J.x 

n 

=L L 
i=1 Zkl 

• :S;Z 
J 

kJ 
n m .. 

= ~ ~ J.l w(x x h) L..J L..J. ~ ••• x 

~ . 1 A Z I 
< Z 1= P'Yk(') 

j - 1 J (16) 

where Kx(u) is a bivariate k~mel function defined over (x.y), 0i is an area (e.g., obtained by 
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Dirichelet tessellation) around the drill site Xj that contains only that location, x represents a 

vector with coordinates as (x,y), hx is a bivariate bandwidth vector, Pi is a factor that ensures 

that the count Y k(z) is based on the drill sites that are effectively considered in the estimation, u is 

given by a modified (scaled by each coordinate bandwidth) Euclidean distance between x and a 

drill site Xi, and w(x, Xj. hx) is a weight function obtained by integrating the Kernel over the 

domain ni. 

The bivariate kernel Kx(u) may be taken to be a bivariate Gaussian kernel with covariance 

matrix Sx chosen to be the same as the sample covariance matrix for the location indices (x,y). 

This choice recognizes the orientation and relative spacing of the sampling locations. In this case 

the bandwidths are specified through a matrix hx that is proportional to the covariance matrix Sx 

(Le. hx = hoSx). Alternately • a bivariate kernel can be developed as the product of two 

univariate Epanecbnikov or Bisquare kernels with different bandwidths in each direction. 

Procedures for the selection of the bandwidth in this context may be found in [MUller, 1987; 

Miiller, 1988]. 

The use of the kernel function in the above expression serves to localize the estimate to the 

neighborhood of the point at which the estimate is desired, since it vanishes beyond a bandwidth 

of the point for a kernel of compact support. The approach here is kernel regression using the 

Gasser-MUller estimator. For a discussion of this and other kernel regressors see Owosina et al 

(1992). Alternate representations for the above equation that do not entail the triangulation needed 

for defining the area ni can also be developed. Essentially these lead to a modification of the 

manner in which the weight function w(x, Xi, hx) is specified. Following the development above 

it is easy to see that the transition intensity and transition pr~babilities at a point x,y may be given 

as in terms of w(x, Xi, hx): 

n (z-t:) m~l 
& ~(Z) = I ?, ~ Kz + ~ w(x. xi,hx) 

Z'd~ 1=1 z z Y ( . 
j k J (17) 

giveeqns 

The bandwidth selected would be different depending on whether, Akl or <X.kl is to be 

estimated. However, the criteria for bandwidth selection is the same in each case. Where the 
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bandwidths h in (x,y,z) ar~ estimated using cross validation, the computational burden can be 

significant We have not yet pursued such an implementation. We note that the model considers 

transition intensities through a smoothed counting process in the vertical, and that a Markovian 

dependence structure is considered in the vertical. The process in the horizontal considers just a 

local (in the horizontal) estimation of this Markovian dependence structure. Thus the model 

presented is still a one dimensional model, with areally heterogeneous parameters. The scale of 

the horizontal average is dictated by the bandwidth hx. However, note that since the kernel 

function Kx(') has m~ concentrated at the origin, the effective scale of such an average is 

considerable smaller, and as n~, the areal average approaches the point value. We mention this 

to suggest that the estimator proposed is asymptotically consistent An approach to the above 

process that is computationally less demanding is to derme the weight function w(x, Xi, hx) as 1 

if Xi belongs to the pth nearest neighborhood of x and 0 else. The pth nearest neighborhood of X 

is defined as the set of p closest Xi to x, where closeness is measured in terms of a distance 

metric (e.g. d(x,xj) = :l:m1xm-xm,il, where mis a co-ordinate direction). The number of nearest 

neighbors may be chosen by minimizing a MISE criterion, or more simply using a heuristic such 

as p = "'n. The number of neighbors p plays the role of the bandwidth in the kernel smoother 

(mdeed this procedure is equivalent to using a rectangular kernel with p=2nh). A small p leads to 

higher variance and a large p to larger bias. However, in our experience there is a range of p 

values for which the estimator is relatively insensitive to the actual choice of p. The above 

heuristic for picking p wodes reasonably well for the most part Notice that this scheme leads to a 

direct local average using moving and different sized (in x space) neighborhoods. 

In the presentation above we have considered estimation of transition intensities for 0 S; z s; Z. 

with transitions considered only in the direction ~z. This follows from the perceptual bias that 

we are interested in what happens as we go deeper into the aquifer. Clearly transitions in the 

direction Z~ may be considered just as easily. This would make more sense if for example one 

is interested in the time series of sedimentation as evidenced by the depositional sequence. 

