Utah State University DigitalCommons@USU

Reports

Utah Water Research Laboratory

January 1979

Pre-Impoundment Water Quality Study for the Dolores project

Larry Baker

V. Dean Adams

Leslie G. Terry

Jerald S. Fifield

Darwin L. Sorensen

Follow this and additional works at: https://digitalcommons.usu.edu/water_rep

Part of the Civil and Environmental Engineering Commons, and the Water Resource Management Commons

Recommended Citation

Baker, Larry; Adams, V. Dean; Terry, Leslie G.; Fifield, Jerald S.; and Sorensen, Darwin L., "Pre-Impoundment Water Quality Study for the Dolores project" (1979). *Reports*. Paper 618. https://digitalcommons.usu.edu/water_rep/618

This Report is brought to you for free and open access by the Utah Water Research Laboratory at DigitalCommons@USU. It has been accepted for inclusion in Reports by an authorized administrator of DigitalCommons@USU. For more information, please contact digitalcommons@usu.edu.

PRE-IMPOUNDMENT WATER QUALITY STUDY FOR THE DOLORES PROJECT

By Larry Baker V. Dean Adams Jerald S. Fifield Leslie G. Terry Darwin Sorensen

Utah Water Research Laboratory College of Engineering Utah State University Logan, Utah 84321

June 1979 999462

PRE-IMPOUNDMENT WATER QUALITY STUDY FOR THE

DOLORES PROJECT

Ьу

Larry Baker V. Dean Adams Jerald S. Fifield Leslie G. Terry Darwin Sorensen

This report was completed for the United States Bureau of Reclamation as a part of Contract No. 7-07-40-S0329 (Chemical and Biological Analysis of Colorado Water Samples).

> Utah Water Research Laboratory College of Engineering Utah State University Logan, Utah 84321

> > June 1979

Acknowledgements

The authors of this report express gratitude to the personnel of the Utah Water Research Laboratory who participated in the chemical analysis and data compliation, including Alberta Seierstad, John Manwaring, Art Hirsch and Tom Peters. We also appreciated the technical advice of Don Porcella throughout this study.

We would also like to thank Joe Gardner and Art Rivers, Annette Brunson, Leslie Johnson, Barbara South, Michelle Kruschke, Betty Hansen, Kathy Bayn and Marianne Nelson for their help in preparing this report.

Table of Contents

Introduction .	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	٠		1
Methods	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•		2
Results	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	9
Discussion .	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	14
Appendices .	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	17
Appendix A	- 3	Prop	ose	ed (Co10	ora	do	Wat	er	Qua	lit	y S	tan	dar	ds	•	•	•	17
Appendix B	-]	Raw	Wat	er	Qua	ali	ty	Dat	а	•	•	•	•	•	•	•	-	•	31
Appendix C	- :	Stat	ist	ica	al A	Ana	lys	ies	of	Wat	er (Qua	lit	y Da	ata	•	•	•	34
Appendix D	- (Comp	ari	soi	n of	E W	ate	r Q	ual	ity	Dat	ta v	wit	h tl	he				26
rroposed G	010	rado	wa	Ite	c Qi	lar	Ity	50	ano	ard	S	•	•	•	•	•	•	•	30
Bibliography .	•	•	•		•		•	•	•	•		•		•			•	•	38

used for the analyses of total Kjeldahl nitrogen, dissolved metals, cyanide and NO_3/NO_2 were preserved as outlined in Table 2.

Immediately following sample coding and pre-treatment (filtration and/or preservation), analyses were performed for total phosphorus, orthophosphate, alkalinity, cyanide, nitrate and nitrite. On some occasions the analyses of nitrate/nitrite and cyanide were postponed until the following day. When this was necessary the samples for NO_3/NO_2 and cyanide were preserved.

The analyses of calcium, total hardness, sulfate, chloride, total dissolved solids, total Kjeldahl nitrogen, hexavalent chromium and fluoride were completed within seven days using the methods listed in Table 1.

The data obtained for each water quality station during this study was subjected to statistical analysis to determine the means, maximum, minimum, range, standard deviation and coefficient of variation for each constituent. In addition the water quality data for each station was compared to the proposed Colorado Water Quality Standards for agricultural use, raw water supply and the protection of the aquatic biota (Appendix A). This analysis was based on the number of times in which the concentration of a constituent exceeded the proposed standard for that constituent with respect to the number of times a detectable concentration of the constituent was analyzed (Appendix D). In Tables 6 and 7 the comparison is made on the basis of the total number of samples analyzed since for most constituents if the concentration is below the detection limit of analyses it is below the proposed standards. For some metals (cadmium, mercury, silver, copper and zinc) the proposed standards for the protection of the

3

Analysis	Units/Sensitivity	Method
Non Metallic Constituents	• •	-
Total hardness	1 mg/1 as CaCO ₃	EDTA Titrimetric. S.M. p. 202
рН		pH electrode. S.M. p. 460
Total alkalinity	1 mg/1 as CaCO ₃	Potentiometric. S.M. p. 278
Carbonate hardness	1 mg/1 as CaCO ₃	Calculated from CaCO ₃
Bicarbonate hardness	1 mg/1 as CaCO ₃	Calculated from CaCO ₃
Total dissolved solids	1 mg/1	Gravimetric. S.M. p. 82
Chloride, dissolved	mg/l, 2 place	Titrimetric (HgNO ₃) S.M. p. 304
Sulfate, dissolved	mg/1, 2 place	Turbidimetric (BaCl ₂) S.M. p. 496
Fluoride, dissolved	mg/1, 2 place	Ion selective electrode S.M. p. 391
Cyanide, total	mg/1, 2 place	Ion selective electrode S.M. p. 372
Phosphorus, total	mg/l, 2 place	Persulfate digestion S.M. p. 466
Phosphate, ortho	mg/1, 2 place	Ascorbic acid S.M. p. 481
Nitrogen, total organic	mg/l, 2 place	Kjeldahl. <i>S.M.</i> p. 437
Nitrate	mg/1, 2 place	Cadmium reduction (automated) S.M. p. 620
Metallic Constituents		
Aluminum, total; dissolved	ug/1, 3 place	Atomic absorption (AA) S.M. p. 152
Arsenic, total; dissolved	µg/1, 3 place	Atomic Absorption (Vapor generation) S.M. p. 159

Table 1. Analytical methods used in water quality survey.¹

r

Table 1. Continued.

Analysis	Units/Sensitivity	Method
Barium, dissolved ²	µg/1, 2 place	Atomic absorption S.M. p. 152
Boron, dissolved	mg/l, 2 place	Carmine. S.M. p. 290
Calcium	mg/1, 2 place	Titrimetric (EDTA) S.M. p. 189
Cadmium, total; dissolved	µg/1, 3 place	Atomic absorption (Flameless) EPA p. 78
Chromium, dissolved ²	µg/1, 3 place	Atomic absorption (Flameless) EPA p. 78
Chromium, hexavalent	µg/1, 3 place	Colorimetric, S.M. p. 192
Copper, total; dissolved	µg/1, 3 place	Atomic absorption S.M. p. 148
Iron, total; dissolved	µg/l, 3 place	Atomic absorption S.M. p. 148
Lead, total; dissolved	µg/l, 3 place	Atomic absorption (Flameless) EPA p. 78
Magnesium, dissolved	mg/1, 2 place	Calculated from calcium and total hardness
Manganese, total; dissolved	µg/1, 3 place	Atomic absorption S.M. p. 148
Mercury, total; dissolved	µg/l, 3 place	Atomic absorption (Cold vapor) S.M.p. 56
Molybdenum, total; dissolved	µg/1, 3 place	Atomic absorption (Flameless) EPA p. 78
Nickel, total; dissolved	µg/1, 3 place	Atomic absorption (Flameless) EPA p. 78
Potassium, dissolved	mg/l, 2 place	Flame photometric, S.M. p. 234
Selenium, total; dissolved	µg/l, 2 place	Atomic absorption (Vapor generation) S.M. p. 159
Silver, total; dissolved	µg/1, 3 place	Atomic absorption (Flameless) EPA p. 78

5 ·

Table 1. Continued.

