Utah State University DigitalCommons@USU

# Reports

Utah Water Research Laboratory

January 1975

# Naturally Occurring Organic Compounds and Algal Growth in a Eutrophic Lake

V. Dean Adams

Russell R. Renk

Peter A. Cowan

Donald B. Porcella

Follow this and additional works at: https://digitalcommons.usu.edu/water\_rep

Part of the Civil and Environmental Engineering Commons, and the Water Resource Management Commons

# **Recommended Citation**

Adams, V. Dean; Renk, Russell R.; Cowan, Peter A.; and Porcella, Donald B., "Naturally Occurring Organic Compounds and Algal Growth in a Eutrophic Lake" (1975). *Reports*. Paper 653. https://digitalcommons.usu.edu/water\_rep/653

This Report is brought to you for free and open access by the Utah Water Research Laboratory at DigitalCommons@USU. It has been accepted for inclusion in Reports by an authorized administrator of DigitalCommons@USU. For more information, please contact digitalcommons@usu.edu.



# NATURALLY OCCURRING ORGANIC COMPOUNDS AND ALGAL GROWTH IN A EUTROPHIC LAKE

by

V. Dean Adams Russell R. Renk Peter A. Cowan Donald B. Porcella

The work reported by this project completion report was supported in part with funds provided by the Department of the Interior, Office of Water Research and Technology under P.L. 88-379, Project Number B-104-Utah, Agreement Number 14-31-0001-4134.

Utah Water Research Laboratory College of Engineering Utah State University Logan, Utah 84322

June 1975

PRWG137-1

.

.

·

.

-

·

# ABSTRACT

The literature was reviewed with respect to naturally occurring organic compounds. Their identity and effects on life forms are listed in tabular form.

Methods of separation and identification of trace organics in aquatic systems are discussed and applied to a reservoir. Six organic compounds (acetaldehyde, methanol, ethanol, propanal, acetone, and 2-propanol) were identified and monitored in the reservoir from September 1974 to April 1975. Algal populations were simultaneously observed and bioassays were performed on some of these populations to determine the effects of the compounds. No effects of the compounds on the algae were observed at the concentration levels found in the reservoir.

Possible sources of these compounds were discussed and it was observed that *Chlamydomonas reinhardi* (axenic culture) did produce ethanol, propanal, and acetone, thus suggesting possible alga sources of the compounds observed. In the fall of the year, high concentrations of methanol, ethanol, and acetone are the result of bacterial action on dying mats of *Aphanizomenon*.

# ACKNOWLEDGMENTS

This publication represents the final report of a project which was supported in part with funds provided by the Office of Water Research and Technology of the United States Department of the Interior as authorized under the Water Resources Research Act of 1964, Public Law 88-379. Further support was provided by the Utah Water Research Laboratory, Utah.

The authors express gratitude to all others who contributed; personnel of the Utah Water Research Laboratory, J. Burl Bachus for his untiring research efforts, Dr. Richard C. Anderson for his helpful suggestions during the research project and review of the final manuscript, John Gill, Doug Drury, and Mary Cleave for their concurrent and prior data on Hyrum Reservoir, and a special thanks to Henry M. Runke for his assistance in algal identification.

# TABLE OF CONTENTS

|                                                                    |   |   |   | Page |
|--------------------------------------------------------------------|---|---|---|------|
| INTRODUCTION                                                       | • |   | • | . 1  |
| Control of Algal Dynamics                                          |   |   |   | . 1  |
| Organic Compound Dynamics                                          | • | • | • | . 1  |
| Objectives of Study                                                | • | • | • | . 1  |
|                                                                    | · | · | • | • •  |
| LITERATURE REVIEW                                                  | • | • | • | . 3  |
| Natural Occurring Small Molecular Weight Organic Compounds in      |   |   |   |      |
| Natural Water Systems                                              |   |   |   | . 3  |
| Effects of Organics                                                |   |   |   | . 3  |
| Producers of Organic Compounds (Sources of Energy and Vitamin      | • | • | • |      |
| Compounds)                                                         |   |   |   | . 10 |
| Required Organic Compounds                                         | • | • | • | 1/   |
|                                                                    |   |   |   |      |
| Algae Interacting with Algae                                       | · | · | • | . 14 |
| MATERIALS AND METHODS                                              | • |   | • | . 21 |
| Devices of Technisuse for Iceletics and Identification of Island   |   |   |   |      |
| Review of Techniques for Isolation and Identification of Lake Orga |   |   |   | 21   |
| Compounds                                                          | • | · | • | . 21 |
| Liquid-liquid extraction                                           |   |   |   | . 21 |
| Liquid calid autoration                                            | • | • | • | . 21 |
| Liquid-solid extraction                                            | • | • | · | . 22 |
| Freeze concentration                                               |   |   |   |      |
| Distillation                                                       |   |   |   |      |
| Carbon adsorption                                                  |   |   |   |      |
| Freeze-drying                                                      |   |   |   |      |
| Co-precipitation                                                   | • |   |   | . 25 |
| Infrared spectroscopy                                              |   |   |   | . 25 |
| Thin-layer chromatography (TLC)                                    |   |   |   | . 26 |
| Gas chromatography                                                 |   |   |   |      |
| Gas chromatography-mass spectrometry                               |   | • |   | . 28 |
|                                                                    | • | • | • | • 40 |
| Sampling                                                           | _ |   |   | . 29 |
| Sampling Processing                                                |   |   |   |      |
| Bioassay Material                                                  | · | · | • | . 31 |
|                                                                    | • | · | • | . 51 |
| RESULTS AND DISCUSSION                                             |   |   | • | . 33 |
| Algal Dynamics at Hyrum Reservoir                                  |   |   |   | . 33 |
| Identification and Separations of Hyrum Reservoir Organics         |   |   |   |      |
| Gas chromatography                                                 |   |   |   | . 33 |
|                                                                    | • | · | • | . 35 |
| Rotational freeze concentrating                                    | • | · | · |      |
| Distillation                                                       | • | · | · | . 36 |
| Freeze drying, thin layer chromatography, and infrared             |   |   |   |      |
| spectroscopy                                                       |   | • | • | . 36 |

# TABLE OF CONTENTS (CONTINUED)

# Page

|             | al Variation in Organics<br>vs on Hyrum Reservoir |      |     |     |     |    |      |      |    |     |     |     |    |   |   |   |   |     |
|-------------|---------------------------------------------------|------|-----|-----|-----|----|------|------|----|-----|-----|-----|----|---|---|---|---|-----|
|             | ne effects of ethanol.                            |      |     |     |     |    |      |      |    |     |     |     |    |   |   |   |   |     |
|             | ne effects of methanol                            |      |     |     |     |    |      |      |    |     |     |     |    |   |   |   |   |     |
| T           | ne effects of acetone .                           |      |     |     |     |    |      |      |    |     | •   |     |    | • |   |   | • | 49  |
| T           | ne effects of propanal.                           |      |     |     |     |    |      |      |    |     | •   |     |    |   |   |   |   | 49  |
| T           | ne effects of 2-propanol                          |      |     |     |     | •  |      |      |    |     |     | •   | •  | • |   | • |   | 49  |
| Natural     | Sources of the Observe                            | d C  | omj | ροι | ınd | s  |      |      |    |     | •   |     |    | • |   |   |   | 49  |
| CONCLUSIO   | NS                                                |      |     |     | •   |    | •    |      | •  |     | •   | •   | •  | • | • | • |   | 51  |
| REFERENCE   | S                                                 |      |     | •   |     |    |      | •    |    | •   | •   | •   |    | • |   | • |   | 53  |
| Appendix A: | The Effects of Organic                            | : Co | omp | ou  | nds | or | ı Co | erta | in | Lif | e F | ori | ms | • | • | • |   | 63  |
| Appendix B: | Gas Chromatograph/M<br>Sunnyvale, California      |      |     |     |     |    |      |      |    |     |     |     |    |   |   |   |   | 134 |
| Appendix C: | Gas Chromatograph/M<br>Department, Universit      |      |     |     |     |    |      |      |    |     |     |     |    |   |   | • |   | 139 |

# LIST OF TABLES

| Table |                                                                                                                                                           | Page  |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 1     | Natural occurring organic compounds found in water systems and their effects                                                                              | . 4   |
| 2     | Organisms known to produce organic compounds and that are affected<br>by known organic compounds                                                          | . 11  |
| 3     | Algae capable of utilizing organic substances for energy or growth (from Saunders, 96)                                                                    | . 14  |
| 4     | Vitamin requirements of specific algae                                                                                                                    | . 14  |
| 5     | Incidence of growth-factor requirements in algae                                                                                                          | . 16  |
| 6     | Growth-factor requirements of algae                                                                                                                       | . 17  |
| 7     | Algae affecting other algae                                                                                                                               | . 18  |
| 8     | Compound identification and verification of methanol, acetaldehyde,<br>ethanol, 2-propanol, acetone, and propanal from aqueous Hyrum<br>Reservoir samples | . 37  |
| 9     | Percent organics recovered by rotational freeze concentrating                                                                                             | . 37  |
| 10    | Organic compounds (mg/l) found at Hyrum Reservoir                                                                                                         | . 41  |
| 11    | Effects of methanol, ethanol, and acetone on the growth Selenastrum capricornutum (NAAM medium)                                                           | . 44  |
| 12    | Growth of <i>Chlamydomonas reinhardi</i> subject to varying organic compounds and concentrations (Bristols Medium)                                        | . 45  |
| 13    | Growth of <i>Chlorella sp.</i> subject to varying organic compounds and concentrations (Bristols Medium)                                                  | . 46  |
| 14    | Growth of algal bioassays for specific organic compounds (Bristols Medium)                                                                                | . 47  |
| 15    | Generalized responses of algae to organic compounds                                                                                                       | . 48  |
| 16    | List of compounds having mass spectral characteristics similar to the unknown (relative retention of 45 mm, Figure 7) compound in Figure 18               | . 139 |

# LIST OF FIGURES

| Figure  |                                                                                                                                                                                                               | Page  |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 1       | Organic compounds serve as toxins, vitamins, food sources, or chelators either transporting needed metals into the cells or lowering metals in their concentrations around the organism to a non-lethal level | . 2   |
| 2       | Solid-liquid-vapor phase diagram                                                                                                                                                                              | . 24  |
| 3       | Metal ions interacting with organics and $CO_3^-$ and $OH^-$ ions                                                                                                                                             | . 25  |
| 4       | Processing of Hyrum water for the separation and identification of organic compounds found there                                                                                                              | . 30  |
| 5       | Non-cycling (always present) genera of algae at Hyrum Reservoir                                                                                                                                               | . 34  |
| 6       | Regular cycling of algae at Hyrum Reservoir                                                                                                                                                                   | . 34  |
| 7       | Typical gas chromatogram (concentrated sample) of volatile organic compounds found in Hyrum Reservoir                                                                                                         | . 35  |
| 8       | a) Concentration of organics before rotational freeze concentrating and b) Organics left in the ice after freeze concentrating concentrated .                                                                 | . 38  |
| 9       | Percent recovery of organic compounds concentrating by distillation.                                                                                                                                          | . 39  |
| 10      | Infrared spectrum of an unknown from Group II separation (see Figure 3 for group identification).                                                                                                             | . 40  |
| 11      | Infrared spectrum of unknown compound from Group III separation (see Figure 3 for group identification)                                                                                                       | . 41  |
| 12      | Concentrations of organic compounds found in Hyrum Reservoir between September 4, 1974 and April 2, 1975                                                                                                      | . 42  |
| 13      | Dominant algal populations observed at Hyrum Reservoir, September 1974 through March 1975                                                                                                                     | . 43  |
| 14      | Compounds having mass spectral characteristics similar to the unknown (relative retention of 34 mm, Figure 7) compound in Figure 15                                                                           | . 135 |
| 15      | Mass spectrograph of an unknown (relative retention of 34 mm,<br>Figure 7) with a mass of 46 amu which from Figure 14 was<br>identified as ethanol.                                                           | . 136 |
| 16<br>( | Compounds having mass spectral characteristics similar to the unknown (relative retention of 45 mm, Figure 7) compound in Figure 17                                                                           | . 137 |
| 17      | Mass spectrograph of an unknown (relative retention of 45 mm, Figure 7) with a mass of 58 amu which from Figure 16 was identified as acetone .                                                                | . 138 |
| 18      | Mass spectrograph of an unknown (relative retention of 45 mm, Figure 7) with a mass of 58 amu which from Table 16 was identified as acetone                                                                   | . 140 |

\_

# INTRODUCTION

# **Control of Algal Dynamics**

The concept of control as applied to aquatic ecosystems is not a recent concept. Control concepts originally arose from consideration of energy flow where sunlight was the driving force behind biological energy flow and there were feedback loops arising from overpopulation or from the limit of environmental carrying capacity as modified by grazing and/or predation. Another important control concept in water pollution management is that of a limiting factor or toxin controlling populations and communities.

Relationships between productivity or toxicity and how aquatic community succession and diversity develop have been related to information transfer and to control of specific populations. For example, the limitation of inorganic nitrogen concentrations in marine algal assemblages has been postulated as controlling succession (references 27.85 and 39.77); the means for controlling succession of phytoplankton have been postulated based on relative growth rates and nitrogen saturation coefficients. (The numbering system chosen for this report facilitates alphabetizing the reference list and represents a modified Dewey Decimal System.)

In the complexities of community development many factors operate, and although at this stage in our knowledge about species dynamics in specific trophic levels, cause and effect (i.e. control) are not readily definable, it is possible that benchmarks can be determined for defining when succession of algae will occur.

#### **Organic Compound Dynamics**

All aquatic organisms release organic compounds into their surroundings. The release of organics by algae is well known (references 21.8, 32.1, 33.5, 70.3, 71.5, 74, 117). They sometimes release as much as 40 percent of the total carbon fixed as organic carbon (references 8.5, 32, 61.8). It may be a complex toxin, a waste product, an internally used compound that leaks out of the cell, or the loss of cell coatings or other extracellular compounds. These organic compounds may affect ecosystem function, community composition or succession, and may at times make an entire lake useless for many beneficial uses of society.

Algae might use released organic compounds to gain dominance in a lake along with changes in environmental factors, light, temperature, nutrient levels. Sometimes these changes affect man's use of the lake especially when the population of algae reaches bloom conditions and the water develops taste, odor, or recreational use problems.

Some possible ecosystem roles and interactions of organic compounds as influenced by or in controlling populations of microorganisms are shown in Figure 1. It can be noted from Figure 1 that organic compounds might affect organisms by inhibiting or stimulating growth, by acting as a toxin, vitamin, food source, or transporting chelator. The three groups, bacteria, algae, and higher life forms, act as sources of organic compounds and all interact with one another. For example toxins of the blue-green algae have been known to cause the death of higher life forms including fish, birds, cattle, and sheep (references 16, 29, 39, 45, 49, 86, 98). Algae not only affect higher life forms but also simpler forms, such as bacteria, by producing antibiotic substances (references 50.5, 76.5, 85, 114.2, 114.3).

#### **Objectives of Study**

With these considerations in mind a study of naturally occurring low molecular weight organic compounds was initiated in a eutrophic lake to determine:

- 1. The identity of organic compounds present in the lake and their possible sources.
- 2. The changes in concentrations of the organics with time.
- 3. Specific effects of the certain organic compounds on certain organisms (elucidation of Figure 1).

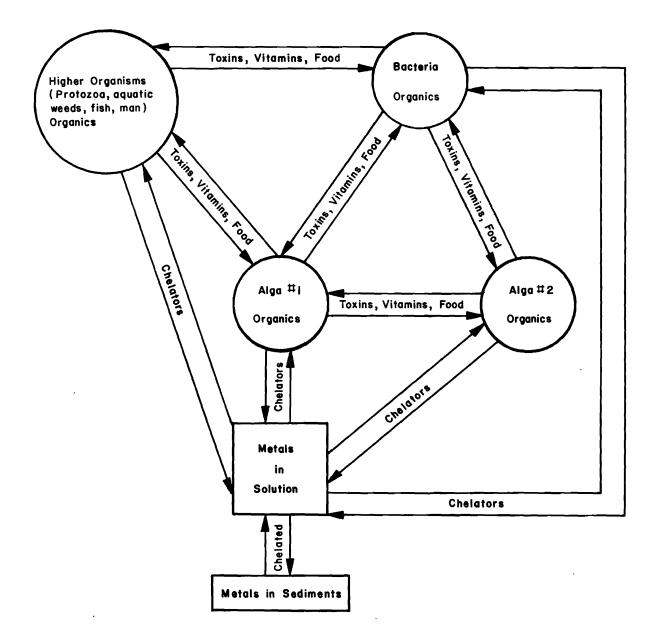



Figure 1. Organic compounds serve as toxins, vitamins, food sources, or chelators either transporting needed metals into the cells or lowering metals in their concentrations around the organism to a non-lethal level. These organic compounds may inhibit or stimulate growth or attract or repel other organisms as interchange arrows indicate.

# LITERATURE REVIEW

To identify some of the important specific organic compounds involved in natural systems and to elucidate the exact nature of the interchanges listed in Figure 1, seven tables and one appendix have been prepared from recent literature. They are:

- Table 1. Naturally occurring *organics* and their effects
- Table 2. Organisms observed to have produced organics and organisms affected by known organic compounds
- Table 3. Algae known to be capable of utilizing organic substances for energy or growth
- Table 4. Vitamin requirements of algae
- Table 5. Incidence of *growth-factor* requirements in algae

Table 6. Growth-factor requirements of algae

Table 7. Algae affecting other algal grown

Appendix A. Compounds affecting algae

# Natural Occurring Small Molecular Weight Organic Compounds in Natural Water Systems

To meet the first objective of the study (to identify the organics present) the literature was reviewed for methods of identification and to determine all the natural organics so far observed in natural water systems.

In the past little emphasis has been placed upon individual components of the organic phases of an aquatic community other than pesticide analysis. These organic phases have been measured semiquantitatively using parameters such as total organic carbon (TOC) (10.5), chemical oxygen demand (COD) (10.5), biochemical oxygen demand (BOD) (10.5), gross elemental analysis (39.8, 93.1), adsorption (10.5), and size distribution (36.8, 25.08). As instrumental analysis techniques are being developed to measure microquantities of organic compounds, more and more emphasis is being placed upon the isolation and identification of these individual organic compounds. Their interaction and effects on organisms and communities of organisms in an aquatic ecosystem are of great importance to an effective understanding of the organic material requirements and their regulatory capacities within an ecosystem.

Since numerous reports, publications, and reviews on the advances in isolation, instrumentation, and identification of organic substances in natural waters have been prepared, this material will be discussed herein only when appropriate to the experimental work; the reviews are as follows: 8.6, 11.2, 11.15, 11.17, 12.3, 18.65, 28.4, 28.8, 28.9, 36.9, 36.91, 44.3, 70.55.

The more than 300 natural occurring organic compounds have been identified from natural water systems including antibiotics, common metabolites, and cellular compounds (Table 1). The compound is listed in the first column of Table 1 and the second column cites the reference(s) that has shown the compound to be present in natural waters.

#### **Effects of Organics**

Listed in the third column of Table 1 are the references to studies showing the effect of the compound listed in column one on certain biota, thus helping to achieve the third objective of the study (effects of the organics). For example from Table 1, references 22.5 and 23 report the observation of acetaldehyde in natural waters which references 36.1, 36.3, and 96 describe studies of the effects of acetaldehyde on different life forms. Table 1 is a complete survey (with unknown exceptions) of organic compounds in fresh water systems.

Results for those organic compounds which were bioassayed in detail are summarized in Appendix A: compounds are divided into five general classes (antibiotics, carbohydrates, fatty acids, organic acids, and phenol-like compounds) and their specific effects on certain organisms are listed along with the experimental conditions. For example if one were interested in citric acid (or its salt, citrate), one could find in Table 1 an observation of the salt (citrate) observed in nature (21.8) and studies showing the effects of citrate (or citric acid) on different organisms (40.2, 69, 93, 96), or Appendix A can be used. Looking in Appendix A under the class of compounds, organic acids, we find listed under citric acid that Haematococcus pluvialis yields only 59 percent of its normal growth (by cell count) in four days, in liquid cultures (125 ml Erlenmeyer flask) at 21° C, pH of 5, 3,000 lux (continuous), and at a

| Compound                                                     | Studies Showing the Natural Observance of the Compound | Studies Showing the Effect of the Compounds on Certain Biota                                                                 |
|--------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Acachidic acid                                               | 110                                                    |                                                                                                                              |
| Acetaldehyde                                                 | 23, 22.5                                               | 36.1, 36.3, 96                                                                                                               |
| Acetamide                                                    | ,                                                      | 86.6, 96                                                                                                                     |
| Acetate                                                      | 124, 125                                               | 18, 26, 27.1, 36.1, 36.3, 40.1, 48.2, 63.1,<br>63.4, 63.5, 63.6, 73.82, 73.83, 86.5, 86.6,<br>86.7, 87, 94.5, 96, 104, 115.5 |
| Acetic Acid                                                  | 65, 73.8, 104, 110                                     | 69, 81, 93                                                                                                                   |
| Acetoacetic Acid                                             | 65                                                     |                                                                                                                              |
| Acetone                                                      | 23                                                     |                                                                                                                              |
| Aconitate                                                    |                                                        | 27.1,96                                                                                                                      |
| Aconitic Acid                                                |                                                        | 69 .                                                                                                                         |
| Actedione                                                    | 120                                                    | 46,81,128                                                                                                                    |
| Acrylic Acid                                                 | 110,39.9                                               |                                                                                                                              |
| Adenine                                                      | 110                                                    | 20,21,101                                                                                                                    |
| Adipic Acid                                                  | 69                                                     | 5,11.2,36.1,36.3,40.1,48.2,60.02,96                                                                                          |
| Aerosporin                                                   |                                                        | 18, 33, 36, 46, 81                                                                                                           |
| Aesculin                                                     |                                                        | 75                                                                                                                           |
| Alanine                                                      | 12, 28, 43, 110, 114, 116,<br>117, 123                 | 5, 11.2, 36.1, 36.3, 40.1, 48.2, 60.02, 90                                                                                   |
| Allantoin                                                    | 110                                                    | 10                                                                                                                           |
| Altafur                                                      | 110                                                    | 18                                                                                                                           |
| p-Aminobenzoic Acid<br>a-Aminobutyric Acid                   | 110<br>110                                             |                                                                                                                              |
| Amphotericin                                                 | 110                                                    | 18,46                                                                                                                        |
| Aniline                                                      |                                                        | 30                                                                                                                           |
| Anisomycin                                                   |                                                        | 46                                                                                                                           |
| Aphanicin                                                    | 110                                                    |                                                                                                                              |
| Aphanin                                                      | 110                                                    |                                                                                                                              |
| Aphanizophyll                                                | 110                                                    |                                                                                                                              |
| L-Arabinose                                                  | 14, 43, 66, 70.3, 71, 110,<br>112, 122                 | 11.25, 18, 96                                                                                                                |
| Arachidic Acid                                               | 2,110                                                  |                                                                                                                              |
| Arginine                                                     | 12, 28, 43, 82, 110, 116                               | 11.25, 96                                                                                                                    |
| Asparagine                                                   |                                                        | 6, 36.1, 36.3, 40.1, 63.1, 86.6, 96, 129                                                                                     |
| Aspartate                                                    |                                                        | 11.2, 96, 115.5                                                                                                              |
| L-Aspartic Acid                                              | 12, 28, 43, 110, 114, 116, 123                         | 60.02                                                                                                                        |
| Astacene                                                     | 110                                                    | 20                                                                                                                           |
| Atabrine                                                     | 28.2                                                   | 30                                                                                                                           |
| Aurcomycin                                                   | 28.3                                                   | 18, 33                                                                                                                       |
| Azaguanine<br>Azaleucine                                     |                                                        | 1                                                                                                                            |
| Azathymine                                                   |                                                        | 1                                                                                                                            |
| Azauracil                                                    |                                                        | 1                                                                                                                            |
| Bacitracin                                                   |                                                        | 18, 33, 36, 46                                                                                                               |
|                                                              | 110                                                    |                                                                                                                              |
| Behenic Acid<br>Benzene Polycarboxylic Acid<br>Benzimidazole | 110<br>22                                              | 36                                                                                                                           |
| Benzoic Acid                                                 |                                                        | 69                                                                                                                           |
| Biotin                                                       | 47, 48, 78, 110                                        | 52, 78, 88, 96                                                                                                               |
| 5-Bromo 3, 4                                                 |                                                        |                                                                                                                              |
| dehydroxybenzaldehyde                                        |                                                        | 70                                                                                                                           |

 Table 1. Natural occurring organic compounds found in water systems and their effects. A list of natural occurring organic compounds (column one) found in water systems (column two) and studies showing the effects of these compounds (column three) on different life forms.

| Compound                       | Studies Showing the Natural<br>Observance of the Compound | Studies Showing the Effect of the<br>Compounds on Certain Biota          |
|--------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------|
| n-Butyric Acid                 |                                                           | 69                                                                       |
| Butyrate                       |                                                           | 27.1, 36.1, 36.3, 40.1, 48.2, 63.4, 73.82,<br>86.5, 86.7, 96, 104, 115.5 |
| Butyric Acid                   | 110                                                       |                                                                          |
| Caffeine                       |                                                           | 1                                                                        |
| Caproate                       |                                                           | 63.4, 96                                                                 |
| n-Caproic                      |                                                           | 69                                                                       |
| Capronic                       | 110                                                       | 86, 96, 115.5                                                            |
| Caprylic                       | 110                                                       | 96, 115.5                                                                |
| Captan                         |                                                           | 36                                                                       |
| Carbomycin                     |                                                           | 18                                                                       |
| -Carboxylic Acid               | 110                                                       |                                                                          |
| lpha-carotene                  | 110                                                       |                                                                          |
| beta-carotene                  | 2, 110                                                    |                                                                          |
| Catechin                       |                                                           | 22                                                                       |
| Catechol                       | 22                                                        | 30                                                                       |
| Cellalose                      | 110                                                       |                                                                          |
| Cellobiose                     | 110                                                       | 75,96                                                                    |
| Cerotic Acid                   | 110                                                       |                                                                          |
| Cetyl-Alcohel                  | 110                                                       | 10                                                                       |
| Chloramphenicol                | 28.3                                                      | 18                                                                       |
| Chlorellin                     | 84                                                        | 84                                                                       |
| Chloromycetin                  | 28.3                                                      | 18, 33, 36                                                               |
| Chlorophyllide                 | 50.5                                                      |                                                                          |
| Cholesterol                    | 2,110                                                     |                                                                          |
| Choline                        | 110, 123                                                  |                                                                          |
| Thrysene                       | 110                                                       | 10.0.00                                                                  |
| Citrate                        | 21.8                                                      | 40.2, 96                                                                 |
| Citric Acid                    | 110                                                       | 69, 93<br>88, 06                                                         |
| Cobalamin<br>Colistin Sulfata  | 110                                                       | 88, 96<br>18                                                             |
| Colistin Sulfate<br>Creatinine | 110                                                       | 18                                                                       |
| Cresotic Acid                  | 110                                                       |                                                                          |
| -Crotonic Acid                 |                                                           |                                                                          |
|                                | 110                                                       |                                                                          |
| Cupriethylenediamine           | 17                                                        |                                                                          |
| Curcumin                       | 22<br>110                                                 |                                                                          |
| Cyanwric Acid<br>Cycloheximide | 72                                                        |                                                                          |
| Cycloserine                    | 12                                                        | 18                                                                       |
| lysteine                       | 116                                                       | 61                                                                       |
| lystine                        | 82, 110                                                   | 11.25, 96, 115.5                                                         |
| lytosine                       | 110                                                       |                                                                          |
| Decanoic Acid                  |                                                           | 87.5                                                                     |
| Declomycin                     |                                                           | 18                                                                       |
| Desoxysantalin                 | 22                                                        |                                                                          |
| Demethylchlortetracyeline      |                                                           | 18                                                                       |
| Dehydroascorbic Acid           | 110                                                       |                                                                          |
| Dextrin                        |                                                           | 40.2, 96                                                                 |
| , 3-dibromo                    |                                                           | TV.4, 70                                                                 |
| 4,5 dihydroxybenzylalcohol     |                                                           | 70                                                                       |
| Dihydrostreptomycin            |                                                           | 18                                                                       |
| ,4 dihydroxyphenylethylamine   |                                                           | 70                                                                       |
| ,5-dihydroxybenzyoic Acid      | 22                                                        |                                                                          |

\_

| Compound                                                                                                                                      | Studies Showing the Natural Observance of the Compound                                                                  | Studies Showing the Effect of the<br>Compounds on Certain Biota                                                                                                                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dioxyacetone<br>Dithane                                                                                                                       |                                                                                                                         | 86.5, 86.7, 96<br>36                                                                                                                                                                                    |
| Erythritol<br>Erythromycin<br>Ethanol<br>Ethionine<br>Ethyl-acetate<br>2-Exo-Hydroxy-2 Methylbornane                                          | 9 .                                                                                                                     | 96, 115.5<br>18<br>48.2, 96, 129<br>1, 52.5<br>86.5, 96<br>70.28                                                                                                                                        |
| Flavacin<br>Flavan-3,4 dial unit<br>Flavonol Unit<br>Flavorbodin<br>Fluorophenylalanine<br>Formaldehyde<br>Formate<br>Formic Acid<br>Fructose | 110<br>22<br>22<br>110<br>22.5<br>65, 73.8, 110<br>110, 112, 122                                                        | 1<br>104<br>93<br>18, 18.6, 61.7, 63.1, 75, 96, 104.6, 115.5                                                                                                                                            |
| Fucose<br>Fucoxanthin<br>Fumarate<br>Fumaric Acid<br>Furacin<br>Furadanthin<br>Furaltadone<br>Furfuraldehyde<br>Furoxone                      | 70.3, 71, 110<br>110<br>23                                                                                              | 27.1, 96<br>69, 93<br>18<br>18<br>18<br>18                                                                                                                                                              |
| D-Galactose                                                                                                                                   | 14, 66, 70.3, 71, 110, 122                                                                                              | 11.25, 18.6, 36.3, 40.2, 63.1, 75, 96, 104.6,<br>115.5                                                                                                                                                  |
| Galacturonic Acid<br>Gelatine<br>Geosmin<br>Glatamic<br>Glatamine<br>Gliotoxin<br>Glucosamine<br>Glucose                                      | 110<br>94,36.36<br>123<br>123<br>12, 17, 66, 70.3, 110, 112,<br>122, 124, 125                                           | <ul> <li>11.5, 15.1, 63.1, 96</li> <li>33</li> <li>86.7, 96</li> <li>11.25, 15.1, 18.6, 18.61, 25.01, 27.1, 36.2, 36.3, 40.2, 44, 61.7, 63.1, 73.81, 73.84, 75, 96, 104.6, 115.5, 118.5, 129</li> </ul> |
| Glucuronic Acid<br>Glutamine<br>L(+) Glutamic Acid<br>Glutamine<br>Glutaric Acid<br>Glyceraldehyde                                            | 71, 110<br>117<br>12, 28, 43, 110, 114, 116                                                                             | 11.25, 48.2, 86.6, 96<br>61<br>7, 94.5, 96<br>69<br>86.5                                                                                                                                                |
| Glycerate<br>Glycerol<br>Glycocoll<br>Glycocoll<br>Glycollate<br>Glycollic Acid<br>Glyoxylic Acid<br>Gramicidin<br>Guanine                    | 21.8<br>12, 32, 43, 110<br>110, 114, 116, 118<br>28<br>21.8, 117<br>8.5, 12, 65, 70.3, 106, 117.5<br>65<br>42.01<br>110 | 18.6, 61.7, 96, 129<br>11.25,36.1,36.3,40.1,48.2,63.1,96,115.5<br>3,4<br>26, 63, 69, 93<br>69<br>36                                                                                                     |

\_

,

.

| Compound                     | Studies Showing the Natural Observance of the Compound | Studies Showing the Effect of the<br>Compounds on Certain Biota |
|------------------------------|--------------------------------------------------------|-----------------------------------------------------------------|
| Guaiaylpropane Unit          | 22                                                     |                                                                 |
| Hentriacontane               | 110                                                    |                                                                 |
| Heptacosanoic                | 110                                                    |                                                                 |
| Heptacosanol                 | 110                                                    |                                                                 |
| n-Ĥeptanal                   | 23                                                     |                                                                 |
| Heptonic                     | 110                                                    |                                                                 |
| Histidine                    | 82, 110, 116                                           | 20,21,60.02,88,96                                               |
| Humolimnic Acid              | 97                                                     |                                                                 |
| Hydroquinone                 |                                                        | 30                                                              |
| Hydroxylamine                | 86                                                     |                                                                 |
| o-Hydroxybenzaldehyde        | 22                                                     |                                                                 |
| n-Hydroxybenzoic Acid        | 22                                                     |                                                                 |
| Hydroxyproline               | 110, 114                                               |                                                                 |
| o-Hydroxyphenylpropane       | 22                                                     |                                                                 |
| 8-Hydroxyquinoline           |                                                        | 30, 36                                                          |
| Hypoxanthine                 | 110                                                    |                                                                 |
| Inositol                     | 110                                                    | 11.25, 52, 96                                                   |
| Insulin                      |                                                        | 11.25, 40.2, 96                                                 |
| Isocitric lactone            | 21.8                                                   | 11.23, 10.2, 90                                                 |
| Isoleucine                   | 110                                                    |                                                                 |
| Iso-Nicotinic Acid Hydrazide | 110                                                    | 18                                                              |
| socitric lactone             | 21.8                                                   | 10                                                              |
|                              | 21.0                                                   | 10                                                              |
| Kanamycin                    |                                                        | 18                                                              |
| a-Ketoglutarate              |                                                        | 27.1,96                                                         |
| z-Ketoglutaric Acid          | 65                                                     | 69                                                              |
| Lactate                      |                                                        | 27.1, 40.1, 86.5, 86.7, 96, 115.5, 129                          |
| Lactic Acid                  | 65, 73.8                                               | 69, 93                                                          |
| Lactose                      | ,                                                      | 11.25, 18.6, 40.2, 75, 96                                       |
| Lauric Acid                  |                                                        | 87.5, 96, 115.5                                                 |
| Leprotene                    | 110                                                    |                                                                 |
| Leucines                     | 28, 43, 110, 114, 116                                  | 11.25, 36.1, 36.3, 40.1, 96, 115.5                              |
| Levulose                     |                                                        | 11.25, 96                                                       |
| Linoleic Acid                |                                                        | 87.5                                                            |
| Lysine                       | 12, 43, 110, 114, 116                                  | 61                                                              |
| Lysozyme                     |                                                        | 24                                                              |
| Lutein                       | 110                                                    |                                                                 |
| Madribon                     |                                                        | 18                                                              |
|                              |                                                        | 18                                                              |
| Magnamycin                   | 21.9                                                   |                                                                 |
| Malate                       | 21.8                                                   | 27.1, 40.2, 86.5, 96                                            |
| Maleic Acid                  | 70.3                                                   | 69<br>(0, 02                                                    |
| Malic Acid                   |                                                        | 69, 93                                                          |
| Malonic Acid                 | 110, 122                                               | 69                                                              |
| Maltose<br>Mannital          | 110, 122                                               | 11.25, 15.1, 18.6, 96                                           |
| Mannitol<br>Mannage          | 12, 32, 43, 110                                        | 96, 115.5                                                       |
| Mannose<br>Malazitana        |                                                        | 18.6, 36.3, 63.1, 96, 104.6                                     |
| Melezitose                   |                                                        | 11.25,96                                                        |
| Methenamine Mandelate        | 12 110 116                                             | 18                                                              |
| Methionine                   | 12, 110, 116                                           | 61                                                              |
| Methionine Sulphoxide        | 110                                                    | 20                                                              |
| Methylamine HCl              |                                                        | 30                                                              |
| Methyl β-D-Glycoside         | 22.5                                                   | 75,96                                                           |
| Methyl Ethyl Ketone          | 22.5                                                   |                                                                 |
|                              |                                                        |                                                                 |

| Compound                                   | Studies Showing the Natural<br>Observance of the Compound | Studies Showing the Effect of the<br>Compounds on Certain Biota |
|--------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------|
| Methylglyoxal                              | 110                                                       |                                                                 |
| Methoxyphenyl                              |                                                           | 36                                                              |
| Monotanic Acid                             | 110                                                       |                                                                 |
| Monomethylamine                            | 110                                                       |                                                                 |
| Monostearin                                | 2                                                         |                                                                 |
| Myristic Acid                              |                                                           | 87.5, 96, 115.5                                                 |
| Myxoxanthin                                | 110                                                       |                                                                 |
| Myxoxanthophyll                            | 110                                                       |                                                                 |
| Naphthol                                   |                                                           | 30                                                              |
| Neomycin                                   |                                                           | 18, 33                                                          |
| Nicotinic Acid                             | 32                                                        |                                                                 |
| Niacin                                     | 48, 110                                                   | 52                                                              |
| Nitrofurantoin                             |                                                           | 18                                                              |
| Nitrofuranzone                             |                                                           | 18                                                              |
| Nonanoic Acid                              |                                                           | 87.5                                                            |
| Nonylic<br>Novobiocin                      |                                                           | 96, 115.5<br>18                                                 |
| Nystatin                                   |                                                           | 18,46                                                           |
| Ty statili                                 |                                                           |                                                                 |
| Oenanthic Acid                             |                                                           | 96, 115.5                                                       |
| Oleandomycin                               |                                                           | 18                                                              |
| Oleic Acid                                 | 0.5.50.2.110                                              | 87.5                                                            |
| Oxalic Acid                                | 8.5, 70.3, 110                                            | 2.5 A                                                           |
| <b>B</b> 1 · ·                             |                                                           | $f = \frac{1}{2} S^{2}$                                         |
| Pandorinine<br>Pantothania Asid            | 96                                                        | 50                                                              |
| Pantothenic Acid                           |                                                           | 52<br>87.5 06 115 5                                             |
| Palmitic Acid<br>Para Amino Salicylic Acid |                                                           | 87.5, 96, 115.5<br>18                                           |
| Paromomycin                                |                                                           | 18                                                              |
| Penicillin                                 | 28.3                                                      | 18, 33, 36, 81                                                  |
| Pentatriacontane                           | 110                                                       |                                                                 |
| Peptone                                    |                                                           | 11.25, 25.01, 40.2, 63.1, 63.4, 63.6, 73.81,<br>86.6, 96        |
| Peridinin                                  | 110                                                       |                                                                 |
| Perylene                                   | 78.1                                                      |                                                                 |
| Petaloxanthin                              | 110                                                       |                                                                 |
| Phenylalanine                              | 28, 110, 114, 116                                         | 11.25, 40.1, 52.5, 61, 96                                       |
| Phenethicillin                             |                                                           | 18                                                              |
| Phospholipase (Lecithinase c)              | 110                                                       | 10                                                              |
| Phytin<br>a-Picoline                       | 110                                                       |                                                                 |
| Phenanthraquinone                          | 110                                                       | 30                                                              |
| Phenol                                     |                                                           | 36                                                              |
| Phenolic Acids                             | 54, 68                                                    | 54, 68                                                          |
| Phenylthiourea                             |                                                           | 30                                                              |
| Phormidine                                 | 96                                                        |                                                                 |
| Phroracemic                                | · · · · · ·                                               | 96                                                              |
| Phthalic Acid                              |                                                           | 69                                                              |
| Picric Acid                                |                                                           | 81                                                              |
| Pimelic Acid                               |                                                           | 69                                                              |
| Pinosylvia                                 | 22                                                        |                                                                 |
| Polymyxin B                                | 13, 28.3, 102                                             | 18, 36, 46, 81                                                  |
| Polysaccharides                            | 61.8, 71, 105, 117                                        |                                                                 |
| Proline                                    | 12, 28, 32, 43, 110, 114, 116                             |                                                                 |

\_

.

# Table 1. Continued.

| Compound                           | Studies Showing the Natural Observance of the Compound | Studies Showing the Effect of the<br>Compounds on Certain Biota |
|------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------|
| Proprionate                        | · · · · · · · · · · · · · · · · · · ·                  | 27.1, 86, 96, 104, 115.5                                        |
| Propionic Acid                     | 73.8, 104                                              | 69                                                              |
| Propylaldehyde                     |                                                        | 36.1                                                            |
| Protocatechnic Acid                | 22                                                     |                                                                 |
| Pyridoxine                         | 110                                                    | 8, 52, 96                                                       |
| Pyroracemic Acid                   |                                                        | 115.5                                                           |
| Pyruvate                           |                                                        | 18,27.1,63.5,86.5,96                                            |
| Pyruvic Acid                       | 65, 73.8                                               | 69,93                                                           |
| Quercetin                          | 22                                                     | ,                                                               |
| Quinone                            | 22                                                     | 30                                                              |
|                                    |                                                        |                                                                 |
| Raffinose                          | 22                                                     | 11.25, 96, 115.5                                                |
| Resveratrole                       | 22                                                     | 11.05.07                                                        |
| Rhamnose                           | 14, 66, 70.3, 71, 110                                  | 11.25, 96                                                       |
| Rhodopurpurin                      | 110                                                    |                                                                 |
| Rhodoviolascin                     | 110                                                    | <u></u>                                                         |
| Riboflavin                         | 110                                                    | 20, 52                                                          |
| Ribose                             | 66, 70.3, 71, 110, 112, 122                            | 18                                                              |
| Ristocetin                         |                                                        | 18                                                              |
| Salicylic Aldehyde                 | 110                                                    |                                                                 |
| Scenedesmine                       | 96                                                     |                                                                 |
| Serine                             | 110, 114, 116, 117, 123                                | 11.25,60.02,86.6,96                                             |
| 3-Sitosterol                       | 110                                                    |                                                                 |
| Spiramycin                         |                                                        | 18                                                              |
| Starch                             |                                                        | 11.25, 15.1, 40.2, 96, 129                                      |
| Staphcillin                        |                                                        | 18                                                              |
| Stearic Acid                       | 2                                                      | 87.5, 96, 115.5                                                 |
| Streptomycin                       | 28.3                                                   | 33, 36, 81, 102                                                 |
| Streptothricin                     |                                                        | 102                                                             |
| Succinamide                        |                                                        | 6                                                               |
| Succinate                          |                                                        | 27.1, 40.1, 48.2, 86.5, 86.6, 86.7, 96, 129                     |
| Succinic Acid                      | 110                                                    | 69,93                                                           |
| Sucrose                            | 12, 106, 110, 112, 122                                 | 11.25, 15.1, 18.6, 18.61, 59, 60, 63.1, 96                      |
| 5461056                            | 12, 100, 110, 112, 122                                 | 115.5                                                           |
| Suleatoxanthin                     | 110                                                    | 115.5                                                           |
| Sulfathiazole                      |                                                        | 18                                                              |
| Syncillin                          |                                                        | 18                                                              |
| Syringaldehyde                     | 22                                                     | 10                                                              |
| Syringylpropane                    | 22                                                     |                                                                 |
|                                    |                                                        |                                                                 |
| Fartaric Acid                      | 21.8                                                   | 69                                                              |
| Faurine                            | 118                                                    |                                                                 |
| Ferramycin                         | 28.3                                                   | 18, 33, 36, 81                                                  |
| Tetracosane                        | 2                                                      | 10.04                                                           |
| Fetracycline                       | 28.3                                                   | 18, 36                                                          |
| Thiamine (Vitamin B <sub>1</sub> ) | 47, 78, 110                                            | 52, 78, 88, 96, 96.5                                            |
| Thiourea                           |                                                        | 36                                                              |
| Threonine                          | 110, 116, 123                                          |                                                                 |
| Fhrimethylamine                    | 110                                                    |                                                                 |
| Frehalose                          |                                                        | 11.25,96                                                        |
| [riburon                           |                                                        | 18                                                              |
|                                    |                                                        |                                                                 |
|                                    | 2                                                      |                                                                 |
| Fhicosane<br>Fripalmitin           | 2<br>2                                                 |                                                                 |

Ś

| Compound                            | Studies Showing the Natural<br>Observance of the Compound | Studies Showing the Effect of the<br>Compounds on Certain Biota |
|-------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------|
| Tris (Hydroxymethyl) Amino          |                                                           |                                                                 |
| Methane                             | 67                                                        |                                                                 |
| Tristearin                          | 2                                                         |                                                                 |
| Trithiobenzaldehyde                 | 110                                                       |                                                                 |
| Tritriacoptane                      | 110                                                       |                                                                 |
| Tryptophane                         | 82, 110                                                   | 11.25, 52.5, 96, 115.5                                          |
| Tyrosine                            | 28, 82, 110, 116, 123                                     | 11.2, 40.1, 52.5, 96                                            |
| Undecylic                           |                                                           | 96, 115.5                                                       |
| Uracil                              | 110                                                       | 88,96                                                           |
| Urea                                |                                                           | 14, 89, 96.5                                                    |
| Urease                              | 14                                                        | 14                                                              |
| Valeraldehyde                       | 23                                                        | 36.1, 36.3, 96                                                  |
| Valerate                            |                                                           | 36.1, 36.3, 86.5, 96, 104, 115.5                                |
| n-Valeric Acid                      |                                                           | 69                                                              |
| Valine                              | 12, 28, 43, 110, 114, 116,<br>117, 123                    | 11.25, 40.1, 96                                                 |
| Vanillin                            | 22, 110                                                   | 81                                                              |
| Vancomycin                          |                                                           | 18                                                              |
| Viomycin                            |                                                           | 18                                                              |
| Vitamin A                           | 2, 110                                                    |                                                                 |
| Vitamine B <sub>1</sub>             |                                                           | 96                                                              |
| Vitamine B <sub>6</sub> (Pyridoxin) |                                                           | 96                                                              |
| Vitamine $B_{12}$ (Cobalamin)       | 78, 110                                                   | 78, 96, 96.5                                                    |
| Vitamine D                          | 110                                                       |                                                                 |
| Vitamine H (Biotin)                 |                                                           | 96                                                              |
| Xanthine                            | 110                                                       |                                                                 |
| Xylose                              | 14, 66, 71, 110, 112, 122                                 | 11.25, 18, 42, 96, 115.5                                        |
| Xylulose                            |                                                           | 126                                                             |
| Zeaxanthin                          | 110                                                       |                                                                 |

concentration of citric acid of 5.0 mg/l. This outline would be followed to see how a compound (like citric acid) controlled an alga like *Haematococcus pluvialis*.

