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ABSTRACT 

A probabilistic river water quality model is 
developed with the capability of determining the 
joint and marginal probability density function of 
biochemical oxygen demand (BOD) and dissolved oxygen 
(DO) at any point in a river. The one dimensional 
steady-state model can be applied to a river system 
with any reasonable number of point loads and diver­
sions and lateral surface and subsurface inflow. The 
model can simultaneously consider randomness in the 
initial conditions, inputs, and coefficients of the 
water quality equations. Any empirical or known 
distribution can be used for the initial condition. 
The randomness in the water quality equation inputs 
and coefficients is modeled as a Gaussian white noise 
process. The joint probability density function (pdf) 
of BOD and DO is determined by numerically solving 
the Fokker-Plank equation. Moment equations are 
developed which allow the mean and variance of the 
marginal distribution of BOD and DO to be calculated 
independently of the joint pdf. An upper limit on 
the coefficient noise variance parameter is presented 
for which the BOD-DO covariance matrix will be 
asymptotically stable. 

The probabilistic river water quality model is 
applied to two problems, a sensitivity problem and 
a hypothetical problem. The sensitivity problem is 
used to gain familiarity with the simulation model 
and determine the sensitivity of the model responses 
to changes in the standard deviation parameter of the 
input and coefficient noise. The standard deviation 

iii 

parameter of the input noise is varied between zero 
and 30 percent of the respective input, while the 
standard deviation parameter of the coefficient 
noise is varied between zero and 50 percent of the 
respective coefficient. The model responses are 
found to be fairly sensitive to changes in the 
standard deviation parameter of the coefficient 
noise but relatively insensitive to changes in the 
standard deviation parameter of the input noise. 
The possibility of using the moment equations and 
a normal approximation in lieu of calculating the 
joint pdf of BOD and DO is discussed. The accuracy 
of the numerical solution technique for the Fokker­
Plank equation is also discussed. 

The hypothetical problem is used to evaluate 
the performance of the model in simulating a more 
complex river system (which included two point 
loads) and to evaluate the numerical quadrature 
algorithm used to determine the joint pdf of BOD 
and DO immediately downstream of a point load. The 
numerical solution technique used to determine the 
joint pdf of BOD and DO remained stable throughout 
the simulation and the computational costs are 
judged to be reasonable for a problem of this 
complexity. The quadrature algorithm was judged 
to have performed adequately for both the point 
loads. 
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CHAPTER I 

INTRODUCTION 

Background 

In recent years, mathematical water quality 
models have been developed to simulate the chemical, 
physical, and biological interactions occurring in 
river water. These river models have been used to 
identify important instream processes affecting river 
water quality, to predict the impact of future 
development schemes on river water quality, to 
evaluate alternative pollution control strategies 
for improving river water quality, and for fore­
casting water quality for real time control applica­
tions. The entire model development and application 
process is most commonly approached without explicit 
consideration of the effects of uncertainties on the 
reliability of model predictions. Model predictions 
are used as a basis for planning and management 
studies which lead to costly investments in pollution 
control which might be significantly altered if the 
reliability of model predictions were considered. 

The practitioner who uses a river model is faced 
with a task such as the selection of an effective 
pollution control strategy which will reduce the risk 
of failing to meet stream or effluent standards to 
an acceptably low probability. Two types of informa­
tion are needed before this selection can be made: 
1) probability distributions describing the errors 
in the estimate of the concentrations of water quality 
constituents obtained from a river model, and 2) data 
on the economic and other types of consequences 
resulting from failure to meet stream or effluent 
standards. By combining these probability distribu­
tions and damage functions, optimal strategies, which 
minimize the expected value of the consequences of 
errors in model predictions, can be developed. 
However, few currently available river models have 
the capability for providing probabilistic output 
and of those that do only selected types of uncertain­
ties are considered. The work described in this 
report is the latest in a series of studies performed 
at the Utah I~ater Research Laboratory (UWRL) to 
develop methods for obtaining estimates of the 
reliability of predictions from river water quality 
models. The remainder of this background section 
will be directed to a discussion of the propagation 
of uncertainties in a river quality model and a 
brief survey of previous UWRL work which has led up 
to this study. 

Typically river quality models are deterministic 
in nature in that they provide a single set of model 
responses for each set of inputs. Blind use of 
deterministic models implies that there is sufficient 
information available to be "certain" in making 
predictions of water quality. In fact, some level 
of uncertainty is always associated with using a 
mathematical model to predict the outcome of a 
natural process. The reasons for uncertainty in 
model predictions are varied and are represented 

schematically in Figure 1.1 which is discussed below. 

The mathematical structure of the model 
imperfectly represents the real world phySical 
relationships either because the processes are 
not completely understood or because a complicated 
representation is too costly to implement and 
therefore simplifications must be made. Even if 
the model structure could be perfect, some uncer­
tainty would result from the inherent variability 
and randomness in natural processes, most of which 
can be attributed to the atmosphere as a primary 
source [Yevyevich 1971]. 

Uncertainty in model structure affects the 
calibration stage of modeling in which values are 
assigned to model parameters. Initial parameter 
estimates based on prior experience or laboratory 
studies are modified so that the model reproduces 
measured val ues reasonably well. Inadequacies 
in the model structure are, in part, compensated 
for by adjusting the parameters to maximize some 
goodness-of-fit criterion within the constraints 
of the given model structure. Final, or a posterior, 
parameter estimates are also affected by uncertainty 
in the measurements which may take the form of 
unrepresentativeness, measurement errors, or 
incompleteness. Data may be unrepresentative of 
simplifying assumptions made at the model building 
stage, for example, steady-state conditions or 
completely mixed conditions at each stream cross­
section. Measurement errors arise from sampling 
error, instrumentation noise, analytical error, 
and data transmission errors. Also data are 
incomplete in the sense that not all variables are 
measured, and for those that are measured, the 
period of data is of finite length and the data 

_ilreRQLc_@tJrlLlo_uLWHb~esp.ecLto-ej t her time 0 r 
space. 

Model prediction errors result from several 
sourceS: imperfect model structure, parameter 
estimation errors, numerical solution errors, and 
uncertainty in initial conditions and model inputs. 
In addition, estimation theory, and most forecast 
models, use measurements of the state variables 
to correct or update model predictions; and 
therefore, prediction errors are also influenced 
by uncertainty in these measurements. Initial 
conditions and inputs are uncertain due to model 
structure simplifications such as the assumption 
of steady-state conditions. Also they are 
uncertain because of uncertainty in estimating 
future loadings (model inputs) which are based on 
a water use projection and future waste water 
technologies. 

The first attempt by UWRL to include estimates 
of prediction reliability in a river water quality 
model was reported by BowZes and Grenney [1978a]. 
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Figure 1.1. Flow of uncertainties in the water quality model ing process. 

They used estimation theory in the form of an extended 
Kalman filter (EKF) which was applied to a steady-state 
model of BOD-DO and nitrogen cycling in the Jordon 
Ri ver; Utah. The EKF provi des a framework for com­
bining measured values of constituent concentrations 
with model estimates of these concentrations in such 
a way that approximate minimum variance estimates of 
the true concentrations are obtained together with the 
estimation errors representing the reliability of 
the concentration estimates based on uncertainties in 
both the measurements and the model structure. A 
limitation of the EKF is that it always requires 
measurements on the river system. Thus it is a 
useful approach for real time forecasting and control 
but not for prediction of system performance under 
alternative control strategies for which no measure­
ments on the prototype system are available because 
to obtain them would require implementing the very 
control strategies which are under consideration and 
therefore woul d remove the advantage of model ing 
through testing the system response without altering 
the prototYpe itself. Other uses of the EKF are 
model structure identification and model calibration. 
Bowles and Grenney [1978bJ used the same EKF model 
to simultaneously estimate some model parameters. 
Bowles and Beak [1979J have demonstrated the use of 
two interacting linear Kalman filters for estimating 
both the water quality concentrations and the model 
parameters in the River Cam, England. This approach 
considers uncertainties in the measurements, the 
model structure, and the model parameters. However, 
the approach is unsuitable for the prediction problem 
for the same reasons as stated above for the EKF. 

2 

Malone et aZ. [1979J demonstrated the 
feasibility of applying several stochastic techni­
ques to linear water quality models. The Monte 
Carlo, First-Order Analysis, and Generation of 
Moment Equations techniques were used in a long­
term phosphorus model of Lake Washington. Only 
the effects of uncertainty in the phosphorus 
loading were examined. Malone et al. [1979J also 
applied the Generation of Moment Equations technique 
to a conservative steady-state salinity model of 
the Colorado River system. In this application 
two types of uncertainty were considered: 1) esti­
mation error associated with the steady-state , 
values of salinity loading, and 2) estimation error 
associated with salinity loading from irrigated 
lands. Therefore, both the Lake Washington and 
Colorado River studies considered only the effects 
on model responses of the uncertainty in input 
loading. An additional limitation of the Colorado 
River study is that it was restricted to conserva­
tive substances. However, the work by Malone et al. 
did not require measurements on the prototype 
system under each condition to be modeled and 
therefore is suitable for predictive purposes. 

The work reported herein is directed to 
broadening the scope of steady-state probabilistic 
water quality models suitable for predictive 
purposes to include uncertainties present in model 
inputs, parameters, and initial conditions. This 
invol ves transforming the differential equations 
describing the water quality system from determinis­
tic to random or stochastic and provides an 



Table 1.1. Comparison of sources of uncertainty treated in UWRL work. 

Source of 
Uncerta inty 

Reference 

Bowles and Grenney 
[1978a] 

Bowles and Grenney 
["j978bJ 

Bowles and Beak 
[1979 J 

Malone et al. 
[1979 ] 

Finneli. et al. 
[1979 J 

Inputs Initial Conditions 

x 

x 

x 

x 

x x 

indication of the range over which model predictions 
are likely to vary due to the types of uncertainties 
considered. The type of random differential equation 
used in this work is the Ito equation which is also 
the basis for the system model in the Kalman filter. 

Table 1.1 compares the sources of uncertainty 
that have been· treated in the various UI-.If{L studies. 
The first three studies [Bowles and Grenney 1978a, b, 
and Bowles and Beek 1979J utilize estimation theory 
and are suitable for model identification, model cali­
bration, and real time applications for which measure­
ments on at least some of the state variables are 
available. The current work and that by Malone et al. 
[1979J are suitable for off-line predictive applica­
tions for which measurements on the state variables 
are not available. 

Objective 

The overall objective of this study is to attempt 
application of random differential equations to river 
water quality modeling and to evaluate the results. 
To achieve this objective, a model is developed to 
represent two water quality constituents, biochemical 
oxygen demand (BOD) and dissolved oxygen (DO). A 
system of random differential equations is used to 
simulate river water quality in the spatial dimension 
(i.e., under steady-state conditions). The equations 
allow the simultaneous consideration of random 
initial conditions, random inputs, and random model 
coefficients. The joint probability density of the 
two quality constituents is determined. The model 
is applied to a river system for testing and evalua­
tion. The sensitivity of the joint probability 
density to input and coefficient randomness is 
investigated. 
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Parameter Estimates Mode 1 Structure Measurements 

x x 

x x x 

x x x 

x 

Summary of Contents 

A review of river water quality models in 
which the state variables (quality constituents) 
are treated as random variables is presented in 
Chapter II. The models are classified by the 
manner in which the randomness is represented and 
the techniques used to determine the distributional 
properties of the state variables. 

A detailed description of the probabilistic 
water quality simulation model developed as part 
of this study is presented in Chapter III. Sections 
on river system layout, program procedure, water 
balance equation, and water quality equations are 
included. The numerical aspects of the model are 
also described. 

