Utah State University DigitalCommons@USU

Reports

Utah Water Research Laboratory

January 1979

Pre-Impoundment Water Quality Study for the Mc Elmo Project

Larry Baker

V. Dean Adams

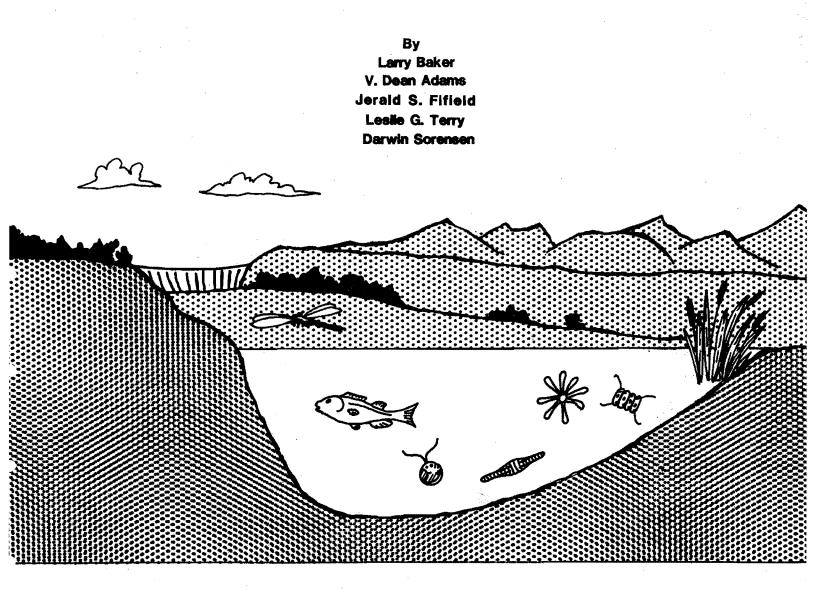
Leslie G. Terry

Jerald S. Fifield

Darwin L. Sorensen

Follow this and additional works at: https://digitalcommons.usu.edu/water_rep

Part of the Civil and Environmental Engineering Commons, and the Water Resource Management Commons


Recommended Citation

Baker, Larry; Adams, V. Dean; Terry, Leslie G.; Fifield, Jerald S.; and Sorensen, Darwin L., "Pre-Impoundment Water Quality Study for the Mc Elmo Project" (1979). *Reports*. Paper 619. https://digitalcommons.usu.edu/water_rep/619

This Report is brought to you for free and open access by the Utah Water Research Laboratory at DigitalCommons@USU. It has been accepted for inclusion in Reports by an authorized administrator of DigitalCommons@USU. For more information, please contact digitalcommons@usu.edu.

PRE-IMPOUNDMENT WATER QUALITY STUDY FOR THE MC ELMO PROJECT

Utah Water Research Laboratory College of Engineering Utah State University Logan, Utah 84321

June 1979

PRE-IMPOUNDMENT WATER QUALITY STUDY FOR THE

MC ELMO PROJECT

by

Larry Baker V. Dean Adams Jerald S. Fifield Leslie G. Terry Darwin Sorensen

This report was completed for the United States Bureau of Reclamation as a part of Contract No. 7-07-40-S0329 (<u>Chemical and Biologi</u>cal Analysis of Colorado Water Samples).

> Utah Water Research Laboratory College of Engineering Utah State University Logan, Utah 84321

> > June 1979

Acknowledgements

The authors of this report express gratitude to the personnel of the Utah Water Research Laboratory who participated in the chemical analysis and data compliation, including Alberta Seierstad, John Manwaring, Art Hirsch and Tom Peters. We also appreciated the technical advice of Don Porcella throughout this study.

We would also like to thank Joe Gardner and Art Rivers, Annette Brunson, Leslie Johnson, Barbara South, Michelle Kruschke, Betty Hansen, Kathy Bayn and Marianne Nelson for their help in preparing this report.

1

-

Table of Contents

Introduct	ion	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
Methods	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	2
Results	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	9
Discussio	n	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	14
Appendice	S	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	17
Appe	ndiz	κA		Proj	pos	ed (Cold	ora	do	Wate	er	Qua	lity	y S	tano	dar	ds	•	•	*	17
Appe	ndiz	ĸВ	-	Raw	War	ter	Qua	ali	ty	Data	3	٠	•	•	•	•	•	٠	٠	•	31
Appe	ndi	c C		Stat	tis	tic	al A	Ana	lys	es d	of	Wate	er (Qua.	lity	y Da	ata	•	•	•	34
Appe Prop				•	•					-		-						•	•	•	36
Bibliogra	phy		•	•		•	•		•		•	•			1	•	•	۰.	4	•	38

Introduction

The U.S. Bureau of Reclamation is currently in the process of evaluating a number of water development projects in Southwest Colorado. As a part of the planning process the Bureau has conducted a water quality investigation, in cooperation with the UWRL, of the stream segments that will be affected by each project. The data collected in this study were used to evaluate the water quality of each stream segment with respect to various beneficial uses of water (agriculture, raw municipal water supply, protection of the aquatic biota) and will provide a baseline by which to assess the impact of each project. In addition, these data will be used in the process of site location, design and operation planning for reservoirs and other project features.

This report includes only the results of the water quality study of McElmo Creek, associated with the McElmo Project¹. Water quality data were collected during the period from May, 1977 through June, 1978. One sample was collected and analyzed during each month of the study except during June, 1977, in which two samples were collected from some sites. The concentration of 49 water quality constituents was determined for each sample received at the UWRL.

¹Other projects included in this study are: the Delores Project, the Animas La Plata Project, the Mancos Project, the West Divide Project, the Dominguez Project and the San Miguel Project. The results of the water quality study for each project are contained in individual reports.

Methods

Bottles to be used for sample collection were prepared at the UWRL and sent to Colorado for sample collection via Greyhound bus. Three sample bottles were used for each station. Water to be analyzed for nonmetallic constituents (plus calcium and magnesium) were collected in half gallon Nalgene bottles. Two 500 ml polyethylene bottles were used for the collection of samples to be analyzed for metals. One of these was reserved for the analyses of "total" metals and the other reserved for the analyses of "dissolved" metals. All sample bottles were prepared prior to shipment using a rinse with dilute HCl followed by three rinses with high quality distilled water. Prior to shipment, 1.5 ml of 50 percent HNO₃ was added to each sample bottle reserved for the analyses of "total" metals.

In Colorado the staff of the USBR or of the consulting firm cf A and S Consultants, Inc. collected samples from each water quality station. Samples were packed in ice for the return trip to the UWRL and shipped via Greyhound bus. Samples usually arrived in Logan the following afternoon and analyses were begun immediately. Occasionally, samples were held in transit longer due to inclement weather.

Upon receipt at the UWRL a portion of the sample reserved for the analyses of non-metallic constituents and the entire sample reserved for the analyses of dissolved metals was filtered through a 0.45 μ "Millipore" filter. Where necessary samples were filtered through a GF/C glass fiber filter prior to filtration through the Millipore filter. Aliquots to be

used for the analyses of total Kjeldahl nitrogen, dissolved metals, cyanide and NO_3/NO_2 were preserved as outlined in Table 2.

Immediately following sample coding and pre-treatment (filtration and/or preservation), analyses were performed for total phosphorus, orthophosphate, alkalinity, cyanide, nitrate and nitrite. On some occasions the analyses of nitrate/nitrite and cyanide were postponed until the following day. When this was necessary the samples for NO_3/NO_2 and cyanide were preserved.

The analyses of calcium, total hardness, sulfate, chloride, total dissolved solids, total Kjeldahl nitrogen, hexavalent chromium and fluoride were completed within seven days using the methods listed in Table 1.