If one were interested in knowing compounds which control specific algae, Table 2 would be used. For instance, for the green alga *Haematococcus pluvialis*, the references (3.5, 6, 69, 87.5, 97, 104) in column 3, Table 2, show that alanine, aspargine, glycollic, malonic, succinic, fumaric, maleic, tartaric, malic, lactic, acetic, propionic, n-butyric, nonanoic, decanoic, lauric, myristic, palmitic, linoleic, and citric acids all affect the growth of *Haematococcus pluvialis*. Further information about the compounds and their effects indicate that growth of *Haematococcus pluvialis* can be completely stopped by glutamic and pimelic acids (Appendix A).

N

# Producers of Organic Compounds (Sources of Energy and Vitamin Compounds)

Some organisms are known to produce organic compounds and references for these organisms are listed in Column 2 of Table 2. The organics produced can have far reaching effects as mentioned previously (Figure 1). Specific examples were compiled by Saunders (Table 3). These results show algae that would be capable of utilizing certain organic substances for energy or growth (food source) and thus could survive and grow rapidly at low light levels. For example, such algae could be productive during winter ice formation (11.23) while using the organics produced by other algae that grow at low light intensities or organics in sewage oxidation ponds.

| Organism                                         | Studies Showing Organic<br>Production from the Organism | Studies Showing Certain Organics<br>That Affect the Organism |
|--------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------|
| BACTERIA                                         |                                                         | · · · · · · · · · · · · · · · · · · ·                        |
| Archromobacter                                   |                                                         | 36                                                           |
| Bacillus polymyxa                                | 13                                                      | 52                                                           |
| Bacillus subtiles                                |                                                         | 85                                                           |
| Chlostridium welchii                             |                                                         | 102                                                          |
| Diplococcus pneumoniae Type I                    |                                                         | 102                                                          |
| Eberthella typhosa                               |                                                         | 102                                                          |
| Erysipelothrix rhusiopathiae                     |                                                         | 102                                                          |
| Escherichia coli                                 |                                                         | 1, 102                                                       |
| Flavobacterium sp.                               |                                                         | 1,102                                                        |
| Lactobacillus arabinosus                         |                                                         | 1                                                            |
| Lactobacillus mesenteroides                      |                                                         | 1                                                            |
| Pseudomonas aeruginosa                           | 15                                                      | 102                                                          |
| Pseudomonas sp.                                  | 15                                                      | 36                                                           |
| Salmonella schottmuelleri                        |                                                         | 102                                                          |
| Salmonella typhimurium                           |                                                         | 102                                                          |
|                                                  |                                                         | 102                                                          |
| Shigella dysenteriae                             |                                                         | 85, 102                                                      |
| Staphyloccus aureus                              |                                                         | 102                                                          |
| Streptococcus, gp A, Strain C203                 | )                                                       | 102                                                          |
| Streptococcus, gp B                              |                                                         |                                                              |
| Streptococcus, gp D                              |                                                         | 102                                                          |
| VIRUSES                                          |                                                         |                                                              |
| Influenza B                                      |                                                         | 1                                                            |
| Influenza PR8                                    |                                                         | 1                                                            |
| Poliomyelitis (lansing)                          |                                                         | 1                                                            |
| CYANOPHYTA                                       |                                                         |                                                              |
| Anabaena cylindrica                              |                                                         | 1, 46, 128                                                   |
| Anabaena flos-aquae                              | 71.5                                                    |                                                              |
| Anabaena valiabilis                              |                                                         | 36                                                           |
| Anacystis nidulans                               |                                                         | 87.5                                                         |
| Aphanocapsa sp.                                  |                                                         | 128                                                          |
| Calothrix sp.                                    |                                                         | 33                                                           |
| Coelosphaerium küetzingianum                     |                                                         | 128                                                          |
| Cyanidium caldarium                              | 12.4                                                    | 24                                                           |
| Cylindrospermum sp.                              |                                                         | 118.5                                                        |
| Fremyella diplosiphon                            |                                                         | 24, 46                                                       |
| Gloeotrichia echinulata                          |                                                         | 128                                                          |
| Gloeothece rupestris                             |                                                         | 128                                                          |
| Lyngbya sp.                                      |                                                         | 128                                                          |
| Microcystis aeruginosa                           | 16                                                      | 30, 128                                                      |
| Microcystis sp.                                  |                                                         | 33                                                           |
| Nostoc sp.                                       |                                                         | 33, 46                                                       |
| Nostoc pruntiforme                               |                                                         | 40.2                                                         |
| Oscillatoria formosa                             |                                                         | 24                                                           |
| Oscillatoria tenuis                              |                                                         | 24, 128                                                      |
| Phormidium luridum                               |                                                         | 14, 24                                                       |
| Phormidium foveolarum                            |                                                         | 128                                                          |
| Phormidium sp.                                   |                                                         | 33, 46                                                       |
| Plectonema calothricoides                        |                                                         | 14, 24                                                       |
|                                                  |                                                         | 14, 24                                                       |
| Porphyridium aerugineum<br>Porphyridium aruantum |                                                         | 14                                                           |
| Porphyridium cruentum                            | 94                                                      | 14                                                           |
| Symploca muscorum                                | 27                                                      | 33                                                           |
| Symploca sp.                                     |                                                         | <i></i>                                                      |

Table 2. Organisms known to produce organic compounds and that are affected by known organic compounds.

| Organism                                                | Studies Showing Organic<br>Production from the Organism | Studies Showing Certain Organics<br>That Affect the Organism |
|---------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------|
| Synechococcus cedrorum                                  |                                                         | 1                                                            |
| Synechococcus lividus                                   |                                                         | 14, 24                                                       |
| Tolypothrix sp.                                         |                                                         | 128                                                          |
| Tolypothrix tenuis                                      |                                                         | 128                                                          |
| UNGI                                                    |                                                         |                                                              |
| Aspergillus niger                                       |                                                         | 1                                                            |
| Aspergillus sydowii                                     |                                                         | 36                                                           |
| Saccharomyces carlsbergensis                            |                                                         | 1                                                            |
| Saccharomyces cerevisiae                                |                                                         | 1                                                            |
| Torula monosa                                           |                                                         | 1                                                            |
| Torula utilis                                           |                                                         | 1                                                            |
| HLOROPHYTA                                              |                                                         |                                                              |
| Ankistrodesmus braunii                                  | 21.8                                                    |                                                              |
| Ankistrodesmus falcatus                                 |                                                         | 3, 5, 6, 46, 128                                             |
| Chlamydomonas agloeoformis                              |                                                         | 40.1, 46, 63.5, 128                                          |
| Chlamydomonas angulosa                                  | 70.3                                                    |                                                              |
| Chlamydomonas chlamydogarna                             | 70.3                                                    |                                                              |
| Chlamydomonas debaryana                                 | 21.8                                                    | (2.01                                                        |
| Chlamydomonas dorsoventralis                            | 22.5                                                    | 63.01                                                        |
| Chlamydomonas globosa                                   | 22.5                                                    | 63.01                                                        |
| Chlamydomonas monoica                                   |                                                         | 63.01                                                        |
| Chlamydomonas pseudococcum<br>Chlamydomonas pseudogloc  |                                                         | 63.01                                                        |
| Chlamydomonas pulchra                                   |                                                         | 63.01                                                        |
| Chlamydomonas subglobosa                                |                                                         | 63.01                                                        |
| Chlamydomonas reinhardii                                | 87.5                                                    | 87.5, 93.5, 104                                              |
| Chlamydomonas sp.                                       | 32, 70.3                                                | 33                                                           |
| Chlorella ellipsoidea                                   | 70.3                                                    | 115                                                          |
| Chlorella miniata                                       | 70.3                                                    |                                                              |
| Chlorella protothecoides                                |                                                         | 3, 5, 6                                                      |
| Chlorella pyrenoidosa                                   | 12, 65, 70.3                                            | 36,36.1,36.2, 36.3, 42, 46, 73.835<br>107.5, 128             |
| Chlorella variegata                                     |                                                         | 11.25                                                        |
| Chlorella viscosa                                       |                                                         | 11.25                                                        |
| Chlorella sp.                                           |                                                         | 3, 5, 85                                                     |
| Chlorella vulgaris                                      | 65, 70.3                                                | 11.25, 15.1, 27.1, 73.81,<br>73.835, 73.84                   |
| Chlorella vulgaris B                                    |                                                         | 6, 36                                                        |
| Chlorella vulgaris M                                    |                                                         | 3, 4, 5, 6, 87.5                                             |
| Chlorococcum aplanosporum                               |                                                         | 18<br>18                                                     |
| Chlorococcum diplobionticum                             |                                                         | 18, 126                                                      |
| Chlorococcum echinozygotum<br>Chlorococcum ellipsoideum |                                                         | 18, 120                                                      |
| Chlorococcum empsoiaeum<br>Chlorococcum humicola        |                                                         | 11.25                                                        |
| Chlorococcum hypnosporum                                |                                                         | 18                                                           |
| Chlorococcum intermedium                                |                                                         | 18                                                           |
| Chlorococcum macrostigmaticum                           |                                                         | 18                                                           |
| Chlorococcum minutum                                    |                                                         | 18, 46, 128                                                  |
| Chlorococcum multinucleatum                             |                                                         | 18                                                           |
| Chlorococcum oleofaciens                                |                                                         | 18                                                           |
| Chlorococcum perforatum                                 |                                                         | 18                                                           |
| Chlorococcum pinguideum                                 |                                                         | 18                                                           |
| Chlorococcum punctatum                                  |                                                         | 18                                                           |
| Chlorococcum scabellum                                  |                                                         | 18                                                           |

\_

| Organism P                                           | Studies Showing Organic<br>roduction from the Organism | Studies Showing Certain Organic<br>That Affect the Organism |
|------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------|
| Chlorococcum tetrasporum                             |                                                        | 18                                                          |
| Chlorococcum vacuolatum                              |                                                        | 18                                                          |
| Chlorococcum wimmeri                                 |                                                        | 18                                                          |
| Chlorogonium elengatum                               |                                                        | 87                                                          |
| Chlorogonium elongatum                               |                                                        | 11.25                                                       |
| Chlorogonium euchlorium                              |                                                        | 40.1, 63.1, 86, 86.5                                        |
| Coccomyxa elongata                                   |                                                        | 46, 128                                                     |
| Coelastrum proboscideum                              |                                                        | 2.5                                                         |
| Haematococcus lacustris                              |                                                        | 46, 128                                                     |
| Haematococcus pluvialis                              |                                                        | 3, 5, 6, 69, 87.5, 97, 104                                  |
| Hormidium sp. 1                                      |                                                        | 3, 6                                                        |
| Hormidium sp. 2                                      |                                                        | 3, 5, 6, 46                                                 |
| Hormidium subtile                                    |                                                        | 128                                                         |
| Oocystis sp.                                         |                                                        | 33                                                          |
| Polytoma unvella                                     |                                                        | 86.7                                                        |
| Raphidonema longiseta                                |                                                        | 128                                                         |
| Scenedesmus acuminatus                               |                                                        | 3, 5, 6                                                     |
| Scenedesmus acutiformis                              |                                                        | 3, 5, 6                                                     |
| Scenedesmus actus                                    |                                                        | 25.01                                                       |
| Scenedesmus basiliensis                              |                                                        | 36.1                                                        |
| Scenedesmus bÿugata                                  | 70.3                                                   |                                                             |
| Scenedesmus costulatus var chlorello                 | oides                                                  | 18.6, 18.61                                                 |
| Scenedesmus dimorphus                                |                                                        | 3, 5, 6                                                     |
| Scenedesmus obliquus                                 | 70.3                                                   | 4.1, 5, 6, 7, 8, 36, 46, 128                                |
| Scenedesmus quadricauda                              |                                                        | 6, 87.5, 97, 104.6                                          |
| Stichococcus bacillaris                              |                                                        | 3, 5, 6, 36.1, 46, 128                                      |
| Zygnema sp.                                          |                                                        | 3, 5, 6                                                     |
| IRYSOPHYTA                                           |                                                        |                                                             |
| Gomphoenema sp.                                      |                                                        | 33                                                          |
| Navicula minima                                      |                                                        | 61.7, 128                                                   |
| Navicula pelliculosa                                 |                                                        | 46, 61.7, 87.5                                              |
| Nitzschia sp.                                        |                                                        | 33                                                          |
| Ochromonas danica                                    |                                                        | 1, 1.1                                                      |
| Ochromonas malhamensis                               |                                                        | 1.1                                                         |
| Stephanodiscus hantzschii                            | 117                                                    |                                                             |
| Synura petersenii                                    | 23                                                     |                                                             |
| Synedra acus                                         | 117                                                    |                                                             |
| Tribonema aequale                                    |                                                        | 128                                                         |
| JGLENOPHYTA                                          |                                                        |                                                             |
| Euglena gracilis                                     |                                                        | 1, 1.1, 27.01, 46, 48.2, 73.82,<br>86.5, 86.6, 87           |
| Euglena gracilis var. bacillaris<br>Euglena stellata |                                                        | 40.1, 48.2, 63.4<br>40.1                                    |
| (RRHOPHYTA                                           |                                                        |                                                             |
| Amphidinium carteri                                  | 114.9                                                  |                                                             |
| НАЕОРНУТА                                            |                                                        |                                                             |
| Fuais vesiculosus                                    | 23.8                                                   |                                                             |
| Prototheca zopfii                                    |                                                        | 20, 21                                                      |

\_

1

| Chlamydomonas                           |                            |
|-----------------------------------------|----------------------------|
| agloeformis                             | 40.1, 63.5                 |
| dorsoven tralis                         | 63.01                      |
| monoica                                 | 63.01                      |
| pseudococcum                            | 63.01                      |
| pseudogloe                              | 63.01                      |
| pulchra                                 | 63.01                      |
| reinhardi                               | 93.5                       |
| subglobosa                              | 63.01                      |
| Chlorella                               |                            |
| ellipsoidea                             | 115                        |
| pyrenoidosa                             | 36.1, 36.2, 36.3,          |
|                                         | 73.835, 107.5              |
| variegata                               | 11.2                       |
| viscosa                                 | 11.2                       |
| vulgaris                                | 11.2, 15.1, 27.1, 73.81,   |
| ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 73.835, 73.84              |
| Chlorococcum                            | 10.000, 10.04              |
| humicola                                | 11.2                       |
| Chlorogonium                            | 11.2                       |
| elongatum                               | 11.2                       |
| euchlorium                              | 40.1, 63.1, 86, 86.5       |
| Coelastrum                              | 40.1, 05.1, 80, 80.5       |
| Proboscideum                            | 2.5                        |
| Cylindrospermum sp.                     | 118.5                      |
|                                         | 18.5, 18.61                |
| Cystococcus sp.<br>Euglena              | 18.0, 18.01                |
| -                                       | 27.01.49.2.72.92.96.5.96   |
| gracilis<br>gracilis von bacillaria     | 27.01,48.2,73.82,86.5,86.6 |
| gracilis var. bacillaris                | 40.1, 48.2, 63.4           |
| stellata                                | 40.1                       |
| Mannochloris                            | 11.0                       |
| bacillaris                              | 11.2                       |
| Navicula                                |                            |
| minima                                  | 61.7                       |
| pelliculosa                             | 61.7                       |
| Nostoc                                  |                            |
| punctiforme                             | 40.2                       |
| Polytoma                                |                            |
| uvella                                  | 86.7                       |
| Scenedesmus                             |                            |
| acutus                                  | 25.01                      |
| basiliensis                             | 36.1                       |
| <i>costulatus</i> var.                  |                            |
| chlorelloides                           | 18.6, 18.61                |
| quadricauda                             | 104.6                      |
| Stichococcus                            |                            |
| bacillaris                              | 36.1                       |

Table 3. Algae capable of utilizing organic substances for energy or growth (from Saunders, 96).

# **Required Organic Compounds**

Some algae require vitamins for growth (Tables 4, 5, 6). Knowing that a certain alga requires vitamins can be the first step in understanding factors that control or limit the growth of a specific alga (Tables 4 and 5). For example, *Synura petersenii* (a plankton

member of the *Chrysophyta*) is known to produce taste and odor problems in water supplies possibly by production of furfuraldehyde, acetaldehyde, acetone, valeraldehyde and n-heptanal (23). Since *Synura petersenii* requires vitamin  $B_{12}$  (Table 4), *Synura petersenii* could be controlled by limiting the availability and/or input of this vitamin and thus the water supply be improved. Table 1 lists natural sources of vitamin  $B_{12}$  (78,110); thus control methods for *Synura petersenii* might be based on this information. Ohwada and Taga (78) and Valentine (110) have indicated that vitamin  $B_{12}$  concentration may be a limiting growth factor in lakes.

#### Algae Interacting with Algae

The inhibition or stimulation of certain algae by other algae is well known (Table 7). Although the degree of reaction may vary with temperature, light, pH, and size of inoculum, the general trends can still be noted and controlling factors suggested. For example, *Scenedesmus obliquus* or *Scenedesmus quadricauda* inhibits the growth of *Ankistrodesmus arcutus* (Table 7).

Table 4. Vitamin requirements of specific algae.(Taken from Provasoli, 87.9; references in<br/>Provasoli).

| Species                                   | B <sub>12</sub> <sup>m</sup> | Thia-<br>mine | Biotin |
|-------------------------------------------|------------------------------|---------------|--------|
| CHLOROPHYCEAE                             |                              |               | -      |
| Astrephoneme gubernaculifera <sup>a</sup> | 0                            | R(?           | ) 0    |
| Brachiomonas submarina                    | 0                            | 0             | 0      |
| Chlamydomonas aglöeformis                 | 0                            | 0             | 0      |
| Chlamydomonas chlamydogamn                | na <sup>b</sup> R            | 0             | 0      |
| Chlamydomonas moewusii                    | 0                            | 0             | 0      |
| Chlamydomonas reinhardii                  | 0                            | 0             | 0      |
| Chlorella vulgaris                        | 0                            | 0             | 0      |
| Chlorogonium elongatum                    | 0                            | 0             | 0      |
| Chlorogonium euchlorum                    | 0                            | 0             | 0      |
| Coelastrum morus (?)                      | 0                            | R             | 0      |
| Dunaliella salina                         | 0                            | 0             | 0      |
| Dunaliella primolecta                     | 0                            | 0             | 0      |
| Dunaliella viridis                        | 0                            | 0             | 0      |
| Gonium pectorale                          | R                            | 0             | 0      |
| Haematococcus pluvialis                   | 0                            | 0             | 0      |
| Lobomonas pyriformis                      | 0                            | 0             | 0      |
| Lobomonas rostrata                        | R                            | 0             | 0      |
| Nannochloris atomus                       | 0                            | 0             | 0      |
| Nannochloris oculata                      | 0                            | 0             | 0      |
| Pilinia sp.                               | 0                            | 0             | 0      |
| Platymonas sp.                            | 0                            | 0             | 0      |
| Polytoma caudatum <sup>c</sup>            | 0                            | R             | 0      |
| Polytoma obtusum <sup>c</sup>             | 0                            | 0             | 0      |
| Polytoma ocellatum <sup>c</sup>           | Ō                            | R             | Ō      |
| Polytoma uvella <sup>c</sup>              | Ō                            | 0             | Ō      |

| Table 4. Continued. | Table | 4. | Continued. |
|---------------------|-------|----|------------|
|---------------------|-------|----|------------|

| Species                                                  | B <sub>12</sub> <sup>m</sup> | Thia-<br>mine | Biotin   |
|----------------------------------------------------------|------------------------------|---------------|----------|
| Polytomella caeca <sup>c</sup>                           | 0                            | R             | 0        |
| Prasiola stipitata                                       | 0                            | 0             | 0        |
| Prototheca zopfii <sup>c</sup>                           | Õ                            | R             | 0        |
| Pyramimonas inconstans                                   | Ř                            | R             | Õ        |
| Selenastrum minutum                                      | Ô                            | Ô             | ŏ        |
| (Cambridge Culture Collection                            | -                            | Ŭ             | Ŭ        |
| Selenastrum minutum                                      | ,<br>0                       | R             | 0        |
|                                                          | ŏ                            | 0             | ŏ        |
| Stephanoptera gracilis                                   | ŏ                            | ŏ             | ŏ        |
| Scenedesmus obliquus                                     | Ő                            | ŏ             | Ő        |
| Stichococcus cylindricus (?)                             | R                            | 0<br>0        | 0        |
| Stichococcus cylindricus (?)                             | к<br>0                       | Ő             | 0        |
| Stichococcus sp.                                         | -                            | -             |          |
| Volvulina steinii <sup>a</sup>                           | 0                            | R(?           | () 0     |
| EUGLENINEAE                                              |                              |               |          |
| Astasis longa <sup>c</sup> (=A. klebsii,                 | R                            | R             | 0        |
| Von Dach)                                                |                              |               |          |
| Euglena gracilis var.: typica,                           | R                            | R             | 0        |
| bacillaris, urophora                                     |                              |               |          |
| Euglena gracilis <sup>c</sup> permanently                | R                            | R             | 0        |
| bleached <sup>d</sup>                                    |                              |               |          |
| Euglena pisciformis                                      | 0                            | R             | 0        |
| Euglena stellata                                         | R                            | R             | 0        |
| Euglena viridis                                          | R                            | R             | 0        |
| Peranema trichophorum <sup>c,e</sup>                     | R                            | R             | Õ        |
|                                                          | R                            | R             | õ        |
| Phacus pyrum<br>Trachelomonas abrupta <sup>f</sup>       | R                            | S             | ŏ        |
| Trachelomonas pertyi <sup>f</sup>                        | R                            | S             | ŏ        |
|                                                          | K                            | D             | U        |
| CRYPTOPHYCEAE                                            | _                            | _             |          |
| Chilomonas paramoecium <sup>c</sup>                      | 0                            | R             | 0        |
| Cryptomonas ovata (var. palustri                         |                              | 0             | 0        |
| Cyanophora paradoza                                      | R                            | 0             | 0        |
| Hemiselmis virescens <sup>g</sup>                        | R                            | R             | 0        |
| Rhodomonas lens <sup>h</sup>                             | S                            | R             | 0        |
| Rhodomonas sp. (6 strains)                               | R                            | R             | 0        |
| DINOPHYCEAE                                              |                              |               |          |
| Amphidinium klebsii (?)                                  | R                            | R             | R        |
| Amphidinium rhynchocephalum                              |                              | R             | R        |
| (?)                                                      | I.                           |               |          |
| Exuviaella cassubica                                     | R                            | 0             | 0        |
| Glenodinium foliaceum                                    | R                            | ŏ             | ŏ        |
|                                                          | R                            | ŏ             | ŏ        |
| Gonyaulax polyedra <sup>1</sup>                          | R                            | R             | R        |
| Gymnodinium breves <sup>l</sup><br>Gymnodinium splendens | R                            | 0             | 0        |
|                                                          | R                            | Ő             | ŏ        |
| Gyrodinium californicum                                  | K                            | 0             | 0        |
| (Gyrodinium sp.)                                         | 0                            | сD            | R        |
| Gyrodinium cohnii <sup>k</sup>                           | 0                            | S-R           | . к<br>О |
| Gyrodinium resplendens                                   | R                            | 0             | -        |
| Gyrodinium uncatenum                                     | R                            | 0             | 0        |
|                                                          |                              | 0             | 0        |
| Peridinium balticum                                      | R                            |               |          |
| Peridinium chattoni                                      | R                            | 0             | 0        |
| Peridinium chattoni<br>Peridinium trochoideum            | R<br>R                       | 0<br>0        | 0<br>0   |
| Peridinium chattoni                                      | R                            | 0             | 0        |

| Species                                 | B <sub>12</sub> | Thia-<br>mine Biotin |     |  |
|-----------------------------------------|-----------------|----------------------|-----|--|
| CHRYSOPHYCEAE                           |                 |                      |     |  |
| Hymenomonas (Syracosphaera)<br>carterae | R               | 0                    | 0   |  |
| Hymenomonas (Syracosphaera)<br>elongata | R               | R                    | 0   |  |
| Isochrysis galbana                      | R               | R                    | 0   |  |
| Microglena arenicola                    | R               | R                    | 0   |  |
| Monochrysis lutherii                    | R               | R                    | 0   |  |
| Ochromonas danica                       | 0               | R                    | R   |  |
| Ochromonas malhamensis                  | R               | R                    | R   |  |
| Pleurochrysis scherffelii <sup>l</sup>  | 0               | R                    | 0   |  |
| Poteriochromonas stipitata              | R               | R                    | R   |  |
| Prymnesium parvum                       | R               | R                    | 0   |  |
| Stichochrysis immobilis                 | 0               | 0                    | 0   |  |
| Synura caroliniana                      | R               | 0                    | (?) |  |
| Synura petersenii                       | R               | 0                    | 0   |  |
| BACILLARIOPHYCEAE                       |                 |                      |     |  |
| Asterionella formosa                    | 0               | 0                    | 0   |  |
| Amphora perpusilla                      | R               | 0                    | 0   |  |
| Fragilaria capucina                     | 0               | Ō                    | 0   |  |
| Navicula pelliculosa                    | Ō               | 0                    | 0   |  |
| Nitzschia putrida <sup>c</sup>          | 0               | 0                    | 0   |  |
| Phaeodactylum tricornutum (N.           | Ó               | 0                    | 0   |  |
| closterium v. minutissima)              |                 |                      |     |  |
| Skeletonema costatum                    | R               | 0                    | 0   |  |
| Stephanopyxis turris                    | R               | 0                    | 0   |  |
| Tabellaria flocculosa                   | 0               | 0                    | 0   |  |

<sup>a</sup>May use para-aminobenzoic acid. <sup>b</sup>Requires histidine. <sup>c</sup>Colorless species. <sup>d</sup>Streptomycin-bleached. <sup>e</sup>Also needs riboflavin. May need other vitamins. <sup>f</sup>Thiamine not indispensable; necessary for prolonged good growth.

<sup>g</sup>Glycine is required.

 $^{h}$ The addition of  $B_{12}$  allows optimal growth.

<sup>i</sup>May need other vitamins.

<sup>j</sup>Other unknown requirements. Other vitamins in media not determined as essential.

 ${}^{k}$ G. cohnii has been carried through 20 transfers in biotin alone, but growth reaches only 60,000 cells/ml., while in biotin plus thiamine it reaches 500,000 cells/ml. Histidine is necessary, but it can grow without histidine after adaption.

 $^{l}\!Another$  chrysomonad with filamentous stages and coccolithophorid zoospores needs only thiamine.

<sup>m</sup>B<sub>12</sub>: organisms responding to cyanocobalamin (i.e., "true" B<sub>12</sub> = antipernicious anemia factor). R = required; S = stimulatory; O = not needed; S-R = borderline case, see footnote k; (?) = unconfirmed data.

| Species                                             | Vitamins<br>Needed | Thiamine | Cobalamin | Other              |
|-----------------------------------------------------|--------------------|----------|-----------|--------------------|
| CHLOROPHYTA                                         |                    |          |           |                    |
| Chlamydomonas agloëformis                           | Q                  |          |           |                    |
| Chlamydomonas chlamydogama                          | +                  |          | +         | Histidine          |
| Chlamydomonas moewusii                              | 0                  |          |           |                    |
| Chlamydomonas sp. ("marine")                        | 0                  |          |           |                    |
| Chlorogonium elongatum                              | 0                  |          |           | •                  |
| Chlorogonium euchlorum                              | 0                  |          |           |                    |
| Coelastrum (morus ?)                                | +                  | +        |           |                    |
| Haematococcus pluvialis                             | 0                  |          |           |                    |
| Lobomonas pyriformis                                | 0                  |          |           |                    |
| Lobomonas rostrata                                  | +                  |          | +         |                    |
| Polytoma caudatum                                   | +                  | +        |           |                    |
| Polytoma obtusum                                    | 0                  |          |           |                    |
| Polytoma ocellatum                                  | +                  | +        |           |                    |
| Polytoma uvella                                     | 0                  |          |           |                    |
| Polytomella caeca                                   | +                  | +        |           |                    |
| Prototheca zopfii                                   | +                  | +        |           |                    |
| Selenastrum minutum (E. A. George strains)          | 0                  |          |           |                    |
| Selenastrum (minutum ?)                             | +                  | +        |           |                    |
| CHRYSOPHYTA                                         |                    |          |           |                    |
| Amphora perpusilla                                  | +                  |          | +         | Uracil?            |
| Nitzschia closterium f. minutissima                 | 0                  |          |           |                    |
| Nitzschia putrida                                   | 0                  |          |           |                    |
| Ochromonas malhamensis (3 strains)                  | +                  | +        | +         | Biotin + histidine |
| Poteriochromonas stipitata                          | +                  | +        | +         | Biotin + histidine |
| Synura sp.                                          | +                  | ?        | +         | ?                  |
| Syracosphaera carterae                              | +                  | ?        | ?         | - ?                |
| EUGLENOPHYTA                                        |                    |          |           |                    |
| Euglena gracilis vars. typica, bacillaris, urophora | +                  | +        | +         |                    |
| Astasia longa (= klebsii Von Dach)                  | +                  | +        | +         |                    |
| E. gracilis, streptomycin-bleached                  | +                  | +        | +         |                    |
| E. pisciformis                                      | +                  | +        | +         |                    |
| E. viridis, E. stellata                             | +                  | +        | +         |                    |

 Table 5. Incidence of growth-factor requirements in algae. (Table taken from Provasoli and Pintner, 88; see references in 88.)

| Species                          | B1 | B¢ | B <sub>12</sub> | Biotin | Histidine | Uracil | Reduced<br>Sulfur Cmpd. | Unknown<br>Org. Fact. |
|----------------------------------|----|----|-----------------|--------|-----------|--------|-------------------------|-----------------------|
| CHLOROPHYTA                      |    |    |                 |        |           |        |                         |                       |
| Chlamydomonas chlamydogama       |    |    | R               |        | R         |        |                         |                       |
| Chlamydomonas sp.                |    |    | R               |        | n         |        |                         |                       |
| Chlorella sp.                    |    |    |                 |        |           |        |                         | S                     |
| Lobomonas rostrata               |    |    | R               |        |           |        |                         | -                     |
| Coelastrum morus ?               | R  |    |                 |        |           |        |                         |                       |
| Scenedesmus obliquus             |    | S  |                 |        |           |        |                         |                       |
| Scenedesmus quadricauda          |    |    |                 |        |           |        |                         | S                     |
| Selenastrum minutum              | R  |    |                 |        |           |        |                         |                       |
| Stichococcus sp.                 |    |    | R               |        |           |        |                         |                       |
| EUGLENOPHYTA                     |    |    |                 |        |           |        |                         |                       |
| Euglena gracilis                 |    |    | R               |        |           |        |                         |                       |
| var. typica                      | R  |    | R               |        |           |        |                         |                       |
| var. bacillaris                  | R  |    | R               |        |           |        |                         |                       |
| var. urophora                    | R  |    | R               |        |           |        |                         |                       |
| pisciformis                      | R  |    |                 |        |           |        |                         |                       |
| viridis                          | R  |    | R               |        |           |        |                         |                       |
| stellata                         | R  |    | R               |        |           |        |                         |                       |
| CHRYSOPHYTA                      |    |    |                 |        |           |        |                         |                       |
| Achnanthes microcephala          |    |    |                 |        |           |        |                         | S                     |
| Amphora perspusilla              |    | S  | R               |        | ,         | S      |                         |                       |
| Ditylum brightwellii             |    |    |                 |        |           | R      |                         |                       |
| Monochrysis lutheri              | S  |    | R               |        |           |        |                         |                       |
| Navicula pelliculosa             |    |    |                 |        |           |        | R                       |                       |
| Nitzschia acicularis             |    |    |                 |        |           |        |                         | S                     |
| Nitzschia palea ?                |    |    |                 |        |           |        |                         | S                     |
| Prymnesium parvum                | S  |    | R               |        |           |        |                         |                       |
| Skeletonema costatum             |    |    | R               |        |           |        |                         | -                     |
| Syracosphaera carterae           | _  |    | -               |        |           |        |                         | R                     |
| Syracosphaera elongata           | S  |    | R               | _      | _         |        |                         |                       |
| Porteriochromonas stipitata      | R  |    | R               | R      | R         |        |                         |                       |
| PYRROPHYTA                       |    |    |                 |        |           |        |                         |                       |
| Cryptomonas ovata var. palustris |    |    | R               |        |           |        |                         |                       |
| Cyanophora paradoxa              |    |    | R               |        |           |        |                         |                       |
| Gymnodinium splendens            |    |    | R               |        |           |        |                         |                       |
| Gymnodinium sp.                  | -  |    | R               |        |           |        |                         |                       |
| Ochromonas malhamensis           | R  |    | R               | R      | R         |        |                         |                       |
| Paridinium sp.                   | R  |    | R               |        |           |        |                         |                       |
| Synura sp.                       |    |    | R               |        |           |        |                         |                       |

\_

# Table 6. Growth-factor requirements of algae. (Table taken from Saunders, 96; references in Saunders.)

R = required.S = stimulates.

| <del>~~~</del>                                                                                                                                                                                                             |                                |                                  |                  |           |                          |                      |                    |                      |                                           |         |          |                     |           |         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------------------------|------------------|-----------|--------------------------|----------------------|--------------------|----------------------|-------------------------------------------|---------|----------|---------------------|-----------|---------|
| Reacting<br>Organism                                                                                                                                                                                                       |                                |                                  | Chlan            | nydomonas |                          |                      |                    | Chlore               | ella                                      |         |          | Cosma               | rium      |         |
| Culture<br>Filtrate from:                                                                                                                                                                                                  | Achnanthes<br>microcephala     | Ankistrodesmus<br>arcuatus       | globosa '        | moewusii  | reinhardi                | ellipsoidea          | pyrenoidosa        | terricola            | vulgaris                                  | sp.     | botryis  | lundellii           | ochthodes | sp.     |
| Anacystis nidulans<br>Ankistrodesmus arcuatus<br>Chlamydomonas chlamydogama<br>Chlamydomonas reinhardi<br>Chlamydomonas sp.<br>Chlorella ellipsoidea<br>Chlorella terricola<br>Chlorella pyrenoidosa<br>Chlorella yulgaris |                                |                                  | I <b>**(</b> 55) |           | [0%] <sup>*</sup> (87.5) | I*(61.1)             |                    | l*(61.1)             | [5%] *(87.5)<br>I*(61.1)<br>[75%] *(87.5) | S(8.45) |          |                     |           |         |
| Endorina california<br>Endorina cylindrica<br>Endorina elegans<br>Endorina illinoisensis<br>Gonium pectorale<br>Haematococcus pluvialis<br>Mesotaenium caldariorum<br>Microcystis aeruginosa                               |                                |                                  |                  | I*(113.2) | (07.3)                   |                      |                    |                      | A(85.1)<br>S,low conc. (83)<br>I(87.4)    |         |          |                     | N(60.2)   |         |
| Nitzschia palea<br>Nostoc sp.<br>Nostoc punctiforme<br>Raphidonema sempervirens<br>Scenedesmus oahurensis<br>Scenedesmus obliquus<br>Scenedesmus quadricauda<br>Skeletonema costatum                                       | I(60.1)                        | I*(60.1)<br>I*(61.1)<br>I*(61.1) |                  |           | [87%] *(87.5)            | I*(61.1)<br>I*(61.1) | S(50.4)<br>I(50.4) | I*(61.1)<br>I*(61.1) | S(113.9)<br>I*(61.1)<br>I*(61.1)          |         | I(60.05) | I(60.2)<br>I(60.05) | I(60.05)  |         |
| Pandarina charkowiensis<br>Pandarina morum<br>Phormidium uncinatum<br>Platudorina caudata<br>Volvox teruis<br>Volvox globator<br>Volvulina pringsheimii                                                                    | I(60.1)<br>I(60.1)<br>S, young |                                  | .2)              |           |                          |                      |                    |                      |                                           |         |          | I(60.1)             | I(60.1)   | I(60.1) |

# Table 7. Algae affecting other algae. Interactions between algae growth products show inhibition (I), stimulation (S), or no effects (N). Occasionally autoinhibition (A) is indicated.<sup>a</sup>

<sup>a</sup>Those marked with \* were algae grown together while those marked with \*\* were grown together but species were mechanically kept apart. Percent values indicate relative growth compared to control. Numbers in parentheses are references of approximate study.

I = inhibition of normal growth, A = autoinhibition, N = no inhibition, and S = stimulates growth.

.

| Reacting<br>Organism                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | End                              | lorina                                                      |                                           |               | ap Haemat               |           | atococcus                                                                                   |                            |                      | ulosa                | mm                  |                                | Nos           | toc         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------------------------|-------------------------------------------------------------|-------------------------------------------|---------------|-------------------------|-----------|---------------------------------------------------------------------------------------------|----------------------------|----------------------|----------------------|---------------------|--------------------------------|---------------|-------------|
| Culture<br>Filtrate from:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | californica | cylindrica                       | elegans                                                     | illinoisensis                             | Euglena descs | Gonium pectorale        | lacustria | płuvialis                                                                                   | Mesotaenium<br>caldorionum | Micrasterias<br>spp. | Navicula pelliculosa | Nitzschia frustulum | Nitzschia polea                | sp.           | punctiforme |
| Anacystis nidulans<br>Ankistrodesmus arcuatus<br>Chlamydomonas chlamydogama<br>Chlamydomonas reinhardi<br>Chlamydomonas sp.<br>Chlorella ellipsoidea<br>Chlorella terricola<br>Chlorella pyrenoidosa<br>Chlorella pyrenoidosa<br>Chlorella pyrenoidosa<br>Chlorella terricola<br>Chlorella terricola<br>Chlorella terricola<br>Chlorella terricola<br>Chlorella terricola<br>Chlorella terricola<br>Chlorella pyrenoidosa<br>Chlorella terricola<br>Chlorella ellipsoidea<br>Endorina california<br>Endorina elegans<br>Endorina illinoisensis<br>Gonium pectorale<br>Haematococcus pluvialis<br>Mesotaenium caldariorum<br>Microcystis aeruginosa<br>Nitzschia palea<br>Nostoc sp.<br>Nostoc punctiforme<br>Raphidonema sempervirens<br>Scenedesmus obliquus<br>Scenedesmus obliquus<br>Scenedesmus obliquus<br>Scenedesmus obliquus<br>Scenedesmus puadricauda<br>Skeletonema costatum<br>Pandarina charkowiensis<br>Pandarina morum<br>Phormidium uncinatum<br>Platydorina caudata<br>Volvox teruis<br>Volvox globator<br>Volvulina pringsheimii | N(41)       | I(41)<br>N(41)<br>I(41)<br>I(41) | I(41)<br>N(41)<br>I(41)<br>I(41)<br>I(41)<br>I(41)<br>I(41) | I(41)<br>N(41)<br>I(41)<br>I(41)<br>I(41) | I*(60.05)     | I(41)<br>N(41)<br>I(41) |           | [0] *(87.5)<br>[0] *(89.5)<br>\$,1(70.25)<br>[0%] *(87.5)<br>[20%] *(87.5)<br>[20%] *(87.5) |                            |                      | I**(113.2)           | I*(90.5)            | I(50.4)<br>A(25.05)<br>I(50.4) | ы<br>I(113.9) | A(40.2)     |

<sup>a</sup>Those marked with \* were algae grown together while those marked with \*\* were grown together but species were mechanically kept apart. Percent values indicate relative growth compared to control. Numbers in parentheses are references of approximate study.

÷

5

Let in the second se

I = inhibition of normal growth, A = autoinhibition, N = no inhibition, and S = stimulates growth.

× .

| Reactin<br>Organis                                                                                                                                                                                                                                                                                |                                              |                               | Scene      | edesmus                                                    | statum                | Pand                                               | brina                            | Pedia                          | astrum    | cinatum              | lata                                                           | Voh                              | pox                              | heimii                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------|------------|------------------------------------------------------------|-----------------------|----------------------------------------------------|----------------------------------|--------------------------------|-----------|----------------------|----------------------------------------------------------------|----------------------------------|----------------------------------|----------------------------------------------------|
| Culture<br>Filtrate from:                                                                                                                                                                                                                                                                         | Raphidonema<br>sempervirens                  | oahuensis                     | ovalternus | quadricauda                                                | Skeletjonema costatum | charkowiensis                                      | morum                            | bołyanum                       | duplex    | Phormidium uncinatum | Platydorina caudata                                            | ter tiu s                        | globator                         | Volvulina pringsheimii                             |
| Anacystis nidulans<br>Ankistrodesmus arcuatus<br>Chlamydomonas chlamydogam<br>Chlamydomonas reinhardi<br>Chlamydomonas sp.<br>Chlorella elipsoidea<br>Chlorella terricola<br>Chlorella pyrenoidosa<br>Chlorella pyrenoidosa<br>Chlorella pulgaris<br>Endorina california<br>Endorina cylindrica   | I*(61.1)<br>I*(61.1)<br>I*(61.1)<br>I*(61.1) |                               |            | [10%] *(87.5)<br>[12%] *(87.5)<br>S(50.4)<br>[25%] *(87.5) |                       | I(41)<br>I(41)                                     | I(41)<br>I(41)                   |                                | 1*(60.05) |                      | 1 yr 2<br>1                                                    | I(41)<br>I(41)                   | I(41)<br>I(41)                   | I(41)<br>I(41)                                     |
| Endorina elegans<br>Endorina illinoisensis<br>Gonium pectorale<br>Haematococcus pluvialis<br>Mesotaenium caldariorum<br>Microcystis aeruginosa<br>Nitzschia palea<br>Nostoc sp.<br>Nostoc sp.<br>Nostoc punctiforme<br>Raphidonema sempervirens<br>Scenedesmus oahurensis<br>Scenedesmus obliquus | I*(61.1)                                     | N(60.2)                       |            | [38%] *(87.5)<br>N(60.2)<br>S(50.4),I(60.2)                |                       | I(41)<br>I(41)<br>I(41)                            | I(41)<br>I(41)                   | I(60.2)                        |           | N(60.2)<br>I(60.2)   | I(41)                                                          | I(41)<br>I(41)                   | I(41)<br>I(41)<br>I(41)          | I(41)<br>I(41)                                     |
| Scenedėsmus quadricauda<br>Skeletonema costatum<br>Pandarina charkowiensis<br>Pandarina morum<br>Phormidium uncinatum<br>Platydorina caudata<br>Volvox tenuis<br>Volvox globator<br>Volvulina pringsheimii                                                                                        | I*(61.1)                                     | I(60.1)<br>I(60.1)<br>I(60.2) | S(60.1)    | A(50.4)<br>I(60.05),(60.1)                                 | A(61.6)               | N(41)<br>I(41)<br>I(41)<br>I(41)<br>I(41)<br>I(41) | I(41)<br>N(41)<br>I(41)<br>I(41) | I(60.05)<br>N(60.1)<br>I(60.2) |           |                      | culture (50.4)<br>ure (50.4),<br>2)<br>I(41)<br>A(41)<br>I(41) | I(41)<br>I(41)<br>N(41)<br>I(41) | I(41)<br>I(41)<br>N(41)<br>I(41) | I(41)<br>I(41)<br>I(41)<br>I(41)<br>I(41)<br>A(41) |

<sup>a</sup>Those marked with \* were algae grown together while those marked with \*\* were grown together but species were mechanically kept apart. Percent values indicate relative growth compared to control. Numbers in parentheses are references of approximate study.

1.0

Г

I = inhibition of normal growth, A = autoinhibition, N = no inhibition, and S = stimulates growth.

.

# **MATERIALS AND METHODS**

# Review of Techniques for Isolation and Identification of Lake Organic Compounds

Several methods of extracting and identifying the organic compounds were used. They were:

**Concentration or Extraction Methods** 

- 1. Liquid-Liquid Extraction
- 2. Liquid-Solid Extraction
- 3. Freeze-Concentration
- 4. Distillation
- 5. Carbon Adsorption
- 6. Freeze-Drying
- 7. Co-precipitation

#### Identification Techniques

- 1. Infrared Spectroscopy
- 2. Thin-layer Chromatography (TLC)
- 3. Gas Chromatography (GC)
- 4. Gas Chromatography-Mass Spectrometry

These techniques are described in general terms as they were applied to the study. The methods finally selected for the study will be discussed in detail later in this chapter.