ModelNPP 

An alternate formulation based on treating the occurrence of high conductivity layers in the 

vertical as a nonhomogeneous Poisson Process is now presented with reference to Figure 2. The 

general structure of Model NPP is to first estimate the rate A(Z) of an inhomogeneous Poisson 

process as a function of depth Zji at each drill log site Xi. The next step is to use the data set 
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(i(Zji)' Zji ,xi> j=1. .. nci' i=Ln) to estimate i(z) at any arbitrary (x,z) using nonparametric 

regression. The inherent assumption is that the drill log sequence at all the sites is the 

consequence of a large scale (larger than study area) depositional time sequence that is 

nonstationary in time (hence the variable Poisson rate in the vertical), with local (areal) variability 

in the sequence captured by each drill log. The nonparametric regression of the rate parameter 

over the domain then recognizes any structure (e.g. that imparted by existing topography at the 

time of deposition) in the spatial variation of the depositional process. No~ that all i(2'ji) values 

are used to estimate i(z) for any z at a point x at which an estimate is desired. However, 

information from neighboring sites is not used to estimate i(Zj) at a drill site in the first stage of 

the process. The two phase approach, and the consideration of only a vertical rate is necessitated 

by the fact that we have continuous sampling only in the vertical at a finite set of locations, and 

hence the there is inadequate information for characterizing a spatial point process in the 

horizontal direction. 

We begin our discussion with a brief review of point processes that is relevant for our 

presentation. The point process formulation relative to our problem is then presented. A 

nonparametric technique for estimation of the rate parameter at locations other than the drill log is 

then briefly discussed. 

The Poisson process is the cornerstone on which most of the theory of spatial point processes 

is built A spatial point process is a stochastic mechanism which generates a countable set of 

events or points in an interval, plane or volume. While a three dimensional situation is of interest 

to us, the sampling of the process is really continuous only in the vertical at each drill log. Since 

we can only observe the point process at these discrete locations, and because our interest is in the 

migration of contaminants in the vertical, the spatial point process model of interest is constructed 

only in the vertical and then its parameters are interpolated in the horizon~. 

The homogeneous Poisson Process represents a situation in which occurrences of the event 

of interest are completely random, independent and uniformly distributed over the space of 

interest Given the discussion earlier on the nature of sedimentary processes, it is unlikely that a 

homo~eneous Poisson process is an appropriate descriptor for our problem, since it does not 

admit clustering of events, and assumes a constant rate of event occurrence over the domain. It is 

I ", 
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however. interesting to note from Cressie (1991). that finite samples from a homogeneous 

Poisson process can exhibit apparent clustering. since the probability density of the frrst nearest 

neighbor distances for the Poisson process is the Chi-Square, which has a substantial mass near 

zero. We shall focus on the development of an inhomogeneous or doubly stochastic Poisson 

process that admits a variable rate of event occurrence. Cox and Isham (1980) define such 

processes and discuss parametric specifications of the rate of such a process. They point out that 

.. i parameter estimation and description of buch processes is very difficult in a finite domain. 

... ) 
! 
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However, Diggle (1985). Diggle and Marron (1988), and Solow (1990) present theoretical 

developments and applications of effective nonparametric methods for describing the rate of the 

inhomogeneous Poisson process using a finite sample. This is the approach we pursue in this 

paper. Rather than presenting an extensive review of stochastic processes we refer the reader to 

Karr (1986), Cox and Isham (1980) and Diggle (1983) for background on point processes and 

Poisson processes. 

At frrst glance, the rationale for a point process model for alternating layerS of high and low 

conductivity from a continuous drill log may not be obvious. since the events of interest are 

intervals and not points. However, we see that actually two constructions are possible. 

Model NPP-l 

Thefirst construction termed NPP-l, is formed by focusing on the interface between each 

layer or the transition between layers. The description of the process is accomplished by looking 

at the count of such transition over the vertical, and by noting the type of the layer at the surface 

(i.e. the frrst layer). If the first layer is of type 1, it is obvious that the layer after an odd number 

of transitions is of type O. and after an even number of transitions is of type 1. If a sequence of 

transitions occurs at distances z l' z2, ... Zj ••• from the surface, and one knows the type of each 

such layer. clearly (Zi - Zi-l) gives the thickness and type of the layer preceding the ith transition . 

We notice the parallel with the renewal model construction in the previous section. In that case we 

focused on the probability or intensity of a transition at a particular depth. In that case we 

estimated these quantities by averaging across drill logs and using kernel smoothing in the vertical 

for a drill log. In this case we shall estimate the transition intensity by counting the transitions in 

the vertical for each drill log, and using kernel smoothing as before. The averaging (or in this 

case, variation) across drill logs is done in a separate step. Thus, the two models are 

li philosophically very similar, but are cast in somewhat different estimation frameworks. A 
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discretization of the vertical is employed in the renewal model, but is not needed in model NPP-l. r;;;; 

A comparative discussion of the attributes and performance of the two approaches is presented in 'Y:.; 

the fmal section of this paper. 

At a drill log, the intensity function of the nonhomogeneous Poisson process is defined as 

(Diggle , 1983): 

'l( ) -li E[N(dz)] 
II. z -~~ dz 

where N(dz) is the number of events in an interval dz. 

For a homogeneous Poisson Process, A,(z) is a constant rate A defined as the average number 

of transitions per unit distance. For the inhomogeneous Poisson process following Diggle (1985) 

we can estimate A,(z) through kernel smoothing as follows: 

nt, Z-Z 

1 1 ( ") ~ ,(z) = I,-K ---.!. 
1 j=l hi hi (18) 

with 21.j defmed as a transition depth, hi as a bandwidth, and K(u) as a kernel function, and nti is 

the total number of transitions at drill site i. 

