The Study of Resistance and Stability of Vegetation in Flood Channels

William Rahmeyer
David Werth
Rob Cleere

Follow this and additional works at: https://digitalcommons.usu.edu/water_rep
Part of the Civil and Environmental Engineering Commons, and the Water Resource Management Commons

Recommended Citation

Rahmeyer, William; Werth, David; and Cleere, Rob, "The Study of Resistance and Stability of Vegetation in Flood Channels" (1994). Reports. Paper 147.
https://digitalcommons.usu.edu/water_rep/147

This Report is brought to you for free and open access by the Utah Water Research Laboratory at DigitalCommons@USU. It has been accepted for inclusion in Reports by an authorized administrator of DigitalCommons@USU. For more information, please contact digitalcommons@usu.edu.

The Study Of Resistance And Stability Of Vegetation In Flood Channels

by
William Rahmeyer P.E. PhD.
Professor of Civil and
Environmental Engineering,
David Werth
Research Assistant,
Rob Cleere
Research Assistant

Utah State University
Lab Report No. USU-376

December 1994
prepared for the
U.S. Army Engineers Waterways Experiment Station,

Vicksburg, MS.

Federal Contract No - DACW39-94-K-0009.

The Study Of Resistance And Stability Of Vegetation In Flood Channels

PREFACE

The following report was prepared by the Utah Water Research Laboratory of Utah State University in Logan, Utah. The report contains the data and conclusions of flow tests conducted with different types of shrubs and woody vegetation in the hydraulics flumes of Utah State University. The funding agency for this project was the U.S. Army Engineers Waterways Experiment Station, Vicksburg, MS.; Project Name - Flood Control Channels; Work Unit Title - Stability of Vegetative Cover in Flood Control Channels; Work Unit No - 337A3; Federal Contract No - DACW39-94-K-0009. The study was the result of a proposal submitted in response to the U.S. Army Engineer Waterways Experiment Station Broad Agency Announcement, Open Channel Flow, HL-3. The study was conducted under the supervision of Dr. William Rahmeyer of Utah State University, and was aided by Dave Werth and Rob Cleere of Utah State University. The project was coordinated with Dave Derrick,. Craig Fischenich, and Gary Freeman of the U.S. Army Engineers Waterways Experiment Station. Appreciation is also expressed to Ron Copeland and Brad Hall of the U.S. Army Engineers Waterways Experiment Station for their review of the project report and results.

The following symbols and units were used in this report:

A Cross sectional area of flow, ft^{2}.
$\mathrm{A}_{\mathrm{i}} \quad$ Frontal area of vegetation blocking flow, ft^{2}.
b Bed width, ft.
C Chezy resistance coefficient, $\mathrm{ft}^{1 / 2} / \mathrm{sec}$.
$C_{d} \quad$ Drag coefficient of vegetation, dimensionless.
$\mathrm{dy} / \mathrm{dx}$ Unit change in slope of water surface, dimensionless.
$\mathrm{D}_{\mathrm{s}} \quad$ Stem diameter, ft .
d_{84} Bed material size that equals or exceeds 84% of particles sizes, ft .
E Modulus of elasticity of the vegetation, psf or Pascal.
f Friction factor, dimensionless.
$\mathrm{F}_{\mathrm{B}} \quad$ Total force on channel bottom produced by vegetation, lbs.
Fr Froude number, dimensionless.
g Gravitational constant $=32.2 \mathrm{ft} / \mathrm{s}^{2}$.
H Total plant height, ft.
$\mathrm{H}^{\prime} \quad$ Effective plant height, ft.
$\mathrm{H}_{\mathrm{CL}} \quad$ Plant height to center of leaf mass, ft .
$\mathrm{h} \quad$ Undeflected vegetation height, ft.
I Second moment of inertia of cross section of plant stem, ft^{4} or m^{4}.
k Deflected roughness height, ft.
L Length of channel reach, ft.
M Relative plant density, dimensionless.
$m \quad$ Correction factor for channel meandering, dimensionless.
$n \quad$ Manning's resistance coefficient, dimensionless.
n_{b} Manning's resistance coefficient for bed roughness and vegetation, dimensionless.
$n_{\text {base }}$ Manning's resistance coefficient for bed roughness, dimensionless.
n_{veg} Manning's resistance coefficient for vegetation, dimensionless.
P Wetted perimeter of channel, ft.
$\mathrm{P}_{\mathrm{d}} \quad$ Plant density, \# of plants / unit ft^{2}.
$\mathrm{P}_{\mathrm{S}} \quad$ Plant spacing (average of lateral and longitudinal distances between stems), ft .
Q Flow rate or discharge, cfs.
$\mathrm{R} \quad$ Hydraulic radius ($\mathrm{R}=\mathrm{A} / \mathrm{P}$), ft.
R Gross hydraulic radius, ft .
$\mathrm{R}_{\mathrm{b}} \quad$ Hydraulic radius due to resistance of bed and vegetation, ft .
$\mathrm{R}_{\mathrm{w}} \quad$ Hydraulic radius due to resistance of flume walls, ft .
Re Reynold's number, dimensionless.
S Bed or energy slope, dimensionless.
$\mathrm{S}_{\mathrm{f}} \quad$ Energy grade line slope, dimensionless.
S_{o} Bed slope, dimensionless.
V Mean channel velocity, fps.
V_{P} Plant approach velocity at center of plant, fps.
$\mathrm{V}^{*} \quad$ Shear velocity $\left(\mathrm{V}^{*}=[\mathrm{gRS}]^{1 / 2}\right)$, fps.
Y_{O} Flow depth, ft.
$\mathrm{y}_{\mathrm{n}} \quad$ Normal flow depth, ft.
W_{p} Plant width, ft .
γ. Specific weight of water, $\mathrm{lbs} / / \mathrm{ft}^{3}$ or Newtons $/ \mathrm{m}^{3}$.
$\tau_{0} \quad$ Shear stress on channel bottom ($\tau_{o}=\gamma \mathrm{RS}$), $\mathrm{lbs} / \mathrm{ft}^{2}$

CONVERSION FACTORS

The following report is written exclusively in the El (English) systems of units.
The units can be converted to the SI (Metric) systems with the following conversions:

1 foot $=0.3048$ meters
1 square foot $=.092903$ meters 2
1 cubic foot $=0.028317$ meters 3
1 pound force $=4.44822$ Newtons
$1 \mathrm{psf}=47.88026$ Pascal
The following conversions can be used to convert the Manning's resistance coefficient n, note that units are based on the English system:

$$
\begin{aligned}
& n=(8 \mathrm{~g})^{1 / 2} \cdot 1.486 \cdot \mathrm{R}^{1 / 6} / \mathrm{C} \\
& n=f^{\prime} \cdot 1.486 \cdot \mathrm{R}^{1 / 6} \\
& n=(8)^{1 / 2} \cdot 1.486 \cdot \mathrm{R}^{1 / 6} \cdot \mathrm{~V}^{*} / \mathrm{V}
\end{aligned}
$$

Table of Contents

Page
PREFACE I
LIST OF FIGURES v
LIST OF TABLES vi
Section l INTRODUCTION 1
Section 2 FLOW RESISTANCE 3
Section 3 FLOW IN COMPOUND FLOOD CHANNELS 12
Section 4 SEDIMENT TRANSPORT WITH VEGETATION 17
Section 5 TEST FACILITY 19
Section 6 TEST PLANTS 20
Section 7 LARGE FLUME (RESISTANCE) TEST SETUP 27
Section 8 PROCEDURES FOR RESISTANCE TESTS 31
Section 9 SECTIONAL FLUME (DRAG FORCE) TEST SETUP 36
Section 10 PROCEDURES FOR DRAG FORCE TESTS 40
Section 11 RESULTS FOR THE RESISTANCE TESTS 42
Section 12 RESULTS FOR THE DRAG FORCE TESTS 54
Section 13 ANALYSIS OF VEGETATION RESISTANCE 57
Section 14 SUMMARY AND CONCLUSIONS 64
REFERENCES 73
APPENDIX A Resistance Test Data and Baclowater Curves
APPENDIX B Drag Force Test Data
APPENDIX C Compound Flood Channel; Analysis and Example

$\underline{\text { List of Figures }}$

Figure
Page
1 Large Flume Test Plant Spacing 22
2 Dimensions and Characteristics of Plants in Large Flume 24
3 Sketch of Large Flume 28
4 Example of the Fit of Backwater Curve to Determine n 33
5 Test Setup For Measuring Plant Drag Force 39
6 Manning's $n_{\text {veg }}$ vs. Hydraulic Radius 50
7 Manning's $n_{\text {veg }}$ vs. RS 51
8 Manning's $n_{\text {veg }}$ vs. Velocity 52
9 Example Velocity Profile for Test Run 6-3 53
10 Plant Approach Velocity vs. Drag Force; Large and Sectional Flume Data 56
11 Relationship of Manning n with Mannings Calculated from Drag Force 59
12 Regression Fit of Flow Resistance Data of Large Flume 62
13 Test Plants at Zero Flow 67
14 Test Plants at Low Flow 68
15 Test Plants at Moderate Flow 69
16 Test Plants with Local Erosion 70
17 Test Plants with Sediment Transport 71
18 Test Plants with Stem Erosion 72
19 Cross Section of a Hypothetical Channel and Flood Plains (Appendix C)

List of Tables

Table Page
1 Large Flume Test Plant Heights, Numbers, and Spacing 23
2 Dimensions and Characteristics of Plants in Large Flume 25
3 Dimensions and Characteristics of Plants in Sectional Flume 26
4 Summary of Large Flume (Resistance) Test Results 45
5 Summary of Drag Force Results 55
6 Plant Parameters and Manning's Roughnesses for an Example ChannelAnd its Flood Plains(Appendix C)
7 Table of Calculations to Demonstrate the Conveyance Method (Appendix C)
8 Table of Calculations to Demonstrate the Equivalent Resistance Method (Appendix C)

section 1 INTRODUCTION

1-1 To calculate the stage discharge relationship of a stream or river, it is necessary to accurately determine the flow resistance of the channel bed and sides. Past research has made considerable progress in predicting the roughness of uniform channels based on both theoretical and experimental investigations. However, to determine the flow resistance associated with flood plains and over-bank flooding, the effects of emergent vegetation on the flood plains must be considered. Over-bank flow onto the flood plains typically submerges many types of shrubs and woody vegetation.

Research has been conducted on vegetation such as dense layered grasses and on the rigid blockage of cylindrical tree trunks. Very little has been studied on the resistance effects of shrubs and woody vegetation that are submerged by turbulent flows. The flexible stems and varying shapes of the plant's leaf mass, greatly complicate the understanding of resistance. Resistance of flexible stems and plant shapes can not be adequately explained with either a boundary roughness or a form drag approach.

1-3 The purpose of this study was to investigate the effect of woody vegetation, particularly ground cover plants and shrubs, on flow resistance. The primary objective was to determine the head loss and resistance coefficients from the laboratory testing of plants in conditions as close to in situ as possible. The following investigation required the testing of numerous plants and plant densities in both a large laboratory flume and in a smaller sectional flume.

1-4 The study also included a number of secondary objectives:

1) The effects of flow velocity and depth on the Manning's resistance coefficient n;
2) The effects of the geometry and characteristics of plants on the drag forces produced by the plants;
3) The relationship of drag force with the bed shear stress and the flow resistance of the channel;
4) The overall effect of flow variables and plant characteristics on the Manning's coefficient n;
5) The maximum velocity limits for stem breakage and leaf detachment;
6) Observations of plant distortion and bending during submerged flow conditions;
7) Observations of sediment transport and of the scour of bed material during testing;
8) Considerations of the effect of vegetation on determining resistance and flow depth in compound flood channels.

1-5 The following report includes: chapters on background material; test setup; test plants; test procedures; test results of resistance and drag forces; data analysis and methodology; and a summary of conclusions and recommendations. Observations of plant and sediment movement were recorded on 35 mm color slides and on 8 mm videotape. The methodology and equations to predict resistance for woody types of vegetation will be presented along with a discussion of the application of vegetated resistance with compound flood channels.

The resistance to flow in waterways can be characterized by a roughness or resistance coefficient. The most commonly used equation for flow resistance is the Manning's equation (Equation 1), where the Manning's coefficient or Manning's n represents the resistance. This report will focus on Manning's coefficient since most methodologies and applications such as HEC-2 use Manning's n exclusively. Other resistance equations do use different resistance coefficients such as the Chezy C or the Darcy friction factor f. However, the conversions from Manning's n are straight forward and the following equations can easily be converted to either C or f.

$$
\begin{equation*}
V=\frac{1.486}{n} R^{2 / 3} S^{1 / 2} \tag{1}
\end{equation*}
$$

Where, V is the mean velocity of flow in feet per second; R is hydraulic radius, in feet; S is slope of the energy grade line, in feet per feet; n is Manning's resistance coefficient; and 1.486 is a unit conversion for English units, in $\mathrm{ft}^{1 / 3} / \mathrm{sec}$.

2-2 A critical misunderstanding concerning Manning's n is the assumption that n is an independent variable, and remains constant for changes in flow variables such as velocity and depth. Chow (1959) recognized that n will vary with variables of geometry that include: surface roughness, vegetation, channel irregularity, channel alignment, silting and scouring, obstructions, and channel shape. The range of Manning's n published by Chow for vegetation was from 0.001 to 0.05 for moderately tall vegetation and from 0.05 to 0.10 for very tall and dense vegetation. Chow (1959) was also one of the first to publish that Manning' n could vary with the flow variables of depth and discharge.

Cowan (1956) formulated the first additive or linearization of n (Equation 2) that was basically the summarization of the effects of the primary flow geometries.

$$
\begin{equation*}
n=\left(n_{0}+n_{1}+n_{2}+n_{3}+n_{4}\right) \cdot m_{5} \tag{2}
\end{equation*}
$$

Where, n_{o} is a base n value for straight, uniform, and smooth channels in natural materials; $\quad n_{1}$ is an additive value to n_{0} which accounts for surface irregularities; n_{2} is an additive value which accounts for variations in channel geometry in a cross section; n_{3} is an additive value which accounts for obstructions; n_{4} is an additive value which accounts for vegetation; and m_{5} is a correction factor for the meandering or sinuosity of the channel.

2-4 Detailed tables of base and additive values can be found in publications by Chow (1959), Benson and Dalrymple (1967), Barnes (1967), and others. The derivation of Cowan's additive equation (Equation 2) is based in part on the assumption that velocity, slope, and depth are constant across the flow channel. This assumption restricts the application of Equation 2 to uniform channels or uniform sub-sections, and prevents the use of the equation to determine an average channel resistance coefficient for situations such as over-bank flooding.

2-5
Limerinos(1970) recognized that Manning's base n_{0} was not just a function of relative roughness, but varied with depth or hydraulic radius. From the analysis of 11 different streams he formulated Equation 3.

$$
\begin{equation*}
n_{0}=\frac{.0926 \cdot R^{1 / 6}}{1.16+2 \cdot \log \left(\frac{R}{d_{84}}\right)} \tag{3}
\end{equation*}
$$

Where d_{84} is the bed material size that equals or exceeds 84% of the particle sizes. The limitations of Equation 3 include that the equation can only be applied to a narrow range of natural channels, and that the particle size data must be known. Limerinos' equation does not account for the effects of vegetation.

2-6 Jarrett $(1984,1985)$ recognized that Manning's n varied with hydraulic radius, and stated that Manning's n should vary with the slope of the energy grade line. Jarrett did his work analyzing high mountain streams, and derived Equation 4.

$$
\begin{equation*}
n_{0}=0.39 \cdot S^{0.38} \cdot R^{-0.16} \tag{4}
\end{equation*}
$$

Jarrett's analysis had an average standard error of 28% for Equation 4, and the equation is limited to stream slopes from .002 to as high as .052 . In three of the streams he analyzed, the flow was affected by bank vegetation, which created additional turbulence and resistance. However, he did not include this data in the development of Equation 4, and therefor an additive method similar to the methods presented by Cowan (1956) or Arcement and Schneider (1989), would be needed along with Equation 4 to determine the overall roughness when vegetation is present.

Abdelsalam et al. (1992) analyzed 4 wide, vegetated canals in Egypt. They modified Manning's equation to provide Equation 5 which then accounted for resistance in wide canals with submerged, grassy, vegetation.

$$
\begin{equation*}
V=\frac{1.486}{n} \cdot Y_{O}^{1.62} \cdot S^{0.5} \tag{5}
\end{equation*}
$$

The limitations associated with this equation are that it only applies to vegetation growing within the main channel, and that the vegetation needs to be submerged. Also, the vegetation is confined to plant types similar to grasses and not to shrubs or woody types of vegetation.

2-8 Recent studies on flow resistance with grasses include the research by Kouwen and Li (1980). Their work provides a means of determining Manning's n by comparing grasses to flow tests of artificial plastic strips. They show that grasses behave similarly to artificial plastic strips, and that Manning's n (Equation 6) is basically a function of the relative roughness, $\mathrm{k} / \mathrm{y}_{\mathrm{n}}$, where k is the deflected roughness height and y_{n} is the normal depth.

$$
\begin{equation*}
n_{o}=\frac{y_{n}^{1 / 6}}{\sqrt{8 g\left[a+b \cdot \log \left(\frac{y_{n}}{k}\right)\right]}} \tag{6}
\end{equation*}
$$

Where, a and b are regression constants dependent on shear velocity and the critical shear velocity. Because there are no experiments with natural vegetation that publish values for the parameter k , Kouwen and Li (1980) have proposed a method utilizing

Equation 7 as a means of determining k based on physical parameters of the vegetation.

$$
\begin{equation*}
k=0.14 \cdot h \cdot\left(\frac{\left(\frac{M E I}{\gamma y_{n} S}\right)^{0.25}}{h}\right)^{1.59} \tag{7}
\end{equation*}
$$

Where E is the modulus of elasticity of the vegetative material in Pascals; I is the second moment of the cross-sectional area of the plant stems in meters to the fourth power; M is the relative density defined as the ratio of the stem count to a reference number of stems per unit area; h is the un-deflected vegetation height; and $\gamma=$ the weight density of water in Newtons per cubic meter. Their method first assumes a value for the product of MEI and a value for the flow depth of the channel. Then, through an iterative process, MEI is optimized.

2-9 Since this method applies to densely packed grasses, it cannot be directly applied to flood plains where vegetation includes other types of vegetation. It has to be assumed that the above method predicts a base value of resistance, n_{o}, since the densely spaced grass completely covers the soil or base material. Shrubs and woody vegetation would be much more difficult to model using artificial roughness because the MEI would have to be experimentally determined for each plant species, plant size, and plant spacing. Equation 7 also does not account for the separate effects of velocity and flow depth on any distortion or change in shape of a plant. vegetation that deformed or distorted with velocity. They recognized that plants
such as shrubs contributed to flow resistance from the flow blockage of the plants, while the channel bottom added to the total resistance from the roughness of the unoccupied channel bed. They also recognized that resistance of plants depends upon the plant size, plant shape, flexibility of the plant, the concentration or spacing of the plants, and the extent of the submergence of the plant. However, their studies were limited to tests with artificial, plastic rods. They included no actual plant data in their analysis, and they also did not publish any definitive equations or methods to determine resistance.

2-11 Ree and Crow (1977) tested actual plants for flow roughness but their work was limited to planted rows of crop types of plants such as wheat, sorghum, and grasses. Their tests were conducted in fields with very small slopes. While they did publish their results as graphical relationships of resistance versus velocity times hydraulic radius (n vs. VR), their test results were essentially independent of energy slope. Their results did show that flow resistance of plants would decrease with increased velocity due to the bending of the plants. Frentyl (1962) also studied a crop type of plant, alfalfa, for shallow flows and noted the decrease of resistance with increased velocity. He attempted to relate resistance to flow parameters and ratios of plant characteristics.

2-12 One of the most recent works on blockage and drag forces was published by Kadlec (1990). His work focuses on determining energy slope for wetland types of plants, especially grassy types of plants, and on wetland flows that are laminar to transitional in Reynold's number. Since his study was limited to fairly low velocities, his analysis was based on flow blockage of rigid plant stems and a small range of shallow flow depths. He did acknowledge that the determination of Manning's resistance coefficient n would require flow data for different depths and would be
quite difficult. Kadlec proposed that flow resistance could be based on the summation of drag forces from individual plants.

2-13 Usually the larger vegetation such as shrubs and trees are found in the flood plains adjacent to the main channel. This type of vegetation is a major influence on flow depth and resistance during situations such as over-bank flooding. Since the larger types of vegetation constitute much of the resistance within flood plains, Petryk and Bosmajian (1975) proposed a method to calculate flow resistance based on the drag forces created by the larger plants. They derived Equation 8 for Manning's n by summing the forces in the longitudinal direction. The forces include pressure forces, the gravitational force, shear forces, and the drag forces.

$$
\begin{equation*}
n=n_{b} \cdot \sqrt{1+\left(\frac{C_{d} \Sigma A_{i}}{2 g A L}\right) \cdot\left(\frac{1.486}{n_{b}}\right)^{2} \cdot\left(\frac{A}{P}\right)^{4 / 3}} \tag{8}
\end{equation*}
$$

Where n is the total roughness coefficient, n_{b} is the total boundary roughness, C_{d} is the effective drag coefficient for the vegetation the direction of the flow, $\mathrm{A}=$ the cross-sectional area of the flow, in square feet, $\Sigma A_{i}=$ the total frontal area of vegetation blocking the flow in the reach, in square feet, $\mathrm{L}=$ the length of the channel reach being considered, in feet, and $g=$ the gravitational constant, in feet per square second.

2-14 The expression $\mathrm{C}_{\mathrm{d}} \mathrm{\Sigma A} /(\mathrm{AL})$ represents the vegetation blockage, or the density of vegetation in the flood plain. This expression must be either directly or indirectly measured as a total blockage of flow. The total additive base n_{b} is
determined by Cowan's additive method (Equation 2), except that the additive resistance n_{4} for other types of vegetation is excluded.

2-15 There are several limitations to using Petryk and Bosmajian's Equation 8. The channel velocity must be small enough to prevent bending or distortion of the shape of the vegetation, and large variations in velocity can not occur across the channel. . Vegetation such as grasses and shrubs are then excluded Vegetation must also be distributed relatively uniformly in the lateral direction. Finally, the flow depth must be less than or equal to the maximum vegetation height (Petryk, 1989). In channels during flooding, the velocities over the flood plains can be relatively high and large degrees of bending and distortion of vegetation will occur. Vegetation can also vary widely across a flood plain, and depths often submerge vegetation. However, when tree trunks dominate sections of a flood plain, this method can be used for predicting the total resistance coefficient.

2-16 Arcement and Schneider (1989) further developed Petryk's method by stating that the portion of the vegetation which cannot be measured directly or calculated as rigid flow blockage, should be included in Cowan's formula as n_{v} (Equation 9).

$$
\begin{equation*}
n_{b}=n_{o}+n_{1}+n_{2}+n_{3}+n_{V} \tag{9}
\end{equation*}
$$

Where, n_{v} accounts for vegetation, such as shrubs and grass, on the flood plain that cannot be measured directly or calculated as a flow blockage. Equation 8, as defined by Petryk, accounts only for rigid and measurable vegetation such as tree trunks.

