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ABSTRACT 

The Structure of Turbulence in an Open 

Channel with Large Spherical 

Roughness Elements 

by 

Fa rooq Naz ir 

Utah State University, 1967 

Major Professor: Dr. Calvin G. Cl¥de 
Department: Civil Engineering 

The present status of knowledge of turbulent flow is inadequate, 

especially in the case of rough open channels, for the formulation of 

a general theory. It is believed that more experimental data and the 

subsequent interpretation of these data are necessary before a workable 

theory can be formulated. Hence, a description of the turbulence 

pres ent in a rough open channel can be valuable. 

For this study an artificially roughened bed 48 feet in length was 

placed in a channel 8 feet wide and 6 feet deep. Measurements were 

made of the following properties of turbulence at three different slopes: 

1. Intensity of turbulence. 

2. Autocorrelation and cross -correlation coefficients. 

3. Microscale and macroscale of turbulence. 

4. One-dimensional energy and dissipation spectra. 

viii 



A11 the measurements were taken with a pie2l-oeLeet%iQ.G total head 

tube in combination with necessary electronics equipment. 

The results have been presented in the form of dimensionless 

curves as far as possible.. These curves are compared with published 

data. 

(r r3~pages) 
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CHAPTER I 

INTRODUCTION 

Fluid flow may be classified as laminar or turbulent, steady or 

unsteady, and uniform or nonuniform. These classifications are based 

on the motion of fluid particles. The most commonly observed flow is 

that found in open channels. This flow in most cases is turbulent. 

Rouse (1938) defines turbulent flow as "a flow characterized primarily 

by a continuous mixing action of the eddies whereby small fluid masses 

are constantly being moved into regions of different velocity causing a 

more uniform velocity distribution as compared with that in laminar 

flow." In 1921 Taylor and von Karman gave the following definition: 

"Turbulence is an irregular motion which in general makes its appear

ance in fluids, gaseous or liquid, when they flow past solid surfaces or 

even when neighbouring streams of the same fluid flow past or over 

one another. " 

The phenomenon of turbulent flow is not limited to open channels, 

but is also observed in under sea currents, tital currents, in the 

atmosphere, pipe flow, and lubricants lying between two rapidly moving 

parts of machines. 

Due to the comm(')n occurrence of the phenomenon of turbulence 

in fluid flow problems, hydraulicians have always wished to get as com

plete knowledge as possible about its production, l'.!Onvection, diffusion, 



distribution, and dissipation. The first prominent person who tried 

to understand this problem was Reynolds (1911). During the years of 

1900 to 1915 many people, realizing that a knowledge of fluctuations 

occurring during turbulent flow would add materially to the under-

2 

standing of turbulence, suggested various empirical theories. The theories 

proposed by Boussinesq, Prandtl and von Karman were widely accepted. 

In 1921, Taylor introduced'the idea that the velocity of fluid in 

turbulent motion was a random function of position and time. He 

applied principles of statistical mechanics to this random continuous 

function and in 1935 published his classic series of papers on statistical 

theories of turbulence. This represented a new approach to the under

standing of turbulence which the previous investigators had not considered. 

Some of the prominent workers in the field of statistical theory of 

turbulence are von Karman (1931-1948) who also made important 

contributions to Prandtl's (1926) empirical mixing length theory, 

Kolmogoroff (1941), Burgers (1953), Townsend (1947), Dryden (1929-

1937), Batchelor (1946), Lin (1947), Chandrasekhar (1949), Laufer 

(1951), Ippen (1955), Einstein (1959), Li (1959), Clyde (1961), and 

Eagleson et al. (1961). A Majority of the above mentioned scientists 

studied the turbulence created in air flow by screens of various sizes 

in a wind tunnel. Very few attempted to observe the properties of 

turbulence present in an open channel,. especially with large roughness. 

The necessity of knowing more about this type of turbulence was always 

present. Hence an attempt was made in this investigation to complete 



the following objectives in an artificially roughened open channel: 

1. To find out the effect of large roughness on the mean velocity 

distribution in a turbulent flow field. 

2. To observe the distribution of relative intensity of turbulence 

as a function of relative depth for different slopes. 

3. To determine the autocorrelation function and the distribution 

of mean macroscale of turbulence as a function of relative depth. 

4. To obtain the distribution of microscale as a function of depth 

and slope. 

5. To get the cross-correlation for different depths and 'slopes. 

6. To determine the energy spectral distribution and if possible to 

determine the spectral laws of locally isotropic turbulence. 

Most of the quantities mentioned above are spatial vectors. Due 

3 

to the limitation imposed by the instruments available, it is not possible 

to measure all the components. Hence the study will be restricted to 

the measurement of only one component. 
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CHAPTER II 

EQUATION OF MOTION AND SEMIEMPIRIGAL, 

THEORIES 

The phenomenon of turbulent flow cannot be fully understood 

without a knowledge of the equations governing it. These equations 

will be briefly reviewed in the following pages. 

The equation of conservation of mass (the continuity equation) 

reads as follows 

o (2 -1 ) 

This holds only for an instant in a turbulent flow. 

Substituting the following expressions in equation (2-1), 

f = P + f' (2 -2) 

- VI + u., (2 - 3) 

(2 -4) 

= + (2 -5) 

and taking the average 

- / 

O(f>+P) 
= 'at 

(2 - 6) 



Applying the properties of averaging as given in the Appendix B the 

following equation is obtaineJd. 

+ :';P, (pUI -I- F/~ + :: X
4 

(PU2.-r e"U-2 ) 

+ ~ (p Uo + pi U,3) =" 0 

ax& 
(2 -7) 

For incompressible fluids (' is a constant quantity and the continuity 

equation becomes 

= 0 (2 -8) 

Next, consider the momentum equations (Navier-Stokes equations). 

For flow in the x;direction at any instant 

:::; 'dOl + U. . 'aU; + U2 aU, + U a IT, at '0 XI' "O.;:c "o~ . 2- 3 

0 (~+ 3~) + 7l( Ol.u, 
a~, ~ OXt 

+ o~ + 
d 2 U 1 ) ox2. o:x-l.. 

2- .3 

Taking the time averages I 

a.~ = 
J. 

aU, u aUt 
--::.t + '..::::,. 
CJ vre I 

!f th,f,;> now is steady au, = 0 and h is not a function of time. 
at 

(2 -9) 

5 



Then using equation (l} to (5) frorn Appendix B 

u oU. 
2. ace 

2. 

because 

Thus 

= ( U~ + U:l.) -a CU. + U-.) = 
'8x2. 