Application of the probabilistic river water 
quality model is described in Chapter IV. To gain 
familiarity with the model, it is first applied to 
a sensitivity problem. The sensitivity of the 
model responses to several input parameters is 
investigated. The results of the model application 
to a hypothetical river system are then presented. 
A section on computational requirements of the 
model is also included. 

A summary of the research accomplished in this 
study is contained in Chapter V. In addition, 
several conclusions and recommendations for 
further work are made. 

Data input formats, a program listing for the 
probabilistic river water quality model (PSSAM), and 
an example computer printout of the model applica­
tion are available at a nominal charge by writing 
to: The Librarian, Utah Water Research Laboratory, 
College of Engineering, Utah State University, 
UMC 82, Logan, Utah 84322. 



CHAPTER II 

LITERATURE REVIEW 

According to Morse [1978], mathematical modeling 
of physical systems is in transition from a deter­
ministic toward a nondeterministic (random) philosophy. 
He concluded that this trend was the result of the 
scarcity and cost of real-world data, skepticism over 
the data which are available, and attempts by 
researchers to introduce more natural formulations to 
physical and biological sciences problems. While 
most of the water quality models currently in use are 
deterministic (for example, Qual II, Environmental 
Dynamics, Inc. [1971]; SSAM, Grenney and Porcella 
[1975]; Bowles et al. [1975]; and HEC [1979]), a 
number of models have been proposed in recent years 
which treat the water quality constituents as random 
variables. The main differences in these models are 
the types of randomness which are treated, and the 
solution process used to solve the resulting random 
equations. 

Probabilistic Water Quality t10dels 

The following discussion covers all types of 
probabilistic water quality models except those that 
use Ito differential equations. The models using 
Ito differential equations will be discussed in the 
next section. 

Loucks and Lynn [1966] proposed a model that 
predicts the probability density of biochemical oxygen 
demand (BOO) and dissolved oxygen (DO) in a stream 
with time varying flow. Loucks and Lynn modeled the 
daily streamflow using a discrete first order Markov 
chain. In the most flexible of their four models, 
the daily flow from a point load (source of BOD) was 
correlated with the daily streamflow and the previous 
day's flow. A conditional probability distribution 
for BOD was associated with each stream and point 
load flow. The concentrations of BOD in the stream 
and point load were assumed to be independent of 
each other. 

Thayer and Krutchkoff [1967] developed a random 
model for BOD and DO in unsegmented streams. The 
Thayer and Krutchkoff model was a discrete time model. 
The BOD and DO concentrations were also discretized, 
with the time n introduced to represent the optimum 
unit size. A change of size n cDnstituted a change 
of one "state." By assuming that the probabil ity of 
a change of state followed a birth-death process, 
Thayer and Krutchkoff were able to derive the proba­
bility distribution of BOD and DO at any point down­
stream of a point load provided the process coeffi­
cients and initial conditions were assumed constant. 

Moushegain and Krutchkoff [1969] extended the 
Thayer and Krutchkoff model to permit segmentation of 
the stream. They assumed that probability output 
from one segment could be used as the initial condition 
for the next segment. Although this was a crude 
approximation which neglected the effect of the spatial 
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probabil ity distribution of BOD and DO, Moushegain 
and Krutchkoff reported it worked quite well. 

Custer and Krutchkoff [1969J extended the 
Thayer and Krutchkoff model to estuaries. The 
random nature of diffusion in an estuary was 
represented by a random walk process. This model 
was later modified by Stochastics Incorporated 
[1971] to include random diffuse loading. 

Mehta et al. [1975] used Autoregressive 
Integrated Moving Average (ARIMA) models to 
describe the random nature of a water quality time 
series. The time series included daily measurements 
of streamflow, water temperature, BOD, and DO. With 
the exception of BOD, the ARIMA models provided 
satisfactory results. Although Mehta et al. did 
not generate the probability distribution of the 
stream parameters (flow and temperature) and 
quality constituents (BOD and DO), they could have 
done so by Monte Carlo simulation. 

Monte Carlo simul ation can be thought of as 
"synthetic sampling." Repeated application of a 
deterministic simulation model using initial 
conditions, inputs, and coefficients randomly 
selected from their probability distribution are 
used to produce an ensemble of synthetic time 
series which can then be analyzed to define the 
statistical characteristics of the system response. 

A number of researchers have used Monte 
Carlo simulation in water quality modeling. Brut­
saert [1975] determined the cumulative probability 
density function of the location and the numerical 
value of the maximum dissolved oxygen deficit (DOD) 
for a hypothetical stream using Monte Carlo 
sampling. Initial conditions, flow, and BOD and DO 
reaction rate coefficients were assumed to be 
triangularly distributed random variables. 

Kothandaraman and EWing [1969] performed a 
study similar to Brutseart's although they only 
considered randomness in the BOD and DO reaction 
rate coefficients. Using data from the Ohio River, 
Kothandaraman and EWing determined that the BOD 
first-order decay rate and the reaeration rate had 
a distribution that was approximately normal. 
Assuming that these reaction rate coefficients were 
indeed normally distributed, a DOD profile of the 
Ohio River was obtained for 200 synthetic samples 
using Monte Carlo simulation. The most probable 
value (mode) of the resulting distribution of DOD 
compared favorably with the measured data. 

In a similar study, Esen and Bennet [1971] also 
used Monte Carlo simulation to determine the DOD 
distribution in a stream. The BOD first-order decay 
rate and the DO reaeration rate coefficients were 
modeled with a random walk process. The model had 



the advantage of considering the changes in the mean 
and variances of these coefficients with travel time. 

Shih [1975] investigated the use of Monte Carlo 
simulation for regional water quality control. A 
water quality model which allowed random stream flow 
and random point load flow and effluent concentration 
was linked with a chance-constrained quadratic 
programming optimization model. The optimization 
model determined maximum allowable point load 
effluent levels subject to the DO standard being 
maintained in the river. 

Whitehead and Young [1979] applied Monte Carlo 
simulation to a dynamic, stochastic model of river 
water quality. Using a daily timestep, with random 
stream flows, point load flow and effluent quality, 
and reaction rate coefficients, BOD and DO profiles 
for 185 summer seasons were generated. The observed 
and forecast BOD and DO cumulative probability 
distributions showed excellent agreement. 

Two major issues must be resolved when the Monte 
Carlo simulation technique is used: 1) generation 
of random numbers from a desired distribution, and 
2) estimation of the required sample size. Matone 
et d. [1979] concl uded that although the Monte 
Carlo technique is flexible and conceptually simple, 
it often requires a great deal of computer time to 
generate the sample size required to assure reasonably 
accurate estimates of the probability density function 
of the system's response. 

DiTopo and O'Connor [1969] considered the effects 
of two types of time variable flow on the BOD and DO 
probability distributions in a stream. The first 
type of variable flow considered had an arbitrary 
but known (deterministic) time variation. By 
introducing the concept of release time, the time 
T(X,t) at which the slug of water being observed at 
point x at time t had previously been released at 
point x 0, the classical Streeter Phelps BOD-DO 
equations could be solved for time varying flow. 
DiTopo.and O'Connor then considered streamflow to be 
composed of a deterministic and a random component. 
By assuming a Gaussian normal distribution with zero 
mean for the random component of flow, they were able 
to solve for the mean and variance of the BOD and DO 
concentrations using first-order uncertainty analysis. 

The two major components of first-order analysis 
are: 1) first-order approximation of the functional 
relationship between variables, and 2) definition of 
the random component of a variable solely by its 
variance [Cornett 1972]. First-order uncertainty 
analysis only provides estimates of the mean of the 
random state variable and variance for nonlinear 
functional relationships which, with the exception of 
the normal distribution, do not define the entire 
probability distribution. Furthermore, Burgess and 
Lettenmaier [1975] state that the analysis is only 
approximately correct if the variance is small 
compared to the mean. For linear functional relation­
ships, the mean and variance determined by first-order 
analysis are exact., Researchers who have used first­
order uncertainty analysis in water quality models 
include Thomann [1967], Chamberlain et al. [1974], 
and Burges and Lettenmaier [1975]. 

Chambertain et al. and Burges and Lettenmaier 
proposed models to estimate the mean and standard 
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deviation of BOD and DO resulting from a Single point 
load in streams where the initial concentration 
of BOD and DO and the stream velocity were assumed 
to be normally distributed random variables. 
Burges and Lettenmaier also considered the reaction 
rate coefficients to be normally distributed random 
variables. A Monte Carlo simulation used for 
comparison purposes showed nearly identical results 
as those from the first-order analysis model near 
the point load. The BOD and DO probability distri­
butions determined by their first-order analysis 
model, however, were shown to be increasing as the 
distance from the point load increased. Burges and 
Lettenmaier determined that the skew in the distri­
butions of both BOD and DO, which increased as a 
function of distance downstream of the point load, 
was responsible for the error. 

Another method for determining the mean and 
variance of a water quality parameter was explored 
by Mopse [1978]. Using a random forcing function 
(input) and random initial conditions, a determinis­
tic stream temperature equation was recast as a 
random nonlinear Voltera integral equation. Morse 
claimed that this model offers the possibility of 
a temperature forecast more "honest" than deter­
ministic models can provide because it predicts a 
temperature distribution instead of a single value. 

In a series of articles by Padgett [1975], 
Padgett and Durham [1976J. and Padgett et al. [1977], 
a stochastic model for BOD and DO in streams is 
presented. The model assumes that the initial 
condition and point and diffuse load inputs of BOD 
and DO are random variables. The model is unique 
in that the joint and marginal probability density 
functions of BOD and DO can be determined at any 
location in the stream for any assumed distribution 
(gamma, binomial, normal, etc.) of the random 
variables. 

Probabilistic \~ater Quality Models 
Using Ito Differential Equations 

First-order differential equations have been 
found to give an adequate representation of water 
quality in many river studies. A special class of 
random differential equations which has found 
application in water quality modeling is the Ito 
differential equation. This is a first-order 
random differential equation in which the rate of 
change with respect to time of the ,vector of water 
quality concentrations, x(t), is a function of a 
deterministic component and a random component 
comprising Gaussian white noise processes. The 
Ito differential equation has the form: 

~(t) t(~(t), t) + G(~(t), t)~(t), t e T 
(2.1) 

where x(t) is an n-dimensional vector of water 
quality constituent concentrations treated as 
random variables, [(x(t), t) is an n-dimensional 
deterministic vector-function, W(t) is an m­
dimensional vector random process whose components 
are white noise, G(x(t), t) is an n x m matrix 
function, and !o is-independent of ~(t), t E T. 

Jazwinski [1970] defines a white noise process 
{w , t 6' T} as a Markov process for which 
-t 



p(w Iw ) = P(W ), t > T e T 
-t _T -t (2.2) 

(Read the probability of Wt given WT equals the 
probability of Wt ). That is, the Wt'S are mutually 
independent at all t e T. As a result, knowing the 
realization of wT in no way helps in predicting what 
Wt will be. A white noise process is completely 
random or totally unpredictable. If the Wt'S are 
normally distributed for each t e T, then the process 
is a white Gaussian noise process. Because the process 
is Gaussian, its probability density is specified by 
the mean value vector 

E [!:'t] : Q 
and the covariance matrix 

(2.3) 

where Q(t) is the covariance matrix of wand a(t - T) 
is the Dirac delta function (unity at t-: T, zero 
otherwise) . 