Analysis	Units/Sensitivity	Method			
Sodium, dissolved	mg/1, 2 place	Flame photometric, S.M. p. 250			
Zinc, total; dissolved	μg /1, 3 place	Atomic absorption, S.M. p. 148			

¹Sources of analytical methods:

- S.M. = Standard Methods for Examination of Water and Wastewater. 14th Ed. (1975). APHA.
- EPA = USEPA (1976a). Methods for Chemical Analysis of Water and Wastes.

²These analysis were not included in original contract. Analysis of these constituents began in January, 1978.

Constitutent	Preservative	Storage
Metals ¹	3 ml 50% "mercury free" HNO ₃ /1	Several months (refrigerated)
TKN	0.8 ml conc. H ₂ SO ₄ /1	Max. of 7 days in dark amber glass bottle (refrigerated)
NO3-NO2	l drop chloroform per 12 ml vials	Max. of 2 days in stoppered vials (refrigerated)
CN	pH adjusted to 12 with ionic strength adjuster	Up to 24 hours (refrigerated)

Table 2. Methods of storage and preservation of samples used in the water quality survey.

 $^1 \rm Sample bottles (500 ml) for "total metals" contained 1.5 ml <math display="inline">\rm HNO_3$ when shipped to field.

aquatic biota are below the detection limits of analyses. Since there may have been instances in which the concentration of one of these metals was less than the detection limit of analysis but still greater than the proposed standard for the protection of the aquatic biota, the comparisons for these metals with the proposed standards in Tables 6 and 7 are enclosed in parenthesis.

8

Results

The water quality late obtained during this study is presented in Appendix B. Statistical Comp is of these data, including the mean, range, standard deviation and $\operatorname{coefficient}$ of variance for each water quality parameter are presented in Appendix C.

The water quality study for the Dolores kiver began in May, 1977, and ended in August, 1978. It included 17 sampling rounds (two in June, 1977, and one in each of the other 15 months). Forty-four analyses were to be performed on each sample between May, 1977, and December, 1977, and 49 analyses were to be performed on each sample from January, 1978 through the end of the study. Thus, a total of 788 analyses were to be performed. Forty-four of these analyses (5.6 percent of the total) were not completed because the sample for June 30, 1977 was not received. An additional 8 water quality analyses were completed.

In order to check the reliability of these analyses, an ion balance was computed for each sample analyzed. The error in each ion balance was computed as follows:

$$\% \text{ error} = \frac{\left|\Sigma M^{+n} - \Sigma M^{-n}\right|}{\Sigma M^{+n} - \Sigma M^{-n}} \times 100 \tag{1}$$

The ion balance calculations for each sampling period are presented in Table 4. The frequency distribution of errors in the ion balances is presented in Table 5 and graphically in Figure 6. For the 15 sampling periods in which all the constituents used in the ion balance calculations were determined, the error in the ion balances was less than 10 percent for 80 percent of the samples.

Sampling Round Station		Analysis not performed	Reason for Omission
1	15	Hex. chromium	Analysis omitted
2		Sulfate; hex. chromium	Analysis omitted
3	•	A11	No samples received
10		Fluoride	Analysis omitted
14		Selenium (tot.; diss.); arsenic (tot.; diss.)	Analysis omitted

Table 3. Dolores Project water quality survey - missing parameter values.^a

^aWhen total hardness was not determined, magnesium concentration could not be calculated. When alkalinity was not determined, inorganic carbon species (HCO $_{\overline{3}}^{-}$, CO $_{\overline{3}}^{-}$) could not be determined.

: ...

Table 4. Ion balance calculations for the Dolores water quality survey.

DOLOPES PROJECT

*

×

STATION 151 DOLORES AT DULORES

	5/25/77	6/15	6/30	7/19	8/2/4	9/21	10/19	11/15	12/13	1/18/78	2/15	3/21	4/18	5/18	6/16	7/19	8/24
C 4	46,0	44 . 0	0.0	52.0	52.0	59.0	61.0	72.0	81.0	81.0	79.0	70.0	37.0	32.0	25.0	41.0	46.0
	2.0	9.0	0,0	7,0	-1,0	13.0	9.0	6.0	9.0	13.0	9.0	3.0	5,0	-1,0	5.0	5.0	5,0
1: A	· 9,0	:5.0	0.0	18.0	16.0	41.0	16.0	15.0	18.0	16.0	14.0	18.0	8.0	3.0	5.0	8.0	8.0
ĸ	2,0	3.0	0.0	5.0	2.0	0.5	2.7	1.7	13.7	1.8	1.8	2.3	1.4	5.5	2.0	5.0	3.0
HC03	93.0	96.0	0.0	155.0	111.0	118.0	133.0	145.0	156.0	157.0	174.0	141.0	91.0	68.0	59.0	69.0	109.0
203 -	7.0	9.0	0.0	7.0	6.0	2.0	0.0	9.0	0.0	0.0	0.0	. 0.0	0.0	0.0	0.0	С.О	0.0
CL	18.0	11.0	0.0	19.0	14.0	15.0	16.0	32.0	28.0	30.0	30.0	0.55	18.0	2.0	3.0	5.0	5.0
504 .	59.0	0.0	0.0	42.0	41.0	50.0	45.0	57.0	67.0	59,0	75.0	45.0	19.0	16.0	33.0	19,0	24,0
6715		15		.	• • •												
3103	203.0	144.0	0.0	259.0	242.0	300.0	282.7	358.7	372.7	357.8	395.8	301.3	179.4	163.6	150.0	169,0	205.0
	130.0	140.0	.9.9	242.0	140.0	185.0	284.0	289.0	275.0	246.0	315.0	264.0	150.0	101.0	97.0	0,0	173.0
50	2.995	3.535	0.000	4,005	3.342	5.848	4.549	4.456	5,916	5,853	5,337	4.582	2.641	1,784	1,550	2,856	3,131
46	5,044	2.410	0,000	3,990	3.589	3,864	4,048	5.169	5,305	5.215	5,888	4,378	2.723	1.750	1,952	2.317	5 625
A (,] F F	0,147	1.124	0.000	0,014	0.247	1.984	0,501	0.344	0.611	0.639	0.550	0.204	0.085	0.034	0.402	0,540	0,207
원독원(X)	2,462	18,912	0.000	0.179	3,558	20.427	5.827	3.438	5,443	5,770	4,903	2,278	1.528	0,963	11,466	10,433	3,411

STDS	= Sum of the constituents (mg/k)
MTDS	= Laboratory measured TDS (mg/2)
SC	= Sum of cations $(meq/2)$
SA	= Sum of anions (meq/l)
ADIFF	= Absolute difference between SC and SA (meq/2)
ERR (%)	= $(ADIFF)/(SC + SA) \times 100$
*	= Indicated date where one or more constituents have not
	been recorded.
	= Indicates that the concentration was below detection limit.

11

Table 5. Frequency distribution of errors in the ion balances for the Dolores River.

Err(%)	Number	% of total
0 - 5	9	60
5 - 10	3	20
10 - 15	2	13.3
15 - 20	0	0
>20	1	6.7
Missing Data	2	
Total	17	

Station 15: Dolores at Dolores

Figure 1. Frequency distribution of errors in ion balance for the Dolores water quality study.

13

Discussion

During this study the water from the Dolores River at Dolores had a total dissolved solids (TDS) concentration of between 97 and 315 mg/l (\bar{x} = 204 mg/l). The Dolores River water is fairly well buffered, having an alkalinity between 59 and 159 mg/l (as CaCO₃) and can be classified as being "moderately hard" to "hard" (Sawyer and McCarty, 1978), having a total hardness of between 71 and 255 mg/l as CaCO₃.