2-17 It should then be possible to use Equations 8 and 9 to include the effects of trees, grasses, and shrubs in calculating the total resistance of a vegetated channel. The total base resistance n_{b} of Equation 9 can be determined from either a base n_{o} or a grass base resistance (Equation 6). The total resistance n is calculated from correcting the total base resistance n_{b} for the effects of trees by Equation 8 .
The additive resistance coefficient n_{V} in Equation 9 is due to the effects of vegetation such as shrubs and woody vegetation. The main purpose of this study is to develop a data base and methodology to determine n_{V}.

section 3 FLOW IN COMPOUND FLOOD CHANNELS

3-1
Cowan's additive equation (Equations 2) and the equations to predict resistance from vegetation (Equations $6,7,8,9$) are all based on the assumption of constant velocity, energy slope, and flow depth across the channel. Many flood channels such as those with over-bank flooding do not have uniform cross sections with uniform flow resistance. Special considerations must be taken to calculate the flow depths and flow resistance of these compound channels, especially when vegetation is present.

3-2
Chow (1959) and Cowan (1956) have shown that there are many factors which affect the boundary roughness and flow resistance. Even within the main flow section of a compound flood channel, these factors can vary. However, the roughness and flow resistance will significantly vary from subsection to subsection for compound channels with flood plains and over-bank flooding. Main flow channels which have different roughness along sections of the wetted perimeter can be referred to as composite channels. Determining the total discharge for a compound channel that includes a composite main channel can be complicated. Currently, there are two different methods used; a flow conveyance method, and an equivalent flow resistance method.

3-3
The flow conveyance method is a more mathematically rigorous method for compound channels, and has been assumed by most researchers to be the most fundamentally correct and accurate. Masterman and Thorne (1992) apply the law of continuity when they state that the total discharge is equal to the sum of the discharges of the main channel and its flood plains. This is possible when the assumption is made that the flow in all parts or sections of the channel is caused by
the same energy grade line, that is, the energy grade line is the same everywhere in the compound channel.

3-4 With the assumption of constant energy slope, the discharge of each section can be solved for iteratively, section by section, and by checking to ensure that the water-surface elevation is the same for each section. The total discharge of the compound flood channel is then the sum of the discharges of each channel section.

3-5 The equivalent resistance method applies Manning's formula to the entire compound flood channel. It is necessary to compute a compound roughness, or an equivalent resistance, for the entire channel. Chow (1959) presented three equations for determining an equivalent resistance. The development of these equations are based on applying a weighting factor to each section of the compound channel and then combining them appropriately.

3-6 All three equations are based on a constant water surface elevation. To determine the equivalent roughness, the total area is subdivided into N parts, of which the wetted perimeters $P_{1}, P_{2}, \ldots, P_{N}$ and the roughness coefficients $n_{1}, n_{2}, \ldots, n_{N}$ for each section are known.

3-7 The most widely used equivalent resistance equation is based on the assumption that each section of the total area of the channel has the same mean velocity. The equation was intended for use with composite channels with variable
roughness and not for use with compound channels. However, the equation is sometimes used for compound channels even though large errors can occur. Using this assumption, the equivalent roughness may be determined by the following equation:

$$
\begin{equation*}
n=\left(\frac{\Sigma\left(P_{N} \cdot n_{N}^{1.5}\right)}{\Sigma P_{N}}\right)^{2 / 3} \tag{10}
\end{equation*}
$$

3-8 Dracos and Hardegger (1987) have suggested using this equation for compound flood channel with subsections of fairly low flow resistance and smooth boundaries. Sections with vegetation, typically have rough boundaries and high resistance, and would not be suitable for use with this equation.

$$
3.9
$$

The second equivalent resistance equation presented by Chow for determining an equivalent roughness is based on the assumption that the total force resisting the flow, $\mathrm{KV}^{2} \mathrm{PL}$, is equal to the sum of the forces resisting the flow in each section of the cross section. This equation also uses the assumption that each part of the total area has the same mean velocity.

$$
\begin{equation*}
n=\left(\frac{\Sigma\left(P_{N} \cdot n_{N}^{2}\right)}{\Sigma P_{N}}\right)^{1 / 2} \tag{11}
\end{equation*}
$$

3-10 The third equation given by Chow for determining an equivalent roughness is based on the assumption that the total discharge of the flow is equal to sum of the discharges for each area within the total area (Lotter, 1933).

$$
\begin{equation*}
n=\frac{\left(\Sigma P_{N} \cdot \Sigma R_{N}^{5 / 3}\right)}{\Sigma\left(\frac{P_{N} \cdot R_{N}^{5 / 3}}{n_{N}}\right)} \tag{12}
\end{equation*}
$$

Where $R_{1}, R_{2}, \ldots, R_{N}$ are the hydraulic radii of each section. Equation 12 is actually a flow conveyance equation since the velocity does not have to be constant throughout the cross section.

3-11 The flow conveyance method and Equation 12 will yield the same results for a compound flood channel. The equivalent resistance method and Equations 10 and 11 will yield questionable results for compound channels with vegetation if the assumption of equal velocity is made. It is inherent that the resistance of channel sections with vegetation will be larger than the resistance for the main channel, and will then experience lower velocities than the main channel. The assumption of constant velocity is invalid and the use of the equivalent resistance method is questionable for vegetated flood plains. The difference in results between the two methods will, in part, depend on the magnitude of the resistance of the vegetation.

3-12 Both the flow conveyance method and Equation 12 utilize an iterative solution to solve for the flow depth or total discharge. The advantage of Equations 10 and 11 of the equivalent resistance method is a direct solution for depth or discharge. However, if the flow resistance should vary with velocity and or depth, the solution by either method will become more complicated and iterative. The equations and methods of the previous section on flow resistance were limited to flow sections of uniform resistance and velocity. However, these equations (Equations I through 9)
can be applied to each individual sub-section of the compound flood channel and used with either the flow conveyance or equivalent flow resistance methods.

Additional information on flow resistance and compound flood channels can be found in very comprehensive literature review by Craig Fischenich (1994).

section 4 SEDIMENT TRANSPORT WITH VEGETATION

4-1 It is common knowledge that the presence of vegetation in a channel or flood plain will effect the sediment transport and the scour or erosion of the channel bottom and sides. Vegetation will certainly reinforce and strengthen the soil surfaces through the development of root systems. The effective soil boundary is then more resistant to soil movement and erosion. Vegetation can also impede the movement of the contact portion of the bed load (ASCE 1960), and prevent or stabilize bed forms.

4-2
 Another common belief is that the presence of vegetation increases flow

 resistance and then results in the reduction of flow velocity from increased depth. The reduced velocity will then reduce the sediment transport of the channel and reduce the forces necessary to cause scour and erosion. Li and Shen (1973) have developed the theory to explain how the retarding flow rate is the result of the drag forces on tall vegetation, and developed the methodology to predict the reduction of sediment load.4-3 The limitations of Li and Shen's (1976) study include the exclusion of the effects of the leaves and branches of vegetation. Also, their investigations only studied cylinders, and relied on the assumption of uniformly distributed bed shear. The development of their theory was based on a horizontal, 2 dimensional flow field around multiple cylinders. Tests of actual vegetation was not available for their study, and the 2 dimensional analysis precluded the consideration of vertical velocity components. The blockage produced by plant leaves and branches could produce vertical velocity components that would then create flow vortices and local scour. Local scour immediately upstream of bridge piers (Richardson, Simons, et al 1975) is a classical example of this type of phenomena. Another effect of the plant foliage
would be the formation of a layer or blanket that would divert flow beneath the foliage. Flow diverted beneath the foliage blanket could result in increased velocities along the channel bottom.

section 5 TEST FACILITY

5-1 The Utah Water Research Laboratory is a facility of Utah State University and is the water research center for the state of Utah. The laboratory was built in the late 1960's and has been involved both nationally and internationally in all areas of water engineering. The laboratory serves both the Environmental Engineering Division and the Water Division of the department of Civil Engineering at Utah State University. Over 20 professional faculty and engineers and approximately 60 graduate students are assigned to the Water Division at the laboratory. Part of the Utah Water Research Laboratory is the hydraulic's laboratory. The hydraulic's lab is one of the largest laboratories (outside of WEST) that is available for physical modeling and testing. Over 50,000 square feet of lab space and flows in excess of 150 cfs are available for the different models and flumes in the lab. The lab includes calibration facilities for NBS traceable calibrations of flow meters and velocity meters. Permanent support staff are available for construction and fabrication of the models.

5-2 Two flumes were used for the plant tests of this study. The large flume of the hydraulic's laboratory was used for multiple plant tests. The large flume is a 8 foot wide by 6 foot deep by 500 foot long rectangular flume with a horizontal floor. A sectional flume was constructed from one of the laboratory's 3 foot wide by 3 foot deep return flow channels.

section 6 TEST PLANTS

6-1 There were four different groups of plants tested in the large laboratory flume and ten groups of plants tested in the sectional flume. All of the plants tested were broadleaf deciduous, woody vegetation, and found in most USDA zones. The plants tested in the larger flume were placed in staggered rows along the 50 length of the test section. The spacing selected for the plants was based on the typical spacing (Kadlec 1990) of $11 / 2$ to 2 plant diameters for emergent plants The plants tested in the sectional flume were placed in a single row of 4 to 5 plants along the centerline of the flume. A single plant was instrumented for determining drag force in each flume. The test plant in the larger flume was located in the center of the 50 foot by 8 foot test section. The test plant for the sectional flume was the last plant, with 4 plants located upstream.

With the exception of the plants used to test for drag forces, all of the plants in the large flume were placed intact, with root structure and original soil, into a 8 -inch deep test bed of clay. The plants were anchored through the clay by wiring the plant stem to a section of chain link fencing placed flat on the concrete bottom of the flume. The test plants in the section flume and the drag force plant of the larger flume, were cantilevered into test platform and load cell. The roots of the cantilevered plants had to be removed.

6-3 The four plants tested in the large flume were:

1) 20 -inch Yellow Twig Dogwood (Cornus stolonifera Flaviramea);
2) 28 -inch Berried Elderberry (Sambucus Racemosa);
3) 8 -inch Purpleleaf Euonymus (Euonymus Fortunei Colorata);
4) 38 -inch Red Twig Dogwood (Cornus Sericea).

6-4 The ten plants tested in the sectional flume were:

1) 20 -inch Yellow Twig Dogwood (Cornus Stolonifera Flaviramea);
2) 8 -inch Purpleleaf Euonymus (Euonymus Fortunei Colorata);
3) 22 -inch Arctic Blue Willow (Salix Purpurea Nana)
4) 28 -inch Maple (Acer Platenoides)
5) 32 -inch Common Privet (Ligustrum Vulgare)
6) 21 -inch Blue Elderberry (Sambucus Canadensis)
7) 36 -inch French Pink Pussywillow (Salix Caprea Pendula)
8) 36 -inch Sycamore (Platenus Acer Ifolia)
9) 29-inch Western Sand Cherry (Prunis Besseyi)
10) 30-inch Staghorn Sumac (Rhus Typhina)

6-5 Table 1 and Figure 1 show the plant heights, spacings, and numbers of plants tested in the large flume tests. Table 2 and Figure 2 show the average dimensions and plant characteristics of the plants tested in the large flume. Table 3 shows the average dimensions and characteristics of the plants tested in the sectional flume. The range of heights of individual plants varied from the average height characteristics in Table 3 with a variation of 3 inches, the plant widths varied by 4 inches, and the diameters of the stems varied by one sixteenth of an inch.

Figure 1 Large Flume Test Plant Spacings

Table 1 Large Flume Test Plant Heights, Numbers, and Spacing

PLANT Plant/Runs	PLANT HEIGHT	ROW SPACING	PLANT DENSITY	NO. OF PLANTS
Dogwood Runs 1-1 to 1-9	20"	$16 "$. $4983 / \mathrm{ft}^{2}$	192
Dogwood Runs 2-1 to 2.4	$20^{\prime \prime}$	$25^{\prime \prime}$. $2215 / \mathrm{ft}^{2}$	96
Elderberry Runs 3-1 to 3-10	$28{ }^{\prime \prime}$	$18^{\prime \prime}$. $2500 / \mathrm{ft}^{2}$	117
Euonymus Runs 4-1 to 4-7	8'	$10^{\prime \prime}$	$1.190 / \mathrm{ft}^{2}$	480
Euonymus Runs 5-1 to 5-3	8'	$16^{\prime \prime}$. $5289 / \mathrm{ft}^{2}$	280
Dogwood Runs 6-1 to 6-8	$38^{\prime \prime}$	36"	. $1111 / \mathrm{ft}^{2}$	45
Dogwood Runs 7-1 to 7-2	$38^{\prime \prime}$	$54 "$. $0494 / \mathrm{ft}^{2}$	23

Figure 2 Dimensions and Characteristics of Plants in Large Flume

Table 2 Dimensions and Characteristics of Plants in Large Flume

Plant/Runs	H	W_{p}	$\mathrm{D}_{\text {S }}$	H^{\prime}	H_{CL}	NO. OF BRANCHES	NO. OF LEAVES	LEAF SIZE
Dogwood	$20^{\prime \prime}$	$9{ }^{\prime \prime}$	$3 / 8^{\prime \prime}$ one stem	13"	12"	6	50	$\begin{aligned} & 3^{\prime \prime} \text { long } \\ & 1 / 2^{\prime \prime} \mathrm{w} \end{aligned}$
Dogwood	$20^{\prime \prime}$	9"	$3 / 8^{\prime \prime}$ one stem	$13 \prime$	12"	6	50	$3^{\prime \prime} \text { long }$ $1 / 2^{\prime \prime} w$
Elderberry	$28^{\prime \prime}$	$14^{\prime \prime}$	3/8" one stem	$20^{\prime \prime}$	$14^{\prime \prime}$	5	40	$\begin{aligned} & 2^{\prime \prime} \text { long } \\ & 1^{\prime \prime} \mathrm{w} \end{aligned}$
Euonymus	8"	10"	$\begin{aligned} & 1 / 4^{\prime \prime} \\ & \text { two } \\ & \text { stems } \end{aligned}$	$8{ }^{\prime \prime}$	$4 "$	9	90	$\begin{aligned} & 2^{\text {" } \text { long }} \\ & 1 / 2^{\prime \prime} \mathrm{w} \end{aligned}$
Euonymus Runs 5-1 to 5-3	8	$10^{\prime \prime}$	$\begin{aligned} & 1 / 4^{\prime \prime} \\ & \text { two } \\ & \text { stems } \end{aligned}$	8 '	$4 "$	9	90	$\begin{aligned} & 2^{\prime \prime} \text { long } \\ & 1 / 2^{\prime \prime} \mathrm{w} \end{aligned}$
Dogwood Runs 6-1 to 6-8	38 ${ }^{\prime \prime}$	$26^{\prime \prime}$	$\begin{aligned} & \quad \mathrm{l}^{\prime \prime} \\ & \text { two } \\ & \text { stems } \end{aligned}$	$30^{\prime \prime}$	17"	8	160	$\begin{aligned} & \text { 3" long } \\ & 1.5^{\prime \prime} \mathrm{w} \end{aligned}$
Dogwood Runs 7-1 to 7-2	38"	$26^{\prime \prime}$	$\begin{aligned} & \mathrm{l}^{\prime \prime} \\ & \text { two } \\ & \text { stems } \end{aligned}$	$30^{\prime \prime}$	17"	8	160	$\begin{aligned} & 3^{\prime \prime} \text { long } \\ & 1.5^{\prime \prime} \mathrm{w} \end{aligned}$

Table 3 Dimensions and Characteristics of Plants in Sectional Flume

Plant/Runs	H	W_{p}	D_{5}	H^{\prime}	H_{CL}	NO. OF BRANCHES	NO. OF LEAVES	$\begin{aligned} & \text { LEAF } \\ & \text { SIZE } \\ & \hline \end{aligned}$
Dogwood	$20^{\prime \prime}$	$9{ }^{\prime \prime}$	3/8"	$13^{\prime \prime}$	$12^{\prime \prime}$	6	50	$3^{\prime \prime}$ long $1 / 2^{11}$ w
Euonymus	$8^{\prime \prime}$	10"	$\begin{aligned} & 1 / 4 " \\ & \text { 2ea. } \end{aligned}$	$8^{\prime \prime}$	$4 "$	9	90	$\begin{aligned} & \begin{array}{l} 2^{\prime \prime} \text { long } \\ 1 / 2^{\prime \prime} \mathrm{w} \end{array} \\ & \hline \end{aligned}$
Arctic Blue Willow	$22^{\prime \prime}$	12"	$1 / 2^{\prime \prime}$	$20^{\prime \prime}$	$24 "$	5	140	$\begin{aligned} & 2^{2 "} \text { long } \\ & 1 / 2^{\prime \prime} \mathrm{w} \end{aligned}$
Norway Maple	$28^{\prime \prime}$	12"	1/2"	12"	$24 "$	5	140	$\begin{aligned} & 2^{2 \prime} \text { long } \\ & 1 / 2^{\prime \prime} \mathrm{w} \end{aligned}$
Common Privet	32"	10"	1/2"	27"	$16^{\prime \prime}$	6	275	$\begin{aligned} & 1.3^{\mathrm{n} ~} 1 \\ & 3 / 8^{\prime \prime} \mathrm{w} \end{aligned}$
Blue Elderberry	$21^{\prime \prime}$	$18^{\prime \prime}$	$1^{\prime \prime}$	$16^{\prime \prime}$	$12^{\prime \prime}$	3	175	$\begin{array}{\|c\|} \hline 2.5^{\prime \prime} 1 \\ 3 / 4^{\prime \prime} \mathrm{w} \end{array}$
Pink Pussywillow	$36^{\prime \prime}$	$10^{\prime \prime}$	3/4"	10"	$20^{\prime \prime}$	4	90	$\begin{gathered} 1.5^{\prime \prime} 1 \\ 1 / 2^{\prime \prime} \mathrm{w} \end{gathered}$
Sycamore	$36^{\prime \prime}$	$8^{\prime \prime}$	0.4"	$33^{\prime \prime}$	19"	3	23	$\begin{aligned} & 6^{6 "} \text { long } \\ & 6^{\prime \prime} \text { w } \end{aligned}$
Western Sand Cherry	29 "	$6^{\prime \prime}$	$1 / 3^{\prime \prime}$	$20^{\prime \prime}$	19"	7	100	$\begin{aligned} & 2^{\prime \prime} \text { long } \\ & 1^{\prime \prime \mathrm{w}} \end{aligned}$
Staghorn Sumac	$30^{\prime \prime}$	$10^{\prime \prime}$	1/2"	12"	$24 "$	12	140	$\begin{aligned} & 2^{2 "} \text { long } \\ & 1 / 2^{\prime \prime} \mathrm{w} \end{aligned}$

section 7 LARGE FLUME (RESISTANCE) TEST SETUP

7-1 The concrete floor under the test section of the large flume (Figure 3) was covered with a layer of chain link fence which extended across the width of the channel and along 90 feet of the flume. The fencing was necessary so that each individual plant could be anchored, by wire, to prevent their removal by the force of flowing water. The upstream end of the fencing was attached to a beam fixed to the bottom of the flume. The fence also helped stabilize the test bed and prevent lateral movement of the test bed during testing. A clay bed approximately 8 inches deep was placed and compacted in place on top of the chain link fence. Finally, a one inch layer of topsoil was laid and compacted in place on top of the clay. A 4 inch diameter drain pipe was buried along one side of the clay and soil bed to drain water from the test bed during periods between test series. The test section was located in the large flume so that the 24 foot view section of the flumes west wall was adjacent to the downstream reach of the test section.

The test reach was a length of 50 feet of the clay and soil bed, and was preceded by a 30 foot length of approach bed. Cement blocks were placed on the approach bed to create a turbulent layer and to establish a fully developed velocity distribution before the test reach. To ensure that the blocks created the necessary velocity distribution, tests were conducted with velocity profiles at different locations to verify the spacing of the cinder blocks. The remaining 10 feet of the clay and soil bed was placed at the end of the test section.

Figure 3 Sketch of the Large Test Flume

At the downstream end of the clay bed, stop logs were inserted into the flume and removed as necessary to slowly fill the flume. This was done to prevent the test plants during filling. It was found that several layers of stop logs had to be left in during testing, especially with low water depths, to maintain a constant velocity profile throughout the test section. At downstream end of the flume, 300 feet downstream of the test section, a hydraulic gate was used to control flow depth.
7.4 Water entered the upstream end of the flume, 165 feet upstream of the test section, from a 48 inch diameter pipe. A remote controlled butterfly valve in the 48 inch pipeline was used to control the flow rate. A Mapco sonic meter was used to measure the flow rate in the 48 inch pipeline. A series of vertical and horizontal distribution vanes were placed downstream of the 48 inch inlet pipe to dissipate the jet from the pipe exit.

7-5 To take depth and velocity measurements, a wheeled platfrom that moved on tracks adjacent to the flume sides, was positioned at 5 foot intervals of length to facilitate measurements. Water surface elevations were measured with the help of a stationary transit and a measuring rod. Flow velocities were taken with a Marsh Mcbirney Model 201 Portable Water Current Meter. Depth and water surface elevations were taken along the centerline of the flume. Velocity measurements were made at depth intervals of 3 inches and at stations \#5, \#25, and \#45. Station \#0 was the upstream end of the test section, station \#25 was at the middle of the test section, and station \#50 was at the downstream end of the 50 foot long test section.

A single plant, in the centerline of the flume and at station \#25, was selected as the test plant to determine drag force. An average sized test plant was
selected and inserted into a platform to measure drag force. The test platform was a shallow metal box with ball bearings in the bottom and a metal plate resting upon the ball bearings. The test plant, with its roots removed, was attached and cantilevered from the plate. A load cell was then attached to the tail end of the plate to measure the drag force on the plant, as a compression force. Using a Vishay Instrument Model P-350 Strain Indicator, the drag force produced by the individual test plant was then able to be determined. The platform was covered with a section of drain cloth to prevent soil from interfering with the ball bearings and movement of the plate. Elastic bands were used to position the plate within the platform's shallow box. The strain gage was zeroed at the start of each series of runs, and the sensitivity of the strain gage was 200 micro-inches per inch per pound. Measurements were taken to the nearest micro-inch. The following section 9 of this report explains the mounting of the test plant in detail.

section 8 PROCEDURES FOR RESISTANCE TESTS

8-1 Prior to beginning each series of tests, the test bed was leveled and a layer of topsoil placed and compacted on top of the clay bed. The test plants were then placed in the test flume just prior to testing. The flume was slowly filled with water with the stop logs in place and the downstream gate closed. With the flume filled and no flow, the strain gage for drag force was zeroed. Flow and depth were controlled with the downstream gate and the 48 inch inlet butterfly valve. Time was allowed for the flume to reach equilibrium before beginning each test run.

8-2 Typically, nine test runs were made for each test series. The first three runs were made at high depths, with the flume nearly full, and at three different velocities. The next three runs were made at a medium depth, and the last three runs were made at a low depth. The test plants were submerged, even at low depths, because the flow forces were adequate to bend the plants with the flow.

8-3 The first measurements taken for each test were the water surface elevations at 5 foot intervals along the centerline of the test section. Velocity measurements were taken next. Velocity measurements were taken at 3 inch intervals of depth at stations \#5, \#25, and \#45. The local velocity at the plant (plant approach velocity) was measured 2 inches upstream of the leaf mass of the test plant used to measure drag force. The plant approach velocity was measured 2 inches upstream of the test plant to avoid making a measurement in a possible stagnation region of the upstream face of the plant. Measurements taken in the plant mass and at the upstream face of the plant were inconclusive because of the interference of individual leaves, but the measurements did show that there was still substantial velocity and flow through the plant mass and through the stagnation region. The
strain on the load cell was measured for each test run. As the depths and velocities were varied, the test plants and soil were observed through the view window for soil movement, plant distortion, and plant failure.