#### Liquid-liquid extraction

A widely employed method of separating organic compounds from mixtures in which they are found or produced is that of liquid-liquid extraction. This technique is based upon the principle of phase distribution. It states that a substance in contact with two immiscible liquid layers will be distributed or partitioned between the two immiscible liquids such that the ratio of the concentration in one solvent to the concentration in the second solvent remains constant at a constant temperature. This does not hold true if the substance ionizes or reacts in some way with one of the immiscible solvents.

$$C_{A_{1}} = \text{concentration of A in } S_{1}$$

$$C_{A_{2}} = \text{concentration of A in } S_{2}$$

$$K = \text{Constant} = \frac{C_{A_{1}}}{C_{A_{2}}} \dots \dots \dots \dots (1)$$

The constant K is termed the distribution or partition coefficient. Theoretically, the distribution coefficient is equal to the ratio of the individual solubilities of substance A in pure solvent  $S_1$  and pure solvent  $S_2$ . However, solvent characteristics sometimes slightly affect the value of K since no two liquids are completely immiscible.

In order to secure the best possible extraction, the practical performance of extraction on the distribution law must be determined. For a given total volume of solvent  $S_1$  to be used to separate a substance A from its solution in  $S_2$ , it can be shown that several successive extractions with portions of that volume is more efficient than one extraction with the full volume of solvent. The advantage gained from several successive extractions falls off rapidly. Dividing a given volume of solvent into more than three portions is of little avail. The larger the distribution coefficient (K), the fewer the number of repetitive extractions necessary to separate the solute effectively. It is important to have a low boiling extraction solvent and to keep the volume to a minimum because of the time and other factors involved in evaporation or distillation of the solvent to recover the extracted material.

The simple extraction process is usually carried out in a separatory funnel using several successive, small extraction volumes rather than one large volume. This can be shown to be most effective by the following equation:

Let the volume, V ml, of an aqueous solution containing  $W_0$  grams of the dissolved compound be repeatedly extracted with fresh portions of S ml of an organic solvent, which is immiscible with water:

$$\frac{W_1 / V}{\frac{(W_0 \cdot W_1)}{S}} = K$$

$$\frac{SW_1}{V(W_0 \cdot W_1)} = K$$

$$SW_1 = KVW_0 \cdot KVW_1$$

$$SW_1 + KVW_1 = KVW_0$$

$$W_1 (S + KV) = KVW_0$$

$$W_1 = \frac{KVW_0}{S+KV}$$

This can be shown to be most effective by Equation 2 where a volume V ml of an aqueous solution contains  $W_o$  grams of the solute and is repeatedly extracted with S ml of the organic solvent, which is immiscible with the aqueous phase. Then one obtains:

$$W_n = W_o \left(\frac{KV}{KV+S}\right)^n \dots \dots \dots (2)$$

in which  $W_n$  gives the grams of solute remaining in the aqueous phase after the n<sup>th</sup> extraction (Equation 2 can be easily derived from the distribution coefficient Equation 1). As can be seen from Equation 2, for  $W_n$  to be as small as possible for a given amount of solvent, n should be large and S small.

Frequently, when isolating material from natural sources, the desired compound must be extracted from a very large volume of aqueous solution in which the compound is in very small concentration. The partition coefficient may also be small, i.e., more favorable toward water. In such cases, very large quantities of organic solvent must be employed in order to obtain even a moderate extraction. Further problems include the need to shake manually large volumes in a separatory funnel.

For continuous liquid-liquid extractions the solvent (being vaporized and then condensed) is made to pass either up or down, depending on relative densities, through the aqueous solution containing the desired material. By means of specialized apparatus, the solution of extracting solvent and solute is continuously separated into a boiling flask from the mixture being extracted. The solution is subjected to continuous distillation and the condensed distillate returned as fresh extracting solvent to the extraction boiling flask and reused. In the process, the extracted material is increasing in concentration (provided that it is rather nonvolatile) in the boiling flask; i.e., as the dilute solution is continuously coming into the flask, the solvent is being distilled away. After a period of time (a few hours to several days), the nonvolatile extractable material becomes concentrated. The solvent can be dried using a solid drying agent then filtered and concentrated to a few milliliters by roto-evaporation or distillation. Various analytical methods may then be used for identification.

#### Liquid-solid extraction

For the continuous extraction of a solid by a solvent, the soxhlet extraction is used. The extraction is similar to the liquid-liquid extraction except the solid material is placed in a porous thimble in a chamber with the extracting solvent in a boiling flask below. The solvent is boiled gently; the vapor passes up through a tube, is condensed and the condensed solvent falls into the thimble and slowly fills the chamber of the soxhlet. When the solvent reaches the point of siphoning (soxhlet design) it siphons over into the boiling flask and carries with it that portion of the substance which has been extracted. This process is continued for as long as necessary for effective removal of the desired material. The nonvolatile extracted material may then be isolated from the solvent by any of the usual methods and identified.

#### Freeze concentration

Freeze concentration offers a means of concentrating trace organics in aqueous solution at low temperature which is less likely to alter their chemical composition. Partial freezing of aqueous-organic solutions is expected to produce relatively pure ice crystals with the organic material concentrated in the unfrozen liquid.

At a given temperature, the coefficient  $k_0$  is a measure of the distribution of a solute between the solid or ice phase and the liquid or aqueous phase.

$$k_{o} = C_{I}/C_{I} \qquad \dots \qquad \dots \qquad (3)$$

in which

- $C_{I}$  is the concentration of the solute in the ice phase
- $C_L$  is the concentration of the solute in the aqueous phase

When the solute concentration is very low, k<sub>o</sub> approaches a constant as the equilibrium temperature approaches the melting point of pure ice. If the solute transfer by diffusion across the interface between phases is sufficient to keep the solute ahead of the ice front and no reverse diffusion occurs, solute concentration in the liquid will increase as the freeze rotation process progresses. If a concentration gradient is created by too rapid freezing, solute entrapment in the ice will tend to occur. The extent of entrapment will determine the deviation of the actual or effective coefficient, k, from the distribution coefficient, k<sub>o</sub>. This is an idealized treatment since many factors (electro-, chemical, and mechanical forces) affect or modify the probability of solid inclusion. Thus the theoretical mathematical treatment of the solute movement process inadequately describes the actual process. Too little is known about the effects in real systems with no clear understanding of the chemical and physical principles involved.

Concentration can be accomplished in a 2 liter, round-bottom flask containing 500 ml of aqueous solution rotated while submersed in a mixture of crushed ice and salt ( $\approx$  -12° C). Precooled aqueous solutions and seeded flasks prevent flash freezing. During the rotation process the round-bottom flask is held at  $\approx 45^{\circ}$  angle during the freezing process. The freeze rotation continues until a predetermined volume has been frozen (usually concentrates 10:1). When the desired volume has been frozen (when the 500 ml of liquid has been frozen to the point where  $\approx$  40 ml of liquid remains as determined by elapsed time and judgment), the rotation is stopped and the flask removed. The contents are poured into a graduated cylinder and the ice is washed with sufficient liquid to bring the concentrated volume to 50 ml (10:1 concentration). Analysis of the concentrated liquid can then be made.

To achieve higher organic content in the concentrated liquid, a cascade freezing technique can be performed using freeze rotation. For example, if ten 500 ml samples are reduced to 50 ml each and then composited and again concentrated (500 ml composite sample to 50 ml), a concentration of 100:1 can be obtained. It appears that even greater concentration ratios could be achieved by expanding the cascade sequence. In doing so, extreme care must be used not to introduce carbonaceous impurities which will be concentrated during the cascade sequence.

#### Distillation

The aim of distillation is the separation and purification of a volatile liquid from a non-volatile substance, or, more usually, the separation of two or more liquids of different boiling points. This process consists of vaporizing the liquid by heating and then condensing the vapor in a separate receiver to yield a distillate. There are various methods of distillation depending upon the impurities present and the stability of the material being purified. The simple distillation involves non-volatile impurities which remain in the distillation residue. If volatile impurities are present, a fractional distillation is necessary. The theoretical treatment of fractional distillation requires a knowledge of the relation between the boiling points, or vapor pressures of the mixtures of the volatile liquids and their composition.

For a binary ideal solution (for simplicity) of two volatile components A and B obeying Raoult's Law a rationale for fractional distillation can be developed. Raoult's Law states that

$$P_A = P_A^o X_A$$

i.e., the vapor pressure of a component of a solution

at a given temperature is equal to the vapor pressure of the pure substance  $(P_A^o)$  multiplied by its mole fraction  $(X_A)$  in the solution.

Considering an ideal mixture of A and B and applying Raoult's Law to the two volatile components, we have:

$$P_A = P_A^o X_A$$
 and  $P_B = P_B^o X_B$ 

The total pressure P will be:

$$\mathbf{P} = \mathbf{P}_{\mathbf{A}} + \mathbf{P}_{\mathbf{B}} = \mathbf{P}_{\mathbf{A}}^{\mathbf{O}} \mathbf{X}_{\mathbf{A}} + \mathbf{P}_{\mathbf{B}}^{\mathbf{O}} \mathbf{X}_{\mathbf{B}}$$

The vapor pressures are proportional to the mole fractions in the vapor phase and their composition is given by:

$$X_A^{vap} = \frac{P_A}{P_A + P_B}$$
 and  $X_B^{vap} = \frac{P_B}{P_A + P_B}$ 

The relative concentrations of constituent B in the vapor phase and the liquid phases will be:

$$\frac{X_B^{\text{vap}}}{X_B} = \frac{\frac{P_B}{P_A + P_B}}{\frac{P_B}{P_B^{\circ}}} = \frac{P_B}{P_A + P_B} \cdot \frac{P_B^{\circ}}{P_B}$$

or

$$\frac{X_B^{\text{vap}}}{X_B} = \frac{1}{X_B + \frac{P_A^{\text{o}}}{P_B^{\text{o}}} \cdot X_A} \quad \dots \quad (4)$$

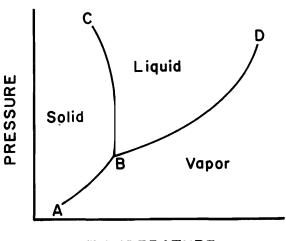
Now if  $P_A^o = P_B^o$ ,  $X_B^{vap}/X_B$  is unity, since in the liquid phase  $X_A + X_B = 1$ . If  $P_B^o > P_A^o$ , the concentration of B will be greater in the vapor phase and if  $P_B^o < P_A^o$ , it will be less. For the case where  $P_B^o > P_A^o$ , the first few drops of distillate would contain a very high concentration of B. This collected fraction could then be (theoretically but impractically) redistilled several times to obtain a pure substance B. Similarly, by collecting the last fraction of each distillation and redistilling in the same stepwise manner, one could obtain a small amount of pure A.

This laborious process of repeated distillations can be eliminated with proper apparatus (fractional distillation column) to accomplish the fractional separation virtually automatically. A fractional distillation apparatus consists of a boiling flask, a fractionating column, a still head (containing thermometer), a condenser and receiver. A quantity of liquid is placed in the boiling flask containing some porous boiling chips and heated. Under ideal conditions at the top of the fractionating column, the vapor phase consists almost entirely of the more volatile component and the liquid phase at the bottom being less rich in the volatile component. If various requirements are met (intimate and extensive contact between the liquid and vapor phases in the column; maintenance of the proper temperature gradient along the column; sufficient column length; and sufficient boiling point differences), the components of the mixture can be separated and purified.

Some mixtures do not behave ideally, and the resultant deviations from Raoult's Law result in a two component system acting similar to the three component system, i.e., the "third component" has a constant boiling point because the vapor in equilibrium with the liquid has the same composition as the liquid itself. This mixture is called an azeotropic mixture. Fractional distillation of such mixtures will not yield both of the components in pure form but only the azeotropic mixture and the component present in excess of the azeotropic composition (numerous alcohols, acetates, acids, and hydrocarbons can form azeotropes with water).

In considering extremely dilute solutions (volatile solute in mg/l or  $\mu$ g/l in aqueous solvent) the ideal situation is not expected. The first few milliliters fractionally distilled will contain a higher concentration of the volatile substances (either fractionated or azeotroped) with additional distillation being only that of the aqueous phase. Thus, for a 500 ml sample 25-50 ml are collected. Additional aqueous collection will only dilute the volatile compounds distilled initially. This initial sample can then be analyzed by gas chromatography or by gas chromatography/mass spectrometry If the volatile organics are less than 100  $\mu$ g/l in the sample collected, cascade distillation may be necessary depending on the gas chromatography response factor of the volatile organic compound in question.

## **Carbon adsorption**


The carbon adsorption method has been used as a standard procedure for the determination of nonvolatile organic contaminants in water. It consists of passing a known volume of water (a few gallons to several thousands) through an activated carbon column, removing and drying the carbon, and eluting the organics from the carbon by sequential extraction with the appropriate solvents. Carbon adsorption has been widely used in the United States. Although the method allows the sampling of large quantities of water with the recovery of workable quantities of organic material, some concern has been expressed that the sorption and desorption is not complete and composition of organic compounds may be altered while they are adsorbed on the carbon. This particular method was not shown to be effective for volatile organic material.

## Freeze-drying

Freeze-drying is based upon the theory of sublimation. Sublimation is the process by which a substance which is a solid under ordinary conditions can be volatilized (without melting) at a certain temperature depending upon the pressure. Usually in the laboratory, purification by sublimation involves vaporizing a solid sample by heating at a temperature below the melting point after which the vapor is condensed (crystallized) directly to the solid state on a cold surface (no intermediate liquid state in either process).

To obtain a better understanding of sublimation it is necessary to look at a typical phase diagram (Figure 2) relating the solid, liquid, and vapor states of a substance with pressure and temperature. The various equilibrium curves are represented by B-D liquid-vapor; B-C solid-liquid; and B-A solidvapor. Point B is known as the triple point where solid, liquid, and vapor co-exist. It is the equilibrium curve B-A between solid and vapor which is of importance for sublimation.

It is clear that if the vapor at a pressure below the triple point is reduced sufficiently in temperature, it will condense directly to the solid form. In order that a solid may pass directly into vapor (without



# TEMPERATURE

Figure 2. Solid-liquid-vapor phase diagram.

liquid formation) the pressure of the vapor must not be allowed to exceed that of the triple point.

For aqueous samples these conditions can be usually met by the use of a freeze-drying apparatus. The aqueous sample is quickly frozen (commercial freezer) and placed in the freeze-dryer. The condensing chamber is at about -55° C and a vacuum of < 10  $\mu$  of Hg is applied. The frozen solution is sublimed (solid-vapor-solid) leaving a residue in the beaker. This residue can then be analyzed and/or extracted according to appropriate analytical procedures. Note: This method of concentration of aqueous samples applies only to components which are relatively non-volatile.

#### **Co-precipitation**

Many metal ions can be precipitated out of solution as their hydroxides. Magnesium, calcium, and iron ions can all be removed in this fashion. The floc that forms may also physically enmesh organic compounds in them as it settles. Some ionic organic forms will chelate with heavy metals and precipitate out of solution (104.2) (see Figure 3).

Two methods were tried in the removal of organics from water: (1) making the solution basic  $(pH \sim 13)$  and (2) adding FeCl<sub>3</sub> to the solution (final concentration about 0.1 M and at pH 8.8) to form organic removing flocs. The first method is reported to concentrate organics by a factor of 2,000, the second method by a factor of 10,000 (50). (Most assuredly the concentration factors depend upon the type and concentration of the cation used for floculation.)

These methods were tried since Hyrum Reservoir is a hard water lake high in  $Mg^{+2}$ ,  $Ca^{+2}$ , and  $CO_3^{=}$ . Furthermore the concentration of these salts

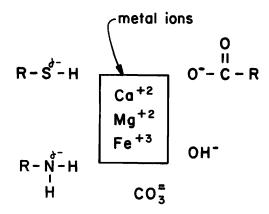



Figure 3. Metal ions interacting with organics and  $CO_3^{=}$  and OH<sup>-</sup> ions.

was increased by a factor of 7, using freeze rotation, making the solution ideal for floc formation. The floc is then separated, made acidic, and extracted with an appropriate solvent for organic compound recovery.

#### Infrared spectroscopy

The spectrum that is usually most easily obtained and that which gives the most information about an organic compound is its infrared spectrum. The interaction of infrared light (5,000 to 500 cm<sup>-1</sup> reciprocal centimeters or wave numbers; wave length  $\mu$  (cm) is also used where  $\mu = 10,000/\text{frequency},$ cm<sup>-1</sup>) with an organic molecule can be explained by the infrared radiation interacting with the constant vibration of the bonds of the organic molecule. These stretch (and contract) and bend with respect to each other. The frequencies of the various vibrations of the molecule correspond to those of infrared radiation; thus absorption of the radiation occurs, producing an increase in the amplitude of the molecular vibrational modes. This energy gained by the molecule in the form of light is soon lost in the form of heat. Thus by plotting the percent transmittance, vs the frequency of the radiation (wave length, cm<sup>-1</sup> or wave number,  $\mu$ ), an infrared spectrum is obtained.

Absorption between  $5,000 \text{ cm}^{-1}$  and  $1250 \text{ cm}^{-1}$ involves vibrational excitation of particular functional groups (i.e., -OH of alcohols  $3,200 - 3,600 \text{ cm}^{-1}$ ; the C=O group of ketones  $1,710 \text{ cm}^{-1}$ ; -C=N group, at  $2,250 \text{ cm}^{-1}$ ; the -CH<sub>3</sub> group at 1,450 and  $1,375 \text{ cm}^{-1}$ ) present in the molecule. This region of the infrared spectrum thus provides much information of the presence or absence of a number of functional groups. The absorption region between 1,250 and  $500 \text{ cm}^{-1}$  (fingerprint region) cannot usually be associated with any particular functional group but is representative of the entire molecule.

In using infrared spectra for identification of organic compounds, characteristic functional group frequencies have been assigned following the examination of many compounds containing that particular group. The ranges have been quite well defined but the precise frequency of the group depends upon its environment within the molecule and on its physical state. Thus, a comprehensive examination of an infrared spectrum can give information as to the presence or absence of characteristic group absorption bands but complementary instrumental analysis is usually necessary for complete compound identification. The sample size required for IR analysis (and complementary instrumentation) is considerable and is of definite concern when only small amounts of the organic compound are available.

## Thin-layer chromatography (TLC)

Chromatography is based upon the selective adsorption of the components of a solution on the active surface of certain finely divided solids. The types of interactions causing adsorption are the same as those that cause attractions between any molecules, i.e., electrostatic attraction, complexation, hydrogen bonding, van der Waal's forces, etc. Thinlaver chromatography involves solid-liquid adsorption chromatography where the solid adsorbent is spread as a thin layer (0.25 mm to 2 mm) on a piece of glass, rigid plastic or aluminum. A small drop of solution is placed on one edge and the plate is placed in a developing chamber containing enough eluting solvent to come to a level just below the spot. The eluting solvent migrates up the plate carrying with it at different rates the components of the mixture. Ideal results give a series of detectable, well separated spots on the plate. Detection of the spots on the thin-layer plate for colored compounds is easy. Other detection methods are ultraviolet light, fluorescent reagents, sulfuric acid followed by charring, iodine, etc., depending on the molecular properties of the spots. Numerous solid adsorbents (silica gel, alumina) and eluting solvents are available to accomplish TLC separations. The more strongly adsorbed the components are on the solid adsorbent the more polar the eluting solvent must be.

Given a set of conditions (adsorbent, solvent, layer thickness, and homogeneity) the retention front,  $R_f$ , (distance traveled by a substance from a starting line to the front (top) of the spot divided by the distance traveled by the solvent) can be determined. The  $R_f$  value (under the specified conditions) is an important property of the compound and may be used to identify it.

This method requires small quantities of sample, is quite rapid, and can be used to determine elutant solvents and adsorbent solids for column chromatography. Larger samples can also be used (preparative thin-layer), then after separation the "spot" can be scraped off the glass plate, extracted from the solid support, and analyzed using analytical instrumentation.

#### Gas chromatography

Basic principles of gas chromatography are the same as extraction techniques and column and thin-layer chromatography, i.e. partitioning. A mixture of volatile components to be separated is vaporized and is carried along a column packed with some adsorbent (i.e., a finely divided substance with a liquid of low volatility adsorbed on the surface or a porous polymer type material) by a stream of inert carrier gas (usually helium or nitrogen), and then

eluted and measured on a detector. The gaseous mixture is called the mobile phase whereas the adsorbent is called the stationary phase. Due to selective phase distribution of the volatile components between the mobile and stationary phases, these components may move through the column at different rates and thus be separated. The physical process in which the distribution of the volatile components between the eluting inert gas and the stationary phase is called partitioning and is analogous to liquid-liquid extraction partition coefficients. The properties of the component mixture and the column packing are important factors affecting the rate at which a compound will move through a column. In general, highly volatile compounds (i.e., low boiling, high vapor pressure, and low molecular weight) will move through the column at a faster rate than one of low volatility. Other interactions are also involved (solubility, hydrogen bonding, electrostatic, etc.).

The time necessary for a given component to pass through the gas chromatograph (injector port to detector) is called the retention time. This retention time is dependent upon: 1) The nature of the column packing; 2) the length of the column; 3) the temperature of the column; 4) the carrier gas flow rate; and is relatively independent of the nature and concentration of other components that may or may not be contained in the mixture. For a given set of conditions (1 through 4), the retention time is a property of the compound that may be used to tentatively identify it. As the nature of the column is of major importance, considerable effort is given to the proper selection of the packing material for the column. It is desirable to use a column which gives good separation with well defined peaks (good resolution) and preferably, peak responses which are non-overlapping, reasonably short retention times, and relatively sharp. Extensive research has been done on column packings and many excellent packings are available from gas chromatography supply houses.

Analytically three kinds of information can be obtained from a chromatogram (detector tracing of peak responses). The simplest is whether the material being tested is pure or a mixture of components. If the chromatogram contains more than one peak, the sample is a mixture of components. Single peak chromatograms should be looked at carefully to insure that the column was capable of separating a possible mixture of different components as it passes through the column.

The second use of the chromatogram is to be able to identify qualitatively the components of the mixture. This can be done by the use of retention indices of the components. As the retention time of the components is a function of the many variables of column, flow and temperature operation, they should be checked with known standards. It is also sometimes necessary to use other means of identification in conjunction with gas chromatography (possibly another column, infrared spectrophotometry, mass spectrometry, etc.) to verify the results.

The third kind of information which can be obtained from the chromatogram is a quantitative analysis of the mixture (provided by the detector rather than the column). If the flow rate remains constant, the peak response of the detector is proportional to the concentration of the component (area under the peak). The peak response is related to an internal or external known standard and thus concentration can be determined.

To help with column selection for good resolution plus short retention times, some retention index systems have been published (Kovats, 52.9; Rohrschneider, 93.2, 93.3; McReynolds, 70.2; Dave, 25.03; Supina, 104.3, 104.4; and Littlewood, 62.8). As each system differs in their methods of column classification, each system will be only briefly described.

The Kovats indices are based by definition on normal paraffins. The value given for each carbon atom in the paraffin is 100, i.e., hexane is equal to 600. This definition applies regardless of the column used, the temperature, or any condition, and is the basis for the entire retention index system. For all other compounds it is extremely important that the conditions (i.e., stationary phase, concentration, support temperature) be specified. The retention time of a compound in question can be determined by running at least three normal paraffins which elute before and after the compound on a particular column with the above conditions specified. More information on retention index determination and greater details of the system are available (Ettre, 27.9; Kovats, 52.9; Supina, 104.4; Littlewood, 62.8).

Rohrshneider constants for column classification are based upon the fact that the polarity of a column depends not only on the column, but also on the substance being analyzed (Rohrschneider, 93.2, 93.3; Supina and Rose, 104.25). The measure of the polarity of a column and a compound is based on a comparison with a nonpolar column (squalene is considered the most nonpolar column available):

$$\Delta I = I_{\text{polar}} - I_{\text{nonpolar}} = ax$$
(squalene)

in which

| $\Delta \mathbf{I}$ | Ħ | a measure of the polarity of a |  |
|---------------------|---|--------------------------------|--|
|                     |   | column and a compound          |  |
| a                   | = | a constant                     |  |
| х                   | = | "column polarity"              |  |

This equation thus gives a comparison of the retention index of a compound on a "polar" column to the retention index of the same compound on a nonpolar (squalene column). To better characterize a column (with more than one compound), Rohrschneider (93.2, 93.3) selected benzene, ethanol, methylethylketone, nitromethane, and pyridine and redefined the  $\Delta I$  equation to:

$$\Delta I = ax + by + cz + du + es$$

By definition, x is equal to the polarity of the columns as far as benzene is concerned, i.e.,  $x = \Delta I/100$  for benzene where a is defined as 100 and similarly for y, z, u, and s being equal to  $\Delta I/100$  for the other individual compounds selected.

The column can thus be characterized by determining the retention indices for the five standard compounds and subtracting them from the retention indices of the five standard compounds as determined on a squalene column. The constants must be determined under identical conditions. The constants can then be used to select and classify stationary phases on the basis of column and compound polarity. The interrelation and uses of the x, y, z, u, and s terms and mathematical derivations are described in greater detail by Rohrschneider (93.2, 93.3), Brown (18.63), Supina and Rose (104.25), Cram and Juvet (23.9).

McReynolds (70.2) greatly increased the utility of the Rohrschneider system by characterizing 25 columns using 68 different compounds. He then selected ten compounds which were found to be most representative for classification of the columns. They are: Benzene (x'), n-butanol (y'), 2-penthanone (z'), nitropropane (u'), pyridine (s'), 2-methyl-2-pentanol (H), 1-iodobutane (J), 2-octyne (K), 1, 4-dioxane (L), and cis-hydrindane (M) with the letter (constant) as assigned by McReynolds to each. McReynolds presented his data as  $\Delta I$  values (when divided by 100, they are similar to Rohrschneider constants). These data are of great value in selecting columns for specific separations, i.e., class separations, such as alcohols from ethers, esters from acids, etc. The columns are not designed for separation according to boiling point or within a class of compounds such as a homologous series. For example, if a column is needed which retards ketones with respect to aromatic or olefinic compounds, then what is needed is a high z' for a given x' value (not necessarily the highest z' but, a rather high z' with respect to x'). The McReynolds constant tables can be used to find the best relative difference of z' > x'. Once this is accomplished, and column selection has been narrowed to two or three columns, other factors such as column stability can then be assessed and a column prepared and tried.

In summary, the Rohrschneider and Mc-Reynolds data have been compared in depth (51.7, 104.4) and it is the consensus of most workers that these constants provide a useful tool for the selection of columns. However, considerable work is needed for better refinement of predicting retention indices.

As our interests involved small molecular weight organic compounds in dilute concentrations  $(ppm \rightarrow ppb)$  which may affect algal dynamics, a column was needed to separate small molecular weight, natural aqueous phase organic compounds produced and utilized within a eutrophic reservoir. With the recent development and advancement of porous polymers (Porapak and Chromosorb Century Series) and their aqueous compatibility, they appeared to be an excellent starting point. The porous polymers also looked attractive because no messy liquid coating would be necessary and thus column bleed problems could be alleviated (note: porous polymers may initially show some column bleed but this can be essentially eliminated by proper column conditioning). From the literature (25.03, 50.2, 104.25) Chromosorb 101, Chromosorb 103, and/or Porapak R or Porapak S appeared to be good columns for use.

Chromosorb 101 is considered a general solidadsorbent useful in separating short chain hydrocarbons, alcohols, fatty acids, esters, aldehydes, ketones, ethers, and glycols. Chromosorb 103 is a polyaromatic porous polymer material developed specifically for separation of amines and other basic compounds. Porapak R and S are porous polymer beads giving sharp, symmetrical peaks with low retention volumes for water, short chain alcohols, ketones, glycols, hydrocarbons, acids, and esters.

All the column materials and analyses were performed on a Model 5750 Hewlett-Packard research chromatograph equipped with both flame ionization and thermal conductivity detectors. The columns used were 6 ft by 1/8 in O.D. stainless steel and 4 ft x 4 mm I.D. glass coils. All columns were packed by inserting a glass wool plug (treated or untreated, depending on column packing material) in one end of the column, applying vacuum to that end, and adding the packing material to the other end of the column with continual vibration (where possible) of the column to facilitate uniform packing. Each column was conditioned at 25°C below the maximum recommended temperature for 12 hours with a flow of 30 ml helium/min (effluent end not connected to detector while conditioning). After conditioning, the column (detector end) was repacked (vacuum and vibration) and reconditioned a second time if necessary.

The various operating conditions of the gas chromatograph can be found listed in Table 8.

#### Gas chromatography-mass spectrometry

Recent progress has been made toward a simple and fast method of analysis of an unaltered water sample. A study of direct aqueous injection into a gas chromatograph-mass spectrometry system is currently underway (EPA, Finnigan Corp., personal communication). This method involves gas chromatography coupled with a mass spectrometer as detector and a computer system for analysis of output data.

A mass spectrometer bombards a substance with an energetic electron beam which ionizes and breaks up the substance into fragments. Each kind of ion has a particular ratio of mass to charge, or M/e value (most ions have a charge of 1 so the M/e is simply the mass of the ion). A signal is obtained for each value of M/e which represents the relative abundance of the ion producing the response (signal intensity). The largest peak (base peak) is considered to be 100 and all other peaks are expressed relative to it. A plot (relative intensity vs. M/e) showing the various values is called a mass spectrum and is highly characteristic of a particular compound. The mass spectrum helps to establish the structure of an unknown compound by: (1) Giving the exact molecular weight (molecular ion, only one electron removed from parent molecule), (2) giving a molecular formula (or the choice of a few), and (3) indicating some specific molecular structural units.

If an unknown compound is subjected to mass spectral analysis and is found to be identical to a spectrum of a previously reported known compound, then it can be concluded that the two compounds are identical.

Analyzing a mass spectrum can be tedious and difficult. Computer program capabilities have been expanded to analyze the various M/e values and their relative abundances and compare them to knowns in their storage banks. This field of computer data handling is rapidly expanding and has certainly increased the ease of interpretation of mass spectral results.

Routine direct aqueous GC/MS/computer analysis of organic components offers instant analysis. Since laborious and time consuming pretreatment and concentration is not required, a relatively large number of samples can be processed in a short amount of time and at a relatively low unit cost. However compounds must be suitable for gas chromatographic analysis; most low molecular weight compounds are suitable. As our facility does not have one of these instruments (high initial cost of \$100,000) samples have been sent to other laboratories for analysis (Appendix B and C).

# Sampling

Water samples were collected from a eutrophic reservoir subject to agricultural and cattle feedlot runoffs but not subjected to industrial wastes. The reservoir was Hyrum Reservoir, Hyrum, Utah, located about 12 miles from the Utah Water Research Laboratory. The water samples were collected in 9 liter glass bottles which had been acid (HCl) washed, rinsed in deionized, distilled water, and rinsed again at the sampling site with the water to be collected; the jugs were capped with a rubber stopper covered with aluminum foil. The bottles were used only for this purpose to avoid possible laboratory contamination with other organic compounds.

The samples were taken from the surface off a small dock located at the boat launching ramps of the Hyrum State Park at the reservoir; during the winter, holes were cut in the ice with an ax but the same sample site was used. The influent (Little Bear River) was also sampled to assure the organics were produced in the lake and not added to it. The samples were immediately (25 minutes) brought back to the laboratory for processing.

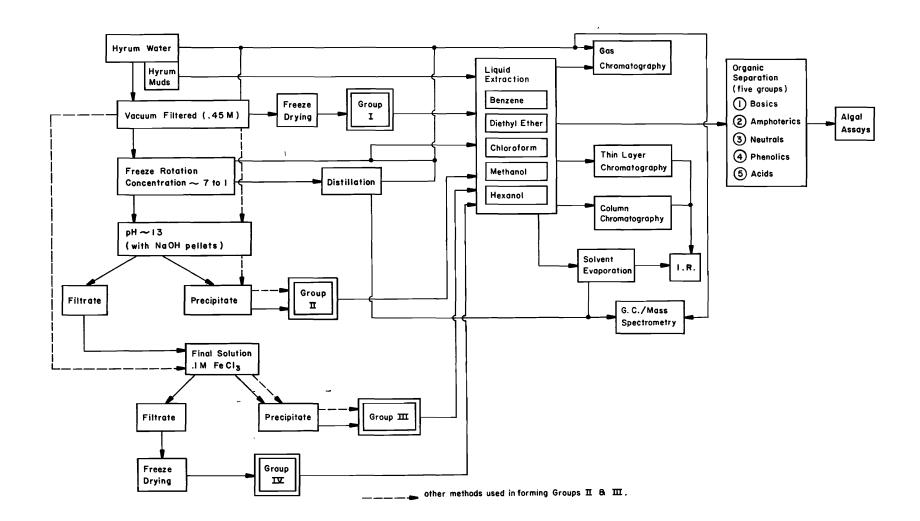
# Sample Processing

The water samples were filtered to remove particulate matter and thus, principally, dissolved organic matter was studied. The filters were glass fiber (Whatman GF/C) which had been prewashed with hot and then cold water and then prerinsed with the sample water before use in accordance with Cahn (18.9) to remove detergents. Distilled, deionized water was used with all processes to serve as a control to insure that all compounds isolated were not a product of the laboratory equipment or processes used.

Then, as shown in Figure 4, a sample of the filtered water was frozen and freeze dried; this fraction was called Group I. Another sample of the filtered water was taken and concentrated about 7 to 1 by freeze rotation, made basic (pH  $\sim$  13, with NaOH pellets) and the precipitate collected (Group II). To the filtrate was added an equal volume of 0.2M FeCl<sub>2</sub>, the pH was adjusted to 8.8 with HCl for maximum Fe(OH)<sub>3</sub> formation and the precipitate was collected (Group III). The filtrate was frozen and then freeze dried; the powder collected was called Group IV. Group II was also formed by adding NaOH pellets to filtered unconcentrated Hyrum water and Group III was also formed by adding FeCl, (saturation) to both unconcentrated and concentrated Hyrum water.

The percent organic carbon in each group was determined by standard methods using combustion-

infrared and by chemical oxygen demand (COD) measurements. These four groups were treated separately using liquid extraction to extract their organic compounds, the solvent was evaporated (totally or in part) and the solution or residue was subjected to analysis (gas chromatography, mass spectroscopy, infrared, thin layer or column chromatography).


Some methods (18.4) of rudimentary organic separation were also tried on water from Hyrum Reservoir. By using various solvents and pH's five general groups of organic compounds were separated (basics, amphoterics, neutrals, phenolics, and acids). These grouped organics were then applied to Selenastrum capricornutum to study these effects (see Figure 4). Small quantities of crystals were formed in all five groups using water from Hyrum Reservoir in the late spring (May 1974) however within two weeks the compounds were no longer present in large enough quantities to handle in this manner and the method was terminated. No effects of the compounds (groups) was observed on the growth of Selenastrum capricornutum in the small amounts applied.

Liquid-solid extraction was also tried, extracting mud from the bottom of Hyrum Reservoir with benzene. Some yellow color was imparted in the benzene from the mud; however, the experiment was terminated in favor of following more active reservoir compounds instead of the sediment compounds which would have less interaction with the phytoplankton.

Besides trying to: (1) Bind or precipitate the organics out of solution (co-precipitation or carbon adsorption), (2) to partition the organic in some organic solvent (extraction), or (3) to remove the water (freeze drying or freeze concentrating), we also tried distillation of the organics. It was found that by using cascade freeze concentration followed by cascade distillation, the organics could be concentrated sufficiently for identification by gas chromatography and GC/MS. Identification with standards using the gas chromatograph alone was more time consuming than using the GC/MS/ computer system for identification.

In sample handling, sample concentration and sample storage, numerous problems were encountered. Due to the volatility of the components being measured and the possibility of them being degraded, it was necessary to proceed with analysis immediately after bringing the samples to the laboratory.

This is a special problem when algal blooms occur and a new compound is observed. The



1.1

.

Figure 4. Processing of Hyrum water for the separation and identification of organic compounds found there.

30

identification procedure must be completed quickly because the compound may not survive storage and may not appear until the next year when the bloom occurs again. Even with refrigerated storage at 4°C, specific compounds can change or be lost or degraded over a short period of time.

Sample degradation also likely occurred when samples were sent to outside laboratories for analysis. Thus, compounds identified by the GC/MS were confirmed as present in Hyrum Reservoir only when immediate analysis on the Utah Water Research Laboratory gas chromatograph confirmed their presence.

#### **Bioassay Material**

Six low molecular weight compounds were identified to be present at Hyrum Reservoir (acetaldehyde, methanol, ethanol, 2-propanol, acetone, and propanal). Using redistilled reagent grade reagents, five of the six compounds were administered at varying concentrations and under conditions in accordance with EPA's Algal Assay Procedures/Bottle Test (27.8). Acetaldehyde was omitted because it only appeared once in the reservoir and then only in a trace amount (less than 0.1 ppm). The algae used were: (1) Selenastrum capricornutum (EPA), (2) Chlamydomonas reinhardi and Navicula pelliculosa (Indiana University Culture Collection), and (3) Nitzchia sp., and Scenedesmus sp., mixed culture, (4) Chlorella sp. and (5) Kuchneriella sp. (3, 4, and 5 were isolated from Hyrum Reservoir). Growth response was measured with cell counts or on a Bausch and Lomb Spectronic 70, at 750 nm wave length and using 1 cm cells.

The bioassays were conducted using test algae grown in Bristols solution (except Selenastrum capricornutum which was grown in NAAM) and parameters of response were,  $\mu$ , specific growth rate, batch, and, X, cell population in optimal density units for a 1 cm cell at 750 nm (measured at a specific time, t). The specific growth rate was determined as the maximum measured growth rate during the growth curve where

$$\mu = \frac{1}{\Delta t} \ln \left( \frac{X_n}{X_{n-1}} \right)$$

Under the bioassay conditions growth had usually ceased by the 10th to 14th day.

\_ .

# **RESULTS AND DISCUSSION**

# Algal Dynamics at Hyrum Reservoir

The algal community at Hyrum Reservoir was observed over a period of three years. Twenty-nine genera of algae were identified and counted in numbers throughout the water column for the first two years (May 1972 - May 1974; see Drury et al., 27.002). During the last year (September 1974 through April 1975) chlorophyll a was determined (36.4) and algal population observations were made but no counts were made.

During all three years, some regular cycles were noted as follows: (1) The appearance of a heavy blue-green (Aphanizomenon) bloom in the late summer, (2) an increase in the population of Stephanodiscus (large sp.) following the decline of the blue-green bloom, (3) a heavy winter population of Stephanodiscus (small sp.) terminating with spring turnover.

Some genera, such as *Chlamydomonas*, appeared all year (Figure 5), only changing in their number from season to season. Figure 6 shows that the *Aphanizomenon sp.* bloom of 1973 was about 10 times the bloom of 1972; notice also the changes in the populations of *Chlamydomonas* (Figure 5) and the two species of *Stephanodiscus sp.* from 1972 to 1973.

During 1973 when the Aphanizomenon bloom increased, there was a decrease in the population of *Chlamy domonas* and the winter species of *Stephanodiscus* (small sp.); the population of the large *Stephanodiscus sp.* increased. It was further observed that at the times of the Aphanizomenon blooms, other genera (greens and diatoms) decreased in population, some to undetectable numbers.

It was noteworthy that on August 14, 1972, no *Kirchneriella* were observed in the water column (1 through 19 meters); however, 16 days later the population was at 12,300 cell/ml, in the top meter of water and 14 days later, again, no *Kirchneriella* was observed in the water column nor did it reappear.

Since organic compounds may play a role in the changing algal population, organic compounds in Hyrum Reservoir were identified and their concentrations monitored as the algal population changed during the year 1974.

# Identification and Separations of Hyrum Reservoir Organics

# Gas chromatography

The most successful method of identification and monitoring organics at Hyrum was the use of gas chromatography. Upon initial gas chromatography work (direct aqueous injection onto a 6 ft x 1/8 in Porapak S stainless steel column), it was necessary to identify at least one peak in the chromatogram to obtain data sufficient to identify the other peaks present (using retention indices). A sample was run on a Hewlett-Packard GC(7620)/MS(5930A)/Data System(5933A) (Material Science Department, University of Utah, Salt Lake City) and a Finnigan 3300 GC/MS with a 6100 data system (Finnigan Corp., Sunnyvale, California) but the concentration was insufficient for any peak identification.

Distillation and freeze rotation techniques were used to concentrate (by 100 to 200 times) the sample and then the sample was analyzed again. The most concentrated peak (largest peak area, 45 mm from injection) was identified as acetone according to the computer search of the mass spectral data system (see Appendices B and C). From Dave's (25.03) work, acetone has a retention index of 475 on Porapak S (80/100 mesh at 225°C, 4 ft by 3 mm ID glass column). By selecting compounds with retention indices sufficiently different than acetone (both more than and less than), the retention indices of other peaks in the chromatogram could be quantified.

For example, Figure 7 shows a chromatogram of seven peaks with the largest peak at 45 mm from injection (chart speed at 0.25 in/min) being identified as acetone. Since methanol has the lowest retention index (345) on Porapak S (25.03), an aqueous sample of methanol ( $\approx 5 \,\mu$ l MeOH/l H<sub>2</sub>O) was analyzed on the same column. The aqueous methanol peak appeared at 17 mm from injection and appeared to be the same as the initial organic peak observed in Figure 7. This "tentative" peak identification was then confirmed by analysis of the same sample on a different column under different conditions. The second analysis also gave additional information about the peak between the methanol peak and the acetone peak. The peak between the two appeared 34 mm after injection. Thus an approximate retention index was calculated.

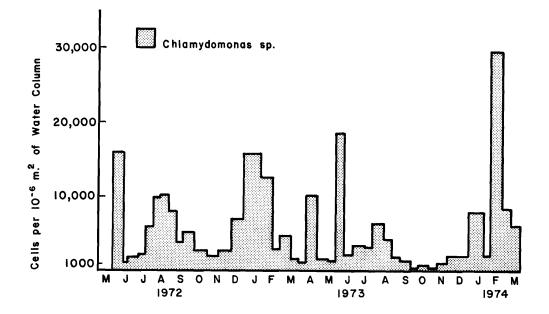



Figure 5. Non-cycling (always present) genera of algae at Hyrum Reservoir.

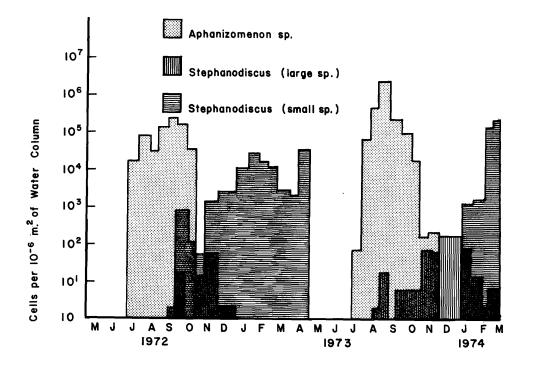



Figure 6. Regular cycling of algae at Hyrum Reservoir.

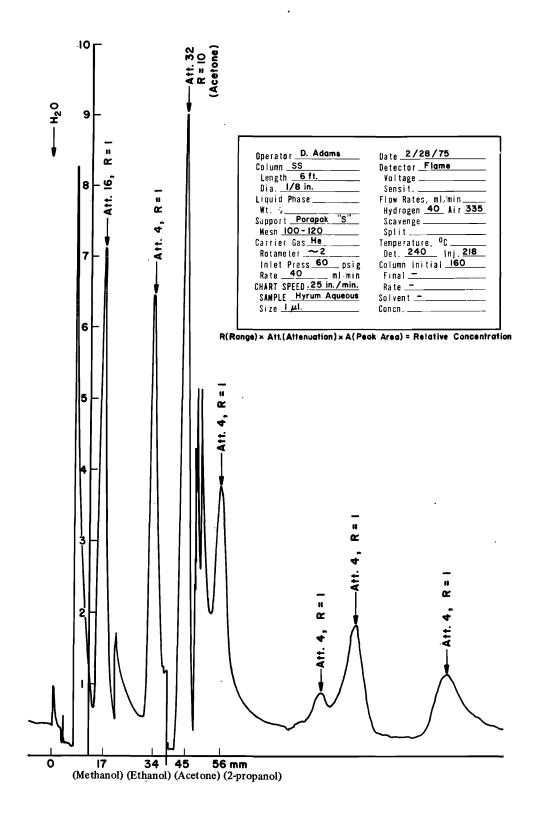



Figure 7. Typical gas chromatogram (concentrated sample) of volatile organic compounds found in Hyrum Reservoir.

| Acetone        | 45 mm | 475      |      |
|----------------|-------|----------|------|
| Unknown        | 34 mm | ?        |      |
| Methanol       | 17 mm | 345      |      |
| Acetone 45     |       | Acetone  | 475  |
| Methanol -17 m | m     | Methanol | -345 |
| 28 m           | m     |          | 130  |

or 130 units/28 mm = 4.64 units/mm

The unknown was 11 mm less than acetone thus the approximate retention index was:

475 - 11 mm x 4.64 units/mm = 475 - 51 = 424

Using Dave's table (25.03), the following compounds were seen to have similar retention indices:

| Ethanol      | 415 |
|--------------|-----|
| Acetaldehyde | 375 |
| Acetonitrile | 465 |
| Nitromethane | 420 |

Ethanol and nitromethane were the closest to the approximate calculated value. Then pure compounds were run in aqueous solution under the same conditions to identify the peak. Acetaldehyde appeared almost identical to the methanol peak and nitromethane had a larger retention time than acetone. Acetonitrile gave a peak at 40 mm after injection with ethanol appearing at 34 mm as did the unknown peak. It was then necessary to confirm this on another column.