A comparison between the water quality data collected during this study and the proposed Colorado Water Quality Standards (Appendix D) indicates that the Dolores River is a suitable source for raw water supply with respect to most water quality constituents. The concentrations of two metals (total cadmium and total mercury) and one non-metal (cyanide) exceeded the proposed water supply standard on several occasions. None of these constituents exceeded the proposed standards during more than 25 percent of the sampling periods (Table 6).

The water from the Dolores River exceeded the proposed agricultural use standards for total cadmium during 3 out of 16 sampling rounds and for total cyanide, total copper and total manganese once each (Table 6). However, the sampling periods in which these constituents exceeded the proposed standards were in the spring and fall, not during the irrigation season. During the summer months (June through September) none of the proposed standards for agricultural use were exceeded. The salinity of the Dolores River was very low and should pose no hazard to irrigated crops.

The proposed Colorado Water Quality Standards for the protection of the aquatic biota were exceeded by numerous metals during this study. The

	Water_Use									
Parameter	Class Water Su	II 1pply	Agricul	ture	Aquatic Biota					
	N/T ⁽²⁾	%	N/T ⁽²⁾	%	N/T ⁽²⁾	%				
Aluminum (dissolved)	-	-	-	-	13/16	81				
Cadmium ⁽³⁾	3/16	19	3/16	19	(7/16)	(44)				
Copper ⁽³⁾	0/16	0	1/16	6	(8/16)	(50)				
Iron (total)	-	-	<u> </u>	-	2/16	13				
Lead	0/10	0	0/10	0	2/10	20				
Manganese (total)	- ·	—	1/16	6	1/16	6				
Mercury ⁽³⁾	2/16	13	-	-	(11/16)	(69)				
Silver ⁽³⁾	1/16	6	-	-	(2/16)	(13)				
Zinc ⁽³⁾	0/16	0	0/16	0	(11/16)	(69)				
Cyanide	1/16	6	1/16	6	8/16	50				

Table <u>6</u>. Constituents that exceeded the proposed Colorado Water Quality Standards in the Dolores at Dolores.(1)

(1) Proposed Colorado Water Quality Standards in Appendix B.

 $(2)_{N/T}$ = number of samples exceeding standard compared with total number of samples analyzed.

(3) Parenthesis indicate that the proposed standard was below the detection limit of analyses. proposed standards for dissolved aluminum, total cyanide, total copper, total mercury, and total zinc were exceeded during at least half the sampling periods (Table 6). The standards for several other metals (total cadmium, total iron, total lead, total mangenese, and total silver) were exceeded during one or more sampling periods. Algal bioassays were conducted at the UWRL on waters from the Dolores River during September, 1977, November, 1977, January, 1978, March, 1978, and May, 1978, using the Algal Assay Procedure: Bottle Test (EPA, 1971). None of these bioassays indicated that the growth of <u>S. capricornutum</u> was suppressed by metal toxicity in water from the Dolores River at Dolores. However, during the September, 1977, bioassay tests, samples were included from other sites along the Dolores River. In these bioassays the growth of <u>S. capricornutum</u> was suppressed as the result of metal toxicity in the sample obtained from the Dolores River immediately above the tailing piles at Rico, Colorado.

16

APPENDIX A

Proposed Colorado Water Quality Standards

Parameter	Standard
hysical	· · ·
D.O. $(mg/l)^{1}$	Aerobic ²
pH	5.0-9.0
Suspended solids and turbidity	3
Temperature	X
TDS (mg/l)	Y
iological	
Algae ⁴	Free of toxic and
	objectionable algae
Fecal coliforms (#/100 ml)	1,000
norganics	
Ammonia (mg/L as N)	0.5
Total residual chlorine (mg/l)	X
Cyanide (mg/l)	0.2
Fluoride (mg/l)	5
Nitrate $(mg/l as N)$	10
Nitrite (mg/l as N)	1.0
Sulfide as H_2S (mg/l)	0.05
Boron (mg/l)	X
Chloride (mg/l)	250
Magnesium (mg/l)	125
Sodium adsorbtion ratio	X
Sulfate (mg/l)	250
Phosphorus (mg/l as P)	Bioassay ⁶
xic Metals (mg/l)	
Aluminum	X
Arsenic	0.05
Barium	1.0
Beryllium	X
Cadmium	0.01
Chromíum	0.05
Copper	1.0
Iron	0.3 (soluble)
Lead	0.05
Manganese	0.05 (soluble)
Mercury	0.002
Molybdenum	Y
Nickel	Х

Table A-1 Proposed Colorado water quality standards: Class II water supply.

X = numerical limit generally not needed for protection of classified use.

Y = limit may be required but there is insufficient data for setting a general standard.

. .

Table A-1 Continued.

Parameter	Standards
Toxic Metals (mg/l)	
Selenium	0.01
Silver	0.05
Thallium	X
Zinc	5.0
<u>Organics</u> ⁷ $\left(\frac{\mu g}{\ell}\right)$	
Chlorinated pesticides ⁸	
Aldrin ⁹	Y
Chlordane ⁹	Y
Dieldrin ⁸	Y
DDT ⁹	Y
Endrin	0.2
Heptachlor ⁹	Y
Lindane	4
Methoxychlor	Y
Mirex	100
Toxaphene	• 5
Organophosphate pesticides ⁸	
Demetron	Y
Endosulfan	Ÿ
Guthion	Y
Malathion	Y
Parathion	Y
Chlorophenoxy Herbicides	
2, 4-D	100
2, 4, 5-TP	10
popt_10	
<u>rcb</u> s	Ŷ
Phenol	1
Radiological ¹¹ (pCi/l)	
Alpha ¹¹ , ¹²	15
Beta ¹¹ , ¹²	50
Cesium 134	80
Plutonium	15
Radium 226 and 228^{12} , 13	5
Strontium 90 ¹¹ , 13	8
Thorium 230 and 232	60 20.000
Iritium Imponium (total mo/0)	20,000
oranium (cocar, $m_{i}(x)$)	

٠.

¹Where dissolved oxygen levels less than the standard occur naturally, a discharge shall not cause a further reduction in dissolved oxygen in receiving water.

- ²An effluent shall be regulated to maintain aerobic conditions, and a guideline of 2.0 mg/L dissolved oxygen in an effluent should be maintained, unless demonstrated otherwise.
- ³Suspended solid levels will be controlled by Effluent Limitations and Basic Standards.
- ⁴Free from objectionable and toxic algae. It has been well established that heavy growth of some strains of blue-green algae, upon death and degradation, may release one or more substances which are toxic to humans and many other animals. Although no fixed numbers can be recommended at this time, it is clear that streams, lakes and reservoirs should not be permitted to bear heavy growth of algal blooms, nor allow these blooms to disintegrate. Every effort should be made to control algal growths to levels that are not hazardous.
- ⁵Fluoride limits vary from 2.4 mg/ ℓ at 12.0 C and below, to 1.4 mg/ ℓ between 26.3 C and 32.5 C, based upon the annual average of the maximum daily air temperature (see *National Interim Primary Drinking Water Regulations* for specific limitations).
- ⁶Phosphorus standards are to be determined by an algal bioassay using the method described in the latest edition of *Standard Methods* for the Examination of Water and Wastewater.
- 'All organics, not on this partial list, are covered under Basic Standards, Section 3.1., 1978 Colorado Water Quality Standards.
- ⁸Numerical limits in tables based on experimental evidence of toxicity. No point source discharges of organic pesticides shall be permitted to state waters.
- ⁹The persistence, bioaccumulation potential, and carcinogenicity of these organic compounds cautions human exposure to a minimum (EPA).
- ¹⁰Every reasonable effort should be made to minimize human exposure (EPA).
- ¹¹Concentrations given are maximum permissible concentrations above naturally occurring or "background" concentrations except where otherwise noted.
- ¹²If Alpha or Beta are measured in excess of 15 or 50 pCl/l respectively, it will be necessary to determine by specific analysis the particular radionuclide or radionuclides responsible for the elevated level. Particular radionuclides should not exceed the limit given in the table. If an elevated level of Alpha or Beta emissions is caused by radionuclides, the Division should be consulted.
- ¹³Maximum permissible concentrations including naturally occurring or background contributions.