The data obtained for each water quality station during this study was subjected to statistical analysis to determine the means, maximum, minimum, range, standard deviation and coefficient of variation for each constituent. In addition the water quality data for each station was compared to the proposed Colorado Water Quality Standards for agricultural use, raw water supply and the protection of the aquatic biota (Appendix A). This analysis was based on the number of times in which the concentration of a constituent exceeded the proposed standard for that constituent with respect to the number of times a detectable concentration of the constituent was analyzed (Appendix D). In Tables 6 and 7 the comparison is made on the basis of the total number of samples analyzed since for most constituents if the concentration is below the detection limit of analyses it is below the proposed standards. For some metals (cadmium, mercury, silver, copper and zinc) the proposed standards for the protection of the

Analysis	Units/Sensitivity	Method
Non Metallic Constituents		
Total hardness	l mg/l as CaCO ₃	EDTA Titrimetric. S.M. p. 202
рН		p H electrode. <i>S.M.</i> p. 460
Total alkalinity	1 mg/l as CaCO ₃	Potentiometric. S.M. p. 278
Carbonate hardness	1 mg/1 as CaCO ₃	Calculated from CaCO ₃
Bicarbonate hardness	l mg/l as CaCO ₃	Calculated from CaCO ₃
Total dissolved solids	1 mg/1	Gravimetric. S.M. p. 82
Chloride, dissolved	mg/l, 2 place	Titrimetric (HgNO ₃) S.M. p. 304
Sulfate, dissolved	mg/l, 2 place	Turbidimetrić (BaCl ₂) <i>S.M.</i> p. 496
Fluoride, dissolved	mg/1, 2 place	Ion selective electrode S.M. p. 391
Cyanide, total	mg/1, 2 place	Ion selective electrode S.M. p. 372
Phosphorus, total	mg/1, 2 place	Persulfate digestion S.M. p. 466
Phosphate, ortho	mg/1, ⁻ 2 place	Ascorbic acid S.M. p. 481
Nitrogen, total organic	mg/1, 2 place	Kjeldahl. S.M. p. 437
Nitrate	mg/1, 2 place	Cadmium reduction (automat S.M. p. 620
Metallic Constituents		
Aluminum, total; dissolved	µg/1, 3 place	Atomic absorption (AA) S.M. p. 152
Arsenic, total;	µg/1, 3 place	Atomic Absorption (Vapor

Table 1. Analytical methods used in water quality survey.¹

.....

Table 1. Continued.

Analysis	Units/Sensitivity	Method
Barium, dissolved ²	µg/1, 2 place	Atomic absorption S.M. p. 152
Boron, dissolved	mg/1, 2 place	Carmine. S.M. p. 290
Calcium	mg/1, 2 place	Titrimetric (EDTA) S.M. p. 189
Cadmium, total; dissolved	µg/l, 3 place	Atomic absorption (Flameles EPA p. 78
Chromium, dissolved ²	µg/1, 3 place	Atomic absorption (Flameles EPA p. 78
Chromium, hexavalent	µg/1, 3 place	Colorimetric, S.M. p. 192
Copper, total; dissolved	μ g/l, 3 place	Atomic absorption <i>S.M.</i> p. 148
Iron, total; dissolved	µg/1, 3 place	Atomic absorption S.M. p. 148
Lead, total; dissolved	µg/l, 3 place	Atomic absorption (Flameles EPA p. 78
Magnesium, dissolved	mg/1, 2 place	Calculated from calcium and total hardness
Manganese, total; dissolved	µg/l, 3 place	Atomic absorption <i>S.M.</i> p. 148
Mercury, total; dissolved	$\mu g/l$, 3 place	Atomic absorption (Cold vapor) S.M.p. 56
Molybdenum, total; dissolved	µg/1, 3 place	Atomic absorption (Flameles EPA p. 78
Nickel, total; dissolved	µg/1, 3 place	Atomic absorption (Flameles EPA p. 78
Potassium, dissolved	mg/l, 2 place	Flame photometric, S.M. p. 234
Selenium, total; dissolved	µg/l, 2 place	Atomic absorption (Vapor generation) <i>S.M.</i> p. 159
Silver, total; dissolved	µg/l, 3 place	Atomic absorption (Flameles EPA p. 78

5

Table 1. Continued.

Analysis	Units/Sensitivity	Method		
Sodium, dissolved	mg/1, 2 place	Flame photometric, S.M. p. 250		
Zinc, total; dissolved	µg/1, 3 place	Atomic absorption, <i>S.M.</i> p. 148		

¹Sources of analytical methods:

- S.M. = Standard Methods for Examination of Water and Wastewater. 14th Ed. (1975). APHA.
- EPA = USEPA (1976a). Methods for Chemical Analysis of Water and Wastes.

²These analysis were not included in original contract. Analysis of these constituents began in January, 1978.

Constitutent	Preservative	Storage
Metals ¹	3 ml 50% "mercury free" HNO ₃ /1	Several months (refrigerated)
TKN	0.8 ml conc. $H_2SO_4/1$	Max. of 7 days in dark amber glass bottle (refrigerated)
NO3-NO2	l drop chloroform per 12 ml vials	Max. of 2 days in stoppered vials (refrigerated)
CN	pH adjusted to 12 with ionic strength adjuster	Up to 24 hours (refrigerated)

Table 2. Methods of storage and preservation of samples used in the water quality survey.

 $^1 \rm Sample$ bottles (500 ml) for "total metals" contained 1.5 ml $\rm HNO_3$ when shipped to field.

aquatic biota are below the detection limits of analyses. Since there may have been instances in which the concentration of one of these metals was less than the detection limit of analysis but still greater than the proposed standard for the protection of the aquatic biota, the comparisons for these metals with the proposed standards in Tables 6 and 7 are enclosed in parenthesis.

Results

The water quality data obtained in this study are presented in Appendix B. Statistical analyses of these data, including the mean, standard deviation and coefficient of variance for each water quality constituent are presented in Appendix C.

The sampling period for this study lasted 16 months. If samples had been collected during each sampling period and if no analyses had been omitted, 744 parameter values would have been obtained. During this study samples were not collected from McElmo Creek during two sampling periods and resulted in the omission of 88 analyses (11.8% of the total analyses). In addition, sample bottles broke or leaked in transit during two sampling periods, resulting in a failure to determine 26 parameter values (3.5% of the total possible analyses), and on nine occasions the individual analysis were omitted (1.2% of the total).

In order to check the reliability of these analyses, ion balances were computed for each sampling period. The error in each ion balance was computed as follows:

% error =
$$\frac{|\Sigma M^{+n} - \Sigma M^{-n}|}{\Sigma M^{+n} - \Sigma M^{-n}} \times 100$$
 (1)

The ion balance calculations for McElmo Creek are presented in Table 4. A frequency distribution of errors in the ion balances is presented in Table 5 and Figure 1. These calculations indicate that the error in the ion balances were less than ten percent during 82% of the sampling periods.

Sampling Round	Sample Station	Analyses not Performed	Reason for Omission
1	17	Cyanide: TDS	Omitted
2	17	Sodium	Omitted
3	17	A11	No samples received
4	17	A11	No samples received
5	17	A11	No samples received
9	17	All non-metallic constituents (except total and ortho phosphorus), and calcium	Samples leaked in transit
10	17	Fluoride	Omitted
13	17	All non-metallic constituents and calcium	Samples leaked in transit
14	17	Selenium (total; dissolved); Arsenic (total; dissolved)	Omitted
17	17	Nitrite	Omitted

Table 3. McElmo water quality survey - missing parameter values^a

^aWhen total hardness was not determined, magnesium concentration could not be calculated. When alkalinity was not determined, inorganic carbon species $(\text{HCO}_{3}^{-}, \text{CO}_{3}^{-})$ could not be determined.

Table 4. Ion balance calculations for the McElmo water quality survey.

HC ELMO PROJECT

STATION 171 MC ELMO CREEK

		*	*	*	*				*				*				
	5/25/77	6/16	6/30	7/19	8/24	9/21	10/19	11/15	12/13	1/18/78	2/15	3/21	4/18	5/18	0/15	7/19	8/24
C A	324.0	382.0	0_0	0.0	0.0	307.0	423.0	460.0	0.0	259.0	385.0	410.0	0.0	406.0	300.0	282.0	440.0
MG	192.0	303.0	0.0	0.0	0.0	250.0	196.0	183.0	0.0	177.0	277.0	12A.0	0.0	118.0	85.0	110.0	0.255
NA	372.0	0.0	0.0	0.0	0.0		28A.0			449.0						153.0	279.0
· K	9.0	12.0	0.0	0.0	0.0	13.0	10.5	4.1	8.8	4.7	7.5	4 4	3.6		0.6	7.0	9.0
HC 0 3	286.0	355.0	0,0	0.0	0.0	169.0	243.0	308.0	0.0	290.0	324 0	2076.0	0.0	258.0	232.0	312.0	342.0
003	0.0	0.0	0.0	0.0	0 0	-		8.0	0.0	-	-	•	0.9	•	•	0.0	
CL	72.0	77.0	0_0	0.0	0.0	67.0	50.0	57.0	0.0	48.0	50.0	57.0	0.0			38.0	
504	1990.0	3230.0	0.0	0,0	0.0	1996.0	2191.0	2364.0	0.0	1441.0	5313.0	1746.0	0.0		1300.0	98A.0	2132.0
STDS	3245.0	4326.0	0.0	0.0	0,0	3078.0	3401.5	3700.1	435.A	2668.7	3807,5	4666.4	273.6	2499.0	2075.0	1890.0	3485.0
MTOS	0.0	4402.0	0.0	0.0	0,0	3414.0	3422.0	3369.0	0,0	2637.0	3529.0	2689.0	0.0	2739.0	1787.0	1969.0	3575.0
SC.	48.374	44.293	0.000	0.000	0.000	48.223	50.027	51.458	18.800	47.136	61.808	41.758	11.837	37.924	27.387	29.955	52.667

MTOS 0.0 4402.0 0.0 0.0 0.0 3414.0 3422.0 3369.0 0.0 2637.0 3529.0 2689.0 0.0 2739.0 1787.0 1969.0 3575.0 SC 48.374 44.293 0.000 0.000 0.000 48.223 50.027 51.858 18.800 47.136 61.808 41.758 11.837 37.924 27.387 29.955 52.667 SA 49.183 75.861 0.000 0.000 0.000 46.827 51.887 57.146 0.000 37.156 56.047 79.480 0.000 37.389 32.552 27.882 52.921 ADIFF 0.609 31.567 0.000 0.000 0.000 1.396 1.860 5.288 18.800 9.980 5.761 37.721 11.837 0.555 51.66 2.073 0.254 FRR(X) 0.830 26.272 0.000 0.000 0.000 1.469 1.825 4.851100.000 11.840 4.888 31.114100.000 0.711 8.618 3.584 0.241.