Unfortunately, the white noise process is about 
the "worst behaved" process imaginable [Schuleppe 
1973]. For fixed t, it is a zero mean random vector 
with an infinite covariance matrix. It is not 
continuous anywhere and it does not exist in any 
physical sense. White noise process models are used 
because powerful techniques exist for obtaining the 
solution of the process generated by Equation 2.1. 
In many situations their use can be justified because 
their effects are approximately the same as those of 
physical processes when they pass through the same 
system. Schuleppe [1973] argues that although a white 
noise process is only an approximation, all mathema­
tical models are really only approximate representa­
tions of the real world. 

BowZes et at. [1977], KOivo et aZ. [1976], and 
Moore et aZ. [1976] used Gaussian white noise processes 
in applying estimation theory to water quality 
modeling. All three models considered propagation of 
prediction uncertainty due to initial condition, model 
measurement uncertainty, each represented by Gaussian 
white noise processes. BowZes et at. and Koivo et aZ. 
estimated not only the state of the systems (i.e., 
means and variance of the water quality variables), 
but also demonstrated the usefulness of estimation 
theory in providing estimates of uncertain process 
model coefficients. Moore et aZ. demonstrated the 
sampling design capabilities of estimation theory. 

Harris [1976] and Harris [1977] applied a first­
order Monte Carlo simulation algorithm for multivaria­
ble nonlinear stochastic integral equations to deter­
mine the mean and variance of BOD and DO in a stream. 
The algorithm assumes that the uncertainty in flow 
rate and point load inputs to the system are Gaussian 
white noise processes. Harris compared the results 
from 5,000 simulated sequences of a four state 
stochastic differential system with theoretically 
known results and found that the sample means and 
covariances were indistinguishable. It appears that 
Harris' algorithm requires the same amount of 
computational effort as a simple Monte Carlo simula­
tion. 

and 
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MaZone et at. [1979J demonstrated that two 
techniques, first-order analysis and generation of 
moments equations, provide exact estimates of the 
means and covariances for systems of linear Ito 
differential equations (white noise inputs only) at 
a fraction of the computational effort required 
for Monte Carlo simulation. The generation of 
moments technique, which allows direct calculation 
of the distributional moments of the state variables, 
was preferred over the first-order analysis by 
MaZone et al., because the functional relationships 
between variables must be differentiable to use 
first-order analysis, not a requirement with the 
generation of moments technique. The discrete time 
formulation of the generation of moments technique 
used by Malone et aZ. in modeling the cycling of 
phosphorus in Lake l~ashington was also used by 
Morse et al. [1976J. 

There is little disagreement that the initial 
conditions, inputs, and reaction rate coefficients 
of the aquatic processes are random variables. 
There appears, however, to be some question as to 
relative importance of the randomness in the 
reaction rate coefficients in the resulting 
probability density function of the state variables. 
Whitehead and Young [1979] found BOD and DO 
predictions insensitive to coefficient variability 
provided the variability was within the error 
bounds defined by an estimation algorithm. Kothan­
daraman and Ewing [1969J and Burges and Lettenmaier 
[1975] found the probabil ity distribution of BOD 
and DO to be very sensitive to uncertainty in the 
first-order BOD decay rate and the DO reaeration 
rate coefficients. Yu [1972] found the cost of 
upgrading sewage treatment plants discharging to 
a river necessary to meet instream DO standards 
to be extremely sensitive to the DO reaeration rate. 

Most probabilistic water quality models do 
not have the capability to consider the reaction 
rate coefficients as random variables. The 
difficulty in obtaining solutions to differential 
equations with random coefficients as noted by 
Paagett [1975] and Soong [1973] is undoubtedly the 
primary reason for many models considering the 
reaction rate coefficients to be deterministic. 

Some probabilistic river water quality models 
using Monte Carlo simulation and first-order 
analysis and reviewed above have the capability of 
simultaneously considering random initial condi­
tions, inputs, and reaction rate coefficients, 
but both techniques have severe limitations. Monte 
Carlo simulation may be cost prohibitive if the 
number of samples required to adequately describe 
the probability distribution of the state variables 
is too large. The number of samples required 
increases with the variance and skew of the initial 
distribution [Wallis et aZ. 1974]. WaZZis et at. 
found that for a coefficient of skew greater than 
five, 100,000 samples were inadequate to satisfac­
torily describe the tails of the distribution above 
the 99.9 percent probability level. Burges and 
Lettenmaier [1975J show that first-order analysis, 
which only predicts the mean and variance of a 
distribution, was inadequate for a coefficient of 
skew equal to -1.4. 

In summary, although the initial conditions, 
inputs, and reaction rate coefficients of aquatic 



processes are random variables, most probabilistic 
water quality models do not have the capability to 
consider them as such. The model developed in this 
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study and described in the next chapter can 
simultaneously consider all three to be random 
variables and yet does not have the limitations of 
Monte Carlo simulation and first-order analysis. 



CHAPTER III 

DESCRIPTION OF PROBABILISTIC RIVER WATER QUALITY MODEL 

Introduction 

In Chapter II it was noted that to adequately 
represent the uncertainty in the prediction of river 
water quality, it is often necessary to consider 
simultaneously the randomness in the initial condi­
tions, inputs, and reaction rate coefficients. In 
this chapter a water quality model that has those 
capabilities is described. 

Although many deterministic water quality models 
in use are dynamic models, a steady-state model vIas 
used in this study with the independent variable 
being travel time, which is a surrogate for distance 
along the river. The reasons for using a steady­
state model are: 1) in many stream assessment studies 
the steady-state assumption yields answers to manage­
ment questions that are of an appropriate resolution, 
and that are consistent with data availability 
determined by fiscal and time constraints, 2) lack 
of available data to calibrate a dynamic model, and 
3) the higher computer costs associated with a 
dynamic model [Bowles et at. 1977]. The steady-state 
model developed in this study, Probabilistic Stream 
Simulation and Assessment Model (PSSAM), can be 
applied to a river system with diffuse surface inflow, 
groundwater inflow (or outflow), and any reasonable 
number of point loads and point diversions. The 
deterministic water quality equations in PSSAM were 
patterned after the Stream Simulation and Assessment 
Model (SSAM) developed by Gl'enney and POl'ceHa [1975]. 

This chapter contains the development and solution 
of the river water quality model in random differential 
equation form. After introductory sections on the 
method for describing the layout of a river system and 
the general operation of the computer model, the 
deterministic equations for flow balance and water 
quality are derived. The deterministic water quality 
equations are then cast in the form of an Ito random 
differential equation with uncertainty in the initial 
conditions, input variables, and model coefficients 
(parameters). Solutions for the joint pdf of BOD and 
DO are given for control volumes in a section of river 
with and without point loads or tributaries. Approxi­
mate sol utions based 'on moment equations are also 
given. The chapter closes with sections describing 
the numerical solution techniques used to obtain the 
pdf's and a summary of the model limitations. 

River System Layout 

Seven types of calculation points are used in 
PSSAt1 to describe a river system. These seven point 
types are described below: 

HEADWATER (II) -- An upstream boundary of a section 
which marks the beginning of the first reach. 

REACH (R) -- The upstream boundary of a section of 
river channel having uniform physiochemical 
characteristics. 
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POINT LOAD {L} Location of a point load 
discharging into the river. 

POINT DIVERSION {D} -- Location of a point diversion 
from the river. 

CHECK POINT {c} -- An additional point along the 
-river where calculated output is desired. 

EVAPORATION {E} -- The upstream boundary of a reach 
where evaporation is significant {i.e., a lake, 
reservoir, swamp area, or reach with 
phreatophytic vegetation}. 

TERMINAL POINT (T) -- The most downstream point in 
the river system which is modeled. 

Figure 3.1 shows a river system having a 
headwater, seven reaches, two point loads, two 
point diversions, and three check points. Lateral 
inflow rates from surface water (Qs) and ground­
water (QG) are shown along reach number four. 

All model calculations are conducted in 
metric units. A user option is available to allow 
English units to be used for input or output. 

Figure 3.1. 

E-I 

Example of a river system layout for 
PSSAM (notation explained in text). 



Program Procedure 

The program examines the system layout input 
data and assigns a sequence number (numbered in 
sequence from the headwater) to each calculation 
point in the input. A user option is available to 
have the program automatically assign additional 
calculation points at specified intervals within 
reaches. The segment of channel between two calcu­
lation points is defined as an "element." An element 
is a subsection of a reach. The calculations made 
by the model start at the headwate.r and proceed 
downstream considering each calculation point in 
sequence. Changes in flow and water quality which 
occur during passage through an element are modeled 
by a syste~ of differential equations to be described 
below. Conditions resulting at the end of one element 
are used to calculate the boundary conditions at the 
beginning of the next downstream element. 

Program calculations incorporate three distinct 
steps: 1) simulation of the river flows, 2) descrip­
tion of the point and diffuse loadings on the system 
by the water quality constituents to be modeled, and 
3) simulation of the concentrations of the water 
quality constituents at each calculation point. A 
user option is available to stop the program at the 
end of any step as desired. 

The differential equations for step 1 are solved 
independently from the differential equations 
representing the water quality constituents (steps 2 
and 3). Step 1 starts with the headwater flow and 
proceeds downstream conducting a flow balance by 
adding (or subtracting as appropriate) lateral surface 
flow, lateral subsurface flow, point load flows, and 
diversion flows. In addition to calculating flows, 
the model determines the average velocity, cross­
sectional area, and hydraulic radius of each element. 
A summary of the system layout, flow, and stream 
characteristics is printed out to facilitate checking 
the input flow data and to provide a concise display 
of the important features of the river system. 

The second step in the model is reading the 
appropriate data for the water quality constituents. 
A summary of the water quality data and the coeffi~ 
cients (after temperature adjustment, if appropriate) 
is printed out to facilitate checking the input water 
quality data and to provide a concise display of the 
constituent loadings on the system. 

The third step in the program is the prediction 
of constituent concentration joint and marginal 
probability distributions along the river for the 
specified flow and loading patterns. Basically, the 
model simulates the reactions and interactions among 
constituents occurring in a control volume (c. v.) of 
water as it travels downstream at a velocity V. It 
is assumed that mixing with adjacent c.v.'s (disper­
sion) is negligible. Mass can be added to the C.v. 
by lateral inflow and by leaching from the bottom. 
Oxygen can enter the C.V. by diffusion across the 
air-water interface and by the photosynthetic oxygen 
production of benthic and planktonic algae. These 
reactions and mass transport phenomena are repres.ented 
in the model by a system of differential equations. 

In the prediction step, as in the case of the 
flow balance step, the model starts at the headwater, 
where the joint probability density function of the 
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water quality constituents is known. This probabi­
lity density function provides the initial . 
conditions for the system of equations. Then,the 
joint probability density function, which results 
from what occurs in the C.V. before it reaches the 
next downstream calculation point, is estimated. A 
mass balance is conducted on the C.V. at this 
point to account for mass added by point loads, 
and the resulting concentration probabil ity distri­
bution becomes a new initial condition for the next 
downstream C.V. Then the equations are solved to 
estimate the concentrations whiCh will occur in 
the C. v. by the time the flow reaches the next 
downstream calculation point. The model proceeds 
downstream, element by element, in this manner. 