= = 0 

o.:.c.. = U I aU. + u au, + u ..:a.!lL 
OOC, 2. aoc~ 3 Q)x~ 

== U -au. + u -au! + u au, 
. I d~1 2. axl. ~ O~ 

~ 

But 

= dU,U., + au.U2., + a U,'h 
ooc, -aoc~ 'O.:c3 

~u, 
According to equation (2- 8~ T 

a~, 

Then 

Thus the Navier~Stokes equation for steady turbulent incornpres sible 

flow can be written as 

6 
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--

Similarily, the equations for other directions can be written as 

o,x = U, 'dUz. + U au;a. + CJ aUl. + cru.-~ owrz. + -aiI!P2. 
2. o~l:2. (;)0:2. 3 a~~ O;:C, O:::CL "d;::,::.::, 

= _ 'd (P Q ~ ) 7/'(' au2. + at1:a.. _I- ClfJ?) (2-11 ) 
a~4 ~ t- 0 + 'a~, d~ a:):;, 

Q x -=: U -0 u~ + ~ a a; + U!I '0 u~ + (j U;U. + dU;U~ + cfaiU~ 
3 'o'\C1 ax:2., aoc~ 'd x. O::C, '07X.:3 

(2-12) 

The instantaneous quantities in equation (2-9) have been replaced 

by mean quantities, and three additional terms have been added in each 

equation which involve the fluctuating components of the velocity. 

If equation (2-10) is multiplied by p the results are 

= ou au. 
I , 000, 

f aU,U, -t f a U,U2.. 
+ ox, a 'Xl. 

.'-'(2-13) 
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The term 

gives the stresses in the fluid due to mean velocity tIl and molecular 

viscosity fk . The terms 

give the stress in the fluid caused by turbulent fluctuations. In all 

three E!quations (2-10), (2'; 11) and (2-12) the following nine new 

quantities are involved 

pu.,U. ) 

These are called Reynolds, or eddy, stresses. These also represent 

the rate of transfer of momentum across corresponsind surfaces. 

The solution of the Reynolds equations can represent the turbulent 

flow fully but there are only four available equations involving t"e:n' ': 

unknown quantities. 

In order to obtain definite results from the Reynolds equations 

further hypotheses about the Reynolds stresses are necessary. 

Many different ways for determining the Reynolds stresses have 

been proposed by different people. A few important and interesting 

methods are given in the following few pages. 

Consider the case of simple two-dimensional parallel turbulent 

flow having mean flow in xldirection only. 



Then 

u. = U,l x~) U2,.= <:> u~ = 0 

and equation (2-10) gives 

- -f (2-14) 

This can only be solved if the value of u..,u..2.. is known. Boussinesq 

(1877) assumed that 

__ E au, 
-t: oOCJ.. 

(2-15) -

where €t is called the turbulent exchange coefficient. This provides 

a means of getting the distribution of VI . Comparing the equation 

(2-15) with Newton's viscosity equation 

(2-16) 

it was found that Et - /"-+ rt, where '1. is an additional factor known 

9 

as eddy viscosity which depends upon the intensity of turbulence and boun-

dary conditions of the flow. The determination of the exact value of (::t 

is a tedious problem so the Boussinesq theory cannot be readily applied. 

Another semiempirical theory about turbulence which is the most 

successful and best known is Prandtl's (1925) mixing length theory 

which is based on following assumptions: 



1. The turbulent shear stress between two fluid layers is due to 

exchange of momentUin~ 

2. The instantaneous velocity in the xidirection is given by the 

following relationship: 

- do: -
U __ u +Q.~- u 

I '''01 I 
Xl.. 

Q. dU, = (. 
d ~l. 

where t, is a constant known as the mixing length. 
(, 

3. I L.L, I =: I u2.1 (The vertical bars show that only the magnitude 

is being considered and no consideration is given to the sign.) 

According to the first assumption the instantaneous shear stress 

is given by the transfer of momentum through a unit area. 

Hence 

r· L 
.. N'\ ( UA + Ve) 

- f u'l. u" 

10 

= f U l. i1. d V, = f (Qi dU, )4 . (2-17) 
d OC',z. d 'Xl.. 

Then 

f (fl I -.- ):J. 
r( .... f l.L1. U. = c tJ. (2-18) 

dX.l.. 

Taylor (1932) suggested that the assumption of conservation of momentum 

during the turbulent mixing process over the length e is not valid. He 

proposed a new theory on the basis of following assumptions. 
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1. The turbulent shear stress between two fluid layers is due to 

exchange of moment of momentum (or vorticity). 

2. The instantaneous vorticity 

~-

w ;: Q. d V. (2-19) 
doc;-

From equation (2-10) 

aP (} ( Uj U~) -fu.. ... W =-f- -ox, '00:;, 

- f t.).~ 1. dw-
doc. 

f u-2,.fl 
d2.U• 

-
dx~ 

,) 

(2-20) 

Perhaps the most satisfactory approach is that embodied in von 

Karman's (1930) hypothesis of turbulent similitude based upon these 

two assumptions. 

1. The mechanism of turbulence is independent of viscosity except 

in the immediate neighborhood of the flow boundaries. 

2. The pattern of secondary flow is statistically similar from point 

to point varying only in time and length scales. 

If this hypothesis is applied to the case of two-dimensional uniform 

motion as shown by von Karman, the following three conclusions will 

be reached. 

1. The components of fluctuation will be proportional to the length e 

and to the gradient ~'fY;i!a;;x:2. 
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2. The intensity of shear is proportional to pi. ·CdUYd JC2.) 
3. The length e will be proportional to 

From these the following is obtained 

(2 -21 ) 
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CHAPTER III 

STA TISTICAL THEOR Y OF TURBULENCE 

The various semiempirical theories described in Chapter II can 

define only the distribution of the mean velocity of flow. These theories 

give no idea about the size of the eddies or the production, distribution, 

and dissipation of turbulence energies. A detailed analysis was always 

needed to solve the various problems faced in this flow phenomenon. 

In 1921 Taylor published his work, commonly known as the statistical 

theory of turbulence, which opened a new way of treating this flow problem 

and became the foundation of modern turbulence studies. 

Taylor's theory was further developed by von Karman (1931, 1937, 

1938, 1948), Kolmogoroff (1941), Heisenberg (1948), and several other 

scientists. These scientists assumed that the fluctuating quantities met 

in turbulence are random in nature and that it is possible to apply 

statistical mechanics to them and get average values of each fluctuating 

function a~d then to deduce practically useful results. 

The turbulence which is usually met in fluid flow problems is such 

that its mathematical analysis is nearly impossible. Thus, Taylor and 

his followers while developing their theories considered an idealized 

homogeneous and isotropic flow. 
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In a turbulent flow if each of the fluctuating quantities have the same 

values at all points in the flow field then this flow field is said to have 

homogeneous turbulence. 