8-4 The procedure to calculate the Manning's coefficient n for the plant resistance, involved an initial estimate of a total Manning's roughness coefficient to best fit the gradually varied backwater curve of water surface elevations along the test section. The gradually varied backwater curve was the result of the energy loss due to the flow resistance of the vegetation and the roughness of the test bed and flume walls. Equation 13 was the equation used to fit the backwater curve.

$$
\begin{equation*}
\frac{d y}{d x}=\left(\frac{S_{o}-S_{f}}{1-F r^{2}}\right) \tag{13}
\end{equation*}
$$

Where $d y / d x$ is the unit change in slope of the water surface; S_{0} is the slope of the bed; S_{f} is the slope of the energy line; and F_{r} is the Froude number. S_{f} is calculated from the Manning's equation (Equation 1) for the estimate of Manning's n, the mean velocity V calculated from continuity, and the hydraulic radius R. The Froude number was calculated from Equation 14.

$$
\begin{equation*}
F_{r}=\frac{V}{\sqrt{g \cdot R}} \tag{14}
\end{equation*}
$$

The total Manning's n was then iteratively solved using a trial and error process until the shape of the backwater curve predicted by Equation 13 was the same as the measured curve of the actual water surface. Figure 4 is an example of the backwater curve fit for test run 1-7 with a total Manning's n of 0.048 .

Figure 4 Example of the Fit of Backwater Curve to Deterimine n

8-5 From the total Manning's n, the value of n for the bed roughness and plant resistance was determined. This was done through a number of steps. First, the total n was converted to a Darcy-Weisbach friction factor, f, by Equation 15.

$$
\begin{equation*}
f^{2}=\frac{n \sqrt{8 g}}{1.486 \cdot R^{1 / 6}} \tag{15}
\end{equation*}
$$

The coefficient of friction for the bed and plants, f_{b}, was determined using a correction for the effects of the flume walls and an assumption that the channel was rectangular. The coefficient of friction for the walls, f_{w}, was determined from Equation 16 regressed for this study to fit the correction figure presented in the ASCE Sedimentation Engineering Manual (1977).

$$
\begin{equation*}
f_{w}=0.274367\left(\frac{R e}{f}\right)^{-0.175092} \tag{16}
\end{equation*}
$$

Where Re is the Reynold's number. Equation 16 was a power fit regression with an r^{2} of .9998 . The friction factor for the bed, f_{b}, was then calculated with Equation 17.

$$
\begin{equation*}
f_{b}=f+\frac{2 Y_{o}}{b}\left(f-f_{w}\right) \tag{17}
\end{equation*}
$$

Where, b is the width of the channel, and Y_{o} is the flow depth. Manning's resistance coefficient for the bed roughness and plant resistance was calculated from the hydraulic radius R_{b} determined by Equation 18 .

$$
\begin{equation*}
\frac{R_{b}}{f_{b}}=\frac{R_{w}}{f_{w}}=\frac{R}{f} \tag{18}
\end{equation*}
$$

Where R_{b} is the hydraulic radius for the bed and plants; R_{w} is the hydraulic radius for the walls; and R is the gross hydraulic radius. Equations 17 and 18 are from the ASCE Sedimentation Engineering manual (1977) on side wall corrections. Finally, the Manning's coefficient n_{b} for the bed roughness and vegetation was converted from R_{b} from the Manning's equation (Equation 1).

8-6 The coefficient n_{b} is the resistance of both the bed roughness and the vegetation. Equation 19 was used to calculate the resistance coefficient $n_{\text {veg }}$ for the net resistance of the vegetation.

$$
\begin{equation*}
n_{\text {veg }}=n_{b}-n_{\text {base }} \tag{19}
\end{equation*}
$$

Where, $n_{\text {veg }}$ is the Manning's coefficient for vegetation; n_{b} is the bed and vegetation resistance; and $n_{\text {base }}$ is the base value of only the bed roughness. The value for $n_{\text {base }}$ was determined by testing only the soil and clay base.

section 9 SECTIONAL FLUME (DRAG FORCE) TEST SETUP

9-1 A smaller sectional flume was used to study the drag forces developed on single plants. The tests were carried out in a horizontal 3 foot wide by 3 foot high smooth sided steel flume. To produce higher velocities, a false plywood wall was built in the flume, narrowing the width to 18 inches. Water was supplied by a 3 ft . by 3 ft . channel running perpendicular to the flume entrance. A baffle was placed at the entrance of the flume to straighten the incoming flow. A plexiglass observation window was also installed in the side of the flume.

9-2 Since the bottom of the flume consisted of smooth steel, it was necessary to devise a method by which to attach the plants. This was accomplished by building a $11 / 2$ in. thick false deck out of smooth, painted plywood. The deck was bolted through the bottom of the flume and sealed with silicon caulk. Several one inch holes were drilled through the plywood to the steel bottom. These holes were placed upstream of the test plant. They were designed to hold plants which would create a flow regime around the test plant similar to that of the test plant used in the large flume testing.

9-3 To attach the plants to the bottom, a beveled rubber grommet and wide flanged washers were used. The roots of the plants were cut of at the base of the stem, and then the stem was inserted through the washer and into the grommet. The rubber grommet was used to protect the base of the stem. When the plant was inserted into the grommet and the grommet was compressed, the grommet acted as a cantilevered connection (see Figure 5). Without the grommet, the plant tended to break at the base when subjected to high velocities. The rubber would give a slight bit, thus allowing the plant to bend a small amount at the base rather than shear off
against the sharp edges of the plywood floor. This is similar to the conditions that the plant experiences in the field with soil around its base. The wide flanged washers had two holes which allowed the grommet to be attached to the plywood floor with the use of screws. Since the beveled grommet was slightly larger than the holes, the screws had to draw the grommet down into the hole, compressing the rubber.

9-4 The test plant used to measure drag force had the same rubber grommet method, but was attached to a smooth aluminum plate (Figure 5) rather than the plywood floor. The plate was 6 inches wide by 12 inches long and 1 in . thick. The plate provided a platform by which to measure the drag force produced on the plant. A hole was drilled into the plate and a shorter grommet had to be used because the plate was not as thick as the false deck. The plant was inserted through the washer and the grommet then screwed to the plate in the same method as the other plants.

9-5 To assimilate the plate into the deck, a $6 \frac{1}{2}$ in. by $12 \frac{1}{2}$ in. rectangle was cut in the center of the floor along the centerline of the flume. Since the floor was $11 / 2 \mathrm{in}$. thick, $1 / 2$ in. diameter ball bearings were placed directly on the smooth steel floor where the plywood was removed. This allowed the plate to move smoothly on the steel deck and it also raised the top of the plate up to $11 / 2 \mathrm{in}$. so it was exactly flush with the rest of the floor. This prevented the water from striking the face of the plate and adding to the measured drag force.

9-6 The strain gauge (0 to 10 pound range) used to measure drag force was the same gauge used in the large flume tests. The strain gauge was placed and centered directly behind the aluminum plate to measure the drag force as compression on the gauge. While the gauge was a commercially available and waterproof model, the gauge and connections were still sealed in waterproof bags.

The strain gauge was temperature compensating and always zeroed in place and under water. The calibration of the gauge was checked before each test series.

9-7 Elastic bands were was attached to both the plate and the plywood floor immediately downstream and to the sides of the plate. This held the plate firmly in contact with the strain gauge and centered in the floor cavity. A sketch of this setup is shown in Figure 5.

9-8 Velocity measurements were made from a propeller type Ott Velocity Meter. Velocity measurements were taken just upstream of the test plant used to measure drag force. Measurements were taken at different depths, and the plant velocity was taken at the depth of the center of the leaf mass.

Figure 5 Test Setup for Determining Plant Drag Force

section 10 PROCEDURES FOR DRAG FORCE TESTS

10-1 Before each test series, measurements were made of plant dimensions and plant characteristics. Plant height, width, leaf size and stem height were measured, and the number of branches, stems and leaves were counted. The diameter of stems and branches was recorded, and the bending characteristics were also measured. The forces required to bend the plant 45 degrees and horizontal were determined. The strain gauge was first attached to the top of the plant. After the bending forces and deflection were determined there, the gauge was hooked to the center of the plant and the bending forces were again measured.

10-2 The roots of the test plant were then removed and the plant was attached to the aluminum plate. When the plate was in place, stop-logs were placed at the downstream end of the flume. The logs were placed to a height of 3 ft . This allowed the flume to be completely filled and the strain gauge set to zero to compensate for any buoyancy effects.

10-3 The intent of the test plan was to make almost all of the tests with the plants completely submerged. Because some plants did not bend very far enough to completely submerge at the highest velocities and lowest flow depths, it was necessary to use stop logs to provide downstream control of the depth. When used, they were evenly spaced so that a uniform velocity profile occurred.

10-4 Each plant was subjected to a series of 10 runs. Each run was at an increasing velocity, ranging from approximately 0.25 to $8 \mathrm{ft} / \mathrm{sec}$. During each run, the velocity directly upstream of the plant and the compression on the strain gauge were recorded. This velocity was taken at the centerline of the effective leaf area. As
velocity increased, the velocity probe was lowered to compensate for plant bending. This insured that the velocity of each run was being recorded at the centerline. The angle that the plant deflected was determined from marks drawn on the sidewall of the flume. Video tapes were taken to allow for more detailed observation of the plants at a later time.

10-5 After the plant was subjected to 10 different velocities, all of the leaves were removed. The plant was then immediately subjected to 10 more runs. Velocity, drag and deflection data were recorded in the same fashion.

section 11 RESULTS FOR THE RESISTANCE TESTS

11-1 There were eight different test series completed in the large flume using different plants types, plant heights, and plant spacings. The first series was performed on only the bed, without vegetation, to determine the bed roughness. A Manning's n (corrected for wall effects) of approximately 0.02 was found for the soil bed. Tables 1 and 2 list the test series with the plant dimensions and plant spacings. The second and third series were performed using Yellow Twig Dogwood plants, and for the third series, 50% of the Dogwoods were removed in a uniform manner. The fourth series utilized Elderberry plants. Euonymus plants were used for the fifth series and sixth series, and 45% of the Euonymus plants were removed for the sixth series. The seventh and eighth series were completed using larger Red Twig Dogwoods, and the eighth series used the same Red Twig Dogwoods thinned to 50\%.

11-2 The following tables (Table 4) summarize the test results and calculations of the 8 series of tests completed in the large flume. The data sheets and backwater curve fits for each test run are in Appendix A.

11-3 Table 4 shows that Manning's $n_{\text {veg }}$ varied with plant type, size, and spacing. The range of Manning's $n_{\text {veg }}$ for the resistance of vegetation was from 0.02 to 0.13. Figure 6 shows that Manning's $n_{\text {veg }}$ was not constant with flow characteristics and varied with the hydraulic radius. Figure 7 shows a more linear relationship of Manning's $n_{\text {veg }}$ with the parameter RS. Figure 8 shows a definite linear relationship of Manning's $n_{\text {veg }}$ with average channel velocity. Figures 7 and 8 show that Manning's $n_{\text {veg }}$ decreased with increased RS or velocity.

Table 4 also shows the tabulated values for the measured drag force on the test plants in the large flume. The tables show a definite relationship between Manning's $n_{\text {veg }}$ and the drag force, and a relationship between the bed shear stress $\tau_{0}=\gamma R S$.

11-5 Figure 9 is an example of the velocity profile measured for test run 6-3. The profile demonstrates the effect of the leaf mass on the velocities. The plant approach velocity is the velocity that occurred upstream at the centerline of the leaf mass of the plant. It is important to note that the velocity significantly increases below the leaf mass. The mean velocity calculated from continuity was about the same as would be predicted using the Einstein-Prantl velocity profile equation with a roughness height equal to the height of the plant. The velocity profiles also indicate the possibility of using a linear relationship of the surface velocity to plant height to estimate the plant approach velocity.

11-6 The test runs were both video taped and photographed. It was obvious that the flow resistance was influenced by the flow blockage and roughness of the leaf mass of the shrubs. A very important observation was that the plant easily bent with the flow, and the leaf mass trailed downstream forming a streamlined, almost teardrop shaped, profile. The leaf mass changed with velocity and became more streamlined with increased velocity. This observation confirms the decreasing trend of Manning's $n_{\text {veg }}$ with velocity in Figure 8. It was obvious that the shrub's leaf mass can not be considered a rigid area of blockage.

11-7 Average channel velocities from 3 to 4 fps were necessary to cause either the leaves to pull off of the plants or for the stems to break. Table 4 lists the observed velocity limits. The velocities were much greater than expected. It should
also be noted that the velocities required to break stems and leaves, also caused significant movement of bed material. It is likely that some, if not all, of the leaf and stem failures may have been due to impact of large bed material, i.e. gravel, that was being transported by the flow.
11.8 One of the most significant observations was that the layer of plant foliage diverted flow beneath the plants. Velocities beneath the plants were measured at levels approaching surface velocities. Measurable scour was observed beneath the plants, and even the clay bed was eroded. The velocities were sufficient to transport and move the largest sizes of gravel.

11-9 The Euonymus plants were a ground cover type of plant, with leaves extending to the soil bed. However, with the typical spacings of the plants, there were areas of channel bottom directly exposed to flow. Measurable scour was observed in these open areas between plants for all of the tests. The test series had to be stopped for the Euonymus plants, when it was observed that the plant's root systems were failing. Local scour of the roots and bed directly upstream of the plant stems caused the removal of the bed material anchoring the plants. Only the wires attached to the plant stems kept the plants from washing downstream. Observations showed that local scour was occurring from 3 dimensional flow vortices in front of the plant stems. The vortices appeared to be similar to those reported in the literature for bridge pier scour.

Table 4 Summary of Large Flume (Resistance) Test Results

Run	$\begin{gathered} \mathrm{Yo} \\ \mathrm{ft} \end{gathered}$	$\begin{array}{r} \hline \operatorname{avg} V \\ f p s \end{array}$	$\begin{array}{r} n \\ \text { flume } \end{array}$	$\begin{aligned} & \text { Fd } \\ & \text { lbs } \end{aligned}$	$\begin{array}{r} \mathrm{R} \\ \text { flume } \end{array}$	Sf	$\begin{gathered} \hline \text { R } \\ \text { net } \end{gathered}$	$\begin{array}{r} n \\ \text { net } \end{array}$	net
Runs 1-1 to 1-9 were with 192 Dogwood plants on 16-inch centers and 17" spacing between rows.									
1-1	4.17	1.20	0.046	0.250	2.042	0.0005	3.956	0.0715	26.14
1-2	4.12	2.00	0.042	0.300	2.030	0.0012	3.896	0.0649	28.73
1-3	3.68	2.46	0.040	0.375	1.917	0.0018	3.484	0.0596	30.71
1-4	3.09	1.58	0.047	0.375	1.743	0.0012	2.967	0.0670	26.59
1-5	3.35	1.93	0.043	0.375	1.823	0.0014	3.194	0.0625	28.86
1-6	3.44	2.26	0.040	0.500	1.849	0.0016	3.261	0.0584	31.00
1-7	1.76	2.88	0.045	0.775	1.222	0.0058	1.714	0.0564	28.83
1-8	2.35	3.25	0.041	0.875	1.480	0.0048	2.264	0.0544	31.29
1-9	2.91	3.58	0.038	0.750	1.685	0.0042	2.773	0.0530	33.25
Runs 2-1 to 2-4 were with 50% of Dogwood plants removed in a uniform pattern.									
2-1	4.45	2.51	0.031	0.275	2.107	0.0010	4.051	0.0479	39.14
2-2	3.77	3.03	0.031	1.075	1.941	0.0017	3.471	0.0457	40.03
2-3	1.69	3.47	0.040	0.875	1.188	0.0069	1.640	0.0496	32.54
2-4	1.3	2.46	0.042	1.075	0.981	0.0050	1.269	0.0499	31.01
Runs 3-1 to 3-10 26" to 30" Elderberry, $18^{\prime \prime}$ centers and 24" rows									
3-1	3.96	0.96	0.042		1.990	0.0003	3.720	0.0637	29.02
3-2	3.23	1.57	0.035		1.785	0.0006	3.011	0.0496	36.01
3-3	3.49	1.93	0.034		1.864	0.0009	3.244	0.0492	36.75
3-4	3.13	1.00	0.045	0.450	1.754	0.0004	2.979	0.0641	27.83
3-5	2.32	1.70	0.040	0.550	1.467	0.0013	2.219	0.0527	32.20
3-6	2.57	2.01	0.033		1.563	0.0011	2.410	0.0440	39.07
3-7	2.79	2.27	0.032	0.650	1.643	0.0012	2.603	0.0435	40.07
3-8	2.68	2.52	0.033	1.200	1.603	0.0017	2.516	0.0446	38.89
3-9	2.45	2.83	0.031	0.895	1.521	0.0020	2.303	0.0409	41.77
3-10	3.002	3.102	0.030		1.715	0.0019	2.784	0.0414	42.54

Table 4 Summary of Large Flume (Resistance) Test Results

Run	$\begin{aligned} & \hline \mathrm{YO} \\ & \mathrm{ft} \end{aligned}$	$\begin{array}{r} \text { avg } V \\ \mathrm{fps} \end{array}$	$\begin{array}{r} n \\ \text { flume } \end{array}$	$\begin{aligned} & \hline \hline \mathrm{Fd} \\ & \text { lbs } \end{aligned}$	$\begin{array}{r} R \\ \text { flume } \end{array}$	Sf	$\begin{gathered} \hline \text { R } \\ \text { net } \end{gathered}$	$\begin{array}{r} \mathrm{n} \\ \text { net } \end{array}$	$\begin{gathered} \text { C } \\ \text { net } \end{gathered}$
Runs 4-1 to 4-7 with 8" Euonymus, 10" CENTERS and 11" rows (480 plants)									
4-1	3.878	1.048	0.045	0.05	1.969	0.0004	3.675	0.0682	27.06
4-2	3.921	1.377	0.04	0.06	1.980	0.0006	3.681	0.0605	30.53
4-3	3.673	2.195	0.038	0.12	1.915	0.0016	3.456	0.0563	29.62
4-4	2.762	2.172	0.045	0.15	1.634	0.0022	2.658	0.0622	28.10
4-5	2.911	2.512	0.042	0.16	1.685	0.0025	2.787	0.0587	30.01
4-6	2.563	3.195	0.041	0.25	1.562	0.00429	2.463	0.0555	31.09
4-7	1.61	2.679	0.042	0.25	1.148	0.0048	1.566	0.0517	31.00
Runs 5-1 to 5-3 with 8"Euonymus, 10" CENTERS and 11" rows 45\% removed (280 plants)									
5-1	3.385	1.348	0.038	0.09	1.833	0.0005	3.177	0.0548	32.86
5-2	3.394	2.074	0.035	0.15	1.836	0.0011	3.172	0.0504	35.74
5-3	2.32	3.158	0.035	0.15	1.468	0.0033	2.210	0.0460	36.90
Runs 6-1 to 6-8 were with $36{ }^{\prime \prime}$ to 40' Dogwoods on 3^{\prime} centers and 3'rows (45 plants), plants subm									
6-1	4.143	1.059	0.075	2.55	2.035	0.0011	4.046	0.1186	15.82
6-2	4.145	1.574	0.07	3.40	2.036	0.0021	4.044	0.1106	16.96
6-3	4.253	2.004	0.062	5.80	2.061	0.0027	4.130	0.0985	19.10
Runs 6-4 to 6-6 were with water surface at top of plant									
6-4	3.085	1.139	0.085	2.30	1.742	0.0020	3.036	0.1231	14.52
6-5	2.472	2.007	0.07	6.15	1.528	0.0051	2.430	0.0954	18.07
6-6	2.719	3.127	0.05		1.619	0.0058	2.639	0.0693	25.22
Run 6-7 with plants half submerged									
6-7	1.776	2.224	0.07	8.30	1.230	0.0083	1.753	0.0886	18.41
6-8	3.067	3.154	0.05	7.10	1.736	0.0054	2.970	0.0715	24.91
Runs 7-1 to 7-2 were with $36^{\prime \prime}$ to 40" Dogwoods on 3' centers and 3'rows thinned by 50% (23 plant									
7-1	3.885	1.142	0.07	3.18	1.971	0.0012	3.788	0.1082	17.15
Run $7-2$ was with water surface at top of plant									
7-2	2.685	1.653	0.07	8.60	1.607	0.0032	2.635	0.0973	17.94

Table 4 Summary of Large Flume (Resistance) Test Results

Run	$\begin{gathered} \hline \hline \mathrm{Yo} \\ \mathrm{ft} \end{gathered}$	$\begin{array}{r} \hline \hline \mathrm{avg} V \\ \mathrm{fps} \end{array}$	$\begin{array}{r} \mathrm{R} \\ \text { veg. } \end{array}$	$\begin{array}{r} \mathrm{n} \\ \text { veg. } \end{array}$	$\begin{array}{r} \mathrm{C} \\ \mathrm{veg} . \end{array}$	YRS	plant	plant V fps	V/N*	Reynolds
Runs 1-1 to 1-9 were with 192 Dogwood plants on 16-inch centers and 17" spacing between rows.										
1-1	4.17	1.20	2.408	0.051	33.50	0.132	0.4983	0.70	2.408	$1.36 \mathrm{E}+06$
1-2	4.12	2.00	2.233	0.045	37.96	0.302	0.4983	1.30	4.014	2.23E+06
1-3	3.68	2.46	1.879	0.040	41.82	0.400	0.4983	1.80	4.937	$2.45 \mathrm{E}+06$
1-4	3.09	1.58	1.736	0.047	34.76	0.220	0.4983	1.20	3.171	$1.34 \mathrm{E}+06$
1-5	3.35	1.93	1.783	0.042	38.62	0.279	0.4983	1.20	3.873	$1.76 \mathrm{E}+06$
1-6	3.44	2.26	1.731	0.038	42.54	0.332	0.4983	1.80	4.536	$2.11 \mathrm{E}+06$
1-7	1.76	2.88	0.885	0.036	40.13	0.623	0.4983	3.00	5.780	$1.41 \mathrm{E}+06$
1-8	2.35	3.25	1.134	0.034	44.20	0.673	0.4983	3.20	6.523	$2.10 \mathrm{E}+06$
1-9	2.91	3.58	1.356	0.033	47.54	0.724	0.4983	3.00	7.185	$2.84 \mathrm{E}+06$
Runs 2-1 to 2-4 were with 50% of Dogwood plants removed in a uniform pattern.										
2-1	4.45	2.51	1.795	0.028	58.79	0.257	0.2215	2.50	11.334	$2.91 \mathrm{E}+06$
2-2	3.77	3.03	1.457	0.026	61.79	0.357	0.2215	2.90	13.682	$3.00 \mathrm{E}+06$
2-3	1.69	3.47	0.753	0.030	48.03	0.710	0.2215	4.40	15.669	$1.63 \mathrm{E}+06$
2-4	1.30	2.46	0.586	0.030	45.63	0.393	0.2215	3.20	11.108	$8.92 \mathrm{E}+05$
Runs 3-1 to 3-10 26" to 30" Elderberry, 18" centers and 24" rows										
3-1	3.96	0.96	2.106	0.044	38.57	0.069	0.2500	0.60	3.852	$1.02 \mathrm{E}+06$
3-2	3.23	1.57	1.382	0.030	53.15	0.119	0.2500	1.20	6.280	$1.35 \mathrm{E}+06$
3-3	3.49	1.93	1.477	0.029	54.46	0.173	0.2500		7.736	$1.79 \mathrm{E}+06$
3-4	3.13	1.00	1.692	0.044	36.92	0.080	0.2500	0.60	3.984	$8.48 \mathrm{E}+05$
3-5	2.32	1.70	1.080	0.033	46.15	0.174	0.2500	1.80	6.796	$1.08 \mathrm{E}+06$
3-6	2.57	2.01	0.968	0.024	61.64	0.166	0.2500	1.50	8.052	$1.39 \mathrm{E}+06$
3-7	2.79	2.27	1.030	0.024	63.71	0.200	0.2500	2.00	9.080	$1.69 \mathrm{E}+06$
3-8	2.68	2.52	1.025	0.025	60.92	0.262	0.2500	2.40	10.088	$1.81 \mathrm{E}+06$
3-9	2.45	2.83	0.837	0.021	69.28	0.286	0.2500	2.60	11.308	$1.86 \mathrm{E}+06$
3-10	3.00	3.10	1.031	0.021	69.88	0.332	0.2500	2.50	12.408	$2.47 \mathrm{E}+06$