> STDS = Sum of the constituents (mg/l) MTDS = Laboratory measured TDS (mg/l) SC = Sum of cations (meq/l) SA = Sum of anions (meq/l) ADIFF = Absolute difference between SC and SA (meq/l) KRR(%) = (ADIFF)/(SC + SA) x 100 * = Indicated date where one or more constituents have not been recorded.

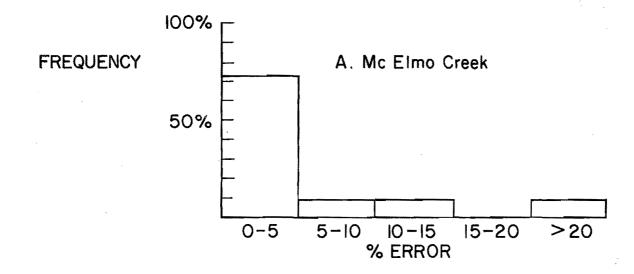

= Indicates that the concentration was below detection limit.

Table 5. Frequency distribution of errors in ion balances for McElmo Creek.

Err(%)	Number	% of total
0 - 5	8	72.7
5 - 10	1	9.1
10 - 15	1	9.1
15 - 20	0	0
>20	1	9.1
Missing Data	3	
Total	14	

Station 17: McElmo Creek

Figure 1. Frequency distribution of errors in ion balance for the McElmo water quality study.

Discussion

The water from McElmo Creek has a very high concentration of total dissolved solids for inland waters, ranging from 1,700 to 4,500 mg/l (mean = 3,040 mg/l) and can be considered to be "slightly saline" to "moderately saline" (Hem, 1972). Although the proposed Colorado Water Quality Standards do not include agricultural standards for the salinity of irrigation water, NAS (1972) classifies water containing 2,000-5,000 mg/l TDS as being suitable only for tolerant plants on permeable soil, using careful management practices. In addition to the general osmotic effect of high salinity, high concentrations of specific ions, especially sodium, is undesirable in irrigation water. In addition to the high salinity, the level of manganese in McElmo Creek exceeded the proposed Colorado Water Quality Standard for agricultural use during 8 out of the 14 sampling periods in which total manganese was determined and total cadmium exceeded the proposed agricultural standard during 6 out of 14 sampling periods (Table 6).

Associated with the high salinity were high concentrations of sulfate. The sulfate concentration in McElmo Creek ranged from 988 to 2,242 mg/l (mean = 1,932 mg/l) and exceeded the proposed drinking water standard during each sampling period in which sulfate was measured. Moore (1952, cited in EPA, 1976) found that 62% of the people responding to a questionnaire indicated that water containing 1,500 to 2,000 mg/l sulfate had a laxative effect. The proposed water supply standard for manganese was also exceeded frequently (79% of the samples). The levels of dissolved manganese found in McElmo Creek are sufficiently high (up to 356 µg/l) to cause a taste and staining problem in domestic water supplies.

Concentrations of magnesium exceeded the proposed water supply standard during 9 out of 14 samples. High magnesium concentrations also have a laxative effect on some people. Several (oxic metals exceeded the proposed water supply standards, including cadmium (during 6 out of 14 sampling periods), barium, and chromium (once each).

The concentrations of several metals exceeded the proposed Colorado Water Quality Standards for the protection of the aquatic biota, including total mercury (10 out of 14 samples), total silver (5 out of 14 samples), total copper (3 out of 14 samples), total iron (9 out of 14 samples), dissolved aluminum (14 out of 14 samples), total cadmium (2 out of 14 samples), total manganese (once), total nickel (once), and total zinc (once). In addition, the concentration of total cyanide exceeded the proposed standard for the protection of aquatic biota during 8 out of 11 sampling periods and the nitrite concentration exceeded the proposed standard twice.

			Water	Use			
Parameter	Class Water S		Agricul	ture	Aquatic	Biota	
All metals "total" unless specified)	N/T ⁽²⁾	%	N/T ⁽²⁾	%	N/T ⁽²⁾	%	
Aluminum (dissolved)					14/14	100	
Barium	1/10	10	-	-	_		
Cadmium ⁽³⁾	6/14	43	6/14	43	(2/14)	(14)	
Chromium	1/10	10	0/10	0	0/10	0	
Copper ⁽³⁾	0/14	0	0/14	0	(3/14)	(21)	
Iron (total)		—	-	-	9/14	53	
Lead	0/10	0	0/10	0	0/10	0	
Magnesium	9/14	53	_	-	<u>-</u>	-	
Manganese (dissolved)	11/14	79		-	-	-	
Manganese (total)	-	-	8/14	57	1/14	7	
Mercury ⁽³⁾	0/14	0		-	(10/14)	(71)	
Nickel	-	_	1/14	7	1/14	7	
Silver ⁽³⁾	0/14	0	-		(5/14)	(36	
Zinc ⁽³⁾	0/14	0	0/14	0	(1/14)	(7)	
Total Cyanide	0/11	0	0/11	0	8/11	73	
Nitrogen (nitrite)	0/12	0	0/12	0	2/12	17	
Sulfate	12/12	100	_	-			

Table <u>6</u>. Constituents that exceeded the proposed Colorado River Quality Standards at McElmo Creek.⁽¹⁾

 $^{(1)}$ Proposed Colorado Water Quality Standards in Appendix A.

(2)N/T = number of samples exceeding standard compared with the number of samples analyzed.

(3)Parenthesis indicate that the proposed standard was below the detection limit of analyses.

APPENDIX A

Proposed Colorado Water Quality Standards

Parameter	Standard
Physical	
$D.O. (mg/l)^{1}$	Aerobic ²
pH	5.0-9.0
Suspended solids and turbidity	3
Temperature	Х
TDS (mg/L)	Y
Biological	
Algae ⁴	Free of toxic and
	objectionable algae
Fecal coliforms (#/100 ml)	1,000
Inorganics	
Ammonia (mg/l as N)	0.5
Total residual chlorine (mg/l)	X
Cyanide (mg/l)	0.2
Fluoride (mg/l)	5
Nitrate $(mg/l as N)$	10
Nitrite $(mg/l as N)$	1.0
Sulfide as H_2S (mg/l)	0.05
Boron (mg/l)	X
Chloride (mg/l)	250
Magnesium (mg/l)	125
Sodium adsorbtion ratio	Х
Sulfate (mg/l)	250
Phosphorus (mg/l as P)	Bioassay ⁶
oxic Metals (mg/l)	
Aluminum	X
Arsenic	0.05
Barium	1.0
Beryllium	X
Cadmium	0.01
Chromium	0.05
Copper	1.0
Iron	0.3 (soluble)
Lead	0.05
Manganese	0.05 (soluble)
Mercury	0.002
Molybdenum	Y
Nickel	X

Table A-1 Proposed Colorado water quality standards: Class II water supply.

X = numerical limit generally not needed for protection of classified use.

Y = limit may be required but there is insufficient data for setting a general standard. . .

Table A-1 Continued.

Parameter	Standards	
Toxic Metals (mg/l)		
Selenium	0.01	
Silver	0.05	
Thallium	X	
Zinc	5.0	
$\frac{0 \text{ rganics}^{7}}{\ell}$ ($\frac{\mu g}{\ell}$)		
Chlorinated pesticides ⁸		
Aldrin ⁹	Y	
Chlordane ⁹	Y	
Dieldrin ⁸	Y	
DDT ⁹	Y	
Endrin	0.2	
Heptachlor ⁹	Y	
Lindane	4	
Methoxychlor	Y	
Mirex	10 0	
Toxaphene	5	
rganophosphate pesticides ⁸	· · ·	
Demeton	Y	
Endosulfan	Ŷ	
Guthion	Ŷ	
Malathion	Ŷ	
Parathion	Ŷ	
hlorophenoxy Herbicides		
2, 4-D	100	
2, 4, 5-TP	10	
CB's ¹⁰	Y	
heno1	1	
adiological ¹¹ (pCi/L)		
	15	
Beta ¹¹ , ¹²	50	
Cesium 134	80	
Plutonium	15	
Radium 226 and 228^{12} , ¹³ Strontium 90 ¹² , ¹³	5	
Strontium 90 ¹² , ¹³	8	
Thorium 230 and 232	60	
Tritium	20,000	

¹Where dissolved oxygen levels less than the standard occur naturally, a discharge shall not cause a further reduction in dissolved oxygen in receiving water.