Flow Balance Eguations 

Flow is assumed to be steady (invariant with 
time at each calculation point) for the entire 
system. S~rface and subs~rface lateral inflow is 
assumed to be constant per unit distance along the 
stream whereas subsurface late.ral outflow is 
assumed to be a constant fraction of the flow in 
the stream. Therefore, when the lateral subsurface 
flow is positive (i.e., flows into the main stream). 
the flow downstream of an element can be represented 
by the following equation: 

(3.1 ) 

in which 
Q main stream flow (m 3/sec) 
T travel time (sec) 
V average velocity ip the main stream (m/sec) 
Qs lateral surface flow (m 3/sec/m) 
Q

G 
lateral subsurface flow (m 3/sec/m) 

Equation 3.1 represents the change with travel 
time of the streamflow rate. Travel time is used 
as the independent variable rather than distance 
along the channel so that water quality reaction 
rates can be expressed in terms of day-l rather than 
m- 1

• The first term on the right hand side of 
Equation 3.1 is the rate of chang~ of flow due to 
surface lateral inflow and the second term represents 
the rate of change of flow due to subsurface lateral 
inflow. The solution to Equation 3. lis: 

and 

in which 

Q = Qo + (Qs + QG) ~ 

~ = VlIL 

(3.2) 

(3.3) 

Qo flow at the start of the element (m 3/sec) 
Q flow at the end of the element (m3/sec) 
~ length of the element (m) 
8T travel time through the element (sec) 

The average flow (Q) in the element is: 

- ~ 
Q "'2 (3.4) 

When the stream is recharging the groundwater 
(i.e. ,lateral subsurface flow is negative), it is 
assumed that the recharge rate varies with the flow 
in the stream so that the flow in an element can be 
represented by the following equation: 



in which 

K 
G 

the fraction of main stream flow lost 
per meter. 

(3.5) 

Using Equation 3.3, the solution to Equation 3.5 is: 

(3.6) 

It can De shown that tne average flow in the element 

(3.7) 

The. ave"age velocEy :,-,) in an element is calculated 
by the equation: 

in which 

81 and 132 empi rica 1 coeffi cients for a 
stream reach 

(3.8) 

Two options are available to the user for . 
calculating the average hydraulic radius (ii) of an 
element which is used in the water quality equations. 
One option is based on Manning's equation expressed 
as follows: 

(3.9 ) 

in which 

S average hydraulic gradient of a stream reach 
n Manning's coefficient for the reach 

The other option is based on an empirical relation­
ship between the hydraulic radius and the average 
cross-sectional area of the flow (A): 

and 

in which 

13l an d 13 4 empirical coefficients for a 
stream reach 

Deterministic Water Quality Equations 

General equation 

(3.l0) 

(3.11) 

The water quality equations used in PSSAM were 
patterned after deterministic equations in Grenney 
and Porcella [1975J. In this section the theory of 
the deterministic equations will be explained. In 
the next section these deterministic equations will 
be recast as random equations. 

In their final form the water quality equations 
used in PSSA~' measure steady-state conditions but 
their derivation commences with the one-dimensional 
channel transport equation (unsteady, nonuniform 
flow) and follows the steps necessary to represent 
steady-state conditions and uniform flow: 

(3.12 ) 
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in which 
X 

t 

A 

D 

v 

constituent concentration (mg/~) 
time (sec) 
distance along the channel (m) 
cross-sectional area (m 2 ) 

longitudinal dispersion coefficient 
(m2 /sec) . 
average velocity over the cross-section 
(mlsec) 

s other sources and sinks (mg/~/sec) 

Equation 3.12 represents the rate of change 
with time of the mass of the constituent being 
transported through some control vol ume (Figure 3.2). 
It should be noted that in Equation 3.12 the 
independent variables are real time (tl and distance 
along the channel (x). The final water quality 
equations will be a function of travel time (T) as 
are the flow balance equations. The first term on 
the right-hand side of the equation represents the 
downstream transport of the material associated 
with the disperSion due to nonuniform velocity 
gradients in the river profile. The second term 
represents the downstream advection of the material 
and the third term represents the addition or 
removal of the constituent by lateral inflow 
(diffuse) benthic loading. 

If the longitudinal dispersion is assumed 
negligible, the flow is assumed nonuniform (inflow 
allowed), sources and sinks are assumed to be from 
the lateral surface and subsurface flow and the 
streambed, and Q is substituted for VA, Equation 
3.12 becomes: 

a(AX) at;! ax 
a1 = xax - ~a; -!- Q~s {3. l3} 

in whicrl 

Q river flow (m 3/sec) 

lateral surface inflow (m 3/sec/m) 
lateral subsurface inflow (m 3/sec/m) 
benthi c 1 eaching rate (mg/m2/sec) 
hydrau1 ic radi us (m) 

constituent concentration in lateral 
surface inflow (mg/i) 

constituent concentration in lateral 
subsurface inflow (mg/i) 

________ ;.,., _________ c;r--_-E"--.."., ____ ._ 

",/'" I 
------~---4-----~-----T-

I : 
I I 
I : ! 

L 

Figure 3.2 Model conceptualization of a stream 
control volume. 



Note that by neglecting dispersion, Equation 3.12 is 
greatly simplified but that this imposes a limitation 
of the model's capability to simulate water quality 
parameters in streams where dispersion is significant. 

If steady-state is assumed: 

a(AX) = 0 
at 

Equation 3.13 can be simplified to: 

Since 

and 

letting 

dX = _K d1J + Q?s + QrfG + LA 
dx Q& Q Q RQ 

49..=Q +Q 
& S G 

Q =VA 

in a reach where 
V = average reach velocity 

then 

or 

in which 
T = travel time (sec) 

(3.14 ) 

(3.15 ) 

When Equation 3.15 is applied to a nonconservative 
constituent and to a reach with average cross­
sectional area A and average hydraulic radius R. it 
becomes: 

in which 
a = rate of loss or gain of the constituent 

due to biological reactions, physical 
removal, or phase transfers (mgIJlJsec) 

For simplicity, the last two terms of Equation 
3.16 can be expressed as: 

S = ~ + (SS + SG) 
R jj 

(3.l7) 

in which 
Flow into reach; Qs positive 

Flow out of reach; Qs negative 

Flow into reach; Q
G 

positive 

Flow out of reach; QG negative 

so Equation 3.16 becomes: 

dX=a+S 
dT 

( 3.18) 
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In theory, the solution technique used to 
determine the joint probability density function of 
state variables (to be described in a later section) 
is applicable for a system of n random differential 
equations. However. because of computer memory 
storage limitations, the technique is impractical 
for a system of greater than two equati ons. For 
this reason, PSSAM can simulate only two water 
quality constituents simultaneously. Although it 
has been noted in the literature [EPA 1973J that 
BOD-DO models have been overemphasized in the past. 
these constituents were chosen for this study 
because: 1) although overemphasized, the coupled 
BOD-DO systems are still important measures of 
water quality, and 2) data on the uncertainties 
associated with BOD and DO are more readily 
available than for any other constituents. The 
deterministic equations for BOD and DO are 
described below, and therein Xi is the derivative 
of the ith constituent with respect to the travel 
time T. 

BOD (Biochemical oxygen demand). The rate 
of change in BOD concentration is determined by 
the rates of first-order decay. first-order removal 
(settling, etc.), and mass input from diffuse 
sources and benthic leaching. In the nomenclature 
used below the first subscript indicates the 
constituent and the second designates the various 
types of model coefficients. 

( 3.19) 

in which 
Xl concentration of BOD (mg/t) 

13 1 ,1 first-order BOD decay rate (l/sec) 
131,2 first-order BOD removal rate (l/sec) 
8 1 net rate of mass input from lateral 

and benthic sources of BOD (mg/~/sec) 

DO (Dissolved oxygen). The rate of change in 
DO concentration is determined by the rates of 
reaeration across the surface, biochemical oxygen 
demand, photosynthetic production by algae, uptake 
by benthic deposits. and mass input from lateral 
inflow: 

in which 
X2 

132,1 
fh,2 

concentration of DO ~mg/~) 

reaeration rate (l/sec) 

(3.20) 

dissolved oxygen saturation at 20°C 
(mg/2) 
net oxygen production by phytoplank­
ton (mg/~/sec) 

b"enthituptake of oxygen (g/m2 /secl 
(mg02/~) ) 

diffuse and benthic sources of DO 
(mg/t/sec) 

The reaeration coefficient (132,1) was calculated by 



using the following equation [Bishop and Grenney 1977]: 

(3.21) 

in which 
V average velocity (m/sec) 
H = depth (aeproximated by average hydraulic 

radius, R) (m) 

The dissolved oxygen saturation corrected for stream 
temperature and elevation was calculated using the 
fvllowing equation [Bishop and Grenney 1977]: 

BL,,(TrE) [24.8 - 0.4259T
f 

+ 0.003734T} 

- (3.22) 
3 J [EXP J 0.03419E 1 ] 

- 0.00001328Tf (288.0 - 0.006496EI . 

in which 
stream temperature (OF) 
elevation (m) 
dissolved oXYgen saturation at 
temperature T and elevation E (mg/~) 

Temperature correction 

The BOD decay coefficient SI 1 and the reaeration 
coefficient B2,1 are temperature adjusted using the 
equation: 

in which 

BT 

1320 
T 

8 

coefficient at temperature T 

coefficient at 20°C 
stream temperature (OC) 

(3.23) 

1.047 for Bl,1 I [Bishop and Grenney 
1.0159 for B2,1) 1977] 

Matrix form of determinis~ic water .9.l!!I1ity equations 

Substitoting Equation 3.17 into Equations 3.19 
and 3.20, and rearranging yields, respectively: 

in which 

XI -(BI,I + Bl,2 + q)X I 

qs = QS/A 

qG = QG/A 

q = qs + qG 

(3.24) 

(3.26) 

(3.27) 

( 3.28) 

Rewriting Equations 3.24 and 3.25 in matrix form: 
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(3.29 ) 

[ 

Ll/E + qsXs 1 + q rfGl 

+ B2,IB2,2 + 132,3 + L2/E + qSXS2 

or 

x = AX + U (3.30 ) - - -
where A now represents a 2 x 2 matrix of constant 
coefficients and U is a vector of inputs to the 
system. In Equation 3.30, one has a system of 
deterministic differential equations describing 
the change in concentration of BOD and DO with 
travel time. 

Random t~ater Qual ity Equations 

The next step is to recast the deterministic 
equations as random differential equations by 
adding terms to account for the variability in the 
reaction rate coefficients and inputs. 

Uncertainty in the coefficients 

The manner in which the randomness in a 
coefficient is represented in the differential 
equations has a subtle yet important effect on the 
solution of the equation. Consider the following 
two cases: 

dX( T) () _ ( ) ~ -CX T, C N K, 1 .0 (3.32 ) 

dYJtT ) = -(K+W(T))Y(t), 

W(T) - N(O,l.O) (3.33) 

C is a constant coefficient whose value is obtained 
from a normal distribution with mean K and variance 
1.0. The value for C remains constant for each 
sample function. W(T) is a zero mean Gaussian 
white noise process with a variance of 1.0. W(T) 
changes with respect to travel time in each sample 
function. Some possible sample functions of 
Equations 3.32 and 3.33 are shown in Figures 3.3 
and 3.4, respectively. The sample functions of 
Equation 3.32 are smooth curves while the sample 
functions of Equation 3.33 have a "noisy· path. 

A possible physical interpretation of the 
differences between Equations 3.32 and 3.33 might 
proceed as follows. Each sample function of 
Equation 3.32 reflects the error in the estimation 
or determination of the coefficient. At the time 
of interest, the coefficient is assumed to have 
a constant but unknown value. For case 2 (Equation 
3.33) the sample functions represent the effects 
of random fluctuations in the coefficients along 
the length of the stream. Thus case 2 appears to 
be closer to experience. 
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Figure 3.3. Sample functions of Equation 3.32. 

y 

TRAVEL TIME 1" 

Figure 3.4. Sample functions of Equation 3.33. 