Table 4 Summary of Large Flume (Resistance) Test Results

Run	$\begin{gathered} \hline \mathrm{YO} \\ \mathrm{ft} \end{gathered}$	$\begin{array}{r} \operatorname{avg~V} \\ \mathrm{fps} \end{array}$	$\begin{array}{r} \mathrm{R} \\ \text { veg. } \end{array}$	$\begin{array}{r} \mathrm{n} \\ \text { veg. } \end{array}$	$\begin{array}{r} \mathrm{C} \\ \text { veg. } \end{array}$	YRS	plant density	$\begin{array}{r} \hline \text { plant } V \\ \text { fps } \end{array}$	$\mathrm{V} / \mathrm{N}^{*}$	Reynolds
Runs 4-1 to 4-7 with $8^{\prime \prime}$ Euonymus, $10^{\prime \prime}$ CENTERS and $11^{\prime \prime}$ rows (480 plants)										
4-1	3.88	1.05	2.175	0.048	35.18	0.094	1.1901	0.40	0.881	$1.10 E+06$
4-2	3.92	1.38	2.008	0.040	41.34	0.127	1.1901	0.40	1.157	1.45E+06
4-3	3.67	2.20	1.556	0.036	44.15	0.343	1.1901	0.70	1.844	$2.17 \mathrm{E}+06$
4-4	2.76	2.17	1.480	0.042	37.65	0.373	1.1901	0.90	1.825	1.65E+06
4-5	2.91	2.51	1.487	0.039	41.08	0.437	1.1901	1.60	2.111	$2.00 \mathrm{E}+06$
4-6	2.56	3.20	1.256	0.036	43.54	0.659	1.1901	1.20	2.685	$2.25 \mathrm{E}+06$
4-7	1.61	2.68	0.748	0.032	44.85	0.466	1.1901	1.20	2.251	1.20E+06
Runs 5-1 to 5-3 with 8" Euonymus, 10 " CENTERS and $11^{\prime \prime}$ rows 45% removed (280 plants)										
5-1	3.39	1.35	1.602	0.035	46.28	0.105	0.5289	0.60	2.549	$1.22 E+06$
5-2	3.39	2.07	1.480	0.030	52.33	0.210	0.5289	1.00	3.921	$1.88 \mathrm{E}+06$
5-3	2.32	3.16	0.935	0.026	56.74	0.457	0.5289	1.90	5.971	$1.99 \mathrm{E}+06$
Runs 6-1 to 6-8 were with 36"to 40" Dogwoods on 3 ' centers and 3'rows (45 plants), plants submerged										
6-1	4.14	1.06	3.054	0.099	18.21	0.280	0.1111	0.40	9.531	$1.22 E+06$
6-2	4.15	1.57	2.986	0.091	19.73	0.538	0.1111	0.60	14.166	$1.82 \mathrm{E}+06$
6-3	4.25	2.00	2.926	0.079	22.69	0.687	0.1111	0.80	18.036	$2.36 \mathrm{E}+06$
Runs 6-4 to 6-6 were with water surface at top of plant										
6-4	3.09	1.14	2.318	0.103	16.62	0.384	0.1111	0.50	10.251	$9.88 \mathrm{E}+05$
6-5	2.47	2.01	1.700	0.075	21.60	0.770	0.1111	1.40	18.063	$1.39 E+06$
6-6	2.72	3.13	1.577	0.049	32.63	0.959	0.1111	0.70	28.143	$2.36 E+06$
Run 6-7 with plants half submerged										
6-7	1.78	2.22	1.189	0.069	22.34	0.911	0.1111	1.00	20.016	$1.11 \mathrm{E}+06$
6-8	3.07	3.15	1.809	0.052	31.92	1.000	0.1111	2.00	28.386	$2.68 \mathrm{E}+06$
Runs 7-1 to 7-2 were with $36^{\prime \prime}$ to 40" Dogwoods on 3' centers and 3'rows thinned by 50% (23 plants)										
7-1	3.89	1.14	2.777	0.088	20.03	0.277	0.0494	0.70	23.126	$1.24 E+06$
Run 7-2 was with water surface at top of plant										
7-2	2.69	1.65	1.859	0.077	21.36	0.530	0.0494	1.80	33.473	$1.24 E+06$

Table 4 Summary of Large Flume (Resistance) Test Results

```
Run 3-6 soil moving
Run 3-7 Gravel moving
Run 3-9 leaves and stems breaking
Run 4-3 few leaves lost, soil beginning to move
Run 6-2 some soil moving
Run 6-3 sand and small gravel moving
Run 6-8 few leaves pulling off
```

Note: plants were placed in stagered rows so that plant rows alternated

ie. row 1 (6 plants), row 2 (5 plants), row 3 (6 plants), etc

$\stackrel{\leftrightarrow}{\bullet}$
plant density is plants per square foot

```
\Yo - average depth (feet) 
|YRS - shear stress (psf) 
n(veg.) = n(net) - n(bed) where n(bed)=0.02
```


Figure 6 Manning's $n_{\text {veg }}$ vs. Hydraulic Radius

Figure 7 Manning's $n_{\text {veg }}$ vs. RS

Figure 8 Manning's $\mathrm{n}_{\text {veg }}$ vs. Velocity

Figure 9 Example Velocity Profile for Test Run 6-3

section 12 RESULTS FOR THE DRAG FORCE TESTS

12-1 Table 5 summarizes the test data for the drag force measurements made in both the large and sectional flumes. A reference plant velocity of 2 fps was selected for comparison between plant types. Appendix B contains the data for the drag force tests in the sectional flume.

Figure 10 demonstrates the repeatability of drag force measurements between the large and sectional flumes. This is important because it shows that test data from the sectional flume can be directly compared to the plants and resistance coefficients determined in the large flume tests.

12-3 Figure 10 also shows a linear relationship between drag force and plant velocity. Test data from four different Dogwood plants are included in Figure 10. It is important to note because the plants deformed or changed shape with an increase in velocity, the drag force varied linearly with velocity instead of velocity squared.

Table 5 Summary of Drag Force Results

Plant Type	Drag Force w/ leaves	Drag Force w/o leaves	Plant Velocity
20" Dogwood* $n_{\text {veg }}=0.037$	0.28 lbs	---	2 fps
$28^{\prime \prime}$ Elderberry* $n_{\text {veg }}=0.024$	0.65 lbs	---	2 fps
$8^{\prime \prime}$ Euonymus* $n_{\text {veg }}=0.036$	0.20 lbs	---	2 fps
38" Red Twig Dogwood* $n_{\text {veg }}=0.052$	3.55 lbs	---	2 fps
Dogwood (series 1)	0.20 lbs	0.21 lbs	2 fps
Dogwood (series 2)	0.22 lbs	0.16 lbs	2 fps
Dogwood (series 3)	0.26 lbs	0.14 lbs	2 fps
Arctic Blue Willow	0.40 lbs	0.18 lbs	2 fps
$8^{\prime \prime}$ Euonymus	0.25 lbs	0.20 lbs	2 fps
Norway Maple	0.22 lbs	0.06 lbs	2 fps
Common Privet	0.63 lbs	0.30 lbs	2 fps
Blue Elderberry	0.80 lbs	0.21 lbs	2 fps
French Pink Pussywillow	0.63 lbs	0.32 lbs	2 fps
Sycamore	0.36 lbs	0.11 lbs	2 fps
Western Sand Cherry	0.13 lbs	0.07 lbs	2 fps
Staghorn Sumac	0.28 lbs	0.10 lbs	2 fps

* Data from large flume tests

SMALL DOGWOODS

Figure 10 Plant Approach Velocity vs. Drag Force; Large and Sectional Flume Data

section 13 ANALYSIS OF VEGETATION RESISTANCE

13-1 Kadlec (1990) presented a hypothesis that the flow resistance from vegetation can be thought of as the result of the total forces, F_{B}, produced by vegetation on the channel bottom. The net bottom vegetation force is then equal to the sum of the drag forces from each plant and can be equated to the net bottom shear force (Equation 20) produced by the plants. The plant density P_{d} can be calculated by Equation 21 and be equated to the average plant spacing P_{S} as shown in Equation 21. The net vegetation shear stress ($\tau_{o}=\gamma \mathrm{RS}$) is also equivalent to total drag forces divided by the area of channel bottom, and is equivalent to the average drag force times the plant density (Equation 22).

$$
\begin{gather*}
\tau_{o} \cdot A R E A_{\text {bottom }}=\sum F_{D}=\#_{p l a n t s} \cdot F_{D} \tag{20}\\
P_{d}=\frac{\#_{\text {plants }}}{A R E A_{\text {bottom }}}=\frac{1}{P_{S}^{2}} \tag{21}\\
F_{D} \cdot P_{d}=\tau_{o}=\gamma \cdot R \cdot S \tag{22}
\end{gather*}
$$

Where τ_{o} is the plant shear stress on the channel bottom, P_{d} is the plant density in numbers of plants per unit square foot, and P_{S} is the plant spacing or average lateral and longitudinal distance between plant stems.

$$
\begin{equation*}
R=\frac{F_{D} \cdot P_{d}}{\gamma \cdot S} \tag{23}
\end{equation*}
$$

13-2 Equation 23 can be used to the hydraulic radius to drag force, plant density, and slope. Manning's equation can then be modified to the form of Equation 24, and re-arranged to show the relationship of Manning's n with drag force, plant density, and slope as in Equation 25.

$$
\begin{align*}
& V=\frac{1.486}{n}\left(\frac{F_{D} \cdot P_{d}}{\gamma \cdot S}\right)^{2 / 3} S^{1 / 2} \tag{24}\\
& n=\frac{1.486}{V}\left(\frac{F_{D} \cdot P_{d}}{\gamma}\right)^{2 / 3} S^{-1 / 6} \tag{25}
\end{align*}
$$

13-3 Figure II shows a plot of Manning's n calculated from the measured drag force with Equation 25 against the actual measured values of Manning's n. The plot indicates a $1: 1$ correlation and therefor the validity of the initial assumption of Equations 20,22 and 25 . The large degree of scatter is due to the limited measurement of a single drag force from a single plant for each test series. It was not possible to instrument all of the test plants to determine an average drag force.

Figure 11 Relationship of Manning's n with Manning's n Calculated from Drag Force

13-4 From observations of the test plants as they distorted and changed shape, it was hypothesized that resistance or drag force will be the combination of form drag and boundary roughness of the distorted leaf mass. Figures 6, 7, and 8 (previous section on test results) demonstrated that Manning's $n_{\text {veg }}$ and F_{D} were not a constant, and varied with both flow and plant characteristics. Dimensional analysis was then used to formulate a relationship of Manning's n with plant and flow characteristics. The independent variables that influence n are: Yo(average flow depth); V (average velocity); R (hydraulic radius); V_{P} (plant approach velocity); S (energy slope); H (plant height); H^{\prime} (effective plant height that produced flow blockage); W_{P} (plant width); D_{S} (stem diameter); P_{d} (plant density); L_{C} (length to center of mass of leaves); number of branches; number of leaves; leaf size; force to deflect/bend center of leaf mass a distance Δ; and deflection Δ.

13-5 By eliminating redundant relationships of variables, the variables are reduced to the relationship of Equation 26. The stem diameter D_{S} is a measure of the plant flexibility, and plant density P_{d} accounts for blockage or disturbance of plants upstream. The repeating independent variables were selected as ρ (density), V(average velocity), and $H^{\prime}($ effective plant height).

$$
\begin{equation*}
n=f\left(\rho, V, Y_{o}, S, D_{S}, H, H^{\prime}, P_{d}, P_{w}\right) \tag{26}
\end{equation*}
$$

13-6 A multiple regression analysis was performed on the dimensionless π terms from the dimensional analysis, and the relationship of Equation 27 was derived.

$$
\begin{equation*}
n_{v e g}=4.26\left(\frac{g H^{\prime}}{V^{2}}\right)^{0.34}\left(P_{d} H^{\prime 2}\right)^{1.33}\left(\frac{D_{S}}{H^{\prime}}\right)^{0.22}(S)^{0.09} \tag{27}
\end{equation*}
$$

The regression analysis showed that variables $\mathrm{Y}_{0}, \mathrm{~W}_{\mathrm{S}}$, and H were redundant and had very little effect in the relationship.

13-7 The parameter $\mathrm{gH} / \mathrm{V}^{2}$ is a plant Froude number, $\mathrm{D}_{\mathrm{s}} / \mathrm{H}^{\prime}$ is a slenderness ratio, and $\mathrm{P}_{\mathrm{d}} \mathrm{H}^{\prime 2}$ is a plant density ratio. Slope S was needed as a parameter because it reduced the scatter of data to curve fit from 20% to 13%. Equation 27 shows that n will increase with an increase of P_{d}, D_{S}, and S, and n will decrease with an increase in V and H^{\prime}. Increasing plant height without increasing stem diameter made the plant more flexible therefor reducing n. The parameters were similar to those initially proposed by Fenzl (1962) for a study of flow resistance of alfalfa. The relationship of Equation 27 had regression fit of data of $\mathrm{R}^{2}=97 \%$, and a data scatter to equation of $\pm 13 \%$. This is an acceptable curve fit because the accuracy of the measurements to determine resistance and drag force was about 10%. Figure 12 demonstrates the regression fit of Equation 27 with test data.

Figure 12 Regression Fit of Flow Resistance Data of Large Flume calculate drag force F_{D} from the flow and plant variables of Equation 27.

$$
\begin{equation*}
F_{D}=\frac{1737 V^{0.5} S^{0.38} D_{S}^{2.0}}{H^{\prime 0.83} P_{d}^{0.68}} \tag{28}
\end{equation*}
$$

Equation 28 is not dimensionally correct. Drag force F_{D} is in the units of lbs, velocity V is in units of fps, stem diameter D_{s} and effective plant height H^{\prime} are in units of feet, and the plant density P_{d} is in units of plants per unit ft^{2}.

Section 14 SUMMARY AND CONCLUSIONS

CONCLUSIONS:

1. Four different groups of shrubs (woody vegetation) were tested in a large flume to determine the flow resistance and drag forces produced by the vegetation. An additional 8 different plants (for a total of 10) were tested in a sectional flume to determine drag force on a single plant. The plants were tested with varying velocities, flow depths, and plant spacing (density). Tables 4 and 5 are the summary of the test results.
2. Flow resistance, Manning's $n_{\text {veg }}$, was found to decrease with velocity. An important observation of the submerged plants was that the plants were flexible and the leaf mass formed a streamlined (teardrop) shape that reduced the flow forces on the plants. The teardrop shape also protected the leaves from being pulled off the plant stems, and reduced breakage of the smaller plant stems. Maximum plant velocity limits of 3 to 4 fps were observed for leaf failure. However, failure of leaves and stems will also occur at these velocities due to the impact with bed material being transported by the high velocities. Figures 13, 14, 15, 16, 17, and 18 demonstrate the distortion of the test plants at different flows.
3. Another important observation during the testing was that the leaf mass or layer of foliage diverted flow beneath the foliage layer (Figure 15). The flow resulted in significant velocities along the channel bottom which caused general scour (Figure 16) and increased sediment transport (Figure 17). Even the clay
test bed suffered significant erosion at channel velocities of 4 fps . The ground cover plants prevented channel bottom velocities, but the plants and exposed bed between plants experienced local scour from 3 dimensional vortices formed from the flow above the plants (Figure 18).
4. Table 5 lists the drag forces for each of the plants at a relative plant velocity of 2 fps . Data shows a definite linear relationship between drag force and velocity, and between drag force and flow resistance. Equation 25 was derived to show the theoretical relationship between Manning's $n_{\text {veg }}$ and drag force.
5. Test data also showed that drag force and flow resistance could be related to both flow and plant characteristics. A regression analysis developed a relationship (Equation 27) between n and the parameters of $\mathrm{gH}^{\prime} / \mathrm{N}^{2}$ (Plant Froude number), $\mathrm{D}_{\mathrm{S}} / \mathrm{H}^{\prime}$ (slenderness ratio or plant flexibility), $\mathrm{P}_{\mathrm{d}} \mathrm{H}^{12}$ (plant density ratio), and S (bed or energy slope). Equation 28 was derived for the relationship of drag force F_{D} and the variables of velocity, plant spacing, stem diameter, slope, flow depth, and plant height.
6. The prototype plant tests found values of Manning's $n_{\text {veg }}$ that exceeded 0.10 for average height and density of woody vegetation. An analysis (Appendix C) was made of the two methods for calculating flow depths and equivalent resistance in a compound flood channel. The equivalent resistance method (Equation 10) was found to result in a channel flow that was significantly less
than the flow calculated by the conveyance method (Equation 12). The equivalent resistance method under predicts flow because it assumes constant velocity throughout the entire flood channel and therefore proportions too large of flow in the vegetated subsections and too small of flow in the main flow channel.

RECOMMENDATIONS:

1) It is recommended to use the conveyance method to calculate equivalent Manning's n for use with the left and right flood plains of HEC-2. However, Manning's $n_{\text {veg }}$ is not constant with flow parameters, and this will complicate the use of programs such as HEC-2. The methodology for using $n_{\text {veg }}$ with HEC-2 will have to be developed.
2) Only 4 plant groups were tested in the large flume. It is recommended that other types of plants still need to be tested in a prototype large flume environment. The application of drag force data from sectional flume testing and field measurements will probably require the use of plant velocity. More testing is needed with large flumes to develop the methods to predict plant velocities in fully developed channel flows.

Figure 13 Test Plants at Zero Flow

Figure 14 Test Plants at Low Flow

Figure 15 Test Plants at Moderate Flow

MODERATE TO HIGH FLOW

Figure 16 Test Plants with Local Erosion

MODERATE TO HIGH FLOW

Figure 17 Test Plants with Sediment Transport

MODERATE TO HIGH FLOW

Figure 18 Test Plants with Stem Erosion

REFERENCES

Abdelsalam, M.W., Khattab, A.F., Khalifa, A.A., and Bakry, M.F., 1992, "Flow Capacity Through Wide and Submerged Vegetal Channels", Journal of Irrigation and Drainage Engineering, American Society of Civil Engineers, v. 118, no. 5, September/October, pp. 724-732.

ASCE, 1977, Sedimentation Engineering, American Society of Civil EngineeringManuals and Reports on Engineering Practice- No.54, 1977, pp. 152-154. Barnes, H.H., Jr., 1967, "Roughness Characteristics of Natural Channels", U.S. Geological Survey Water-Supply Paper 1849, p. 213.

Benson, M.A., and Dalrymple, T., 1967, "General Field and Office Procedures for Indirect Office Procedures", U.S. Geological Survey Techniques of Water Resources Investigations, Book 3, Chapter Al, p. 30.

Chow, V.T., 1959, Open-Channel Hydraulics, New York, McGraw-Hill Book Co.
Cowan, W.L., 1956, "Estimating Hydraulic Roughness Coefficients", Agricultural Engineering, v. 37, no. 7, pp. 473-475.

Dracos, T., and Hardegger, P., 1987, "Steady Uniform Flow in Prismatic Channels with Flood Plains", Journal of Hydraulic Research, v. 25, no. 2, pp. 169-185.

Fishenich, J.C., 1994, "Flow Resistance in Vegetated Channels; Summary of the Literature", Technical Report HL-94-xx, U.S. Army Engineers Waterways Experiment Station, Vicksburg, MS.

Jarrett, R.D., 1984, "Hydraulics of High-Gradient Streams", American Society of Civil Engineers, Journal of Hydraulic Engineering, v. 110, no. HYl 1.

Jarrett, R.D., 1985, "Determination of Roughness Coefficients for Streams in Colorado", U.S. Geological Survey Water-Resources Investigations Report 85-4004.

Jarrett, R.D., 1990, "Hydrologic and Hydraulic Research in Mountain Rivers", Water Resources Bulletin, American Water Resources Association, 26:3, June, pp. 419-429.

Kadlec, R.H., 1990, "Overland Flow in Wetlands: Vegetation Resistance", American Society of Civil Engineering, Journal of Hydraulic Engineering, v. 116, no. 5, May 1990, pp. 691-706.

Li, R.M., and Shen, H.W., 1973, "The Effect of Tall Vegetation on Flow and Sediment", Journal of Hydraulics, American Society of Civil Engineers, v. 99, no. HY5, May 1973, pp. 793-815.

Limerinos, J.T., 1970, "Determination of the Manning Coefficient from Measured Bed Roughness in Natural Channels", U.S. Geological Survey Water-Supply Paper 1898-B, p. 47.

Masterman, R., and Thome, C.R., 1992, "Predicting Influence of Bank Vegetation on Channel Capacity", Journal of Hydraulic Engineering, American Society of Civil Engineers, v. 118, no. 7, July, pp. 1052 - 1058.

Petryk, S., and Bosmajian, G., 1975, "Analysis of Flow Through Vegetation", Proceedings, American Society of Civil Engineers, Journal of the Hydraulics Division, v. 101, no. HY7, pp. 871-884.

Ree, W.O. and Crow, F.R., 1977, "Friction Factors for Vegetated Waterways of Small Slope", U.S. Department of Agriculture, Agricultural Research Service, Publication S-151.

Richardson, E.V., Simons, D.B., Karaki, S., Mahmood, K, and Stevens, M.A., 1975, "Highways in the River Environment: Hydraulic and Environmental Design Consideration", Federal Highway Administration Training and Design Manual, May 1975.

Thompson, G.T. and Roberson, 1976, "A Theory of Flow Resistance for Vegetated Channels", Transactions of the ASAE, Soil and Water Division, January 1976, pp. 288-293.