- ²An effluent shall be regulated to maintain aerobic conditions, and a guideline of 2.0 mg/l dissolved oxygen in an effluent should be maintained, unless demonstrated otherwise.
- ³Suspended solid levels will be controlled by Effluent Limitations and Basic Standards.
- ⁴Free from objectionable and toxic algae. It has been well established that heavy growth of some strains of blue-green algae, upon death and degradation, may release one or more substances which are toxic to humans and many other animals. Although no fixed numbers can be recommended at this time, it is clear that streams, lakes and reservoirs should not be permitted to bear heavy growth of algal blooms, nor allow these blooms to disintegrate. Every effort should be made to control algal growths to levels that are not hazardous.
- ⁵Fluoride limits vary from 2.4 mg/l at 12.0 C and below, to 1.4 mg/l between 26.3 C and 32.5 C, based upon the annual average of the maximum daily air temperature (see *National Interim Primary Drinking Water Regulations* for specific limitations).
- ⁶Phosphorus standards are to be determined by an algal bioassay using the method described in the latest edition of Standard Methods for the Examination of Water and Wastewater.
- ⁷All organics, not on this partial list, are covered under Basic Standards, Section 3.1., 1978 Colorado Water Quality Standards.
- ⁸Numerical limits in tables based on experimental evidence of toxicity. No point source discharges of organic pesticides shall be permitted to state waters.
- ⁹The persistence, bioaccumulation potential, and carcinogenicity of these organic compounds cautions human exposure to a minimum (EPA).
- ¹⁰Every reasonable effort should be made to minimize human exposure (EPA).
- ¹¹Concentrations given are maximum permissible concentrations above naturally occurring or "background" concentrations except where otherwise noted.
- ¹²If Alpha or Beta are measured in excess of 15 or 50 pCi/l respectively, it will be necessary to determine by specific analysis the particular radionuclide or radionuclides responsible for the elevated level. Particular radionuclides should not exceed the limit given in the table. If an elevated level of Alpha or Beta emissions is caused by radionuclides, the Division should be consulted.
- ¹³Maximum permissible concentrations including naturally occurring or background contributions.

Parameter	Cold Water Biota	Warm Water Biota
Physical		
D.O. $(mg/l)^{1}$	6.0 7.0 (spawning) ²	5.0
pH	6.5 - 9.0	6.5 - 9.0
Suspended solids and turbidity	3	3
Temperature (°C)	Maximum 20°C w/ 3° increase ⁴	Maximum 30°C w/ 3° increase ⁴
TDS (mg/L)	Y	Y
Biological		
Algae ⁵	Free from objec- tionable and toxic algae	Same as Cold Water
Fecal coliforms	x	X
Inorganics		
Ammonia (mg/l as N) Total residual chlorine	0.02 unionized	0.10 unionized
(mg/l)	0.002	0.01
Cyanide (mg/l)	0.005	0.005
Fluoride (mg/l)	X	X
Nitrate $(mg/l as N)$	X	X
Nitrite $(mg/l as N)$	0.05	0.5
Sulfide as H_2S (mg/l)	0.002	0.002
	undissociated	undissociated
Boron (mg/l)	X	X
Chloride (mg/l)	Х	X
Magnesium (mg/l)	Х	X
Sodium adsorbtion, ratio	Х .	X
Sulfate (mg/l)	x	X
Phosphorus (mg/L as P)	Bioassay ⁶	Bioassay ⁶
$\frac{\text{Organics}^7}{\ell}$ ($\frac{\text{Ug}}{\ell}$)		
Chlorinated Pesticides ⁸		
Aldrin ⁹	0.003	0.003
Chlordane	0.01	0.01
Dieldrin ⁹	0.003	0.003
DDT	0.001	0.001
Endrin	0.004	0.004
Heptachlor	0.001	0.001
Lindane	0.01	0.01
Methoxychlor	0.03	0.03
Mirex	0.001	0.001
Toxaphene	0.005	0.005

Table A-2 Proposed Colorado water quality standards (non-metallic): Protection of Aquatic Biota.

. .

Table A-2 Continued.

Parameter	Cold Water Biota	Warm Water Biota
Organophosphate Pesticides ⁸		
Demeton	1	1
Endosulfan	0.003	0.003
Guthion	0.01	0.01
Malathion	1	1
Parathion	0.04	0.04
Chlorophenoxy Herbicides		
2, 4-D	Y	Y
2, 4, 5-TP	Y	Y.
PCB's	0.001	0.001
Phenols	1	1
Radiological ¹⁰ in (pCi/l) Alpha (excluding uranium and radium ¹¹)	15	15
Beta (excluding Sr ⁹⁰ 11	50	50
Cesium 134	80	80
Plutonium 238, 239, and 240	15	15
Radium 226 and 228	5	5
Strantium 90 ¹²	8	8
Thorium 230 and 232	60	60
Tritium	20,000	20,000
Uranium (total) ¹³	20,000	20,000

X = numerical limit generally not needed for protection of classified use.

Y = limit may be required but there is insufficient data for setting a general standard.

¹Where dissolved oxygen levels less than the standard occur naturally a discharge shall not cause a further reduction in dissolved oxygen in receiving water.

- 2 A 7 mg/l standard, during periods of spawning of coldwater fish, shall be set on a case by case basis as defined in the NPDES permit for those dischargers whose effluent would affect fish spawning.
- ³Suspended solid levels will be controlled by Effluent Limitations and Basic Standards.

- ⁴Temperature shall maintain a normal pattern of diurnal and seasonal fluctuations with no abrupt changes and shall have no increase in temperature of a magnitude, rate and duration deemed deleterious to the resident aquatic life. Generally, a maximum 3°C increase over a minimum of a 4-hour period, lasting for 12 hours maximum, is deemed acceptable for discharges fluctuating in volume or temperature. Where temperature increases cannot be maintained within this range using BMP, BATEA, and BPWITT control measures, the Division will determine whether the resulting temperature increases preclude an Aquatic Life classification.
- ⁵Free from objectionable and toxic algae. It has been well established that heavy growth of some strains of blue-green algae, upon death and degradation, may release one or more substances which are toxic to humans and many other animals. Although no fixed numbers can be recommended at this time, it is clear that streams lakes and reservoirs should not be permitted to bear heavy growth of algal blooms, nor allow these blooms to disintegrate. Every effort should be made to control algal growths to levels that are not hazardous.
- ⁶Phosphorus standards are to be determined by an algal bioassay using the method described in the latest edition of *Standard Methods for the Examination of Water and Wastewater*, American Public Health Association.
- ⁷All organics, not on this partial list, are covered under Basic Standards, Section 3.1., 1978 Colorado Water Quality Standards.
- ⁸Numerical limits in tables based on experimental evidence of toxicity. No point source discharges of organic pesticides shall be permitted to state waters.

⁹Aldrin and dieldrin in combination should not exceed 0.000003 mg/ ℓ .

- ¹⁰Concentrations given are maximum permissible concentrations above naturally occurring or "background" concentrations except where otherwise noted.
- ¹¹If Alpha or Beta are measured in excess of 15 of 50 pCi/l respectively, it will be necessary to determine by specific analysis the particular radionuclide or radionuclides responsible for the elevated level. Particular radionuclides should not exceed the limit given in the table. If an elevated level of Alpha or Beta emissions is caused by radionuclides, the Division should be consulted.
- ¹²Maximum permissible concentrations including naturally occurring or background contribution.

¹³See Uranium in Table A-3 for aquatic life limitations.