This is basically the method used for peak identification and also the use of GC/MS identification when practical. Thus, the compounds identified in Table 8 were verified on two or three columns under different conditions using redistilled organic knowns in aqueous solution at approximately the same concentrations as seen in Hyrum Reservoir.

#### **Rotational freeze concentrating**

Figure 8a shows a gas chromatograph of a synthetic water-volatile organic compound mixture (the mixture contained  $10 \ \mu \ l/l$  of each of the 5 organic compounds) before freeze concentration and Figure 8b shows the concentrations of the organics in the ice residue (the remainder of the organics are contained in the unfrozen water). The recovery of the organics by rotational freeze concentrating ranged between 82 and 99 percent (Table 9), as analyzed by gas chromatography.

#### Distillation

Another successful method of concentrating the organics is by distillation of the filtered water (Figure 9). Thus, 99.9 percent of the organics studied could be recovered by distilling 13 percent of the original volume of sample. This yields a concentration factor of seven; however, by using several large volumes (cascade distillation), concentration factors of 100 to 1000 were achieved as determined by gas chromatography.

# Freeze drying, thin layer chromatography, and infrared spectroscopy

Although the best results were achieved by rotational freezing and distillation some success was achieved through the use of freeze drying and preparative thin layer chromatography.

On July 8, 1974, a heavy Asterionella sp. population was observed and 10.9 liters of Hyrum water were collected, filtered, and rotational freeze concentrated to 1.3 liters. The pH was adjusted to 13 with NaOH pellets and the precipitate (1.22 grams) was collected (Group II in Figure 3). The precipitate was determined to be 0.35 percent organic carbon (by combustion-infrared analysis); 0.5929 grams of the precipitate was taken and added to 20 ml of 5 percent HCl. This solution was extracted (liquidliquid) with 1.5 liters of hexanol (redistilled) for three days.

The 1.5 liters of hexanol were evaporated in a hood down to 10 ml. This was applied to the base of a preparative thin layer chromatography plate  $(Al_2 O_3)$ . The plate was developed with a 1:1 methanol, benzene and observed with UV light to have five bands. The third band (most intense) was removed from the plate and extracted with hexanol. The hexanol was evaporated and the residue was placed in a desiccator for further drying. The residue was a tacky liquid-like substance, yellow-green in color and with a characteristic odor. The infrared spectrum (using NaCl plates) of the "unknown liquid" indicated -OH or -NH stretching absorption at 3350 cm<sup>-1</sup>, and a broad band at 1080 cm<sup>-1</sup> (characteristic of an alcohol), -C-H stretching absorption at 2855 cm<sup>-1</sup> and 2910 cm<sup>-1</sup> (methyl-methylene groups) and -C-H bending vibrations at 1450 cm<sup>-</sup> and 1370 cm<sup>-1</sup> (Figure 10). The compound isolated had the infrared characteristics of a primary alcohol, but insufficient information could be described from the spectrum to identify the compound. Further identity was not achieved.

To the filtrate of the solution which formed Group II above, an equal volume of  $0.2 \text{ M FeCl}_3$  was added, and the resulting precipitate was collected (Group III). Some of the material from Group III (0.5847 grams) was taken and added to 20 ml of 5 percent HCl and the solution extracted for five days with 1.5 liters of chloroform. Then the chloroform was evaporated in a hood down to 10 ml. This was spotted on an Al<sub>2</sub>O<sub>3</sub> neutral preparative thin layer plate and using a developed using glacial acetic acid. Three bands were observed under UV light. The top

| Compounds<br>Identified | Column 1 &<br>Conditions         | Relative<br>Retention<br>(mm) <sup>a</sup> | Column 2 & Conditions                                              | Relative<br>Retention<br>(mm) <sup>a</sup> | Column 3 &<br>Conditions                                                | Relative<br>Retention<br>(mm) <sup>a</sup> | GC/MS         |
|-------------------------|----------------------------------|--------------------------------------------|--------------------------------------------------------------------|--------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------|---------------|
| Methanol                | Porapak S<br>Isothermal<br>160°C | 17.0                                       | Porapak S<br>Temperature<br>Programmed<br>88°C - 128°C<br>@ 6°/min | 58.0                                       | 4% FFAP on<br>Chromosorb WHF<br>40°C                                    | 34.0                                       | -             |
| Acetaldehyde            | Porapak S<br>Isothermal<br>160°C | 17.2                                       | Porapak S<br>Temperature<br>Programmed<br>88°C - 128°C<br>@ 6°/min | 53.0                                       | 3.0 4% FFAP on<br>Chromosorb WHP<br>40°C                                |                                            |               |
| Ethanol                 | Porapak S<br>Isothermal          | 34.0                                       |                                                                    |                                            | 4% FFAP on<br>Chromosorb WHP<br>40°C                                    | 39.0                                       | App. B        |
| Propanal                | Porapak S<br>Isothermal<br>160°C | 40.6                                       | Porapak R<br>Isothermal<br>160°C                                   | 51.0                                       | Chromosorb 103<br>Temperature<br>Programmed<br>90° - 135°C<br>@ 6°C/min | 41.5                                       | -             |
| Acetone                 | Porapak S<br>Isothermal<br>160°C | <sup>-</sup> 45.0                          | Porapak R<br>Isothermal<br>160°C                                   | 57.0                                       | Chromosorb 101<br>Temperature<br>Programmed<br>90° - 140°C<br>@ 6°C/min | 41.5                                       | App. B<br>& C |
| 2-propanol              | Porapak S<br>Isothermal<br>160°C | 57.0                                       |                                                                    |                                            | Chromosorb 103<br>Temperature<br>Programmed<br>100 - 140°C<br>@ 4°C/min | 60.0                                       | -             |

 Table 8. Compound identification and verification of methanol, acetaldehyde, ethanol, 2-propanol, acetone, and propanal from aqueous Hyrum Reservoir samples.

<sup>a</sup>Measured from injection with chart speed of 0.25 in/min with a carrier flow of 30 ml/min helium, using Hamilton syringes for 1  $\mu$ l injections. The flame detector gases were set at 40 ml/min and 335 ml/min for hydrogen and air, respectively.

Table 9. Percent organics recovered by rotational freeze concentrating.

| Concentration |          |         | % Recovered |          |            |
|---------------|----------|---------|-------------|----------|------------|
| Factor        | Methanol | Ethanol | Acetone     | Propanal | 2-Propanol |
| 1/22          | 87       | 92      | 82          | 92       | 87         |
| 1/17          | 90       | 97      | 91          | 96       | 96         |
| 1/11          | 93       | 99      | 92          | 95       | 99         |

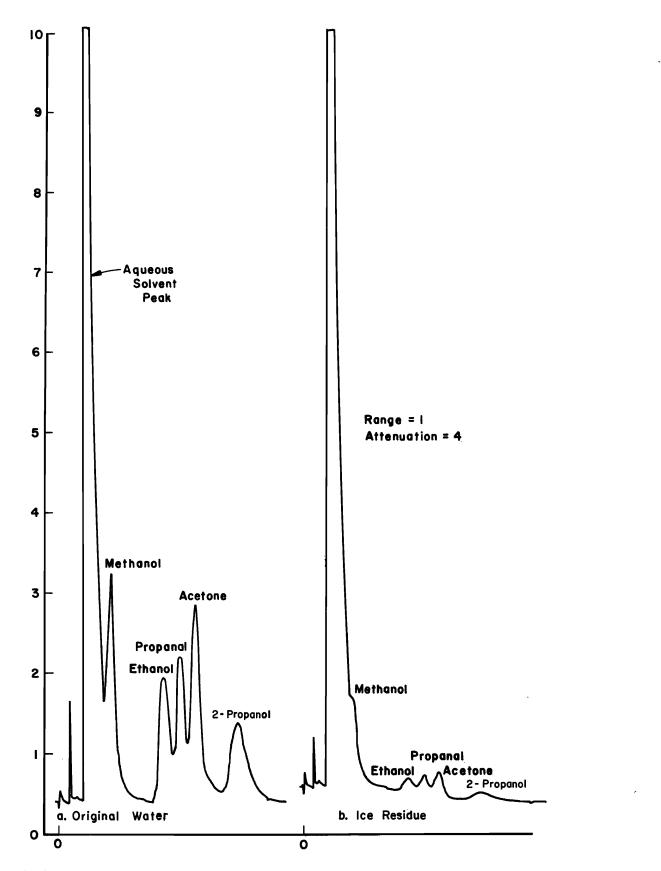



Figure 8. a) Concentration of organics before rotational freeze concentrating and b) Organics left in the ice after freeze concentrating

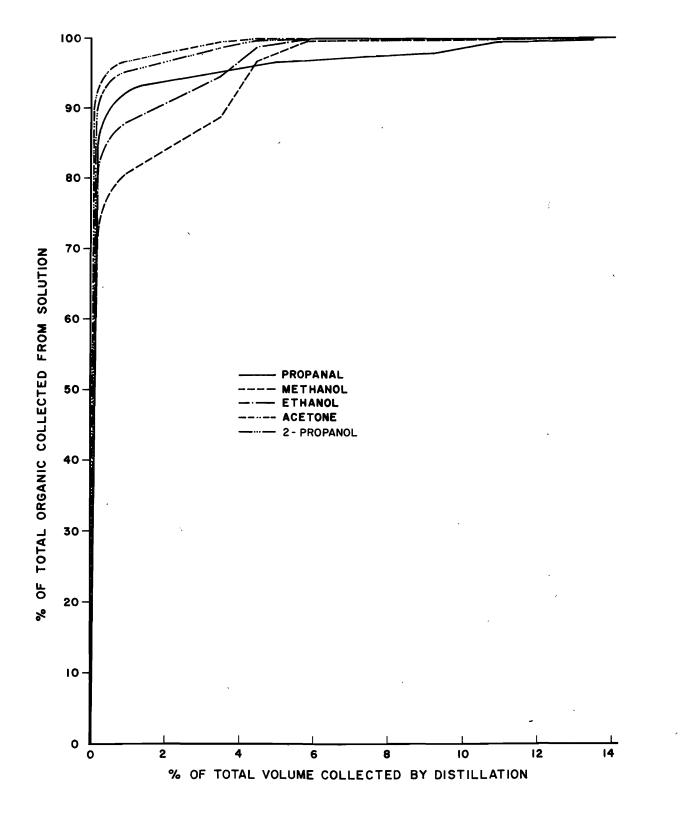



Figure 9. Percent recovery of organic compounds concentrating by distillation.

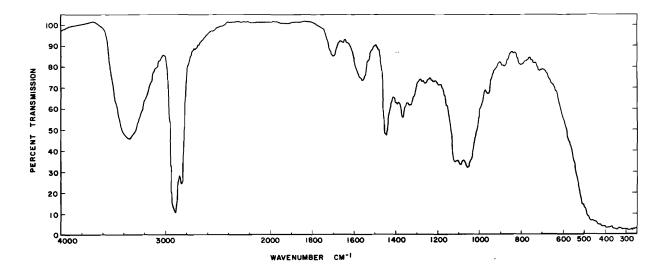



Figure 10. Infrared spectrum of an unknown from Group II separation (see Figure 3 for group identification).

band was collected and placed on a chromatographic column 9 mm in diameter and 23 cm long, containing  $Al_2O_3$  (neutral) powder. Benzene was run through the column and collected (two 50 ml proportions). Then two proportions of ethanol were run through and collected. The second fraction of ethanol was evaporated and the residue placed in a desiccator. The residue was a tacky liquid-like, yellowish compound with a characteristic odor.

The infrared spectrum (using NaCl plates) of unknown compound indicated a methylthe methylene type of absorption (infrared absorption at  $2820 \text{ cm}^{-1}$ ,  $2880 \text{ cm}^{-1}$ ,  $2910 \text{ cm}^{-1}$ , and  $1425 \text{ cm}^{-1}$ ; Figure 11). The band at 1700 cm<sup>-1</sup> would usually indicate carbonyl absorption but it was not particularly strong. Since there was no characteristic absorption for an aldehyde  $-\ddot{C}$ -H at  $\approx 2700 \text{ cm}^{-1}$ a ketone carbonyl was a possible choice. Considering the relative intensities of the absorption bands and the absence of aromatic, nitrile, sulfur, and amine type absorption bands, the compound (from the IR spectrum alone) would appear to be a moderately sized ketone. Further information from other methods of analysis would be necessary to establish the chemical structure. Infrared spectra were obtained for all groups (I - IV) having been extracted by benzene, diethyl ether, chloroform, methanol, and hexanol (see Figure 4). Figures 10 and 11 report the best spectra obtained.

All liquid reagents used were distilled; distilled water was used as a control blank which was carried through the entire process from extraction to the running of the IR. These results showed that the compounds identified were not derived from laboratory contamination but were, in fact, from the waters of Hyrum Reservoir.

# Temporal Variations in Organics at Hyrum

Using both rotational freeze concentrating and micro-distillation for separation and concentration and then analyzing the known organics using a gas chromatograph, the substances, methanol, ethanol, propanal, acetone, and 2-propanol were monitored at Hyrum Reservoir (Figure 12 and listed in Table 10). The highest concentrations of organic compounds were measured on September 4 and September 19, 1974. During this period the methanol concentration decreased and the acetone and ethanol increased. The values for those dates are high (order of magnitude) in comparison with total organic carbon measurements made in previous years. It was also noted that ethanol increases before the heavy populations of Stephanodiscus (large sp.), Asterionella sp., and Stephanodiscus (small sp.) (Figures 12 and 13) were observed. This highest concentration of organics seemed to coincide with the Aphanizomenon sp. bloom and to slightly precede the development of high concentration of Stephanodiscus sp. (large).

There is little question that such factors as light, temperature, pH, nutrients, and seasonal variations play important roles in the succession of algae at Hyrum. However, organic compounds appear to be

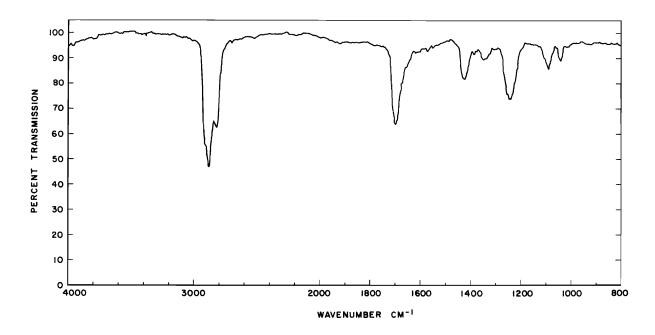



Figure 11. Infrared spectrum of unknown compound from Group III separation (see Figure 3 for group identification).

|          | Methanol | Ethanol | Propanal | Acetone | 2-propanol | Acetaldehyde |
|----------|----------|---------|----------|---------|------------|--------------|
| Sept. 4  | 38.5     | 0.8     | 1.3      | 6.1     | X          |              |
| Sept. 19 | 6.1      | 22.2    | Х        | 34.5    |            | Х            |
| Oct. 1   | Х        | 0.6     | 0.5      | 0.8     |            |              |
| Oct. 11  | Х        | 0.2     | Х        | 1.3     |            |              |
| Oct. 24  | Х        | 3.2     | 0.5      | 2.2     |            |              |
| Oct. 31  |          | 1.1     | Х        | 1.0     |            |              |
| Nov. 7   |          | Х       | Х        | 0.3     |            |              |
| Nov. 13  |          | 0.5     |          | 0.8     |            |              |
| Nov. 16  | 0.1      | Х       | Х        | 1.0     | Х          |              |
| Nov. 23  | 0.9      | Х       | 0.6      | 3.1     | Х          |              |
| Nov. 29  | Х        |         | 1.0      | 1.8     |            |              |
| Dec. 12  | Х        |         | 1.0      | 0.8     |            |              |
| Dec. 23  |          |         | 0.5      | 0.8     |            |              |
| Dec. 30  |          |         | Х        | 0.8     |            |              |
| Jan. 9   |          |         |          | 0.7     |            |              |
| Jan. 16  | 0.3      | Х       | 0.3      | 0.3     |            |              |
| Jan. 30  | 0.2      | Х       | Х        | 0.3     |            |              |
| Feb. 12  | 0.2      | 0.2     | 0.2      | 0.2     |            |              |
| Feb. 22  | 0.3      | 0.5     | 0.3      | 0.8     |            |              |
| Mar. 1   | Х        | Х       | Х        | 0.08    |            |              |
| Mar. 11  | Х        |         | 0.2      | 0.07    |            |              |
| Apr. 2   | Х        |         | 0.1      | 0.04    |            |              |

Table 10. Organic compounds (mg/l) found at Hyrum Reservoir. X = trace amount present.

.

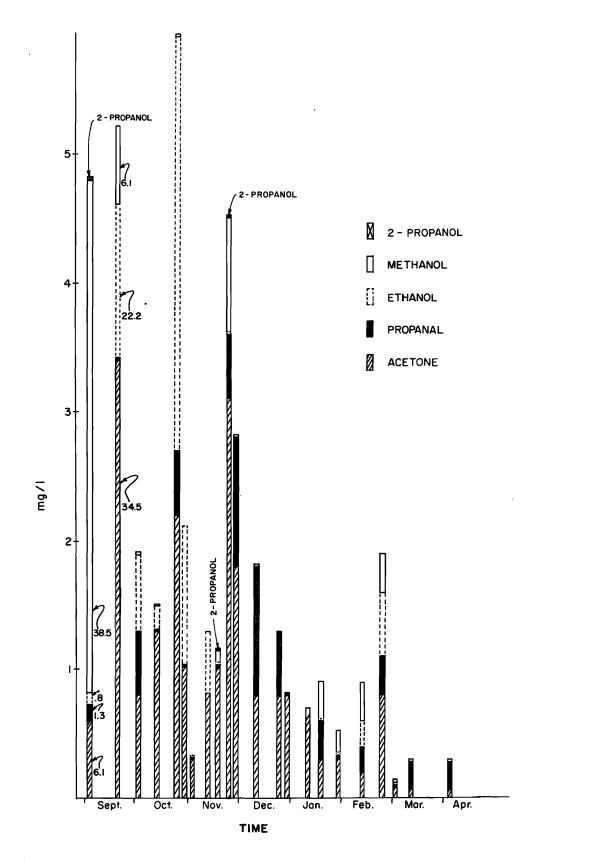



Figure 12. Concentrations of organic compounds found in Hyrum Reservoir between September 4, 1974 and April 2, 1975.

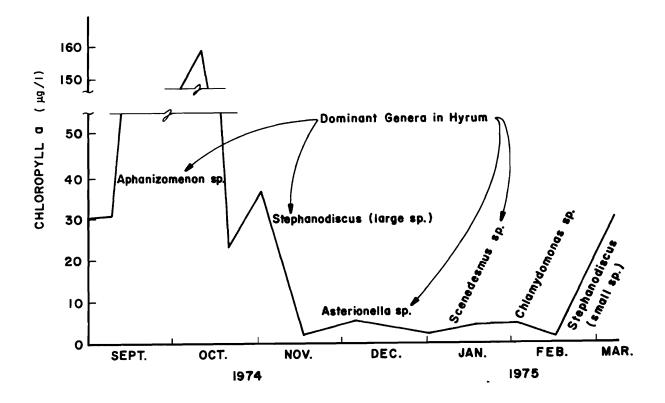



Figure 13. Dominant algal populations observed at Hyrum Reservoir, September 1974 through March 1975.

associated with blooms and undoubtedly play some role and from a control point of view, perhaps, a very important role. A possible example of organic interactions was noted in early 1975 at Hyrum Reservoir. From Figure 13, in late January and early February an increase in the population of Chlamydomonas sp. was observed. From Table 7 (algae affecting other algae) it was noted that Chlamvdomonas reinhardi strongly inhibited the growth of Scenedesmus quadricauda. Since Scenedesmus sp. was observed in heavy numbers in January, it was predicted that this population would decrease as the Chlamydomonas sp. increased; indeed this was the observation (Figure 13). Further it was observed at this time (February 1975) that the concentrations of ethanol, propanal, and acetone increased in the reservoir. Since the population of Chlamydomonas sp. was also increasing at this time (Figure 10), it was suspected that Chlamydomonas sp. was the source of these compounds (Table 6).

# Bioassays on Hyrum Reservoir Organics (Effect of Organic Compounds)

Five of the six organic compounds found to be present at Hyrum Reservoir were applied to different

algae to study their effects. All algae tested were found to be native to Hyrum Reservoir except for *Selenastrum capricornutum*. This is the standard test alga for EPA's bottle test (27.8). Acetaldehyde was only found once in Hyrum at very low (trace) concentrations and was not bioassayed.

#### The effects of ethanol

Ethanol stopped the growth of Selenastrum capricornutum at high levels (75 to 7,500 mg/l) (Table 11); ethanol increased the growth rate and net growth of *Chlamydomonas reinhardi* (Table 12); ethanol decreased the growth rate of *Chlorella sp.* while increasing its net growth (Table 13); thus ethanol apparently created conditions where the alga (*Chlorella sp.*) grew slower but for a longer growth period. Ethanol increased the growth rate and net growth of *Navicula pelliculla*.

# The effects of methanol

Methanol prevented the growth of *Selenastrum* capricornutum (Table 11) at 7,900 mg/l, while the growth rate and the net growth of *Chlorella sp.* (Table 13) increased in the concentration range from 0.8 to 80 mg/l. The growth rate of *Kircheriella sp.* was decreased at 80 mg/l (Table 14).

| -                                                               |                            | : Selenastrum                        | n capricorni                              | utum                                      |                                              |                                                    |                                                    |                                              |                                                    |                                                    |                                              |                                                    |                                                    |  |
|-----------------------------------------------------------------|----------------------------|--------------------------------------|-------------------------------------------|-------------------------------------------|----------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------|----------------------------------------------------|----------------------------------------------------|--|
| Experiment<br>Number:<br>/<br>Initial Concen-<br>tration (mg/l) |                            |                                      | 1                                         |                                           |                                              | 2                                                  |                                                    |                                              | 3                                                  |                                                    |                                              | 4                                                  |                                                    |  |
|                                                                 |                            | µ, days <sup>-1</sup>                | X <sub>10.9</sub><br>days                 | X <sub>12.08</sub><br>days                | μ, days <sup>-1</sup>                        | X <sub>10.9</sub><br>days                          | X <sub>16.5</sub><br>days                          | μ, days <sup>-1</sup>                        | X <sub>10.9</sub><br>days                          | X <sub>16.5</sub><br>days                          | $\mu$ , days <sup>-1</sup>                   | X <sub>10.9</sub><br>days                          | X <sub>16.5</sub><br>days                          |  |
| Controls                                                        | I<br>II<br>IV<br>V         | 0.68<br>1.25                         | 0.230<br>0.310                            | 0.272<br>0.323                            | 0.90<br>1.04<br>1.08<br>1.21<br>1.25         | 0.426<br>0.416<br>0.389<br>0.416<br>0.388          | 0.470<br>0.481<br>0.499<br>0.465<br>0.460          | (# se                                        | rved as cont                                       | rol)                                               | (# se                                        | rved as cont                                       | rol)                                               |  |
| Methanol<br>80<br>4,00<br>7,90                                  | 00                         | 1.02<br>1.18<br>1.24<br>0.80<br>N    | 0.190<br>0.300<br>0.215<br>0.175<br>N     | 0.185<br>0.345<br>0.241<br>0.178<br>N     | 1.13<br>1.04<br>1.15<br>1.01<br>1.16<br>1.02 | 0.382<br>0.400<br>0.395<br>0.384<br>0.417<br>0.389 | 0.431<br>0.468<br>0.450<br>0.455<br>0.471<br>0.443 | 0.99<br>1.10<br>0.99<br>1.11<br>1.10<br>1.25 | 0.410<br>0.407<br>0.397<br>0.384<br>0.422<br>0.389 | 0.494<br>0.480<br>0.450<br>0.439<br>0.480<br>0.442 | 1.02<br>1.13<br>1.18<br>1.18<br>1.08<br>1.14 | 0.402<br>0.417<br>0.417<br>0.420<br>0.412<br>0.365 | 0.462<br>0.480<br>0.474<br>0.472<br>0.465<br>0.416 |  |
| Ethanol<br>7<br>7,5,0                                           | .08<br>.8<br>8<br>75<br>00 | 1.02<br>1.05<br>0.97<br>N<br>N       | 0.250<br>0.260<br>0.200<br>N<br>N         | 0.288<br>0.282<br>0.215<br>N<br>N         | 0.65<br>1.61<br>1.11<br>1.13                 | 0.406<br>0.417<br>0.415<br>0.426                   | 0.481<br>0.478<br>0.450<br>0.488                   | 0.81<br>0.95<br>1.36<br>1.03                 | 0.408<br>0.407<br>0.405<br>0.442                   | 0.490<br>0.467<br>0.472<br>0.486                   | 1.40<br>1.03<br>1.41<br>1.03                 | 0.414<br>0.395<br>0.414<br>0.427                   | 0.471<br>0.450<br>0.456<br>0.475                   |  |
| Acetone<br>7,9<br>40,0                                          |                            | 0.94<br>1.33<br>1.14<br>1.19<br>0.91 | 0.235<br>0.330<br>0.275<br>0.252<br>0.105 | 0.272<br>0.352<br>0.285<br>0.272<br>0.142 | 0.83<br>0.61<br>0.89<br>0.65<br>0.70<br>N    | 0.419<br>0.402<br>0.422<br>0.411<br>0.348<br>N     | 0.469<br>0.470<br>0.491<br>0.469<br>0.412<br>N     | 0.76<br>0.81<br>0.93<br>0.86<br>0.67<br>N    | 0.409<br>0.426<br>0.413<br>0.424<br>0.318<br>N     | 0.469<br>0.493<br>0.480<br>0.469<br>0.380<br>N     | 0.89<br>0.85<br>0.86<br>0.82<br>0.49<br>N    | 0.398<br>0.412<br>0.422<br>0.413<br>0.318<br>N     | 0.460<br>0.470<br>0.487<br>0.485<br>0.381<br>N     |  |

1 · i

1

Table 11. Effects of methanol, ethanol, and acetone on the growth Selenastrum capricornutum (NAAM medium).

•

t.

`

| Organism Tested: 0                | Chlamydomonas reini          | hardi                            |                                  |                            |                           |                            |                           |
|-----------------------------------|------------------------------|----------------------------------|----------------------------------|----------------------------|---------------------------|----------------------------|---------------------------|
| Experiment<br>Number:             |                              | 5                                |                                  | 6                          |                           | 7                          |                           |
| Initial Concen-<br>tration (mg/l) | $\mu$ , days <sup>-1</sup>   | X <sub>10.9</sub><br>days        | X <sub>17.6</sub><br>days        | $\mu$ , days <sup>-1</sup> | X <sub>10.9</sub><br>days | $\mu$ , days <sup>-1</sup> | X <sub>10.9</sub><br>days |
| Control I<br>II                   | 0.55<br>0.37                 | 0.360<br>0.445                   | 0.505<br>0.585                   | 0.30<br>0.31               | 0.413<br>0.400            | 0.67<br>0.96               | 0.418<br>0.393            |
| Methanol .08<br>.8<br>8<br>80     | 0.47<br>0.34<br>0.50<br>0.26 | 0.380<br>0.380<br>0.410<br>0.325 | 0.505<br>0.590<br>0.590<br>0.519 |                            |                           |                            |                           |
| Ethan ol .08<br>.8<br>8<br>40     | 0.72<br>0.65<br>0.41<br>0.30 | 0.330<br>0.330<br>0.370<br>0.370 | 0.608<br>0.525<br>0.522<br>0.505 |                            |                           |                            |                           |
| Propanal .8<br>8<br>80            |                              |                                  |                                  | 0.27<br>0.39<br>0.05       | 0.358<br>0.387<br>0.023   | 0.89<br>0.97<br>1.57       | 0.395<br>0.488<br>0.030   |
| Acetone .08<br>.8<br>8<br>79      | 0.43<br>0.70<br>0.46<br>0.74 | 0.400<br>0.460<br>0.390<br>0.510 | 0.500<br>0.625<br>0.555<br>0.705 |                            |                           |                            |                           |
| 2-propanol .8<br>8<br>79          |                              |                                  |                                  | 0.28<br>0.32<br>0.26       | 0.450<br>0.428<br>0.475   | 0.44<br>0.65<br>0.54       | 0.375<br>0.404<br>0.370   |

Table 12. Growth of Chlamydomonas reinhardi subject to varying organic compounds and concentrations (Bristols Medium).

、

| Organism Tested:                   | Chioreita sp.         |                           |                           |                       |                           |                            |                           |                            |                           |  |
|------------------------------------|-----------------------|---------------------------|---------------------------|-----------------------|---------------------------|----------------------------|---------------------------|----------------------------|---------------------------|--|
| Experiment<br>Number:              |                       | 8                         |                           | , !                   | 9                         | 1                          | 0                         | 11                         |                           |  |
| Initial Concen-<br>tration (mg/l)  | μ, days <sup>-1</sup> | X <sub>10.9</sub><br>days | X <sub>20.5</sub><br>days | μ, days <sup>-1</sup> | X <sub>10.9</sub><br>days | $\mu$ , days <sup>-1</sup> | X <sub>10.9</sub><br>days | $\mu$ , days <sup>-1</sup> | X <sub>10.9</sub><br>days |  |
| Control I<br>II                    | 0.53<br>0.33          | 0.099<br>0.063            | 0.450<br>0.447            | 0.66<br>0.54          | 0.318<br>0.373            | 0.53<br>0.47               | 0.135<br>0.140            | 0.38                       | 0.164                     |  |
| Methanol .08<br>.8<br>8<br>80      | 0.39<br>0.54<br>0.68  | 0.092<br>0.072<br>0.195   | 0.475<br>0.550<br>0.715.  |                       |                           |                            |                           |                            |                           |  |
| Ethanol .08<br>.8<br>8<br>40<br>75 | 0.61<br>0.45<br>0.33  | 0.041<br>0.105<br>0.125   | 0.362<br>0.538<br>0.760   |                       |                           |                            |                           |                            |                           |  |
| Propanal .8<br>8<br>80             |                       |                           |                           | 0.61<br>0.67<br>0.83  | 0.393<br>0.400<br>0.263   | 0.89<br>1.15<br>0.27       | 0.162<br>0.103<br>0.049   |                            |                           |  |
| Acetone .08<br>.8<br>8<br>79       | 0.21<br>0.48<br>0.58  | 0.103<br>0.076<br>0.115   | 0.275<br>0.538<br>0.690   |                       |                           |                            | ,                         |                            |                           |  |
| 2-propanol<br>.8<br>8<br>79        |                       |                           |                           |                       |                           |                            |                           | 0.46<br>0.56<br>0.55       | 0.130<br>0.158<br>0.140   |  |

-

Table 13. Growth of Chlorella sp. subject to varying organic compounds and concentrations (Bristols Medium).

× 1

| Organism Teste                        | ed: | Sce                          | enedesmus s                      | p. & Nitzsch                     | <i>nia sp.</i> mixed |                           | Nav                   | vicula pellici            | ula                       | Ki                           | rchneriella s                    | p.                               |  |
|---------------------------------------|-----|------------------------------|----------------------------------|----------------------------------|----------------------|---------------------------|-----------------------|---------------------------|---------------------------|------------------------------|----------------------------------|----------------------------------|--|
| Experiment<br>Number:                 |     | 12                           |                                  |                                  | 13                   | }                         |                       | 14                        |                           |                              | 15                               |                                  |  |
| Initial Concen-<br>tration (mg/l)     |     | μ, days <sup>-1</sup>        | X <sub>10.9</sub><br>days        | X <sub>13.9</sub><br>days        | µ, days⁻¹            | X <sub>10.9</sub><br>days | μ, days <sup>-1</sup> | X <sub>10.9</sub><br>days | X <sub>18.4</sub><br>days | μ, days <sup>-1</sup>        | X <sub>10.9</sub><br>days        | X <sub>13.9</sub><br>days        |  |
| Control I<br>II<br>III                |     | 1.04<br>0.96                 | 0.255<br>0.235                   | 0.310<br>0.292                   | 0.50<br>0.65<br>0.37 | 0.178<br>0.140<br>0.103   | 0.40<br>0.42          | 0.109                     | 0.161<br>0.160            | 1.02                         | 0.180                            | 0.231                            |  |
| Methanol .08<br>.8<br>8<br>80<br>800  | 3   | 1.02<br>1.00<br>0.83<br>0.36 | 0.250<br>0.230<br>0.235<br>0.078 | 0.218<br>0.272<br>0.268<br>0.110 |                      |                           | 0.48<br>0.84<br>0.52  | 0.081<br>0.065<br>0.310   | 0.164<br>0.144<br>0.318   | 1.05<br>1.28<br>1.17<br>0.45 | 0.260<br>0.240<br>0.325<br>0.190 | 0.318<br>0.338<br>0.343<br>0.252 |  |
| Ethanol .08<br>.8<br>8<br>40<br>79    | 3   | 0.79<br>1.20<br>0.82<br>1.72 | 0.215<br>0.240<br>0.215<br>0.105 | 0.283<br>0.285<br>0.242<br>0.168 | 0.38<br>0.31<br>0.30 | 0.136<br>0.142<br>0.316   | 0.45<br>0.47<br>0.52  | 0.069<br>0.068<br>0.128   | 0.126<br>0.113<br>0.198   | 1.16<br>1.11<br>1.39<br>0.80 | 0.162<br>0.240<br>0.290<br>0.165 | 0.212<br>0.331<br>0.357<br>0.235 |  |
| Propanal .8<br>8<br>80                | ı   |                              |                                  |                                  | 0.57<br>0.42<br>0.86 | 0.190<br>0.196<br>0.030   |                       |                           |                           |                              |                                  |                                  |  |
| Acetone .08<br>.8<br>8<br>79<br>7,900 | 8   | 1.03<br>1.10<br>0.96<br>1.16 | 0.215<br>0.225<br>0.370<br>0.240 | 0.272<br>0.285<br>0.369<br>0.285 |                      |                           | 0.44<br>0.56<br>0.68  | 0.065<br>0.103<br>0.208   | 0.113<br>0.193<br>0.256   | 1.34<br>1.41<br>1.11<br>2.23 | 0.250<br>0.205<br>0.235<br>0.390 | 0.318<br>0.325<br>0.332<br>0.368 |  |
| 2-propanol<br>.08<br>8<br>79          | 8   | _                            |                                  |                                  | 0.52<br>0.45<br>0.46 | 0.140<br>0.140<br>0.270   |                       |                           |                           |                              |                                  |                                  |  |

t

1 · ·

•

Table 14. Growth of algal bioassays for specific organic compounds (Bristols Medium).

1

# Table 15. Generalized responses of algae to organic compounds.

|                                          | · · · · · ·           | · · · · · · · · · · · · · · · · · · ·                              |                                                          | _           |                 |                         |
|------------------------------------------|-----------------------|--------------------------------------------------------------------|----------------------------------------------------------|-------------|-----------------|-------------------------|
| Organism                                 | Parameter<br>Measured | 0.1<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | <sup>I.0</sup> I 0.000,000,000,000,000,000,000,000,000,0 | Propanal    | O000<br>Acetone | 0 - 0 8<br>2-propanol   |
| Selenastrum capricornutum                | μ<br>                 | N                                                                  | • N•<br>• N•<br>• D•                                     |             | •N ·•D•         |                         |
| Chlamydomonas reinhardi                  | μ<br>Χ                | N N                                                                | ■                                                        | •           | • N•            | • N•                    |
| Chlorella sp.                            | μ<br>X                |                                                                    | •D••• I -•                                               | ◆ I → → D → | • N • • I •     | • N•                    |
| Navicula pellicula                       | μ<br>Χ                | ← <sub>N</sub> + I +                                               |                                                          |             | •               |                         |
| Kirchneriella sp.                        | μ<br>Χ                |                                                                    | ╾ा╺┿╖┥<br>╺Ň┿I┿Ň┥                                        |             |                 |                         |
| Scenedesmus sp.<br>Nitzschia sp. (mixed) | μ<br>Χ                |                                                                    |                                                          | • N • I •   | • N•            | • N -• <br>• N -• • I • |

1.0

1

I = increase over control

D = decrease over control

N = no change over control  $\mu$  = growth rate (days<sup>-1</sup>) X = cell population (O.D.)

、 

# The effects of acetone

Acetone inhibited the growth of *S. capricornu*tum at 40,000 mg/l and increased the growth rate and net growth at 79 mg/l for *Chlorella sp. Chlorella* had a decreased growth rate and net growth at 0.8 mg/l. *Navicula pelliculla* and *Kirchneriella sp.* both showed increased growth rates and net growths for acetone concentrations up to 79 mg/l.

## The effects of propanal

Propanal inhibited the normal growth of *Chlamydomonas reinhardi*, *Chlorella sp.*, and a mixed culture of *Scenedesmus sp.*, and *Nitzschia sp.* all at 80 mg/l.

# The effects of 2-propanol

2-propanol showed no effect at the levels tested (0.8 - 79 mg/l) and on the algae considered (*Chlamydomonas reinhardi, Chlorella sp.*, and a mixed culture of *Scenedesmus sp.* and *Nitzschia sp.*).

# Natural Sources of the Observed Compounds

Bacteria free cultures (grown in the laboratory) of *Chlamydomonas reinhardi* were shown to produce ethanol, propanal, and acetone; therefore *Chlamydomonas sp.* is one suspected source at Hyrum for the production of these compounds. Several species of *Chlamydomonas* are known to produce organic compounds (glycollic, oxalic, and keto acids, also a polysaccharide, reference 8.5).

Acetone and acetaldehyde have been mentioned early as being produced internally by Synura petersenii, a taste and odor producing alga (23). Acetone, ethanol, and 2-propanal are all products of fermentation but the exact sources of the compounds at Hyrum is still pending further study; methanol is of special interest because it is not apparently a common natural product.

Methanol and ethanol have been observed as products of bacteria action on dying *Aphanizomenon* and are believed to be the chief source of these compounds as they feast on the crashing bloom mats of *Aphanizomenon* in the fall. Later as the organic matter settles to the bottom further fermentation takes place. Acetone concentrations were always higher in the bottom interstitial mud water than in the lakes.

t

--

·

-

# CONCLUSIONS

Because much of this work was exploratory and the work is continuing the following conclusions are largely tentative.

Six organic compounds were found to be

present in Hyrum Reservoir: Methanol, ethanol,

propanal, and acetone were found throughout

the period of study, acetaldehyde and

2-propanol were only found in trace amounts

on isolated occasions. Approximate maximum

concentrations were: Methanol, 40 mg/l;

1.

3.

observed (ethanol, propanal, and acetone). Bacterial action is suggested as a possible source for the compounds; methanol, ethanol, and acetone.

- The compounds observed may not affect the organisms studied at the levels found in the lake; however, subtle effects of stimulation and/or inhibition may be indicated. The development of blooms or decreases in 4.
  - populations of specific organisms may be indicated by the presence of specific compounds (ethanol, methanol, acetone).
- ethanol, 20 mg/l; propanal, 1 mg/l; acetone, 35 mg/l; 2-propanol and acetaldehyde, trace. The compounds were produced in the reservoir 2. since they were not found to be present in the reservoir influent. Chlamydomonas may be a producer of at least three of the six compounds
- 5. The results indicate that at high concentrations (> 8,000 mg/l), the compounds were toxic to Selenastrum capricornutum being effective in decreasing order, ethanol, methanol, and acetone. Toxicity was apparently species specific.

.

# n de la construcción de la constru Construcción de la construcción de l Construcción de la construcción de l

1

-

#### REFERENCES

- 1. Aaronson, S., and G. Ardois. Selective inhibition of blue-green algal growth by ethionine and other amino acid analogs. J. Phycol. 7:18-20, 1971.
- 1.1 Aaronson, S., and S. Scher. Effect of aminotriazole and streptomycin on multiplication and pigment production of photosynthestic microorganisms. J. Protozool 7(2):156-158, 1960.
- 1.2 Aaronson, S., B. DeAngelis, O. Frank, and H. Baker. Secretion of vitamins and amino acids into the environment by *Ochromonas Danica*. J. Phycol. 7:215-218, 1971.
- 2. Adams, Donald D., and Francis A. Richards. Dissolved organic matter in an anoxic fjord with special reference to the presence of mercaptans. Deep Sea Research 15:471-481, 1968.
- 2.5 Aleyev, B. S. Secretion of organic substances by algae into the surrounding medium. Mikrobiologie [Moscow] 3:506-508, 1934.
- 3. Algeus, Sven. The deamination of glycocoll by green algae. Physiologia Plantarum 1:382, 1948.
- 4. Algeus, Sven. The utilization of glycocoll by Chlorella vulgaris. Physiologia Plantarum 1:236, 1948.
- 4.1 Algeus, S. Glycocoll as a source of nitrogen for Scenedesmus obliquus. Physiologia Plantarum 1:65-84, 1948.
- 5. Algeus, Sven. Alanine as a source of nitrogen for green algae. Physiologia Plantarum 2:266, 1949.
- 6. Algeus, Sven. Further studies on the utilization of aspartic acid, succinamide, and asparagine by green algae. Physiologia Plantarum 3:370, 1950.
- 7. Algeus, Sven. Note on the utilization of glutamine by *Scenedesmus obliquus*. Physiologia Plantarum 4:459, 1951.
- 8. Algeus, Sven. Effect of pyridoxine on growth of *Scenedesmus obliquus*. Physiologia Plantarum 4:449, 1951.
- 8.4 Allen, Harold L. Primary productivity, chemoorganotrophy, and nutritional interactions of epiphytic algae and bacteria on macophytes in the littoral of a lake. Ecol. Mono. 41(2):97-127, 1971.
- 8.43 Allen, M. B. The cultivation of myxophyceae. Arch. Mikrobiol 17:34-53, 1952.

- 8.45 Allen, M. B. General features of algal growth in sewage oxidation ponds. Calif. State Water Pollution Control Board, Publ. No. 13, pp. 1-48, 1955.
- Allen, M. B. Excretion of organic compounds by *Chlamydomonas*. Archiv fur Mikrobiologie, Bd. 24(5):163-168, 1956.
- 8.6 Allen, S. C., R. H. Paul, and R. G. Mayhan. Organic desorption from carbon. I. A critical look at desorption of unknown organic materials from carbon. Water Research 5:3, 1971.
- 9. Amin, J. M., and S. V. Ganapati. Biochemical changes in oxidation ponds. Journal of Water Pollution Control Federation Vol. 44, No. 2, 1972.
- 10. Antia, N. J., and E. Bilinski. A bacterial-toxin type of phospholipase (leathinase C) in a marine phytoplanktonic Chrysomonad. Jour. Fish. Res. Bd., Canada 24(1):201, 1967.
- 10.5 APHA, AWWA, and WPCF. Standard methods for the examination of water and wastewater. 13th edition. American Public Health Association, Washington, D.C. 1971.
- 11. Ar nold, Dean E. Ingestion, assimilation, survival, and reproduction by *Daphnia pulex* fed seven species of blue-green algae. Limnol. and Oceano. 16:906, 1971.
- 11.1 Ashworth, C. T., and M. R. Mason. Observations on the pathological changes produced by a toxic substance in the blue green alga *Microcystis aeruginosa*. Amer. Jour. Path. 22:369, 1946.
- 11.15 Baker, R. A. Trace organic contaminant concentration by freezing-II: Inorganic aqueous solutions. Water Research 1:97, 1967.
- 11.17 Baker, R. A. Trace organic contaminant concentration by freezing-I: Low inorganic aqueous solutions. Water Research 1:61, 1967.
- 11.2 Baker, R. A. Microorganic matter in water. Symposium, ASTM Special Technical Publication No. 448, American Society for Testing and Materials, 1968.
- 11.22 Barry, J. M., and Elizabeth Ichihara. Biosynthesis of Gramicidin-S. Nature 181:1274, 1958.
- 11.23 Bartsch, Alfred F. Algae in relation to oxidation processes in natural waters. In: The Ecology of Algae, Special Publication No. 2, Pymatuning Laboratory of Field Biology, University of Pittsburgh, Edited by C. A. Tryon, Jr., and R. T. Hartman.