Equation 18 above can be readily interpreted as a weighted average of the transition rate over 

a distance 2h centered about the point at which the estimate is needed. For a constant underlying 

rate the bandwidth h should tend to infinity, while for a high degree of fluctuation in the rate, h 

should tend to zero. Practically, for a finite domain, our ability to recover the underlying rate 

depends on the length, (21), of the domain and the number of transitions (nlj) encountered ( nlj 

large relative to 21 is the most identifIable situation). Clearly if we have only one transition from 

high to low conductivity layers. or none at a drill log. no estimation is possible with this model. 

Diggle and Marron (1988) show the equivalence between kernel intensity and kernel 

probability density estimation. They show that the same bandwidth is optimal for both under a 

Mean Square Error criterion. This makes the vast literature of bandwidth estimation for kernel 

density estimates accessible in this case. We considered Maximum Likelihood Cross Validation 

(MLCV), Least Squares Cross Validation (LSCV) and the Sheather and Jones (SJ) methods for 

, 
~ 4 •• J 
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bandwidth selection. The two cross validation methods are the traditional favorites. However, 

they suffer from a tendency to undersmooth and from a high degree of variability leading to an 

MISE convergence rate of O(n-lIl~ which is substantially worse than the 0(n-1I2) rate promised 

by the SJ algorithm. A comparative review of these algorithms may be found in Owosina et al 

(1992). 

A number of bandwidth selection methods have historically been used to guide kernel density 

estimates. Cross validation methods (Maximum Likelihood and Least Squares Cross Validation, 

see Silverman (1986), section 3.4) were popular in the 1980's. However, these methods are 

prone to undersmoothing. and a suffer from high degree of sampling variability, leading to rather 

poor MSE convergence rates (0(n-1I1 ~ for the kernel estimator (see. Hall and Marron (1987». A 

resurgence of interest in "plug in" or recursive estimators for h, that use data driven kernel 

estimates of the probability density f(x) and f'ex) for determining the optimal bandwidth has 

followed Such methods were originally proposed by Woodroofe (1970). and pursued by Scott et 

al (1977). Scott and Factor (1981) and Sheather (1983. 1986). Improvements by Park and 

Marron (1990), and Sheather and Jones (1991) among others" have lent stability to these methods 

and have led to a MISE convergence rate of hopt of the order of n-5/14, as well as a reduction in 

the size of the constants associated with this rate. In our tests, the Sheather and Jones algorithm 

generally outperformed the other methods. with a tendency to slightly oversmooth, rather than 

undersmooth. The latter is a positive aspect, since it reduces the possibility of observing spurious 

J structure in the estimated p.d.f. and leads to reduced variance of estimate. Note from 3.3 that 

increasing h, increases the bias, but reduces the variance of fn(x). 

The MISE of the fIXed kernel estimator and the corresponding optimal bandwidth are given by 

1 Silverman (1986), section 3.3 as: 

~ :.' ., ~
.~ 

~. 

Tn U 

MISE(fn(z» = (nhf
l 

R(K) + 0.25 h 4aiR(f') 

h = {R(K)/(clR(f")}1I5n-1I5 
opt K 

where R(g) = Jg2(z)dz and ~ = Jz2g(z)dz 

(19) 

(20) 

The tenns R(K) and c{ depend only on the known kernel K(z). Consequently. the unknown 

term in (19) and (20) is R(f'). Sheather and Jones develop a recursive kernel estimate Sea) for 

R(f') as: 
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-I 5 D D iv 
Sea) = {n(n-I)} a- LL K «z-ZJ/a) 

i=1j=1 1 (21) 

where a is a bandwidth (not equal to h), and Kiv (.) is a fourth derivative kernel. 

The bandwidth a needs to be estimated for this estimate. A similar procedure can be reapplied 

for the purpose. Sheather and Jones relate the bandwidths a and h as 

a(h) = 1.357 "{S(a)ff(b)} Inhsn (22) 

where 

-I -7 n D vi 
T(b) =- {n(n-I)} b LLK «Z.-Z.)/b) 

i=lj=1 1 J (23) 

-In -119 
a=O.92A.n and b=O.9I2A.n (24) 

Kvi is the sixth derivative kernel, and A is the sample interquartile range (Zo.75 - Zo.25)' T(b) is 

an estimate of R(f") and a, b are bandwidths that are evaluated with reference to a Normal 

distribution for the derivative kernels considered. 

Note that relatively crude estimates (with reference to a known distribution) of the bandwidths 

used in estimating R(f') and R(f',) suffice given that the dependence of the MISE expression (20) 

on these expressions is successively weaker (note the exponents). The optimal bandwidth hopt is 

now evaluated by computing a and b from the data, evaluating Sea) and T(b), and substituting the 

expression 23 into 22, and 22 into 21. This leads to a nonlinear expression in terms of h, which is 

solved using the Newton Raphson method. Sheather and Jones specify the Normal kernel for 

K(.) and evaluate the derivative kernels as the appropriate derivatives of this kernel. 