Parameter	Water Hardness ¹ - Cold and Warm Water Biota								
	0-100	100-200	200-300	300–40 0	over 400				
Toxic Metals ² (mg/l)									
Aluminum (soluble) Arsenic Barium Beryllium Cadmium Chromium Copper Iron Lead ³ Manganese Mercury Molybdenum Nickel Selenium Silver Thallium Uranium Zinc	0.1 0.05 X 0.01 0.004 0.1 0.01 1.0 0.004 1.0 0.00005 X 0.05 0.05 0.05 0.05 0.05 0.	0.1 0.05 X 0.3 0.001 0.1 0.01 1.0 0.025 1.0 0.00005 X 0.10 0.05 0.00010 0.15 0.2 0.05	0.1 0.05 X 0.6 0.005 0.1 0.01 1.0 0.050 1.0 0.00005 X 0.20 0.05 0.00015 0.15 0.4 0.10	0.1 0.05 X 0.9 0.01 0.1 0.02 1.0 0.100 1.0 0.00005 X 0.30 0.05 0.00020 0.15 0.8 0.30	0.1 0.05 X 1.1 0.015 0.1 0.04 1.0 0.150 1.0 0.00005 X 0.40 0.05 0.00025 0.15 1.4 0.60				

Table A-3 Proposed Colorado water quality standards (metallic): Protection of Aquatic Biota.

X = numerical limit generally not needed for protection of classified use.

¹Concentrations of total alkalinity or other chelating agents attributable to municipal, industrial or other discharges or agriculatural practices should not alter the total alkalinity or other chelating agents of the receiving water by more than 20 percent. Where the complexing capacity of the receiving water is altered by more than 20 percent or where chelating agents are released to the receiving water which are not naturally characteristic of that water, specific effluent limitations on pertinent parameters will be established. In no case shall instream modification or alteration of total alkalinity or other chelating agents be permitted without Commission authorization.

²Bioassay procedures may be used to establish criteria or standards for a particular situation. Requirements for bioassay procedures outlined in Section 3.1.10, Colorado Water Quality Standards, May 2. 1978.

³For bioassay lead concentration is based on soluble lead measurements (*i.e.* non-filterable lead using a 0.45 micron filter).

Agricultural Use.	
Parameter	Standard
Physical	
D.O. $(mg/l)^{1}$	Aerobic ²
pH	X
Suspended solids and turbidity	3
Temperature	X
TDS (mg/l)	Y
Biological	
Algae ⁴	Free of toxic and
	objectionable algae
Fecal coliforms (#/100 ml)	1,000
Inorganics	
Ammonia (mg/l as N)	X
Total residual chlorine (mg/l)	x
Cyanide (mg/l)	0.2
Fluoride (mg/l)	X
Nitrate $(mg/L \text{ as } N)$	100 ⁵
Nitrite $(mg/L as N)$	105
Sulfide as $H S (mg/l)$	x
Boron $(mg/l)^2$	0.75
Chloride (mg/l)	X
Magnesium (mg/l)	X
Sodium adsorbtion ratio	X
Sulfate (mg/L)	X
Phosphorus (mg/l as P)	X
Coxic Metals (mg/l)	
Aluminum	x
Arsenic	0.1
Barium	x
Beryllium	0.1
Cadmium	0.01
Chromium	0.0
Copper	0.2
Iron	x
Lead	0.1
Manganese	0.2
Mercury	X
Molybdenum	Y
Nickel	0.2

Table A-4 Proposed Colorado water quality standards: Agricultural Use.

X = numerical limit generally not needed for protection of classified use.

Y = limit may be required but there is insufficient data for setting a general standard.

Table A-4 Continued.

Parameter	Standard
Toxic Metals (mg/l)	
Selenium	0.02
Silver	X
Thallium	x
Zinc	2.0
Organics ⁶ , $\left(\frac{\mu g}{l}\right)$	
Chlorinated Pesticides ⁷	
Aldrin ^B	Y
Chlordane ⁸	Ŷ
Dieldrin ⁸	Ŷ
DDT ⁸	Ŷ
Endrin	Ŷ
Heptachlor ⁸	Ŷ
Lindane	Ŷ
Methoxychlor	Ŷ
Mirex	Ŷ
Toxaphene	Ŷ
	· . –
Organophosphate Pesticides ⁷	
Demeton	Y
Endosulfan	Y
Guthion	Y
Malathion	Y
Parathion	Y
Chlorophenoxy Herbicides	
2, 4-D	Y
2, 4, 5-TP	Y .
CB's ⁹	Y
henol	Y
adiological ¹⁰ (pCi/l)	
Alpha ¹¹ , 12	15
Beta ¹¹ , ¹²	50
Cesium	80
Plutonium	15
Radium 226, and 228^{12}	5
Strontium 90 ¹²	8
Thorium 230 and 232	60
Tritium	20,000
Uranium (total, mg/l)	5

٠.

- ¹Where dissolved oxygen levels, less than the standard, occur naturally, a discharge shall not cause a further reduction in dissolved oxygen in receiving water.
- ²An effluent shall be regulated to maintain aerobic conditions, and a guideline of 2.0 mg/l dissolved oxygen in an effluent should be maintained, unless demonstrated otherwise.
- ³Suspended solid levels will be controlled by Effluent Limitations and Basic Standards.
- ⁴Free from objectionable and toxic algae. It has been well established that heavy growth of some strains of blut-green algae, upon death and degradation, may release one or more substances which are toxic to humans and many other animals. Although no fixed numbers can be recommended at this time, it is clear that streams, lakes and reservoirs should not be permitted to bear heavy growth of algal blooms, or allow these blooms to disintegrate. Every effort should be made to control algal growths to levels that are not hazardous.
- ⁵In order to provide a reasonable margin of safety to allow for unusual situations such as extremely high water ingestion or nitrite formation in slurries, the NO₃-N plus NO₂-N content in drinking waters for livestock and poultry should be limited to 100 ppm or less, and the NO₂-N content alone be limited to 10 ppm or less.
- ⁶All organics, not on this partial list, are covered under Basic Standards, Section 3.1., 1978 Colorado Water Quality Standards.
- ⁷Numerical limits in tables based on experimental evidence of toxicity. No point source discharges of organic pesticides shall be permitted to state waters.
- ⁸The persistence, bioaccumulation potential, and carcinogenicity of these organic compounds cautions human exposeure to a minimum (EPA).

⁹Every reasonable effort should be made to minimize human exposure (EPA).

- ¹⁰Concentrations given are maximum permissible concentrations above naturally occurring or "background" concentrations except where otherwise noted.
- ¹¹If Alpha or Beta are measured in excess of 15 or 50 pCi/L respectively, it will be necessary to determine by specific analysis the particular radionuclide or radionuclides responsible for the elevated level. Particular radionuclides should not exceed the limit given in the table. If an elevated level of Alpha or Beta emissions is caused by radionuclides, the Division should be consulted.
- ¹²Maximum permissible concentrations including naturally occurring or background contributions.

		ndard
Parameter	Class I (Primary Contact)	Class II (Secondary Contact)
	(ITIMALY CONTACT)	
Physical		
$\frac{Physical}{D.O.^{1}} \left(\frac{mg}{\ell} D.O.\right)$	Aerobic ²	Aerobic ²
pH	6.5-9.0	Х
Suspended solids and		
turbidity	X	Х
Temperature	x	х
TDS (mg/L)	X	X
Biological		
Algae ⁴	Free of objection-	Free of objection
2	able and toxic	able and toxic
	algae	algae
Fecal coliforms	-	-
(#/100 ml)	200	1,000
Inorganics		<u>ъ.</u>
Anunonia $(\frac{mg}{k} \text{ as } N)$	X	Х
Chloride (mg/l)	Х	X
Cyanide (mg/l)	Х	х
Fluoride (mg/l)	Х	X
NO_3 (mg/l as N)	Х	x
NO_2 (mg/l as N)	Х	х
Sulfide as H_2S (mg/l)	Х	Х
Boron (mg/l) ²	Х	X
Chloride (mg/l)	X	Х
Magnesium (mg/l)	Х	X
SAR	Х	Х
Sulfate (mg/l)	X	X
Phosphorus (mg/l as P)	Bioassay ⁵	Bioassay ⁵
oxic Metals (mg/l)		
Aluminum	X	X
Arsenic	x	X
Barium	X	X
Beryllium	X	X
Cadmium	X	X
Chromium	X	X
Copper	X	X
Iron	x	X
Lead	Х	X
Manganese	x	X
Mercury	Х	X
Molybdenum	X	X
Nickel	Х	X
Selenium	x	X

Table A-5	Proposed	Colorado	water	quality	standards:
	Recreation	onal Use.			

...

Table A-5 Continued.