APPENDIX A
 RESISTANCE TEST DATA AND BACKWATER CURVES

n guess $=$	0.046									30	35	40
station	0	5	10	15	20	25	45	50				
depth	4.228693	4.189631	4.17661	4.174006	4.171402	4.168797	4.171402	4.168797	4.155777	4.163589	4.155777	
arsa	33.82955	33.51705	33.41288	33.39205	33.37121	33.35038	33.37121	33.35038	33.24621	33.30871	33.24621	
perimeter	16.45739	16.37926	16.35322	16.34801	16.3428	16.33759	16.3428	16.33759	16.31155	16.32718	16.31155	
Sf	0.000513	0.000525	0.00053	0.000531	0.000531	0.000532	0.000531	0.000532	0.000537	0.000534	0.000537	
Froude	0.101329	0.102749	0.10323	0.103327	0.103423	0.10352	0.103423	0.10352	0.104007	0.103715	0.104007	
dY		-0.00265	-0.00268	-0.00268	-0.00269	-0.00269	-0.00269	-0.00269	-0.00271	-0.0027	-0.00271	
Y calc	4.228693	4.226038	4.223361	4.22068	4.217994	4.216304	4.212618	4.209927	4.207214	4.204514	4.201801	
Y adj	4.181942	4.179287	4.17681	4.173928	4.171242	4.168552	4.165866	4.163175	4.160462	4.157763	4.15505	

		Average depth $=$ Average velocity $=$ Averagen $=$	$\begin{array}{r} 4.17 \\ 1.20 \\ 0.046 \end{array}$
Velocity Profile station 25 feet		vel. at plant center =	
$\mathrm{Y}=$	4.168797 ft		
$V=$	1.199387 fps		
$\mathrm{Sf}=$	0.000532	Prandt 6	55.75722
$\mathrm{R}=$	2.041327 tt	Prandit $n=$	0.030017
$\mathrm{V}^{*}=$	0.187057 fps	Test $n=$	0.046
$X=$	1		
$\mathrm{Ks}=$	1 ft	$\mathrm{Ks} / \mathrm{psi}=$	1143.66

levev				Prandu

Stations from upstream end of test section (feet)											
0	10	15	20	25	30	35	40	45	50		
Bottom elevations by transit reading (inches)											
$124.1875 \quad 124.6250$	125.0000	124.8750	123.2500	122.6250	123.2500	123.5000	123.6250	124.5000	125.1875		
Average bottom elevation $=$ 124.0568 feet											
Water surface elevations (inches)											
$74.3125 \quad 74.3750$	74.5000	74.6250	74.8125	74.8750	75.0000	75.1250	75.2500	75.3750	75.4375	74.9375	0.5000
$74.3125 \quad 74.3250$	74.4000	74,4750	74.6125	74.6250	74,7000	74.7750	74.8500	74.9250	74.9375		
Water depth (feet)											
4.1454 4.1443	4.1381	4.1318	4.1204	4.1193	4.1131	4.1068	4.1006	4.0943	4.0933		
Average depth $=$	4.12	feet	corrected	epth u.s. $=$	4.138068	feet					
Average area $=$	32.95	sf	corrected	epth d.s. $=$	4.094318	feet					
Average perim. $=$ \%	16.24	feet	diff $=$		0.04375	feet					
Average H. Radius $=$	2.03	feet									
Average E.slope=	0.0012										
Average $\mathrm{n}=$	0.042043										

ก guess $=$	0.042										
station	0	5	10	15	20	25	30	35	40	45	50
depth	4.14536	4.144318	4.138068	4.131818	4.12036	4.119318	4.113068	4.106818	4.100568	4.094318	4.093277
area	33.16288	33.15455	33.10455	33.05455	32.96288	32.95455	32.90455	32.85455	32.80455	32.75455	32.74621
perimeter	16.29072	16.28864	16.27614	16.26364	16.24072	16.23864	16.22614	16.21364	16.20114	16.18864	16.18655
5	0.001226	0.001227	0.001232	0.001237	0.001246	0.001247	0.001252	0.001257	0.001262	0.001267	0.001268
Froude	0.172259	0.172324	0.172715	0.173107	0.173829	0.173895	0.174292	0.17469	0.175089	0.175491	0.175557
$d Y$		-0.00632	-0.00835	-0.00638	-0.00643	-0.00643	-0.00646	-0.00648	-0.00651	-0.00654	-0.00654
Y calc	4.14536	4.139036	4.132686	4.126309	4.119884	4,113454	4.106997	4.100513	4.094002	4.087464	4.080921
Yadj	4.15075	4.144427	4.138077	4.1317	4.125275	4.118845	4.112388	4.105904	4.099393	4.092854	4.086311

			Average depth $=$ Average verocity $=$ Averagen $=$	4.12	
			2.00		
			0.042		
Velocity Profile station 25 feet				vel. at plant center $=$	1.3
Yom	4.119318	ft			
$V=$	2.002759				
$\mathrm{Sf}=$	0.001247		Prandt C	55.58802	
$\mathrm{R}=$	2.029391	ft	Prandt $\mathrm{n}=$	0.030079	
$\mathrm{V}^{*}=$	0.285469	pps	Test $\mathrm{n}=1$	0.042	
$X=$	1				
$\mathrm{Ks}=$	1	ft	$\mathrm{Ks} / \mathrm{psi}=$	1745,349	

elev				Prandt
		Y	V meas	V
	6	3.62	2.8	2.70
12	3.12	2.6	2.60	
18	2.62	2.5	2.47	
	2.4	2.12	2.3	2.32
30	1.62	1.9	2.13	
36	1.12	1.3	1.87	
	42	0.62	0.8	1.45
48	0.12	0.7	0.27	
	49	0.04	0.5	-0.58
		0	0	0

			Average depth $=$ Average veiocity = Averagen $=$	$\begin{array}{r} 3.68 \\ 2.45 \\ 0.040 \end{array}$
Velocity Profile station 25 feet			vel. at plant center $=$	1.8
$Y \mathrm{O}=$	3.681818	ft		
$V=$	2.45463	fps		
St=	0.001833		Prandt C	53.99696
Ph=	1.91716	ft	Prandt $\mathrm{n}=$	0.030673
$V^{*}=$	0.336392		Test $\mathrm{n}=$	0.04
$\mathrm{X}=$	1			
$\mathrm{Ks}=$	1	f	Ks/psi $=$	2056.687

elev				Prandt
		Y	V meas	V
	3	3.18	3.4	3.08
12	2.68	3.2	2.93	
18	2.18	3.2	2.76	
24	1.68	2.8	2.54	
30	1.18	1.8	2.25	
36	0.68	1.4	1.78	
42	0.18	0.3	0.67	
48	-0.32	0	ERR	
48	-0.40	0	ERR	
49	0	0	0	

C.O.E. Large Flume Project		RUN * :	1-4								
Date: 4-22-94											
Plants: Dogwoods at 16* spacing											
FLOW $=\quad 39$ cfs											
$\mathrm{dP}=\quad$ inches between taps											
Drag $=15$	micro inche		calibr $=$		micro-in /						
Drag $=0.375$											
Stations from upstrsam end of test section (feet)											
05	10	15	20	25	30	35	40	45	50		
Bottom elevations by transit reading (inches)											
124.1875 124.6250	125.0000	124.8750	123.2500	122.6250	123.2500	123.5000	123.6250	124.5000	125.1875		
Average bottom elevation $=124.0558$ feat											
Water surface elevations (inches)											
$86.5625 \quad 86.6250$	86.8125	88.9375	87.0625	87.2500	87.2500	87.4375	87.5625	87.6250	87.6875	87.2500	0.4375
$86.5625 \quad 86.5813$	86.7250	86.8063	86.8875	87.0313	88.9875	87.1313	87.2125	87.2313	87.2500		
Water diopth (feet)											
$3.1245 \quad 3.1230$	3.1110	3.1042	3.0974	3.0855	3.0891	3.0771	3.0704	3.0688	3.0672		
Average depth $=\quad 3.09$ feet			corrected depth u.s. $=3.110985$ feet								
Average area $=\quad 24.74$ sf			corrected depth d.s. $=$		3.058797	feet					
Average perim. $=$	14.10		diff=		0.042188	feet					
Average H. Radius=	1.74										
Average E.slope=	0.0012										
Average $\mathrm{n}=$	0.047421										
			intorcept		3.092566						
n guess = 0.047											
station	0	5	10	15	20	25	30	35	40	45	50
depth	3.124527	3.122964	3.110985	3.104214	3.097443	3.085464	3.08914	3.077131	3.07036	3.068797	3.067235
area	24.99621	24.98371	24.88788	24.83371	24.77955	24.68371	24.71288	24.81705	24.56288	24.55038	24.53788
perimeter	14.24905	14.24593	14.22197	14.20843	14.19489	14.17093	14.17822	14.15426	+4.14072	14.13759	14.13447
Sf	0.001151	0.001153	0.001165	0.001172	0.001179	0.001192	0.001188	0.0012	0.001208	0.001209	0.001211
Froude	0.15555	0.155667	0.156567	0.157079	0.157595	0.158513	0.158233	0.159158	0.159685	0.159806	0.159929
dY		-0.00591	-0.00597	-0.00601	-0.00604	-0.00611	-0.00609	-0.00616	-0.0062	-0.00621	-0.00621
Y calc	3.124527	3.11862	3.11265	3.106642	3.100597	3.094486	3.088395	3.082237	3.07604	3.069834	3.063619
Yadj	3.122607	3.116701	3.11073	3.104722	3.098678	3.092566	3.086475	3.080317	3.07412	3.067914	3.061699

elev | | | | PrandtI | |
| ---: | ---: | ---: | ---: | ---: |
| | | Y | V meas | V |
| 6 | 2.59 | 2.1 | 2.23 | |
| 12 | 2.09 | 2 | 2.09 | |
| 18 | 1.59 | 4.7 | 1.92 | |
| 24 | 1.09 | 1.2 | 1.67 | |
| 30 | 0.59 | 0.8 | 1.27 | |
| 36 | 0.09 | 0.1 | 0.03 | |
| 42 | -0.41 | 0 | ERR | |
| 48 | -0.91 | 0 | ERR | |
| 49 | -1.00 | 0 | ERR | |
| 49 | 0 | 0 | 0 | |

			Average depth $=$ Average velocity $=$ Average $\mathrm{n}=$	$\begin{array}{r} 3.35 \\ 1.93 \\ 0.043 \end{array}$
Velocity Profile station 25 feet				1.2
$Y \mathrm{O}=$	3.345881	H		
$V=$	1.827744			
Sf=	0.001398		Prandtic	52.64119
$\mathrm{R} \mathrm{h}=$	1.821909	ft	Prandit $n=$	0.031197
$v^{*}=$	0.286422		Test $\mathrm{n}=$	0.043
$\mathrm{X}=$	1			
$\mathrm{Ks}=$	1	ft	$\mathrm{Ks} / \mathrm{psi}=$	1751.171

lrev | | | | Prandt |
| ---: | ---: | ---: | ---: |
| | | Y | V meas |

1-5


```
C.O.E. Large Flume Project RUN #: 1-6
Date: 4-22-94
Plants: Dogwoods at \(16^{67}\) spacing
```


elev			Prandt
	Y	\checkmark meas	\checkmark
6	2.94	3.1	2.80
12	2.44	3.2	2.65
18	1.94	2.9	2.47
24	1.44	2	2.24
30	0.94	1.7	1.91
36	0.44	1.2	1.32
42	-0.06	0.5	ERR
48	-0.56	0	EAR
49	-0.64	0	ERR
	0	0	0

			Average depth = Average velocity = Averagen $=$	2.35	
			3.25		
			0.041		
Velocity Profile station 25 feet				vel at plant center $=$	3.2
Yom	2.371922				
$V=$	3.219962				
$\mathrm{Sf}=$	0.004642		Prandt C	47.76618	
Rh=	1.488984	t	Prandt $\mathrm{n}=$	0.033244	
$V^{*}=$	0.471768		Test $\mathrm{n}=$	0.041	
$X=$	1				
$\mathrm{K} s=$	1	f	$K s / \rho s i=$	2884.374	

lrev lrrr | | | | Prandy |
| ---: | ---: | ---: | ---: |
| | | Y | V meas |

Stations from upstraam end of test section (feet)

05	10	15	20	25	30	35	40	45	50		
Bottom elevations by transit reading (inches)											
124.1875124 .6250	125,0000	124.8750	123.2500	122.8250	123.2500	123.5000	123.6250	124.5000	125.1875		
Average bottom deve	ion $=$	124.0568	feet								
Water surface elevations (inches)											
$87.8750 \quad 88.6250$	89.2500	89.6250	90.5000	90.9375	91.2500	91.9375	93.3750	93.6250	94.0000	90.1875	3.8125
$87.8750 \quad 88.2438$	88.4875	88.4813	68.9750	89.0313	88.9625	89.2688	90.3250	90.1938	90.1875		
Water depth (feet)											
3.01522 .9844	2.9641	2.9646	2.9235	2.9188	2.9245	2.8990	2.8110	2.8219	2.8224		
Average depth =	2.91	feet	corrected	epth $\mathrm{u} . \mathrm{s} .=$	3.015152	feet					
Average area =	23.31	sf	corrected	opth d.s. $=$	2.810985	feet					
Avarage perim. $=$	13.83	feet	diff $=$		0.204167						
Average H. Radius =	1.69	feet									
Average E.slope=	0.0051										
Average $\mathrm{n}=$	0.041976										

			Average depth $=$ Average velocity $=$ Average $n=$	$\begin{array}{r} 2.91 \\ 3.58 \\ 0.038 \end{array}$
Velac	file station	25 feet	vel. at plant center $=$	3.7
Yow	2.918797	ft		
$V=$	3.575959			
$\mathrm{Sf}=$	0.004162		Prandtic	50.70612
$\mathrm{Fh}=$	1.887459	t	Prandtl $\mathrm{n}=$	0.031976
$\mathrm{V}^{*}=$	0.475568		Test $\mathrm{n}=$	0.038
$\mathrm{X}=$	1			
$\mathrm{Ks}=$	1	ft	Ksipsi =	2907.609

elev			Prandt
	Y	V meas	V
6	2.42	5	4.03
12	1.92	4.9	3.75
18	1.42	3.9	3.39
24	0.92	3.2	2.88
30	0.42	2.2	1.94
36	-0.08	0.9	ERR
42	-0.58	0	ERR
48	-1.08	0	ERR
49	-1.16	0	ERR
	0	0	0

Average depth $=$	4.45
Average velocity $=$	2.51
Average $n=$	0.031

2-1

Average depth $=$	3.77
Average velocity $=$	3.03
Average $n=$	0.031
vel. at plant center $=$	2.9 fps
Prandi C	54.35327
Frandt $n=$	0.030538
Test $n=$	0.031
Ksipsi $=$	1962.867

clev			Prandt
	Y	\checkmark meas	V
6	3.28	4	2.96
12	2.78	3.7	2.83
18	2.28	3.6	2.67
24	1.78	3.4	2.47
30	1.28	3.1	2.21
36	0.78	1.8	1.81
42	0.28	0.9	0.98
48	-0.22	0.4	ERA
49	-0.31	0	ERR
	0	0	0

Clrov | | | | Prandti | |
| ---: | ---: | ---: | ---: | ---: |
| | | Y | V meas | V |
| 6 | 1.24 | 4.8 | 3.38 | |
| 12 | 0.74 | 4.3 | 2.74 | |
| 18 | 0.24 | 2.8 | 1.33 | |
| 24 | -0.26 | 1.3 | ERR | |
| 30 | -0.76 | 1.9 | ERR | |
| 36 | -1.26 | 1.3 | ERR | |
| 42 | -1.76 | 0.8 | ERR | |
| 48 | -2.26 | 0.7 | ERR | |
| 48 | -2.35 | 0.5 | ERR | |
| 49 | 0 | 0 | 0 | |

Lev			Prandt	
		Y	V meas	V
6	0.84	2.9	2.23	
12	0.34	2.2	1.36	
18	-0.16	1.3	ERR	
24	-0.66	2.3	ERR	
30	-1.16	1.9	ERR	
36	-1.65	1.3	ERR	
42	-2.16	0.8	ERR	
48	-2.66	0.7	EFR	
48	-2.75	0.5	ERR	
	0	0	0	

elev | | | | Prandu | |
| ---: | ---: | ---: | ---: | ---: |
| | | Y | V meas | V |
| 3 | 3.71 | 1.15 | 1.31 | |
| 6 | 3.46 | 1.1 | 1.29 | |
| 9 | 3.21 | 1.1 | 1.26 | |
| 12 | 2.96 | 1.15 | 1.24 | |
| 15 | 2.71 | 1.2 | 1.21 | |
| 18 | 2.46 | 1.2 | 1.17 | |
| 21 | 2.21 | 1.1 | 1.13 | |
| 24 | 1.96 | 0.9 | 1.09 | |
| 27 | 1.71 | 0.9 | 1.05 | |
| 30 | 1.46 | 0.6 | 0.99 | |
| 33 | 1.21 | 0.6 | 0.93 | |
| 36 | 0.96 | 0.6 | 0.85 | |
| 39 | 0.71 | 0.6 | 0.74 | |

C.O.E. Large Flume Project			RUN *: 3-2									
Date: 5-6-94												
Plants: Elderberry at $18{ }^{*}$ spacing \& $24{ }^{\prime \prime}$ rows												
$\text { FLOW }=\quad 40.5 \mathrm{cfs}$												
$\mathrm{dP}=$ inches between taps												
Drag $=$	10	micro inch		calibr $=$		micro-in /						
Drag $=0.05 \mathrm{lbs}$												
Stations from upstream end of test section (feet)												
0	5	10	15	20	25	30	35	40	45	50		
Bottorn elevations by transit reading (inches)												
123.5000	123.2500	123.6875	122.7500	122.8125	122.3750	122.8125	122.1250	122.5625	122.6250	122.7500		
Average bottom elevation $=\quad 122.8409$ feet												
Water surface elevations (inchas)												
84.0000	84.2500	84.3750	84,5000	84.6875	84.8125	84.9375	85.1250	85.2500	65.5000	85.6250	84,2500	1.3750
84.0000	84.1125	84.1000	84,0875	84.1375	84.1250	84.1125	84.1625	84.1500	84.2625	84.2500		
Water depth (feat)												
3.2367	3.2274	3.2284	3.2295	3.2253	3.2263	3.2274	3.2232	3.2242	3.2149	3.2159		
Average depth $=03.23$ feet				corrected depth u.s. $=3.236742$ feet								
Average area $=\quad 25.80 \mathrm{st}$				corrected depth d.s. $=3.224242$ feet								
Average perim. $=$		14.45 feet		$\mathrm{dif}=$		0.0125 feet						
Average H. Radius=		1.79 feet										
Average E.slope $=$		0.0003										
Average $\mathrm{n}=$		0.024633										

$\begin{aligned} & n \text { guess }=0.035 \\ & \text { station } \end{aligned}$	0	5	10	15	20	25	30	35	40	45	50
depth	3.236742	3.227367	3.228409	3.229451	3.225284	3.226326	3.227367	3.223201	3.224242	3.214867	3.215909
area	25.89394	25.81894	25.82727	25.83561	25.80227	25.81061	25.81894	25.78561	25.79394	25.71894	25.72727
perimeter	14.47348	14.45473	14.45682	14.4589	14.45057	14.45265	14.45473	14.4484	14.44848	14.42973	14.43182
St	0.000625	0.00063	0.000629	0.000629	0.000631	0.00063	0.00063	0.000632	0.000632	0.000637	0.000636
Froude	0.153206	0.153874	0.153799	0.153725	0.154023	0.153948	0.153874	0.154172	0.154097	0.154772	0.154697
dY		-0.00323	-0.00322	-0.00322	-0.00323	-0.00323	-0.00323	-0.00324	-0.00323	-0.00326	-0.00326
Y calc	3.236742	3.233517	3.230294	3.227075	3.223843	3.220615	3.217389	3.214152	3.210917	3.207657	3.204399
Yadj	3.241507	3.238281	3.235058	3.231839	3.228607	3.225379	3.222153	3.218916	3.215682	3.212421	3.209163
Average depth =	3.225		Average $\mathrm{n}=$ n bed $=$ Rbed $=$		0.035						
Average velocity =	1.570				0.050						
					3.011						
										n	

Velocity Protile station 25 leet			vel. at plant center $=$	1.2
$Y \mathrm{O}=$	3.228326	\#		
$V=$	1.569122	fps		
$\mathrm{Sf}=$	0.00063		Prandt C	52.12559
$\mathrm{Rh}=$	1.785873	t	Pranditl $\mathrm{n}=$	0.031401
$\mathrm{V}^{*}=$	0.190396		Test $\mathrm{n}=$	0.035
$\mathrm{X}=$	1			
$\mathrm{Ks}=$	1	ft	Ks/psi $=$	1164.077

elev				Prandy
		Y	V meas	V
3	2.98	1.9	1.71	
6	2.73	1.85	1.67	
9	2.48	1.8	1.62	
12	2.23	1.8	1.57	
15	1.98	1.6	1.52	
18	1.73	1.5	1.45	
21	1.48	1.2	1.38	
24	1.23	1.2	1.29	
27	0.98	1.2	1.18	
30	0.73	1.2	1.04	
33	0.48	1.2	0.84	
35	0.31	1.1	0.63	
0	3.23	0.6	1.75	

C.O.E. Large Fume Project RUN \#: 3-4

Date: 5-6-94
Plants: Elderberry at 18^{*} spacing 8 24"rows

FLOW $=$	24.9 cfs	
$d P=$	\quad inches between taps	
Drag $=$	00 micro inches calibr $=$	
Drag $=$	0.45 lbs	

Stations from upstream end of test section (feet)											
0	10	15	20	25	30	35	40	45	50		
Bottorn eievations by transit reading (inches)											
$123.5000 \quad 123.2500$	123.6875	122.7500	122.8125	122,3750	122.8125	122.1250	122.5625	122.6250	122.7500		
Average bottom elevation = 122.8409 fe											
Water surface elevations (inches)											
85.312585 .3750	85.3750	85.5625	85.6875	85.7500	85.7500	85.7500	85.8750	86.0625	86.0000	85.3125	0.6875
$85.3125 \quad 85.3063$	85.2375	85.3563	85.4125	85.4063	85.3375	85.2688	85.3250	85.4438	85.3125		
Water depth (feet)											
$3.1274 \quad 3.1279$	3.1336	3.1237	3.1190	3.1196	3.1253	3.1310	3.1263	3.1164	3.1274		
Average depth $=3.13$ feet			corrected depth u.s. $=3.127367$ feet								
Average area $=\quad 25.00 \mathrm{sf}$			corrected depth d.s. $=$		3.128326 leat						
Average perim. $=$	14.25	feet	diff $=$		0.001042 feet						
Average H.Padius=	1.75										
Avorage E.siope=	0.0000										
Average $\mathrm{n}=$	0.011076										

intercept 3.125237

Velocity Profile station 25 feet			vel. at plant center $=$	0.6
Yo=	3.119555			
$V=$	0.997738			
Sf=	0.000432		Prandtl C	51.64871
$\mathrm{Fh}=$	1.752669		Prendtl	0.031592
$V^{*}=$	0.156143		Test $\mathrm{n}=$	0.045
$X=$	1			
$\mathrm{Ks}=$	1	\#	Ks/psi $=$	954.651

elev | | | | Prandt |
| ---: | ---: | ---: | ---: |
| V | | V meas | 1.39 |
| 3 | 2.87 | 1.1 | 1.35 |
| 6 | 2.62 | 1 | 1.3 |
| 9 | 2.37 | 1.1 | 1.31 |
| 12 | 2.12 | 1 | 1.27 |
| 15 | 1.87 | 1 | 1.22 |
| 18 | 1.62 | 0.7 | 1.17 |
| 21 | 1.37 | 0.6 | 1.10 |
| 24 | 1.12 | 0.6 | 1.02 |
| 27 | 0.87 | 0.6 | 0.92 |
| 30 | 0.62 | 0.6 | 0.79 |
| 0 | 3.12 | 0 | 1.42 |
| 0 | 3.12 | 0 | 1.42 |
| 0 | 3.12 | 0 | 1.42 |