Parameter	Cold Water Biota	Warm Water Biota
Physical		· · · · · · · · · · · · · · · · · · ·
D.O. $(mg/l)^{1}$	6.0 $(\text{spawning})^2$	5.0
pH	6.5 - 9.0	6.5 - 9.0
Suspended solids and turbidity	3	3
Temperature (°C)	Maximum 2C°C w/ 3° increase ⁴	Maximum 30°C w/ 3° increase ⁴
TDS (mg/l)	Y	Y
Biological		
Algae ⁵	Free from objec- tionable and toxic algae	Same as Cold Water
Fecal coliforms	X	х
Inorganics		
Ammonia (mg/l as N) Total residual chlorine	0.02 unionized	0.10 unionized
(mg/L)	0.002	0.01
Cyanide (mg/l)	0.005	0.005
Fluoride (mg/l)	X	Х
Nitrate (mg/l as N)	X	X
Nitrite (mg/l as N)	0.05	0.5
Sulfide as H_2S (mg/l)	0.002	0.002
	undissociated	undissociated
Boron (mg/l)	X	Х
Chloride (mg/l)	X	х
Magnesium (mg/l)	Х	х
Sodium adsorbtion ratio	X	X
Sulfate (mg/l)	х	X
Phosphorus (mg/l as P)	Bioassay ⁶	Bioassay⁵
$\frac{0 \text{ rganics}^7}{\ell}$		
Chlorinated Pesticides ⁸		
Aldrin ⁹	0.003	0.003
Chlordane	0.01	0.01
Dieldrin ⁹	0.003	0.003
DDT	0.001	0.001
Endrin	0.004	0.004
Heptachlor	0.001	0.001
Lindane	0.01	0.01
Methoxychlor	0.03	0.03
Mirex	0.001	0.001
Toxaphene	0.005	0.005

Table A-2 Proposed Colorado water quality standards (non-metallic): Protection of Aquatic Biota.

Table A-2 Continued.

Parameter	Cold Water Biota	Warm Water Biota
Organophosphate Pesticides ⁸		
Demeton	1	1
Endosulfan	0.003	0.003
Guthion	0.01	0.01
Malathion	1	1
Parathion	0.04	0.04
Chlorophenoxy Herbicides		
2, 4-D	Y	Y
2, 4, 5-TP	Y	Y
PCB's	0.001	0.001
Phenols	1	1
Radiological ¹⁰ in (pCi/l) Alpha (excluding uranium		·.
and radium ¹¹)	15	15
Beta (excluding Sr ^{90 11}	50	50
Cesium 134 Plutopium 238 239	80	80
and 240	15	15
Radium 226 and 228	5	5
Strantium 90^{12}	8	8
Thorium 230 and 232	60	60
Tritium	20,000	20,000
Uranium (total) ¹³		

X = numerical limit generally not needed for protection of classified use.

Y = limit may be required but there is insufficient data for setting a general standard.

¹Where dissolved oxygen levels less than the standard occur naturally a discharge shall not cause a further reduction in dissolved oxygen in receiving water.

 ^{2}A 7 mg/ ℓ standard, during periods of spawning of coldwater fish, shall be set on a case by case basis as defined in the NPDES permit for those dischargers whose effluent would affect fish spawning.

³Suspended solid levels will be controlled by Effluent Limitations and Basic Standards.

- ⁴Temperature shall maintain a normal pattern of diurnal and seasonal fluctuations with no abrupt changes and shall have no increase in temperature of a magnitude, rate and duration deemed deleterious to the resident aquatic life. Generally, a maximum 3°C increase over a minimum of a 4-hour period, lasting for 12 hours maximum, is deemed acceptable for discharges fluctuating in volume or temperature. Where temperature increases cannot be maintained within this range using BMP, BATEA, and BPWITT control measures, the Division will determine whether the resulting temperature increases preclude an Aquatic Life classification.
- ⁵Free from objectionable and toxic algae. It has been well established that heavy growth of some strains of blue-green algae, upon death and degradation, may release one or more substances which are toxic to humans and many other animals. Although no fixed numbers can be recommended at this time, it is clear that streams lakes and reservoirs should not be permitted to bear heavy growth of algal blooms, nor allow these blooms to disintegrate. Every effort should be made to control algal growths to levels that are not hazardous.
- ⁶Phosphorus standards are to be determined by an algal bioassay using the method described in the latest edition of *Standard Methods* for *the Examination of Water and Wastewater*, American Public Health Association.
- ⁷All organics, not on this partial list, are covered under Basic Standards, Section 3.1., 1978 Colorado Water Quality Standards.
- ⁸Numerical limits in tables based on experimental evidence of toxicity. No point source discharges of organic pesticides shall be permitted to state waters.

⁹Aldrin and dieldrin in combination should not exceed 0.000003 mg/ ℓ .

- ¹⁰Concentrations given are maximum permissible concentrations above naturally occurring or "background" concentrations except where otherwise noted.
- ¹¹If Alpha or Beta are measured in excess of 15 of 50 pCi/l respectively, it will be necessary to determine by specific analysis the particular radionuclide or radionuclides responsible for the elevated level. Particular radionuclides should not exceed the limit given in the table. If an elevated level of Alpha or Beta emissions is caused by radionuclides, the Division should be consulted.
- ¹²Maximum permissible concentrations including naturally occurring or background contribution.

¹³See Uranium in Table A-3 for aquatic life limitations.

23

	0-100	100-200			Water Hardness ¹ - Cold and Warm Water Biota									
		100 200	200-300	300-400	over 400									
Toxic Metals ² (mg/l)														
Aluminum (soluble) Arsenic Barium Beryllium Cadmium Chromium Copper Iron Lead ³ Manganese Mercury Molybdenum Nickel Selenium Silver Thallium Uranium	0.1 0.05 X 0.01 0.004 0.1 0.01 1.0 0.004 1.0 0.00005 X 0.05 0.05 0.05 0.00010 0.15 0.03	0.1 0.05 x 0.3 0.001 0.1 0.01 1.0 0.025 1.0 0.00005 x 0.10 0.05 0.00010 0.15 0.2	0.1 0.05 X 0.6 0.005 0.1 0.01 1.0 0.050 1.0 0.00005 X 0.20 0.05 0.00015 0.15 0.4	0.1 0.05 X 0.9 0.01 0.1 0.02 1.0 0.100 1.0 0.00005 X 0.30 0.05 0.00020 0.15 0.8	0.1 0.05 X 1.1 0.015 0.1 0.04 1.0 0.150 1.0 0.00005 X 0.40 0.05 0.00025 0.15 1.4									

Table	A-3	Proposed Colorado water quality standards (metallic):
		Protection of Aquatic Biota.

X = numerical limit generally not needed for protection of classified use.

¹Concentrations of total alkalinity or other chelating agents attributable to municipal, industrial or other discharges or agriculatural practices should not alter the total alkalinity or other chelating agents of the receiving water by more than 20 percent. Where the complexing capacity of the receiving water is altered by more than 20 percent or where chelating agents are released to the receiving water which are not naturally characteristic of that water, specific effluent limitations on pertinent parameters will be established. In no case shall instream modification or alteration of total alkalinity or other chelating agents be permitted without Commission authorization.

²Bioassay procedures may be used to establish criteria or standards for a particular situation. Requirements for bioassay procedures outlined in Section 3.1.10, Colorado Water Quality Standards, May 2. 1978.