		Standard					
Parameter	Class I (Primary Contact)	Class II (Secondary Contact					
Toxic Metals (mg/l)		-					
Silver	X	Х					
Thallium	X	X					
Uranium	x	X					
Zinc	X	x					
Organics ⁶							
Chlorinated Pesticides ⁷							
Aldrin ⁸	Y	Y					
Chlordane ⁸	Y	Y					
Dieldrin ⁸	Ŷ	Y					
DDT ⁸	Ŷ	Ÿ					
Endrin	Ŷ	Ÿ					
Heptachlor ⁸	Ŷ	Ŷ					
Lindane	Ŷ	Ŷ					
Methoxychlor	Ŷ	Ŷ					
Mirex	Ŷ	Ŷ					
Toxaphene	Ŷ	Ŷ					
Organophosphate Pesticides ⁷							
Demeton	Y	Y					
Endosulfan	Ŷ	Ÿ					
Guthion	Ŷ	Ŷ					
Malathion	Ŷ	Ŷ					
Parathion	Ŷ	Ŷ					
Chlorophynoxy Herbicides		•					
2, 4-D	Y	Y					
2, 4, 5-TP	Ŷ	Ŷ					
<u>PCB's</u> ⁹	Y	Y					
Phenol	Y	Y					
Radiological							
Alpha	x	X					
Beta	X	X					
Cesium 134	x	X					
Plutonium 238, 239, and 20		X					
Radium 226 and 228	X	X					
Strantium	X	X					
Thorium 230 and 232	X	X					
Tritium	X	X					
Uranium (total)	X	X					
oranium (corai)	A	Λ					

•

., ,

- X = numerical limit generally not needed for protection of classified use.
- Y = limit may be required but there is insufficient data for setting a general standard.
- ¹Where dissolved oxygen levels, less than the standard, occur naturally, a discharge shall not cause a further reduction in dissolved oxygen in receiving water.
- ²An effluent shall be regulated to maintain aerobic conditions, and a guideline of 2.0 mg/2 dissolved oxygen in an effluent should be maintained, unless demonstrated otherwise.
- ³Suspsended solid levels will be controlled by Effluent Limitations and Basic Standards.
- ⁴Free from objectionable and toxic algae. It has been well established that heavy growth of some strains of blue-green algae, upon death and degradation, may release one or more substances which are toxic to humans and many other animals. Although no fixed numbers can be recommended at this time, it is clear that streams, lakes and reservoirs should not be permitted to bear heavy growth of algal blooms, nor allow these blooms to disintegrate. Every effort should be made to control algal growths to levels that are not hazardous.
- ⁵Phosphorus standards are to be determined by an algal bioassay using the method described in the latest edition of *Standard Methods* for the Examination of Water and Wastewater, American Public Health Association.
- ⁶All organics, not on this partial list, are covered under Basic Standards, Section 3.1., 1978 Colorado Water Quality Standards.
- ⁷Numerical limits in tables based on experimental evidence of toxicity. No point source discharge of organic pesticides shall be permitted to state waters.
- ⁸The persistence, bioaccumulation potential, and carcinogenicity of these organic compounds cautions human exposure to a minimum (EPA).
- *Every reasonable effort should be made to minimize human exposure (EPA).

APPENDIX B

Raw Water Quality Data

Table B-1. Water quality parameter codes.

A. MET	CALLIC CONSTITUENTS
(µ	g/1 unless noted)
101.	Aluminium, Dissolved
102.	Aluminium, Total
103.	Barium, Dissolved
	Barium, Total
	Cadmium, Dissolved
106.	Cadmium, Total
107.	Calcium (mg/l)
108.	Chromium, Hexavalent
	Chromium, Total
	Copper, Dissolved
111.	Copper, Total
112.	Hardness, Total
113.	Iron, Dissolved
114.	Iron, Total
115.	-
116.	Lead, Total
117.	Magnesium (mg/1)
118.	Manganese, Dissolved
119.	Manganese, Total
120.	Mercury, Dissolved
121.	Mercury, Total
122.	Molybdenum, Dissolved
123.	
124.	Nickel, Dissolved
	Nickel, Total
126.	Potassium (mg/1)
	Selenium, Dissolved
	Selenium, Total
129.	Silver, Dissolved
130.	Silver, Total
131.	Sodium (mg/1)
132.	Zinc, Dissolved
133.	Zinc, Total

- B. NON-METALLIC CONSTITUENTS (mg/1 unless noted) 201. Alkalinity, Total 202. Arsenic, Dissolved (µg/1) 203. Arsenic, Total $(\mu g/1)$ 204. Bicarbonate Hardness 205. Boron 206. Carbonate Hardness 207. Chloride 208. Cyanide 209. Fluoride 210. Nitrogen, Nitrate 211. Nitrogen, Nitrite 212. Nitrogen, Total Organic 213. Phosphorus, Ortho 214. Phosphorus, Total
 - 215. Sulfate
 - 216. Total Dissolved Solids

Table B-2. Water quality data for the McElmo Project.

HC ELMG PROJECT

.

STATION 17: NO ELMO CREFF

COUF	5/25/77	6/10	6/30	7/19	8/24	9721	10/19	11/15	12/13	1/10/74	2115	\$721	4/14	5/18	6116	7/19	1174	
101	924.	1180.				750.	631.	504.	013.	120.	790.	ħ5+.	14P.	442.	241¢.	764.	1042.	
102	1356.	1180.				750.	631.	1346.	1636.	414	4372.	87514.	12159.	4800.	15500.	13066.	1002.	
103								-100.	142.	174.	225.	257.	-100,	•tr∩.	103.	115.	-1ee.	
104								-100.	200.	496.	534.	1671.	584	555.	e 57 .	675.	301.	
105	-3.	-3.				10.	11.	δ.	7.	-3.	÷3,	-3.	5.	5.	-3.	÷.	13.	
100	op.	101.				12.	14.	12.	۹.	۰.	-3.		13.	7.	5.	7.	11.	
107	324.	3AP.				307.	423.	460.		252.	195.	410.		400.	300.	242.	uur.	
108		1.				-1.	-1.	3.		÷.	3.	2.		2.	4.	-1.	3.	
109										-2°,	· 29.	А.,	-20.	-29.	-20.	24.	30.	
110	÷10,	17.				-10.	11.	14.	-1P	12.	17.	-) ++	-19.	-10.	-10.	13.	18.	
111	15.	30.				32.	20.	23.	37.	34.	35,	4.1.	-te,	35.	÷.	60.	23.	
511	1610.	2210.				1808.	1872.	1909.		1420.	2113.	1557.		1507.	1100.	1155.	505H.	
113	-51.	33.				41.	26.	20.	57.	27.	55.	94.	36.	46.	.1 1	147.	66.	
114	586.	142.				255.	161.	1911.	1100	5600.	45.11	6151.	2392	4312.	12600	10457	145.	
115						-	-	-1.	- t _	-1.	-1.	12.	-1.	-1.	-1.	۶.	-1.	
110								3,	a _	~1.	-1.	< ٢.	-1.	-1.	- 1	- 1 .	-1.	
117	192.	303.				250.	196.	1.83.	-	177.	277.	124	-	114	~ 5	110	223.	
118	350.	٩.				62.	106	168.	149.	£ B	1 N.B.	51.	51 .	74	13	27.	115.	
110	364.	°.				97	110.	260	170	201	253	1190.	156	538	350.	314	171.	
120	0.4	- n , >				-0.5	n 2	0.3	-11 2	0.2	9.3	1.1	0.6	-0.2		1.3	1.7	
121	1.3	- 1, 2				6.5	1.2	0.4	- ร. เค	5_0	o 4		л <u>,</u> н	• e 2	5.0-	1.6	1.6	
127	-5.	33.				28.	. 5S	21.	11.	12.	52,	13.	51		~~~ Š	29.	11.	
125	13.	41				28	28	21	11	12.	53.	22.	1173	<u>ہ</u>	5.	1.0	55.	
154	- h .	- ti .				-6.	21.	128	135.	- 6	- 4	-6.	-e.	-n.	35.	8.		
125	22.	57.				-b.	50.	130	166		1.0	450	91.		4 A	25		
126	9.0	15.0				13.0	10.5	4.1	<u>я</u> , я	4.7	7.5		3.6	5.0	я о	7.1	4.0	
127	-1.	-1.				ż.	-1.	-1.	-1	2.	-1	-1	• 1	•	-1_	-i.	-1	
125	-1.	-1.				2.	-1.	-1	-1.	-1.	- i .	-1	-t,		-!	2	-1,	
129	=°.	-°.				-9	- 9	- 9	- ?	- 0	- 9	16.		ΨU.	- 7	- 9	12.	
130	-9.					-9	-9	-9	• ?	13.	۹.	20		-0	15.	- 9	15.	
131	372.					276.	PAR.	316.	427	0.4.9	451	245	270	180.	120	153.	275.	
132	~ 5,	-5.				16.	1٩.	19			-5.	21.	19	10	6	34	24.	
133	98.	200.				204	35A.	154	323	1.45	154	680	377	208	281	5 7 N	179	
201	280.	322				169.	243	310.		2.50	1,20	2075	•	25.4	232	512.	142	
505	-1.	-1.				-1.	-1.	-1.	-1.	- 1	-1.	-1.	-1.	•	- 1	1.	•1.	
203	-1.	-1.				-1.	-1.	-1.	-1	-1.	١.	92.	+ 1°.		· · ·		-1.	
204	286.	322.				169	243	30P.	-	200	224	2076.		258.	232,	312.	342	
205	1.91	0.02				0.68	0,11	0.12.	-6.65	9,09	-e_e5	1.4"	0.49	0.71	0.55	P 05	0,09	
205	Ū	Ō				0	0	. В	•	0	0	0	•	0	ĵ	0	' 0	
207	72.	77.				. 67.	50.	57		្អុឝ	50.	57.		a	30.	ξĤ.	F0.	
208		0.01				-0.01	0.03	0 10		ດູດວັ	-0.01	0.01		-0.01	0.01	1.02	1.04	
503	P.23	0.25				0.29	0.26			-	11 3 3			1.19	0.02	0.05	0.05	
210	0.15	9.64				0.04	0,79	4 75		2.00	กัดก			1.37	0.37	A 50	1.23	
211	P.837	0.001				0,005	0.024	0 044		0 100	4.512			1.1.17	6.45.5	r 613	•	
512	0.7	1.4				- 0 1	0.4	n.4		· · · ·	, н	5.7		0 0	2.0	r. 1	0.J	
213	=0_001	0,005				0.002	0.002	0.123	11,259	0.170	0.138			C C 1	0.014	0.023	0,002	
214	_A_Au7	0.006				0,055	0 070	0.200	0,202	1 63	n 584			1.11	0.067	0.031	8.040	
215	1990.	3230.				1996.	2191.	2364	•	1001	2413.	1746		1447.	1300	SHF.	2132 ·	
216		4402.				3414	3422,	3369,		2637	3529.	2640		2720	1767	1949	1575	
		• *					-			•	· • •,	•		•	-	•	•	