In terms of the mathematical properties of the 
random coefficients, the two representations 
presented above are essentially two extremes of the 
spectrum. Case 1 (Equation 3.32) implies that the 
coefficients do not vary along the stream channel. 
Case 2 (Equation 3.33) corresponds to a coefficient 
that varies randomly about its mean as a function of 
travel time or distance along the channel. Tsokos 
and Tsokos [1976J state that the mean of the sample 
functions of Equation 3.32 is the deterministic 
solution. Soong [1971], however, shows that in 
general this is not true. The mean of the distribu­
tion of sample functions of Equation 3.33 is, 
however, the deterministic solution [soong 1973J. 
Case 2 may be more appealing than Case 1 since one 
may intuitively expect the mean of a random process 
to be the deterministic solution. When input and 
initial condition randomness are also present, the 
second case of randomness in the coefficients may 
be more appealing than the first ca3e since the 
resulting random differential equation is much 
easier to solve [Soong 1973J. Therefore, based on both 
mathematical and physical interpretations, the 
uncertainty in the water quality equation reaction 
rate coeffi ci ents (BI 1, BI 2, B2 I, and S2 4) was 
represented by a Gaussian white noise process having 
the form of Equation 3.33. 
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Uncertainty in the inputs 

To account for natural random fluctuations 
and errors in measurement, the uncertainty in the 
inputs was represented by a Gaussian white noise 
process. The inputs which were considered to be 
random variables include the benthic leaching rates 
for BOD and DO (LI and L2, respectively), the concen­
tration of BOD and DO in the lateral surface and 
subsurface inflow (Xs ' Xs ' Xc ' and Xc ' respec­
tively) and net oxyge~ proaucti6n by phytoplankton 
(B2, 3) . 

Formulation of random water quality equations 

Since the uncertainty in both the inputs and 
coefficients is represented by a Gaussian white 
noise process, Equation 3.30 can be transformed 
to a system of Ito differential equations. This 
is done by simply adding to Equation 3.30 a white 
noise term for each random input and coefficient. 
If we denotes the noise process associated with 
the input or coefficient e, the system of Ito 
differential equations for BOD and DO can be 
written as follows: 

X AX + U + GW (3.34 ) 

in which 

G = 
(3.35) 

o o o 0 0 

o 0 0 

WS1,1 

WS 1 ,2 (3.36) 
WS2 1 , 

WB2, .. 

WLI 

W WX
S1 

WXG1 

WL2 

WX 
32 

WX G2 

WB2,3 



The vector w has the fo 11 owi ng properti es: 

E [~( t) ] 0 (3.37) 

(3.38) 

where Q is the covariance parameter matrix and o(t-s) 
is the Dirac delta function. If it can be assumed 
that the white noise processes are mutually indepen­
dent, Q is a diagonal matrix with the diagonal terms, 
VC, equal to the variance parameter (variance per 
unit time) of the white noise process WC: 

diag (q) '" 
(3.39 ) 

(VBI,1 V61.~ VSZ,l VS 2 ,4 vr'l VX
SI 

VX
C1 

VL 2 VX[J:l VX
C2 

VSZ,3) 

While not absolutely necessary, the assumption 
that the white noise processes are mutually indepen­
dent greatly simplifies the solution to Equation 3.34. 
If the noise processes being modeled are determined 
to be correlated, this assumption may be a major 
model limitation. The determination of two coeffi­
cients or inputs from the measurement of one variable 
is an example of a situation where correlated noise 
could occur. Further research is necessary to 
determine whether the independence assumption would 
introduce a significant error in the model estimates 
if the noise processes are not independent. 

Several variables in Equation 3.30 are not 
considered to be random variables even though they 
may in fact be so. It was necessary to consider 
some variables as deterministic so that Equation 3.34 
could be solved. If these variables had been consi 
dered to be random variables, multiplicative white 
noise terms would have occurred in Equation 3.34, but 
a technique for solving Ito differential equations 
with multiplicative white noise terms has not yet 
been developed. The deterministic variables are 
the streamflow (Q), the lateral surface and subsurface 
inflows (Qs and QG) and the dissolved oxygen satura­
tion concentration (132 2). The choice of the flow 
variables as the deterministic variables was based 
on a convenient separation of the flow and water 
qual ity variables and coefficients (except 13 2 2) into 
deterministic and random variables, respectively. 
Thus the joint pdf of BOD and DO is conditioned on 
the flows which are assumed known without error. 
Either 62,1 orS2,2 could be treated as a random 
variable since they appear in multiplicative form in 
Equation 3.25. However, evidence in the literature 
points to 132 1, the reaeration rate, having greater 
variability about its mean than 132 2,the DO satura­
tion concentration, and on this basis 132 2 was treated 
as a deterministic variable. Further work should be 
directed to examining the optimal combination of 
deterministic and random variables which maximizes 
the amount of the prediction uncertainty which is 
represented under the constraint of not being able 
to treat random variables in mUltiplicative terms. 

Another limitation of treating the randomness 
in the inputs and coefficients of the water quality 
equations as white noise processes is that only time 
independent randomness can be considered. This 
eliminates the consideration of the dynamic fluctua­
tions in point load flow and quality (i.e., wastewater 
treatment plants) and the diurnal cycle of many 
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aquatic processes (for example oxygen production 
by phytoplankton). However, this limitation is 
consistent with the steady-state assumption that 
is made for the deterministic portion of the model. 

1, the solution to an Ito differential equa­
tion, is a ~1arkov process [Soong 1973]. Therefore 
fX(X''l), the .joint probability density function 
(pdf) of X, can be found using the Fokker-Plank 
Equation (also known as the Forward Kolmogorov 
Diffusion Equation) 1973], below: 

[(A.X+ u.)f] 
J- J 

+ % [(OY/Gt ) .. f] (3.40) 
- &J 

in which A.. is the jth row of matrix A, Vj is the 
jth entry ~f the vector U, (GWGt)i' is the ijth 
entry of the matrix (G~Gt), Xj is {he jth entry of 
the vector K and fx(X,'l) is anbreviated to f for 
compactness of the-notation. In order to completely 
specify the prob"lem it is assumed that the initial 
probability density function, f x(Ko,lo) is known 
and that the boundary condition-for Equation 3.40 
is fX(±OO,l~ 0 for all 1. By specifying f x(Ko,lo) 
at headwaters and point loads, the joint pdf of 
BOD and DO can be determined at any location in the 
stream using Equation 3.40. 

PDF of Headwater and Point Loads 

The concentrations of BOD and DO 
headwater and in the point loads were 
have a bivariate normal distribution. 
with minor program modifications, any 
distribution could be considered. 

at the 
assumed to 
However, 

bivariate 

Determination of PDF Downstream of Point Load 

The joint pdf of BOD and DO immediately down­
stream of a point load was determined by convoluting 
the upstream river and point load probability 
density functions. Assuming complete and instanta­
neous mixing of the river and point load flows, the 
random variables Xl and X2 • the concentrations of 
BOD and DO, respectively, immediately downstream 
of the point load can be defined as follows: 

in which 
concentration of BOD immediately 
upstream of point load (mg/~) 

concentration of DO immediately 
upstream of point load (mg/2) 

(3.41) 

(3.42) 

concentration of BOD in point load 
(mg/2) 

concentration of DO in point load 
(mg/2) 



Qt 

flow immediately downstream of point load 
(rna/sec) 

flow of point load (rna/sec) 

I f we let 

then 

a Qu/(Qu + Qt) 

Y = Qt/(Qu + Qt) 

Xl Mlu +YXl~, 

X2 aX2u + YX2£ 

(3.43) 

(3.44) 

(3.45) 

(3.46) 

By the method of derived dlstribution.,s it is shown 
in the Appendix that the joint pdf of BOD and DO 
downstream of a point load is given by: 

fX1X2(X1X2) 

(3.47) 

. Two important characteristics of a bivariate 
probability distribution are its mean vector and 
covariance matrix. Although they could be determined 
by numerical integration of the pdf, it would be 
computationally more efficient to derive a set of 
moment equations from which the mean vector and 
covariance matrix could be calculated. Soong ["1973] 
showed that it is possible to derive a set of diff­
erential equations which satisfy the moments of the 
solution process of Equation 3.34. These moment 
equations are of the form: 

2 

I E[(A.X + u.)(ahldx.)] 
j= I J- J J 

(3.48) 

+ V2 f I E[(GQGt ) . . a2hldx.ax.J + E[ahld,] 
j = I i= I - 'OJ '& J 

where h(K,T) is an arbitrary function of X and T. The 
first moment equation can be derived by letting 
h(K,T) = E(X). The first and second moment equations 
for K are given in Table 3.1. Note that the deriva­
tives are with respect to the travel time T and that 
aij is.the ijth entry of matrix A and is the ith 
entry 1n vector 0. Equations for the of the 
covariance matrix (r) of K, derived from the 
equations in Table 3.1 are as follows: 

2a ll r 11 + (VBI,l + V61.2) 

+ VL 1 /R2 + q2VX + q 2VX 
S 81 G G1 

( 3.49) 

( 3. 5~) 
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The first moment equations in Table 3.1 and 
Equations 3.49 through 3.51 were used in the model 
PSSAI1 to calculate the mean and variance of BOD 
[E(Xl) and r l1 • respectively], the mean and variance 
of DO [E(X2) and r 22 , respectively], and the 
covariance of BOD and DO (r 12 ). 

The moment equations shown in Table 3.1 are 
of the form: 

(3.52) 

If there are no repeated roots, every solution M(t) 
of the homogeneous part of Equation 3.52 is of the 
form: 

5 A.t 
M( t) = L (c. e '& V.) 
- i=l '& -'& 

(3.53) 

where ~i is.a constant and Yi is an eigenvector 
of cp w1th e1genvalue Ai. Note that the eigenvalues 
of cp are the diagonal entries since cp is triangular. 
It is often desirable for the mean vector and 
covariance matrix to be asymptotically stable 
(approach some equilibrium value as T approaches 
infinity). Since all and a22 are always negative, 
the mean vector will always be asymptotically 
stable. It can be shown from Equation 3.53 that a 
necessary and sufficient condition for the asymp­
totic stability of the second moments of X is 
that all the eigenvalues of cp be negative: Since 
all and a22 are negative, this condition implies 
that the following inequalities are satisfied: 

(3.54) 

It is convenient to assume that VC, the stan~ 
dard deviation parameter of the noise associated 
with input or coefficient C is equal to some 
fraction ° ~ KC $ 1 of C 

vc = K~ (3.56) 

If the coefficients 61 I, 61 2. 62 I. and 62 4/H 
all have numerical values less than 1.0, Equations 
3.54 and 3.55 will be satisfied for any KC' If 
anyone of the four coefficients has a numerical 
value greater than 1.0, Equations 3.54 and 3.55 
provide a means of calculating an upper bound on 
KC for which the covariance matrix will remain 
asymptotically stable. 



Table 3.1. First and second moment equations for BOD 

E(xd all 0 0 

E(X2) a21 a22 0 

E(X~) 2Ul 0 2all + Z I 

E(XIX2) U2 Ul a2l + VSI, I 

E(X~) 0 2(U2 - Z2) VS I, I 

where 

VSI,1 + VS I ,2 

S2,2 VS2, I 

VS2 I + VS2 4/R2 , , 

Numerical Solution Techniques 

Determining the joint probability density 
function of BOD and DO requires finding a solution 
to the Fokker-Plank Equation (Equation 3.40). 
Unfortunately, except for when there is no coefficient 
noise, a closed form solution to Equation 3.40 has 
not been found. It is possible, however, to solve 
Equation 3.40 numerically. 

Equation 3.40 can be classified as a mixed 
second-order parabolic partial differential equation 
in the variables T (travel time), Xl (BOD), and X2 
(DO). One of the best techniques for numerically 
solving parabolic partial differential equations with 
two space variables is the alternating-direction 
implicit (ADI) finite difference method first 
proposed by Peaceman and Rachford ["1955]. The ADI 
method is unconditionally stable for any step size 
~T and is computationally efficient, but is not 
applicable to equations with mixed partial derivative 
terms. Therefore, to use the ADI method, the mixed 
partial derivative term in Equation 3.40 was elimi­
nated using a technique described below. 