³For bioassay lead concentration is based on soluble lead measurements (*i.e.* non-filterable lead using a 0.45 micron filter).

Parameter	Standard
Physical	
D.O. $(mg/l)^{1}$	Aerobic ²
pH	X
Suspended solids and turbidity	3
Temperature	Х
TDS (mg/l)	Y
Biological	
Algae ⁴	Free of toxic and
	objectionable algae
Fecal coliforms (#/100 ml)	1,000
Inorganics	
Ammonia (mg/l as N)	X
Total residual chlorine (mg/l)	X
Cyanide (mg/l)	0.2
Fluoride (mg/l)	X
Nitrate (mg/l as N)	1005
Nitrite (mg/l as N)	105
Sulfide as $H S (mg/l)$	X
Boron $(mg/l)^2$	0.75
Chloride (mg/l)	Х
Magnesium (mg/l)	Х
Sodium adsorbtion ratio	X
Sulfate (mg/l)	X
Phosphorus (mg/l as P)	X
Toxic Metals (mg/l)	
Aluminum	X
Arsenic	0.1
Barium	x
Beryllium	0.1
Cadmium	0.01
Chromium	0.0
Copper	0.2
Iron	X
Lead	0.1
Manganese	0.2
Mercury	Х
Molybdenum	Y
Nickel	0.2

Table A-4 Proposed Colorado water quality standards: Agricultural Use.

X = numerical limit generally not needed for protection of classified use.

Y = limit may be required but there is insufficient data for setting a general standard. Table A-4 Continued.

Parameter	Standard
Toxic Metals (mg/l)	
Selenium	0.02
Silver	X
Thallium	X
Zinc	2.0
Organics ⁶ , $(\frac{\mu g}{l})$	
Chlorinated Pesticides ⁷	
Aldrin ⁸	Y
Chlordane	Y
Dieldrin ⁸	Y
DDT ⁸	Y
Endrin	Y
Heptachlor ⁸	Y
Lindane	Y
Methoxychlor	Y
Mirex	Y
Toxaphene	Y
Organophosphate Pesticides ⁷	
Demeton	Y
Endosulfan	Y
Guthion	Y
Malathion	Y
Parathion	Y
Chlorophenoxy Herbicides	
2, 4-D	Y
2, 4, 5-TP	Y
<u>2CB1s</u> 9	Y
Phenol	Y
Radiological ¹⁰ (pCi/l)	
Alpha ¹¹ , ¹²	15
Beta ¹¹ , ¹²	50
Cesium	80
Plutonium	15
Radium 226, and 228 ¹²	5
Strontium 90 ¹²	8
Thorium 230 and 232	60
Tritium	20,000
Uranium (total, mg/l)	5

- ¹Where dissolved oxygen levels, less than the standard, occur naturally, a discharge shall not cause a further reduction in dissolved oxygen in receiving water.
- ²An effluent shall be regulated to maintain aerobic conditions, and a guideline of 2.0 mg/ ℓ dissolved oxygen in an effluent should be maintained, unless demonstrated otherwise.

³Suspended solid levels will be controlled by Effluent Limitations and Basic Standards.

- ⁴Free from objectionable and toxic algae. It has been well established that heavy growth of some strains of blut-green algae, upon death and degradation, may release one or more substances which are toxic to humans and many other animals. Although no fixed numbers can be recommended at this time, it is clear that streams, lakes and reservoirs should not be permitted to bear heavy growth of algal blooms, or allow these blooms to disintegrate. Every effort should be made to control algal growths to levels that are not hazardous.
- ⁵ In order to provide a reasonable margin of safety to allow for unusual situations such as extremely high water ingestion or nitrite formation in slurries, the NO₃-N plus NO₂-N content in drinking waters for livestock and poultry should be limited to 100 ppm or less, and the NO₂-N content alone be limited to 10 ppm or less.
- ⁶All organics, not on this partial list, are covered under Basic Standards, Section 3.1., 1978 Colorado Water Quality Standards.
- ⁷Numerical limits in tables based on experimental evidence of toxicity. No point source discharges of organic pesticides shall be permitted to state waters.
- ⁸The persistence, bioaccumulation potential, and carcinogenicity of these organic compounds cautions human exposeure to a minimum (EPA).

⁹Every reasonable effort should be made to minimize human exposure (EPA).

- ¹⁰Concentrations given are maximum permissible concentrations above naturally occurring or "background" concentrations except where otherwise noted.
- ¹¹If Alpha or Beta are measured in excess of 15 or 50 pCi/l respectively, it will be necessary to determine by specific analysis the particular radionuclide or radionuclides responsible for the elevated level. Particular radionuclides should not exceed the limit given in the table. If an elevated level of Alpha or beta emissions is caused by radionuclides, the Division should be consulted.
- ¹²Maximum permissible concentrations including naturally occurring or background contributions.

	Standard						
Parameter	Class I	Class II					
	(Primary Contact)	(Secondary Contact)					
Physical							
<u>D.O.</u> ¹ ($\frac{\text{mg}}{\theta}$ D.O.)	Aerobic ²	Aerobic ²					
pH	6.5-9.0	x					
Suspended solids and							
turbidity	X	х					
Temperature	X	Х					
TDS (mg/l)	X	X					
Biological							
Algae	Free of objection-	Free of objection-					
	able and toxic	able and toxic					
	algae	algae					
Fecal coliforms	aigue	urgue					
(#/100 mL)	200	1.000					
Inorganics		•					
Ammonia (🚟 as N)	X	x					
Chloride (mg/l)	X	х					
Cyanide (mg/l)	x	X					
Fluoride (mg/l)	x	х					
NO_3 (mg/l as N)	X	x					
NO_2 (mg/l as N)	x	х					
Sulfide as H_2S (mg/l)	x	X					
Boron $(mg/l)^2$	x	X					
Chloride (mg/l)	X	х					
Magnesium (mg/l)	X	x					
SAR	X	x					
Sulfate (mg/l)	x	x					
Phosphorus (mg/l as P)	Bioassay ⁵	Bioassay ⁵					
Toria Motola (ma/8)							
Aluminum	X ·	Y					
Arsenic	X	X					
Barium	x	X ·					
Bervllium	X	x					
Cadmium	x	x					
Chromium	x	x					
Copper	X	x					
Iron	x	х					
Lead	x	Х					
Manganese	x	X					
Mercury	x	х					
Molybdenum	x	х					
Nickel	x	X					
Selenium	x	х					

Table A-5 Proposed Colorado water quality standards: Recreational Use.

Table A-5 Continued.

·	Standard						
Parameter	Class I	Class II					
i	(Primary Contact)	(Secondary Contact)					
Toxic Metals (mg/l)	n and a second						
Silver	X	х					
Thallium	X	x					
Uranium	x	x					
Zinc	X	x					
Organics ⁶							
Chlorinated Pesticides ⁷							
Aldrin ⁸	Y	Y					
Chlordane ⁸	Y	Y					
Dieldrin ⁸	Y	Y					
DDT ^B	Y	Y					
Endrin	Ÿ	Ŷ					
Hentachlor ⁸	Ŷ	Ŷ					
Lindane	Ÿ	Ŷ					
Methoyychlor	v	v					
Mirov	v	· V					
Tayanhana	v ·	v					
Organophosphate Pesticides ⁷							
Demeton	Y	Y					
Endosulfan	Y	Y					
Guthion	Y	Y					
Malathion	Y	Y					
Parathion	Y	Y					
Chlorophynoxy Herbicides							
2, 4-D	Y	Y					
2, 4, 5-TP	Y	Y					
PCB's ⁹	Y	Y					
Pheno1	Y	Y					
Radiological							
Alpha	Х	. X					
Beta	Х	x					
Cesium 134	Х	x					
Plutonium 238, 239, and 2	40 X	х					
Radium 226 and 228	х	X					
Strantium	X	х					
Thorium 230 and 232	Х	x					
Tritium	Х	x					
Uranium (total)	Х	х					

- X = numerical limit generally not needed for protection of classified use.
- Y = limit may be required but there is insufficient data for setting a general standard.