ω ω APPENDIX C

Statistical Analyses of Water Quality Data

Table C-1. Statistical analysis of the water quality data for the McElmo Project.

MC ELHO PROJECT

STATION 17: MC ELMO CREEK

CODE	CONSTITUENT	MEAD	VARIANCE	s.D.	¢ uf v	H & K	14 J 71	RANGE	•4		
***** GROUP A: METALLIC CONSTITUENTS *****											
101	ALUMINIUM, DISSOLVED (UG/L)	830.5	.3959E+0A	629.2	75.4	2510.	159.	2671.	14		
102	ALUMINIUM, DISSOLVED (UG/L) ALUMINIUM, TOTAL (UG/L) BARIUM, DISSOLVED (UG/L) BARIUM, TOTAL (UG/L) CADMIUM, DISSOLVED (UG/L) CADMIUM, TOTAL (UG/L) CHROMIUM, HEXAVALENT (UG/L) CHROMIUM, TOTAL (UG/L)	10415 7	\$194F+09	22790.1	218.8	87514	014	87100.	14		
103	BARTUM. DISSOLVED (UG/L)	168 7	37768+04	61.5	36.4	2.7	163.	154			
104	BARIUM. TOTAL (UC/L)	569 1	19808+06	445.0	78.4	1671	209.		9		
105	CADHIUM, DISSOLVED (UC/L)	100.1	.86966+01	5°4	36.3			1452.	19 14		
106	CADMIUM, TOTAL (UC/L)	37 5	1144E+04	33.8	143.7	53.	5 .	A.,			
107		C.).7 768 8	42556104	67.3	14.4	101.	5.	×0.	13		
108	CHROMIUM, HEVALABLENT (DC/L)	364.0	.4393F+00			ari.	259.	201.	12		
109	CHROMIUM, TOTAL (UG/L)	2.6 48.3 14.6 46.0	• n 3 7 35 7 H U	0.9	30.0	у.	1.	3.	÷.		
110	COPPER, DISSOLVED AND AN	1/1 6	7.105.014	32.6	67.5	***	29.	57.	;		
111	CODDER, TOTAL (UC/L)	14.0	.7619E+01	5.H	19.4	10.	11.	1	7		
112	SUPPOPER INTAL INDUCTO	40.0	.1510E+04	38.9	84.5	160.	15.	145.	13		
116	COPPER, TOTAL (UG/L) Hardness, Total as Cacob (MG/L) Iron, Dissolved (UG/L)	1045.0	12882+06	358 0	21.2	2216.	1100.	1110.	12		
11/	1808/ DISSOLVED ((671)	44.5	.12145+94	34.8	70.5	147.	êt.	121.	13		
114		5505.1	12H0F+08	398n_4	110.5	12640.	142.	15424	14		
115		6. 5	+60506+02	7.8	119.7	12.	t.	11.	5		
110	LLAVI IVIAL (VG/L)	50.1	.8843E+03	24.7	145.9	<i>ب</i> در .	3.	52.	3		
11/	MAGNESIUM (MG/L)	186,8	4643E+04	68.5	36.7	303.	85	21€.	12		
110	MANGANESE, UISSOLVED (UG/L)	98.4	.7641E+04	87.4	P, RA	356.	ц.	347.	4		
119	MANGANESE, IUTAL (UG/L)	306.5	*8563E+02	287.5	93.8	1190.	n.	1101.	14		
120	MEHEUHY, DISSOLVED (UG/L)	0.70	*23002+00	0.57	82.07	1 7	0.2	1.5	G		
151	MERCURY, TOTAL (UG/L)	0,90	*3500E+00	0.57	62.25	1.0	9.2	1.4	10		
122	MOLYBUENUM, DISSOLVED (UG/L)	24.4	.22376+03	15.2	61,3	Sec.	۰,	35.	12		
125	MOLYBOENUM, TOTAL (UG/L)	56.9	1453E+05	120.6	515.0	173.	5 .	So7.	10		
124	NICKEL, DISSOLVED (UG/L)	65,4	.373HF+04	61.1	93.5	135.	2	127.	5		
125	NICKEL, TOTAL (UG/L)	105.7	.174nE+05	132.2	125.0	454.	14.	4 u A _	1.0		
126	POTASSIUM (MG/L)	7.6	.8460F+01	3.9	30 1	13.	a j	9.	14		
127	SELENIUM, DISSULVED (HG/L)	2.0	٥.	e. 0	0_0		Ρ.		2		
128	SELENIUM, TOTAL (UG/L)	2.0	n.	ດູ່ຫ	ú. 0	2.	2	n.	2		
129	STLVER, DISSOLVED (UG/L)	14.0	.8000F+01	2.8	20.2	16.	12.	4	2		
130	SILVER, TOTAL (UG/L)	16.2	S720E+02	7.6	46.7	2.2	9	Su.	5		
131	500IUM (MG/L)	244 3	.1164E+05	107.9	36.7	451	120	331	13		
132	ZINC, DISSOLVED (UG/L)	18.6	.6719E+02	8.2	43.7	3.1		25.	.9		
133	ZINC, TOTAL (UG/L)	295.4	25126+05	154,4	53.7	4 t. p	9њ	5-2	1.4		
	COPPER TOTAL (UG/L) HARDNESS, TOTAL AS CACO3 (MG/L) IRON, DISSOLVED (UG/L) IRON, DISSOLVED (UG/L) LEAD, TOTAL (UG/L) MAGNESIUM (MG/L) MANGANESE, DISSOLVED (UG/L) MANGANESE, TOTAL (UG/L) MERCURY, DISSOLVED (UG/L) MERCURY, TOTAL (UG/L) MOLYBDENUM, TOTAL (UG/L) MOLYBDENUM, TOTAL (UG/L) NICKEL, DISSOLVED (UG/L) NICKEL, TOTAL (UG/L) SELENIUM, DISSOLVED (UG/L) SELENIUM, TOTAL (UG/L) SELENIUM, TOTAL (UG/L) SILVER, TOTAL (UG/L) SILVER, TOTAL (UG/L) SILVER, TOTAL (UG/L) SILVER, TOTAL (UG/L) ALXALINITY, TOTAL AS CACD3 (MG/L) APSENIC, DISSOLVED (UG/L)				-	•	•				
- • •	***** GPOUP 8: 1	NUNAREIALL	TC LUAS TIU	.NIO ★★★★							
501	ALKALINITY, TOTAL AS CACU3 (MG/L)	430.8	·27086+06	524.4	126.3	e 177 -	1. 9.	1907.	12		
505	ARSENIC, DISSOLVED (UG/L)				n , n	ι,	·· •	υ.	ti -		
203	APSENIC, TOTAL (UG/L)	12.8	.38296+03	10.6	152.4	12.	1.	ч1.	u		
204	BICARBONATE HARDNESS AS CACUS (MG/L)		.2710E+05	520.6	121.0	2076.	şe.9.	1907.	12		
205	ROPUN (MG/L) CAREONATE AS CACO3 (MG/L) CHLURIDE (MG/L) CYANIDE (MG/L) FLUDFIDE (MG/L) NITHOGEN, NITHAIE (MG/L)	0,597	,3412E+00	0.544	07,1002	1,01	0,00	1.38	11		
500	CAREONATE AS CACOB (MRVL)	8.0	ο,	0,0	0,0	۰.	۴.	6.	1		
207	CHLUFIDE (MG/L)	54.3	.1×698+03	13.7	25.2	17.	5.1		12		
208	CYANIDE (MG/L)	0.041	.2155E-02	0.045	112, 547	1.11	0.01	0.13			
508	FLUDE(DF (MG/L)	0,160	-1666E-01	0,129	AC_671	11. 42	0.02	4. 51	11		
510	FLUDFIDE (MG/L) NITHOGEN, NITHAIE (MG/L) NITHOGEN, NITHAIE (MG/L) NITHOGEN, TUTAL (MG/L) PHOSPHORUS, ORIHO (MG/L) PHOSPHORUS, TOTAL (MG/L)	1,347	.243+F+91	1.714	127.201	9 . 4 .	11 1 11 14	44 . H 11	12		
511	NITROGEN, NITRITE (MG/L)	0.0315	11926-02	0.0345	100,1218	2,100	0.001	0.050	11		
212	NITPUGEN, TUTAL OPGANIC (HG/L)	1.62	.2210E+01	1,49	91. PA	· 7	9.6	5.1	11		
513	PHOSPHORUS, ORTHO (MG/L)	0,0725	68298-02	0 0821	115.10.62	6.25.1	0.002	0.257	12		
214	PHOSPHORUS, TOTAL (HG/L)	0.2042	43966-01		102.0043	1. 1.44	0.006	0 590	13		
215	SULPATE (MG/L)	1921 5	35416+16	595 1	39,8	3730	925	22-2	12		
216	TOTAL DISSULVED SOLIDS (MG/L)	304A.4	5867F+06	766.0	25.1	4 P 2	1747	2614	14		
				2 ···· · # ··			· · · ·	6 QF 1 7 🖡			