Stations from upstream end of test section (feet)											
05	10	15	20	25	30	35	40	45	50		
Bottom elevations by transit reading (inches)											
123.5000 123.2500	123.6875	122,7500	122.8125	122,3750	122.8125	122.1250	122.5625	122.6250	122.7500		
Average bottom elevation = 122.8409 foet											
Water surface elevations (inches)											
84.3750 84.2500	94.1875	94.0000	93.9375	83.8125	83.6250	93.5000	93.2500	92.9375	92.6875	95.3750	-2.6875
04.3750 94.5188	94.7250	84.8063	95.0125	95.1563	95.2375	95.3813	95.4000	95.3563	95.3750		
Water depth (feel)											
2.3722 2.3602	2.3430	2.3362	2.3190	2.3071	2.3003	2.2883	2.2867	2.2904	2.2888		
Average depth $=\quad 2.32$ leet			corrected depth U.s. $=2.372159$ leet								
Average area $=\quad 18.54$ st \quad corrected depth d.s. $=2.286742$ fe											
Average perim. $=12.63$ feet diff= 0.085417 feet											
Average H. Radius $=\quad 1.47$ feet											
Average E.slope $=\quad 0.0021$											
Average $n=0.052188$											
				intercept	2.317472						

Velocity Proflie station 25 feet			vek. at plant conter $=$	1.8 fps
YO=	2.307055	ft		
$V=$	1.706721	fps		
$\mathbf{S f}=$	0.001271		Prandt C	47.37326
Rh=	1.463158	f	Prandt $\mathrm{n}=$	0.033422
$V^{*}=$	0.244671	ips	Test $\mathrm{n}=$	0.04
$X=$	1			
Ks=	1	H	Ks/psi $=$	1495.912

Lev | | | | Prandt |
| ---: | ---: | ---: | ---: |
| | Y | V meas | V |
| 3 | 2.06 | 2.2 | 1.97 |
| 6 | 1.81 | 2.1 | 1.89 |
| 9 | 1.56 | 2 | 1.80 |
| 12 | 1.31 | 1.8 | 1.70 |
| 15 | 1.06 | 1.7 | 1.57 |
| 18 | 0.81 | 1.8 | 1.40 |
| 21 | 0.56 | 1.3 | 1.17 |
| 24 | 0.31 | 1.2 | 0.81 |
| 0 | 2.31 | 0 | 2.04 |
| 0 | 2.31 | 0 | 2.04 |
| 0 | 2.31 | 0 | 2.04 |
| 0 | 2.31 | 0 | 2.04 |
| 0 | 2.31 | 0 | 2.04 |

n guess $=0.033$											
station	0	5	10	15	20	25	30	35	40	45	50
depth	2.762764	2.764347	2.755492	2.673722	2.654451	2.650805	2.641951	2.638305	2.634659	2.636222	2.627367
area	22.10227	22.11477	22.04394	21.38977	21.23561	21.20644	21.13561	21.10644	21.07727	21.08977	21.01894
perimeter	13.52557	13.52869	13.51098	13.34744	13.3089	13.30161	13.2839	13.27661	13.26932	13.27244	13.25473
Sf	0.001529	0.001527	0.001541	0.001676	0.00171	0.001717	0.001733	0.00174	0.001747	0.001744	0.00176
Froude	0.259033	0.258814	0.260062	0.272083	0.275051	0.275619	0.277006	0.27758	0.278156	0.277909	0.279315
$d Y$		-0.00818	-0.00826	-0.00905	-0.00925	-0.00929	-0.00939	-0.00943	-0.00947	-0.00945	-0.00955
Y calc	2.762784	2.754601	2.748338	2.737288	2.728036	2.718746	2.70936	2.699935	2.690469	2.681021	2.671475
Yadl	2.720411	2.712228	2.703966	2.694915	2.685664	2.676373	2.666987	2.657562	2.648096	2.638648	2.629102
Average depth $=$	2.676		Average n		0.033						
Average velocity =	2.522		n bed =		0.045						
			A bed =		2.516						

elev | | | Prand | |
| ---: | ---: | ---: | ---: |
| | | Y | Vmeas |

C. O.E. Large Flume Project RUN \#: $3-\theta$

Date: 5-6-94
Piants: Elderberry at 18^{*} spacing gi 24" rows
NOTE: few leaves and stems breaking

FLOW $=$	55.5 cfs	
$d P=$	\quad inches between taps	
Drag $=$	40 micro inches	
Drag $=$	0.2 lbs	

intercept $\mathbf{2 . 4 5 3 3 3 5}$

$\begin{aligned} & n \text { guess }=0.031 \\ & \text { station } \end{aligned}$	0	5	10	15	20	25	30	35	40	45	50
depth	2.507576	2.504972	2.486742	2.47893	2.460701	2.442472	2.439867	2.432055	2.419034	2.411222	2.408617
area	20.06061	20.03977	19.89394	19.83144	19.68561	19.53977	19.51894	19.45644	19.35227	19.28977	19.26894
perimeter	13.01515	13.00394	12.97348	12.95786	12.9214	12.88494	12.87973	12.86411	12.83807	12.82244	12.81723
Sf	0.001871	0.001876	0.001915	0.001933	0.001973	0.002015	0.002021	0.00204	0.002071	0.00209	0.002096
Froude	0.307889	0.308369	0.311766	0.313241	0.316728	0.320281	0.320794	0.322341	0.324947	0.326527	0.327057
dY		-0.01037	-0.01061	-0.01071	-0.01097	-0.01123	-0.01127	-0.01138	-0.01156	-0.0117	-0.01174
Y calc	2,507576	2.497208	2.486599	2.475865	2.464919	2.453691	2.442425	2.431044	2.419467	2.40777	2.390033
Y adj	2.50772	2.497352	2.486744	2.47602	2.465063	2.453835	2.442559	2.431188	2.419611	2.407914	2.396177
Average depth -	2.454		Average n		0.031						
Average velocity $=$	2.827		n bed =		0.041						
			Abed $=$		2.303						
											n
											0.031
Velocity Profile station	25 feet	vel, at plan	center $=$	2.6	s						
$Y O=\quad 2.442472$											
$V=\quad 2.840361$											
$\mathrm{St}=0.002015$			Prandtic	48.18151							
$\mathrm{Fh}=\quad 1.516481$			Prandil $n=$	0.039058							
$V{ }^{*}=0.313693$			Test $\mathrm{n}=$	0.031							
$X=$											
Ks=	$f t$		$\mathrm{Ks} / \mathrm{psi}=$	1917.908							

olev	Y	Prandit	
		V meas	V
3	2.19	3.5	2.58
6	1.94	3.5	2.48
9	1.69	3.5	2.38
12	1.44	3.2	2.25
15	1.19	3	2.10
18	0.94	2.6	1.92
21	0.69	2.6	1.68
24	0.44	2.4	1.33
27	0.19	2	0.67
0	2.44	0	2.66
0	2.44	0	2.66
0	2.44	0	2.66
0	2.44	0	2.66

C.O.E. Large Flume Project RUN \#: 3-10

Date: 5-6-94
Plants: Elderberry at 18° spacing $\& 24^{\circ}$ rows
NOTE: leaves and sterns failing

intercept 3.002131

elev | | | | Prandt | |
| ---: | ---: | ---: | ---: | ---: |
| | | Y | V meas | V |
| | 3 | 2.74 | 3.7 | 2.86 |
| 6 | 2.49 | 3.7 | 2.78 | |
| 9 | 2.24 | 3.6 | 2.70 | |
| 12 | 1.99 | 3.5 | 2.60 | |
| 15 | 1.74 | 3.5 | 2.49 | |
| 18 | 1.49 | 3.5 | 2.37 | |
| 21 | 1.24 | 3.2 | 2.22 | |
| 24 | 0.99 | 3 | 2.03 | |
| 27 | 0.74 | 2.6 | 1.80 | |
| 30 | 0.49 | 2.3 | 1.47 | |
| 33 | 0.24 | 2.2 | 0.89 | |
| 34 | 0.16 | 1.7 | 0.55 | |
| 35 | 0.08 | 1.3 | -0.04 | |

elev | | | | Prandy |
| ---: | ---: | ---: | ---: |
| | | $\boldsymbol{\gamma}$ | V meas |

C.O.E. Large Flume Project RUN: $\quad 4-2$
Date: $\quad 5-20-94$

Plants: Eucnymus on 10^{*} centers and 11^{*} rows
NOTE: few leaves and stems breaking

FLOW $=$	43.2 cfs	
$d P=$	\quad inches between taps	
Drag $=$	12 microinches calibr $=$	
Drag $=$	0.06 lbs	200 micro-in / los

Stations from upstream end of test section (feet)											
05	10	15	20	25	30	35	40	45	50		
Bottom elevations by transit reading (inches)											
$123.4375 \quad 122.1875$	121.5625	121.2500	121.2500	121.3125	120.7500	120.6250	120.2500	121.5625	122.5000		
Average bottom elevation = $\quad 121.5170$ foek											
Water surface elevations (inches)											
$74.2500 \quad 74.4375$	74.5000	74.6875	74.7500	74.8750	74.9375	75.0000	75.1250	75.1250	75.1875	74.5000	0.6875
$74.2500 \quad 74.3688$	74.3625	74.4813	74.4750	74.5313	74.5250	74.5188	74.5750	74.5063	74.5000		
Water depth (feet)											
3.93893 .9290	3.9295	3.9196	3.9202	3.9155	3.9160	3.9165	3.9118	3.8176	3.9181		
Average depth m	3.92	feet	corrected depth U.3. $=3.93892$ feet								
Average area m	31.37		corrected depth d.s.		3.911837 feet						
Average perim. $=$	15.84	feet	difl $=$		0.027083 feet						
Average H. Fadius $=$	1.98	feat									
Average Esiope=	0.0007										
Average $\mathrm{n}=$	0.044274										
				intercept	3.921165						

n guess $=0.04$											
station	0	5	10	15	20	25	30	35	40	45	50
depth	3.93892	3.929025	3.929545	3.91965	3.92017	3.915483	3.916004	3.916525	3.911837	3.917566	3.918087
area	31.51136	31.4322	31.43636	31.3572	31.36136	31.32386	31.32803	31.3322	31.2947	31.34053	34.3447
perimeter	15.87784	15.85805	15.85909	15.8393	15.84034	15.83097	15.83201	15.83305	15.82367	15.83513	15.83617
St	0.000546	0.00055	0.00055	0.000553	0.000553	0.000555	0.000555	0.000554	0.000556	0.000554	0.000554
Froude	0.121731	0.122191	0.122167	0.122629	0.122605	0.122825	0.122801	0.122776	0.122997	0.122727	0.122703
dY		-0.00279	-0.00279	-0.00281	-0.00281	-0.00282	-0.00282	-0.00281	-0.00282	-0.00281	-0.00281
Y caic	3.93892	3.93613	3.933344	3.930533	3.927725	3.924000	3.922093	3.919279	3.916455	3.913643	3.910831
Yadj	3.935176	3.932386	3.929597	3.926789	3.923981	3.921165	3.918349	3.915535	3.912714	3.909899	3.907087
Average depth $=$	3.921		Average $\mathrm{n}=$		0.040						
Average velocity =	1.377		n bed =		0.060						
			Abed $=$		3.881						
											n
											0.04
Velocity Profile station	25 feet	vel. at plan	center $=$	0.4	fps						
Yom 3.915483											
$V=\quad 1.37914$											
$\mathrm{Sf}=0.000555$			Prandt 6	54.86889							
$\mathrm{Rh}=\mathrm{L}$	ft		Prandti $n=$	0.030345							
$V^{*}=0.188011$			Test $\mathrm{n}=$	0.04							
$X=\quad 1$											
$K s=1$			Ksipsi *	1449.492							

elev | | | | Prandt |
| ---: | ---: | ---: | ---: |
| | | Y | Vmeas |

$9 \quad$ RUN \#: 4-3
Date: 5-20-94
Plants: Euonymus on 10^{*} centers and 11^{*} rows
NOTE: fow leaves and stems broaking

FLOW $=$	64.5 cfs	
dP $=$	\quad inches between taps	
Drag $=$	23 microinches	
Drag $=$	0.115 lbs	

Stations from upstream end of test section (feet)											
$0 \quad 5$	10	15	20	25	30	35	40	45	50		
Bottom elevations by transit reading (inches)											
123.4375 122.1875	121.5625	121.2500	121.2500	121.3125	120.7500	120.6250	120.2500	121.5625	122.5000		
Average bottom elevation $=$ 121.5170 feet											
Water surface elevations (inches)											
$77.0000 \quad 77.0625$	77.1250	77.2500	77.3750	77.5625	77.6250	77.7500	77.8125	77.8125	77.8750	77.8125	0.0625
77.0000 77.0563	77.1125	77.2313	77.3500	77.5313	77.5875	77.7063	77.7625	77.7563	77.8125		
Water depth (feet)											
3.70983 .7051	3.7004	3.6905	3.6806	3.6655	3.6608	3.6509	3.6462	3.6467	3.6420		
Average depth =	3.67	feet	corrected cla	epth $4.3 .=$	3.709754	feet					
Average area $=$	29.38	sf	corrected d	epth d.s. $=$	3.646212	feet					
Average perim. $=$	15.35	feet	diff $=$		0.063542						
Average H.Radius $=$	1.91										
Average E.slope=	0.0016										
Averagenmi	0.041599										

elev			Prandt	
		y	Vmeas	V
3	3.42	3	2.95	
6	3.17	3	2.89	
9	2.92	3	2.63	
12	2.67	3	2.76	
15	2.42	3	2.68	
18	2.17	3	2.59	
21	1.92	2.7	2.50	
24	1.67	2.7	2.39	
27	1.42	2.4	2.26	
30	1.17	2.2	2.10	
33	0.92	1.5	1.91	
36	0.67	1.1	1.66	
39	0.42	0.4	1.29	

C. O.E. Large Flume Project RUN \#: 4-4

Date: E-20-94
Plants: Euonymus on 10^{*} centers and $11^{\prime \prime}$ rows
NOTE: fow leaves and stems breaking

FLOW $=$	48 cfs	
$\mathrm{dP}=$	\quad inches between taps	
Drag $=$	30 micro inches	calibr=

Stations from upstream end of test section (feet)											
05	10	15	20	25	30	35	40	45	50		
Bottom elevations by transit reading (inches)											
$123.4375 \quad 122.1875$	121.5625	121.2500	121.2500	121.3125	120.7500	120.6250	120.2500	121.5625	122.5000		
Average bottom elevation = $\quad 121.5170$ feet											
Water surface elevations (inches)											
$87.3125 \quad 87.5625$	87.7500	87.7500	87.8125	87.8125	87.8125	87.8125	87.6875	87.6875	87.5000	88.8750	-1.3750
$87.3125 \quad 87.7000$	88.0250	88.1625	88.3625	88.5000	88.6375	88.7750	88.7875	88.9250	88.8750		
Water depth (feet)											
2.85042 .8181	2.7910	2.7785	2.7629	2.7514	2.7400	2.7285	2.7275	2.7160	2.7202		
Average depth $=\quad 2.76$ feet			corrected depth u.s. $=2.850379$ feet								
Average area =	22.10 sf		corrected depth d.s. $=2.727462$ feet								
Averaga perim. $=$	13.52	leet	diff=		0.122917						

Average H. Radius $=$	1.63
Average E.slope=	0.0031
Average $n=$	0.052611

intercep: 2.762311

elev | | | | Prandt |
| ---: | ---: | ---: | ---: |
| | | Y | V meas |$\quad \mathbf{V}$

C.O.E. Large Flume Project RUN \#: $4-5$
Date: $\quad 5-20-94$

Plants: Euonymus on 10° centers and 11^{*} fows
NOTE: few leaves and stems breaking

FLOW $=$	58.5 efs	
$d P=$	0 inches between taps	
Drag $=$	32 micra inches calibr=	
Orag $=$	0.16 ibs	

Stations from upstream end of test section (feet)											
05	10	15	20	25	30	35	40	45	50		
Bottorn eievations by transit reading (inches)											
$123.4375 \quad 122.1875$	121.5625	121.2500	121.2500	121.3125	120.7500	120,6250	120.2500	121.5825	122.5000		
Average bottom elevation =		121.5170 feat									
Water suriace clavations (inches)											
85.750086 .1250	86.3750	86.5000	66.7500	88.8750	87.0625	87.2500	87.3750	87.5000	87.6250	87.1250	0.5000
85.750086 .0750	86.2750	66.3500	86.5500	86.6250	86.7625	86.9000	86.9750	87.0500	87.1250		
Water depth (feet)											
2.98062 .9535	2.9368	2.9306	2.9139	2.9077	2.8962	2.8848	2.8785	2.8723	2.8660		
Average depth $=$	2.91	feet	corrected	epth U.s. $=$	2.980587	faet					
Avarage area =	23.29	sf	corrected	opth d.s. $=$	2.878504	feet					
Average perim. $=$	13.82	feet	dift $=$		0.102083	feet					
Average H. Radius =	1.68										
Average E.slope=	0.0026										
Average $n=$	0.042314										

n guess $=0.042$											
station	0	5	10	15	20	25	30	35	40	45	50
depth	2.980587	2.953504	2.936837	2.930587	2.91392	2.90767	2.896212	2.864754	2.878504	2.872254	2.866004
area	23.8447	23.62803	23.4947	23.4447	23.31136	23.26136	23.1697	23.07803	23.02803	22.97803	22.92803
perimeter	13.96117	13.00701	13.87367	13.66117	13.82784	13.81534	13.79242	13.76951	13.75701	13.74451	13.73201
Sf	0.002355	0.002415	0.002454	0.002468	0.002507	0.002522	0.00255	0.002578	0.002594	0.00261	0.002625
Froude	0.250429	0.253882	0.256046	0.256866	0.259073	0.259908	0.261452	0.263012	0.263869	0.28473	0.265597
$d Y$		-0.01291	-0.01313	-0.01321	-0.01344	-0.01353	-0.01369	-0.01385	-0.01394	-0.01403	-0.01412
Y cale	2.980587	2.967678	2.954549	2.941337	2.927899	2.914373	2.900687	2.886837	2.872898	2.858966	2.844743
Y adj	2.977199	2.96429	2.951161	2.937949	2.92451	2.910985	2.897299	2.883449	2.869509	2.855478	2.841355
Average depth $=$	2.911		Averagen $=$		0.042						
Average velocity =	2.512		$n \mathrm{bed}=$		0.059						
			Pbed =		2.787						

Veloc	ile station	25 feet	vel. at plant center $=$	1.6
Yow	2.00767			
$V=$	2.5149	fps		
$\mathrm{Sf}=$	0.002522		Prandtic	50.65199
$\mathrm{Rh}=$	1.683734	ft	Prandit $\mathrm{n}=$	0.031999
$V^{*}=$	0.3688		Test $\mathrm{n}=$	0.042
$X=$	1			
$K s=$	1	強	Ks/psi $=$	2260.944

elev | | | | Prandi |
| ---: | ---: | ---: | ---: |
| | | Y | V maas |

C.O.E. Lerge Flume Project RUN \#: 4-6

Date: 5-20-94
Plants: Euonymus on 10^{*} centers and 11^{*} rows
NOTE: fow leaves and stems breaking

FLOW $=$	65.5 cfs	
$d P=$	0 inches between taps	
Drag $=$	50 micro inches	calibr $=$
Drag $=$	0.25 ibs	

Velocity Profile station 25 feet			vel. at plant center =	1.2 fps
Yo=	2.543087			
$V=$	3.219512			
Sf	0.004381		Prandti C	48.75354
$\mathrm{Ph}=$	1.554671	ft	Prandt $n=$	0.032806
$V^{*}=$	0.468321	fps	Test $\mathrm{n}=$	0.041
$\mathrm{X}=$	1			
$K s=$	1	th	Ks/psi $=$	2863.296

elev			Prandti	
		Y	V meas	V
6	2.29	5	3.90	
9	2.04	5	3.77	
12	1.79	5	3.61	
15	1.54	4.5	3.44	
18	1.04	4.2	3.23	
21	0.79	3.5	2.98	
24	0.54	2.1	2.86	
27	0.29	1.6	2.22	
30	0.04	0.6	-0.75	
33	-0.21	0	ERR	
36	-0.46	0	ERR	
39	-0.71	0	ERR	

$\begin{aligned} & \text { nquess }=0.042 \\ & \text { station } \end{aligned}$	0	5	10	15	20	25	30	35	40	45	50
depth	1.777462	1.735795	1.699337	1.673295	1.636837	1.589962	1.56392	1.53267	1.522254	1.496212	1.480587
area	14.2197	13.88636	13.5947	13.38636	13.0947	12.7197	12.51136	12.26136	12.17803	11.9697	11.8447
perimeter	11.55492	11.47159	11.39867	11.34659	11.27367	11.17992	11.12784	11.06534	11.04451	10.99242	10.96117
Sf	0.003566	0.003822	0.004068	0.004256	0.004542	0.004948	0.005196	0.005516	0.005628	0.005924	0.006112
Froude	0.320701	0.332318	0.343069	0.351109	0.362905	0.379071	0.388579	0.400523	0.404642	0.415252	0,421842
dY		-0.02148	-0.02305	-0.02427	-0.02815	-0.02889	-0.0306	-0.03285	-0.03365	-0.03579	-0.03717
Y caic	1.777462	1.755970	1.732928	1.708053	1.682502	1.65361	1.623012	1.590165	1.556514	1.520723	1,483549
Y adj	1,7337	1.712218	1.689166	1.654892	1.63874	1.608848	1.579251	1.546404	1.512753	1.476961	1.439788
Average depth $=$	1.610		Averagen $=$		0.042						
Average velocity $=$	2.670		n bed $=$		0.052						
					1.565						
			A bed $=$							n	

Velocity Profile station 25 feet			vel, at plant center $=$	1.2 fps
$Y \mathrm{O}=$	1.589962	t		
$V=$	2.712329	fps		
Sf=	0.004948		Prandt C	42.09818
$\mathrm{Fh}=$	1.137727	ft	Prandil $n=$	0.036066
$\mathrm{V}^{*}=$	0.425758	tps	Test $\mathrm{n}=$	0.042
$\mathrm{X}=$	1			
$\mathrm{Ks}=$	1	H	$\mathrm{Ks} / \mathrm{psi}=$	2603.059

elev | | | | Prandt |
| ---: | ---: | ---: | ---: |
| | | Y | Vmeas |

elev			Prandt
		V	Vmeas

5-1

elev			Prandil
	Y	\checkmark meas	v
3	3.14	2.8	2.29
6	2.69	2.8	2.24
9	2.64	2.8	2.18
12	2.39	2.8	2.12
15	2.14	2.6	2.05
18	1.89	2.6	1.97
21	1.64	2.4	1.88
24	1.39	2.4	1.78
27	1.14	2.1	1.65
30	0.89	1.9	1.50
33	0.64	1.3	1.29
36	0.39	1.1	0.98
39	0.14	1	0.32

n guess $=0.04$											
station	0	5	10	15	20	25	30	35	40	45	50
depth	2.43882	2.39517	2.361837	2.349337	2.336837	2.31392	2.30142	2.25767	2.255587	2.253504	2.25142
area	19.51136	19.16136	18.8947	18.7947	18.6947	18.51136	18.41136	18.06136	18.0447	18.02803	18.01136
perimeter	12.87784	12.79034	12.72367	12.69867	12.67367	12.62784	12.60284	12.51534	12.51117	12.50701	12.50284
St	0.003756	0.003953	0.004114	0.004176	0.00424	0.00436	0.004428	0.004677	0.004689	0.004702	0.004714
Froude	0.338909	0.348237	0.355635	0.358477	0.361357	0.366739	0.369731	0.38053	0.381057	0.381586	0.382116
dY		-0.02249	-0.02355	-0.02396	-0.02438	-0.02519	-0.02565	-0.02734	-0.02743	-0.02751	-0.0276
Y cale	2.43892	2.416426	2.392879	2.36892	2.344537	2.319347	2.293701	2.266356	2.238927	2.211412	2.183811
Yadj	2.439176	2.416681	2.393135	2.369175	2.344792	2.319602	2.293956	2.266611	2.239182	2.211667	2.184067
Average depth $=$	2.320		Average $\mathrm{n}=$		0.040						
Average velocity $=$	3.158		n bed =		0.053						
			Abed $=$		2.231						

dev | | | | Prandt | |
| ---: | ---: | ---: | ---: | ---: |
| | | \mathbf{Y} | V meas | V |
| 3 | 2.06 | 4.5 | 3.66 | |
| 6 | 1.81 | 4.5 | 3.52 | |
| 9 | 1.56 | 4.5 | 3.35 | |
| 12 | 1.31 | 4.1 | 3.15 | |
| 15 | 1.06 | 3.8 | 2.91 | |
| 18 | 0.81 | 3.1 | 2.61 | |
| 21 | 0.56 | 2.3 | 2.19 | |
| 24 | 0.31 | 1.9 | 1.53 | |
| 27 | 0.06 | 1.8 | -0.28 | |
| 30 | -0.19 | 0 | ERR | |
| 33 | -0.44 | 0 | ERR | |
| 36 | -0.69 | 0 | ERR | |
| 39 | -0.94 | 0 | ERR | |