¹Where dissolved oxygen levels, less than the standard, occur naturally, a discharge shall not cause a further reduction in dissolved oxygen in receiving water.

- ²An effluent shall be regulated to maintain aerobic conditions, and a guideline of 2.0 mg/ ℓ dissolved oxygen in an effluent should be maintained, unless demonstrated otherwise.
- ³Suspsended solid levels will be controlled by Effluent Limitations and Basic Standards.
- ⁴Free from objectionable and toxic algae. It has been well established that heavy growth of some strains of blue-green algae, upon death and degradation, may release one or more substances which are toxic to humans and many other animals. Although no fixed numbers can be recommended at this time, it is clear that streams, lakes and reservoirs should not be permitted to bear heavy growth of algal blooms, nor allow these blooms to disintegrate. Every effort should be made to control algal growths to levels that are not hazardous.
- ⁵Phosphorus standards are to be determined by an algal bioassay using the method described in the latest edition of *Standard Methods* for *the Examination of Water and Wastewater*, American Public Health Association.
- ⁶All organics, not on this partial list, are covered under Basic Standards, Section 3.1., 1978 Colorado Water Quality Standards.
- ⁷Numerical limits in tables based on experimental evidence of toxicity. No point source discharge of organic pesticides shall be permitted to state waters.
- ⁸The persistence, bioaccumulation potential, and carcinogenicity of these organic compounds cautions human exposure to a minimum (EPA).
- ⁹Every reasonable effort should be made to minimize human exponence (EPA).

APPENDIX B

Raw Water Quality Data

Table B-1. Water quality parameter codes.

A. MET	TALLIC CONSTITUENTS
(1	g/l unless noted)
101.	Aluminium, Dissolved
102.	Aluminium, Total
103.	Barium, Dissolved
104.	Barium, Total
105.	Cadmium, Dissolved
106.	Cadmium, Total
107.	Calcium (mg/l)
108.	Chromium, Hexavalent
109.	Chromium, Total
110.	Copper, Dissolved
111.	Copper, Total
112.	Hardness, Total
113.	Iron, Dissolved
114.	Iron, Total
115.	Lead, Dissolved
116.	Lead, Total
117.	Magnesium (mg/1)
118,	Manganese, Dissolved
119.	Mangarese, Total
120.	Mercury, Dissolved
121.	Mercury, Total
122.	Molybdenum, Dissolved
123.	Molybdenum, Total
124.	Nickel, Dissolved
125.	Nickel, Total
126.	Potassium (mg/1)
127.	Selenium, Dissolved
128.	Selenium, Total
129.	Silver, Dissolved
130.	Silver, Total $(ma/1)$
100	
132.	Zinc, Dissolved
133.	Zinc, Total

B. NO	N-METALLIC CONSTITUENTS
	(mg/1 unless noted)
201.	Alkalinity, Total
202.	Arsenic, Dissolved (µg/1)
203.	Arsenic, Total (µg/l)
204.	Bicarbonate Hardness
205.	Boron
206.	Carbonate Hardness
207.	Chloride
208.	Cyanide
209.	Fluoride
210.	Nitrogen, Nitrate
211.	Nitrogen, Nitrite
212.	Nitrogen, Total Organic
213.	Phosphorus, Ortho
216	Dhoophorus Wotol

- 214. Phosphorus, Total
- 215. Sulfate

216. Total Dissolved Solids

Table B-2. Water quality data for the Dolores project.

DOLOFES REQUECT

STATION 15: DOLORES AT DULORES

C BS' F	5125117	2/15	6/30	7/19	R/24	9751	10/19	11/15	12/13	1/14/78	2115	3/21	4718	5714	6715	7/10	4/24
101	て1年。	230.		430.	280.	130.	-50.	140.	-50.	346.	148.	-54	244	155.	Pau,	242.	220.
176	332.	270		1050	220.	393	596	144	799	55	1-12	947	2345	1700	1200	470	436
103		-		•			-	-100	134	-100	162	158	110	-1001	-10.0	105.	-100.
104								134	130	234	162	170.	-100.		-100.	120	-160.
105	• 4.	- 7.		-3.	-3.	-3.	-3.	- 5 .	- 3	- 3	-3.	-3.	- 4.	-3.	- 3.	- 3,	-3.
104		5.		ь.	6.	8.	15.	-3.	- 7.	-3,	-3.	-5.	43.	-3.	-3.	- 1.	-3.
107	- t -	· 4		52.	52.	59.	61.	72.	A1.	£1.	79.	70.	37.	18.	25.	٤j.	45.
108				۶.	-1.	-1.	-1.	г.	-1.	-1.	-1.	-1.	5.	· · ·	2.	-1.	2.
103										-5e*	-Se	=20 a	• 7 ° •	-2··.	- ² "	-2A.	-20.
110	• 11.	-10,		·••10.	12.	-10.	•10.	- 10.	-10.	= 1 ft _	30.	-10.	-10,	-d 0 •	-10.	-10.	-10.
111	• 1 · · •	14.		11.	16.	40.	545.	- <u>,</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-10.	-10,	145.	-10.	- i · ·	44.	-10.	51.	~1 0.
110	10	1 um.		124.	152.	203.	100.	201.	246	255.	235.	1.4.4.	110.	73.	71.	157.	135.
117		• 21 . 60	•	-21.	-21.	- 21.	-51.	-21.	24	+21.	• 21.	• 21 •	<u>61</u>	6h.	45.	115.	- <u>+ e</u>
115	,	÷*		e • 4 •	104.	124.	· · ·		1.1	<i>21</i> 0.	100		(51.				1-100.
116								-1	·,•	-1	- 1 - 1	•	۰ ۲	-1.	- 1.		-1.
117	2.	0		7	- 1	13	o	-,.		12	- 1 .	-1.	5 10 .	- 1			-) .
118	1-	11		, e	10		9	. "	14	12	11	10	4.3		12	17	3
114	٦.	24		36	17.	37	22.	14	21	12	1 4	158	5.2	1514	40		27
120	0.5			0.7	n 4	-0.2	0.5	6.4	-0.2	•0 2	a 9	8.3	0.3	-1,2	نع انع به دا مع	5.5	3.5
151	6 <u>-</u> 5	-0.2		5.6	0 6	=0[2	1.2	n.4	-0.2	-0.2	r 0	0.4	р . А	- u] #	6.2	0 9	5.3
155	-~,	. h.		15.	5.	10.	-5.	-5.	, , , , , , , , , , , , , , , , , , ,	+5,	-5.1	- 5	- Ť.	- Ś.	- C	- ÷.	- 4
125	+51	10.		20.	6.	11.	5.	-5.	- 5	· .	5.	<u>-</u> ۲,	25.	- 5		11.	-5.
124	• * •	۳ ۴.		-o.	-0.	+h.	-6.	÷0.	÷^.	-h.	- ÷ .		-6.	··.	-*.	- 4 .	-+-
125	26	32 -		25.	- 5 .	162.	7.	-h.	۴.	•A.	**.	·~•	*. •	20.		···· •	· · · ·
120	· · · ·	3.0		5.0	5.0	5.0	2.7	1.7	14,7	1.5	1.0	2,1	1.4	2.0	5.0	2."	ે કે, ગ
128	-1.	-1.		-!-	-1.	- ! -	-1.	-i.	-1.	-!.	-1.	-!,	- i .		-1.	-1.	-1.
129				#1. -0	- 0	-1.	-1.	-1.	~1.	-1.	-1.		-1-		-1.	<u>č</u> .	1.
130	51				•°•			-~. c	**** 	- 0 *		- ''		-9.	- `		
1 5 1		12		1.6	16	41		1.6	1.1						**	• • •	
132	24	7			5	-5	, o .			1.			2.2	2.1			. . .
135	15.	1		150	334	322	1097	252	114.	13.	43.		121	1.4	- 5	74	• •
501	4 i .	135		129	111.	118	133.	1=3	1 -	157	174	141	91	ЕН.	цo.	ц. J.	100
202	-1.	-1.		-1,	-1.	-1	-1.	-1.	-1	•1.	-1	- i .	- 1	•	-1.	- 1	-1.
503	- I .	س ۱.		-1	-1.	-1.	-1.	-1.	- t .	-1.	-1.	1 .	-1.		- 1	-1.	-1.
264	93.	чь.		122,	111.	118.	133.	185.	146.	157.	174.	1 . 1 .	91.	÷В.,	5.92	1. Su	105.
205	1,33	0.12			0.54	0.09	0. ⁰ 9	0,3A	- * * , * * 5	-e, os	-0,05	<u>م</u> ا	•0 • ⁻¹ 5	r,71	· • • •	- 1 , C 5	•°,°5
205	7.	· •		7.	6 .	2.	0	°,	.)	6	0	0	0	0	9	-1	ŋ
201		11.		19.	14	15.	10.	32.	а÷.,	5 m -	344,	• د د	1 ¹ 1	÷ ۲	۶.	2.	5.
200		-0.01		-e.ei	-0.01	-0_01	0,30	1,15	* 6 , O I	0.02	- (• • • •	1. C. I.		-0.01	• • •		r . r 4
210				0 17	0.74	0 0/	0,00	7		0.44		-e.i.i	····				
211	0.0.1	1. 641		0.045	0 0.03	0 005	-0 001		19 - 19 - 19 - 19 - 19 - 19	4 . 6 2	1.417 1.617		1.11	H . 19	a 403		5 6 7 7
515	6.6	6.4		0.7	0.7	=0.1	0.2	6.2		0.2	-0.1	1 A		1. 1. 1. 1. 1. 1.			
213	-r	603		0.010	0,001	0.002	0.069	19 6413		0.602	n . n . 1	5	a 1.17			1.1	6.601
214	0,015	0.012		0.037	0.015	0.007	550 0	0.065	1.048	n	0.013	6 120	·	6.256	1. 1.27	1.000	6 4 4 4
215	20.			42	41	50	45.	57.	Å7_	5.9	1.5	n 6	12	15.	55	· .	÷ .
510	130.	190		245	140.	185.	289	289	215	246.	\$15.	21.4	126.	101.	97		173.