ယ ပ

APPENDIX D

Comparison of Water Quality Data with the Proposed Colorado Water Quality Standards

Table D-1. Comparison of water quality data for the McElmo Project with the propresed Colorado Water Quality Standards

MC ELHD PROJECT

STATION 171 MC ELMO CREEK

CODE	CONSTITUENT	STANDARD	SOURCE	NUMBER Excepting	NUMAEN OF SAMPLES	FERCENT Exceeding
101	ALUMINIUM, DISSOLVED (UG/L)	100,000	AB	34	14	100,00
104	BARIUM, TOTAL (UG/L)	1000.000	h 5	1	,	11,11
105	CADHIUM, TOTAL (UG/L)	10,000	46	6	13	4n.15
		10.000	жs	t	13	40.15
		0,400	ABLI	0	13	0.00
		1.000	A812	0	13	0.00
		5.000	4953	0	13	0.00
		10.000	4934	n	13	0.00
		15.000	2660	5	13	15.35
109.	CHROMIUH, TOTAL (UG/L)	100.000	AG	1	3	0.00
		50,000 100,000	*5 4H	0	3	0.00
111	COPPER, TOTAL (UG/L)	569.000	46	u u	13	0.00
111	COPPER, TOTAL (UG/L)	1000,000	۳S	r.	13	0.00
		10.000	ARLI	n	13	0.00
		10.000	4312	n	13	0.00
		10,000	4123	n	13	0.00
		50.000	A 7 3 4	0	13	0.00
		00,000	A 4 6 4	3	13	53.08
113	IPON, DISSUEVED (UG/L)	300,000	n 5	t)	1.3	0.00
114	JRON, TOTAL (UG/L)	1000.000	4 A	Ŷ	14	64.23
116	LEAD, TOTAL (UG/L)	100.000	4 G	0	3	0,09
	•	50,000	чS	1	3	33.33
		4.000	ABL1	(i n	3	0.00
		25,000	4812	0	3	0.09
		50,000	4523		د ۲	C. C!
		154,000	4854 4864	9	3	0.00
117	HAGNESIUH (MGZL)	125,000	rs ro	4	12	75.01
118	MANGANESE, DISSOLVED (DG/L)	50,000	r 5	11	14	74.57
119	HANGANESE, TUTAL (UG/L)		AG	8	14	57.14
•••	(30/E)	1000,000	A B	1	14	7.14
121	HERCUPY, TOTAL (UG/L)	5.000	- 5	ō	10	0 00
	100.21	0,050	45	10	10	106.06
125	NICKEL, TOTAL (UG/L)	200,000	46	1	10	10.00
		50.000	ANLI	0	10	0.00
		100,000	5194	n	10	0.00
		500,000	AR23	ç	10	0.00
		300,000	AE 34	0	10	0.00
		400,000	4 4 G 4	1	10	10,00
128	SELENIUH, TOTAL (UG/L)	50.000	AG	0	2	0.00
		10.000	H S	0	2	0.00
		50.000	AB	0	2	0.00
130	SILVER, TOTAL (UG/L)	50.000	۸S	0	5	0.00
		0.100	4812	0	5	0.00
		0.100	AB12 AB23	0	5	0.00
		0.200	4834	0	Ś	0.00
		0.250	ABG4	ŝ	5	100.00
133	ZINC, TOTAL (UG/L)	2000,000	A G	ō	1 4	0,00
	Line, total togic;	5000.000	WS	e	14	0.00
		50.000	AHL1	n	14	0,00
		50,000	4812	٥	14	0.00
		100,000	AB23	, u	10	0,00
		300,000	6934	0	14	0.00
		960,00G	4964	1	3 4	7.14
202	ARSENIC, DISSOLVED (UG/L)	100,000	4 G	Û	n	0.00
		20.000	*5	0	0 0	0,00
		50.000	4 B	0	11	0.00
205	BUPON (MG/L)	750.000	AG	0	12	0.00
207	CHLORIDE (MG/L)	250,000	# S	6	عد ج	0,00
208	CYANIDE (MG/L)	0.200	4 G	0	8	0.00
		0,005	*5 48	5 5	Ŗ	100,00
2.46		2.400	*5	0	11	0.00
209	FLUDRICE (MG/L)	100,000	46	õ	12	0,00
510	NITRDGEN, NITRATE (MG/L)	10,000	w S	0	12	0,00
· · ·	NITROGEN, NITRIIE (MG/L)	10,000	AG	0	11	0.00
211	WTHOREWS WILLIE (WOVE)	1,000	*5	c	11	0,00
		0.050	AFC	5	11	18.15
		0.500	AB-	0	11	0.00
215	SULFATE (HG/L)	250,000	+S	12	12	100.00

 $\begin{array}{rcl} \text{SOUPCE CODES}_1 & \text{AR c AUVATTC BIDTA} \\ & \text{ABC c AUVATTC BIDTA} \\ & \text{ABC c AUVATTC BIDTA} & (COLO) \\ & \text{ABC c AUVATTC BIDTA} (wstm) \\ & \text{ABL s AUVATTC BIDTA} (wstm) \\ & \text{ABL s AUVATTC BIDTA} (TOTAL HARDWESSI LESS THAN 100) \\ & \text{AP12 c AUVATTC BIDTA} (TOTAL HARDWESSI 100-200) \\ & \text{AP23 c AUVATTC BIDTA} (TOTAL HARDWESSI 100-200) \\ & \text{AP33 c AUVATTC BIDTA} (TOTAL HARDWESSI 300-300) \\ & \text{AB34 c AUVATTC BIDTA} (TOTAL HARDWESSI GOLATEH THAN 200) \\ & \text{AG4 c AUVATC BIDTA} (TOTAL HARDWESSI GOLATEH THAN 200) \\ & \text{AG5 c AUFICULTURE} \\ & \text{WS c CLASS 2 RAW WATEP SUPPLY} \end{array}$

Bibliography

- A.P.H.A. 1975. Standard methods for the examination of water and wastewater. 14th Edition. 1193 p.
- Hem, John D. 1970. Study and interpretation of the chemical characteristics of natural water. 2nd Edition. U.S.G.S. Water Supply Paper No. 1473. 363 p.
- National Academy of Sciences. 1972. Water quality criteria, 1972. Ecological Research Series EPA-R-3-73-003. 594 p.
- Sawyer, Clair N., and Perry L. McCarty. 1978. Chemistry for sanitary engineers. 3rd Edition. McGraw-Hill Book Co., New York. 532 p.
- U.S.E.P.A. 1971. Algal assay procedure: Bottle test. National Eutrophication Research Laboratory, Corvallis, OR. 81 p.
- U.S.E.P.A. 1976a. Methods for chemical analysis of water and wastes. Technology Transfer Series EPA-625/6-74-003a. 298 p.
- U.S.E.P.A. 1976b. Quality criteria for water. U.S.G.P.O. 0-222-904, Washington, D.C. 256 p.