In an isotropic tunbulent flow field, the mean value of any function 

of the velocity components and space derivatives is unaltered by any 

:rotation or reflection of reference areas. 

Thus 

(3-1) 

and 

U.IU.~ - - -0 (3 -2) 

When 

the turbulence becomes anisotropic. 

Taylor defined certain terms which can describe the behavior of 

tut·bulent flow intelligent:by. A brief description of these terms follows. 

Intensity of Turbulence 

At any point in a turbulent flow field, the velocity vector does 

not have a constant value. It is always changing in magnitude and 

direction. This vector can be assumed to be a sum of two velocities 

U and u. , V refers to the average movement while u. refers to 

the fluctuations. Schematically, the velocity u. might be considered 
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as the relative velocity within an eddy at the point of observation and 

U as the velocity with which the eddy is carried past this point by the 

flow. Hence for a turbulent flow, the velocity vector is 

(3 -3) 

Considering the components of U along three coordinate axes, 

U= U· + LV l L L where i = 1, 2, 3 represent the three coordinate axes. 

The mean square of the fluctuating velocity is referred to as the intensity 

of turbulence and can be defined mathematically as 

(3 -4) 

./ 
It is seen that the statistical average of u-i. gives lJ.. L but such an 

average is almost impossible to obtain. Thts can be obtained only by 

having an infinite number of channels of exactly the same size, shape, 

and flow conditions, and then measuring lJ..1. in all channels at a 

geometrical similar point and taking their average. 

According to certain theorems it has been proven that for a random 

variable (ti~ is considered a random variable), the statistical average 

of a quantity is the same as the time average of that quantity. Hence 

= [ _I 16t u,~ 
_ At:. 0 

I 

dt r . (3 -5) 

The relative intensity of turbulence is defined as 

I 

l. e, U-L 
u· <.. 
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The intensity of turbulence is a means of describing the strength of the 

turbulence. 

Correlation Coefficients 

While developing the statistical theory of turbulence, Taylor and 

others correlated various fluctuating quantities in a turbulent flow field 

and described many types of correlations. These correlations provide 

useful information regarding si:ze and strength of eddies and turbulent 

stresses, etc. 

The most commonly used correlations are velocity correlations 

because these are easy to measure and it is possible to express 

pressure correlations in terms of these. 

The correlation between two velocities at two points x and 

(x + "+) is as follows 

(3 -6) 

Von Karman suggested that equation (3 -6) forms a second order 

tensor. 

Triple velocity correlation may also be defined as suggested by 

Hinze (1959) 

(3 -7) 

This is a third order tensor. 

The pressure correlations are defined as follows. 

La. = pu.i.. 
(' 

(3 -8) 
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Another type of correlation very commonly used in diffusion problems 

is the Eulerian time correlation also known as the autocorrelation and 

defined as 

where 

U. I ('T'J l-l, ( 1'"( - At) 
u,2. 

I 

U, - velocity of a particle at time 

'1 - time at which u, was recorded 

(3 -9) 

Ll,l'l'-flt.)_velocity of the particle at the same point at (1-ll.t) time 

If the turbulence is assumed to be homogeneous then 

2-

\..l. :: 
A 

..... 
u., = 

6 

where Ll2. 
I 

is only a function of time and does not depend on the position. 

If is otrophy is also as surned the correlation functions RLj (r), La. ,(Sl.,j k)A8 

become invariant for any rotation of axes. 

Under these conditions, the correlation tensor 

(3 -6) 

loses its full identity leaving behind only two terms. 

and 

where R\I~'W')lis the longitudinal double-velocity correlation and R2.2..(Y<) 

is the lateral double-velocity correlation function 

R,1( .,. ) = LA. I A U. I B 

1\;'(v"") = tAl. A LL2.B 

( 3 -10) 

(3-11) 
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It was found by von Karman and Howarth (1938) that 

8(1") .... [J(-(-) - 1:: f\-(-) ) (3-12) 

Since both g(r) and f(r) can be measured and if it is found that equation 

(3 - 12) holds good, then turbulence can be said to be homogeneous and 

isotropic. 

The various correlation coefficients have been found useful in 

determining the scales of turbulence, eddy stress distribution of 

fluctuating velocity components, etc. Extensive use of R. Lj ("1') 

and Re (r() have been made in determining the scale of turbulence. In 

fact, macroscale of turbulence can be measured only by the help of 

corss-correlation curves. 

Microscale of Turbulence 

It is always of interest to measure in some way the maximum and 

minimum size of eddies present in a particular type of turbulence. 

Many different types of scales have been defined which relate the size 

of eddies to linear dimensions but the scales described by Taylor (192 1) 

have attained the widest popularity. 

Consider homogeneous turbulence so that 

or 



Figure 1. ptJ;ot tube Figure 2. Total head transducer probe 
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Figure 3. Typical oscilloscope picture of turbulent total head fluctuations. 

t 
5.2V1 

Figure 4. Spherical roughness elenlent. 
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to selectively reject certain frequencies of the signal with the 

amplifers. During experiments all frequencies lying above 1000 cps and 

below 0.8 cps were rejected because turbulence frequencies are rarely 

out of this range. Any signal whose frequency is above 1000 cps or 

below 0.8 cps is not caused by turbulence. The voltage gain for all 

measurements was kept at 100 except for spectrum analysis for which 

a gain of 1000 was used. 

Random Signal Indicator and Correlator 

This instrument is designed for measuring the root-mean-square 

value (R. M. S. ) of the voltage of two electrical input signals as well 

as the correlation coefficient relating the two signals. In this study 

it was used to measure the following properties of turbulence: 

1. Intensity of turbulence 

2. Autocorrelation coefficient 

3. Cross-correlation coefficient 

4. Microscale of turbulence. 

Two electrical meters are fixed at the face of the instrument. 

The R. M. S. meter is capable of measuring the root mean square value 

of either signal A or B separately, the time derivative of signal A, 

R. M. S. value of the sum and difference of the signal A and B regardless 

of wave form. The other meter gives A A _) ___ and 

6 '"(dA 

and is therefore called the ratio meter. 
dt 

Operation of the instrument is summarized below. 

A+B 

A-B 



The random signal A is first fed into a variable gain preamplifier, 

then it passes through an isolation amplifier, an output amplifier, and 

finally through a squaring and averaging network. The circuit for 

channel B is similar to the circuit of A except that it contains a sign 

invertor. The instrument has, in addition, two circuits for adding 

voltages, a differentiator, and a squaring and averaging network. 

This instrument has the frequency response of 3 cps to 200 k cps. 

The instrument was adjusted completely, before it was used, in 

accordance with its instruction manual. The gain controls were always 

kept at the recommended position while making measurements of 

intensity of turbulence. For other measurements the adjustments 

were in accordance with the instruction manual. 