- 11.25 Beckwith, T. R. Metabolic studies upon certain Chlorellas and allied forms. UCLA, Publ. Biol. Sci. 1:1-34, 1933.
- 12. Bell, Wayne, and Ralph Mitchell. Chematactio and growth responses of marine bacteria to algal extracellular products. The Biological Bulletin, Vol. 143, No. 2, 1972.
- 12.3 Bellar, T. A., and J. J. Lichtenberg. The determination of volatile organic compounds at  $\mu$  g/l level in water by gas chromatography. EPA-670/4-74-009, 1974.
- 12.4 Belly, R. T., M. R. Tansey, and T. D. Brock. Algal excretion of <sup>14</sup>C-labeled compounds and microbial interactions in *Cyanidium coldarium* mats. Jour. Phycol. 9:123-127, 1973.
- 13. Benedict, R. G., and F. H. Stadola. Effect of various factors on the production of polymyxin. Annals New York Acad. Science 51:866, 1949.
- 14. Berns, Donald S., Peter Holoho, and Edith Scott. Urease activity in blue-green algae. Science 152(3725):1077, 1966.
- 15. Berland, B. R., D. J. Bonin, and S. Y. Maestrini. Are some bacteria toxic for marine algae? Marine Biol. Vol. 12, No. 3, 1972.
- 15.1 Beyerinck, M. W. Cultwiversuche mit zoochlorellen. Lachengonidien und neideren algen. Bot. Zeits 48:724-768, 781-785, 1890.
- 15.2 Birge, E., and C. Tuday. Organic content of lake water. U.S. Bur. Fish., Bull. 42:185-205, 1926.
- 16. Bishop, C. T., F. L. J. Anet, and P. R. Gorham. Isolation and identification of the fast-death factor in *Microcystis aeruginosa* NRC-1. Can. Jour. Biochem. Physiol. 37:453, 1959.
- 17. Bishop, C. T., G. A. Adams, and E. O. Hughes. A polysaccharide from the blue-green alga, *Anabaena cylindrica*. Can. Jour. of Chemistry, Vol. 32, No. 11, November 1954.
- 17.2 Biswas, B. B. A polysaccharide from Nostoc muscorum. Sci. and Culture 22:696-697, 1957.
- 18. Bold, Harold C., and Bruce C. Parker. Some supplementary attributes in the classification of *Chlorococcum* species. Archiv fur Mikrobiologie 42:267, 1962.
- 18.4 Braus, Harry, et al. Organic chemical compounds in raw and filtered surface water. Analytical Chemistry 23(8):1160, August 1951.
- 18.5 Brian, P. W. The production of antibiotics by micro-organisms in relation to biological equilibria in soil. Soc. for Exp. Biology No. III, p. 357, 1949.
- 18.6 Bristol-Roach, B. M. On the relation of certain soil algae to some soluble organic compounds. Ann. Bot. 40:149-201, 1926.

- 18.61 Bristol-Roach, B. M. On the influence of light and of glucose on the growth of a soil alga. Ann. Bot. 42:317-345, 1928.
- 18.63 Brown, I. The role of the stationary phase in gas chromatography. J. Chromatog 10:284, 1963.
- 18.65 Burnham, A. K., G. V. Calder, J. S. Fritz, G. A. Junk, H. J. Svec, and R. Vick. Trace organics in water: Their isolation and identification. Jour. American Water Works Association 722, 1973.
- 18.7 Byers, B. R., and C. E. Lankford. Regulation of synthesis of 2,3-dihydioxybenzoic acid in *Bacilhus subtilis* by iron and a biological secondary hydroxamate. Biochim. Biophys. Acta 165:563-566, 1968.
- 18.9 Cahn, Robert D. Detergents in membrane filters. Science 155:195, January 1967.
- Calkins, Vincent P. Microdetermination of glycolic and oxalic acids. Industrial and Engineering Chemistry, Annual Ed., Vol. 15, No. 12, 1943.
- 20. Casselton, P. J. Reversal by histidine of the inhibition of prototheca growth due to 3-amino 1,2,4 triazole. Nature 204(4953):93, 1964.
- 21. Casselton, P. J. Further observations on the inhibition of *Prototheca zopfii* growth by 3-amino 1,2,3-triazole (amitrole). Physiologia Plantarum 19:411-416, 1966.
- 21.8 Chang, Wei-Hsien. Excretion of organic acids during photosynthesis by synchronized algae. Ph.D. Dissertation, Michigan State University, 1968.
- 22. Christman, R. F., and Masood Ghassemi. Chemical nature of organic color in water. Jour. AWWA 58:723, 1966.
- 22.5 Collins, R. P., and G. H. Bean. Phycologia 3:55-59, 1963.
- 23. Collins, R. P., and K. Kalnins. Volatile constituents of Synura petersenii. Lloydia 28(1):49, 1965.
- 23.8 Craigie, J. S., and J. McLachlan. Excretion of solared ultraviolet-absorbing substances by marine algae. Canadian Jour. Bot. 42:23, 1964.
- 23.9 Cram, S. P., and R. S. Juvet. Gas chromatography. Anal. Chem. 44:213R, 1972.
- 24. Crespi, H. L., S. E. Mandeville, and J. J. Katz. The action of lysozyme on several blue-green algae. Biochemical & Biophysical Research Communications 9(6):569-573, 1962.
- 25. Dafni, Ziporp, S. Ulitzur, and M. Shilo. Influence of light and phosphate on toxin production and growth of *prymnesium parvum*. Jour. General Microbiology 70:199-207, 1972.
- 25.01 Dangeard, A. P. Observations sur une algue cultivée a l'obscurité depuis huit ans. Compt. Rend. Acad. Sci. [Paris] 172:254-260, 1921.

- 25.03 Dave, S. B. A comparison of the chromatographic properties of porous polymers. Jour. Chromatog. Sci. 7(2):89, 1969.
- 25.05 Denffer, D. von. Über einen Wachstumshemmstaff in atternden Diatomeenkulturen. Biol. Zbl. 67:7, 1948.
- 25.08 Determan, H. Gel chromatography, gel permeation, molecular sieves, a laboratory handbook. Springer-Verlag, New York, 1968.
- 25.1 Domogalla, B. P., C. Juday, and W. H. Peterson. The forms of nitrogen found in certain lake waters. Jour. of Biological Chem. Vol. 63, 1925.
- Droop, M. R., and Susanne MeGill. The carbon nutrition of some algae: The inability to utilize glycollic acid for growth. Jour. Mar. Biol. Ass., U. K. 46:679-684, 1966.
- 27. Droop, M. R., and J. E. Pennock. Terpenoid quinones and steroids in the nutrition of *Oxyrrhis marina*. Jour. Mar. Biol. Ass., U.K. 51:455-470, 1971.
- 27.002 Drury, D. D., D. B. Porcella, and R. A. Gearheart. The effects of artificial destratification on the water quality and microbial populations of Hyrum Reservoir. Utah Water Research Laboratory, Publication PRJEW-011-1 Utah State University, Logan, Utah, 1975.
- 27.01 Dusi, H. Recherches sur la nutrition de quelques euglenes. Ann. Inst. Pasteur 50:550-597, 840-890, 1933.
- 27.1 Eny, D. M. Respiration studies on *Chlorella*. II. Influence of various organic acids on gas exchange. Plant Physiol. 26:268-289, 1951.
- 27.8 EPA. Algal assay procedure bottle test. National Eutrophication Research Program, Environmental Protection Agency (Pacific Northwest Water Laboratory, Corvallis, Oregon) August 1971.
- 27.85 Eppley, R. W., J. N. Rogers, and J. J. McCarthy. Half-saturation constants for uptake of nitrate and ammonium by marine phytoplankton. Limnol. and Oceanog. 14:912, 1969.
- 27.9 Ettre, L. The Kovots detention index system. Anal. Chem. 36(8):31A-41A, 1964.
- Erdman, J. Gordon, E. M. Marlett, and William E. Hanson. Survival of amino acids in marine sediments. Science 124(3230):1026, 1956.
- 28.3 Evers, Norman, and Dennis Caldwell. The chemistry of drugs. 3rd ed., Interscience Publishers Inc., New York, 1959.
- 28.4 Faust, S. D., and J. V. Hunter. Organic compounds in aquatic environments. Marcel Dekker, Inc., New York, 1971.
- 28.8 Fishman, M. J., and D. E. Erdmann. Water analysis. Analytical Chemistry 45:361R, 1973.
- 28.9 Fishman, M. J., and D. E. Erdmann. Water analysis. Analytical Chemistry 47:334R, 1975.

- 29. Fitch, C. P., Lucille M. Bishop, and W. L. Boyd. Water bloom as a cause of poisoning in domestic animals. Cornell Veterinarian 24:30, 1934.
- 29.8 Fitzgerald, George P. Some factors in the competition or antagonism among bacteria, algae, and aquatic weeds. Jour. Phycol. 5:351-359, 1969.
- Fitzgerald, George P., G. C. Gerloff, and Folke Skoog. Studies on chemicals with selective toxicity to blue-green algae. Sewage and Industrial Wastes 24(7):888, 1952.
- 30.5 Flint, L. H., and C. F. Moreland. Antibiosis in the blue-green algae. Amer. Jour. Bot. 33:218, 1946.
- 31. Fogg, G. E. The role of algae in organic production in aquatic environments. British Phycological Bulletin 2:195-205, 1963.
- 31.5 Fogg, G. E. The production of extracellular nitrogenous substances by a blue green alga. Proc. Roy. Soc. Lond. B. 139:372, 1952.
- 32. Fogg, G. E. The extracellular products of algae. Oceanogr. Mar. Biol. Ann. Rev. 4:195-212, 1966.
- 32.1 Fogg, G. E., Czeslawa Nalewajko, and W. D. Watt. Extracellular products of phytoplankton photosynthesis. Proc. Roy. Soc. Ser. B, 162:517, 1964.
- 32.2 Fogg, G. E., and D. F. Westlake. The importance of extracellular products of algae in fresh waters. In. Assoc. Theort. App. Lim. 12:219-232, 1955.
- 32.8 Ford, J. H., and B. E. Lerch. Actidione, an antibiotic from *Streptomyces griseus*. Jour. Am. Chem. Soc. 70:1223-1225, 1948.
- Foter, Milton J., C. Mervin Palmer, and Tom Maloney. Antialgal properties of various antibiotics. Antibiotics and Chemotherapy 3(5):505, 1953.
- 33.5 Forsberg, Curt, and Orn Taube. Extracellular organic carbon from green algae. Physiologia Plantarum 20:200-207, 1967.
  - Fox, Denis L., and Carl H. Oppenheimer. The riddle of sterol and carotenoid metabolism in muds of the ocean floor. Archives of Biochemistry and Biophysics 51:323, 1954.
  - Gallon, J. R., T. A. LaRue, and W. G. W. Kurz. Characteristics of nitrogenase activity in broken cell preparations of the blue-green alga *Gloeocapsa sp.* LB795. Canadian Jour. of Microbiology 18:327, 1972.
- Galloway, R. A., and R. W. Krass. The differential action of chemical agents, especially Polymyxin B on certain algae, bacteria and fungi. Amer. Jour. Bot. 46:40, 1959.
- 36.1 Genevois, L. Über atmung und gärung in grunen pflanzen. Biochem. Zeits 186:461-473, 1927.

34.

35.

- 36.2 Genevois, L. Sur la fermentation et sur la respiration chez les vegetaux chlorophylliens. Rev. Gen. Bot. 40:735-746, 1928.
- 36.3 Genevois, L. Sur la fermentation et sur la respiration chez les vegetaux chlorophylliens. Rev. Gen. Bot. 41:49-63, 154-184, 1929.
- 36.4 Gill, John. Destratification and iron in Hyrum Reservoir. Unpublished MS Thesis, Utah State University (in preparation).
- 36.6 Gerger, Nancy N. Geosmin, from microorganisms is trans-1-10-dimethyl-trans-9-decalal. Tetra. Letters 25:2971-2974, 1968.
- 36.8 Gjessing, E. T. Use of 'Sephadex' gene for estimation of molecular weight of humic substances in natural water. Nature 208:1091, 1965.
- 36.9 Goldberg, M. C., and L. DeLong. Continuous extraction of organic material from water. Environmental Science and Technology 5:161, 1971.
- 36.91 Goldberg, M. C., and L. DeLong. Extraction and concentration of organic solutes from water. Analytical Chemistry 45:89, 1973.
- Gorham, Eville, and Jon Sanger. Plant pigments in woodland soils. Ecology Vol. 48, No. 2, 1967.
- Gorham, Eville, and Jon Sanger. Fossil pigments in the surface sediment of a meromictic lake. Limnol. and Oceanog. 17:618-622, 1972.
- Gorham, Paul R. Toxic waterblooms of bluegreen algae. The Canadian Veterinary Jour. 1(6):235-245, 1960.
- 39.3 Gokyunova, S. V. Characterization of dissolved organic substances in water of Glubokoje Lake. Trudy. Inst. Mikrobiol. Abd. Nauk. 2:166-179, 1952 [Chem. Abs. 47:8293h].
- 39.5 Gottleib, David, and Paul D. Shaw, editors. Antibiotics I. Mechanism of action. Springer-Verlag, New York, 1967.
- 39.6 Gottleib, David, and Paul D. Shaw, editors. Antibiotics II. Biosynthesis. Springer-Verlag, New York, 1967.
- 39.7 Grant, G. A., and E. O. Hughes. Development of toxicity in blue green algae. Can. Jour. Public Health 44:334-339, 1953.
- 39.77 Grenney, W. J., D. A. Bella, and H. C. Curl. A mathematical model of the nutrient dynamics of phytoplankton in a nitrate-limited environment. Biotechnol. Bioeng. 15:331-358, 1973.
- 39.8 Grigoropoulos, S. G., and J. W. Smith. Jour. Amer. Water Works Assoc. 60:586, 1968.
- 39.9 Guillard, R. R. L., and Johan A. Hellebust. Growth and the production of extracellular substances by two strains of *Phaeocystis* poucheti. J. Phycol. 7:330-338, 1971.

- 40. Gupta, A. B., and Kusum Lata. Effect of algal growth hormones on the germination of poddy seeds. Hydrobiologia 24(1-3):430, 1963.
- 40.1 Hall, R. P. The trophic nature of the plant-like flagellates. Quart. Rev. Biol. 14:1-12, 1939.
- 40.2 Harder, R. Ernahrungsphysiologische untersuchungen an Cyanophyceen, hauptsachlich dem endophytischem Nostoc punctiforme. Zeits. Bot. 9:145-242, 1917.
- 41. Harris, D. O. Growth inhibitors produced by the green algae (volvocaceae). Arch. Mikrobiol. 76:47-50, 1971.
- 42. Hassal, K. A. Xylose as a specific inhibitor of photosynthesis. Nature 181(4618):1273, 1958.
- 42.1 Halvorson, Harlyno, and S. Spiegelman. The inhibition of enzyme formation by amino acid analogues. Jour. Bacteriology 64:207-221, 1952.
- 42.4 Hammer, U. T. The succession of "bloom" species of blue-green algae and some causal factors. Verh. Internat. Verein. Limnol. XV:829-836, 1964.
- 43. Hellebust, J. A. Excretion of some organic compounds by marine phytoplankton. Limnol. and Oceanog. 10:192, 1965.
- 44. Hobbie, J. E., and R. T. Wright. Bioassay with bacterial uptake kinetics: Glucose in fresh water. Limnol. and Oceanog. Vol. 10, 1965.
- 44.1 Hobbie, J. E., and R. T. Wright. Competition between planktonic bacteria and algae for organic solutes. Mem. Ist. Ital. Idrobial. 18:175-185, 1965.
- 44.3 Hood, D. W., ed. Organic matter in natural waters. Institute of Marine Sci., occasional publication No. 1, 1970.
- 45. Hughes, E. O., P. R. Gorham, and A. Zehnder. Toxicity of a unialgal culture of *Microcystis aeruginosa*. Canadian Jour. of Microbiology 4:225, 1958.
- 46. Hunter, Edward O., Jr., and Ilda McVeigh. The effects of selected antibiotics on pure cultures of algae. American Jour. Bot. 48:179, 1961.
- 46.4 Huntsman, Susan A., and J. H. Sloneker. An extracellular polysaccharide from the diatom Gomphenema olivaceum. J. Phycol. 7:261-264, 1971.
- 47. Hutchinson, G. Evelyn. Thiamin in lake waters and aquatic organisms. Archives of Biochemistry, Vol. 2, 1943.
- Hutchinson, G. E., and Jane K. Settow. Limnological studies in Connecticut. VIII. The niacin cycle in a small inland lake. Ecology 27(1):13, 1946.
- 48.1 Hutchinson, G. E., and J. Vallentyne. New approaches to the study of lake sediments. Int.

Assoc. Theor. and App. Lim. 12:669-670, 1955.

- 48.2 Hunter, S., and L. Provasoli. Biochemistry and physiology of protozoa. In: The Phytoflagellates, 1951.
- 49. Ingram, William M., and G. W. Prescott. Toxic fresh-water algae. The American Midland Naturalist, Vol. 52, No. 1, 1954.
- 50. Jeffrey, Lela M., and Don W. Hood. Organic matter in sea water; an evaluation of various methods for isolation. Jour. of Marine Research 17:247, 1958.
- 50.2 Johns-Manville Bulletin. Chromosorb Century Series FF-202A, 1970.
- 50.4 Jorgensen, Erik G. Growth inhibiting substances formed by algae. Physiologia Plantarum 9:712-726, 1956.
- 50.5 Jorgensen, Erik G., and E. Steemann-Nielsen. Effect of filtrates from cultures of unicellular algae on the growth of *Staphococcus aureus*. Physiologia Plantarum 14:896-908, 1961.
- 51.7 Kaplar, L., C. Szita, J. Takacs, and G. Tarjan. Contribution to the concept and method of Rohrschneider I. Jour. Chromatog. 65:145, 1972.
- 52. Katznelson, H., and A. G. Lochhead. Studies with *Bacillus polymyxa*. III. Nutritional requirements. Canadian Jour. Research Vol. 22, Sec. C, No. 6, 1944.
- 52.5 Kihara, Hayto, and Esmond E. Snell. Peptides and bacterial growth. VII. Relation to inhibitions by thienylalanine, ethionine, and canavanine. Jour. Biological Chemistry 212:83-94, 1955.
- 52.7 Komarovsky, B. Bull. Research Council Israel 2:379-410, 1953.
- 52.9 Kovats, E., and A. Wehrli. Gaschromtographische charakteristerung organischer verbindungen. Helv. Chim. Acta. 42:2709, 1959.
- 53. Kroes, H. W. Growth interaction between Chlamydomonas globosa Snow and Chlorococcum ellipsoideum Deason and Bold under different experimental condition, with special attention to the role of pH. Limnol. and Oceanog. 16(6):869, 1971.
- 54. Kroes, H. W. Growth interactions between Chlamydomonas globosa Snow and Chlorococcum ellipsoideum Deason and Bold: The role of extracellular products. Limnol. and Oceanog. 17(3), 1972.
- 55. Kroes, H. W. A spin filter system for the study of algal interactions. Oecologia (Berl) 11:99-112, 1973.
- 56. Krogh, August, and Eugen Lange. On the organic matter given off by algae. Biochemical Journal 24(2):1666, 1930.

Kuentzel, L. E. Bacteria, carbon dioxide, and algal blooms. Jour. WPCF 41(10):1737, 1969.

57.

- 57.5 Kumar, H. D. Inhibition of growth and pigment production of a blue green alga by 3-amino 1,2,4-triazole. Indian Jour. Plant Physiol. 6:150-155, 1963.
- 58. Kushwaha, A. S., and A. B. Gupta. Effect of algal growth promoting substances of *Phormidium fovealarum* on seedlings of some varieties of wheat. Hydrobiologia 35:324, 1970.
- 58.8 Lampen, J. O., and Peter Arnow. Inhibition of algae by nystatin. Jour. of Bacteriology 82:247, 1961.
- 59. Lange, Willy. Effect of carbohydrates on the symbiotic growth of planktonic blue-green algae with bacteria. Nature 215:1277, 1967.
- 60. Lange, Willy. Cyanophyta-bacteria systems: Effects of added carbon compounds or phosphate on algal growth at low nutrient concentration. Jour. Phycol. 6:230-234, 1970.
- 60.02 LaRue, T. A., and J. F. T. Spencer. Utilization of D-amino acids by prototheca. Canadian Jour. of Botany 44:1222, 1966.
- 60.05 Lefevre, M., and M. Nisbet. Sur la secretion, par certaines especes d'algues, de substances inhibitrices d'autrés especes d'a lgues. Acad. Sci. Paris, Compt. Rend. 226:107, 1948.
- 60.1 Lefevre, M., and H. Jakob. Sur gelques proprietes des substances activee tirees des cultures d'algues d'eau douce. Acad. Sci. Paris, Compt. Rend. 229:234-236, 1949.
- 60.2 Lefevre, M., H. Jakob, and M. Nisbet. Auto-et heteroantagonisme chez les algues d'eau douce. Annales Station Centr., Hydrobiol. Appl. 4:5, 1952.
- 60.3 Lein, Joseph, and Patrica S. Lein. The production of acetate from fatty acids by *Neurospora*. Jour. of Bacteriology 60:185, 1950.
- 61.1 Levina, R. I. Interrelationships of various species of protococcal algae and their bactericidal effect in joint cultivation. Microbiology 33:120-126, 1964.
- 61.6 Levring, T. Some culture experiments with marine plankton diatoms. Goteborgs Kungl. Vetenskaps-och Vitterkets-samhälles Handl. 6 Följ Ser B 3(12), 1945.
- 61.7 Lewin, J. C. Heterotrophy in diatoms. Jour. Gen. Physiol. 36: 589-599, 1954.
- 61.8 Lewin, Ralph A. Extracellular polysaccharides of green algae. Canadian Jour. of Microbiology 2:665-672, 1956.
- 62. Lindberg, Bengt. Low-molecular carbohydrates in algae. Acta Chem. Scand. 7(7), 1953.
- 62.8 Littlewood, A. B. Gas chromatography. Academic Press, New York, 1970.

- 63. Lord, J. M., G. A. Codd, and M. J. Merrett. The effects of light quality on glycolate formation and excretion in algae. Plant Physiol. 46:855-856, 1970.
- 63.01 Lucas, C. E. External metabolites in the sea. Marine Biol. and Oceanog., Deep Sea Research, Suppl. to 3:139-148, 1955.
- 63.1 Luksch, J. Ernä hrung sphysiologische untersuchyunger an Chlamydomonadeen. Bot. Centralol. Beiheft. A. 50:64-94, 1932.
- 63.3 Lund, J. W. G. Studies on Asterionella formosa hass. I. Nutrient depletion and the spring maximum. Part II. Discussion. Jour. Ecol. 38:1-35, 1950.
- 63.4 Lwoff, A., and H. Dusi. La nutrition azotée et carbonee d'Euglena gracilis en culture pure a l'obscurité. Compt. Rend. Soc. Biol. (Paris) 107:1068-1069, 1933.
- 63.5 Lwoff, A., and H. Dusi. La nutrition azotée et carbonee de *Chlorogonium euchlorium* á l'obscurité l'acid acétique envisage comme produit de l'assimilation chlorophyllienne. Compt. Rend. Soc. Biol. (Paris) 119:1260, 1935.
- 63.6 Lwoff, M., and A. Lwoff. Le pouvoir de synthèse de Chlamydomonas agloeformis et d'Haemotococcus pluvialis en culture pure a l'obscurité. Compt. Rend. Soc. Biol. (Paris) 102:569-571, 1929.
- 63.8 Lynch, D. L., L. M. Wright, and L. J. Cotnair, Jr. The adsorption of carbohydrates and related compounds on clay minerals. Proc. Soil Sci. Soc. Amer. 20(1):6-9, 1956.
- 64. Maksimova, V., E. G. Toropova, and M. N. Pimenova. Secretion of organic substances in the growth of green algae on mineral media. Microbiology 34:413, 1965.
- 65. Maksimova, V., and M. N. Pimenova. Liberation of organic acids by green unicellular algae. Microbiology 38:64, 1969.
- 65.1 Maksimova, V., and M. N. Pimenova. Influence of concomitant microflora on accumulation of organic compounds in medium during nonsterile culturing of *Chlorella*. Microbiology 38:509-513, 1969.
- 66. Marker, A. F. H. Extracellular carbohydrate liberation in the flagellates *Isochrysis gallana* and *Prymnesium parvum*. Jour. Marine Biol. Ass. U.K. 45:755-772, 1965.
- 67. McLachlan, J. Some effects of tris (hydroxymethyl) aminomethane on the growth of *Haematococcus pluvialis flotow*. Canadian Jour. of Botany 41:35, 1963.
- McLachlan, J., and J. S. Craigie. Algal inhibition by yellow ultraviolet-absorbing substances from *Fucus vesiculosus*. Canadian Jour. of Botany Vol, 42, No. 3, March 1964.
- 69. McLachlan, J., and J. S. Craigie. Effects of carboxylic acids on growth and photosynthesis

of Haematococcus pluvialis. Canadian Jour. of Botany 43:1449, 1965.

- 70. McLachlan, J., and J. S. Craigie. Antialgal activity of some simple phenols. Jour. Phycol. 2:133-135, 1966.
- 70.2 McReynolds, W. O. Characterization of some liquid phases. Jour. Chromatog., Sci. 8:685, 1970.
- 70.25 McVeigh, I., and W. H. Brown. In vitro growth of *Chlamydomonas chlamydogama* Bold and *Haematococcus pluvialis* Flotans E. M. Wille in mixed cultures. Bull. Torrey Bot. Club 81:218-233, 1954.
- 70.28 Medsker, Lloyd L., D. Jenkins, and J. F. Thomas. Odorous compounds in nature waters 2-exo-hydroxy-2-methylbornane, the major odorous compound produced by several actinomycetes. Environmental Science & Tech. 3(5):476, 1969.
- 70.3 Merz, Robert C., Raymond G. Zehnpfennig, and John Klima. Chromatographic assay of extracellular products of algal metabolism. Jour. WPCF 34(2):105-115, Feb. 1962.
- 70.45 Millar, R. M., C. M. Meyer, and H. A. Tanner. Glycolate excretion and uptake by *Chlorella*. Plant Physiol., Lancaster, 38:184-188, 1963.
- 70.5 Milner, Harold W. The fatty acids of *Chlorella*. Jour. of Biological Chemistry 176:813, 1948.
- 70.55 Minear, R. A., and P. S. Pagoria. Organics. Journal of Water Pollution Control Federation 46:1058, 1974.
- 70.6 Mitchell, Ralph, Sam Fogel, and Ilan Chet. Bacterial chemoreception: An important ecological phenomenon inhibited by hydrocarbons. Water Research 6:1137-1140, 1972.
- 71. Moore, B. G., and R. G. Tischer. Extracellular polysaccharides of algae: Effects on life support systems. Science 145:586, August 1964.
- 71.5 Moore, B. G., and R. G. Tischer. Biosynthesis of extracellular polysaccharides by the bluegreen alga *Anabaena flos-aquae*. Canadian Jour. of Microbiology 11(6):877-885, 1965.
- 72. Morris, I. Inhibition of protein synthesis of cycloheximide (actidione) in *Chlorella*. Nature 211(5044):1190, September 10, 1966.
- 72.8 Mortimer, Clifford. The exchange of dissolved substances between mud and water in lake. Jour. Ecology 30:147-201, 1942.
- 73. Morton, Brian, and P. R. Twentyman. The occurrence of toxicity of a red tide caused by *Noctiluca scintillans* (Macartney) Ehrenb., in the coastal waters of Hong Kong. Environmental Research 4:544-557, 1971.
- 73.8 Mueller, H. F., T. E. Larson, and W. J. Lennarz. Chromatographic identification and determination of organic acids in water. Analytical Chemistry 30(1):41-44, January 1958.

- 73.81 Myers, J. A study of the pigments produced in darkness by certain green algae. Plant Physiol. 15:575-588, 1940.
- 73.82 Myers, J. Physiology of the algae. Ann. Rev. Microbiol. 5:157-180, 1951.
- 73.83 Myers, J., M. Cramer, and J. Johnston. Oxidative assimilation in relation to photosynthesis in *Chlorella*. Jour. Gen. Physiol. 30:217-227, 1947.
- 73.835 Myers, J., and J. Graham. The role of photosynthesis in the physiology of Ochromonas. Univ. Texas, Depart. Zool. [Mimeo.], 1954.
- 73.84 Myers, J., and J. Johnston. Carbon and nitrogen balance of *Chlorella*. during growth. Plant Physiol. 24:111-119, 1949.
- 73.9 Nakamura, K., and C. S. Gowans. Nicotinic acid excreting mutants of Chlamydomonas. Nature, Lond. 202:826-827, 1964.
- 74. Nalewajko, C., and L. Marin. Extracellular production in relation to growth of four planktonic algae and of phytoplankton population from Lake Ontario. Canadian Jour. Bot. 47:405, 1969.
- 74.5 Nalewajko, C., and D. R. S. Lean. Growth and excretion in planktonic algae and bacteria. Jour. Phycol. 8:361-366, 1972.
- 75. Neish, A. C. Carbohydrate nutrition of *Chlorella vulgaris*. Canadian Jour. Bot. 29:68, 1951.
- 75.5 Neujahr, Halina. Transport of B vitamins in microorganisms. Acta Chem. Sc. 20:771-785, 1966.
- 76. Newton, B. A. Reversal of the antibacterial activity of polymyxin by divalent cations. Nature 172(4369):160, 1953.
- 76.5 Nielsen, E. Steemann. An effect of antibiotics produced by plankton algae. Nature 176(4481):553, 1955.
- 76.6 North, B. B., and B. C. Stephens. Uptake and assimilation of amino acids by Platymonas. Biological Bulletin 133:391-400, 1967.
- 77. O'Brien, W. John, and Frank DeNoyelles, Jr. Photosynthetically elevated pH as a factor in zooplankton mortality in nutrient enriched ponds. Ecology 53:605, 1972.
- Ohwada, K. and N. Taga. Vitamin B<sub>12</sub>, thiamine, and biotin in Lake Sogami. Limnol. and Oceanog. Vol. 17, 1972.
- 78.1 Orr, W. L., and J. R. Grady. Perylene in basin sediments off southern California. Geochim. Cosmochim. Acta 31:1201-1209, 1967.
- 78.8 Otsuki, Akira, and Takahisa Hanya. Production of dissolved organic matter from dead green algae cells. I. Aerobic microbial decomposition. Limnol. and Oceanog. 17(2):248, March 1972.

- Otsuki, Akira, and Takahisa Hanya. Production of dissolved organic matter from dead green algal cells. II. Anaerobic microbial decomposition. Limnol. and Oceanog. 17(2):258, 1972.
- Palmer, C. Mervin. A composite rating of algae tolerating organic pollution. Jour. Phycol. 5:78-82, 1969.
- 80.1 Palmer, C. Mervin. An incubation room for algal cultures in water supply taste and odor research. Phycological News Bulletin 16:9, Feb. 1952.
- Palmer, C. Mervin, and Thomas E. Maloney. Preliminary screening for potential algicides. The Ohio Journal of Science 55(1):1, 1955.
- 81.5 Pearsall, W. H. Phytoplankton in the English Lakes. II. The composition of the phytoplankton in relation to dissolved substances. Jour. Ecol. 20:241-262, 1932.
- Peterson, W. H., E. B. Fred, and B. P. Domogalla. The occurrence of amino acids and other organic nitrogen compounds in lake water. Jour. of Biological Chem. Vol. 63, 1925.
- 82.5 Pollock, M. R. The effects of long-chain fatty acids on the growth of *Haemophilus pertussis* and other organisms. Soc. for Exp. Biology III:13, 1949.
- 83. Pratt, R. Studies on *Chlorella vulgaris*. V. Some properties of the growth-inhibitor formed by *Chlorella*, cells. Am. Jour. Bot. 29:142, 1942.
- 84. Pratt, R. Studies on *Chlorella vulgaris*. IX. Influence on growth of Chlorella of continuous removal of chlorellin from the culture solution. Am. Jour. Bot. 31:418, 1944.
- 85. Pratt, R., T. C. Daniels, et al. Chlorellin, an antibacterial substance from *Chlorella*. Science 99(2574):351, 1944.
- 85.1 Pratt, R., and J. Tong. Studies on *Chlorella* vulgaris. II. Further evidence that Chlorella cells form a growth-inhibiting substance. Am. Jour. Bot. 27:431-436, June 1940.
- 86. Prescott, G. W. Objectionable algae with reference to the killing of fish and other animals. Hydrobiologia 1:1-13, 1948.
- 86.5 Pringsheim, E. G. Assimilation of different organic substances by saprophytic flagellates. Nature 139:196, 1937.
- 86.6 Pringsheim, E. G. Beitrage zur physiologie saprophytischer algen. I. Mitteilung: Chlorogonium und Hyalogonium. Planta 26:631-664, 1937.
- 86.7 Pringsheim, E. G. Beitrage zur physiologie saprophytischer algen und flagellaten. III. Mitteilung: Polytoma  $\mu$  polytomella. Planta 26:665, 1937.
- Pringsheim, E. G., and W. Wiessner. Photoassimilation of acetate by green organisms. Nature 188(4754):919, 1960.

- 87.4 Proctor, Vernon W. Some controlling factors in the distribution of *Haematococcus pluvialis*. Ecology 38(3):457, 1957.
- 87.5 Proctor, Vernon W. Studies of algal antibiosis using Haematococcus and Chlamydomonas. Limnol. and Oceanog. 2:125, 1957.
- Provasoli, L. Effect of external metabolites on algae. Verh. Internat. Verein Limnol. XV:829, 1964.
- 87.9 Provasoli, L. Nutrition and ecology of protozoa and algae. Annual Reviews of Microbiology 12:279, 1958.
- Provasoli, L., and I. J. Pintner. Ecological implication of in vitro nutritional requirements of algal flagellates. Annals New York Acad. Sci. 56:839, 1953.
- 88.3 Ramus, J. The production of extracellular polysaccharide by the unicellular red alga *Porphyridium aerugineum.* J. Phycol. 8:97-111, 1972.
- Rao, C. B. On the distribution of algae in a group of six small ponds. Jour. Ecol. 41:62-71, 1953.
- Remsen, Charles C., Ed J. Carpenter, and Brian W. Schroeder. Competition for urea among estuarine microorganisms. Ecology 53(5):921, 1972.
- 90. Rhee, G-Yull. Competition between an alga and an aquatic bacterium for phosphate. Limnol. and Oceanog., Vol. XVII, 1972.
- 90.5 Rice, T. R. Biotic influences affecting population growth of planktonic algae. U.S. Fish and Wildlife Serv. Fish Bull. 87, 1954.
- 91. Richards, Francis A., Joel D. Cline, William W. Broenkow, and Larry P. Atkinson. Some consequences of the decomposition of organic matter in Lake Nitinat, an anoxic fjord. Limnol. and Oceanog., Vol. 10, 1965.
- 92. Roach, B. M. B. On the relation of certain soil algae to some soluble carbon compounds. Annals of Bot. 40(157):181, 1926.
- 93. Robinson, Gordon G. C., Leonard L. Hendyel, and Douglas C. Gillespie. A relationship between heterotrophic utilization of organic acids and bacterial population in West Blue Lake, Manitoba. Limnol. and Oceanog. 18(2):264-269, March 1973.
- 93.1 Robinson, L. R., J. T. O'Connor, and R. S. Engelbrecht. Organic materials in Illinois ground waters. Jour. Am. Water Works Assoc. 59:227, 1967.
- 93.2 Rohrschneider, L. Eine method zur charakteriscerung von gaschromatographischen treunflussigkeiten. Jour. Chromatog. 22:6, 1966.
- 93.3 Rohrschneider, L. Teil 3: Berechnung der retentionsindices aliphatischer, alicyclischer und

aromatischer verbindungen. Advances in Chromatography, Marcel Dekker, New York, Vol. IV, 1967.

- 93.5 Ryther, J. H. Inhibitory effects of phytoplankton upon the feeding of *Daphnia magna* with reference to growth, reproduction and survival. Ecology 35:522-532, 1954.
- 94. Safferman, R. S., A. A. Rosen, C. I. Mashui, and M. E. Morris. Earthy-smelling substances from a blue green alga. Environmental Sci. and Tech. 1:429, 1967.
- 94.5 Sager, R., and S. Granick. Nutritional studies with *Chlamydomonas reinhardi*. Ann. N.Y. Acad. Sci. 56:831-838, 1953.
- 95. Sanger, Jon E., and Eville Gorham. The diversity of pigments in lake sediments and its ecological significance. Limnol. and Oceanog., Vol. 15, 1970.
- 96. Saunders, G. W. Interrelations of dissolved organic matter and phytoplankton. The Botanical Review 23:389, 1957.
- 96.5 Scher, Stanley. Physiological and regulatory aspects of heterotrophy in algal flagellates: Conditionally expressed characteristics. Proceedings of the Eutrophication Biostimulation Assessment Workshop, Berkeley, California, p. 117, June 1969.
- 97. Shapiro, Joseph. Chemical and biological studies on the yellow organic acids of lake water. Limnol. and Oceanog., Vol. 11, 1957.
- 97.9 Shilo, Moshe. Review on toxigenic algae. Verh. Internat. Verein Limnol. XV:782-795, 1964.
- Shilo, Moshe. Formation and mode of action of algal toxins. Bacteriological Reviews 31:180-193, 1967.
- 99. Sinden, S. L., and R. D. Durbin. Some comparisons of chlorosis-inducing pseudomonod toxins. Phytopathological Notes 59:249, 1969.
- 99.8 Shindala, Adnan, Henry R. Bungay III, et al. Mixed-culture interactions. Jour. of Bacteriology 89(3):693-696, 1965.
- 100. Shukia, A. C. Influence of algal growthpromoting substances on growth, yield and protein contents of rice plants. Nature 213(5077):744, 1967.
- 101. Stacey, J. L., and P. J. Casselton. Utilization of adenine but not nitrate as nitrogen source by *Prototheca zopfii*. Nature 211:862, August 20, 1966.
- 102. Stansly, P. G., and M. E. Schlosser. Studies on polymyxin: Isolation and identification of *Bacillus polymyxa* and differentiation of polymyxin from certain known antibiotics. Jour. of Bact. 54:549, 1947.
- 103. Stewart, James Ray, and R. Malcolm Brown, Jr. Cytophaga that kills or lyses algae. Science 164:1523, 1969.

- 104. Stross, Raymond G. Growth response of Chlamydomonas and Haematococcus to the volatile fatty acids. Can. Jour. Microbiol. 6:611, 1960.
- 104.2 Stumm, Werner, and James T. Morgan. Aquatic chemistry. Wiley-Interscience (division of John Wiley and Sons, Inc.), 1970.
- 104.25 Supina, W. R., and L. P. Rose. The use of the Rohrschneider constants for classification of GLC columns. Jour. Chromatog., Science 8:214, 1970.
- 104.3 Supina, W. R. Handbook of McReynolds constants. Supelco, Inc., Bellefonte, Pa., 1971.
- 104.4 Supina, W. R. The packed column in gas chromatography. Supelco., Inc., Bellefonte, Pa., 1974.
- 104.45 Takacs, J., Zs. Szintirmai, E. B. Molnar, and D. Kralik. Contribution to the concept and method of Rohrschneider, II. Jour. Chromatog. 65:121, 1972.
- 104.5 Talling, J. F. The growth of two plankton diatoms in mixed cultures. Physiologia Plantarum 10:215-223, 1957.
- 104.6 Taylor, P. J. Oxidative assimilation of glucose by *Scenedesmus quadricauda*. Jour. Exp. Bot. 1:301-321, 1950.
- 104.7 Theis, Thomas L. Complexation of iron (II) by organic matter and its effect on iron (II) oxygenation. Environmental Science and Technology 8(6):569-573, 1974.
- 105. Tischer, R. G., and B. G. Moore. An extracellular polysaccharide produced by *Palmella mucosa* Kütz. Archiv fur Mikrobiologie 49:158-166, 1964.
- 105.5 Tocher, R. D., and J. S. Craigie. Enzymes of marine algae. II. Isolation and identification of 3-hydroxytyramine as a phenolase substrate in Monostroma fuscum. Can. Jour. Bot. 44:605-608, 1966.
- 106. Tolbert, N. E., and L. P. Zill. Excretion of glycolic acid by algae during photosynthesis. Jour. of Biological Chem. 222:895, 1956.
- 106.5 Tomisek, Arthur, Mary R. Reid, William A. Short, and Howard E. Skipper. Studies on the photosynthetic reaction. III. The effects of various inhibitors upon growth and carbonate fixation in *Chlorella pyrenoidosa*. Plant Physiology 32:7, 1957.
- 107. Twenhofel, S. L. Carter, and V. E. McKelvey. The sediments of grassy lake Vilas County, a large bog lake of northern Wisconsin. Am. Jour. of Science 240(8):529, 1942.
- 107.5 Vallentyne, J. R. Biochemical limnology. Science, pp. 605-606, April 30, 1954.
- 108. Vallentyne, J. R. Sedimentary chlorophyll determination as a padeobotanical method. Can. Jour. Bot. 35:304-313, 1955.

109. Vallentyne, J. R. Epiphasic carotenoids in post-glacial lake sediments Limnol. and Oceanog. 1:252-262, 1956.

- 110. Vallentyne, J. R. The molecular nature of organic matter in lakes and oceans, with lesser reference to sewage and terrestrial soils. Jour. of Fisheries Research Board of Canada 14(1):33-82, 1957.
- 111. Vallentyne, J. R. Carotenoids in a 20,000 year old sediment from Searles Lake, California. Archives of Biochemistry and Biophysics 70:29-34, 1957.
- 112. Vallentyne, J. R., and R. G. S. Bibwell. The relation between free sugars and sedimentary chlorophyll in lake muds. Ecology 37(3):495-500, 1956.
- 113. Vallentyne, J. R., and D. F. Craston. Sedimentary chlorophyll degradation products in surface muds from Connecticut lakes. Can. Jour. of Bot., Vol. 35, 1975.
- 113.2 Vance, B. Dwain. Composition and succession of Cyanophycean water blooms. J. Phycol. 1:81-86, 1965.
- 113.5 van der Meulen, Petronella, and James A. Bassham. Study of inhibition of azaserine and diazo-oxo-norleucine (DON) on the algae *Scenedesmus* and *Chlorella* 1959.
- 113.8 Vela, G. R., and C. N. Guerra. On the nature of mixed cultures of *Chlorella pyrenoidosa* TX 71105 and various bacteria. Jour. Gen. Microbiol. 42:123-131, 1966.
- 113.9 Venkataraman, G. S. The effect of the extracellular substances produced in culture by Nostoc sp. and *Chlorella vulgaris* on their growth. Indian Jour. of Microbiology II(3):121, 1962.
- 114. Venkataraman, G. S., and H. K. Saxena. Liberation of free amino acids in the medium. Indian Jour. Agric. Science 33(1):21, March 1973.
- 114.2 Vladimirova, M. G. Dynamics of the bacterial microflora growth in Chlorella cultures. Microbiology 30:374-377, 1961-1962.
- 114.3 Vladimirova, M. G., and L. V. Basaitova. Development of *Chlorella pyrenoidosa* and bacteria of the Pseudomonas group on joint cultivation. Microbiology 30:500-505, 1961-1962.
- 114.8 Umezana, Hamao. Index of antibiotics from Actinomycetes. Park Press, University of Tokya Press, 1967.
- 114.9 Wangersky, Peter J., and Robert R. L. Guillard. Low molecular weight organic base from the dinoflagellate *Amphidinium carteri*. Nature 185(4714):689-690, 1960.
- 115. Waris, Harry. The significance for algae of chelating substances in the nutrient solution. Physiologia Plantarum 6:538, 1953.

- 115.5 Watanabe, A. Untersuchunger über substrate fur sauerstoffatmung von susswasser und meeresalgen beitrage zur sloffwechselphysiologie der algen. II. Acta Phytochem (Tokyo) 9:235-254, 1937.
- 116. Watanabe, A. Production in cultural solution of some amino acids by the atmospheric nitrogenfixing blue green algae. Archives of Biochem. and Biophysics 34:50, 1951.
- 116.5 Waters Associates Product Bulletin PB-71-204, Waters Associates, Framingham, Mass.
- 117. Watt, W. D. Extracellular release of organic matter from two freshwater diatoms. Ann. Bot. 33:427-437, 1969.
- 117.5 Watt, W. D. Release of dissolved organic material from the cells of phytoplankton populations. Proc. Roy. Soc. London B 164:521, 1965.
- 118. Webb, Kenneth L., and R. E. Johannes. Studies of the release of dissolved free amino acids by marine zooplankton. Limnol. and Oceanog. 12:376-382, 1967.
- 118.5 Webster, G. C. Studies on the respiration of blue green algae. Am. Jour. Bot. 37:682, 1950.
- 119. Wheller, R. E., J. B. Lackey, and S. Schott. A contribution on the toxicity of algae. Public Health Reports 57(2):1695, 1942.
- 120. Whiffen, Alma J. The production, assay, and antibiotic activity of actidione, an antibiotic from *Streptomyces griseus*. 56:283, 1948.
- 121. Whittaker, R. H., and P. P. Feeny. Allelochemics: Chemical interaction between species. Science 171(3973):757, 1971.
- 122. Whittaker, J. R., and J. R. Vallentyne. On the occurrence of free sugars in lake sediment extracts. Limnol. and Oceanog. 1(2):98-110, 1957.