From 21 observe that knowing the optimal bandwidth hN for the Normal kernel, the optimal 

bandwidth hK for a kernel different from the Normal kernel can be readily evaluated as: 

~ = {(R(K)cr~)/(cr~R(N»} 115 ~ 
(25) 

I 
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where "Nil identifies the Normal kernel. and "K" the kernel of interest 

As in the case of the renewal model the kernel estimator is plagued by boundary bias 

problems. Solutions similar to those adopted in the previous section are necessitated. Diggle 

(1985) suggests essentially normalizing the estimator to reflect the area of the kernels "lost" 

outside the boundaries. Solow (1990) and Diggle and Marron (1988) advocate reflection. We 

considered reflection as well as the Miiller (1991) boundary kernels. 

Once the intensity function has been estimated as described above. one can interpolate or 

regress it to other lateral locations. This scheme is described at the end of this section for both 

formulations considered. At this stage we point out, that additional information is also needed 

with this formulation to complete the description. Let us say that we have used the the n drill logs 

to estimate the intensity function of transitions at"an arbitrary point x in the spatial domain. One 

still needs to specify the type of the first layer in the vertical sequence at x. This can only be done 

probabilistically. One possibility for assessing the probability that the top layer is of a certain type 

is to consider a nonparametric regression of the data set with dependent variable defined through 

the binary process bi (1= high. O=low conductivity layer). and the independent variable as the 

drill site locations Xi. The estimate b(x) then gives the probability that at location x. the top layer 

is of type 1. The transition sequence dermed at site x is then valid with probability b(x). The 

sequence is reversed with probability I-b(x). 

Model NPP-2 

Cox and Isham (1980). point out that a special form of the doubly stochastic or 

inhomogeneous Poisson process is obtained by considering that the point process of interest 

alternates stochastically between a rate of 1 and a rate of 0, i.e a section where the rate is I, and 

one with no points. Their example is of a component of some system that alternates between 

periods of use and idleness. The parallel of this example with our situation is obvious. To 

advance an estimation framework, consider as in the renewal model a discretization of the drill log 

over an interval 0 to Z, at a spacing dz (say 1), thereby creating a data set of length (n*nz), where 

n is the number of drill logs, and nz (=ZJdz) is the number of observations generated in the 

vertical. Now we have nz binary (lor 0) values at each drill log representing whether that dz 

thickness is of type I or O. Convert this into a data set recorded as zI' z2' ... zi ...• where Zj 

records the depth of the ith location that was coded 1. Essentially we are defining each occurrence 

of a type 1 element of thickness dz as an event. Note that in reality dz is an interval and not a 

point. This scheme shall thus have the unfortunate attribute of being dependent on the 



19 

discretization adopted in the vertical, with equivalence to a formal point process only in the case 

where dz approaches O. However, note that the special construction of this point process, 

considers the rate to simply alternate between 0 and 1. Thus, if we classify dz as type 1, what we 

are saying is that all points in dz are of type 1. i.e. the rate is 1, which is precisely what we get if 

we use the interval dz. The assumption of concern in that case is whether each such interval dz is 

homogeneous. Subject to the accuracy of the drill log, we conseq\lently need to ensure that the dz 

selected is somewhat smaller than the thinnest uniquely identifIable layer. Noting the subjectivity 

involved in interpreting drill logs this may not be a serious issue. We also note that in contrast to 

Cox and Isham's example our construction shall allow rates between 0 and 1 in areas of transition 

from one type of layer ot another. The transitions considered are smooth rather than abrupt We 

feel that this is appropriate given that there is often a gradation of materials rather than abrupt 

changes, materials of mixed grades are being classifIed into only two distinct classes. and a 

discretization is adopted for the classifIcation. 

The NPP-2 intensity function is estimated in exactly the same manner as that for NPP-l. using 

equation 18. The difference is in the interpretation of the two intensity functions. The NPP-l 

intensity function gives the rate of transitions in the vertical between the two types of media 

considered. The NPP-2 intensity function gives the rate at which type 1 material is observed. Its 

complement gives the rate at which type 0 material is observed. NPP-l suffers from low sample 
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size if a drill log has very few transitions. NPP-2 uses the same information always through nz "j 

values. and does not suffer the same malady. Also, for NPP-2 one does not need to estimate the 

probability of the vertical sequence at an unsampled point x, as was the case for NPP-1. Note that 

the differences between the models presented are really in terms of the estimation framework and 

not so much for the conceptual representation, which considers a stochastic structure in the 

vertical and a deterministic structure in the horizontal. 