Stations from upstream end of test section (feet)											
05	10	15	20	25	30	35	40	45	50		
Bottorn el evations by transit reading (inches)											
122.5000122 .2000	121.8000	121.5000	121.6000	121.4000	121.0000	121.3000	121.0000	121,5000	121.5000		
Average bottom elevation $=$ 121.5727 feet											
Water surface elevations (inches)											
$71.5000 \quad 71.5000$	71.3760	71.4375	71.3750	71.3750	71.3750	71.3125	71.3750	71.3125	71.3125	72.2500	-0.9375
$71.5000 \quad 71.5938$	71.5625	71.7188	71.7500	71.8438	71.9375	71.9688	72.1250	72.1563	72.2500		
Water depth (teet)											
$4.1727 \quad 4.1649$	4.1675	4.1545	4.1519	4.1441	4.1363	4.1337	4.1206	4.1180	4.1102		
Average depth $=$	4.14	feet	corrected	epth u.s. =	4.172727	feet					
Average area $=$	33.15	st	corrected	epth d.s. $=$	4.120644	feet					
Average perim. $=$	16.29	feet	diff $=$		0.052083	feet					
Average H.Radius $=$	2.035	feet									
Average E.slopes	0.0013										
Average $\mathrm{n}=$	0.081317										

$\begin{aligned} & n \text { guess }=0.075 \\ & \text { station } \end{aligned}$	0	5	10	15	20	25	30	35	40	45	50
depth	4.172727	4.164915	4.167519	4.154498	4.151894	4.144081	4.136269	4.133665	4.120644	4.11804	4.110227
araa	33.38182	33.31932	33.34015	33.23598	33.21515	33.15265	33.09015	33.06932	32.96515	32.94432	32.88182
perimeter	16.34545	16.32983	16.33504	16.309	16.30379	16.28816	16.27254	16.26733	16.24129	16.23608	18.22045
Sf	0.001087	0.001092	0.001091	0.0011	0.001101	0.001107	0.001113	0.001114	0.001124	0.001126	0.001131
Froude	0.090711	0.090966	0.090881	0.091309	0.091394	0.091653	0.091913	0.092	0.092436	0.092524	0.092788
dY		-0.00551	-0.0055	-0.00554	-0.00555	-0.00558	-0.00561	-0.00562	-0.00567	-0.00568	-0.00571
Y calc	4.172727	4.16722	4.161722	4.156178	4.150624	4.145042	4.139432	4.133813	4.128146	4.122469	4.116763
Y adj	4.170819	4.165312	4.159814	4.15427	4.148716	4.143134	4.137524	4.131905	4.126238	4.120561	4.114855
Average depth =	4.143		Average $\mathrm{n}=$		0.075						
Average velocity =	1.059		n bed $=$		0.119						
			A bed $=$		4.046						
										n	
											0.075

dever				Prandr

Stations from upstrearn end of test section (feet)											
$0 \quad 5$	10	15	20	25	30	35	40	45	50		
Eottom elevations by transit reading (inches)											
$122.5000 \quad 122.2000$	121.8000	121.5000	121.6000	121.4000	121.0000	121.3000	121.0000	121.5000	121.5000		
Average bottom elevation = 121.5727 feet											
Water surface el evations (inches)											
$71.3750 \quad 71.5000$	71.7500	72.0000	72.1875	72.5000	72.6250	73.1250	73.4375	73.4375	73.4375	72.0625	1.3750
$71.3750 \quad 71.3625$	71.4750	71.5875	71.6375	71.8125	71.8000	72.1625	72.3375	72.2000	72.0625		
Water depth (feet)											
4.1831 4.1842	4.1748	4,1654	4.1613	4.1467	4.1477	4.1175	4.1029	4.1144	4.1259		
Average depth m	4.15	feet	corrected	epth U.s. $=$	4.183144	foet					
Average area w	33.18	sf	corrected	opth d.s. $=$	4.102936	feet					
Average perim. $=$	16.30	feet	$\mathrm{dif}=$		0.080208						
Average H. Madius=	2.04	feet									
Average E.slope=	0.0020										
Average $\mathrm{n}=$	0.067952										

lev | | | | Prandt |
| ---: | ---: | ---: | ---: |
| | | Y | V meas |

elev				Prandt
		Y	V meas	\mathbf{V}
	3	2.82	1.3	2.99
6	2.57	1.1	2.92	
9	2.32	0.85	2.83	
12	2.07	0.5	2.73	
15	1.82	0.5	2.63	
18	1.57	0.75	2.50	
21	1.32	0.8	2.35	
24	1.07	0.95	2.18	
27	0.82	1.25	1.95	
30	0.57	1.2	1.65	
33	0.32	1.1	1.17	
36	0.07	0.6	-0.08	
39	-0.18	0	ERA	

C.O.E. Large Flume Project		RUN \%	$6-5$		
Date:	6-9-94				
Plants: 36-40* Dogwoods at 3' spacing and 3' rows (45 plants)					
FLOW $=\quad 39.7$ cfs					
$d P=0$ inches between taps					
Drag =	615 micro	es	calibr $=$		icroin / lbs
Drag $=$	6.15 lbs				

Stations from upstream end of test section (feet)											
$0 \quad 5$	10	15	20	25	30	35	40	45	50		
Bottom elevations by transit reading (inches)											
122.5000 122.2000	121.8000	121.5000	121.6000	121.4000	121.0000	121.3000	121.0000	121.5000	121.5000		
Average bottom elevation =											
Water surface elevations (inches)											
$90.5000 \quad 90.5000$	91.0000	81.2500	91.4375	91.5000	91.8750	92.3125	92.5000	92.8750	92.8750	93.0000	-0.1250
$90.5000 \quad 90.5125$	81.0250	91.2875	91.4875	91.5625	91.9500	92.4000	92.6000	92.9875	93.0000		
Water depth (feet)											
2.58942 .5384	2.5456	2.5238	2.5071	2.5009	2.4686	2.4311	2.4144	2.3821	2.3811		
Avarage depth $=$	2.48	feet	corrected 0	epth u.s. $=$	2.589394	leet					
Average area =	19.88	sf	corrected c	epth d.s. $=$	2.414394	feet					
Average perim. =	12.97	feet	dift $=$		0.175	feet					
Average H. Radius=	1.53	feet									
Average E.slope=	0.0044										
Average $n=$	0.085422										

n guess $=\quad 0.07$											
station	0	5	10	15	20	25	30	35	40	45	50
depth	2.589394	2.588352	2.545644	2.523769	2.507102	2.500852	2.468561	2.431061	2.414394	2.382102	2.381061
area	20.71515	20.70582	20.36515	20.19015	20.05682	20.00682	19.74848	19.44848	19.31515	19.05682	19.04848
perimeter	10.17879	13.1767	13.09129	13.04754	13.0142	13.0017	12.93712	12.86212	12.82879	12.7642	12.76212
St	0.004459	0.004464	0.004678	0.004793	0.004834	0.004918	0.005102	0.005328	0.005432	0.005644	0.005651
Froude	0.209882	0.210009	0.215316	0.218121	0.2203	0.221126	0.225479	0.230717	0.23311	0.237866	0.238022
$d Y$		-0.02335	-0.02453	-0.02516	-0.02586	-0.02566	-0.02688	. 0.02814	-0.02872	-0.02991	-0.02995
Y calc	2.589394	2.566042	2.541513	2.516348	2.490634	2.464828	2.437952	2.409816	2.381093	2.351182	2.321232
Y adj	2.609319	2.585967	2.561438	2.536274	2.510609	2.484754	2.457877	2.429741	2.401018	2.371107	2.341157
Average depth $=$	2.485		Average $\mathrm{n}=$		0.070						
Average velocity =	1.997		n bed =		0.095						
			F bed $=$		2.442						

Velocity Profie station 25 feet vei. at plant center $=\quad$ 1.4 fps

$\mathrm{VO}=$	2.500852 ft
$\mathrm{V}=$	1.984324 fps

Si= $0.004918 \quad$ Prandt C 48.51623
Ph $=\quad 1.538784 \mathrm{ft} \quad$ Prandt $n=0.03291$
$V^{*}=0.493655$ fps Test $n=\quad 0.07$

$X=$	1		
$K s=$	1 ft	$\mathrm{Ks} / \mathrm{\rho si}=$	3018.188

erev | | | | Prandt |
| ---: | ---: | ---: | ---: |
| | Y | V meas | V |
| 3 | 2.25 | 1.1 | 4.09 |
| 6 | 2.00 | 0.7 | 3.95 |
| 9 | 1.75 | 1.3 | 3.78 |
| 12 | 1.50 | 1.45 | 3.59 |
| 15 | 1.25 | 1.6 | 3.37 |
| 18 | 1.00 | 1.7 | 3.09 |
| 21 | 0.75 | 1.9 | 2.74 |
| 24 | 0.50 | 2 | 2.24 |
| 27 | 0.25 | 1.9 | 1.39 |
| 30 | 0.00 | 0.9 | -5.62 |
| 33 | -0.25 | 0 | ERA |
| 36 | -0.50 | 0 | ERR |
| 39 | -0.75 | 0 | ERR |

n guess $=0.07$											
station	0	5	10	15	20	25	30	35	40	45	50
depth	1.943581	1.819081	1.847727	1.854498	1.824811	1.769081	1.739394	1.694081	1.612311	1.566998	1.615436
area	15.54848	15.35265	14.78182	14.83598	14.59848	14.15265	13.91515	13.55265	12.89848	12.53598	12.92348
perimeter	11.88712	11.83816	11.68545	11.709	11.64962	11.53816	11.47879	11.38816	11.22482	11.134	11.23087
St	0.006407	0.006647	0.007421	0.007342	0.007696	0.008425	0.008853	0.008566	0.011065	0.012038	0.011002
Froude	0.256905	0.261836	0.277148	0.275632	0.282386	0.295834	0.30344	0.315695	0.340013	0.354868	0.339027
dY		-0.03568	-0.04019	-0.03973	-0.04181	-0.04617	-0.04876	-0.05312	-0.06256	-0,06886	-0.06216
Y cale	1.943581	1.907879	1.867686	1.827956	1.786143	1.739975	¢. 89122	1.638096	1.575537	1.506678	1.444522
Yadj	1.966038	1.930356	1.890164	1.850433	1.80862	1.762453	1.713697	1.660574	1.598014	1.529455	1.466999
Average depth $=$	1.762		Averagen		0.070						
Average velocity $=$	2.241		n bed $=$		0.089						
			P bed $=$		1.739						
		,									n
											0.07
Velocity Profile station	25 teet	vel. at plan	center $=$		fps						
Yo= 1.769081	H										
$V=\quad 2.232797$											
$\mathrm{Sf}=0.008425$			Prandu 6	43.61087							
$\mathrm{Fh}=\quad 1.226595$	ft		Prandtin $=$	0.035254							
$V^{*}=0.576863$	fps		Test $n=$	0.07							
$X=\quad 1$											
$\mathrm{Ks}=\quad 1$	H		$\mathrm{Ks} / \mathrm{psi}=$	3526.922							

dev | | | | PrandH |
| ---: | ---: | ---: | ---: |
| | | Y | V meas |

C.O.E. Large Flume Project RUN *: 7-1

Date: 6-9-94
Plants: 36-40* Dogwoods at 3^{\prime} spacing and 3^{\prime} rows thinned by 50% (23 plants)

FLOW $=$	35.5 cfs		
$\mathrm{dP}=$	$\quad 0$ inches between taps		
Drag $=$	318 micro inches	calibr $=$	100 micro-in $/ \mathrm{lbs}$
Drag $=$	3.18 lbs		

elev			Pranoty
	Y	\checkmark meas	V
3	3.65	1.6	2.58
6	3.40	1.6	2.53
9	3.15	1.4	2.48
12	2.90	1.4	2.42
15	2.65	1	2.36
18	2.40	1	2.29
21	2.15	1	2.22
24	1.90	0.7	2.14
27	1.65	0.6	2.04
30	1.40	0.5	1.93
33	1.15	0.9	1.79
36	0.90	0.8	1.63
39	0.65	0.9	1.4

n guess $=0.07$											
station	0	5	10	15	20	25	30	35	40	45	50
depth	2.761269	2.745123	2.728977	2.71804	2.691477	2.675331	2.659186	2.653456	2.626894	2.615956	2.662311
arsa	22.09015	21.96098	21.83182	21.74432	21.53182	21.40265	21.27348	21.22765	21.01515	20.92765	21.29848
perimeter	13.52254	13.40025	13.45795	13.43608	13.38295	13.35066	13.31837	13.30691	13.25379	13.23191	13.32462
St	0.002979	0.003028	0.003078	0.003113	0.0032	0.003254	0.003309	0.003329	0.003425	0.003465	0.003299
Froude	0.170431	0.171836	0.173464	0.174513	0.177102	0.178708	0.180338	0.180922	0.183674	0.184827	0.180021
dY		-0.0156	-0.01587	-0.01605	-0.01652	-0.01681	-0.0171	-0.01721	-0.01772	-0.01794	-0.01705
Y calc	2.761269	2.745658	2.7298	2.713747	2.697232	2.680426	2.663322	2.646112	2.62839	2.610452	2.593407
Y adj	2.766118	2.750517	2.734649	2.718596	2.70208	2.685275	2.668171	2.65096	2.633239	2.615301	2.598256
Average depth =	2.685		Average n		0.070						
Average velocity =	1.653		n bed $=$		0.097						
			R bed $=$		2.635						

elev | | | | Prandt |
| ---: | ---: | ---: | ---: |
| | | Y | Vmeas |

APPENDIX B

DRAG FORCE TEST DATA

Plant Parameters		Date -	$9-9-94$
Prop \# -	84574	Run -	

NOTE: Plant data collected with the strain gauge set in tension and held horizontal
Flume data obtained with strain gauge set in compression.
Strain Gauge Settings - HORIZONTAL IN TENSION

Gauge factor -	1.10
$5 \mathrm{lbs}=$	1160 micro-inches $/$ inch

Plant Type - Staghom Sumac (Rhus typh	
Plant Height (in) -	30
Stem to First Branch (in) -	18
Stem Diameter (in) -	0.456
Number of Stems -	1
Number of branches -	12

Number of leaves -	140
Leaf Thickness (in) -	0.016
Leaf Width (in)-	0.5
Leaf Length (in)-	2
Avg. Branch Diameter (in) -	0.104
Height of effective leave area (in) -	12
Width of effective leave area (in) -	10

	micro-inches/inch			Force
	Around Stem	Force	With String	
Average force required to pull the topmost part of stem horizontal -	115	0.496	NA	NA
Average force required to pull the center of stem 45 degrees -	121	0.522	NA	NA
****** Deflection From Vertical (in) -				
Average force required to pull the center of stem horizontal -	168	0.724	NA	NA

Run \#	Deflection (deg - horiz)	DRAG AND VELOCITY DATA					
		With Leaves			Without Leaves		
		Counter	Time (sec)	Strain	Counter	Time (sec)	Strain
1		58	30	50	58	30	12
2		77	30	72	72	30	22
3		94	30	84	76	30	25
4	60	97	30	90	90	30	40
5		102	30	96	110	30	50
6		121	30	100	120	30	55
7		131	30	108	125	30	65
8		150	30	132	141	30	93
9		155	30	140	160	30	110
10		160	30	148	173	30	122

Additional Notes -

Analysis Staghorn Sumac (Rhus typhina)

With Leaves

Run \#

Velocity (ft/sec)	Drag Force (lbs)
1.63	0.216
2.15	0.310
2.62	0.362
2.70	0.388
2.84	0.414
3.37	0.431
3.64	0.466
4.17	0.569
4.31	0.603
4.44	0.638

Without Leaves

Velocity (ft/sec)	Drag Forc (lbs)
1.63	0.052
2.01	0.095
2.12	0.108
2.51	0.172
3.06	0.216
3.34	0.237
3.48	0.280
3.92	0.401
4.44	0.474
4.80	0.526

Velocity vs. Drag Force Staghorn Sumac

Additional Notes -

Analysis Arctic Blue Willow (Salix purpurea nana)

Velocity vs. Drag Force Arctic Blue Willow

Additional Notes -

Analysis Norway Maple (Acer platenoides)

Run \#	With Leaves		Without Leaves	
	Velocity (ft/sec)	Drag Force (lbs)	Velocity (fi/sec)	Drag Force (lbs)
1	0.94	0.089	1.27	0.036
2	1.21	0.125	1.93	0.058
3	1.71	0.201	2.40	0.085
4	2.23	0.241	2.92	0.134
5	3.01	0.304	3.61	0.179
6	3.56	0.371	4.17	0.210
7	3.89	0.464	4.31	0.299
8	4.08	0.589	4.44	0.321
9	4.31	0.652	4.61	0.357
10	4.53	0.741	NA	NA

Drag force (lbs) at $2 \mathrm{ft} / \mathrm{sec}=\quad 0.223$

Velocity vs. Drag Force Norway Maple

$$
\begin{array}{|l|}
\hline- \text { Leaves }- \text { No leaves } \\
\hline
\end{array}
$$

Plant Parameters		Date -	$9-26-94$
Prop \# -	84574	Run -	

NOTE: Plant data collected with the strain gauge set in tension and held horizontal
Flume data obtained with strain gauge set in compression.
Strain Gauge Settings - HORIZONTAL IN TENSION

Gauge facto	1.10
$5 \mathrm{lbs}=$	1120 micro-inches $/$ inch

Plant Type - Western Sand Cherry (Prunis besseyi)

Number of leaves -	100
Leaf Thickness (in) -	0.057
Leaf Width (in) -	1
Leaf Length (in) -	2
Avg. Branch Diameter (in) -	0.104
Height of effective leave area (in) -	20
Width of effective leave area (in)-	6

	Deflection Run \# (deg - horiz)	Counter	With Leaves		
		Time (sec)		Strain \quad	c
:---:					
Without Leaves					
1					

Additional Notes -

Analysis Westem Sand Cherry (Prunis besseyi)

Run \#	With Leaves		Without Leaves	
	Velocity (ft/sec)	Drag Force (lbs)	Velocity (ft/sec)	Drag Force (lbs)
1	1.10	0.071	1.43	0.031
2	1.68	0.107	2.01	0.071
3	2.12	0.143	2.54	0.098
4	2.51	0.170	2.79	0.125
5	2.81	0.205	3.17	0.161
6	3.20	0.250	3.50	0.174
7	3.39	0.308	3.84	0.196
8	3.64	0.348	4.00	0.223
9	3.75	0.384	4.17	0.254
10	3.89	0.420	4.53	0.348

Drag force (lbs) at $2 \mathrm{ft} / \mathrm{sec}=$
0.133

Velocity vs. Drag Force Western Sand Cherry

Plant Parameters

Date - 10-6-94

Prop \# - 84574 Run -
NOTE: Plant data collected with the strain gauge set in tension and held horizontal
Flume data obtained with strain gauge set in compression.
Strain Gauge Settings - HORIZONTAL IN TENSION

Gauge facto	1.10
$5 \mathrm{lbs}=$	1060 micro-inches $/$ inch

Number of leaves 275
Leaf Thickness (in) - 0.011
Plant Height (in) - 32
Leaf Width (in) - 1.3
Stem to First Branch (in) 0.5
Stem Diameter (in) - 0.5
Number of Stems - 1
Number of branches - 6
Width of effective leave area (in) -
Width of effective leave area (in) - 10 10
Leaf Length (in) - 0.375
Avg. Branch Diameter (in) - 0.203Height of effective leave area (in) -27

	micro-inches/inch			Force
	Around Stem	Force	With String	
Average force required to pull the topmost part of stem horizontal -	180	0.849	NA	NA
Average force required to pull the center of stem 45 degrees -	242	1.142	NA	NA
****** Deflection From Vertical (in) -				
Average force required to pull the center of stem horizontal -	295	1.392	NA	NA

Run \#	Deflection (deg - horiz)	DRAG AND VELOCITY DATA					
		With Leaves			Without Leaves		
		Counter	Time (sec)	Strain	Counter	Time (sec)	Strain
1		40.	30	42	47	30	16
2		61	30	100	75	30	64
3		78	30	155	92	30	80
4		104	30	172	98	30	84
5	60	120	30	206	116	30	150
6	40	129	30	270	123	30	169
7	30	135	30	336	134	30	200
8		148	30	402	145	30	230
9		158	30	452	150	30	252
10	20	160	30	462	168	30	276

Additional Notes -

Analysis Common Privet (Ligustrum vulgare)

With Leaves

Run \#

	Velocity (ft/sec)	Drag Force (lbs)
1	1.13	0.198
2	1.71	0.472
3	2.18	0.731
4	2.90	0.811
5	3.34	0.972
6	3.59	1.274
7	3.75	1.585
8	4.11	1.896
9	4.39	2.132
10	4.44	2.179

Without Leaves

Velocity (ft/sec)	Drag Force (lbs)
1.32	0.075
2.10	0.302
2.57	0.377
2.73	0.396
3.23	0.708
3.42	0.797
3.73	0.943
4.03	1.085
4.17	1.189
4.66	1.302

Velocity vs. Drag Force Common Privet

Plant Parameters	Date -	10-6-94
Prop \# -	84574	Run -

NOTE: Plant data collected with the strain gauge set in tension and held horizontal
Flume data obtained with strain gauge set in compression.
Strain Gauge Settings - HORIZONTAL IN TENSION

Gauge facto	1.10
$5 \mathrm{lbs}=$	1060 micro-inches $/$ inch

Plant Type - Blue Elderberry (Sambucus canadensis)
Plant Height (in) - 21
Stem to First Branch (in) 2
Stem Diameter (in) - 1

Number of leaves -	175
Leaf Thickness (in) -	0.018
Leaf Width (in) -	2.5
Leaf Length (in) -	0.75
Avg. Branch Diameter (in) -	0.213
Height of effective leave area (in) -	16
Width of effective leave area (in) -	18

	micro-inches/inch			
	Around Stem	Force	With String	Force
Average force required to pull the topmost part of stem horizontal -	90	0.425	NA	NA
Average force required to pull the center of stem 45 degrees ****** Deflection From Vertical (in) -	300	1.415	NA	NA
Average force required to pull the center of stem horizontal -		0.000	NA	NA

DRAG AND VELOCITY DATA

Run\#	Deflection (deg - horiz	With Leaves				Without Leaves		
		Counter	Time (sec)	Strain		Counter	Time (sec)	Strain
1		43	30	57		45	30	24
2	40	60	30	104		56	30	36
3		70	30	158		71	30	45
4	20	88	30	300		78	30	55
5		99	30	370		98	30	87
6		107	30	435		119	30	117
7	20	122	30	510		130	30	152
8	0	140	30	590	40	146	30	217
9		153	30	710		184	30	304
10		NA	NA	NA		192	30	422

Additional Notes - The trunk would not bend. Only the branches bent, but the whole plant did not go into a teardrop shape. The overall structure stayed the same.