Spectrum Analyser 
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The instrument used for spectrum measurement was manufactured 

by Quan Tech Laboratory. This instrument was basically a combination 

of filters with an R. M. S. voltmeter. Thus it gives the R. M. S. voltage 

. of an input signal after passing through adjustable filters. The range 

of frequency response of the instrument is from 30 cps to 100 K cps. 

Banal pass width is adjustable at 10 cps or 30 cps. Ten different ranges 

are available on the R. M. S. meter by operating the voltage gain switch. 

The instrument is equipped with two input terminals X 1 and X 10 and 

it is also provided with a meter-multiplier which is to be set to a range 

higher than the signals to be measured. For taking absolute readings 

in millivolts, the reading on the R. M. S. meter should be multiplied by 

the m~ter multiplier factor when gain control is fully. clockwise. 
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Variable Time Delay 

For measuring the autocorrelation coefficient it was necessary to 

delay the output signal of the probe system. This was done by a de:bay 

line manufactured by AD- YU Electronics Inc., which was capable of 

providing a delay ranging from 2 milliseconds to 200,000 milliseconds. 

The instrument was basically a series of selected coils with switches. 

If the impendence of the delay line do~s not match with the impendence 

of the input circuit, the signal may be distorted while passing through. 

This makes it necessary to place two variable resistors in parallel 

across the input and output terminals of delay line. 

Oscilloscope 
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For visual observations and for permanent check on the form of 

signals coming from the probes a dual-trace Dumont Type 766 transis

torized oscilloscope was placed in the measuring circuit. Wide range 

of voltage gain and frequency change were possible. A polaroid camera 

was available for photographing the signals. 

General Considerations 

The complete system used for measuring the turbulence properties 

is shown in Figure 5. All the connections in the circuit were made with 

coaxial shielded cables and each instrum.ent was carefully grounded. 

This was done to minimize the interference due to 60 cycle noise 

pickup. 



Observation of Data 

Mean velocity measurement 

The purpose of measuring the mean velocity distribution was two-

fold. First, these measurements were required for the calculations 

of relative intensity of turbulence and for the spectrum function. 

Second, the effect of large scale roughness on the shape of the velocity 

profiles was to be determined. A simple pitot tube and a manometer 

with water as a fluid was used. For each discharge a series of 

velocities at varying depths were measured at three different locations; 

one at the center line and the others at a distance of 1. 5 feet on either 

side of center. The reading of the manometer was stabilized by 

pinching the tubing connecting the manometer to the pitot tube. 

The pitot tube used for these experiments had an outer diameter 

of 3/8 inch. The inner diameter of the tube was 1/8 inch. Various 

other dimensions are shown in Figure 1. 

Measurement of intensity of turbulence 

The root mean square of the fluctuating velocity com.ponent in the 

x[direction is defined as the intensity of turbulence in that direction. 

This fluctuating velocity produces a voltage proportional to the 

velocity in the piezoelectric probe. This voltage was applied to the 

random signal indicator, after due amplification, for the determination 

of the value of j u..7 with a true R. M. S. voltmeter. For each dis-

charge the intensity readings as a function of depth were taken at two 

34 



different locations. For some measurements the top of the- spheres 

was considered to be at zero whereas for others, the zero was taken 

as the point of contact of two adjacent spheres. 

Measurement of autocorrelation and macroscale 

For this measurement both channels of the random signal indicator 

were employed. The channel A was fed by a signal coming directly 

from the Tektronix preamplifier whereas channel B was fed with the 

same signal after this was passed through the delay line. Then the 

gain control and meter volts were adjusted to obtain the recommended 

deflection on the R. M. S. meter for channel A as well as for B. The 

ratio meter then gave the correlation coefficient when it was set on 

the correlation coefficient position. It was not possible to measure 

the macroscale of the turbulence directly. This quantity was derived 

from the area under the autocorrelation curve. 

Measurement of spatial correlation 

The spatial correlation between the velocity fluctuations at two 

points in turbulent flow field was observed by placing probes at the 

desired two points. Signals from these probes were fed into channel 

A and B, then the cross correlation was measured directly from fhe 

R. M. S. meter. The cross correlation was observed in vertical and 

horizontal directions for each flow depth on different slopes. 

35 



Measurement of longitudinal microscale 
of turbulence 

36 

The method suggested by Townsend (1947) was used to measure the 

microscale. Townsend observed experimentally that the mean square 

of the time derivative of the fluctuating velocity is proportional to the 

space derivative of the same quantity. He prO\Ted that 

2. 

[~ } == 
-2-

U, [ au, }2-
a~, 

Also Taylor found that 

2 [ ~lAl ] 2 
'Q:lC, 

By equations (3-l'.9), (4-1), and (4-2) 

---2.,- 2. (. au-, )2. = 
"\ U. \ a~, 
~ , 

or 

VT ~ -l

UI ll, 

(4 -1) 

(4 -2) 

(4 -3) 

The quantity 

~ " \).., can be measured directly on R. M. S. indicator 

by selecting a predetermined time constant and setting the controls in 

the proper positions. 
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Measurement of turbulence energy spectrum 

The spectrum analyzer is quite similar to the random signal 

indicator in operation. The random signal indicator gives the R. M. S. 

reading of all the flrequencies feed into it. But the spectrum analyzer 

gives the R. M. S. value of the selected range of frequencies of the 

signal. 

For all measurements the band width was kept at 30 cps and a 

value of 10 was used for the meter multiplier. 

Data Processing 

Relative intensity of turbulence 

The observations for intensity measurements were read in volts 

from the random signal indicator. These observations were a combi-

nation of the voltages produced in the probe due to turbulent fluctuations, 

the pressure fluctuations in the flow (a,ssumed to be small compared 

to the velocity fluctuations) and noise voltage picked up by the circuit 

from various sources such as vibrations, 60 cycle hum, etc. 

Then 

VT=VR+VN 

222 
V T = V R + V N + 2V R V N 

Taking the average, 

(4-4) 

(4 - 5) 

As V R and V n are two completely independent signals, therefore, no 

correlation exists between them. 



Hence 

VRVN := 0 

Thus 

V2 V2 2 
(4 -6) := -:- VN T R 

This equation can be employed for separating noise voltage from 

turbulence voltage. 

Fr om Appendix A 

/ -
. / C u • U, 

VR, = 
a / 

/ a VR, U. :: , 
CUI 

(4 -7) 

where u~ is the intensity of turbulence. If V Rand U I are known, the 

intensity can be measured. 

The value of V R for 9 inches depth of flow at a depth of O. I feet 

and slope of 3.72 percent was observed to be 0.13 volts. This 

reading while pas sing through the amplifer has increased by 100. 