Spatial Extrapolation of DriU Log Intensity Function: 

The situation of interest for spatial interpolation of the rate parameter estimated at each drill log 

is illustrated in Figure 3. The data available at this stage is the Poisson rate evaluated at a number of 
elevations at each drill log from the previous step. A fIner discretization may be employed at drill 
logs which exhibit a high degree of variability than in those that are essentially all sand or clay. If 

contours of A(Z) are desired, estimates may be considered at the nodes of a 3 dimensional grid as 
shown in Figure 3. Such estimates are developed by effectively considering weighted spatial 
moving averages' of the drill log estimates through nonparametric regression. 
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Cleveland et al (1988) and Cleveland and Devlin (1988) developed weighted locally linear and 
quadratic regression. The estimator proposed by them considers local linear or quadratic fits using 
k nearest neighbors of the point at which the estimate is desired. The idea is related to the 
developments in Stone (1975) and Cleveland (1979). 

Cleveland et a1 (1988) consider the standard multivariate, nonparametric regression situation 
defmed through the general model 

(26) 

where g(x) is the regression function or conditional expectation. and Ei is assumed to be a 

nonnally distributed residual. 

An estimate g(x) is developed nonparametrically (in the global sense) by a weighted local 
linear or quadratic least squares regression in the neighborhood of x defined by its k nearest 
neighbors. The locally quadratic model fitted locally is : 

A A 
g(x) = T ~ (27) 

where 8 is a (1+p+p2) x 1 coefficient vector, and T is an n x (1+p+p2) matrix with entries given 

by: 

T= 
2 

1 z(l)n •.. z(p)n z(1)n 

2 
••••• Z(P)t 

(28) 

For the locally linear model, the last p2 coefficients in 8. corresponding to the quadratic tenns, as 
well as the corresponding elements of T are dropped. Further note that only the subset of T. that 

A 
corresponds to the Xi that are the k-nearest neighbors of x is used for the estimation of (} . The 

1\ 

coefficients (} are determined as the solution to a weighted least squares problem defmed as: 

2 
Min 2. w.(z) (y. -g(ZJ) 
~ i cK(z) 1 1 1 

(29) 

where K(x) is the index set of the Xi that are the k nearest neighbors of x, and wi(x) is a weight 

function defmed as : 
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(30) 

where p(.) is the Euclidean distance function. dk(x) is the Euclidean distance from x to its kth 

nearest neighbor in xi' and W(u) is a tricubic weight function given as: 

(31) 

In summary, Cleveland et al (1988) propose a weighted local linear or quadratic regression. 
on 'the k nearest neighbors of the point of interest. with a tricubic weight function applied to relative 
distance of the nearest neighbors from the point The number of nearest neighbors. k. acts as a 
smoothing parameter. As· k increases. bias increases, but variance decreases. Also, the locally 
linear model (r=I) leads to higher bias. and lower variance relative to the locally quadratic model 
(r=2), since there is a lower order approximation, but the number of degrees of freedom of the fit 
increases. Thus the fit determined by Loess depends on the choice of the number (k) of nearest 
neighbors and the order (r) of the fit Cleveland et al (1988) propose a graphical method, based on 
analyzing an M-plot for the selection of both these parameters. 

Loess is a linear estimator. i.e. it depends on Xi. W, p. r and k, but not on Yi- The 

dependence is expressed as: 

1\ D 
g(z) = Il.(z)y. 

i=ll I 

The sqtistic of interest is a scaled version of the mean square error given as: 

M = 
Ik 

2 
where E denotes an expectation aDd (1 is the variance estimated as 

(32) 

(33) 
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(34) 

(35) 

Cleveland et al (1988) note that (33) can be written in terms of a bias and a variance 
.J contribution following standard arguments, as: 

j 
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n 1\ 2 
~ (E grt (Xi) - g(xi» T 

= 1=1 + trace [L L ] 
1\2 d d 
(J ~ 

Under the assumptions that Loess is unbiased and the residuals are normally distributed, the 

approximate distribution of Sqrt(Mrk) is obtained as a t distribution with CJl2/CJ2 degrees of 

freedom. Cleveland et al (1988) propose a plot of Mrk versus V rk' to choose r and k. Confidence 

limits on Mrk are also plotted under the assumption that the estimator is unbiased (i.e. Brk = 0). 

The plot thus allows us to examine the relative role of bias and variance in the fit, where Vrk may 

also be interpreted as the equivalent degrees of freedom of the fit Cleveland et al (1988) suggest a 
visual assessment and choice of values of r,k from which the bias or the variance component 
increase rapidly. They are opposed to choosing r,k on the basis of simply minimizing Mrk or 

other formal risk criteria. 

The most clever aspect of Loess is perhaps the Cleveland et al implementation that aims to 

reduce the computational burden drastically. They partition the space of independent variables 
using an algorithm based on p-d trees due to Friedman et al (1977), and compute the nonparametric 
regression surface only at the vertices of the tree. Blending function, cubic interpolation (due to 
Barnhill, 1977) is then used to interpolate function values at other points from these vertices. We 
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find this to be an aggressive. but potentially useful strategy that could be used for other estimators 
(e.g. the multivariate kernel) as well. The pod tree is a data structure for hierarchical partitioning. It 
subdivides the sample space by successive cuts orthogonal to the co-ordinate axes in p dimensions. 
The resulting vertices are organized into a binary tree. 