Analysis Blue Elderberry (Sambucus canadensis)

Velocity vs. Drag Force Blue Elderberry

$$
- \text { Leaves }- \text { No leaves }
$$

Analysis French Pink Pussywillow (Salix caprea pendula)

With Leaves
Run \#

Velocity $(\mathrm{ft} / \mathrm{sec})$	Drag Force (lbs)	Velocity $(\mathrm{ft} / \mathrm{sec})$	Drag Force (lbs)
1.35	0.192	1.41	0.192
1.99	0.625	1.54	0.288
2.26	0.673	2.32	0.375
2.57	0.827	2.40	0.452
2.84	1.106	2.51	0.529
3.34	1.346	2.90	0.837
3.61	1.827	3.34	1.010
NA	NA	NA	NA
NA	NA	NA	NA
NA	NA	NA	NA

Without Leaves

Drag force (lbs) at $2 \mathrm{ft} / \mathrm{sec}=$ 0.627

Velocity vs. Drag Force French Pink Pussywillow

Plant Parameters	Date -	10-20-94
Prop\# -	84574	Run -

NOTE: Plant data collected with the strain gauge set in tension and held horizontal Flume data obtained with strain gauge set in compression.
Strain Gauge Settings - HORIZONTAL IN TENSION

Gauge fact	1.10
$5 \mathrm{lbs}=$	1040 micro-inches $/$ inch

Plant Type Sycamore (Platenus acer ifolia)		leaves - ness (in) -	23		
Plant Height (in) -	36 Leaf W	(in) -	6		
Stem to First Branch (i	2 LeafLe	(in) -	6		
Stem Diameter (in) -	0.413 Avg. B	Chiameter (in)	0.025		
Number of Stems -	1 Height	fective leave a	33		
Number of branches -	3 Width	fective leave ar	8		
		micro-inches/inch			
		Around Stem	Force	With String	Force
Average force required to pull the topmost part of stem horizontal -		148	0.712	NA	NA
Average force required to pull the center of stem 45 degrees ****** Deflection From Vertical (in) -		274	1.317	NA	NA
Average force required to pull the center of stem horizontal -		320	1.538	NA.	NA

	DRAG AND VELOCITY DATA						
Run\#	Deflection (deg - horiz	Counter	With Leaves				
				Wime (sec)			Strain

Additional Notes - \quad Cut from shoot, one long branch $\& 2$ small branches.

Analysis Sycamore (Platenus acer ifolia)

	With Leaves		Without Leaves	
Run \#	Velocity $(\mathrm{ft} / \mathrm{sec})$		Drag Force (lbs)	Velocity $(\mathrm{ft} / \mathrm{sec})$
	Drag Force (lbs)			
1	1.21	0.144	1.35	0.058
2	1.63	0.264	1.90	0.096
3	1.93	0.341	2.07	0.135
4	2.65	0.538	2.51	0.183
5	3.12	0.740	2.79	0.231
6	3.20	0.817	3.06	0.245
7	3.59	0.952	3.23	0.274
8	3.78	1.096	3.70	0.452
9	4.55	1.442	3.81	0.529
10	4.66	1.490	3.89	0.553

Drag force (lbs) at $2 \mathrm{ft} / \mathrm{sec}=\quad 0.360$

Velocity vs. Drag Force Sycamore

- Leaves - No leaves

Plant Parameters		Date -	7-7-94
Prop \# -	84574	Run -	$1-1$

NOTE: Plant data collected with the strain gauge set in tension and held horizontal
Flume data obtained with strain gauge set in compression.
Strain Gauge Settings - HORIZONTAL IN TENSION

Gauge factor	1.10
$5 \mathrm{lbs}=$	1020 micro-inches $/$ inch

Plant Type - Dogwood 1-1		Number of leaves - Leaf Thickness (in) -	50
Plant Height (in) -	17	Leaf Width (in) -	
Stem to First Branch (in) -	0.375	Leaf Length (in) -	0.5
Stem Diameter (in) -	1	Avg. Branch Diameter (in) -	3
Number of Stems -	Height of effective leave area (in) -	13	
Number of branches -	11	Width of effective leave area (in) -	9

	micro-inches/inch			Force
	Around Stem	Force	With String	
Average force required to pull the topmost part of stem horizontal -	25	0.123	NA	NA
Average force required to pull the center of stem 45 degrees -	64	0.314	NA	NA
****** Deflection From Vertical (in) -				
Average force required to pull the center of stem horizontal -	NA	NA	NA	NA

		DRAG AND VELOCITY DATA					
Run \#	Deflection (deg - horiz)	Counter	With Leaves	Time (sec)	Strain	Without Leaves	
1	60	30	22	50	30	22	
2	72	30	33	73	30	42	
3		78	30	41	90	30	60
4		94	30	50	119	30	84
5		117	30	80	130	30	92
6	127	30	98	141	30	92	
7		152	30	121	160	30	127
8	160	30	126	162	30	128	
9	164	30	132	164	30	134	
10	163	30	131	171	30	120	

Additional Notes -

Analysis Dogwood 1-1

Run \#	With Leaves	
	Velocity (ft/sec)	Drag Force (lbs)
1	1.68	0.108
2	2.01	0.162
3	2.18	0.201
4	2.62	0.245
5	3.26	0.392
6	3.53	0.480
7	4.22	0.593
8	4.44	0.618
9	4.55	0.647
10	4.53	0.642

Without Leaves

Velocity (ft/sec)	Drag Force (lbs)
1.41	0.108
2.04	0.206
2.51	0.294
3.31	0.412
3.61	0.451
3.92	0.451
4.44	0.623
4.50	0.627
4.55	0.657
4.75	0.588

Velocity vs. Drag Force Dogwood - Run 1-1

- Leaves - No leaves

Plant Parameters		Date -	7-9-94
Prop \#-	84574	Run -	$2-1$

NOTE: Plant data collected with the strain gauge set in tension and held horizontal
Flume data obtained with strain gauge set in compression.
Gauge factor 1.10
$5 \mathrm{lbs}=\quad 1020$ micro-inches $/$ inch
Plant Type - Dogwood 2-1
Number of leaves - 30
Leaf Thickness (in) -
Leaf Width (in) 1
Plant Height (in) - 15
Stem to First Branch (in) -
Stem Diameter (in) - 0.4375
Number of Stems - 1
Number of branches - 20
Leaf Length (in) - 2
Avg. Branch Diameter (in) -
Height of effective leave area (in) - 10
Width of effective leave area (in) - 8

	micro-inches/inch			Force
	Around Stem	Force	With String	
Average force required to pull the topmost part of stem horizontal -	20	0.098	NA	NA
Average force required to pull the center of stem 45 degrees -	84	0.412	NA	NA
****** Deflection From Vertical (in) -				
Average force required to pull the center of stem horizontal -	NA	NA	NA	NA

DRAG AND VELOCITY DATA

Run \#	Deflection (deg - horiz)	DRAG AND VELOCTTY DATA					
		With Leaves			Without Leaves		
		Counter	Time (sec)	Strain	Counter	Time (sec)	Strain
1		37	30	18	45	30	12
2		52	30	26	59	30	21
3		64	30	38	73	30	33
4		93	30	58	100	30	52
5		106	30	70	110	30	60
6		126	30	88	138	30	71
7		140	30	96	138	30	71
8		159	30	108	150	30	76
9		162	30	109	156	30	80
10		164	30	110	162	30	86

Run \#	Deflection (deg - horiz)	DRAG AND VELOCTTY DATA					
		With Leaves			Without Leaves		
		Counter	Time (sec)	Strain	Counter	Time (sec)	Strain
1		37	30	18	45	30	12
2		52	30	26	59	30	21
3		64	30	38	73	30	33
4		93	30	58	100	30	52
5		106	30	70	110	30	60
6		126	30	88	138	30	71
7		140	30	96	138	30	71
8		159	30	108	150	30	76
9		162	30	109	156	30	80
10		164	30	110	162	30	86

Deflection

Force

NA

Additional Notes -

	With Leaves		Without Leaves	
Run \#	Velocity	Drag Force	Velocity	Drag Force
	(ft/sec)	(lbs)	(ft/sec)	(lbs)
1	1.05	0.088	1.27	0.059
2	1.46	0.127	1.65	0.103
3	1.79	0.186	2.04	0.162
4	2.59	0.284	2.79	0.255
5	2.95	0.343	3.06	0.294
6	3.50	0.431	3.84	0.348
7	3.89	0.471	3.84	0.348
8	4.42	0.529	4.17	0.373
9	4.50	0.534	4.33	0.392
10	4.55	0.539	4.50	0.422

Drag force (lbs) at $2 \mathrm{ft} / \mathrm{sec} \quad 0.212$

Velocity vs. Drag Force Dogwood - Run 2-1

- Leaves - No leaves

Plant Parameters		Date -	$7-9-94$
Prop \# -	84574	Run	$2-2$

NOTE: Plant data collected with the strain gauge set in tension and held horizontal
Flume data obtained with strain gauge set in compression.
Strain Gauge Settings - HORIZONTAL IN TENSION

Gauge factor	1.10
$5 \mathrm{lbs}=$	1020 micro-inches $/$ inch

Plant Type - Euonymus

Plant Height (in) - 8
Stem to First Branch (in) -
Stem Diameter (in) - $\quad 0.25$
Number of Stems - 2
Number of branches - 9

Number of leaves -	90
Leaf Thickness (in) -	
Leaf Width (in) -	1.5
Leaf Length (in) -	2
Avg. Branch Diameter (in) -	
Height of effective leave area (in) -	8
Width of effective leave area (in) -	10

	micro-inches/inch			Force
	Around Stem	Force	With String	
Average force required to pull the topmost part of stem horizontal -	30	0.147	NA	NA
Average force required to pull the center of stem 45 degrees -	110	0.539	NA	NA
****** Deflection From Vertical (in) -				
Average force required to pull the center of stem horizontal -	NA	NA	NA	NA

DRAG AND VELOCITY DATA

Run\#	Deflection (deg - horiz)	DRAG AND VELOCII Y DAI					
		With Leaves			Without Leaves		
		Counter	Time (sec)	Strain	Counter	Time (sec)	Strain
1		40	30	19	33	30	15
2		54	30	36	52	30	20
3		89	30	66	63	30	34
4		102	30	72	78	30	46
5		119	30	102	103	30	74
6		136	30	102	116	30	89
7		138	30	104	134	30	100
8		158	30	110	154	30	109
9		161	30	115	160	30	110
10		169	30	120	NA	30	NA

Additional Notes -

Analysis Euonymus

Run \#	With Leaves	
	Velocity (ft/sec)	Drag Force (lbs)
1	1.13	0.093
2	1.52	0.176
3	2.48	0.324
4	2.84	0.353
5	3.31	0.500
6	3.78	0.500
7	3.84	0.510
8	4.39	0.539
9	4.47	0.564
10	4.69	0.588
Drag force (lbs) at $2 \mathrm{ft} / \mathrm{sec}$	0.250	

Without Leaves

Velocity (ft/sec)	Drag Force (lbs)
0.94	0.074
1.46	0.098
1.77	0.167
2.18	0.225
2.87	0.363
3.23	0.436
3.73	0.490
4.28	0.534
4.44	0.539
NA	NA

Velocity vs. Drag Force

 Euonymus

- Leaves - No leaves

Plant Parameters		Date -	$7-10-94$
Prop\#-	84574	Run -	$3-1$

NOTE: Plant data collected with the strain gauge set in tension and held horizontal Flume data obtained with strain gauge set in compression.
Strain Gauge Settings - HORZONTAL IN TENSION

Gauge factor	1.10
$5 \mathrm{lbs}=$	1020 micro-inches $/$ inch

Plant Type - Dogwood 3-1
Plant Height (in) - 20
Stem to First Branch (in) -
Stem Diameter (in) - $\quad 0.4375$
Number of Stems - 1
Number of branches - 9

					micro-inches/inch				Force
					Around Stem		Force	With String	
Average force required to pull the topmost part of stem horizontal -					90		0.441	NA	NA
Average force required to pull the center of stem 45 degrees ****** Deflection From Vertical (in) -					128		0.627	NA	NA
Average force required to pull the center of stem horizontal -					NA		NA	NA	NA
DRAG AND VELOCITY DATA									
	Deflection		With Leaves			thout Leave			
Run \#	(deg - horiz)	Counter	Time (sec)	Strain	Counter T	Time (sec)	Strain		
1		56	30	40	77	30	32		
2		82	30	64	88	30	42		
3		87	30	70	104	30	52		
4		97	30	76	124	30	56		
5		106	30	89	154	30	58		
6		126	30	98	NA	30	NA		
7		152	30	102	NA	30	NA		
8		NA	30	NA	NA	30	NA		
9		NA	30	NA	NA	30	NA		
10		NA	30	NA	NA	30	NA		

Force NA NA
Lerlin 45
Leaf Thickness (in) -
Leaf Width (in) - 2
Leaf Length (in) - 3
Avg. Branch Diameter (in) -
Height of effective leave area (in) - 13
Width of effective leave area (in) - $\quad 10$

Additional Notes -

	With Leaves		Without Leaves	
Run \#	Velocity (ft/sec)	Drag Force (lbs)	Velocity (ft/sec)	Drag Force (lbs)
1	1.57	0.196	2.15	0.157
2	2.29	0.314	2.46	0.206
3	2.43	0.343	2.90	0.255
4	2.70	0.373	3.45	0.275
5	2.95	0.436	4.28	0.284
6	3.50	0.480	NA	NA
7	4.22	0.500	NA	NA
8	NA	NA	NA	NA
9	NA	NA	NA	NA
10	NA	NA	NA	NA
Drag force (lbs) at $2 \mathrm{ft} / \mathrm{sec}$	0.266			

Velocity vs. Drag Force Dogwood - Run 3-1

APPENDIX C

COMPOUND FLOOD CHANNEL; ANALYSIS AND EXAMPLE

The following is a discussion for computing the flow for a compound flood channel. The two methods of flow conveyance and equivalent resistance (section 3-5, Equations 10 and 12) are compared. The objective of this exercise is to demonstrate the effect of the large resistance values of vegetation found in this study. Figure 16 shows the typical cross section for a compound flood channel used in this example and comparison. A discussion of the methodology to locate cross sections and to select subsections follows.

Figure 16 Cross section of a hypothetical channel and flood plains.

Jarrett (1985) lists six criteria for locating cross sections.

1. The cross sections need to be located at major changes in bed or watersurface profiles. If old flood profiles are available, they can be used to locate the breaks in water-surface profiles.
2. The cross sections need to be placed at points of minimum and maximum cross-sectional area, width, or depth. The number of cross sections needs to be greater in expanding reaches and in bends to minimize the relative degree of expansion between cross sections and leave the individual subreaches more nearly uniform.
3. The number of cross sections needs to be greater in reaches that have moderate to severe changes in cross-section shape, even though the total areas may differ only slightly from each other. An example would be sections that change shape from just a main channel to a main channel with overbank flow.
4. The cross sections need to be located at abrupt changes in roughness characteristics, for example, where the flood plain is heavily vegetated in
one subreach, but has been cleared and cultivated in the adjacent subreach. The use of a cross section twice, in close proximity and with different roughness values, must suffice for the present to evaluate the frictional losses.
5. The cross sections need to be located at control sections if critical or supercritical flow conditions exist. These controls include natural and manmade weirs, check dams, rock walls, fences, and severe obstructions.
6. The cross sections need to be located at tributaries where changes in discharge are anticipated. The exact placement of the cross sections varies, depending on the method of analysis and program requirements.

Resistance coefficients apply to individual cross sections, but they must also be typical of the reach of channel that the cross section resides in. If the resistance is not uniform throughout a reach, the average resistance may be used instead. A reach that applies to one cross section is considered to extend halfway to the next cross section. When several discharges are to be analyzed, the reach lengths may need to be increased or decreased so that uniform conditions can be maintained.

Once the cross section has been located, it needs to be subdivided into subsections. As with the reach of channel, the cross section must satisfy the criteria for uniform flow for the whole width of the cross section. Therefore, it will need to be divided into subsections so that the resistance is fairly uniform and the velocity is basically uniform. This applies to the main channel (Arcement and Schneider, 1989) as well as the flood plain. Subdivisions are made at major changes in channel geometry and changes in the roughness. If the resistance is fairly constant throughout the main channel it will not need subdividing, however, this will not likely be the case with a natural flood plain with vegetation.

Subdivisions should be made where changes in vegetation, average plant height, average plant spacing, average stem diameter, or changes in combinations of these occur. The average of these parameters is used since vegetation is very nonuniform and these parameters vary from plant to plant. Also, changes should be
made where the landscape changes and becomes dominated by trees (Arcement and Schneider, 1989). Where trees are dominant, subdivisions should also be made when vegetation on the ground surface changes by the same vegetative parameters as cited above.

The hydraulic parameter that needs to be known is the slope of the energy grade line. Since the slope is assumed to be constant throughout the main channel and its flood plains, the slope can be approximated as the slope of the flood plains adjacent to the main channel.

EXAMPLE FOR DEVELOPING STAGE-DISCHARGE RELATIONSHIP

To develop the following example, a the hypothetical channel shown in Figure 16 will be used. The main channel is trapezoidal in shape and the subdivisions are as shown. Typical values will be used and all measurements will be in English units, and a typical energy slope of .001 will be selected. The plant parameters for the flood plains and Manning's n coefficients for the main channel and the soil type of the flood plains as follows:

Table 5. Plant parameters and Manning's roughnesses for a channel and its flood plains.

$\begin{gathered} \text { Section } \\ \# \end{gathered}$	$\begin{aligned} & \mathrm{H}^{\prime} \\ & \text { (ft) } \end{aligned}$	Ps (ft)	Sd (ft)	$\mathrm{Ps} / \mathrm{H}^{\prime}$	$\mathrm{Sd} / \mathrm{H}^{+}$	$\begin{gathered} \mathrm{n} \\ \text { bed } \end{gathered}$
4	0.83	0.80	. 020	0.96	0.024	. 020
-3	1.75	1.80	. 031	1.03	0.018	. 020
-2	3.33	3.20	. 105	0.96	0.032	. 020
-1	---	---	---	---	---	. 023
0	---	---	---	---	---	. 025
1	---	\cdots	---	\cdots	---	. 024
2	3.17	3.00	. 100	0.95	0.032	. 020
3	2.33	2.04	. 051	0.88	0.022	. 020
4	1.75	1.70	. 031	0.91	0.018	. 020
5	0.67	0.90	. 021	1.34	0.031	. 020

The main channel is assumed to be free of vegetation, so the resistance of the man channel is just the bed roughness. Using Manning's n, the hydraulic radius is calculated and with a knowledge of the channel geometry, the area and depth of the subsection can be determined. With this depth, the water surface elevation for the entire channel is calculated and fixed at $1,103 \mathrm{ft}$. The discharge can be calculated by multiplying the velocity and the area.

Next, a guess is made for the velocity of an adjoining section and all calculations are made, as described for the main section. The exceptions are, that, if the calculated water-surface elevation is different than the water-surface elevation that is fixed by calculations from the main channel, a new guess for the velocity must be made and all steps repeated. Also, $n_{\text {veg }}$ must be calculated for the sections within the flood plains and added to the bed values determined there.

With all these calculations made, the discharges for each section can be summed and the total discharge for that water surface elevation can be obtained.

The results of these steps are shown in Table 6 below.
Table 6. Table of Calculations to Demonstrate the Conveyance Method.

Section $\#$	V (fps)	\mathbf{n} (veg)	\mathbf{n} $($ total $)$	R (ft)	A $\left(\mathrm{ft}^{2}\right)$	Depth (ft)	W.S.Elev (ft)	Q (cfs)
-4	1.5	0.039	0.059	2.56	560	3.0	1,103	840
-3	3.0	0.020	0.040	4.01	1135	4.0	1,103	3,405
-2	5.0	0.040	0.060	16.10	2005	5.5	1,103	10,025
-1	15.0	\ldots	0.023	19.89	3010	15.0	1,103	45,150
0	19.0	-	0.025	32.14	4605	20.0	1,103	87,495
1	15.0	$-\ldots$	0.024	21.20	3285	15.0	1,103	49,275
2	5.0	0.040	0.060	15.95	2870	4.5	1,103	14,350
3	4.0	0.026	0.046	7.65	1965	4.0	1,103	7,860
4	3.0	0.021	0.041	4.17	1390	3.5	1,103	4,170
5	2.0	0.037	0.057	3.78	1340	3.0	1,103	2,680

By summing up the discharges for each subsection, the conveyance method calculates the total discharge of the channel is $225,250 \mathrm{cfs}$.

Finally, this same example will be solved to illustrate using an equivalent roughness which is based on the assumption that each subarea has the same mean velocity. This method proceeds the same as the equivalent roughness method just presented, except that equation (13) will be used instead of equation (15) to solve for the equivalent roughness. Table 7 shows the results below.

Table 7. Table of Calculations to Demonstrate The Equivalent Resistance Method

Section $\#$	V (fps)	n (veg)	n $($ total $)$	R (ft)	A $\left(\mathrm{ft}^{2}\right)$	P (ft)	Depth (ft)	W.S.Elev (ft)
-4	1.5	0.039	0.059	2.56	560	219.1	3.0	1103
-3	3.0	0.020	0.040	4.01	1,135	282.7	4.0	11.3
-2	5.0	0.040	0.060	16.10	2,005	124.5	5.5	1103
-1	15.0	-	0.023	19.89	3,010	151.3	15.0	1103
0	19.0	\cdots	0.025	32.14	4,605	143.3	20.0	1103
1	15.0	-	0.024	21.20	3,285	154.9	15.0	1103
2	5.0	0.040	0.060	15.95	2,870	179.9	4.5	1103
3	4.0	0.026	0.046	7.65	1,965	256.8	4.0	1103
4	3.0	0.021	0.041	4.17	1,390	333.3	3.5	1103
5	2.0	0.037	0.057	3.78	1,340	354.2	3.0	1103

The equivalent roughness coefficient is .0457 and solving Manning's equation for discharge gives a total discharge of $106,309 \mathrm{cfs}$ for the entire channel at this water-surface elevation. The average velocity for the entire channel, as used by Chow's first method, is 4.8 feet per second. The equivalent resistance method assumes a constant velocity for all subsections. This method calculated a flow of $106,309 \mathrm{cfs}$. The conveyance method which does not have to assume a constant
velocity, calculated twice the flow of $225,250 \mathrm{cfs}$. The equivalent resistance method under predicts the channel flow because it proportions too large of flow in the flood plain and too small of flow in the main channel.