- 123. Whitton, B. A. Extracellular products of bluegreen algae. Jour. Gen. Microbiol. 40:1-11, 1965.
- 123.5 Williams, P. M. Fatty acids derived from lipids of marine origin. Jour. Fish. Res. Bd. Can. 22:1107-1122, 1965.
- 124. Wright, Richard T., and John E. Hobbie. Use of glucose and acetate by bacteria and algae in aquatic ecosystems. Ecology 47:447-464, 1966.
- 125. Wright, Richard T., and John E. Hobbie. The uptake of organic solutes in lake water. Limnol. and Oceanog., Vol. 10, 1965.
- 126. Wu, M., R. E. Alston, and T. J. Mabry. Xylulose, an algal growth inhibitor. Jour. Phycol. 4:206-211, 1968.
- 126.5 Wynne, E. Staten, and Jackson W. Foster. Studies on the effects of C<sub>18</sub> unsaturated fatty acids on growth and respiration of *Micrococcus pyogenes* var. *aureus*. Jour. of Infectious Diseases 86:33, 1950.
- 127. Zehnder, A., and P. R. Gorham. Factors influencing the growth of *Microcystis aeruginosa* Kütz. Emend. Elenkin. Can. Jour. of Microbiology 6:645, 1960.
- 128. Zehnder, A., and E. O. Hughes. The antialgal activity of acti-dione. Can. Jour. of Microbiology 4:399, 1958.
- 129. Zobell, Claude E., and Carroll W. Grant. Bacterial utilization of low concentration of organic matter. Jour. of Bacteriology 45:555, 1943.
- 130. Zweig, G., and J. M. Devine. Determination of organophosphorus pesticides in water. Residue Reviews 26:17-36, 1969.

# Appendix A

# The Effects of Organic Compounds on Certain Life Forms

These tables are an expansion of the results found in the literature cited in Table 1 (natural occurring organics and their effects). Column one lists the compound studied. Column two lists the source of the compound (naming the algae or bacteria producing the compound), and the reference to the observance of the compound in nature; the group producing the compound studied (either algae or bacteria); and the reference citing the organism producing the compound studied. For example, the

.

first compound actidone (also known as cycloheximide) is produced by a bacterium, *Streptomyces griseus*; references citing this production are 32.8 and 120. There is no citing of the natural observation of actidone listed.

Further laboratory conditions of the test are listed in columns four through nine, the organisms tested are listed in column three and the studies cited are listed in column ten.

٤

1

| Compound     | Source of Compound<br>(Observance in natural    |                                                     |                         |              |                        | ory Bioassays                                     |                                                           |                                                                             |    |
|--------------|-------------------------------------------------|-----------------------------------------------------|-------------------------|--------------|------------------------|---------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------|----|
| Сотроина     |                                                 | Microorganism                                       |                         | <del>,</del> |                        | sponse to Comp                                    |                                                           |                                                                             | D  |
|              | system; group; reference)                       |                                                     | Concentration<br>(mg/l) | Effect       | Time of<br>Observation | Study<br>Method                                   | Parameter<br>Measured                                     | Conditions<br>Temp.; pH; Light                                              | R  |
| ctidone      |                                                 | MYXOPHYCEAE                                         |                         |              |                        |                                                   |                                                           |                                                                             |    |
| cloheximide) | Streptomyces griseus<br>(; Bacteria; 32.8, 120) | <u>Anabaena</u> cyclindrica                         | 200                     | N            | 3 wk                   | culture solution<br>(flask)                       | macro and/or<br>microscopic<br>comparison<br>with control | 25 <sup>°</sup> C;; 100-250 ft-c,<br>continuous                             | 12 |
| 11           | 1                                               |                                                     | 200                     | N            | 1, 2, 3 wk             | agar slant                                        | 11                                                        | 24 <sup>°</sup> C;; 200 ft-c,<br>12 hrs. daily                              | 4  |
| "            | 11                                              | <u>Aphanocapsa</u> sp                               | 200                     | N            | 3 wk                   |                                                   | 11                                                        | 25 <sup>°</sup> C;; 100-250 ft-c,<br>continuous                             | 12 |
| 11           | 1 11 11 11 11 11 11 11 11 11 11 11 11 1         | <u>Coelosphaerium</u><br><u>kuetzeingianum</u>      | 200                     | N            |                        | culture solution<br>(flask)                       | 11                                                        | 11                                                                          | 12 |
|              |                                                 | Cylindrospermum<br>licheniforme<br><u>B &amp; F</u> | 2                       | P            | 3, 7 da                | culture solution<br>(25 ml Erlen-<br>meyer flask) |                                                           | 22 <sup>°</sup> C;; 140 ft-c,<br>continuous (125,000 cell<br>ml inoculated) | 8  |
| н            | 11                                              |                                                     | 2                       | N            | 14, 21 da              |                                                   | **                                                        | 11                                                                          | 8  |
| 11           | U U                                             | <u>Gloeothece</u> <u>rupestris</u>                  | 50                      | N            | 2 mo                   | agar slant                                        | 11                                                        | 25 <sup>°</sup> C;; 200 ft-c,<br>12 hr daily                                | 12 |
| 11           | U U                                             | . u u                                               | 100                     | P            |                        | 11                                                | 11                                                        | 11                                                                          | 12 |
| 11           | 11                                              | 11 11                                               | 200                     | Р            | 11                     | 11                                                |                                                           | 11                                                                          | 12 |
| 11           | 11                                              | <u>Gloeotrichia</u> echinulat                       | a 200                   | N            | 3 wk                   | culture solution<br>(flask)                       | "                                                         | 11                                                                          | 12 |
| 11           |                                                 | Lyngbya sp                                          | 200                     | N            | n n                    |                                                   | 11                                                        | 11                                                                          | 12 |
| 11           | U U                                             | Microcystis<br>aeruginosa                           | 200                     | N            | 11 +                   | п                                                 | 11                                                        | 11                                                                          | 12 |
| 11           | ii.                                             | 11 11                                               | 2                       | N            | 3, 7, 14, 21 da        | culture solution<br>(25 ml Erlen-<br>meyer flask) | 11                                                        | 22 <sup>°</sup> C;; 140 ft-c,<br>continuous (125,000<br>cell/ml inoculated) | 8  |
| n            |                                                 | <u>Oscillatoria tennis</u>                          | 200                     | N            | 3 wk                   | culture solution<br>(flask)                       |                                                           | 25 <sup>°</sup> C;; 100-250 ft-c,<br>continuous                             | 12 |
| "            | U U                                             | <u>Phormidium</u><br>lovedarum                      | 200                     | N            | 11                     | 11                                                | n                                                         | n                                                                           | 12 |
| 11           |                                                 | '' '' sp                                            | 200                     | N            | l, 2, 3 wk             | "<br>150 x 16 mm<br>test tube)                    | 11                                                        | 24 <sup>°</sup> C;; 200 ft-c,<br>12 hr daily                                | 4  |

ł.

1

| Compound                  | Source of Compound                              |                                            |                         |                 |                        | ory Bioassays                                     |                                                                    |                                                                |    |
|---------------------------|-------------------------------------------------|--------------------------------------------|-------------------------|-----------------|------------------------|---------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------|----|
| Compound                  | (Observance in natural                          | Microorganism                              |                         |                 |                        | sponse to Comp                                    | ound                                                               |                                                                |    |
|                           | system; group; reference)                       |                                            | Concentration<br>(mg/l) | Effect          | Time of<br>Observation | Study<br>Method                                   | Parameter<br>Measured                                              | Conditions<br>Temp.; pH; Light                                 | Re |
|                           |                                                 | MYXOPHYCEAE (Con                           | tinued)                 | 1               |                        |                                                   |                                                                    |                                                                |    |
| Actidone<br>ycloheximide) | Streptomyces griseus<br>(; Bacteria; 32.8, 120) | Tolypothrix tennis                         | 200                     | N               | 3 wk                   | agar slant                                        | macro and/or<br>microscopic<br>comparison<br>with control          | 25 <sup>°</sup> C;; 100-250 ft-c,<br>continuous                | 12 |
| н                         | n n                                             | " "sp                                      | 200                     | N               | 11                     | culture solution<br>(flask)                       | 11                                                                 | 11                                                             | 12 |
| "                         | "<br>                                           | CHLOROPHYCEAE<br>Ankistrodesmus<br>plcatus | 1                       | т               | 11                     |                                                   | 11                                                                 | n                                                              | 12 |
| 11                        | "                                               | Chlamydomonas<br>aglaeformis               | 2                       | P               |                        | culture solution<br>150 x 16 mm<br>test tube)     | 11                                                                 | 24 <sup>°</sup> C;; 200 ft-c,<br>12 hr daily                   | 4  |
| 11                        | u<br>I                                          | н н<br>                                    | 50 (                    | T<br>algicidal) | "                      |                                                   | ''<br>(subculture<br>grown for one<br>week)                        |                                                                | 4  |
| 11                        | "                                               | 11 II                                      | 50                      | т               | "                      | culture solution<br>(flask)                       | *1                                                                 | 25 <sup>0</sup> C;; 100-250 ft-c,<br>continuous                | 12 |
|                           |                                                 | Chlorella<br>pyrenoidosa                   | 20                      | т               | 11                     | 11                                                | 11                                                                 |                                                                | 12 |
| 11                        | u<br>I                                          | " n                                        | . 25                    | т               | 15 min                 | culture solution                                  | 14<br>alanine and<br>14<br>C-adenine<br>uptake                     | 25 <sup>0</sup> C;; darkness                                   | 7  |
| "                         | "                                               | " <u>variegates</u> <u>B</u>               | 2                       | Т               | 3 da                   | culture solution<br>(25 ml Erlen-<br>meyer flask) | macro and/or<br>microscopic<br>comparison<br>wi <b>t</b> h control | 22°C;; 140 ft-c,<br>continuous (125,000<br>cell/ml inoculated) | 8  |
| **                        | "                                               | 11 11 11                                   | 2                       | Р               | 7 da                   |                                                   | 17                                                                 | 11                                                             | 81 |
| 11                        | "                                               | 11 11 11                                   | 2                       | N               | 14, 21 da              | 11                                                | 11                                                                 | 11                                                             | 8  |
| "                         | 11                                              | Chlorococcum<br>minutum                    | 50                      | т               | 3 wk                   | culture solution<br>(flask)                       | 11                                                                 | 25 <sup>°</sup> C;; 100-250 ft-c,<br>continuous                | 12 |
| 11                        | 11                                              | Coccomyxa elongata                         | 50                      | т               | 11                     | 11                                                | 11                                                                 | 11                                                             | 12 |
| 11                        |                                                 | Haematococcus<br>locustris                 | .001                    | N               | 16 da                  | 11                                                | n                                                                  | (500 cells/ml inoculated)                                      | 12 |

-

1 I

L C

65

| Compound                  | Source of Compound<br>(Observance in natural           | <u> </u>                                                            |               |                  |               | ory Bioassays                                  |                                                           |                                                                         |    |
|---------------------------|--------------------------------------------------------|---------------------------------------------------------------------|---------------|------------------|---------------|------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------------|----|
| pound                     | system; group; reference)                              | Microorganism                                                       | Concentration | T                | Re<br>Time of | esponse to Comp                                |                                                           |                                                                         | R  |
|                           |                                                        |                                                                     | (mg/l)        | Effect           | Observation   | Study<br>Method                                | Parameter<br>Measured                                     | Conditions<br>Temp.; pH; Light                                          |    |
| cctidone<br>rcloheximide) | <u>Streptomyces griseus</u><br>(; Bacteria; 32.8, 120) | <u>CHLOROPHYCEAE</u> (4<br><u>Haematococcus</u><br><u>locustris</u> | .002          | N                | 16 da         | culture solutior<br>(flask)                    | macro and/or<br>microscopic<br>comparison<br>with control | 22 <sup>°</sup> C;; 140 ft-c,<br>continuous (500<br>cell/ml inoculated) | ξ  |
|                           |                                                        | 17 11                                                               | . 004         | 340 <sup>a</sup> | 11            | 11                                             | 11                                                        | н                                                                       | 12 |
| 11                        | 11                                                     |                                                                     | .008          | 150 <sup>a</sup> | 11            | 11                                             | 11                                                        | 11                                                                      | 12 |
| 11                        | 11                                                     |                                                                     | .016          | 6 <sup>a</sup>   | н             | 11                                             | 11                                                        |                                                                         | 12 |
| *1                        | 11                                                     | п п                                                                 | .032          | т                | 11            |                                                | "                                                         | 11                                                                      | 1  |
| н                         | 11                                                     | 11 11                                                               | .0625         | т                | н             | 11                                             | 11                                                        | 11                                                                      | 1  |
| 11                        |                                                        | 11 11                                                               | . 25          | т                | u.            | ,,,                                            | *1                                                        | 11                                                                      | 1  |
| *1                        |                                                        | 11 11                                                               | 1.0           | т                | 11            |                                                | 11                                                        | 11                                                                      |    |
| 11                        | u.                                                     | 11 U                                                                | .015          | T                | 24 day        | 11                                             | 11                                                        | 22°C;; 140 ft-c,<br>continuous (250,000<br>cell/ml inoculated)          | 1  |
| "                         |                                                        | " "                                                                 | .0625         | T<br>(algistatic | )             |                                                | (subculture<br>grown for 6 wk)                            | 11                                                                      | 1  |
| 11                        |                                                        | И п                                                                 | . 25          | 11               | "             |                                                | macro and/or<br>microscopic<br>comparison<br>with control | 11                                                                      | 1  |
| 11                        | "                                                      |                                                                     | . 25          | 11               | 11            | **                                             |                                                           | 11                                                                      | 1  |
| 11                        | "                                                      | , 11 11                                                             | 1.0           | 11               | **            |                                                | 11                                                        | 11                                                                      | 1  |
| "                         |                                                        | и и                                                                 | 1.0           | n                | 1, 2, 3 wk    | culture solution<br>(150 x 16 mm<br>test tube) | (subculture<br>grown for 1<br>wk)                         | 24 <sup>°</sup> C;; 200 ft-c,<br>12 hr daily                            |    |
| "                         |                                                        | <u>Hormidium</u> <u>subtile</u>                                     | 20            | Т                | 3 wk          | culture solution<br>(flask)                    | macro and/or<br>microscopic<br>comparison<br>with control | 25 <sup>°</sup> C;; 100-250 ft-c,<br>continuous                         | 1: |
| 11                        | n<br>                                                  | Raphidonema<br>longiseta                                            | 1             | Т                | ΥT.           | 11                                             | n                                                         | n                                                                       | 12 |
| *1                        | 1                                                      | Scenedesmus obliquus                                                | . 1           | Т                | 11            | 11                                             |                                                           | ti -                                                                    | 12 |

a cell factor increase

L i

1 1

| Compound       | Source of Compound        |                                              | 1                       |        |                        | ory Bioassays                                     |                                           |                                                                             |     |
|----------------|---------------------------|----------------------------------------------|-------------------------|--------|------------------------|---------------------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------|-----|
| Compound       | (Observance in natural    | Microorganism                                |                         |        | Re                     | sponse to Compo                                   | ound                                      |                                                                             |     |
|                | system; group; reference) |                                              | Concentration<br>(mg/l) | Effect | Time of<br>Observation | Study<br>Method                                   | Parameter<br>Measured                     | Conditions<br>Temp.; pH; Light                                              | Ref |
| ctidone        | Streptomyces griseus      | CHLOROPHYCEAE (C<br>Scenedesmus obliquus     | ontinued)<br>2          | т      | 3. 7. 14. 21 d         | culture solution                                  | macro and/or                              | 22 <sup>°</sup> C;; 140 ft-c,                                               | 81  |
| cycloheximide) | (; Bacteria; 32.8, 120)   |                                              |                         |        |                        | (25 ml Erlen-<br>meyer flask)                     | microscopic<br>comparison<br>with control | continuous (125,000<br>cell/ml inoculated)                                  | 81  |
|                | U U                       | Stichococcous<br>bacillaris<br>CHRYSOPHYCEAE | 50                      | Т      | 3 wk                   | culture solution<br>(flask)                       | 11                                        | 25 <sup>°</sup> C;; 100-250 ft-c,<br>continuous                             |     |
|                | п                         | Gomphonema<br>parvulum                       | 2                       | N      | 3 da                   | culture solution<br>(25 ml Erlen-<br>meyer flask) | "                                         | 22 <sup>°</sup> C;; 140 ft-c,<br>continuous (125,000<br>cell/ml inoculated) | 81  |
| u.             | 11                        | 11 11                                        | 2                       | т      | 7, 14, 21 da           | 11                                                |                                           | "                                                                           | 81  |
| 11             | 11                        | Navicula minima                              | 20                      | т      | 3 wk                   | culture solution<br>(flask)                       | u                                         | 25 <sup>0</sup> C;; 100-250 ft-c,<br>continuous                             | 128 |
| 11             | 11                        | " pelliculosa                                | 2                       | Р      | 1, 2 wk                | agar slant                                        | "                                         | 24 <sup>°</sup> C;; 200 ft-c,<br>12 hr daily                                | 46  |
| 11             | 11                        | пп                                           | 2                       | Т      | 3 wk                   |                                                   | 11                                        |                                                                             | 46  |
| 11             | "                         | н                                            | 20                      | т      | 1, 2 wk                | n                                                 |                                           | 11                                                                          | 46  |
| 11             | n                         | <u>Nityschia</u> <u>palea</u> (Ktz)          | 2                       | Т      | 3, 7, 14, 21 da        | culture solution<br>(25 ml Erlen-<br>meyer flask) | "                                         | 22 <sup>°</sup> C;; 140 ft-c,<br>continuous (125,000<br>cell/ml inoculated  | 81  |
| "              |                           | Polydriella<br>helvetica                     | 20                      | P      | 1, 2, 3 wk             | culture solution<br>(150 x 16 mm<br>test tube)    | 11                                        | 24 <sup>°</sup> C;; 200 ft-c,<br>12 hr daily                                | 46  |
| 11             | TI II                     | 11 11                                        | 200                     | т      | l wk                   | 5.6                                               | 14                                        |                                                                             | 46  |
| 11             | n n                       | н п                                          | 50                      | т      | 2, 3 wk                | n                                                 | ч                                         | п                                                                           | 46  |
| "              |                           | <u>Tribonema</u> <u>aequole</u>              | 1                       | т      | 3 wk                   | culture solution<br>(flask)                       | "                                         | 25 <sup>°</sup> C;; 100-250 ft-c,<br>continuous                             | 128 |

1

~

I i

| Deservance in natural<br>sem; group; reference)<br>omyces griseus<br>cteria; 32.8, 120)<br>"<br>us polymyxa<br>rosporus)<br>Bacteria; 13, 102, 28.3) | Microorganism<br>EUGLENOPHYCEAE<br>Euglena gracilis "Z"<br>" "<br><u>MYXOPHYCEAE</u><br><u>Anabaena cylindrica</u><br>" <u>variabilis</u> | Concentration<br>(mg/l)<br>1<br>100<br>200<br>5 | Effect<br>P<br>T<br>N<br>T                                                                                                        | Time of<br>Observation<br>1, 2, 3 wk<br>1, 2, 3 wk<br>1, 2, 3 wk<br>1, 2, 3 wk                                                                                                                                              | sponse to Comp<br>Study<br>Method<br>culture solution<br>(150 x 16 mm<br>test tube)<br>"<br>agar slant<br>(cyanophycean<br>agar)<br>culture solution<br>(inorganic, 500                                               | Parameter<br>Measured<br>"<br>"<br>light transmit-                                                                                                                                                                                                                                                                                                                               | Conditions<br>Temp.; pH; Light<br>24°C;; 200 ft-c,<br>12 hr daily<br>"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ref.<br>46<br>46                                                                                                                                                                                                                                                                                                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| omyces griseus<br>cteria; 32.8, 120)<br>''<br><u>us polymyxa</u><br><u>crosporus)</u><br>Bacteria; 13, 102, 28.3)                                    | EUGLENOPHYCEAE<br>Euglena gracilis "Z"<br>" "<br><u>MYXOPHYCEAE</u><br>Anabaena cylindrica                                                | (mg/l)<br>1<br>100<br>200                       | P<br>T<br>N                                                                                                                       | Observation<br>1, 2, 3 wk<br>1, 2, 3 wk<br>1, 2, 3 wk<br>5 da                                                                                                                                                               | Method<br>culture solution<br>(150 x 16 mm<br>test tube)<br>"<br>agar slant<br>(cyanophycean<br>agar)<br>culture solution                                                                                             | Measured<br>"<br>"<br>light transmit-                                                                                                                                                                                                                                                                                                                                            | Temp.; pH; Light<br>24 <sup>0</sup> C;; 200 ft-c,<br>12 hr daily<br>"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 46<br>46                                                                                                                                                                                                                                                                                                                                           |
| us polymyxa<br>rosporus)<br>Bacteria; 13, 102, 28.3)                                                                                                 | Euglena gracilis "Z"<br>" "<br><u>MYXOPHYCEAE</u><br><u>Anabaena cylindrica</u>                                                           | 100<br>200                                      | T                                                                                                                                 | 1, 2, 3 wk<br>1, 2, 3 wk<br>5 da                                                                                                                                                                                            | (150 x 16 mm<br>test tube)<br>"<br>agar slant<br>(cyanophycean<br>agar)<br>culture solution                                                                                                                           | "<br>light transmit-                                                                                                                                                                                                                                                                                                                                                             | 12 hr daily<br>''                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 46                                                                                                                                                                                                                                                                                                                                                 |
| us polymyxa<br>rosporus)<br>Bacteria; 13, 102, 28.3)                                                                                                 | " "<br><u>MYXOPHYCEAE</u><br><u>Anabaena</u> <u>cylindrica</u>                                                                            | 100<br>200                                      | T                                                                                                                                 | 1, 2, 3 wk<br>1, 2, 3 wk<br>5 da                                                                                                                                                                                            | (150 x 16 mm<br>test tube)<br>"<br>agar slant<br>(cyanophycean<br>agar)<br>culture solution                                                                                                                           | "<br>light transmit-                                                                                                                                                                                                                                                                                                                                                             | 12 hr daily<br>''                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 46                                                                                                                                                                                                                                                                                                                                                 |
| <u>us polymyxa</u><br>rosporus)<br>Bacteria; 13, 102, 28.3)                                                                                          | MYXOPHYCEAE<br>Anabaena cylindrica                                                                                                        | 200                                             | N                                                                                                                                 | l, 2, 3 wk<br>5 da                                                                                                                                                                                                          | agar slant<br>(cyanophycean<br>agar)<br>culture solution                                                                                                                                                              | "<br>light transmit-                                                                                                                                                                                                                                                                                                                                                             | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                    |
| rosporus)<br>Bacteria; 13, 102, 28.3)                                                                                                                | Anabaena cylindrica                                                                                                                       |                                                 |                                                                                                                                   | 5 da                                                                                                                                                                                                                        | (cyanophycean<br>agar)<br>culturesolution                                                                                                                                                                             | light transmit-                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 46                                                                                                                                                                                                                                                                                                                                                 |
| rosporus)<br>Bacteria; 13, 102, 28.3)                                                                                                                |                                                                                                                                           |                                                 |                                                                                                                                   | 5 da                                                                                                                                                                                                                        | (cyanophycean<br>agar)<br>culturesolution                                                                                                                                                                             | light transmit-                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 46                                                                                                                                                                                                                                                                                                                                                 |
| n                                                                                                                                                    | " <u>variabilis</u>                                                                                                                       | 5                                               | т                                                                                                                                 |                                                                                                                                                                                                                             | culturesolution<br>(inorganic, 500                                                                                                                                                                                    | light transmit-                                                                                                                                                                                                                                                                                                                                                                  | .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                      |                                                                                                                                           |                                                 |                                                                                                                                   |                                                                                                                                                                                                                             | ml Erlenmeyer<br>flask)                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                  | 25 <sup>0</sup> C; 7; 700-1000 ft-c,<br>continuous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 36                                                                                                                                                                                                                                                                                                                                                 |
| 11                                                                                                                                                   | Cylindrospermun<br>licheniforme B & F                                                                                                     | 2                                               | P                                                                                                                                 |                                                                                                                                                                                                                             | culture solution<br>(25 ml Erlen-<br>meyer flask)                                                                                                                                                                     | macro and/or<br>microscopic<br>comparison<br>with control                                                                                                                                                                                                                                                                                                                        | 22 <sup>°</sup> C;; 140 ft-c,<br>continuous (125,000<br>cell/ml inoculated)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 81                                                                                                                                                                                                                                                                                                                                                 |
| "                                                                                                                                                    | <u>Microcystis</u><br><u>aeruginosa</u>                                                                                                   | 2                                               | т                                                                                                                                 | 3, 7, 14, 21 da                                                                                                                                                                                                             | 11                                                                                                                                                                                                                    | "                                                                                                                                                                                                                                                                                                                                                                                | "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 81                                                                                                                                                                                                                                                                                                                                                 |
| n                                                                                                                                                    | <u>Nostoc</u> sp                                                                                                                          | 10-20 units/ml                                  | T<br>algicidal                                                                                                                    | l mo                                                                                                                                                                                                                        | . 11                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                  | 22 <sup>0</sup> C; 8.2; 140 ft-c,<br>continuous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 33                                                                                                                                                                                                                                                                                                                                                 |
| 11 .                                                                                                                                                 | Phormidium sp                                                                                                                             | 20-40 units/ml                                  | 11                                                                                                                                | 11                                                                                                                                                                                                                          | "                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                  | п                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 33                                                                                                                                                                                                                                                                                                                                                 |
| n .                                                                                                                                                  |                                                                                                                                           | 2                                               | P                                                                                                                                 | l wk                                                                                                                                                                                                                        | culture solution<br>150 x 16 mm<br>test tube)                                                                                                                                                                         | n <sup>.</sup>                                                                                                                                                                                                                                                                                                                                                                   | 24 <sup>°</sup> C;; 200 ft-c,<br>12 hr daily                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 46                                                                                                                                                                                                                                                                                                                                                 |
| <b>u</b> ,                                                                                                                                           | 11 n                                                                                                                                      | 20                                              | T<br>algicidal                                                                                                                    | l mo                                                                                                                                                                                                                        | п                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 46                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                      | 11<br>11                                                                                                                                  | " <u>Nostoc</u> sp<br>" <u>Phormidium</u> sp    | Imit rocystis     2       aeruginosa     10-20 units/ml       "     Phormidium       "     Phormidium       "     2       "     2 | Imeriorysins     2     1       aeruginosa     10-20 units/ml     T       "     Phormidium     sp     20-40 units/ml       "     "     2     P       "     "     2     P       "     "     2     P       "     "     2     P | Millocystis     2     1     3, 7, 14, 21 da       "     Nostoc sp     10-20 units/ml     T     1 mo       "     Phormidium sp     20-40 units/ml     "     "       "     Phormidium sp     20-40 units/ml     "     " | Image: Notice sp     1     3, 7, 14, 21 da     "       "     Nostoc sp     10-20 units/ml     T     1 mo     "       "     Phormidium     sp     20-40 units/ml     "     "       "     Phormidium     sp     20-40 units/ml     "     "       "     2     P     1 wk     culture solution       "     2     P     1 wk     culture solution       "     20     T     1 mo     " | Implicit Column size       Implicit Column size <t< td=""><td>Milliocystic<br/>aeruginosa213, 7, 14, 2l da11"Nostoc sp<math>10-20</math> units/mlTl mo""<math>22^{\circ}C</math>; 8, 2; 140 ft-c, continuous"Phormidium sp<math>20-40</math> units/ml""""<math>22^{\circ}C</math>; 8, 2; 140 ft-c, continuous"Phormidium sp<math>20-40</math> units/ml""""<math>24^{\circ}C</math>;; 200 ft-c, 12 hr daily""2P1 wkculture solution"<math>24^{\circ}C</math>;; 200 ft-c, 12 hr daily</td></t<> | Milliocystic<br>aeruginosa213, 7, 14, 2l da11"Nostoc sp $10-20$ units/mlTl mo"" $22^{\circ}C$ ; 8, 2; 140 ft-c, continuous"Phormidium sp $20-40$ units/ml"""" $22^{\circ}C$ ; 8, 2; 140 ft-c, continuous"Phormidium sp $20-40$ units/ml"""" $24^{\circ}C$ ;; 200 ft-c, 12 hr daily""2P1 wkculture solution" $24^{\circ}C$ ;; 200 ft-c, 12 hr daily |

| Compound                               | Source of Compound                                                                 |                                               | <u> </u>                |                      |                        | ory Bioassays                                      |                                                           |                                                      |        |
|----------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------|-------------------------|----------------------|------------------------|----------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------|--------|
| Compound                               | (Observance in natural                                                             | Microorganism                                 |                         | · — —                |                        | sponse to Comp                                     |                                                           |                                                      |        |
|                                        | system; group; reference)                                                          |                                               | Concentration<br>(mg/l) | Effect               | Time of<br>Observation | Study<br>Method                                    | Parameter<br>Measured                                     | Conditions<br>Temp.; pH; Light                       | Ref.   |
| Aerosporin<br>polymyxin B<br>sulphate) | <u>Bacillus polymyxa</u><br>( <u>B. aerosporus)</u><br>(; Bacteria; 13, 102, 28.3) | CHLOROPHYCEAE<br>Chlomydomonas<br>aglaeformis | 1                       | Р                    | l, 2, 3 wk             | culture solution<br>(150 x 16 mm<br>test tube)     | macro and/or<br>microscopic<br>comparison<br>with control | 24 <sup>°</sup> C;; 200 ft-c,<br>12 hr daily         | 46     |
| "                                      |                                                                                    | н н                                           | 50                      | T<br>algicidal       | 11                     |                                                    |                                                           |                                                      | 46     |
| "                                      | u                                                                                  | <u>Chlomydomonas</u> sp                       | 10-20 units/ml          | "                    | l mo                   | culture solution<br>(24 ml Erlen-<br>meyer flask)  | н                                                         | 22 <sup>°</sup> C; 7.8; 140 ft-c,<br>continuous      | 33     |
| 11                                     | n                                                                                  | Chlorella pyrenoidosa                         | 5                       | Т                    | 5 da                   | culture solution<br>(400 ml Erlen-<br>meyer flask) | optical density<br>at 550 mµ                              | 25 <sup>°</sup> C; 7; 700-1000 ft-c,<br>continuous   | 36     |
| 11                                     | 11                                                                                 | 11 II                                         | .5                      | P(30%) <sup>b</sup>  | 40 hr                  | culture solution<br>(flask)                        | optical density<br>at 610 mµ                              | 25 <sup>°</sup> C; 5.1; 700-1000 ft-c<br>continuous  | , 106. |
| 11                                     | п                                                                                  | . 11 11                                       | .5                      | N(0%) <sup>b</sup>   | "                      | 11                                                 | 11                                                        | 25 <sup>°</sup> C; 6.0;700,1000 ft-c,<br>continuous  | 106.   |
| 11                                     | n                                                                                  | н н                                           | .5                      | N(0%) <sup>b</sup>   | 31                     | 11                                                 |                                                           | 25 <sup>°</sup> C; 7.4; 700-1000 ft-c,<br>continuous | 106.9  |
| 11                                     | "                                                                                  | ) II II<br>                                   | 5                       | T(100%) <sup>b</sup> | 11                     | 11                                                 |                                                           | 25 <sup>°</sup> C; 5.1; 700-1000 ft-c,<br>continuous | 106.   |
| 11                                     | 11                                                                                 | . 11 11                                       |                         | T(100%) <sup>b</sup> |                        | 11                                                 |                                                           | 25 <sup>°</sup> C; 6.0; 700-1000 ft-c,<br>continuous | 106.   |
| 11                                     | n                                                                                  | л п                                           | 5                       | P(93%) <sup>b</sup>  | 11                     | "                                                  |                                                           | 25 <sup>°</sup> C; 7.4;700-1000 ft-c,<br>continuous  | 106.5  |
|                                        |                                                                                    |                                               |                         |                      |                        |                                                    |                                                           |                                                      |        |
|                                        |                                                                                    |                                               |                         |                      |                        |                                                    |                                                           |                                                      |        |
|                                        |                                                                                    |                                               |                         | (%) <sup>b</sup> per | cent inhibition        | comparison wit                                     | h control                                                 |                                                      |        |

I I

Class of Compound: ANTIBIOTICS

1

| c .                                     | Source of Compound                                                           |                                   |                         |        |                        | ory Bioassays                                     |                                                           |                                                                            |      |
|-----------------------------------------|------------------------------------------------------------------------------|-----------------------------------|-------------------------|--------|------------------------|---------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------------|------|
| Compound                                | (Observance in natural                                                       | Microorganism                     | L                       |        |                        | sponse to Comp                                    |                                                           |                                                                            | D. ( |
|                                         | system; group; reference)                                                    |                                   | Concentration<br>(mg/l) | Effect | Time of<br>Observation | Study<br>Method                                   | Parameter<br>Measured                                     | Conditions<br>Temp.; pH; Light                                             | Ref. |
|                                         |                                                                              | CHLOROPHYCEAE                     | (Continued)             |        |                        |                                                   |                                                           |                                                                            |      |
| Aerosporin<br>(polymyxin B<br>sulphate) | Bacillus polymyxa<br>( <u>B. aerosporus</u> )<br>(; Bacteria; 13, 102, 28.3) | <u>Chlorella</u> <u>variegata</u> | 2                       | т      | 3,7,14,21 da           | culture solution<br>(25 ml Erlan-<br>meyer flask) | macro and/or<br>microscopic<br>comparison<br>with control | Ź2 <sup>°</sup> C;; 140 ft-c,<br>continuous (125,000 cel<br>ml inoculated) | 81   |
| 11                                      | 11                                                                           | <u>Chloroccum</u><br>aplanasporum | 300 units               | Т      | 0-3 wks                | agar medium                                       | examination of<br>zone of inhibitio<br>(dish technique)   | 22 <sup>°</sup> C;; 250-300 ft-c,<br>n 12 hrs. daily                       | 18   |
| 11                                      | 11                                                                           | " diplobionticum                  |                         | 11     | "                      |                                                   | n                                                         | 11                                                                         | 18   |
| 11                                      | U.                                                                           | " echinozygotum                   | 11                      | +1     |                        |                                                   | 11                                                        | 11                                                                         | 18   |
| 11                                      | н                                                                            | " ellipsoideum                    | п                       | 11     | 11                     |                                                   |                                                           |                                                                            | 18   |
| "                                       | "                                                                            | " hypnosporum                     | 11                      |        | *1                     |                                                   | 11                                                        | 11                                                                         | 18   |
| TI.                                     | 11                                                                           | " intermedium                     | 11                      |        |                        | 11                                                | 11                                                        |                                                                            | 18   |
| 11                                      | 11                                                                           | " macrostigmoticu                 | um ''                   |        | 11                     | 11                                                | 11                                                        | 11                                                                         | 18   |
| 11                                      | 11                                                                           | " <u>minutum</u>                  | 11                      | "      |                        | 11                                                | 11                                                        |                                                                            | 18   |
| 11                                      | 11                                                                           | " <u>multinucleatum</u>           | 1 11                    |        | 11                     | 11                                                | 11                                                        |                                                                            | 18   |
| 11                                      | 11                                                                           | " <u>oleofaciens</u>              | 11                      |        |                        | 11                                                | 11                                                        | n                                                                          | 18   |
| U .                                     | 11                                                                           | " perforatum                      | 11                      | п      | 11                     | 11                                                | 11                                                        |                                                                            | 18   |
|                                         | 11                                                                           | " pinguideum                      |                         | 11     | 11                     | 11                                                | 11                                                        |                                                                            | 18   |
| н                                       | н                                                                            | " punctatum                       |                         | 11     | 11                     | 11                                                | 11                                                        |                                                                            | 18   |
| 11                                      | 11                                                                           | " scabellum                       | 11                      | ,,     | 11                     | 11                                                | 11                                                        |                                                                            | 18   |
| 11                                      | 11                                                                           | " tetrasporum                     | n                       | 11     | 11                     | н                                                 |                                                           |                                                                            | 18   |
| 11                                      | 11                                                                           | " vacuolatum                      |                         | 11     | 11                     | 11                                                | 11                                                        | 11                                                                         | 18   |
| 11                                      | н                                                                            | " wimmeri                         |                         | 11     | 11                     | ¢1                                                | 11                                                        | 11                                                                         | 18   |

I I

~

I c

| Compound                                | Source of Compound                                                           | ·                              |                         |        |                        | ory Bioassays                                                        |                                                           |                                                                             |      |
|-----------------------------------------|------------------------------------------------------------------------------|--------------------------------|-------------------------|--------|------------------------|----------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------|------|
| Compound                                | (Observance in natural                                                       | Microorganism                  |                         |        |                        | sponse to Comp                                                       |                                                           |                                                                             |      |
|                                         | system; group; reference)                                                    |                                | Concentration<br>(mg/l) | Effect | Time of<br>Observation | Study<br>Method                                                      | Parameter<br>Measured                                     | Conditions<br>Temp.; pH; Light                                              | Ref. |
|                                         |                                                                              | CHLOROPHYCEAE (                | Continued)              |        |                        |                                                                      |                                                           |                                                                             |      |
| Aerosporin<br>(polymyxin B<br>sulphate) | Bacillus polymyxa<br>( <u>B. aerosporus</u> )<br>(; Bacteria; 13, 102, 28.3) | <u>Scenedesmus</u><br>obliquus | 2                       | Т      | 3,7,14 da              | culture solutior<br>(25 ml Erlen-<br>meyer flask)                    | macro and/or<br>microscopic<br>comparison<br>with control | 22 <sup>°</sup> C;; 140 ft-c,<br>continuous (125,000<br>cell/ml inoculated) | 81   |
| н                                       |                                                                              |                                | 2                       | N      | 21 da                  |                                                                      |                                                           | 11                                                                          | 81   |
| 11                                      |                                                                              | п                              | 40                      | Т      | 5 da                   | 500 ml Erlen-                                                        | % transmittanc<br>(spectrophotom-<br>eter) 550 mµ<br>a)   | e 25 <sup>0</sup> C; 7; 700-1000 ft <sub>-C</sub><br>continuous             | 36   |
| 11                                      | 11                                                                           | n                              | 1000                    | Р      | 5 da                   | culture solution<br>(500 ml Erlen-<br>meyer flask)<br>(organic media | 11                                                        | n                                                                           | 36   |
| "                                       | n                                                                            | SP<br><u>CHRYSOPHYCEAE</u>     | 80 units/ml             | N      | l mo                   | culture solution<br>(25 ml Erlen-<br>meyer flask                     | macro and/or<br>microscopic<br>comparison                 | 22 <sup>0</sup> C; 7.8; 140 ft-c,<br>continuous                             | 33   |
| "                                       |                                                                              | <u>Gomphonema</u> sp           | 5-10 units/ml           | т      | l mo                   | 11                                                                   | with control                                              | 22 <sup>°</sup> C; 7.8; 140 ft-c,<br>continuous                             | 33   |
| "                                       |                                                                              | <u>Gomphonema</u><br>parvulum  | 2                       | т      | 3, 7, 14, 21 da        |                                                                      | 11                                                        | 22 <sup>°</sup> C;; 140 ft -c,<br>continuous; (125,000<br>ml inoculated)    | 81   |
| 11                                      | 11                                                                           | Navicula pelliculosa           | 200                     | N      | 1,2,3 wk               | agar medium                                                          | 11                                                        | 24 <sup>°</sup> C;; 200 ft-c,<br>l2 hrs daily                               | 46   |
|                                         |                                                                              | <u>Nitzschia</u> palea         | 2                       | Т      | 3, 7, 14, 21 da        | <b>c</b> ulture solutior<br>(25 ml Erlen-<br>meyer flask)            | L 11                                                      | 22°C;; 140 ft-c,<br>continuous; (125,000<br>ml inoculated)                  | 81   |
| 11                                      | n                                                                            | <u>Nitzschia</u> sp            | 10-20 units/ml          | Т      | l mo                   | 11 11                                                                | 11                                                        | 22 <sup>0</sup> C; 7.8; 140 ft-c,<br>continuous                             | 33   |
| 11                                      | n                                                                            | Polydriella helvetica          | 200                     | N      | 1, 2, 3wk              | culture solutior<br>(150 x 16 mm<br>test tube)                       |                                                           | 24 <sup>°</sup> C;; 200 ft-c,<br>12 hrs daily                               | 46   |