ယ သ

-5

APPENDIX C

Statistical Analyses of Water Quality Data

Table C-1. Statistical analysis of the water quality data for the Dolores project.

DOLORES PROJECT

STATION 15: DOLORES AT DOLORES

CODF	CUNSTITUENT	MEAN	VARIANCE	s.0.	C OF V	818 ¥	FIN	RANGE	74
	***** GROUP A:	METALLIC C	ONSTITUENTS	****					
101	ACUMINIUM, DISSOLVED (UG/L)	287.5	.3561E+05	169.7	55.0	ja (1.9.	130.	714.	13
165	ALCHINICH, TOTAL (UG/L)	1006.8	.2630E+97	1621.6	161.1	6700	55.	61-15.	10
103	BiPIC", CISSOLVED (UG/L)	135.8	.,58822+03	24.3	17.9	152	106,	56.	5
104	BAPILH, TOTAL (UG/L)	231.6	.3A29E+05	145.7	P4 5	667.	160.	547.	7
105	CADHILM, DISSOLVED (UG/L)	0.0	Δ.	0 , 0	0.0	ė.	θ.	υ,	()
100	CADMILM, TOTAL (UG/L)	19.3	.35526+03	18.8	97.7	40.	5.	чц.	7
107	CALCILM (MG/L)	54.9	.3163E+03	17.8	32.4	R1.	25.	56.	15
108	CHRENILH, HEXAVALENT (UG/L)	2.8	.2567E+0)	1.6	56.5	÷.	2.	ب	0
109	C-POMILY, TOTAL (UG/L)	0.0	Ο,	0,0	0,0	е,	θ.	ρ.	ŋ
110	CLPPEP, DISSULVED (UG/L)	0.15	.1620E+03	12.7	60.0	30.	12.	15.	5
111	CCEPE-, THTAL (UG/L)	10A_A	.3903E+05	197.6	181.7	585.	11.	574.	F
115	TAFTYEES, TOTAL AS CACO3 (MG/L)	161,9	*351E+04	57.0	35.2	255.	71.	164	16
113	IPO%, LISSOLVED (UG/L)	55.3	.1087E+04	33. n	59.6	114.	24.	94.	6
114	IPCH, TITAL (UG/L)	733.4	.2153E+07	1467.5	500.1	6057.	56.	. 6017.	16
115	LEAD, DISSOLVED (UG/L)	5.0	**********	5.8	56.5	1.	3.	۹.	2
110	LEALY TOTAL (UG/L)	55.0	.1447E+03	12.8	54.7	34.	7.	27.	14
117	HAGNESS, H (MG/L)	6.º	.1284E+02	3.6	51,7	12.	2.	11.	14
112	"ANGED ESE, DISSOLVED (UG/L)	16.5	-9490E+02	°.7	59.0	37.	· 8,	29.	1.5
119	MANGANESE, TUTAL (UG/L)	150.0	.1376E+06	370,9	287.5	1510.	12.	1562.	16
120	HERC, DISSOLVED (UG/L)	.0.79	.1012E+01	1.01	127,35	3.6	0.3	3.3	10
151	MERC PT, TOTAL (UG/L)	1.48	.39326+01	1,48	133,81	5.0	n,ż	5.4	11
122	Place Ender DISSOLVED (UG/L)	9.3	,1825E+02	4.3	44.2	14.	۰.	۰.	4
125	HILPHARNIN, TOTAL (UG/L)	11.2	S219E+92	7.2	84.4	26.	5.	21.	ą
12-	SITE ISSOLVED (UG/L)	0.0	0.	0.0	0.0	۲ .	Ο,	⁶ .	0
152	MICKEL, TOTAL (UG/L)	32.2	,2473E+04	49.7	154.3	162.	۴.	150.	0
125	PTY455724 (HG/L)	2.4	. 8565E+01	5.4	105.7	14.	1.	12.	16
157	SELENIER, DISSOLVED (UG/L)	0.0	Α,	0.0	n.0	<i>a</i> .	ο.	л .	- 11
128	SELENT.M, FUTAL (UG/L)	1.3	.33355+00	0.5	43.3	ε.	۱.	1.	3
124	540.5-, DISSULVED (UG/L)	0.0	Α.	ñ, n	0.0	°.	ο.	ñ.	9
130	SIL-LT, TOTAL (UG/L)	. 36.0	_4500E+03	61.5	56.0	•	21.	30.	2
131	810,14 (45/L)	13,9	*1499E+05	8.9	64.0	a1.	2.	33.	16
150	71507 11850LVED (UG7L)	13.0	.4356E+02	6.6	50,8	· 22.	5.	17.	10
155	1]KU; TJTAL (UG/L)	334.8	.1686E+06	410.0	122.6	1340.	13.	1327.	13