The Loess algorithm implemented by Cleveland et al (1988) may be summarized as: 
(I) Scale each original independent variable by dividing by an appropriate scale parameter. Rotate 
the coordinate axes to align with the principal components of variation (This is similar to what is 
achieved with the kernel estimator based on (30». 
(2) Identify directionj (of x) as the one with the maximum spread. 

(3) Identify medianj as J.lj. and divide the Cell in half at J.lj. 
(4) Recursively apply steps 2 and 3 to each subcell. If a cell is too small, or has too few points ( as 
specified on user input). leave it alone. 
(5) Identify and store resulting vertices in a tree. 
(6) Identify k nearest neighbors of each vertex. and get the Loess estimate (r=1 or 2). The nearest 
neighbor information is passed to adjacent vertices to speed identification of nearest neighbors. 
(7) Use product tensor interpolation using the vertices of a cell to estimate a value at a point x 
inside a cell. They use cubic interpolation with cross tenns set to zero. 

APPLICA TIONS 

The models formulated were applied to data from the Salt Lake Valley, provided by Michele 
Lemieux. State of Utah, Department of Natural Resources. Division of water rights. Of the three 
formulations discussed in the previous section. the one of greatest interest because of its ready 
interpretability and breadth of insight is NPP-2. Results from this application are presented and 
discussed in this section. 

Preliminaries: 

Each of the 40 drill logs was. first processed according to the classification scheme "b" 
presented in Table 1. This scheme was chosen because it highlights the occurrence of media of 
high conductivity. This may be the primary factor of concern in detennining the potential for cross 
migration of contaminants from the upper to the lower aquifer. A discretization of 1 fi (.3048 m) in 
the vertical was used to develop the classification at each drill log. It is desirable to choose a 
discretization level for classification that is of the same order (a little smaller) than the thickness of 
the thinnest layers reported in the drill logs across the site. This enables one to work at an interval 
resolution for the Poisson Process that is consistent with the effective resolution of drill log 
interpretation. A 1 or 0 is recorded for each interval, corresponding to high or low conductivity 
material for every one foot over that interval. Surface elevation infonnation was not available to us. 
However, the general area at the site has low topographic relief, and we assumed a constant 
surface elevation over the site. 
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Phase I 
The intensity of sand occurrence in the vertical was estimated using the phase I procedures 

described for model NPP-2. Estimates of the intensity A(Z) were made over a discretization of I ft 
(.3048 m) in the vertical.The Maximum Likelihood Cross Validation method was used for the band 
width optimization. Four sample profiles. drill logs 1,2,9, and 35 are presented here through 
Figures 4 to 7. Note that the bandwidth is larger for drill logs that have fewer layers and are more 

homogeneous. as expected. Each intensity plot also shows that the intensity reflects a moving 
average of the sand occurrence rate in the vertical. Recalling that we believe the lens occurrence 

process to be quite heterogeneous in alluvial deposits of interest, and the relatively small sampling 

domain associated with a drill log. such an averaging is necessary for providing a stable, 
meaningful, consistent and useful interpretation of the drill log data. Note that as the bandwidth 
goes to zero, the averaging interval shrinks and we are closer to the original information. In drill 

logs where there are only a few transitions. the optimal bandwidth is seen to be larger, reflecting 
the homogeneity. One can see from the figures that drill logs that show sustained and frequent 
transitions have smaller bandwidths or averaging intervals. The optimal kernel bandwidth is thus 
intimately related to the scale of fluctuations exhibited by the media and can be viewed as a measure 

of statistical homogeneity in the vertical. Note also from the figures 4 to 7. that an intensity A(z) of 
0.5 corresponds roughly with the location of the interface between sand and clay materials. 

particularly for thick sand and clay layers. This is an expected and natural consequence of the 
weighted moving average nature of the kernel intensity smoother. 

From the examples presented above, we see that the kernel intensity smoother provides an 
interpretation of the drill log data that can be useful for assessing an appropriate averaging scale for 
the fluctuations in media in the vertical at a drill log, as well as an estimate of the average "sand 
content" at that averaging scale through the magnitude of the intensity. 

Phase 2 

The loess algorithm as implemented in S-Plus was used to estimate A(Z) at a grid of size 6000 
feet, northing, 6200 feet, easting. and 250 feet in the vertical using the phase I results at each drill 
log. A pictorial representation of the site and the gridded area is shown in Figures 8 and 9. Since 

loess does not allow extrapolation, results are evaluated at interior grid nodes only. 