Hence the acutal V R = 0.0013 volts. EJ-Filmrn"lca;iliibta:tion &!equ.als 

7.14 millivolts per foot. So 

./ u l = 0.956 ftl sec 

One-Dimensional Energy Spectrum 

The spectrum curves are usually drawn as Kl Vws.sIt: (I{, ) where 
1 1 

wave number Kl is defined as 

38 



I 

1 
t 
I 
1. 

,·1 
!·I q 

J 

39 

and : ~l(Kl) is the energy carried by a certain frequency band of voltage 

signal produced by the probe. 

From Appendix A 

(4 -8) 

It was observed that for x 2 /Ii = 0 at aJ slbpe)oD 6.2. percent when U2 = 4. I 

ft/sec •• with a band width 30, 

-1 
K1 = 15.35 ft. 

3 2 
El (K 1) = 0.0129 ft / sec 

Measurement of Scales of Turbulence 

Referring to chapter IV it is seen that macroscale is proportional 

to the area enclosed by the Eulerian correlation curve plotted on the 

cartesian coordinates axis. Hence 

1., == U;A , (4-9) 

The area enclosed by the curve was measured with the help of 

graph paper. 

The microscale can be calculated directly by the following equation 

(4 -10) 
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where 

r( = preselected tim.e factor (This can have any of the foHowing 

values 0.05 t 0, 1, 0.2, 0,5" 1, 2, 5.) 

R = the ratio observed from. the R. M. S. m.eter. 
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CHAPTER V 

RESULTS AND DISCUSSION 

Mean Velocity Profile 

The Figures 6 to 12 show the velocity profiles for three different 

slopes at different Reynolds numbers. Figure 13 shows Figures 6(a) and 

11 as dimensionless plots along with curves taken from Bazin (1865) 

and Prandtl. Bazin obtained curve No. 3 in a large open channel 

of moderate aspect ratio and small size of absolute roughness. The 

curve No. 4 is a theoretical curve drawn on the basis of the Prandtl-

von Karman universal velocity distribution law which is as follows: 

30 ~ 

e 
(5 -1) 

This figure is given for comparing the observed velocity profiles 

with published data and shows that the present data ~gree closely with 

the Bazin and Prandtllogrithmic curves. There is, however, some 

difference near the channel bed. First, the roughness is very large and 

some flow is below the top of the spheres which was considered as the 

datum. Anotll,er reason is that the pi tot tube used was not small enough 

as to be very close to the bed of the channel. Thus the velocity which 

occurred at zero bed level was actually larger than zero velocity. 

From these relationships, it can also be inferred that a change in 

Reynolds number or slope does not have much effect on the shape of the 

Coil rvp. s. 
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Relative Intensity of Turbulence 

The intensities of turbulence were measured for at least two 

discharges on each slope. The figures given on pages 48 to 50 

show the relative intensity curves drawn as a function of relative 

47 

depth for the fully developed turbulent flow conditions. The measurements 

for Figures 14 to 15 were made right on the top of the sphere whereas 

figure 16 shows turbulent intensity above the point of contact of two 

adjacent spheres. The shapes of all these curves, except 16, are similar 

and show a maximum value near the wall which keeps on decreasing 

as the surface is approached. The rate of decrease of intensity is greater 

near the bed but small near the surface. This shows that near the surface 

the Reynolds number does n<>t have much effect. The shape of curves 

on page 5:.0 is similar to,the rest of the figures over thei.r major portion. 

They differ only near the bottom by showing a maximum value a little 

above the wall. 

These curves can be compared with the work of Laufer (1951), 

Brookshire (1951), and Rao (1965), The present measurements agree 

well in the outer region but close to the wall show a higher value of 

turbulence intensity and a greater rate of decrease of intensIty. This 

is due to the presence of very large roughness elements. Laufer's 

work which was performed in smooth pipes show that maximum 

intensity occurs at the edge of laminar sublayer. Figure 16 shows that 

the maximum intensity is obtained at the point where maximum producti~m 

of turbulence is taking place, that is near the top of the sphere where 
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The effect of slope on the intensity is quite clear. A higher 

slope causes more intense turbulence. 

Autocorrelation Curves 

Autocorrelation curves or Eulerian time correlations measured 

at different points in the flow for different discharges and slopes 

are shown in Figures 17 to 25. These curves we~e mainly recorded to 

determine the Eulerian longitudinal integral scale. The shape of all 

the curves is similar. At zero time interval the correlation is nearly 

one but falls rapidly and is zero when the delay is about 20 milliseconds. 

Thereafter the value of correlation coefficient becomes negative but 

oscillates. This part of the curve does not agree with the work of 

other investigators. Favre's (1953) autocorrelation curves given in Hinze 

(1959) show that after attaining a zero value, the autocorrelation co-

efficient reaches a negative maximum and consequently becomes zero. 

On the other hand these curves do appear similar to the observations 

of Rao (1965) and Lee (1966) who used the same type of equipment. 

The fluctuations in the autocorrelation curves appear to corne from the 

following sources: the vibrations induced in the probe by impact of water. 

60 cycle per second noise picked up by exposed connections, and by time 

delay network. For improving the correlation curves, probes and 

instruments of higher quality are needed. 

It may be mentioned here that similar correlation curves were 

also obtained by Martin (1963) for the flow of water in pipes. 
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Cross Correlation Curves 

The cross correlation curves~ as defined in Chapter III. are of 

much value for getting pressure correlations. scales of turbulence 

and energy distribution. A few cross curves measured for two 

different depths and slopes are shown in Figures 27 thru 35. These 

curves are divided into two sets-·-horizontal cross-correlation and 

vertical cross-correlation. It win be noticed that all the curves 

show a value of about 0.65 as the largest coefficient measured as the 

distance approached zero. The correlation coefficient should 

theoretically be one at zero distance. In fact. a zero distance was 

never attained because the piezoelectric probes had a maximum 

thickness of over 1/8 of an inch. Therefore, the closest distance to 

which they could be brought was a little more than 1/8 of an inch. 

This produced the decrease in maximum measured correlation value • • 

The cross correlation curves show that the rate of decrease of 

correlation is small for large probe separation distances and vica versa. 

It was observed that near the bed the horizontal correlation attains a 

negative value of O. 1. This shows that the flow field has some 

eddies of 4 inches diameter which rotate about a vertical axis above 

each sphere. Towards the surface the strength of these eddies 

decreases so that the correlation does not attain such large negative 

value. 
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The vertical correlation curves do not show a negative value. 