***** GROUP B: NON-METALLIC CONSTITUENTS *****

5 .53	ALKALITITY, TOTAL AS CACOB (MG/L)	118.3	.10948+04	33.1	25.0	174.	57.	115.	16
5.5	APSENIEW DISSOLVED (UGVL)	0.0	Ο.	0.0	9.0	Α.	٥.	0	6
503	ARSENIC, TOTAL (UG/L)	0.0	0.	0.0	n	0	0	e e	- ô
502	BICAPETNATE HAPONESS AS CACU3 (MG/L)	116.4	10906+04	33.0	54.0	170	49	115	16
505	5092 · (H3/L)	0.442	.1654E+00	0.4112	92.394	1.33	0.09	1.24	
505	DAREINATE AS CACOS (HOVL)	6.7	.6067E+01	2.6	3.0.7	0	2.	7	+
502	CHLORDER (MGVL)	16.8	9820F+02	0 0	4.4 2	32	ē.	50	1 *
503	INANI,F (MG/L)	0.074	1246E-01	0.113	151.327	0.42	0.01	0.51	,u
209	FLUTFICE (MG/L)	0.089	23246-02	0.038	50.170	0.15	0.01	0.17	11
51.0	NITE DESK NITRATE (MG/L)	0,139	.2500E=01	0.150	111.952	0.74	0,03	0.07	10
211	STRIGES, NITRIFE (MG/L)	0,0036	7400E+05	0.0027	75.5637	0.012	0.001	0.011	15
512	NITE SENT TOTAL OPGANIC (MG/L)	0.49	3536E-01	11.10	3A 26	6.7	9.8		51
213	PHOSPHURUS, OPTHON (MG/L)	0.0041	083AE+05	0.0031	75 . 4411	0.010	0,961	0.140	15
514	PHOSPHOPUS, TUTAL (MG/L)	0.0299	3147E-02	0,0561	187,3761	0.235	9,403	1.233	16
215	SLLFATE (MG/L)	41.5	.3248E+03	18.0	43.4	75	10.	59	15
21÷	TOTAL DISSOLVED SOLIDS (MG/L)	204.1	.5561E+04	74.6	36.5	315	47.	e15.	15

ω 5

APPENDIX D

Comparison of Water Quality Data with the Proposed Colorado Water Quality Standards

Table D-1. Comparison of water quality data for the Dolores project with the proposed Colorado Water Quality Standards.

DOLOPES PROJECT

STATION 15: UNLORES AT. BULDEES

				NUMPER	NUMBER OF	PERCENT
CODE	CONSTITUENT	STANDARD	SOUNCE	EXCEEDING	SAPPLES	EXCEEDING
101	ALUMINIUM, DISSOLVED (UG/L)	100,000	4 f1	13 ·	13	100.00
104	BAPIUM, TOTAL (UG/L)	1000,000	n S	ß	7	0.00
100	CAUMIUM, INTAL (UG/L)	10,000	≜ G	3	1	42.86
		10,000	*5	3	4	42,00
		0,400	**LI A=12	5	2	85.71
		5,000	4823	1	,	14,27
		10,000	4434	0	7	6,00
		15.000	A 4 G 4	0	7	0.00
109	CHROMIUN, TOTAL (UG/L)	100,000	Δ (;	0	n	e.00
		50,000	• S	0	n 0	0.99
		200.000	. 46	1	8	12.50
		1000.000	*5	ñ	ą	0.00
		10,000	ABLI	1	6	12.50
		10.000	4615	5	P	62.50
		10.000	4423	2	6	25.00
		20,000	A 6 5 4	0	р С	0.00
113	TEON DISSOLVED (UC/L)	300,000	*5	0	6	0.00
114	IRON, TOTAL (UG/L)	1000.000	48	2	16	12.50
116	LEAD, TOTAL (UG/L)	100,000	A G	n	4	0.00
		50.000	⊬S	0	4	0.00
		4,000	AEL 1	!	4.	25,00
		25.000	AN12 AU33	1	4	0.00
		100 000	1974	0	u -	0.00
		150.000	AHG4	Ŭ	4	0.00
117	MAGNESIUM (MG/L)	125,000	H S	0	14	0.09
118	MANGANESE, DISSOLVED (UG/L)	50,000	MS	e	16	0,00
119	MANGANESE, TUTAL (UGVL)	200,000.	۸G	1	16	5.25
		1,000,000	AB		10	18 15
151	MERCURY, TUTAL (UG7L)	2,000 0 050	48	11	11 .	100.00
125	NTCKEL, TOTAL (UG/L)	200,000	A G	0	9	0.00
		50,000	A 91.1	0	Q	0.00
		100.000	4412	0		0.00
		200,000	4923	0	4	0.00
		400,000	4654	0		0.00
126	SELENTUR, TOTAL (UC/L)	20.000	46	0	3	0.00
		10,000	*5	0	3	0,0Ü
		50.000	AB	0	3	0.00
130	BILVER, TOTAL (UG/L)	50,000	WS.	1	2	50,00
		0,100	AHL]	2	2	100.00
		0.150	4823	0	2	0.00
		0.200	AR34	. n	2	0.00
		0,250	APC 4	0	5	0.00
133	ZINC, TOTAL (UG/L)	2000.000	AG	0	13	0.00
		5000,000	*5	0	13	7.69
		50,000	AP12	÷	13	53.85
		100,000	4823	3	13	23.00
		300,000	AH 34	. 0	13	0.00
	· · · ·	900°COU	AHG4	0	13	0.00
505	ARSENIC, DISSOLVED (UG/L)	100,000	AG	0	. 0	0.00
		50,000	#5 #8	. v	0	9.00
205	BORDN (MG/L)	750,000	ÅG	ñ	9	0.00
207	CHLCHIDE (MG/L)	250,000	÷\$	0	16	0.00
200	CYANIDE (HG/L)	0.200	≜ G	1	<u>A</u>	12.50
		0.200	W S	· 1	8	12.50
200	FLUOPINE (MC (L)	0.005	4 M 4 C	6	11	0.00
214	FLUUMIUE (PUZE) NITROGEN, ETTRATE (MGZE)	100.000	AG	ő	16	0.00
210	WINDSCHI STURIC CONCI	10,000	45	0	16	0,00
511	NITROGEN, NITRITE (HG/L)	10,000	46	0	15	0.40
		1.000	*S	0	.15	0,00
		·	***C 205	0	15	0.00
316	SULLATE (HC/L)	250,000	*5	0	15	0.00
615	0051410 100757			-		

AF z AQUATIC FIOTA ANC z AQUATIC FIOTA (COLO) ANA z AQUATIC FIOTA (COLO) ANA z AQUATIC FIOTA (TATAL MARCHESST LESS THAG 100) AND z AQUATIC FIOTA (TTAL MARCHESST LESS THAG 100) AND z AQUATIC FIOTA (TTAL MARCHESST LESS THAG 100) AND z AQUATIC FIOTA (TTAL MARCHESST LESS THAG 100) AND z AQUATIC FIOTA (TTAL MARCHESST LESS THAG 100) AND z AQUATIC FIOTA (TTAL MARCHESST LESS THAG 100) AND z AQUATIC FIOTA (TTAL MARCHESST LESS THAG 100) AND z AQUATIC FIOTA (TTAL MARCHESST LESS THAG 100) AND z ALONALL (TTAL MARCHESST LESS THAG 400) AC z AGUICULTINE AS z CLASS z MAR MATER SUPPLY SOURCE CODESI

Bibliography

- A.P.H.A. 1975. Standard methods for the examination of water and wastewater. 14th Edition. 1193 p.
- Hem, John D. 1970. Study and interpretation of the chemical characteristics of natural water. 2nd Ed tion. U.S.G.S. Water Supply Paper No. 1473. 363 p.
- National Academy of Sciences. 1972. Water quality criteria, 1972. Ecological Research Series EPA-R-3-73-003. 594 p.
- Sawyer, Clair N., and Perry L. McCarty. 1978. Chemistry for sanitary engineers. 3rd Edition. McGraw-Hill Book Co., New York. 532 p.
- U.S.E.P.A. 1971. Algal assay procedure: Bottle test. National Eutrophication Research Laboratory, Corvallis, OR. 81 p.
- U.S.E.P.A. 1976a. Methods for chemical analysis of water and wastes. Technology Transfer Series EPA-625/6-74-003a. 298 p.
- U.S.E.P.A. 1976b. Quality criteria for water. U.S.G.P.O. 0-222-904, Washington, D.C. 256 p.