The data set used for loess is l(zji) vs zji. xi. yi. where (xi, yi) is the drill log location, and zji 
are the locations of the points at which the phase I evaluation of l(zji) was made in the vertical at 
drill log i. The span (fraction of sample used to compute local regression) and degree (order of 
local approximation 1= linear. 2 -quadratic) were chosen by using the F statistic to compare 

alternate values of span and degree. A loess surface is fit for a span and degree and the residual 
sum of squares is computed. The F-statistic using the proper number of degrees of freedom in each 
case is ~sed to compare the residual sums of squares (RSS) at a significance level of O.OL In case 
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the residual sum of squares are significantly different (at the 0.01 level) the span/degree with the 'IF!, 

lower RSS is selected. OthelWise the span/degree with the lower number of equivalent parameters 
(higher degrees of freedom) is selected. For the data set explored. a degree of I. and a span of 
0.09 was best The associated RSS and coefficient of determination R2 were 211.88 and .36 
respectively. The R2 suggests that 36% of the variability in the spatial field is explained by loess. 
We expect linear function (degree=l) to do better in this case because the data is binary and 
composed of linear segments. The low span of 0.09 is indicative of the heterogeneity of the data 

set in the three dimensions that are fitted. As in the phase I discussion. the resulting values of A(Z) 

at the grid represent an averaging over the horizontal and vertical of th~ sand/clay occurrence 
process. The effective scale of averaging is determined by the k nearest neighbors used in the 
estimate (k = span * sample size), which translates into the relative distance between k drill logs in 

a neighborhood of the point at which an estimate of A(Z) is desired and the sampling frequency in 
the vertical at those drill logs. In our case a constant sampling frequency in the vertical was used 
for all drill logs 

Cross sectional results for A.(z) are exhibited through contour plots in Figures 10 to 12. Note 
that the contouring mechanisms reflects a further averaging of the results at the grid scale. So the 
primary utility of these contours is to get an idea of the relative variation in the homogenized field 
over the site. Of interest are transitions over the area between sand and clay at different depths. 
From Figure 10 (Northing-Easting at 3 depths) we see that the aquifer appears to have a higher 
degree of homogeneity as one goes deeper, with transition from low conductivity material at the 
north west comer to high conductivity material at the south east comer. While the pattern at the 190 
ft (57.9 m) depth is relatively smooth, a consistent dip in the contours at an easting of 
approximately 1387500 ft is suggestive of a large scale structure in the aquifer. This structure is 

not apparent at the 125 or 60 foot depths. The contours A(Z) at the 60 foot depth suggest a very 
different picture of the aquifer than those at either the 125 or the 190 foot levels. The trends in the 

horizontal variation of A(Z) as well as the degree of variation or heterogeneity are also markedly 
different Potential areas of concern for contaminant migration are in the upper middle and middle 
of the site rather than at the south east comer as was the case at a depth of 190 feet. or the entire 
middle as is the case for the 125 ft (38.1 m) depth. 

A vertical view at three eastings is shown in Figure II. For an easting of 1386200, we spot a 
high conductivity area at a depth of approximately 150 ft in the middle of the site. and a transition 
to very high conductivity material with depth towards the south end of the site. The high 
conductivity area increases in size (depth and lateral extent) as we move to the easting of P87800 
ft. At both of these eastings an interesting structure is apparent at a northing of approximately 
1.4744*107, where the contours dip with depth suggesting a shift downwards in the clay layers at 
this northing. This structure has essentially disappeared or actually somewhat reversed by the time 
we reach an easting of 1389400 ft 
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A vertical view at three northings is presented in Figure 12. A marked dip in the vertical in the 
contours at a easting of approximately 138500 is suggestive of a structure in that area, that is 
probably related to the ones identified earlier. The middle north of the site at a depth of about 150 
feet appears to be the area of greatest concern for contaminant migration in the verticaL 

It is interesting to compare the results for the drill logs presented as part of the phase I 
discussion with the contours presented above. The drill log locations are identified in the contour 
plot figures. We observe from these comparisons that the contours do show the same general 
features illustrated in each of the drill log at these locations. As expected a more smoothed and 
interpolated representation is provided. 

In conclusion, we have demonstrated through an example using data from Salt Lake Valley 
that the modeling approach proposed can be useful in identifying patterns of heterogeneity in 
aquifer properties across the site, in highlighting underlying structure in the pattern of occurrence 
of layers of high and low conductivity, and for identifying potential locations and depths of 
concern for migration of contaminants in the vertical. It is also worth noting that this was achieved 
with a probabilistic (rate of occurrence of a soil type) representation, rather than a deterministic one 
(i.e. interpolate layer boundaries from drill log to drill log). The intensity of 0.5 identifies the 
transition from clay to sand. Thus at the averaging scale of interest, the 0.5 contour (vertical or 
horizontal) is the horizon at which monitoring or control activities should be focused. There are 
additional benefits from the probabilistic fonnulation of the problem. 