This is because the flow depths are such that a system. of eddies 

. : 
(, 

showing negative correlation could not develop • 

There was very little effect of the change of position of the 

probes relative to the wall on the shape of these curves. A change 

in slope has also produced but little effect on the shape of the 

curves. 

Cross-cbrrelation curves have been m.easured by many persons 

in different types of turbulence. The curves obtained by Taylor (1935), 

Jordon (1963), and Favre (1963) are similar to the present curves. 

Microscale of Turbulence 

In Chapter III it was m.entioned that the average size of eddies 
,} 

which are mainly responsible for dissipation of energy in a turbulent 

flow field is measured by microscale. The distribution of m.icroscale of 

the turbulence for different Reynolds number are shown in Figure 37. 

All these curves are similar in shape. The microscale is small near 

the bed but increases to a m.aximum at about half the depth and then 

again falls to a lower value. These curves are quite similar to those 

measured by Jordon ~nd Rao (1963). Figure 36 shows that microscale 

is independent of Reynolds num.ber. Until now no satisfactory 

explanation about the distribution of microscale has been suggested, 

but it can be said that the maximum dissipation is in the region of 

considerable turbulence production. 
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Macroscale of Turbulence 

Figure 37 shows the distribution of macroscale as a function of 

relative depth. These curves are for different Reynolds numbers. 

The value of e1 increases as one moves away from the bed but only 

up to a certain point. After attaining a maximum value, it again 

falls. Similar curves 'Were obtained by Laufer (1953) while studying 
.~ 

, ,. turbulence energy balance and dissipation in a channel 5 inches 

wide and 60 inches deep. One of his curves has been superimposed 

on figure 37 . 

One more curve obtained by Jordon (1963) has also been replotted. 

The shape of all these curves is similar to the curves obtained under 

the present study. 

All these curves have been obtained from the Eulerian time 

correlation curves which give only average macroscale. The true 

macroscale is given by the curves of cross-correlation. Hence great 

care should be taken in drawing any conclusions from these curves. 

The distribution of macroscale can be explained by dividing the 

channel into three parts which may be designated as outer, intermediate, 

and wall proximity zone. In the zone of wall proximity, a lot of 

turbulence production takes place but due to comparatively greater 

viscous effects the eddies cannot increase in size, hence macroscale 

remains small. As one comes to the intermediate zone, the viscous 

effects are dominated by the turbulence production causing a higher 
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\*.alue of mac!roscale·. In -the ahter zone, much energy is being 

dissipated, the eddies are growing smaller and smaller and this 

decreases the value of macroscale. 

The maximum value of macroscale observed is nearly 0.08 ft. 

But a possibility of presence of macroscale of large size cannot be 

ruled out because the probe could not detect big eddies of low frequency. 

One-Dimensional Energy Spectrum 

In a turbulent field which is homogeneous with respect to time 

-2-
at a fixed point at any instant the energy is directly related to 0.:1• 

This energy is distributed among the eddies in proportion to their size, 

i. e., large eddies carry more energy and small eddies carry less energy. 

A curve drawn between the size of eddies and energy clearly shows the 

distribution of energy in that flow field. It has been found that the size 

of eddies cannot be easily determined. So energy distribution curves 

are usually drawn with respect to frequency of the velocity fluctuations, 

this being inversly proportiona1.to the size of eddies. This type of 

curve is called energy spectrum curve. 

-2 
Let E 1 (n) be the contribution of energy to U, of the frequencies 

between nand dn + n. Then function E 1 (n) is called one-dimensional 

energy spectrum function. 

Then 

E. t hI) 
-a,. 

_ l.l.1 



The relation of E 1 (n) to other turbulence properties is shown in 

Chapter III. 

The distribution of E 1 (n) cannot be determined easily by theoreti-

cal means. So investigators have formulated certain relations about 

it by analyzing three-dimensional energy spectrum function E(n). 

In such a theoretical analysis it is more convenient to use wave number 

K =2.ltn than n. Lin (1947) showed that from the von Karman-Howarth 
U 

equation it is possible to arrive at the following result: 

72 

~ EU<.) ... 
at. 

F(K) - 2Vl<. E(,K) (5 -2) 

This relation according to Hinze (1959) can be written as follows 

1K. E [ I~((") ] dk. = 

-2-vjl<:. 
o 

This can be reduced to 

So l<.. 
F (K.) dl< 

k,:l..E"( K) d \<. . (5 -3) 

..:L 1 K.. E U<.. ) d 1<.at 0 
= I IV 

~ F(K)dK. 
K-

2 V 1 Kl. E(I<.)dk. 

+ H (K) (5 -4) 

In the equation the various terms have following meanings. 

The left hand side of this equation represents the change of total 

kinetic energy of turbulence. The first term on the right represents 

the interaction of eddies of different wave numbers, thereby trans-

ferring energy by inertial effects to or from the eddies in the wave 

number region 0 to k and therefore F(K) is referred as the 

transfer spectrum function. H( K) is the energy supplied to turbulence. 

The second term can be shown to represent the dissipation of turbulence 
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energy into heat hence K2 E(k) is known as the dissipation spectrum 

function. The solution of the equation has been found by many persons. 

According to Kovaszray (1948) 

:a. .L 

£(1<.) = (~I~ t (5 -5) 

For the region of negligible viscosity effects this becomes, where 

K is of moderate value, 

(5 -6) 

For very large k where viscosity plays an important part, 

Heinseberg (1948) showed that 

-7 
E(K) = constant x K •• (5 -7) 

Similar solutions of the equation have been obtained by Bass (1949) 

and Chandrasekhar (1949). 

Using Batchelor's (1953) equation for an isotropic turbulence which 

states 

E(K) k 3 ~[_I dEtK,)] 
d I<. k. dK, 

one can obtain the following results from equation (5-6) and (5-7) 

= 

~/3 

9 (9 E) 
ss ~O-

-5"/3 

K, 

(5 -8) 

. (5 -9) 
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and 

(5-10) 

Kolmogoroff also gave the solution of equation (5-5) similar to 

equation (5-9). His equation is 

E,( K,) a.. 1 (5-11) 

Experimentally one-dimensional energy spectrum can be measured 

by using spectrum analyzer as described in Chapter IV. A few one-

dimensional spectrum curves obtained at different discharges and slopes 

are shown in Figures 38 thru 44. These curves are quite similar to 

those obtained by Rao, Romano (1956) etc. 

The conclusion from these curves should be drawn with great 

care due to following reasons: the spectrum analyzer used for the 

measurements was not sensitive to low frequencies. The instrument 

would not respond to frequencies below 30 cps and so data lying in that 

region is not reliable. The level of the probe signal was also increased 

by the noise picked up by equipment at various joints and connections. 

The vibrations induced in the probe due to impact of water also increased 

the probe signal. 