ı ı İ

| Compound       (beservance in natural system; group; reference)       Microorganism       Concentration Concentration (mg/1)       Effect       Time of Observation       Parameter Conditions         Aecosporin (polymyxin B aulphate)       Bacillus polymyxa (b. aerospora) (-; Bacteria; 13, 102, 28, 5)       EUGENOPHYCEAE (Continued) (C.; Bacteria; 13, 102, 28, 5)       EUGENOPHYCEAE (Continued) (C.; Bacteria; 13, 102, 28, 5)       EUGENOPHYCEAE (Continued) (C.; Bacteria; 13, 102, 28, 5)       BACTERIUM       N       1, 2, 3 wK       culture solution microscopic interocopic (S00 end Erence) (S00 end                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u> </u>     | Source of Compound                                        |                          |           |        |           | ory Bioassays  |                                   |                                                    |      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------------------------------------------------|--------------------------|-----------|--------|-----------|----------------|-----------------------------------|----------------------------------------------------|------|
| System; group; reference)     Concentration<br>(mg/1)     Effect     Time of<br>Observation     Study<br>Method     Parameter<br>Method     Conditions<br>Temp; pH; Light       Aerosporin<br>guiphate)     Bacillus polymyxa<br>(-:; Bacteris; 13, 102, 28, 3)     EUGENOPHYCEAE<br>(ontinued)     200     N     1, 2, 3 wk     culture solution<br>microscopic     macro and/or<br>microscopic     24 <sup>0</sup> C; -:; 200 ft -c,<br>12 hrs, daily       "     "     "     BACTERIUM<br>Archromobacter sp     1, 25     T     2 da     taiture solution<br>foot microscopic     24 <sup>0</sup> C; -:; 200 ft -c,<br>12 hrs, daily       "     "     "     "     5     T     3 da     "     "        "     "     "     5     T     3 da     "     "        "     "     "     5     T     3 da     "     "        "     "     "     5     T     3 da     "     "        "     "     Pseudomonas sp     5     T     3 da     "     "        "     "     Pseudomonas sp     5     T     3 da     "     "        "     "     Pseudomonas sp     200     N     1,2,3 wk     agar medium<br>test tube)         "     "     Phormidiu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Compound     |                                                           | Microorganism            |           |        |           | sponse to Comp | ound                              |                                                    |      |
| Accrosprin<br>(c) space rund<br>(c) space rund<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              | system; group; reference)                                 |                          |           | Effect |           |                |                                   |                                                    | Ref. |
| ""Archromobacter sp1.25T2 daculture solution<br>(500 ml Erlen- (spectrophoto-<br>meter) 615 ma $Z5^{\circ}_{C}$ ; 7; 700-1000 ft-c.<br>continuous""""""5T3 da"""""""""""5T3 da""""""""""""5T3 da""""""""""""""3 da""""""""""""""""3 da""""""""""""""""3 da""""""""""""""""3 da""""""""""""""""3 da""""""""""""""""3 da""""""""""""""""3 da""""""""""""""""""""""""""""""Anabaena<br>cylindrica200N1,2,3 wkagar medium<br>test tube)""24°C;; 200 ft-c,<br>12 bre, daily"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""" <td>(polymyxin B</td> <td>(B. aerosporus)</td> <td></td> <td></td> <td>N</td> <td>1,2,3 wk</td> <td>(150 x 16 mm</td> <td>microscopic</td> <td>24<sup>0</sup>C;; 200 ft-c,<br/>12 hrs. daily</td> <td>46</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (polymyxin B | (B. aerosporus)                                           |                          |           | N      | 1,2,3 wk  | (150 x 16 mm   | microscopic                       | 24 <sup>0</sup> C;; 200 ft-c,<br>12 hrs. daily     | 46   |
| """""""""" $\frac{1}{2}$ ada""""""" $\frac{1}{2}$ ada $\frac{1}{2}$ ada""""""" $\frac{1}{2}$ adadeteriumsp5T3 da"""""" $\frac{1}{2}$ adadeteriumsp5T3 da""""""" $\frac{1}{2}$ adadeteriumsp5T3 da"""""""" $\frac{1}{2}$ adadeteriumsp5T3 da""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""" </td <td></td> <td></td> <td></td> <td>1.25</td> <td>т</td> <td>2 da</td> <td>(500 ml Erlen-</td> <td>% transmittance<br/>(spectrophoto-</td> <td>25<sup>°</sup>C; 7; 700-1000 ft-c,<br/>continuous</td> <td>36</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                                                           |                          | 1.25      | т      | 2 da      | (500 ml Erlen- | % transmittance<br>(spectrophoto- | 25 <sup>°</sup> C; 7; 700-1000 ft-c,<br>continuous | 36   |
| InvestigationInvestigationInvestigationInvestigationInvestigationInvestigationInvestigation"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11           | 11                                                        | 17 11                    | 5         | т      | 3 da      | 11             | 11                                | 11                                                 | 36   |
| ImphotericiaStreptomyces nodosus<br>(: Bacteria: 114.8)MYXOPHYCEAE<br>Anabaena<br>cylindrica200N1, 2, 3 wkagar medium<br>macro and/or<br>microscopic<br>comparison<br>with control"""""Phormidium sp200N1, 2, 3 wkculture solution<br>(150 x 16 mm<br>test tube)"""""CHLOROPHYCEAE<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11           | н                                                         | <u>Flavabacterium</u> sp | 5         | т      | 3 da      |                | *1                                | 11                                                 | 36   |
| mphotericin       Streptomyces nodosus       Anabaena       200       N       1, 2, 3 wk       agar medium       macro and/or<br>microscopic<br>comparison<br>with control       24°C;; 200 ft-c,<br>12 hrs. daily         "       "       "       Phormidium sp       200       N       1, 2, 3 wk       agar medium       macro and/or<br>microscopic<br>comparison<br>with control       24°C;; 200 ft-c,<br>12 hrs. daily         "       "       "       Phormidium sp       200       N       1, 2, 3 wk       culture solution<br>(150 x 16 mm<br>test tube)       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | It           |                                                           | Pseudomonas sp           | 5         | Т      | 3 da      | 11             | 11                                | н                                                  | 36   |
| Image: Second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mphotericin  | <u>Streptomyces</u> <u>nodosus</u><br>(; Bacteria; 114.8) | Anabaena                 | 200       | N      | l, 2,3 wk | agar medium    | microscopic<br>comparison         |                                                    | 46   |
| """       Chlamydomonas<br>agloeaformis       200       N       1,2,3 wk       ""       ""       ""       ""         ""       ""       Chlorococcum<br>aplanosporum       100 meq       N       0-3 wk       agar medium       examination of<br>zone of inhibition       22°C;; 250-300 ft-c,<br>zone of inhibition         ""       "       "       diplobionticum       100 meq       T       0-3 wk       ""       ""       "         ""       "       diplobionticum       100 meq       T       0-3 wk       "       "       "       "         ""       "       diplobionticum       100 meq       T       0-3 wk       "       "       "       "         ""       "       100 meq       T       0-3 wk       "       "       "       "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n            |                                                           |                          | 200       | N      | 1,2,3 wk  | (150 x 16 mm   | 11                                | u                                                  | 46   |
| Image: Childrococcum aplanosporum       100 meq       N       0-3 wk       agar medium       examination of zone of inhibition       22°C;; 250-300 ft-c, zone of inhibition         Image: I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n            | 11                                                        | Chlamydomonas            | 200       | N      | 1,2,3 wk  | 11             | 11                                | 11                                                 | 46   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | "            | 11                                                        |                          | 100 meq   | N      | 0-3 wk    | agar medium    | zone of inhibitio                 | 22 <sup>0</sup> C;; 250-300 ft-c,<br>n 12 hr daily | 18   |
| $\frac{1}{2} = \frac{1}{2} = \frac{1}$ |              | 11                                                        | " diplobionticum         | 100 meq   | т      | 0-3 wk    | 11             |                                   |                                                    | 18   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11           | 11                                                        | " echinozygotum          | - 100 meg | т      | 0-3 wk    | 11             | п                                 |                                                    | 18   |
| n enpsoldeum 100 meg N 0-3 wk '' '' ''                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11           | 11                                                        | " ellipsoideum           | 100 meq   | N      | 0-3 wk    | 11             | 11                                | п                                                  | 18   |

| Compound     | Source of Compound                          |                                                     | · · · · · · · · · · · · · · · · · · · |                | Laborat                | ory Bioassays                                 |                                                           |                                                    |     |
|--------------|---------------------------------------------|-----------------------------------------------------|---------------------------------------|----------------|------------------------|-----------------------------------------------|-----------------------------------------------------------|----------------------------------------------------|-----|
| Сопроина     | (Observance in natural                      | Microorganism                                       |                                       |                |                        | sponse to Comp                                |                                                           |                                                    |     |
|              | system; group; reference)                   |                                                     | Concentration<br>(mg/l)               | Effect         | Time of<br>Observation | Study<br>Method                               | Parameter<br>Measured                                     | Conditions<br>Temp.; pH; Light                     | Ref |
|              |                                             | CHLOROPHYCEAE                                       | Continued)                            |                |                        |                                               |                                                           |                                                    |     |
| Amphotericin | Streptomyces nodosus<br>(; Bacteria; 114.8) | Chlorococcum<br>hypnosporum                         | 100 meq                               | N              | 0-3 wk                 | agar medium                                   | examination of<br>zone of inhibition<br>(disk technique)  | 22 <sup>°</sup> C;; 250-300 ft-c,<br>n 12 hr daily | 18  |
| "            | п                                           | " <u>intermedium</u>                                | 100 meq                               | т              | 0-3 wk                 |                                               | 11                                                        | 11                                                 | 18  |
| 11           | 11                                          | " <u>macrostigmatis</u>                             | n 100 meq                             | N              | 0-3 wk                 |                                               | 11                                                        | **                                                 | 18  |
| *1           | 11                                          | " <u>minutum</u>                                    | 100 meg                               | Р              | 0-3 wk                 |                                               |                                                           | u .                                                | 18  |
| 11           | 11                                          | " <u>multinucleatum</u>                             | 100 meq                               | N              | 0-3 wk                 | 11                                            | **                                                        | 11                                                 | 18  |
| "            |                                             | " <u>oleofaciens</u>                                | 100 meq                               | N              | 0-3 wk                 | 11                                            |                                                           | 11                                                 | 18  |
| 11           | и                                           | " perforatum                                        | 100 meq                               | Т              | 0-3 wk                 | 11                                            | 11                                                        |                                                    | 18  |
| 11           | 11                                          | " pinguideum                                        | 100 meq                               | Т              | 0-3 wk                 |                                               | 11                                                        | 11                                                 | 18  |
| "            | 11                                          | " punctatum                                         | 100 meq                               | N              | 0-3 wk                 | "                                             | 11                                                        | n                                                  | 18  |
| 11           | 11                                          | " <u>scabellum</u>                                  | 100 meq                               | N              | 0-3 wk                 | 11                                            |                                                           | п                                                  | 18  |
| "            | 11                                          | " <u>tetrasporum</u>                                | 100 meq                               | N              | 0-3 wk                 | 11                                            | 11                                                        |                                                    | 18  |
| n            | 11                                          | " <u>vacualatum</u>                                 | 100 meq                               | N              | 0-3 wk                 |                                               | 11                                                        | п                                                  | 18  |
| 11           | 11                                          | " <u>wimmeri</u>                                    | 100 meq                               | Т              | 0-3 wk                 |                                               | 11                                                        | n                                                  | 18  |
| "            | 17                                          | <u>CHRYSOPHYCEAE</u><br><u>Navicula</u> pelliculosa | 2                                     | Р              | l wk                   |                                               | macro and/or<br>microscopic<br>comparison<br>with control | 24 <sup>0</sup> C;; 200 ft-c,<br>12 hr daily       | 46  |
|              | п                                           | U 11                                                | 100                                   | T<br>algicidal | l wk<br>)              | 11                                            | 11                                                        | 17                                                 | 46  |
| 11           | 11                                          |                                                     | 50                                    | 13             | 2, 3 wk                | 11                                            | 11                                                        | n                                                  | 46  |
|              | u<br>I                                      | Polydriella hehetica                                | 200                                   | N              | l,2,3 wk               | culture solution<br>150 x 16 mm<br>test tube) |                                                           | н                                                  | 46  |

| Compound     | Source of Compound                               |                                                                     |                         |                | Laborat                | ory Bioassays                                  |                                                           |                                                | _   |
|--------------|--------------------------------------------------|---------------------------------------------------------------------|-------------------------|----------------|------------------------|------------------------------------------------|-----------------------------------------------------------|------------------------------------------------|-----|
| Compound     | (Observance in natural system; group; reference) | Microorganism                                                       | Canada di               |                |                        | sponse to Comp                                 |                                                           |                                                | Ref |
|              | system; group; reference)                        |                                                                     | Concentration<br>(mg/l) | Effect         | Time of<br>Observation | Study<br>Method                                | Parameter<br>Measured                                     | Conditions<br>Temp.; pH; Light                 | Kei |
|              | }                                                | EUGLEMOPHYCEAE                                                      | (Continued)             |                |                        |                                                |                                                           |                                                |     |
| Amphotericin | Streptomyces nodosus<br>(; Bacteria; 114.8)      | Euglena gracilis sp                                                 | 200                     | N              | l, 2, 3 wk             | culture solution<br>(150 x 16 mm<br>test tube) | macro and/or<br>microscopic<br>comparison<br>with control | 24 <sup>°</sup> C;; 200 ft-c,<br>12 hrs. daily | 46  |
|              |                                                  | MYXOPHYCEAE                                                         |                         |                |                        |                                                |                                                           |                                                |     |
| Anisomycin   | <pre>ptreptomyces griseolus</pre>                | Anabaena cylindrica                                                 | 200                     | N              | 1,2, wk                | agar medium                                    |                                                           | n                                              | 46  |
| 11           | 11                                               | Phormidium sp                                                       | 200                     | N              | 1,2,3 wk               | culture solution<br>(150 x 16 mm<br>test tube) |                                                           | 11                                             | 46  |
| 11           | n                                                | <u>CHLOROPHYCEAE</u><br><u>Chlamydomonas</u><br><u>agloeoformis</u> | 20                      | Р              | 1, 2 wk                | 11                                             | 11                                                        | 11                                             | 46  |
| н            | п                                                | ,<br>11 - 11                                                        | 50                      | Р              | 3 wk                   |                                                |                                                           |                                                | 46  |
| 11           | n                                                | 11 U                                                                | 100                     | T<br>algicidal | 1, 2, 3 wk<br>)        |                                                | 11                                                        | 11                                             | 46  |
|              | 11                                               | Haematococcus<br>lacustris                                          | 20                      | Р              | 1,2 wk                 | agar medium                                    | 11                                                        |                                                | 46  |
| "            |                                                  |                                                                     | 100                     | T<br>algicidal | 1,2 wk                 | 11                                             |                                                           | ~<br>11                                        | 46  |
|              | п                                                | 11 11                                                               | 50                      |                | 3 wk                   |                                                | 11                                                        |                                                | 46  |
|              | ]                                                | CHRYSOPHYCEAE                                                       |                         |                |                        |                                                |                                                           |                                                |     |
| 11           | 11                                               | Navicula selliculosa                                                | 2                       | P              | l wk                   |                                                | 11                                                        | 11                                             | 46  |
| 11           | 11                                               |                                                                     | 100                     | Т              | l wk                   |                                                | 11                                                        |                                                | 46  |
| 11           | 11                                               |                                                                     | 50                      | algicidal<br>" | )<br>2, 3 wk           |                                                | "                                                         | н                                              | 46  |
|              | п                                                | Polydriella helvetica                                               | 200                     | N              | 1,2,3 wk               | culture solution<br>(150 x 16 mm<br>test tube) | n ''                                                      | п                                              | 46  |

.

· · · · ·

74

1 I

I. . .

| treptomyce aureofaciens<br>; Bacteria; 28.3)                                                                                   | Microorganism<br><u>EUGLENOPHYCEAE</u><br>Euglena gracilis "Z"<br><u>MYXOPHYCEAE</u><br><u>Calothrix</u> sp |                                                                                                                                                           | Effect<br>N<br>N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Time of<br>Observation<br>1,2,3 wk<br>1 mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (140 x 16 mm<br>test tube)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Parameter<br>Measured<br>macro and or<br>microscopic<br>comparison<br>with control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Conditions<br>Temp.; pH; Light<br>24 <sup>°</sup> C;; 200 ft-c,<br>12 hrs. daily                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - Re<br>46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Streptomyces griseolus<br>Streptomyces roseochromogenes<br>; Bacteria; I14.8)<br>Streptomyce aureofaciens<br>; Bacteria; 28.3) | Euglena gracilis "Z"<br><u>MYXOPHYCEAE</u><br><u>Calothrix</u> sp                                           | (mg/1)<br>Continued)<br>200                                                                                                                               | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Observation<br>1,2,3 wk<br>1 mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Method<br>culture solution<br>(140 x 16 mm<br>test tube)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Measured<br>macro and or<br>microscopic<br>comparison                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Temp.; pH; Light<br>24 <sup>°</sup> C;; 200 ft-c,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Streptomyces roseochromogenes<br>; Bacteria; 114.8)<br>Streptomyce aureofaciens<br>; Bacteria; 28.3)                           | Euglena gracilis "Z"<br><u>MYXOPHYCEAE</u><br><u>Calothrix</u> sp                                           | 200                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (140 x 16 mm<br>test tube)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | microscopic<br>comparison                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 24 <sup>°</sup> C;; 200 ft-c,<br>12 hrs. daily                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Streptomyces roseochromogenes<br>; Bacteria; 114.8)<br>Streptomyce aureofaciens<br>; Bacteria; 28.3)                           | <u>MYXOPHYCEAE</u><br><u>Calothrix</u> sp                                                                   |                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (140 x 16 mm<br>test tube)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | microscopic<br>comparison                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 24 <sup>0</sup> C;; 200 ft-c,<br>12 hrs. daily                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ; Bacteria; 28.3)                                                                                                              |                                                                                                             | 2 µg                                                                                                                                                      | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                | 11 11                                                                                                       |                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | culture solutior<br>25 ml Erlen-<br>meyer flask)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (disk method<br>zone of inhibitio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22 <sup>°</sup> C; 8.2; 140 ft -c,<br>continuous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| u .                                                                                                                            |                                                                                                             | 20 µg                                                                                                                                                     | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | l mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                | <u>Microcystis</u> sp                                                                                       | 2 µg                                                                                                                                                      | T (18)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | l mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 11                                                                                                                             | 11 kr                                                                                                       | 20 µg                                                                                                                                                     | T (13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | l mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| "                                                                                                                              | <u>Nostoc</u> sp                                                                                            | 2 µg                                                                                                                                                      | Ν                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | l mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ц                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 11                                                                                                                             | 11 11                                                                                                       | 20 µg                                                                                                                                                     | Ν                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | l mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 11                                                                                                                             | Phormidium sp                                                                                               | 2 µg                                                                                                                                                      | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | l mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 11                                                                                                                             | и п                                                                                                         | 20 µg                                                                                                                                                     | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | l mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 11                                                                                                                             | Symploca sp                                                                                                 | 2 µg                                                                                                                                                      | T (15) <sup>C</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | l mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| n                                                                                                                              | CHLOROPHYCEAE                                                                                               | 20 µg                                                                                                                                                     | T (20) <sup>°</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | l mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | E T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                | Ankistrodesmus sp                                                                                           | 2 µg                                                                                                                                                      | Ν                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | l mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                | 11 11                                                                                                       | 20 µg                                                                                                                                                     | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | l mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | . 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 11                                                                                                                             | Chlamydomonas sp                                                                                            | 2 µg                                                                                                                                                      | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | l mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 11                                                                                                                             | н н                                                                                                         | <b>2</b> 0 µg                                                                                                                                             | T (12) <sup>C</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | l mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                |                                                                                                             |                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                |                                                                                                             |                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                |                                                                                                             |                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                |                                                                                                             |                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                |                                                                                                             | Nostoc sp         """"         """"         Symploca sp         """         CHLOROPHYCEAE         Ankistrodesmus sp         """"         Chlamydomonas sp | "       Nostoc sp       2 μg         "       Nostoc sp       2 μg         "       "       20 μg         "       Phormidium sp       2 μg         "       Phormidium sp       2 μg         "       Symploca sp       2 μg         "       Symploca sp       2 μg         "       CHLOROPHYCEAE         "       Ankistrodesmus sp       2 μg         "       "       20 μg         "       20 μg       20 μg         CHLOROPHYCEAE       "       20 μg         "       "       20 μg         "       20 μg       2 μg | Nostoc sp       2 μg       N         "       Nostoc sp       2 μg       N         "       "       20 μg       N         "       Phormidium sp       2 μg       N         "       Phormidium sp       2 μg       N         "       "       "       20 μg       N         "       Symploca sp       2 μg       T (15) <sup>C</sup> "       "       20 μg       T (20) <sup>C</sup> "       "       20 μg       N         "       "       "       20 μg       N | Nostoc sp       2 μg       N       1 mo         "       Nostoc sp       2 μg       N       1 mo         "       "       20 μg       N       1 mo         "       Phormidium sp       2 μg       N       1 mo         "       Phormidium sp       2 μg       N       1 mo         "       Phormidium sp       2 μg       N       1 mo         "       Symploca sp       2 μg       T (15) <sup>C</sup> 1 mo         "       "       20 μg       T (20) <sup>C</sup> 1 mo         "       "       20 μg       T (20) <sup>C</sup> 1 mo         "       "       20 μg       N       1 mo         "       "       "       20 μg       N       1 mo         "       "       "       "       20 μg       N       1 mo         "       "       "       "       20 μg       N       1 mo         "       " | Nostoc sp     2 μg     N     1 mo     "       "     Nostoc sp     2 μg     N     1 mo     "       "     "     20 μg     N     1 mo     "       "     Phormidium sp     2 μg     N     1 mo     "       "     Phormidium sp     2 μg     N     1 mo     "       "     "     "     20 μg     N     1 mo     "       "     "     "     20 μg     N     1 mo     "       "     "     "     20 μg     T (15) <sup>c</sup> 1 mo     "       "     Symploca sp     2 μg     T (20) <sup>c</sup> 1 mo     "       "     "     20 μg     N     1 mo     " | Nostoc sp       2 µg       N       1 mo       "       "         "       Nostoc sp       2 µg       N       1 mo       "       "         "       "       20 µg       N       1 mo       "       "         "       "       20 µg       N       1 mo       "       "         "       Phormidium sp       2 µg       N       1 mo       "       "         "       Phormidium sp       2 µg       N       1 mo       "       "         "       Symploca sp       2 µg       T (15) <sup>c</sup> 1 mo       "       "         "       Symploca sp       2 µg       T (20) <sup>c</sup> 1 mo       "       "         "       CHLOROPHYCEAE       "       "       "       "       "       "         "       Ankistrodesmus sp       2 µg       N       1 mo       "       "       "         "       "       "       20 µg       N       1 mo       "       "         "       Ankistrodesmus sp       2 µg       N       1 mo       "       "       "         "       "       "       20 µg       N       1 mo       " | Image: String of the system |

T T

()<sup>c</sup> zone of inhibition in millimeters

| Aureomycin<br>hloricetaria; 28,3Chlorococcum<br>planosporum30 unitsN0-5 wkgar medium<br>gar mediumone of inhibul<br>ice disk<br>techniques22°C;: 250-300<br>i2 br daily"""""NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN </th <th></th> <th></th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            |                                                |                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------------------------------------|------------------|
| Aureomycin     Streptomyces aureofaciens     CHLOROPHYCEAR<br>(mg/1)     Streptomyces aureofaciens     CHLOROPHYCEAR<br>(horococum)<br>oplanosporum     30 units     N     0-3 wk     sgar medium     zone of inhibi-<br>itecnique     zg <sup>2</sup> C <sub>1</sub> : 250-300<br>iz br daily       "     "     "     "     "     N     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "     "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |                                                |                  |
| Auronycin<br>hortetracycline         Streptomycas aureofaciens<br>(, Bacteria, 28,3)         Chlorococcum<br>oplanosporum         30 units         N         0-3 wk         sgar medium         rone of inhibi-<br>tion (disk<br>technique)         z2 <sup>0</sup> C:; 250-300                N <th>Conditions<br/>Femp.; pH; I</th> <th>Conditions<br/>Temp.; pH; Light</th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Conditions<br>Femp.; pH; I | Conditions<br>Temp.; pH; Light                 |                  |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .°C;; 250-<br>2 hr daily   | 22 <sup>0</sup> C;; 250-300 ft.<br>12 hr daily | -c, []           |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11                         | 11                                             | 1                |
| Image: Constraint of the second se       | н                          | н                                              | 1                |
| Impute of an photogor and<br>intermedium $n$ $n$ $n$ $n$ $n$ $n$ $n$ $n$ """"intermedium"T"""" $n$ $n$ """""macrostigmaticum"N""" $n$ $n$ $n$ """""""""""N""""""""""""""""""""""""""""""N"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11                         | 11                                             | 1                |
| Intermedium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | н                          | н                                              | ]                |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | п                          | п                                              | 1                |
| Immutum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11                         | 11                                             | 1                |
| "Induitive feature       "       N       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11                         | 11                                             | 1                |
| Image: Constraints     Constraints     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N     N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | **                         |                                                | 1                |
| Image: Image | 11                         | n                                              | 1                |
| Image: Second pingulationImage: Second pingu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11                         | 11                                             | 1                |
| ""     ""     ""     N     N     N     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""     ""                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11                         | 11                                             | 1                |
| """"""N"""""""""""T"""""""N"""""""N"""""""N"""""""N"""""""N"""""""N"""""""N"""""""NN""""""NN""""""NN""""""NN""""""NN""""""NN""""""NN""""""NN"""""NN""""""NNN""""""NN"N""""N"NN"""N""N"N""N""N" <td></td> <td>11</td> <td>1</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            | 11                                             | 1                |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |                                                | 1                |
| ""     ""     N     ""     ""     ""     ""       ""     ""     ""     N     ""     ""     ""       ""     ""     ""     N     ""     ""     ""       ""     Oocystis sp     2 μg     N     1 mo     culture solutionexamination of (25 ml Erlen- zone of inhibi- continuous meyer flask)     22°C;; 7.8; 140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                | 1                |
| "     Minineri     N     N     N     N       "     Cocystis sp     2 μg     N     1 mo     culture solutionexamination of (22°C;; 7.8; 140)       "     Cocystis sp     2 μg     N     1 mo     culture solutionexamination of (25°ml Erlen-)     zone of inhibi-)       meyer flask)     tion (disk method)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            |                                                | 1                |
| Occystis     sp     2 μg     N     I mo     culture solutionexamination of<br>(25 ml Erlen-<br>meyer flask)     22 C;; 7.8; 140       Image: Cocystis     sp     2 μg     N     I mo     culture solutionexamination of<br>(25 ml Erlen-<br>meyer flask)     22 C;; 7.8; 140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11                         | 11                                             | 1                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |                                                | -c, <sup>3</sup> |
| " " 20 μg N 1 mo " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11                         |                                                | 3                |

i.

| Commonia  | Source of Compound                      |                      |                         |                    |                        | ory Bioassays                                      |                                                                                                     |                                                    |    |
|-----------|-----------------------------------------|----------------------|-------------------------|--------------------|------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------|----|
| Compound  | (Observance in natural                  | Microorganism        |                         |                    | Re                     | sponse to Com                                      |                                                                                                     |                                                    |    |
|           | system; group; reference)               |                      | Concentration<br>(mg/l) | Effect             | Time of<br>Observation | Study<br>Method                                    | Parameter<br>Measured                                                                               | Conditions<br>Temp.; pH; Light                     | Re |
|           |                                         | MYXOPHYCEAE: (Co     | ntinued)                |                    |                        |                                                    |                                                                                                     |                                                    |    |
| acitracin | Bacillus subtilis<br>(; Bacteria; 39.5) | Anabaena cylindrica  | 2                       | P                  | 1,2 wk                 | agar medium                                        | macro and/or<br>microscopic<br>comparison<br>with control                                           | 24 <sup>°</sup> C;; 200 ft-c,<br>12 hr daily       | 46 |
| 11        |                                         | 11 11                | 1                       | P                  | 3 wk                   | 13                                                 |                                                                                                     |                                                    | 46 |
|           |                                         | 11 11                | 20                      | T<br>algicidal     | 1,2 wk                 | u u                                                | 11 11                                                                                               | 11                                                 | 46 |
| п         | U.                                      | н п                  | 2                       | 11                 | 3 wk                   | ц                                                  | 11 11                                                                                               | 11                                                 | 46 |
|           | 17                                      | '' variabilis        | 10                      | P                  | 5 da                   | culture solution<br>(400 ml Erlen-<br>meyer flask) | % transmittance<br>(spectophoto-<br>meter 550 mµ)                                                   | 25 <sup>0</sup> C; 7; 700-1000 ft-c,<br>continuous | 36 |
| "         | 1                                       | C <u>alothrix</u> sp | 2 units                 | N                  | 1 mo                   | agar medium                                        | macro and/or<br>microscopic<br>comparison<br>with control<br>(zoned inhibition<br>disk technique)   | 22 <sup>°</sup> C; 8.2; 140 ft-c,<br>continuous    | 33 |
| **        | 11                                      |                      | 20 units                | T(30) <sup>C</sup> | 1 mo                   | u .                                                | 11 11                                                                                               | 11                                                 | 33 |
|           | 11                                      | Microcystis sp       | 2 units                 | T(25) <sup>C</sup> | l mo                   | u .                                                | 11 11                                                                                               | 11                                                 | 33 |
| 11        | 11                                      | ( u u                | 20 units                | T(50) <sup>C</sup> | 1 mo                   | u .                                                |                                                                                                     | 11                                                 | 33 |
| 11        | 11                                      | Nostoc sp            | 2 units                 | T(14) <sup>C</sup> | l mo                   | 11                                                 | 11 11                                                                                               | 11                                                 | 33 |
| .,        | II                                      | н н                  | 20 units                | T(46) <sup>C</sup> | 1 mo                   | u .                                                | 11 U                                                                                                | 11                                                 | 33 |
|           | 1                                       | Phormidium sp        | 2                       | T<br>algicidal)    | 1, 2, 3 wk             | cuture solution<br>(150 x 16 mm<br>test tube)      | (subcultures<br>grown l wk )                                                                        | 24 <sup>°</sup> C:; 200 ft -c,<br>12 hrs. daily    | 46 |
| 11        | 11                                      | . n n                | 2 units                 | N                  | 1 mo                   | agar medium                                        | macro and/or<br>microscopic<br>comparison with<br>control (zone of<br>inhibition disk<br>technique) |                                                    | 33 |

1

| <b>c</b> , | Source of Compound                      |                                |               |                     |                   | ory Bioassays                                                       |                                                                                                     |                                                       |      |
|------------|-----------------------------------------|--------------------------------|---------------|---------------------|-------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------|------|
| Compound   | (Observance in natural                  | Microorganism                  | Concentration |                     | Time of           | sponse to Comp<br>Study                                             | ound<br>Parameter                                                                                   | Conditions                                            | Ref  |
|            | system; group; reference)               |                                | (mg/l)        | Effect              | Observation       | Method                                                              | Parameter<br>Measured                                                                               | Conditions<br>Temp.; pH; Light                        |      |
|            |                                         | MYXOPHYCEAE: (Con              | inued)        |                     |                   |                                                                     |                                                                                                     |                                                       |      |
| acitracin  | Bacillus subtilis<br>(; Bacteria; 39.5) | <u>Phormidium</u> sp           | 20 units      | T(20)               | l mo              |                                                                     | macro and/or<br>microscopic<br>comparison with<br>control (zone of<br>inhibition disk<br>technique) | 22 <sup>o</sup> C: 8.2; 140 ft-c,<br>continuous       | 33   |
|            | 11                                      | <u>Symploca</u> sp             | 2 units       | T(15, <sup>0</sup>  | l mo              | 11                                                                  | 11                                                                                                  | 11                                                    | 33   |
| u.         | 11                                      | н п                            | 20 units      | T(26) <sup>C</sup>  | l mo              |                                                                     | 11                                                                                                  | 11                                                    | 33   |
|            |                                         | CHLOROPHYCEAE                  |               |                     |                   |                                                                     |                                                                                                     |                                                       |      |
| 11         | 11                                      | Ankistrodesmus sp              | 2             | T(11) <sup>C</sup>  | l mo              |                                                                     | 11                                                                                                  | 11                                                    | 33   |
| 11         | П                                       | 11 1                           | 20            | T(9) <sup>C</sup>   | l mo              |                                                                     |                                                                                                     | 24                                                    | 23   |
| "          | 11                                      | Chlamydomona's<br>agloeoformis | 200           | N                   | 1 <b>,2,</b> 3 wk | culture solutio<br>(150 x 16 mm<br>test tube)                       | n macro and/or<br>microscopic<br>comparison<br>with control                                         | 24 <sup>°</sup> C; ; 200 ft-c,<br>12 hrs. daily       | 46   |
|            | n                                       | "" sp                          | 2             | N                   | l, 2, 3 wk        | culture solution<br>(25 ml Erlen-<br>meyer flask)                   |                                                                                                     | 22 <sup>°</sup> C; 7.8: 140 ft-c,<br>continuous       | 33   |
| **         | n                                       | 11 11 11                       | 20            | N                   | 1, 2, 3 wk        | **                                                                  | 11                                                                                                  | 11                                                    | 33   |
| .1         | п                                       | <u>Chlorella</u> pyrenoidos    | a 1000        | N                   | 5 da              | (500 ml flask)                                                      | n % transmittan<br>(spectrophoto-<br>lia) meter 550 mµ                                              | ce 25 <sup>°</sup> C; 7; 700-1000 ft-c,<br>continuous | 36   |
| 11         |                                         | n n                            | 1000          | P                   | 5 da              | culture solutio<br>(500 ml Erlen-<br>meyer flask)<br>(organic media | -                                                                                                   |                                                       | 26   |
| "          |                                         | н н                            | 500           | P(11%) <sup>b</sup> | 40 hr             | culture solutio<br>(flask)                                          | m optical density<br>(at 610 mµ)                                                                    | 25°C; 5.1;;                                           | 106. |
| 11         |                                         | percent inhibition comp        | 500           | N(0%) <sup>b</sup>  | 40 hr             | "                                                                   |                                                                                                     | 25°C; 7.4:;                                           | 106. |

1 .

1

| Comress    | Source of Compound                      | <u> </u>                            | <b></b>                 |                     |                        | ory Bioassays               |                                                                 |                                                              |      |
|------------|-----------------------------------------|-------------------------------------|-------------------------|---------------------|------------------------|-----------------------------|-----------------------------------------------------------------|--------------------------------------------------------------|------|
| Compound   | (Observance in natural                  | Microorganism                       |                         |                     |                        | sponse to Com               | oound                                                           |                                                              |      |
|            | system; group; reference)               |                                     | Concentration<br>(mg/l) | Effect              | Time of<br>Observation | Study<br>Method             | Parameter<br>Measured                                           | Conditions<br>Temp.; pH; Light                               | Ref. |
|            |                                         | CHLOROPHYCEAE (                     | Continued)              |                     |                        |                             |                                                                 |                                                              |      |
| Bacitracin | Bacillus subtilis<br>(; Bacteria; 39.5) | <u>Chlorella</u> pyrenoidosa        | 1000                    | P(53%)              | 40 hr                  | culture solution<br>(flask) | n optical density<br>at 610 mµ)                                 | 25 <sup>°</sup> C; 5.1:·                                     | 106  |
| 11         | 11                                      | 11 11                               | 1000                    | N(0%) <sup>t</sup>  | 40 hr                  | 11                          | 11                                                              | 25 <sup>°</sup> C; 7.4;;                                     | 106. |
| 11         | n n                                     | м н                                 | 5000                    | T(100%)             | <b>b</b> 40 hr         | 11                          |                                                                 | 25°C; 5.1;;                                                  | 106. |
| 11         | н                                       | 11 11                               | 5000                    | P(19%) <sup>b</sup> | 40 hr                  |                             |                                                                 | 25°C; 7.4;;                                                  | 106. |
| 11         |                                         | <u>Chlorococcum</u><br>aplanosporum | 10 meq                  | N                   | 0-3 wk                 |                             | examination of<br>zone of inhibi-<br>tion (disk tech-<br>nique) | 22 <sup>°</sup> C; <sup>.</sup> 250-300 ft-c,<br>12 hr daily | 18   |
| 11         | п                                       | "                                   | 10 meq                  | N                   | 0-3 wk                 | п                           | 11                                                              |                                                              | 18   |
| 11         |                                         | " echimozygotum                     | 10 meq                  | N                   | 0-3 wk                 | 11                          | п                                                               | п                                                            | 18   |
| 11         | п                                       | " <u>ellipsoideum</u>               | 10 meq                  | N                   | 0-3 wk                 | 11                          | 11                                                              | 11                                                           | 18   |
| ч          | 11                                      | " hypnosporum                       | 10 meq                  | N                   | 0-3 wk                 |                             | н                                                               | 11                                                           | 18   |
| 11         | 11                                      | " intermedium                       | 10 meq                  | N                   | 0-3 wk                 |                             | 11                                                              |                                                              | 18   |
| н          | н                                       | " <u>macrostigmaticu</u>            | im 10 meq               | N                   | 0-3 wk                 |                             | n.                                                              |                                                              | 18   |
| 11         | U II                                    | " <u>minutum</u>                    | 10 meq                  | N                   | 0-3 wk                 | 11                          | п                                                               | 11                                                           | 18   |
| Ц          |                                         | " multinucleatum                    | 10 meq                  | N                   | 0-3 wk                 |                             | 11                                                              | 11                                                           | 18   |
| 11         | 11                                      | " <u>oleofaciens</u>                | 10 meq                  | N                   | 0-3 wk                 |                             | 11                                                              | 11                                                           | 18   |
| 11         | U U                                     | " perforatum                        | 10 meq                  | N                   | 0-3 wk                 | 11                          | 11                                                              |                                                              | 18   |
| "          |                                         | " pinguideum                        | 10 meq                  | N                   | 0-3 wk                 | 1 11                        | 1 11                                                            | ш                                                            | 18   |
| 11         | u u                                     | "                                   | 10 meq                  | N                   | 0-3 wk                 |                             | 11                                                              |                                                              | 18   |
|            | 11                                      | " <u>scabellum</u>                  | 10 meq                  | N                   | 0-3 wk                 | 11                          |                                                                 |                                                              | 18   |
|            | 11                                      | " tetrasporum                       | 10 meg                  | N                   | 0-3 wk                 | 11                          |                                                                 | 11                                                           | 18   |

()% inhibition compared with control

| C         | Source of Compound                      |                                                                     |                         |                 |                        | ory Bioassays                                      |                                                                |                                                      |            |
|-----------|-----------------------------------------|---------------------------------------------------------------------|-------------------------|-----------------|------------------------|----------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------|------------|
| Compound  | (Observance in natural                  | Microorganism                                                       | 1                       |                 |                        | sponse to Com                                      | oound                                                          |                                                      |            |
|           | system; group; reference)               |                                                                     | Concentration<br>(mg/l) | Effect          | Time of<br>Observation | Study<br>Method                                    | Parameter<br>Measured                                          | Conditions<br>Temp.; pH; Light                       | Re         |
| acitracin | Bacillus subtilis<br>(; Bacteria; 39.5) | <u>CHLOROPHYCEAE</u> (C<br><u>Chlorococcum</u><br><u>vacuolatum</u> | ontinued)<br>10 meq     | N               | 0-3 wk                 | agar medium                                        | examination of<br>zone of inhibit-<br>ion (disk tech-<br>nique | 22 <sup>°</sup> C;: 250-300 ft-c,<br>12 hr daily     | 18         |
| **        | 11                                      | " wimmeri_                                                          | 10 meq                  | N               | 0-3 wk                 | 11                                                 |                                                                | 11                                                   | 18         |
| 11        | TI II                                   | Haematococcum<br>locustris                                          | 200                     | N               | 1, 2, 3 wk             | 11                                                 | macro and/or<br>microscopic<br>comparison with<br>control      | 24 <sup>°</sup> C;; 200 ft-c,<br>12 hr daily         | 46         |
| 11        |                                         | <u>Scenedesmus</u><br>obliquus                                      | 1000                    | N               | 5 da                   | culture solutior<br>(500 ml Erlen-<br>meyer flask) |                                                                | 25 <sup>°</sup> C; 7; 700-1000 ft-c,<br>continuous   | 36         |
| 11        |                                         | Oocystis                                                            | 2 units                 | N               | l mo                   | agar medium                                        | examination of<br>zone of inhibition                           |                                                      | 33         |
| 11        | n .                                     |                                                                     | 20 units                | N               | 1 mo                   | н                                                  |                                                                | 11                                                   | 33         |
| 11        | 11                                      | CHRYSOPHYCEAE<br><u>Navicula</u><br>pelliculosa                     | 50                      | P               | l wk                   |                                                    | macro and/or<br>microscopic<br>comparison with<br>control      | 24 <sup>°</sup> C;; 200 ft-c,<br>l2 hr daily         |            |
| "         | n                                       | 11 11                                                               | 100                     | T<br>(algicidal | l wk.                  |                                                    | 11                                                             | "                                                    | 46         |
| 11        | ч                                       | u u                                                                 | 50                      | 11              | l wk.                  | n                                                  | u                                                              | 11                                                   | <b>4</b> 6 |
|           | 11                                      | Polydriella<br>helvetica                                            | 200                     | N               | 1, 2,3 wk.             | culture solution<br>(150 x 16 mm<br>test tube)     | n, 11 1                                                        | п                                                    | 46         |
| 11        |                                         | EUGLENOPHYCEAE<br>Euglena gracilis "Z"                              | 200                     | N               | <b>1, 2,</b> 3 wk      | culture solution<br>(150 x 16 mm<br>test tube)     | a 11                                                           |                                                      | <b>4</b> 6 |
|           | u                                       | Archromobacter                                                      | 1000                    | Р               | 2 da.                  | 500 ml Erlen-                                      | % transmittance<br>(spectrophoto-<br>meter 615 mµ)             | - 25 <sup>°</sup> C; 7; 700-1000 ft-c,<br>continuous | 36         |

80

I.

1 I

1

| Compourd               | Source of Compound                                                               |                                 |                         |                     | Laborat                | ory Bioassays                                      |                                                      |                                                    |     |
|------------------------|----------------------------------------------------------------------------------|---------------------------------|-------------------------|---------------------|------------------------|----------------------------------------------------|------------------------------------------------------|----------------------------------------------------|-----|
| Compound               | (Observance in natural                                                           | Microorganism                   |                         |                     |                        | sponse to Comp                                     | ound                                                 |                                                    |     |
|                        | system; group; reference)                                                        |                                 | Concentration<br>(mg/l) | Effect              | Time of<br>Observation | Study<br>Method                                    | Parameter<br>Measured                                | Conditions<br>Temp.; pH; Light                     | Re  |
| Bacitracin             | Bacillus subtilis                                                                | BACTERIUM                       |                         |                     |                        |                                                    |                                                      |                                                    |     |
| actifaciii             | (; Bacteria 39.5)                                                                | Archromobacter sp2              | 1000                    | N                   | 3 da                   | culture solution<br>(500 ml Erlen-<br>meyer flask) | n % transmittance<br>(spectrophoto-<br>meter 615 mµ) | 25 <sup>°</sup> C; 7; 700-1000 ft-c,<br>continuous | 36  |
| 11                     | 11                                                                               | Flavabacterium sp               | . 01                    | Р                   | 5 da                   |                                                    |                                                      | н                                                  | 36  |
|                        |                                                                                  | 11 11                           | 1                       | Т                   | 5 da                   |                                                    | 11                                                   |                                                    | 36  |
|                        | n                                                                                | Pseudomonas sp                  | 1000                    | N                   | 3 da                   |                                                    | 11                                                   | U.                                                 | 36  |
|                        |                                                                                  | CHLOROPHYCEAE                   |                         |                     |                        |                                                    |                                                      |                                                    |     |
| arbomycin<br>gnamycin) | Streptomyces holstedii<br>'' hygroscopi<br>'' albireticuli<br>(; Bacteria; 39.5) | <u>Chlorella</u><br>pyrenoidosa | 100                     | T                   | 40 hr                  | culture solutio<br>(flask)                         | n optical density<br>(at 610 mµ)                     | 25 <sup>°</sup> C; 7.4;;                           | 106 |
| 11                     |                                                                                  | 11 11                           | 100                     | P(98%) <sup>b</sup> | 40 hr                  | 11                                                 |                                                      | 25°C; 6.0;;                                        | 106 |
| **                     | п                                                                                |                                 | 100                     | P(92%) <sup>t</sup> | 40 hr                  | 11                                                 | T 1                                                  | 25°C; 5.1:;                                        | 106 |
| 11                     | 1                                                                                | Chlorococcum<br>aplanosporum    | 15 meq                  | N                   | 0-3 wk                 | agar medium                                        |                                                      | 22°C;; 250-300 ft-c,<br>12 hr daily                | 18  |
| 11                     | U II                                                                             | " diplobionticum                | 11                      |                     | 11                     | 11                                                 | indue)                                               | 11                                                 | 18  |
| 11                     | п                                                                                | " echinozygotum                 | 11                      | 11                  |                        | 11                                                 | 11                                                   | 11                                                 | 18  |
| 11                     |                                                                                  | " ellipsoideum                  | 11                      | 11                  | 11                     | 11                                                 | 11                                                   | 11                                                 | 18  |
| 11                     | 11                                                                               | " hypnosporum                   | и                       | 11                  | - 11                   | 11                                                 | 11                                                   | 11                                                 | 18  |
| 11                     |                                                                                  | " intermedium                   | п                       | 11                  | 11                     |                                                    | 11                                                   |                                                    | 18  |
| "                      | 11                                                                               | " macrostigmaticum              | n "                     | 11                  | 11                     | 11                                                 | 11                                                   | н                                                  | 18  |
| 11                     | 1                                                                                | " <u>minutum</u>                | 11                      | 11                  | 11                     |                                                    | 11                                                   | 11                                                 | 18  |
| 11                     |                                                                                  | " <u>multinucleatum</u>         | 11                      | 11                  | 11                     |                                                    | 17                                                   | 11                                                 | 18  |
| 11                     | II.                                                                              | " <u>oleofaciens</u>            | н                       | 11                  |                        | 11                                                 | 11                                                   | п                                                  | 18  |
| 11                     |                                                                                  | " perforatum                    | 11                      | l" .                | "                      |                                                    | 11                                                   | 11                                                 | 18  |

T T

(%)<sup>D</sup>% inhibition compared to control

i.