In case a groundwater flow and contaminant transport model is to be calibrated, the intensity 
of vertical transition estimated for each cell of a fmite difference or fmite element model can be used 
to guide the specification of average vertical hydraulic conductivity or vertical layer defInition for 
the cell. The intensity measure can be interpreted as a percent sand or percent high conductivity 
material in the cell, averaged over some moving locale in vertical. If an average value of vertical 
conductivity is assumed for the site, or for each type of media considered, the percent sand . 
interpretation of the intensity, allows a ready perturbation of this gross site quantity into reasonable 
values for each cell. Further, since the intensity has an interpretation similar to that of the 
probability density. one can actually generate random profiles of sand/clay in the vertical for each 
cell that are consistent with the characterization provided by the data through the model. This is 
achieved simply by sampling from the nonhomogeneous rate Poisson process in the vertical for 

each cell at a discretization in the vertical. Given A(Zjk) for cell k. this can be done directly using 

the algorithm given by Devroye (1986) • p. 250. The distribution function is :-



-( A(z+.1.z)-A(z) ) 
F(A z) = l-e (Az >= 0) 

Where: 
z 

A(z) = J 1(z) dz 
o 
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We have presented a general probabilistic framework for analyzing drill log data. The 
framework is based on a binary classification scheme for the variation of media in the vertical. the 
analysis of resulting counting processes, and nonparametric evaluation of variation at different 
sc3J.es. A demonstration of the procedures developed was provided for one of three formulations 
proposed using data from Salt Lake Valley. 

The NPP-2 formulation is perhaps the most directly useful of the ones presented here. 
However, we stress that conceptually all three formulations are roughly equivalent and will share 
similar theoretical properties. The differences lie in how the estimates are developed. One could of 
course directly use loess to regress the binary information. However. such an approach would be 
devoid of the probabilistic interpretation. the ability to analyze conditional situations (possible for 
the formulations presented but not demonstrated). the ability to simulate probabilistic realizations. 
and the lack of exploitation of the time series structure of the depositional process in the vertical. 
With regard to the NPP formulations it is possible to forego the two step process and directly adopt 
a kernel estimator to recover l(z. x,y) given the raw binary data along z. The setup for such an 
estimator is similar to the 3-d extension of the Keiding and Anderson algorithm presented for the 
Markov process formulation. However. the ready availability of loess led to a focusing of our 
efforts on the two phase approach. The kernel approach would have the potential advantage that the 
bandwidths could be locally adapted by direction, location and heterogeneity exhibited, and would 
be directly interpretable as measures of heterogeneity. However, such an implementation would 
have called for developmental effort beyond the resources available in this project 

The nonhomogeneous Markov process formulation is potentially useful once it is localized. 
(e.g. using the kernel estimator) since it provides a direct estimation of the probability of transition 
to media type k given media type I at some depth. We have a global averaging scheme working and 
implemented with the Salt Lake data. However, we prefer to release results from this 
implementation after the local averaging formulation has been tested. 

'J1le nonparametric. kernel estimation framework leads to a number of interesting theoretical 
properties that are not detailed here. Briefly, the use of localized, weighted, moving averages, 

I 
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leads to strongly asymptotically consistent estimates of the properties of the counting process, 
"I asymptotic normality of the estimates based on a central limit theorem type behavior, and 

the possibility of direct interpretation of the data at different scales. 

The example application ofNPP-2 with the Great Salt Lake data effectively demonstrates how 
a practitioner may use such models. Structures revealed by the model were not directly obvious 
from an examination of individual drill logs. In this sense the model serves a useful role for 

j condensing and interpreting information. Its utility for the groundwater modeling process was also 

discussed. 

J 
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Soil of low hydraulic conductivity. 

Soil of high hydraulic conductivity: 

Figure 1. Soil heterogeneitty in alluvial. sedimentary environments 
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Conceptual Structure of Model NPP 

Phase 1 

Nonhomogeneous Poisson Process Model 
in the vertical at each drill log i 

Data 
Sand and Clay Interface depths for drill log i (NPP-l) 

or 
Sand (1) or clay (0) at depth Z for drill log i (NPP-2) 

Univariate Kernel Estimator 

" 1 
.i Output 

Transition Rate A(z) for drill log i (NPP-l) 
.. or 

Sand Occurence Rate A(Z) for drill log i (NPP-2) 
evaluated at a discretization zji from 0 to Zi 

J, 
Phase 2 

Spatial Interpolation of Nonhomogeneous Poisson 
Process Rate in the vertical over the aquifer 

Data 
Rate A(Z .. ). z.j • x .• y. from model NPP-l or NPP-2 

J1 J 1 1 
nd 

j = l...nci ; i =l..nd Sample Size = :Lnc. 
i=l I 

Locally Weighted Regression 

" Output 
Rate A(Z) at any x.y;z. 

Evaluated at a 3-dimensional grid 

Figure 2 Conceptual Structure of Model NPP 
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Figure 3 Spatial Interpolation of drill log rates A(Z) onto a grid for contouring 
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BW=ll, DP=230 

0.2 0.4 0.6 0.8 1.0 

Rate of sand occurrence 

Bandwidth = II 
Number of data points = 230 

Figure 4 Drill Log 1, Showing (a) Drill log Profile, (b) 0,1 profile (interpretation b, tablel) 

(c) Kernel smoothed profile for intensity with depth. 
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Figure 5 Drill Log 2, Showing (a) Drill log Profile, (b) 0,1 profile (interpretation b, 

tablel) 

(c) Kernel smoothed profile for intensity with depth. 
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Figure 6 Drill Log 9. Showing (a) Drill log Profile, (b) 0,1 profile (interpretation b. 

table!) 

(c) Kernel smoothed profile for intensity with depth. 
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(c) Kernel smoothed profile for intensity with depth. 
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