The probe used was sensitive to pressure fluctuations as we~l as 

to the velocity. But the formula used for calculating the energy considers 

that the probe output is only due to velocity fluctuations. Thus energy 

which is being added due to pressure fluctuations was taken as energy 
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carried by the eddies. Moreover the probe being insensitive to the 

low frequencies could not detect the energy carried by big eddies 

which might be in large quantity. 

The spectrum curve show a definite decrease in energy with increase 

of wave number. The rate at which energy decreases in the low wave 

number range is small but increases rapidly in the higher wave 

number region. Thus, most of the energy is carried by the big eddies. 

The data lying in the low wave number region cannot be compared 

with any theoretical curves because such a curve does not exist. For 

moderate wave number the curve follows equation (5-9) closely. The 

equation for higher wave number is also satisfied by most of the curves 

although the trend of curves is such that they move away from the 

line whose slope is (-7). 

Dissipation Spectra 

2. 2 
The functions K I E 1(K 1) and K E(K) are referred as dissipation 

spectra and describe the distribution of rate of decay of turbulent 

energy with respect to heat. A few linear plOts of this spectra are 

shown in Figure 45 to 46. The scatter in the points is due to 

experimental error. These curves do not differ much in form from 

those measured by Gibson (1962-1963) and Rao. These plots are used 

for determining the total rate of dissipation assuming that turbulence 

is isotropic because 

E = (5-12) 
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CHAPTER VI 

CONCLUSIONS 

From the experimental investigation and the subsequent interpre-

tation and discussion of results the following conclusions can be made 

concerning the structure of turbulence in a rough open channel. 

1. The shape of dimensionless mean velocity curves is not effected 

by change in slope and Reynolds number. 

2. The intensity of turbulence is high near the bed but decreases 

with increase in Reynolds number. 

3. The maximum turbulence intensity::occ_urs at that region where 

maximum turbulence is being produced. 

4. An increase in slope causes more intense turbulence. 

5. The autocorrelation decays faster near the bed than near 

the surface and roughness or slope does not have much effect on it. 

.'j 
6. The cross-correlation curves are not effected by the change 

I 

of flow rate or slope for this kind of turbulence. The value of vertical 

correlation decreases faster than horizontal correlation. The vertical 

correlation never gets a negative value whereas horizontal correlation 

becomes negative when the correlation distance is 3 inches. 

7. The longitudinal microscale increases from a small value which 

occurs at the bottom to a higher value and falls again as the surface is 

approached. The change in Reynolds number and slope does not effect 



• 

the shape of micros cale curves. 

8. The longitudinal macroscale of turbulence decreases as the 

bed is approached. It increases with increase in distance from the 

bed until a maximum value is reached and then decreases near the 

surface. The region of maximum macroscale is the region of small 

viscous action but of considerable turbulence generation. 

9. The macroscale is a function of Reynolds number as well as 

of relative depth. 

10. Spectrum curves show that most of the energy is carried by 

the eddies of frequencies lying between a and 100 cps. 

11. The spectrum curves follow equation (5- 9) to some extent. 

So there is a pos sibility that local isotrop¥ exists. 

12. The contribution to the turbulence energy increases as the' 

bed of the channel is approached. 

13. The dissipation spectra show that medium size eddies are the 

major cause of energy dissipation . 
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Symbol 

A 

A 

A 

a 

.~ .... 

B 

B 

b 

C 

c 

E(K) 

LIST OF SYMBOLS AND DEFINITIONS 

Definition 

Area 

Instantaneous value of a fluctuating quantity 

Mean value of A 

Deviation of A from its mean value 

Acceleration in xl direction 

Mean value of ax 
I 

Acceleration in x 2 direction 

Mean value of ax 
2 

Acceleration in x3 direction 

Mean value of ax 
3 

Instantaneous value of a fluctuating quantity 

Mean value of B 

Deviation of B from its mean value 

Constant in equation (4-7) 

Constant 

Three-dimensional turbulence energy 
spectrum function in wave number domain 

Longitud inal one -d imens ional turbulenc e 
energy spectrum function in frequency 
domain 
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Dimension 

(L/ T2) 

(L/T2) 

(L/ T2) 

(L/ T2) 

(L/ T2) 

(L/ T2) 



Symbol 

e 

F(K) 

f(r) 

g 

g(r) 

H 

H(K) 

H 

HI 

h 

h 

hI 

i, j, k 

k 

K 

Definition 

Longitudinal one-dimensional turbulence 
energy spectrum function in wave number 
domain 

A bs olute roughnes s 

Three-dimensional transfer energy 
spectrum function 

Longitudinal cross -correlation coefficient 

Gravitational acceleration 

Lateral cross -correlation coefficient 

Instantaneous value of head 

Function representing energy supplied to 
the turbulence 

Mean value of head H 

Fluctuating component of total head 

Height of any point 

Instantaneous flow depth 

Mean depth of flow 

Deviation of flow depth from mean depth 

Coordinate axes. Each one is equal to 
1, 2, 3 

Universal constant in equation (2 -21) 

21Tn 
Wave number;: U 

Longitudinal component of wave number 
vector 

Wave number range of main dissipation?f 
energies 
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Dimension 

(U) 

(L) 

(L) 

(L) 

(L) 

(L) 

(L) 
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Symbol Definition Dimension 

.6.K Effective band width established by the (1. ) 
analyzer in wave number L 

L Pressure correlation coefficient 
a 

e Prandtl's mixing length (L) 

e· (. Instantaneous mixing length (L) 

€l Longitudinal integral scale or macroscale (L) 

m Mass (M) 

n Frequency (1. ) 
T 

.6.n Effective band width established by analyzer (1. ) 
in cycles per second T 

P Pressure at an instant (F / T2) 
I . 
i P Mean value of P (F/T2) 
I 

I -
(F / T2) P R Deviation of pressure from mean value 

R Ratio observed from R. M. S. meter - r~ 
(~t 

RN Reynold's number 

R .. (r) Eulerian cross -correlation 
lJ 

RE(t) Eulerian time correlation 

-- Distance vector (L) r 

S Slope 

(Sijk)AB Triple cross correlation 

t Time ( T) 

.6.t Small increment of time (T) 

U Ins tantaneous veloc ity vector (L/T) 
J , 
;i 
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Symbol Definition Dimension 

U Temporal mean value of (L/ T) 

UA , UB Mean velocities at level A and B (L/T) 

U I Instantaneous veloc ity along xl direction (L/ T) 

U I Temporal mean value of U I (L/ T) 

U2 Ins tantaneous veloc i ty along x 2 direction (LIT) 

U2 Temporal mean value of U 2 (L/ T) 