If 2y denotes the partial derivative of 2 with 
respect to y and g. and h." are defined as follows: 

1.- 1.-J 

g. = A.X + U. 
1.- 1.-- 1.-

h.
J
. = [(CQct ) .. J/2 

v - 1.-J 

then Equation 3.40 can be rewritten as: 

(3.57) 

(3.58) 

f = Bfx2 + 2Cf + DfX22 + EfXI + Ff + Hf (3.59) 
T I XlX2 X2 

in which 

B = hll 
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and DO. 

0 0 E(XI) Ul 

0 0 E(X2 ) U2 

0 0 E(X~) + I3 

all + a22 0 E(XIX2) 0 

2a21 2a22 + Z3 E(Xn Is 

C hl2 

D h22 

E 2h llXl - gl 

F 2h l2Xl + 2h22X2 - g2 

H hlIX~ + h22X~ - glXI - g2 X2 

Consider a second-order linear partial differential 
operator L(f) defined as follows: 

L(f) = 
Bfx2 + 2Cfx X + Dfx2 + Efx + Ff + Hf (3.60) I I 2 2 I X2 

If two new coordinates, P and S are given as 
functions of Xl and X2, then by using the chain 
rule of differentiation, it can be shown that in 
the new coordinate system: 

L(f) = [B(P
XI

)2 + 2CPXlPX2 + D(PX2)2Jfp2 

+ 2[BPXISXI + CPXl SX2 + CPX2SXl + DPX2SX2Jfps 

+ [B(SXI)2 + 2CSXlSX2 + D(SX2)2Jfs2 

+ [L(P) - HPJfp + [L(S) - HSJfS + Hf 
(3.61 ) 

The mixed partial derivative term in Equation 3.59 
can be eliminated by choosing P and S so that the 
following differential equation is satisfied: 

One choice for P and S that satisfies Equation 3.62 
is: 

(3.63) 



[Xl - (z) arctan (Kt)J (3.64) 

in which 

(3.65) 

Combining Equations 3.59, 3.61, 3.63, and 3.64 yields: 

Summary of Model Limitation~ 

The probabilistic river water quality model 
developed herein has several limitations which were 
discussed as they came up in the above model formula­
tion and are summarized below. Limitations resulting 
from treating the randomness in the inputs and 
coefficients of the water quality equations as white 
noise processes are as follows: 

1. Only time independent randomness can be 
conSidered. 

2. The white noise processes for inputs and 
coefficients are assumed to be independent. 

(3.66) 3. Only linear white noise processes can be 
considered. 

in which 

I = D - eZIB 
Model limitations resulting from simplifying assump­

(3.67) tions and computer storage limitations are as follows: 

J = (xIIB}[e(VB1,1 + VBI,2) - BVS1,I] 

EelB + F (3.68) 

Equation 3.66 is solved by the ADI finite 
difference method in PSSAM. The joint pdf of BOD 
and DO (XI and X2) is determined when necessary 
(i.e., for printed output) by 10th-order Newton's 
divided-difference polynomial interpolation of f as 
a function of P and s using the transformation 
coordinate equations (Equations 3.63 and 3.64). 

The differential equations for the mean vector 
and covariance matrix of K (the first two equations 
in Table 3.1 and Equations 3.49 through 3.51) were 
solved using a fourth-order Runge-Kutta algorithm. 
Equation 3.47, used to determine the joint pdf of 
BOD and DO immediately downstream of a point load, 
was solved using a 15 point Gauss-Legendre quadrature 
algorithm. The Newton's divided-difference interpo­
lation algorithm, the Runge-Kutta algorithm, and the 
Gauss-Legendre algorithm were used because they are 
recognized to be computationally efficient and 
accurate. 
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1. Longitudinal dispersion in the river is 
assumed negligible. 

2. Steady streamflow is assumed. 

3. Mass transport is assumed to be one-dimensional. 

4. All physiochemical characteristics of the 
river are assumed to be time invariate. 

5. Mixing of a point load flow with the river is 
instantaneous and complete. 

6. Only two state variables can be modeled. 
Changing the two state variables from BOD 
and DO would require extensive reprogramming. 

7. Flows are treated as deterministic variables. 

8. DO saturation, Ih 2. is treated as a 
deterministic variable which depends on only 
stream temperature and elevation according 
to Equation 3.22. 

9. Equations used in the basic model are assumed 
to be correct and to completely describe 
the represented process. 



CHAPTER IV 

APPLICATIONS OF PROBABILISTIC RIVER WATER QUALITY MODEL 

The probabilistic river water quality model PSSAM 
consisting of a programmed solution to Equation 3.66 
was applied to a sensitivity problem and to a hypo­
thetical river system. These two applications will 
be discussed in detail in sections to follow. In 
both applications, the headwater initial condition 
and point load effluent were assumed to be described 
by a bivariate normal distribution. A normal initial 
condition was used to be consistent with all the 
existing probabilistic water quality models reported 
in Chapter II. In the final section of this chapter 
the computational requirements of the model PSSAM 
will be summarized. 

Sensitivity Problem 

In order to gain familiarity with PSSAM, a 
sensitivity study was performed. The sensitivity of 
the model's predictions to changes in the input and 
coefficient noise variance parameter was investigated. 

Point 2 

Problem description 

A diagram of the section of river used in 
the sensitivity problem is given in Figure 4.1. 
It consists of a headwater and one reach with three 
check points. The data ,in Tables 4.1 through 4.3 
provide the necessary input data used to study 
sensitivity. A summary of the river layout and 
hydraulics and a description of the five points 
at which the joint probability density function 
for BOD and DO is determined is given in Table 4.1. 
The mean vector and covariance matrix of the 
headwater quality are as follows: 

x [15.0,1 5.0 

r = [3.0 
1.0 1.

01 1.0 

Point 3 

Point v: 
C-I 

H 
~. Point 4. = Point 5 

C-2 ________ ~ 

C-3 -V 
T 

Figure 4.1. River layout for sensitivity problem. 

Table 4.1. River system layout and hydraulics for sensitivity problem. 

Lateral Inflow 
for Reach 

Point Input River 
Number Descri pt ion Location Flow Surface Ground Flow 

( km) (m 3/sec) (ms/sec/km) ( m3/sec/km) (m 3/sec) 

Head of Reach 20. 5.0 0.02 0.02 5.0 

2 Check Point 1 15. 5.2 

3 Check Point 2 10. 5.4 

4 Check Point 3 5. 5.6 

5 Termination 0 5.8 
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Ave. 
Reach 
Vel. H. Rad. 

(m/sec) (m) 

0.25 3.39 



Table 4.2. Inputs, water temperature and water quality coefficients for sensitivity problem. 

Coefficient 
Constituent Symbol Units Description Coefficient Value 

BOD 

DO 

XS2 

X
G2 

Temperature T 

l/day 

l/day 

g/m2 /day 

mg/t 

mg/t 

l/day 

km 

mg/t/day 

(g/m2/day)/(mg02/ t ) 

g/m2/day 

mg/t 

mg/t 

First-order decay rate 

First-order removal rate 

Leach rate 

Lateral surface inflow 

Lateral subsurface inflow 

Reaeration rate 

Elevation 

Net oxygen production by 
phytoplankton 

Benthic uptake of oxygen 

Leach rate 

Lateral surface inflow 

Lateral subsurface inflow 

Water temperature 

0.25 1 

0.0 

1.0 

10.0 

5.0 

0.65 1 

1.0 

1.0 

0.20 

0.0 

3.0 

0.0 

16.0 

1 Coefficient value is corrected to 20°C. 

Table 4.3. Standard deviation parameters (K ) for input and coefficient noise. 
C! . 

Run 

2 

3 

4 

5 

6 

7 

Input Noise Standard 
Deviation Parameter 
(Fraction of Input) 

0.2 

0.0 

0.2 

0.2 

0.2 

0.1 

0.3 

Coefficient Noise Standard 
Deviation Parameter 

(Fraction of Coefficient) 

0.4 

0.4 

0.0 

0.3 

0.5 

0.4 

0.4 
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where the units for K are mg/~ and the units for r 
are (mg/~). The value of the covariance between 
BOD and DO is consistent with the correlation between 
those variables recorded in the literature. The 
water quality equation coefficients and inputs are 
given in Table 4.2. 

To assure that the sensitivity analysis was based 
on a reasonable representation of a river reach, many 
of the coefficients and input values used were taken 
from those reported by Pinney et al. [1977] for 
portions of the Jordan River in Utah. The input and 
coefficient noise standard deviation parameters were 
assumed to be fractions of the respective input or 
coefficient values. In each of seven simulation 
runs, the fraction was varied. The standard deviation 
parameter of the water quality equation coefficient 
noise was varied between zero and 50 percent of the 
coefficient. This range seemed reasonable since 
Kothandaraman and Ewing [1969] found that the BOD 
first-order decay rate in the Ohio River was a 
normally distributed random variable with the standard 
deviation being 40 percent of the mean. The standard 
deviation parameter for the input noise was varied 
between zero and 30 percent of the input. This range 
was set arbitrarily because no values have been 
reported in the literature. The standard deviation 
parameter fractions for the input and coefficient 
noise used in each sensitivity run are summarized in 
Table 4.3. The same fraction was used for all inputs 
and all coefficients in each sensitivity run. 

Results for sensitivity study 

The sensitivity of the model predictions to 
input and coefficient noise was most apparent in 
sensitivity runs 1 through 3 so the discussion of the 
results will be confined to these runs. The joint 

3,0 

22.0 

Figure 4.2. Joint pdf of BOD and DO at point 5 for run 1. 
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pdf of BOD and DO at point 5 for run 1 is shown 
in Figure 4.2. Although it is of little quantita­
tive use, it does help visualize the joint pdf. 
It can also be used to evaluate the stability of 
the numerical solution technique. A jagged 
surface could indicate numerical instability of 
the solution technique. 

Figures 4.3 through 4.8 show the marginal 
pdf for BOD and DO at points 1 through 5 for each 
of the three runs. Examination of Figures 4.3 
through 4.6 shows that the model response for 
runs 1 and 2 is nearly identical. This observation 
is substantiated by Figures 4.9 and 4.10 which 
show that the variance of BOD and DO for runs 1 
and 2 is indistinguishable at all points. This 
would suggest that with the assumptions used in 
developing the model the coefficient noise 
contributes significantly more to the variance of 
the model predictions than does the input noise. 
l-ihether this would hold true for the broad range 
of coefficients and inputs found in river systems 
needs to be investigated. If this conclusion is 
found to be true in most river systems, then 
research efforts to quantify the standard deviation 
parameters of water quality equation coefficients 
should be intensified. It should be noted that 
this conclusion would not necessarily be expected 
to be true under unsteady conditions. 