, 
~. U3 Instantaneous velocity along x3 direction (L/T) 

t 
U3 Temporal mean value of U I (L/T) 

t u Deviation of velocity from its mean value U (L/ T) 

! u l Deviation of velocity from mean velocity 

1 (L/ T) . along xl direction 

r 
Deviation of velocity from mean velocity u 2 (L/T) 

along x 2 direction 

u 3 Deviation of velocity from mean velocity 
(L/ T) 

along x3 direction 

u'u' 
I 2 

Root mean square of velocity fluctuations (L/T) 

uf Fr iction velocity (L/T) 

V Overall mean velocity in an open channel (L/ T) 

VfT Instantaneous value of the total head 
(Volts) 

transducer probe 

VR Instantaneous value of real turbulence 
(Volts) 

signal of the probe 

VN Instantaneous value of nois e (Volts) 

v' Root mean square value of transducer 
(Volts) T 

probe output 



Symbol 

VI 
R 

VI 
N 

W 

w 

Xi, ,Xl' ,X3 } 

~lJ,g2/ i3 
Ax 

a 

a l 

y 

Definition 

Root mean square value of real turbulence 
signal of the probe 

Root mean square value of the noise 

Instantaneous vorticity 

Mean value of W 

Deviation of vorticity from mean value 

Cartes ian coordinate axes 

Small increment of distance 

Heisenberg absolute constant in relations 
to eddy viscosity 

Absolute constant in equation (5 -11) 

Specific weight of water 

Eulerian microscale or dissipation length 

Longitudinal Eulerian microscale 

Lateral Eulerian microscale 

Rate of turbulent energy dissipation per 
unit mass 

Turbulent exchange coefficient 

Dens ity of fluid 

Time mean value of density 

Fluctuating component of density 

Shear stress 

Preselected time constant in determining 
microscale with the correlator 
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Dimension 

(Volts) 

(Volts) 

(R evolution) 
T 

(R evolution) 
T 

(R evolution) 
T 

(L) 

(L) 

(L) 

(L) 

(L) 

(M/ L 3) 

(M/ L 3) 

(M/ L 3) 

(M/LTl) 

(T) 
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Symbol Definition Dimension 

'T Time delay (T) 

7.-( Instantaneous shear stress (M/LT2) 

jJ... Dynamic viscosity of fluid (M/LT) 

'YL Eddy viscosity (M/LT) 

TT Kinematic viscosity of fluid (L 2 IT) 

i Center line 
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Appendix A 

Theory of Operation of Transducer Probe 

The total instantaneous head which acts on the piezoelie:etrio 

probe is expressed as 

- I l' 1> (U +u. 
H = H + H" == ( ~ + ~ ) + (7 T ::r )+ '2.8 ') 

It was observed.by·Perkins and Eagleson (1959) that H did not 

cause an effect on this probe. Therefore 

H ~' + _1>_ + 2U, u., 
J + 
II .2..3 

= 
u.' , 

In this equation it was found by Townsend (1947), R oshko (1954), 

(P d and Ippen (1957) that the quantities h, ':( "an 

very sma,U part of hi. 

Thus 

H - U; u., 

8 

:z. u., forms a 

If V R ~s th.e output of probe in volts at an instant, then 

VR = C U I U, 

3 
Ll,= 

where C is a calibration constant. 

Taking R. M. S. value of equation (4) 
I 

/ 3 VR, 
LL, = 

c V, 
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(1) 

(2) 

(3) 

(4) 

(5) 
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For the two probes used in the study the value of C was found to 

be equal to 6.066 and 7.140 millivolts per foot. 

The equation (4) can also be written as 

b.V2. l::::t. u.. 'L C UI'L 

R. - • 
~'L 

or 

6u~ 'iJ ~vi -
1- tJ l. C I 

Similarly 

5 'L 

A u~ ( n ) - 6VR (n) (6) • C'L O:l. 
I 

Now the wave number has been defined as 

K, = 

(7) 

So equation (6) may also be written as 

AV~ (~I) (8) 

where .. 
6. vrt (K.) _ mean square of the output of the wave analyzer 

in volts resulting from turbulence fluctuations contained within the 

ba.nd width provided by the analy~er at wave number kl correspondiqg 
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to the frequency set on the wave analyzer. 

b u~( K,) _ turbulence energy of fluctuations contained in 

the band width atK I corresponding frequency set on wave analyzer. 

Dividing (8.) by (7) we get 

ALL~ (I<.) - E".( K.) - 3 J:::.vrt (K.) VI 

.6K, C·U· 21T 6n 
I 

82. 6.vrt (1<..,) 
E.\K.) (9) = = 

C l.. V, 2. '1f An 

This equation can be used for the spectrum measurements. 



Appendix B 

Properties of Averaged Quantities 

If there is some fluctuating quantity then the average value of 

this quantity is usually denoted by placing a bar above its symbol. 

Such average values have the following properties 

Let A = A + a B = B + b 

where A and B are considered constant mean value quantities and a 

and b are the fluctuating components. 

Then 

-
A=A+a=A+a=A+a=A 

It is usual to consider "a" as random variable such that a = 0 

AB = AB ~ ·AB 

Ab = Ab ::: Ab = 0 Since b = 0 

Similarly 

- =-
Ba = Ba = Ba = 0 

-AB = (A + a) (B + b) 

-- -
= AB 7f- Ab + Ba + ab 

= AB + ab 

(~) = ca where c is a constant 

da 
dt = 

da 
dt 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 
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Appendix C 

Details of Electronic Instruments 

Name 

Wave and noise spectrum analyzer 

Type 303 

No. 21 Y 

Manufacturer: 

Quan-Tech Laboratories Inc. 
Boonton, New Jersey 

Fixed osc Balance 
142 K G f- Mod 

~ 
Band pass 

Filter 

148 K C 

• 
Var osc Balance 

148 - 248 r-- Mod 
KG 

r--

r--

Band pass 
Filter ~ 
6 KG 

LP 
r-t" 

Filter 
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Meter 

Amplifier 

® 
~ 

Pre-

amplifier 

Figure 47. Simplified block diagram of spectrum analyzer internal circuit 
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Name: 

Decade variable delay network 

Type 801 j 

No. 30-32146 

Manufacturer: 

Step delay 

Line No. 1 

AD- YU Electronics Inc. 
249 - 259 Terhone Avenue 
Passaic, New Jersey U. S. A . 

Step delay 
~--~ r---~ 

Step delay 

Line No.2 Line No.3 

...., 
::s o 
N 

Figure 48. Block diagram of internal circuit of variable time delay. 

Name: 

Disa random signal indicator and correlator 

Type 55A 0 6 

No. 112 

Manufacturer: 

Dias Elektronic A/S Herlev 
Copenhagen, Denmark 
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