The pdf of BOD and DO in Figures 4.3 through 
4.8 appears to be symmetric, suggesting that these 
variables could be approximated by a normal distri­
bution. For example, the marginal cumulative 
distribution function (cdf) for BOD and DO at 
point 5 for run 2 is compared to those of normal 
distributions with the same means and variances 
in Figures 4.11 and 4.12. The probability of the 
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BOD concentration being less than or equal to 10.5 
mg/t is approximately 0.33, using only the cdf as 
determined by the Fokker-Plank equation, and 0.35 
using cdf from the normal approximation. For all 
three runs the error that would result from using 
a normal approximation for the marginal cdf of BOD 
or DO is small. This is not surprising in the case 
of run 3 since Soong [1973] shows that the solution 
for an n-dimensional system of Ito differential 
equations with random inputs and Dirac delta or 
Gaussian initial condition will be an n-dimensional 
Gaussian distribution. It is surprising, however, 
that the marginal pdf of BOD and DO for run 2 is well 
approximated by a normal distribution. Windham 
[personal communication, 1979] has shown that with a 
Dirac delta initial condition, coefficient noise and 
deterministic inputs, the solution of the system of 
equations used in PSSAM will describe a lognormal 
distribution for BOD and a translated lognormal 
distribution for DO. Therefore, it would be reason­
able to expect the marginal pdf of BOD and DO for 
run 2 to have positive skew. However, the marginal 
cdf's of BOD and DO for run 2 are not visibly skewed. 
First, the normal initial condition dampens the skew 
produced by the coefficient noise. Second, the 
coefficient of skew expected for sensitivity run 2 
is so small that even if BOD and DO had a lognormal 
distribution, the cdf would appear symmetric. The 
coefficient of skew (Cs) for the lognormal distribu­
tion is given by the following equation: 

CS:3C +C 3 
• V V 

in which Cv is the coefficient of variation (standard 
deviation divided by the mean). For run 2 at point 
5, the coefficients of variation for BOD and DO are 
0.14 and 0.26, respectively, so the coefficients of 
skew for BOD and DO are 0.42 and 0.80, respectively. 
The asymmetry of a lognormal distribution with a 
CS = 0.80 is very small. 

As previously shown, when using a normally 
distributed initial condition, the cdf of BOD and DO 
obtained from PSSAM is closely approximated by a 
normal distribution having the same mean and variance 
as BOD and DO. This suggests that instead of solving 
the Fokker-P1ank equation to obtain the pdf of BOD 
and DO, it would be computationally easier and faster 
to solve the moment equations for the mean vector 
and covariance matrix and approximate the marginal 
pdf and cdf of BOD and DO using a normal distribution. 

To investigate how well the marginal cdf of BOD 
and DO could be approximated with a normal distribu­
tion when a non-normal initial condition is used, 
run· 2 was repeated. The initial condition of BOD 
was arbitrarily assumed to have an extreme value 
type I (for minimums) distribution. This distribution 
has a constant coefficient of skew equal to -1.1396. 
Although there is no physical justification for this 
precise value of the coefficient of skew for BOD, 
a negative coefficient of skew would be expected 
due to the first order decay of BOD (see Equation 
3.19) which results in a greater probability of 
lower values of BOD than higher values. DO was 
arbitrarily assumed to have a lognormal initial 
condition. The standard deviation of DO at the head­
water was increased to 5 mg/t to give an initial 
coefficient of skew equal to 4;0. A positive 
coefficient of skew for DO is justified by the first 
order decay of BOD and first order reaerationboth of 
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which result in a greater probability of higher 
values of DO than lower values. The distributions 
of BOD and DO at the headwater must be assumed 
to be independent. The marginal pdf of BOD and 
DO at points 1 through 5 is shown in Figures 4.13 
and 4.14, respectively. As the distance from the 
headwater increases, the skew of the pdf for both 
BOD and DO appears to decrease. 

The marginal cdf's of BOD and DO at points 
1, 3, and 5, are compared in Figures 4.15 through 
4.20 with that of a normal distribution with the 
same mean and variance. The skew of the BOD 
distribution is small enough so that even at the 
headwater (point 1) the cdf is well approximated 
by the normal distribution (Figure 4.15). At 
points 3 and 5 the marginal cdf of BOD is almost 
identical to the normal approximation (Figures 
4.17 and 4.19). The skew in the distribution of 
DO is large enough so that at the headwater the 
marginal cdf is approximated poorly by the normal 
cdf (Figure 4.16). The normal approximation 
improves as the distance from the headwater 
increases and is quite good at point 3 (Figure 
4.18) and point 5 (Figure 4.20). 

The results from the sensitivity runs indicate 
that it may be possible to reduce the computational 
effort necessary to determine the marginal pdf 
and cdf of BOD and DO by using a normal approxima­
tion. The normal approximation method is not 
only computationally faster and easier, but it 
would allow the use of a greater number of state 
variables. The computational effort necessary to 
solve the moment equations for a 10-dimensional 
system is likely to be less than that required to 
solve the Fokker-Plank equation for the joint pdf 
of two state variables. Further research is 
necessary to develop a better understanding 'of the 
tradeoffs. 

It is also possible to write a system of 
equations for the third moments of the state 
variables and, therefore, compute the coefficient 
of skew. Further research is needed to define 
the upper value for the coefficient of skew:for 
which the normal approximation of the cdf can be 
considered adequate for a particular application 
with a known loss function associated with 
errors in probability estimates. 

Determination of whether the normal approxima­
tion is adequate would depend on the objectives 
of a particular model application. If the aquatic 
system can tolerate moderate changes in the .water 
quality constituents being modeled without· 
environmental or economic damage resulting, a 
relatively large error in the normal approximation 
may be acceptable. However, if the model is 
being used to estimate the pdf's of water quality 
constituents that are at or near some critical 
concentration, only a small error in the normal 
approximation would be acceptable. For example, 
many freshwater fish cannot tolerate a DO concen­
tration less than 5.0 mg/t. If the mOdel were 
being used to estimate the pdf of DO in a blue 
ribbon trout stream, it would be important that 
error in the normal approximation be very small. 
In some cases where very limited funds are 
available, the approximation may be the only 
practical solution method. Then the tradeoff would 
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be between the normal approximation and deterministic 
model ing. 

Two steps were taken to evaluate the accuracy 
of the numerical solution technique used to solve the 
Fokker-Plank equation for the joint pdf of BOO and 
DO. First, the mean and variance of BOD and DO were 
computed by numerically integrating the respective 
marginal pdf. Then they were compared with the mean and 
variance computed from the moment equations. Although 
the moment equations are solved numerically, a 
minimal number of computations is required and the 
numerical error should be very small. A comparison 
of the mean vector and covariance matrix of BOD and 
DO calculated by the marginal pdf's and the moment 
equations is shown in Table 4.4. In all sensitivity 
runs, the numerical difference between the mean and 
variance computed from the moment equations was less 
than or equal to 0.1. A typical comparison is given 
in Figure 4.21 where the marginal cdf of a normal 
distribution using the mean and variance computed 
from the two methods is shown for BOD at point 5 
for run 1. 

The numerical solution technique for the Fokker­
Plank equation was also evaluated by comparing the 
joint pdf and cdf of BOD and DO computed in run 3 
to the pdf and cdf of a normal distribution with the 
same mean and variance. As noted earlier, the distri­
bution of BOD and DO should be normal since the coeffi­
cient noise was zero in run 3. Indeed, the computed 
marginal pdf and cdf of BOD and DO are nearly 
identical to the normal pdf and cdf for run 3. On 

the basis of the sensitivity runs, it can be 
concluded that the numerical solution technique 
used to solve the Fokker-Plank equation worked 
extremely well. Additional research may develop 
a solution algorithm which would allow the inclusion 
Of more than two state variables. 

In order to further explore the capabilities 
of PSSAM, it was applied to a more complex 
hypothetical problem. In particular, the error 
characteristics of the numerical quadrature 
algorithm used to determine the joint pdf of BOD 
and DO immediately downstream of a point load were 
evaluated. 

Problem description 

Figure 4.22 is a diagram of the river system 
used in the hypothetical problem. It consists of 
a headwater, three reaches, one point diversion, 
two pOint loads, and two check points. Tables 
4.5 through 4.7 provide the necessary input data 
for the hypothetical problem. A summary of the 
river system layout and hydraulics is given in 
Table 4.5. A characterization of the water quality 
of the headwater and point loads is given in 
Table 4.6. The water quality equation coefficients 
and inputs are given in Table 4.7. The input and 
coefficient noise standard deviation parameters 
were assumed to be 20 and 40 percent, respectively, 
corresponding to the values used in sensitivity run 1. 

Table 4.4. Comparison of the mean vector and covariance matrix calculated by the numerical procedure and 
the moment equations. 

DO BOD-DO Covariance 
Numerical Moment 

Numeri ca 1 Procedure Moment Eguati ons Numerical Procedure Moment Eguati ons Procedure Eguations 
Run Point Mean Vari ance Mean Variance Mean Variance Mean Variance 

(mg/R.) (mg/R.)Z (mg/R.) (mg/R.)Z (mg/R.) (mg/R.)2 (mg/R.) (mgO,)2 (mg/R.)2 (mg/R.F 

15.0 3.0 15.0 3.0 5.0 1.0 5.0 1.0 1.0 1.0 
2 13.9 2.9 13.9 2.9 4.7 1.2 4.7 1.2 1.0 1.0 
3 13.0 2.8 13.0 2.8 4.6 1.3 4.6 1.3 1.0 1.0 
4 12.2 2.6 12.1 2.6 4.5 1.3 4.5 1.3 0.9 0.9 
5 11.5 2.5 11.4 2.5 4.5 1.3 4.5 1.4 0.8 0.8 

2 15.0 3.0 15.0 3.0 5.0 1.0 5.0 1.0 1.0 1.0 
2 13.9 2.9 13.9 2.9 4.7 1.2 4.7 1.2 1.0 1.0 
3 13.0 2.8 13.0 2.8 4.6 1.3 4.6 1.3 1.0 1.0 
4 12.2 2.6 12.1 2.6 4.5 1.3 4.5 1.3 0.9 0.9 
5 11.5 2.5 11.4 2.5 4.5 1.3 4.5 1.4 0.8 0.8 

3 1 15.0 3.0 15.0 3.0 5.0 1.0 5.0 1.0 1.0 1.0 
2 14.0 2.5 14.0 2.5 4.7 0.6 4.7 0.6 0.6 0.6 
3 13.0 2.0 13.0 2.0 4.6 0.4 4.6 0.4 0.4 0.3 
4 12.2 1.7 12.1 1.7 4.5 0.2 4.5 0.2 0.2 0.2 
5 11.5 1.4 11.4 1.4 4.5 0.1 4.5 0.1 0.1 0.1 
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Table 4.5. River system layout and hydraulics for hypothetical problem. 

___ mmm :I 

La tera 1 1 nfl ow 
Point for Reach Ave. Ave. 

Number Description Input River Reach Reach 
Location Flow Surface Ground Flow Vel.. H. Rad. 

( km) (ms/sec) (ms/sec/km) (ms/sec/km) (ms/sec) (m/sec) (m) 

Head df Reach 1 (Headwater) 30. 5.0 0.02 0.0 5.00 0.25 1. 32 

2 Point Diversion 23. -0.5 4.64 

3 Head of Reach 2 20. 0.02 0.01 4.70 0.25 1. 22 

4 Check Point 1 15. 4.85 

5 Point Load 1 15. 0.2 5.05 

6 Head of Reach 3 12. 0.01 0.03 5.14 0.30 1.28 

7 Check Point 2 4. 5.46 

8 Point Load 2 4. 0.3 5.76 

9 Termination 0 5.92 

Table 4.6. Headwater and point load water quality characterization. 

BOO DO 
Description Standard Standard BOD.,. DO 

Mean Deviation Mean Deviation Covariance 
(mg/t) (mg/t) (mg/t) (mg/t) (mg/ Q.)2 

Headwater 15.0 3.00 6.00 1.44 3.09 

Poi nt Load 2 20.0 16.0 3.00 0.36 2.08 

Point Load 2 25.0 25.0 2.00 0.16 1.73 
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Table 4.7. Inputs, water temperature and water quality coefficients for hypothetical problem. 

Coefficient Use for Reach 

Constituent Symbol Units Description 2 3 

BOD ~h, 1 l/day First-order decay rate 0.26 0.32 0.331 

l/day Fi rs t-order removal rate 0.0 0.0 0.0 

g/m2/day Leach rate 0.10 0.10 O.lS 

mg/~ Lateral surface inflow lS.O 10.0 10.1 

mg/~ Lateral subsurface i nfl ow S.O 8.0 8.0 

l/day Reaeration rate 3.21 3.66 3.321 

fh 2 , km Elevation 1. lS 1.1 LOS 

mg/i/day Net oxygen production 1.00 1.20 1.20 by phytoplankton 

(g/m2/day}/(mg02/~) Benthic uptake of oxygen 0.20 0.30 0.3S 

g/m2/day Leach rate 0.0 0.0 0.0 

mg/~ La tera 1 surface i nfl ow 3.0 2.0 2.0 

mg/~ Latera 1 subsurface i nfl ow 0.0 0.0 0.0 

X
S2 

XG2 

Temperature T °C Water temperature 17.0 18.0 19.0 

1 Coefficient value is corrected to 20°C. 

Results from hypothetical problem 

No numerical stability problems were encountered 
in using PSSAM to solve Equation 3.66 while running 
the hypothetical problem. The normal approximation 
to the marginal cdf of BOD and DO was found to be 
just as good for the hypothetical problem as for 
the sensitivity problem. 

The lS point Gauss-Legendre quadrature algorithm 
used to determine the joint pdf of BOD and DO 
immediately downstream of a point load was evaluated 
by computing the volume under the joint pdf. The 
volume under any joint pdf should always be equal 
to 1.0. The deviation of the volume of the joint 
pdf immediately downstream of both point loads was 
within a few hundredths of 1.0 indicating the quadra­
ture algorithm performed reasonably well (see Table 
4.8). 

Computational Aspects 

All model runs. were made on the Burroughs 6700 
computer located on the Utah State University 
campus. Each sensitivity run required 11 minutes 
of central processor time with a total cost of $14. 
The hypothetical problem required 40 minutes of 
central processor time with a total cost of $6S. 
The difference in the computational time for the 
two problems was due to the longer stream length 
being simulated and the necessity of calculating 
the joint pdf of BOD and DO immediately below the 
two point loads in the hypothetical problem. The 
processor times may seem high but it would be noted 
that the Burroughs 6700 computer is an extremely 
slow machine. The IBM 360 series computer, the 
CDC 6400 series computer, and the Univac 1108 
computer all are approximately 10 times faster 
than the Burroughs 6700. 

Table 4.8. Volume under joint probability density function of BOD and DO upstream and downstream of point loads. 

Point Number 

4 
5 

7 
8 

Location 

Immediately upstream of point load 1 
Immediately downstream of point load 1 

Immediately upstream of point load 2 
Immediately downstream of pOint load 2 

3S 

Volume under joint pdf 

1.06 
1.03 

1.06 
1.07 



CHAPTER V 

SUMMARY J CONCLUS I ONS J AND RECot1r1ENDATI ONS 

Summary_ 

A random differential equation has been derived 
and a solution algorithm has been written into a 
computer program that provides a probabilistic river 
water quality model with the capability of determining 
the joint and marginal probability density functions 
of BOD and DO at any point in a river. The one 
dimensional steady-state model can be applied to a 
river system with any reasonable number of point 
loads and diversions and patterns of lateral surface 
and subsurface inflow. The model can simultaneously 
consider randomness in the initial conditions, inputs, 
and coefficients of the water quality equations. Any 
empirical or known distribution can be used for the 
initial condition. The randomness in the water 
quality equation inputs and coefficients were modeled 
as Gaussian white noise processes. The joint pdf of 
BOD and DO was determined by numerically solving the 
Fokker-Plank equation, Moment equations were developed 
which allowed the mean and variance of the marginal 
distributions of BOD and DO to be calculated inde­
pendently of the joint pdf. An upper limit on the 
coefficient noise standard deviation parameter was 
presented for which the BOD-DO covariance matrix will 
be asymptotically stable. 

The probabilistic river water quality model was 
applied to two problems, a sensitivity problem and 
a hypothetical problem. The sensitivity problem, 
which consisted of a headwater and four check points, 
was used to gain familiarity with the simulation 
model and determine the sensitivity of the model 
responses to changes in the standard deviation 
parameter of the input and coefficient noise. The 
standard deviation parameter of the input noise was 
varied between zero and 30 percent of the respective 
input, while the coefficient noise standard deviation 
parameter was varied between zero and 50 percent of 
the respective coefficient. The model responses were 
found to be fairly sensitive to changes in the 
coefficient noise standard deviation parameter but 
relatively insensitive to changes in the input noise 
standard deviation parameter. The possibility of 
using the moment equations and a normal approximation 
in lieu of calculating the joint pdf of BOD and DO 
was discussed and the results were found to be 
similar to the model results. The accuracy of the 
numerical solution technique for the Fokker-Plank 
equation was also discussed. 

The hypothetical problem was used to evaluate 
the performance of the model in Simulating a more 
complex river system. The hypothetical problem was 
used to evaluate the numerical quadrature algorithm 
used to determine the joint pdf of BOD and DO 
immediately downstream of a point load. The problem 
consisted of a headwater, three reaches, one point 
diversion, and two point loads and check points. The 
numerical solution technique used to determine the 
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joint pdf of BOD and DO was stable throughout the 
simulation. The quadrature algorithm was judged 
to have performed adequately for both the point 
loads based on the error in the volume under the 
joint pdf. 

Conclusions 

The following conclusions have been developed 
from results and experience gained during this 
study. Each conclusion is conditional on the 
limitations made in the model development and 
summarized at the end of Chapter III, 

1. Representing the randomness in the water 
quality equation inputs and coefficients as a 
Gaussian white noise process is appealing 
since techniques are available to solve the 
resulting random differential equations for 
the pdf of the state variable and because the 
mean of the random process is the deterministic 
solution. 

2. The randomness in the coefficients in the water 
quality equations appears to have a signifi­
cantly greater influence on the total model 
prediction uncertainty than does the random­
ness in the equation inputs. In the sensiti­
vity problem, the input randomness contribu­
tion to the prediction uncertainty was 
negligible. However, this conclusion would 
not be expected to hold for unsteady condi­
tions. 

3. The normal approximation of the marginal pdf 
of BOD and DO was good for both the sensitivity 
and hypothetical problems, but judgments as 
to the adequacy of this approximation depend 
on the use to which the pdf is to be put 
and the loss function associated with errors 
in probability estimates. Using the moment 
equations to calculate the mean and variance 
of the distribution and then approximating 
the pdf and cdf with a normal distribution 
is computationally easier and faster (approxi 
mately 10 times faster in the sensitivity 
problem) than solving the Fokker-Plank 
equation for the joint pdf. 

4. Based on the results and the wide range in 
input and coefficient noises treated in the 
sensitivity runs, it appears that it would 
usually be advantageous to approximate the 
marginal pdf and cdf of BOD and DO with a 
normal distribution. If the initial condition 
is normally distributed and the coefficient 
noise is zero, the normal approximation is 
exact. Even if the initial conditions are not 
normal, and the coefficient noise is non-zero, 
the normal approximation may be adequate. 



5. Computational costs and solution results indi­
cate that the probabil istic river water qual ity 
model developed herein could be a viable tool 
in river basin water quality management. 
Computational costs for the reasonably complex 
hypothetical problem were only $65. That cost 
could be cut significantly by using a normal 
approximation of the pdf and cdf of BOD and DO. 

Recommenda t ions 

The following recommendations for further work 
are based on experience gained during this study: 

1. Initiate a river water quality data collection 
program to measure river water quality charac­
teristics on streams from a wide range of flows, 
pollution loadings, and other characteristics. 
Ideally, continuous data on pertinent physio­
chemical characteristics (flow rate, temperature, 
water depth, nutrient concentrations, etc.) 
would be collected at several sampling points 
for at least one year. This would provide the 
information necessary to estimate the water 
quality input and verify the model under a wide 
range of conditions. 

2. Make a determination of the relative importance 
of water quality equation input and coefficient 
randomness to the overall model prediction 
uncertainty for a wide variety of river systems. 

3. Determine whether a normal approximation to the 
marginal pdf of BOD and DO would be adequate 
for a wide range of initial conditions, 
coefficients, and inputs for the water quality 
equations. If the approximation is nearly 
always adequate, the model could be simplified 
by solving the moment equations and using a 
normal approximation to the distribution of 
BOD and DO. 

4. Investigate the use of an upper bound on the 
coefficient of skew for which a normal approxi-
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mation to the marginal pdf of BOD and DO is 
adequate. 

5. Consider the possibil ity of adding or using 
different state variables. The former may prove 
to be impossible if the Fokker-Plank equation 
must be numerically solved to determine the 
joint pdf of the state variables. However, if 
the normal approximation to the pdf of the state 
variables is used, then all that would be 
necessary is to develop first and second moment 
equations for the larger state vector. 

6. Modify the model so that it will simulate the 
dynamic nature of rivers. 

7. Interface a general economic model with the 
probabilistic river water quality model. Some 
features of the economic model might include 
an algorithm to calculate environmental damage 
functions based on the probabilistic nature of 
pollution discharge to the river and the probabi­
listic nature of the pollutant concentration in 
the river. The combined models could then be 
used as a regional planning and control model 
that would minimize the cost of wastewater treat­
ment in a river basin subject to environmental 

damage constraints. A prob'lem that woul d 
need to be addressed is how to handle 
randomness in economic damage functions 
which is probably greater than that in the 
water quality model. 

8. Investigate whether the assumption of 
mutually independent noise processes for the 
model inputs and coefficients introduces a 
significant error in the model predictions 
of the noise processes are correlated. 

9. Determine, for the given deterministic model 
structure, the optimal combination of 
deterministic and random variables which 
maximizes the amount of the prediction 
uncertainty which is represented under the 
constraint of not being able to treat random 
variables which appear in multiplicative 
terms in the equations. 
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APPENDIX 

Derivation of Joint pdf of BOD and DO 
Downstream of a Point Load 

From Equations 3.45 and 3.46 we have the 
following expressions for Xl and X2 : 

Xl = aKlu + aKlt 

X2 = aK2U + aK2t 

(A.l ) 

(A.2) 

If two dummy random variables X3 and x. are defined 
as follows: 

X3 = XIJt 

x. = X2t 

then the joint pdf of (Xl' X2. X3 , X.) is 

(A.3) 

(A.4) 

(A.5) 

where fX X X X is the joint pdf of (XIUX2UXIJtX2t)' 
IU 2U II!, 2 t 

The Jacobian, d, of the transformation is defined as 
follows: 

aXl __ u aXlu aXlu aX I __ u 
aX I aX2 ax. ax. 

aX2 __ u aX2 
---..Ii. 

aX2u aX2u 
aXI aX2 ax. aX4 

J= (A.6) 

aXlt aXl t dXIJt aXlt 
aXI aX2 ax. ax~ 

aX2Jt aX2t aX2t aX2Jt 
aX l aX2 ax. aX4 

therefore 
d = 1/a2 (A.?) 

If the upstream concentrations of BOD and DO (Xl' X2 ) 
are independent of the concentrations of BOD u u 
and DO in the point load (X lt , X2

t
), then 
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(A.S) 

(A.9) 

Integrating over the dummy variables X3 and x~ and 
making appropriate substitutions yields the joint 
pdf of downstream concentration of BOD and DO: 

f XIX 2 (X I X2 ) hI f f (XI-YXl t X2-:X2t ) 
a XIUX2U ex 

Xl t X2t 

(A. 10) 
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