82

| (Observance in natural<br>system; group; reference)<br>eptomyces holstedii<br>" <u>hygroscopi</u><br>" <u>albireticuli</u><br>; Bacteria; 39.5) | Microorganism<br><u>CHLOROPHYCEAE:</u> (<br><u>Chlorococcum</u><br>pinguideum | Concentration<br>(mg/l)<br>Continued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Effect                                                 | Re<br>Time of<br>Observation                                                                                                                                                                                                                                                      | sponse to Comp<br>Study<br>Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Parameter<br>Measured                                                                                                                                                                                                                                                                                                                    | Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ref                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| eptomyces holstedii<br>'' hygroscopi<br>'' albireticuli                                                                                         | Chlorococcum                                                                  | (mg/l)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Effect                                                 |                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 1.6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| hygroscopi<br>albireticuli                                                                                                                      | Chlorococcum                                                                  | Continued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        |                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | wieasured                                                                                                                                                                                                                                                                                                                                | Temp.; pH; Light                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| aibii cucui                                                                                                                                     |                                                                               | 15 meq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Т(?) <sup>d</sup> Р                                    | 0-3 wk                                                                                                                                                                                                                                                                            | agar medium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | examination of                                                                                                                                                                                                                                                                                                                           | 22 <sup>°</sup> C;;250-300 ft-c,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                 |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                        |                                                                                                                                                                                                                                                                                   | agai medium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | zone of inhibit-<br>ion (disk tech-<br>nique                                                                                                                                                                                                                                                                                             | 22 C;;250-300 ft-c,<br>12 hrs. daily                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 11                                                                                                                                              | " punctatum                                                                   | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | T(?) <sup>d</sup> N                                    | 11                                                                                                                                                                                                                                                                                | п                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11                                                                                                                                                                                                                                                                                                                                       | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| н                                                                                                                                               | "scabellum                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                        |                                                                                                                                                                                                                                                                                   | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 11                                                                                                                                              | " tetrasporum                                                                 | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | T(?) <sup>d</sup> N                                    | ц.<br>П                                                                                                                                                                                                                                                                           | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11                                                                                                                                                                                                                                                                                                                                       | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                 | vacuolatum                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N                                                      | 11                                                                                                                                                                                                                                                                                | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11                                                                                                                                                                                                                                                                                                                                       | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 11                                                                                                                                              | " wimmeri                                                                     | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Т                                                      | 11                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11                                                                                                                                                                                                                                                                                                                                       | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                 | MYXOPHYCEAE                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                        |                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| eptomyces venezuelae<br>; Bacteria; 28.3)                                                                                                       | <u>Anabeana</u> variabilis                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | P                                                      | 5 da                                                                                                                                                                                                                                                                              | (500 ml Erlen-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | spectrophoto-                                                                                                                                                                                                                                                                                                                            | 25°C; 7; 700-1000 ft-c,<br>continuous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 11                                                                                                                                              | 11 11                                                                         | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | т                                                      | 5 da                                                                                                                                                                                                                                                                              | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11                                                                                                                                                                                                                                                                                                                                       | 11 tt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 11                                                                                                                                              | <u>Calothrix</u> sp                                                           | 2 µg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N                                                      | l mo                                                                                                                                                                                                                                                                              | agar medium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | examination of<br>zone of inhibit-<br>ion (disk tech-<br>nique)                                                                                                                                                                                                                                                                          | 22 <sup>°</sup> C; 8.2; 140 ft-c,<br>continuous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 11                                                                                                                                              | 11 11                                                                         | 20 µg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N                                                      |                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11                                                                                                                                                                                                                                                                                                                                       | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 11                                                                                                                                              | <u>Microcystis</u> sp                                                         | 2 µg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | T(20) <sup>c</sup>                                     | 11                                                                                                                                                                                                                                                                                | TT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11                                                                                                                                                                                                                                                                                                                                       | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                 | <u>Microcystis</u> sp                                                         | 20 µg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | T(14) <sup>C</sup>                                     | . 11                                                                                                                                                                                                                                                                              | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | н                                                                                                                                                                                                                                                                                                                                        | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| **                                                                                                                                              | Nostoc sp                                                                     | 2 µg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N                                                      | 11                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11                                                                                                                                                                                                                                                                                                                                       | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 11                                                                                                                                              | 11 11                                                                         | 20 µg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N                                                      |                                                                                                                                                                                                                                                                                   | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11                                                                                                                                                                                                                                                                                                                                       | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 11                                                                                                                                              | Phormidium sp                                                                 | 2 µg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N                                                      |                                                                                                                                                                                                                                                                                   | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 11                                                                                                                                              | 11 11                                                                         | 20 µg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N                                                      | 11                                                                                                                                                                                                                                                                                | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11                                                                                                                                                                                                                                                                                                                                       | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                 | <u>Symploca</u> sp                                                            | 2 µg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                        |                                                                                                                                                                                                                                                                                   | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                          | u.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| e;                                                                                                                                              | eptomyces venezuelae<br>; Bacteria; 28.3)<br>"<br>"<br>"                      | "       scabellum         "       scabellum         "       tetrasporum         "       vacuolatum         "       wimmeri         MYXOPHYCEAE       Anabeana variabilis         sptomyces venezuelae       Anabeana variabilis         ; Bacteria; 28.3)       "         "       "         "       Calothrix sp         "       Microcystis sp         "       Microcystis sp         "       Nostoc sp         "       "         "       Phormidium sp         "       "         "       Symploca sp         "       " | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | "scabellum" $T(?)^d P$ ""tetrasporum" $T(?)^d N$ ""vacuolatum"N""wimmeri"N""wimmeri"TMYXOPHYCEAE1Pspacteria; 28.3)"10T"""10T"""10T"Calothrix sp2 µgN"""20 µgN"Microcystis sp2 µgT(10)^C"Nostoc sp2 µgN"""20 µgN"Nostoc sp2 µgN"""20 µgN"Nostoc sp2 µgN"""20 µgN"""20 µgN"""20 µgN | "scabellum" $T(?)^d p$ ""tetrasporum"T(?)^d p""'' vacuolatum"N""'' vacuolatum"N""'' winmeri"TT"'' winmeri"TT"MYXOPHYCEAE1P5 dapetomyces venezuelaeAnabeana variabilis1P5 da"""10T5 da"""10T5 da"""10T5 da"""10T5 da"""10T5 da"""20 µgN1"""20 µgT(14)C""Nostoc sp2 µgN""""20 µg <td>"scabellum"T(?) d <math>P</math>"""tetrasporum"T(?) d <math>N</math>"""'' tetrasporum"N"""'' vacuolatum"N"""'' vacuolatum"N"""'' vacuolatum"TN""'' vacuolatum"TT""'' vacuolatum"TT""'' vacuolatum"TT""'' vacuolatum'' T'' '''' ''''MYXOPHYCEAEAnabeana variabilis1P5 daculture solution (500 ml Erlen-meyer flask) ''"'' '' '' '' '' '' '' '' '' '' '' '' ''</td> <td>"       scabellum       "       <math>T(?)^d p</math>       "       "       "       "         "       tetrasporum       "       <math>T(?)^d p</math>       "       "       "       "         "       '' sacuolatum       "       N       "       "       "       "         "       '' sacuolatum       "       N       "       "       "       "       "         "       '' wimmeri       "       T       T       "       "       "       "         "       '' wimmeri       "       T       T       "       "       "       "         "       MYXOPHYCEAE       Item solution       T       5 da       culture solution       "       transmittance (500 mL)"         "       "       "       10       T       5 da       "       "       "         "       "       "       10       T       5 da       "       "       "         "       "       "       10       T       5 da       "       "       "         "       "       "       10       T       5 da       "       "       "         "       "</td> <td>"       scabelium       "       <math>T(2)^d p</math>       "       "       "       "       "         "       tetrasporum       "       <math>T(2)^d N</math>       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "</td> | "scabellum"T(?) d $P$ """tetrasporum"T(?) d $N$ """'' tetrasporum"N"""'' vacuolatum"N"""'' vacuolatum"N"""'' vacuolatum"TN""'' vacuolatum"TT""'' vacuolatum"TT""'' vacuolatum"TT""'' vacuolatum'' T'' '''' ''''MYXOPHYCEAEAnabeana variabilis1P5 daculture solution (500 ml Erlen-meyer flask) ''"'' '' '' '' '' '' '' '' '' '' '' '' '' | "       scabellum       " $T(?)^d p$ "       "       "       "         "       tetrasporum       " $T(?)^d p$ "       "       "       "         "       '' sacuolatum       "       N       "       "       "       "         "       '' sacuolatum       "       N       "       "       "       "       "         "       '' wimmeri       "       T       T       "       "       "       "         "       '' wimmeri       "       T       T       "       "       "       "         "       MYXOPHYCEAE       Item solution       T       5 da       culture solution       "       transmittance (500 mL)"         "       "       "       10       T       5 da       "       "       "         "       "       "       10       T       5 da       "       "       "         "       "       "       10       T       5 da       "       "       "         "       "       "       10       T       5 da       "       "       "         "       " | "       scabelium       " $T(2)^d p$ "       "       "       "       "         "       tetrasporum       " $T(2)^d N$ "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       "       " |

()<sup>c</sup>zone in millimeters (?)<sup>d</sup> both results reported

I.

| Compound                         | Source of Compound<br>(Observance in natural           |                                     | 1                       |        |                        | ory Bioassays                                                             |                                                                 |                                                    |     |
|----------------------------------|--------------------------------------------------------|-------------------------------------|-------------------------|--------|------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------|-----|
| Compound                         | system; group; reference)                              | Microorganism                       |                         |        |                        | sponse to Comp                                                            |                                                                 |                                                    | D.  |
|                                  | system; group; reference)                              |                                     | Concentration<br>(mg/l) | Effect | Time of<br>Observation | Study<br>Method                                                           | Parameter<br>Measured                                           | Conditions<br>Temp.; pH; Light                     | Ref |
|                                  |                                                        | CHLOROPHYCEAE(C                     | Continued)              |        |                        |                                                                           |                                                                 |                                                    |     |
| Chloramphenica<br>Chloromycetin) | 1 <u>Streptomyces</u> venezuelae<br>(; Bacteria; 28.3) | Ankistrodesmus sp                   |                         | N      | 1 mo                   | agar medium                                                               | examination of<br>zone of inhibitio<br>(disk technique)         | 22 <sup>°</sup> C; 8.2; 140 ft-c,<br>n continuous  | 33  |
|                                  | 11                                                     | Chlamydomonas sp                    | 20 µg                   | N      | 11                     | 11                                                                        | 11                                                              |                                                    | 33  |
| "                                | U II                                                   | <u>Chlorella</u><br>pyenoidosa      | 100                     | P      | 5 da                   | culture solution<br>(organic mediu<br>(500 ml Erlen-<br>meyer flask)      | % transmit-<br>m)tance (spec-<br>trophotomete<br>550 mµ)        | 25 <sup>0</sup> C; 7; 700-1000 ft-c.<br>continuous | 36  |
|                                  | н                                                      |                                     | 1000                    | т      |                        | н п                                                                       |                                                                 | 11                                                 | 36  |
| "                                | u                                                      |                                     | 100                     | Т      | 11                     | culture solutior<br>(inorganic med<br>ium)(500 ml<br>Erlenmeyer<br>flask) |                                                                 | н<br>                                              | 36  |
| 11                               |                                                        | <u>Chlorococcum</u><br>aplanosporum | 30 meq                  | N      | 0-3 wk                 |                                                                           | examination of<br>zone of inhibit-<br>ion (disk tech-<br>nique) | 22°C;; 250-300 ft-c,<br>12 hr daily                | 18  |
| 11                               | 11                                                     | " diplobionticum                    | 11                      |        |                        |                                                                           |                                                                 |                                                    | 18  |
|                                  | 11                                                     | "_echinozygotum_                    | u                       |        | 11                     |                                                                           | 11                                                              |                                                    | 18  |
| 11                               | 11                                                     | " ellipsoideum                      | 11                      | u.     | 13                     |                                                                           | 11                                                              | п (                                                | 18  |
| u.                               | н                                                      | " hypnosporum                       |                         | 11     | 11                     |                                                                           | 11                                                              |                                                    | 18  |
| 11                               |                                                        | " intermedium                       | "                       | 11     | ч                      |                                                                           | 11                                                              | 11                                                 | 18  |
| 11                               | 11                                                     | " macrostigmaticu                   | n "                     | "      | 11                     |                                                                           |                                                                 | 11                                                 | 18  |
| 17                               | 11                                                     | " <u>minutum</u>                    |                         | 11     | u                      |                                                                           |                                                                 | 11                                                 | 18  |
| 11                               | 11                                                     | " multinucleatum                    |                         |        | 11                     | п                                                                         |                                                                 | 1                                                  | 18  |
| н                                | 11                                                     | " <u>oleofaciens</u>                |                         | 11     | 11                     |                                                                           |                                                                 | 11                                                 | 18  |

| Company                          | Source of Compound                            |                                          |                         |        | Laborat                | ory Bioassays   |                                                                |                                                    |    |
|----------------------------------|-----------------------------------------------|------------------------------------------|-------------------------|--------|------------------------|-----------------|----------------------------------------------------------------|----------------------------------------------------|----|
| Compound                         | (Observance in natural                        | Microorganism                            |                         |        | Re                     | sponse to Comp  |                                                                |                                                    | Τ_ |
|                                  | system; group; reference)                     |                                          | Concentration<br>(mg/l) | Effect | Time of<br>Observation | Study<br>Method | Parameter<br>Measured                                          | Conditions<br>Temp.; pH; Light                     | Re |
|                                  |                                               | CHLOROPHYCEAE (                          |                         |        |                        |                 |                                                                |                                                    |    |
| lloramphenical<br>Chloromycetin) | Streptomyces venezuelae<br>(; Bacteria; 28.3) | <u>Chlorococcum</u><br><u>perforatum</u> | 30 meq                  | N      | 0-3 wk                 | agar medium     | <b>examina</b> tion of<br>zone of inhibition<br>disktechnique) | 22 <sup>°</sup> C;; 250-300 ft-c,<br>12 hr daily   | 18 |
| 11                               | 11                                            | " pinguideum                             | 1                       | 11     | 17                     | 11              | п                                                              | н                                                  | 18 |
| 11                               | 11                                            | " punctatum                              | n                       | 11     | 11                     |                 | 11                                                             |                                                    | 18 |
| 11                               | 11                                            | " <u>scabellum</u>                       | 11                      | 11     | 11                     | 11              | н                                                              | 11                                                 | 18 |
| "                                | 11                                            | " tetrasporum                            | 17                      | '''    | 11                     |                 | 11                                                             |                                                    | 18 |
| 11                               | н                                             | " <u>vacuolatum</u>                      |                         | 11     | 11                     |                 | н                                                              | 11                                                 | 18 |
| 11                               | 11                                            | " <u>wimmeri</u>                         | 11                      | - 11   | 11                     |                 | п                                                              | 11                                                 | 18 |
| "                                |                                               | Scenedesmus<br>obliquus                  | 10                      | P      | 5 dz                   | (500 ml Erlen-  | % transmittance<br>(spectrophoto-<br>meter 550 mμ)             | 25 <sup>°</sup> C; 7; 700-1000 ft-c,<br>continuous | 36 |
| U                                | n                                             |                                          | 100                     | т      | 11                     |                 |                                                                | 11                                                 | 36 |
| 11                               | u.                                            | <u>Oocystis</u> sp                       | 20 µg                   | N      | l mo                   | agar medium     | examination of<br>zone of inhibition<br>(disktechnique)        | 22 <sup>0</sup> C; 7.8; 140 ft-c,<br>n continuous  | 33 |
|                                  |                                               | BACTERIUM<br>Archromobacter sp           | 10                      | т      | 2 da                   | (500 ml Erlen-  | % transmittance<br>(spectrophoto-<br>meter 550 mµ)             | 25 <sup>°</sup> C; 7; 700-1000 ft-c,<br>continuous | 36 |
| 11                               | п .                                           | " sp 2                                   | 100                     | T.     | 3 də                   | ,               | 11                                                             | 11                                                 | 36 |
| "                                | 11                                            | <u>Flavabacterium</u> sp                 | 1                       | P      | 5 da                   |                 |                                                                | 11                                                 | 36 |
|                                  | 11                                            | 11 11                                    | 10                      | т      | 11                     |                 |                                                                | 11                                                 | 36 |
| n                                | u                                             | Pseudomonas sp                           | 1000                    | т      | 3 da                   |                 | 11                                                             | · п                                                | 36 |
|                                  |                                               |                                          |                         |        |                        |                 |                                                                |                                                    |    |

1 I

1

| system; group; reference)       Microorganism       Concentration<br>(mg/l)       Effect       Time of<br>Observation       Study       Parameter       Conditions       Re         olistin Sulfate       Bacillus polymya       Chlorococcum       30 meg       N       0-3 wk       agar medium       examination of 22°C; 250, 200 ft, c       18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Compound                        | Source of Compound<br>(Observance in natural |                          |             |        | Laborate | ory Bioassays |                                     |                                                  |     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------------------------------|--------------------------|-------------|--------|----------|---------------|-------------------------------------|--------------------------------------------------|-----|
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Compound                        | (Observance in natural                       | Microorganism            | Constanti   | 1      | Re       |               |                                     |                                                  | D   |
| bisitive polymany       Chlorococum<br>aplanosporum       30 meq       N       0.3 wh       agar mediu       examination<br>sone of inhibit-<br>inquein       2°C; ;; 250-30 ff-;<br>daily       18         1       1       1       1       1       1       1       1       1       1       1       1         1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | system, group, reference)                    |                          |             | Effect |          |               | 1                                   |                                                  | Rei |
| bisitive polymany       Chlorococum<br>aplanosporum       30 meq       N       0.3 wh       agar mediu       examination<br>sone of inhibit-<br>inquein       2°C; ;; 250-30 ff-;<br>daily       18         1       1       1       1       1       1       1       1       1       1       1       1         1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                              | CHLOROPHYCEAE            | (Continued) |        |          |               |                                     |                                                  | -   |
| Image: Second  | olistin Sulfate<br>polymyxin E) | " colistinus                                 |                          | 30 meq      | N      | 0-3 wk   | agar medium   | zone of inhibit-<br>ion (disk tech- | 22 <sup>°</sup> C;; 250-300 ft-c,<br>12 hr daily | 18  |
| Image: Control of generating of the second | н                               | 11                                           | " diplobionticum         | п           |        |          | *1            |                                     | u                                                | 18  |
| Important<br>Problem<br>Problem<br>Problem<br>Problem<br>Problem<br>Problem<br>ProblemProblem<br>Problem<br>Problem<br>Problem<br>Problem<br>Problem<br>Problem<br>Problem<br>Problem<br>Problem<br>Problem<br>Problem<br>Problem<br>Problem<br>Problem<br>Problem<br>Problem<br>Problem<br>Problem<br>Problem<br>Problem<br>Problem<br>Problem<br>Problem<br>Problem<br>Problem<br>Problem<br>Problem<br>Problem<br>Problem<br>Problem<br>Problem<br>Problem<br>Problem<br>Problem<br>Problem<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17                              | 11                                           | " <u>echinozygotum</u>   | 11          | 11     |          |               |                                     |                                                  | 18  |
| Image: Second  | n                               | 11                                           | " ellipsoideum           | 11          | 11     | 11       | 11            |                                     | 11                                               | 18  |
| IntermedianIntermedianIntermedianIntermedianIntermedianIntermedianIntermedianIntermedianIntermedianIntermedianIntermedianIntermedianIntermedianIntermedianIntermedianIntermedianIntermedianIntermedianIntermedianIntermedianIntermedianIntermedianIntermedianIntermedianIntermedianIntermedianIntermedianIntermedianIntermedianIntermedianIntermedianIntermedianIntermedianIntermedianIntermedianIntermedianIntermedianIntermedianIntermedianIntermedianIntermedianIntermedianIntermedianIntermedianIntermedianIntermedianIntermedianIntermedianIntermedianIntermedianIntermedianIntermedianIntermedianIntermedianIntermedianIntermedianIntermedianIntermedianIntermedianIntermedianIntermedianIntermedianIntermedianIntermedianIntermedianIntermedianIntermedianIntermedianIntermedianIntermedianIntermedianIntermedianIntermedianIntermedianIntermedianIntermedianIntermedianIntermedianIntermedianIntermedianIntermedianIntermedianIntermedianIntermedianIntermedianIntermedianIntermedianIntermedianIntermedianIntermedianIntermedianIntermedianIntermedianIntermedianIntermedianIntermedianIntermedianIntermedianIntermedianIntermedianIntermedianIntermedia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11                              |                                              | " hypnosporum            | "           | 11     | n        | 0             | 0                                   | 11                                               | 18  |
| Image: Second particularImage: Second par                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11                              | 11                                           | " <u>intermedium</u>     | 11          | н      | 11       |               |                                     | 11                                               | 18  |
| Image: Solution of the second secon | 11                              | n                                            | " <u>macrostigmaticu</u> | <u>ım</u> " | 11     | 11       |               |                                     |                                                  | 18  |
| Image: Instrume and InternationImage: Instrume and InternationImage: Instrume and Instru                   | *1                              | 11                                           | " <u>minutum</u>         | 11          | n      | "        | 11            |                                     | 11                                               | 18  |
| "Interference of decidences of decidences of the ofference | н                               | н                                            | " <u>multinucleatum</u>  |             | 11     | "        | 11            | 11                                  | н                                                | 18  |
| """"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11                              | 11                                           | " oleofaciens            | . 11        |        | 11       | 11            | 11                                  | 11                                               | 18  |
| ""     ""     punctatum     ""     ""     ""     ""     ""     18       ""     "     punctatum     ""     ""     ""     ""     18       ""     ""     scabellum     ""     ""     ""     ""     18       ""     "     scabellum     ""     ""     ""     ""     18       ""     "     scabellum     ""     ""     ""     10     ""       ""     tetrasporum     ""     ""     ""     ""     18       ""     "     tetrasporum     ""     ""     ""     18       ""     "     ""     ""     ""     ""     18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11                              | 11                                           | " perforatum             | 11          | 11     | 11       |               | 11                                  |                                                  | 18  |
| ""     ""     ""     ""     ""     ""     ""     18       ""     "     scabellum     ""     ""     ""     ""     18       ""     "     scabellum     ""     ""     ""     ""     18       ""     "     tetrasporum     ""     ""     ""     ""     18       ""     "     "     ""     ""     ""     18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11                              | н                                            | " pinguideum             | 11          | 11     | 11       | "             |                                     | 11                                               | 18  |
| """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """     """ <td>н</td> <td>11</td> <td>" <u>punctatum</u></td> <td>11</td> <td>17</td> <td>11</td> <td>11</td> <td>11</td> <td></td> <td>18</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | н                               | 11                                           | " <u>punctatum</u>       | 11          | 17     | 11       | 11            | 11                                  |                                                  | 18  |
| "     tetrasporum     "     "     "     "     18       "     "     vacuolatum     "     "     "     "     18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11                              | 11                                           | " <u>scabellum</u>       | п           | 11     | 11       |               |                                     | 11                                               | 18  |
| " <u>vacuolatum</u> " <u>vacuolatum</u> " <u>18</u> " " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | н                               | 11                                           | " <u>tetrasporum</u>     |             |        |          | 11            |                                     | 11                                               | 18  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LT.                             | 11                                           | " <u>vacuolatum</u>      |             | u      | 11       | n             |                                     | 11                                               | 18  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11                              | 11                                           | " <u>wimmeri</u>         |             |        |          |               | 11                                  | 11                                               | 18  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                              |                          |             |        | 1        |               |                                     |                                                  |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                              |                          |             |        |          |               |                                     |                                                  |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                              |                          |             |        |          |               |                                     |                                                  |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                              |                          |             |        |          |               |                                     |                                                  |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                              |                          |             |        |          |               |                                     |                                                  |     |

1

| Compound                                                                                | Source of Compound                                                                                 | <u> </u>                                  | <u> </u>             |        |                        | ory Bioassays   |                                                                 |                                                  |          |
|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------|--------|------------------------|-----------------|-----------------------------------------------------------------|--------------------------------------------------|----------|
| Compound                                                                                | (Observance in natural                                                                             | Microorganism                             |                      |        |                        | sponse to Com   |                                                                 |                                                  |          |
|                                                                                         | system; group; reference)                                                                          |                                           | Concentration (mg/l) | Effect | Time of<br>Observation | Study<br>Method | Parameter<br>Measured                                           | Conditions<br>Temp.; pH; Light                   | Ref      |
|                                                                                         |                                                                                                    | CHLOROPHYCEAE                             | (Continued)          |        |                        |                 |                                                                 |                                                  |          |
| Cycloserine<br>helation with<br>ome metals, reg.<br>0.5, also unstabl<br>acid solution) | Streptomyces lavendulae<br>"orchidaceus<br>garyphalus<br>e "roseochromogenus<br>(; Bacteria; 39.5) | <u>Chlorococcum</u><br>aplanosporum       | 30 meq               | N      | 0-3 wk                 | agar medium     | examination of<br>zone of inhibit-<br>ion (disk tech-<br>nique) | 22 <sup>°</sup> C;; 250-300 ft-c,<br>12 hr daily | 18       |
| 11                                                                                      | n                                                                                                  | " diplobionticum                          | 11                   | 11     | n                      |                 | **                                                              | 11                                               | 18       |
| 11                                                                                      | 11                                                                                                 | " echinozygotum                           | D                    | 11     | 11                     | 11              |                                                                 |                                                  | 18       |
| 11                                                                                      | 11                                                                                                 | " ellipsoideum                            | 11                   |        |                        |                 |                                                                 | LT.                                              | 18       |
| 11                                                                                      | 11                                                                                                 | " hypnosporum                             | 11                   |        | 17                     |                 | 11                                                              |                                                  | 18       |
|                                                                                         | 11                                                                                                 | " intermedium                             |                      |        | 11                     |                 | 11                                                              |                                                  | 18       |
|                                                                                         | 11                                                                                                 | " <u>macrostigmatic</u>                   | <u>um</u> "          | 11     |                        | 11              | 11                                                              | 17                                               | 18       |
| 11                                                                                      |                                                                                                    | " <u>minutum</u>                          | 17                   | "      | 11                     |                 | 11                                                              | n                                                | 18       |
|                                                                                         |                                                                                                    | " <u>multinv</u> <u>.eatum</u>            | "                    | 11     | 11                     | 17              |                                                                 | н                                                | 18       |
| 11                                                                                      | 11                                                                                                 | " <u>oleofaciens</u>                      |                      | 11     | 11                     | ļ 11            | 11                                                              |                                                  | 18       |
| 11                                                                                      |                                                                                                    | perforatum                                |                      |        | 11                     |                 | 11                                                              | 13                                               | 18       |
| 11                                                                                      |                                                                                                    | " <u>pinguideum</u><br>" <u>punctatum</u> |                      |        | , ''<br>  11           |                 |                                                                 | (                                                | 18       |
|                                                                                         | 11                                                                                                 | " scabellum                               | 11                   | 11     |                        |                 | 11                                                              |                                                  | 18       |
| 11                                                                                      | 11                                                                                                 | " tetrasporum                             | 11                   | 11     |                        |                 |                                                                 | . 11                                             | 18<br>18 |
| 11                                                                                      | 11                                                                                                 | " vacuolatum                              |                      |        | 11                     | 1               | 11                                                              |                                                  | 18       |
| 11                                                                                      | 11                                                                                                 | " wimmeri                                 | 11                   |        |                        |                 | 11                                                              | н                                                | 18       |
|                                                                                         |                                                                                                    |                                           |                      |        |                        |                 |                                                                 |                                                  |          |

I I

| Compound                                | Source of Compound<br>(Observance in natural    |                                                 |                      |        | Laborat                | ory Bioassays   |                                                                 |                                                    |      |
|-----------------------------------------|-------------------------------------------------|-------------------------------------------------|----------------------|--------|------------------------|-----------------|-----------------------------------------------------------------|----------------------------------------------------|------|
| pound                                   | system; group; reference)                       | Microorganism                                   | Concentration        |        | Re                     | sponse to Com   |                                                                 |                                                    | Re   |
|                                         |                                                 |                                                 | (mg/1)               | Effect | Time of<br>Observation | Study<br>Method | Parameter<br>Measured                                           | Conditions<br>Temp.; pH; Light                     | , Ke |
| Demethylchlor -<br>etracycline<br>DMTC) | Streptomyces aureofaciens<br>(; Bacteria; 39.6) | CHLOROPHYCEAE (<br>Chlorococcum<br>aplanosporum | Continued)<br>30 meq | N      | 0-3 wk                 | agar medium     | examination of<br>zone of inhibit-<br>ion (disk tech-<br>nique) | 22 <sup>°</sup> C;; 250-300 ft-c,<br>12 hrs. daily | 18   |
| **                                      | 11                                              | " diplobionticum                                |                      | ,,     | 18                     |                 | 11                                                              |                                                    | 18   |
| 11                                      | 11                                              | " echinozygotum                                 |                      |        | 11                     | "               | , п                                                             |                                                    | 18   |
| 11                                      |                                                 | " ellipsoideum                                  | 11                   | 11     | 11                     | 11              |                                                                 | 11                                                 | 18   |
| 11                                      | 11                                              | " <u>hypnosporum</u>                            | 11                   | "      | н                      | 11              | 11                                                              |                                                    | 18   |
| 11                                      | 11                                              | " <u>intermedium</u>                            | 11                   | 11     | 11                     |                 | 11                                                              | 11                                                 | 18   |
| 11                                      | 11                                              | " macrostigmaticu                               | m "                  |        | 11                     | 11              | 11                                                              | н                                                  | 18   |
| "                                       | 11                                              | " <u>minutum</u>                                | п                    | 11     | 11                     | "               | 11                                                              | п                                                  | 18   |
| 11                                      | 11                                              | " <u>multinucleatum</u>                         |                      |        | 11                     | 11              | 11                                                              |                                                    | 18   |
| 11                                      | 11                                              | " oleofaciens                                   | 11                   | 11     | 11                     |                 |                                                                 | 11                                                 | 18   |
| 11                                      | 11                                              | " perforatum                                    | 11                   | 11     | 11                     |                 |                                                                 |                                                    | 18   |
| 11                                      |                                                 | " pinguideum                                    | 11                   | 11     | 11                     |                 | 11                                                              | 11                                                 | 18   |
| 13                                      | 11                                              | " punctatum                                     |                      | ) u    | - 11                   |                 |                                                                 | 11                                                 | 18   |
| 11                                      | 11                                              | " <u>scabellum</u>                              | **                   |        | 11                     |                 |                                                                 | · 11                                               | 18   |
| 17                                      | 11                                              | " <u>tetrasporum</u>                            | 11                   | Т      | 11                     | 11              | 11                                                              | 11                                                 | 18   |
|                                         | 11                                              | " vacuolatum                                    |                      | N      | 11                     |                 |                                                                 | <br>                                               | 18   |
| 11                                      | 11                                              | " <u>wimmeri</u>                                | 11                   | 11     | 11                     | 11              | 11                                                              |                                                    | 18   |
|                                         |                                                 |                                                 |                      |        |                        |                 |                                                                 |                                                    |      |
|                                         |                                                 |                                                 |                      |        |                        |                 |                                                                 |                                                    |      |

Class of Compound: ANTIBIOTICS

| Compound                | Source of Compound<br>(Observance in natural      |                                   |               |                     |                        | ory Bioassays               |                                                                 |                                                    |       |
|-------------------------|---------------------------------------------------|-----------------------------------|---------------|---------------------|------------------------|-----------------------------|-----------------------------------------------------------------|----------------------------------------------------|-------|
| - Surpound              | system; group; reference)                         | Microorganism                     | Concentration |                     |                        | sponse to Comp              |                                                                 |                                                    | Ref   |
|                         | system; group; reference)                         |                                   | (mg/l)        | Effect              | Time of<br>Observation | Study<br>Method             | Parameter<br>Measured                                           | Conditions<br>Temp.; pH; Light                     | , Kei |
|                         |                                                   | CHLOROPHYCEAE (                   | Continued)    |                     |                        |                             |                                                                 |                                                    |       |
| ihydrostrepto-<br>mycin | Streptomyces humidus<br>(; Bacteria; 39.6)        | Chlorococcum<br>aplanosporum      | l0 meq        | Т                   | 0-3 wk                 | agar medium                 | examination of<br>zone of inhibit-<br>ion (disk tech-<br>nique) | 22 <sup>°</sup> C;; 250-300 ft-c,<br>12 hrs. daily | 18    |
| 11                      | . 11                                              | " <u>diplobionticum</u>           | 11            | т(?)М               | п                      |                             | 11                                                              | 11                                                 | 18    |
| n                       |                                                   | " echinozygotum                   | 11            | T(?)N               | 11                     | 11                          | 11                                                              | 12                                                 | 18    |
|                         |                                                   | " ellipsoideum                    | 11            | T(?)N               | n                      | 11                          | 11                                                              | 11                                                 | 18    |
| 11                      | 11                                                | " hypnosporum                     | п             | T(?)P               | 11                     |                             |                                                                 | 11                                                 | 18    |
| 17                      | 17                                                | " intermedium                     |               | т                   | 11                     |                             |                                                                 |                                                    | 18    |
| "                       | 11                                                | " <u>macrostigmaticu</u>          | na "          | T(?) <sup>d</sup> N | 11                     |                             | n                                                               | 11                                                 | 18    |
| *1                      | 11                                                | " <u>minutum</u>                  |               | т(?) <sup>4</sup> N | 11                     |                             | 11                                                              | 11                                                 | 18    |
| 11                      | 11                                                | " <u>multinucleatum</u>           | 11            | Т                   |                        | 11                          | Ť1                                                              | 11                                                 | 18    |
| 11                      | 11                                                | " <u>oleofaciens</u>              | 11            | P(?)T               | 11                     |                             |                                                                 |                                                    | 18    |
| 11                      | 11                                                | " perforatum                      | 11            | T(?)N               | 11                     |                             | 11                                                              |                                                    | 18    |
|                         | 11                                                | " pinguideum                      | 11            | Т                   | 11                     |                             | 11                                                              | 11                                                 | 18    |
| 11                      | 11                                                | " punctatum                       | 11            | т                   |                        | 11                          | U.                                                              | 11                                                 | 18    |
| 11                      | 11                                                | " <u>scabellum</u>                | 11            | T(?)N               | 11                     | 11                          | 11                                                              | 11                                                 | 18    |
| 11                      | 11                                                | " tetrasporum                     | н             | т                   | u -                    | 1                           |                                                                 |                                                    | 18    |
| 11                      | 11                                                | " vacuolatum                      | 11            | T(?)N               | 11                     |                             |                                                                 | : 11                                               | 18    |
| 11                      | 11                                                | " wimmeri                         | 11            | T(?)N               | U                      |                             | 11                                                              | 11                                                 | 18    |
| ythromycin              | Streptomyces erythreus<br>(; Bacteria; 28.3 39.5) | Chlorella pyrenoidosa             | 36            | N(0%) <sup>b</sup>  | 40 hrs.                | culture solution<br>(flask) | optical density<br>(610 mµ)                                     | 25°C; 5.1;                                         | 106.5 |
| н                       | 11                                                | 11 11                             | 36            | N(0%) <sup>b</sup>  |                        | 11                          | 1                                                               | 25°C; 6.0;                                         | 106.  |
| 11                      |                                                   |                                   | 36            | P(2%) <sup>b</sup>  | 11                     |                             |                                                                 | 25°C; 7.4;                                         | 106.5 |
| u.                      |                                                   |                                   | 145           | P(15%) <sup>b</sup> | 11                     | 11                          |                                                                 | <sup>25°</sup> C; 6.0;                             | 106.5 |
|                         | I                                                 | (%) <sup>b</sup> percent inhibiti | •             | P(37%) <sup>b</sup> |                        |                             |                                                                 | 25°C; 7.4;                                         | 106.5 |

Class of Compound: ANTIBIOTICS

| Commound    | Source of Compound<br>(Observance in natural       |                              | 1                       |                     | Laborat                | ory Bioassays              |                                                                 |                                                 |       |
|-------------|----------------------------------------------------|------------------------------|-------------------------|---------------------|------------------------|----------------------------|-----------------------------------------------------------------|-------------------------------------------------|-------|
| Compound    | system; group; reference)                          | Microorganism                |                         |                     |                        | sponse to Comp             |                                                                 | · · · · · · · · · · · · · · · · · · ·           |       |
|             | system; group; reference)                          |                              | Concentration<br>(mg/l) | Effect              | Time of<br>Observation | Study<br>Method            | Parameter<br>Measured                                           | Conditions<br>Temp.; pH; Light                  | - Re: |
|             |                                                    | CHLOROPHYCEAE (              | Continued)              |                     |                        |                            |                                                                 |                                                 |       |
| rythromycin | Streptomyces erythreus<br>(; Bacteria; 28.3, 39.5) | Chlorella pyrenoidosa        | a 725                   | P(63%) <sup>t</sup> | 40 hrs.                | culture solutio<br>(flask) | n optical density<br>(610 mµ)                                   | 25°C; 5.1;                                      | 106.  |
| 11          | n                                                  | 11 17                        | 725                     | P(78%) <sup>b</sup> | - 11                   |                            | 11                                                              | 25°C; 6.0;                                      | 106   |
| 11          | 11                                                 |                              | 725                     | P(87%) <sup>b</sup> | 31                     |                            |                                                                 | 25°C; 7.4;                                      | 106   |
| 11          |                                                    | Chlorococcum<br>aplanosporum | 15 meq                  | T(?)N               | 0-3 wk                 | agar medium                | examination of<br>zone of inhibit-<br>ion (disk tech-<br>nique) | 22 <sup>0</sup> C; 250-300 ft-c;<br>12 hr daily | 18    |
| 11          | 11                                                 | " <u>diplobionticum</u>      | 1                       | T(?)N               | 11                     | u u                        | 11                                                              |                                                 | 18    |
| 11          | 11                                                 | " <u>echinozygotum</u>       | 11                      | T(?)N               | **                     |                            |                                                                 |                                                 | 18    |
| "           | 11                                                 | " <u>ellipsoideum</u>        | 11                      | T(?)N               | 11                     |                            |                                                                 |                                                 | 18    |
|             | 11                                                 | " hypnosporum                | 11                      | T(?)P               |                        |                            | п                                                               | 11                                              | 18    |
| 11          | 11                                                 | " <u>intermedium</u>         | 1 11                    | т                   | n                      | 1                          | 11                                                              | 11                                              | 18    |
| 11          | , n                                                | " macrostigmaticur           | <b>n</b> "              | T(?)N               | н                      |                            |                                                                 | х<br>11                                         | 18    |
| 11          | i ii                                               | " <u>minutum</u>             | **                      | T(?)N               | 11                     |                            | 11 11                                                           | п                                               | . 18  |
| 11          | 11                                                 | " <u>multinucleatum</u>      |                         | т                   |                        |                            |                                                                 | 11                                              | 18    |
| 11          | 1 11                                               | " <u>oleofaciens</u>         | 11                      | P(?)T               |                        | 1                          | 11                                                              | 11                                              | 18    |
| 11          | 1                                                  | " perforatum                 | 11                      | T(?)N               | 11                     |                            | 11                                                              | 11                                              | 18    |
|             | n .                                                | " pinguideum                 |                         | т                   | 11                     |                            | 11                                                              | 11                                              | 18    |
| 11          | "                                                  | " punctatum                  | ,                       | т                   | п                      |                            | 11                                                              | 1                                               | 18    |
| 11          | n                                                  | " <u>scabellum</u>           |                         | т(?)N               | 11                     | 11                         | 11                                                              | 1                                               | 18    |
| **          |                                                    | " <u>tetrasporum</u>         | 11                      | т                   | . 11                   | 11                         | TI                                                              | U. U.                                           | 18    |
| 11          | 11                                                 | " vacuolatum                 |                         | T(?)N               | 11                     | u u                        |                                                                 | н                                               | 18    |
| 11          | u u                                                | " wimmeri                    | 11                      | T(?)N               | 11                     |                            |                                                                 |                                                 | 18    |

I.

| Compound    | Source of Compound                           | ·                                             |                         |                     |                        | ory Bioassays                                     |                                                                 |                                                    |    |
|-------------|----------------------------------------------|-----------------------------------------------|-------------------------|---------------------|------------------------|---------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------|----|
| Compound    | (Observance in natural                       | Microorganism                                 |                         |                     |                        | sponse to Comp                                    | ound                                                            |                                                    |    |
|             | system; group; reference)                    |                                               | Concentration<br>(mg/l) | Effect              | Time of<br>Observation | Study<br>Method                                   | Parameter<br>Measured                                           | Conditions<br>Temp.; pH; Light                     | Re |
|             |                                              | MYXOPHCEAE                                    | ]                       |                     |                        |                                                   |                                                                 |                                                    |    |
| iliotoxin   | Trichoderma viride<br>(; Bacteria; 39.6)     | <u>Nostoc</u> sp                              | 125-250                 | Т                   | l mo                   | agar medium                                       | examination of<br>zone of inhibit-<br>ion (disk tech-<br>nique) | 22 <sup>0</sup> C; 7.8; 140 ft-c,<br>continuous    | 3  |
| "           | 11                                           | <u>Phormidium</u> sp<br><u>CHLOROPHYCEAE:</u> | 8-16                    | Г                   | 17                     |                                                   | 11                                                              | п                                                  | 3  |
| 11          | u u                                          | <u>Chlamydomonas</u> sp                       | 31-62                   | Т                   |                        |                                                   | 11                                                              | н                                                  | 3  |
| "           | 11                                           | Chlorella<br>pyrenoidosa                      | 2                       | P(93%) <sup>b</sup> | 40 hr                  | culture solutior<br>(flask)                       | optical density<br>(610 mµ)                                     | 25°C; 5.1;                                         | 10 |
| 11          | 11                                           | 11 11                                         | 2                       | P(92%) <sup>b</sup> | 11                     | n                                                 | 11                                                              | 25°C; 6.0;                                         | 10 |
| 11          | 11                                           | 11 11                                         | 2                       | P(95%) <sup>b</sup> | u u                    | 11                                                | 11                                                              | 25°C; 7.4;                                         | 10 |
|             |                                              | 11 11                                         | 2                       | P(75%) <sup>e</sup> | 11                     | 11                                                | 11                                                              | 25°C; 5.1;                                         | 10 |
|             |                                              | 11 11                                         | 2                       | P(82%) <sup>e</sup> | 11                     | LT.                                               | U .                                                             | 25°C; 6.0;                                         | 10 |
| **          | 11                                           | 11 11                                         | 2                       | P(57%) <sup>e</sup> | 11                     |                                                   | TI I                                                            | 25°C; 7.4;                                         | 10 |
|             |                                              | <u>Scenedesmus</u> sp                         | 125-250                 |                     | l mo                   | agar medium                                       | examination of<br>zone of inhibit-<br>ion (disk tech-<br>nique) | 22 <sup>°</sup> C; 7.8; 140 ft-c,<br>continuous    | 3  |
| 11          | 1                                            | CHRYSOPHYCEAE                                 |                         |                     |                        |                                                   |                                                                 |                                                    |    |
| н           | U U                                          | <u>Gomphonema</u> sp                          | 0 - 8                   | T                   | 11                     |                                                   | 11                                                              | 11                                                 | 3  |
|             |                                              | <u>Nitzschia</u> sp<br><u>MYXOPHCEAE</u>      | 0 - 8                   | Т                   |                        | 11                                                |                                                                 | 11                                                 | 3  |
| umicidin S_ | Bacillus brevis<br>(; Bacteria; 11.22, 39.5) | <u>Anabaena</u> <u>variabilis</u>             | 100                     | P                   | 5 da                   | culture solution<br>(25 ml Erlen-<br>meyer flask) | 11                                                              | 25 <sup>°</sup> C; 7; 700-1000 ft-c,<br>continuous | 3  |
| *1          | 11                                           | "<br>CHLOROPHYCEAE                            | 1000                    | Т                   | UT                     | 11                                                | 11                                                              | 11                                                 | 3  |
| 11          | u u                                          | Chlorella pyrenoidosa                         | 100                     | Р                   |                        |                                                   | T1                                                              | 11                                                 | -  |
| 11          | 11                                           | 11 11 11                                      | 1000                    | P                   |                        | (organic media                                    | )                                                               |                                                    | 3  |
| 11          |                                              | 11 11                                         |                         |                     |                        | 11                                                | 11                                                              | 11                                                 | 3  |
|             |                                              |                                               | 1000                    | N                   |                        | culture solution<br>(25 ml Erlen-<br>meyer flask) |                                                                 | 11                                                 | 3  |

T T

I

| Compound                  | (Observance in natural system; group; reference)               |                              |               |        |                        |                                                  |                                                                   |                                                    |         |
|---------------------------|----------------------------------------------------------------|------------------------------|---------------|--------|------------------------|--------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------|---------|
|                           |                                                                | Microorganism                | Concentration |        |                        | sponse to Comp                                   |                                                                   |                                                    | Re      |
|                           |                                                                |                              | (mg/l)        | Effect | Time of<br>Observation | Study<br>Method                                  | Parameter<br>Measured                                             | Conditions<br>Temp.; pH; Light                     | ILE     |
|                           |                                                                | CHLOROPHYCEAE                | 1             |        |                        |                                                  |                                                                   |                                                    |         |
| <u>ramicidin</u> <u>S</u> | Bacillus brevis<br>(; Bacteria; 11.22, 39.5)                   | Scenedesmus<br>obliquus      | 1000          | N      | 5 da                   | culture solutic<br>(25 ml Erlen-<br>meyer flask) | n examination of<br>zone of inhibit-<br>ion (disk tech-<br>nique) | 25 <sup>0</sup> C; 7; 700-1000 ft-c,<br>continuous | 3       |
| 11                        |                                                                | 11 11                        |               | N      | 11                     |                                                  |                                                                   |                                                    | 31      |
|                           |                                                                | BACTERIUM                    |               |        |                        |                                                  |                                                                   |                                                    | ار<br>ا |
| 11                        |                                                                |                              |               |        |                        |                                                  |                                                                   |                                                    | 1       |
| 11                        | 11                                                             | Archromobacter sp 1          |               | N      | 2 da                   | 11                                               |                                                                   | 11                                                 | 36      |
| 11                        |                                                                | '' sp 2                      | 100           | N      | 3 da                   |                                                  | 11                                                                | 11                                                 | 36      |
|                           | 11                                                             | Flavabacterium sp            | 100           | P      | 5 da                   | 11                                               | 11                                                                | 11                                                 | 36      |
| 11                        |                                                                | 11 11                        | 1000          | Т      | 5 da                   | 11                                               | U U                                                               | н                                                  | 36      |
| **                        | 11                                                             | <u>Pseudomonas</u> sp        | 1000          | N      | 3 da                   |                                                  | 11                                                                | ч                                                  | 36      |
|                           |                                                                | CHLOROPHYCEAE                |               |        |                        |                                                  |                                                                   |                                                    |         |
|                           | <u>Streptomyces</u> <u>kanamycetius</u><br>(; Bacteria; 114.8) | Chlorococcum<br>aplanosporum | 30 meq        | Т      | 0-3 wk                 | agar medium                                      | 11                                                                | 22 <sup>0</sup> C;; 250-300 ft-c,<br>12 hr daily   | 18      |
|                           | 11                                                             | " diplobionticum             | п             | т      | 11                     |                                                  |                                                                   | 11                                                 | 18      |
| **                        | 11                                                             | " echinozygotum              | 11            | N      | 11                     |                                                  | 11                                                                | u.                                                 | 18      |
| 11                        | п                                                              | " ellipsoideum               |               | N      |                        |                                                  |                                                                   |                                                    | 18      |
| 11                        | 11                                                             | " hypnosporum                |               | т      | 11                     |                                                  |                                                                   |                                                    |         |
| 11                        | п                                                              | " intermedium                |               | Т      |                        |                                                  |                                                                   |                                                    | 18      |
| н                         |                                                                | " macrostigmatic             | um 11         | T      |                        |                                                  | 11                                                                |                                                    | 18      |
| 11                        | 11                                                             | " inutum                     | 11            | T      | u.                     |                                                  |                                                                   |                                                    | 18      |
| 11                        | 11                                                             | " multinucleatum             |               |        |                        |                                                  |                                                                   | 11                                                 | 18      |
| 11                        |                                                                | " oleofaciens                | 1 11          |        |                        | 11                                               |                                                                   | 11                                                 | 18      |
| 0                         |                                                                |                              |               | T      | 11                     |                                                  | 11                                                                | 11                                                 | 18      |
| 11                        | н                                                              | perioratum                   | 11            | Т      | 11                     | 11                                               | ri .                                                              |                                                    | 18      |
| 11                        |                                                                | pinguideum                   | 11            | Т      | 11                     |                                                  | 11                                                                | 11                                                 | 18      |
|                           | 1                                                              | " punctatum                  | 17            | Т      | 11                     | 11                                               | 11                                                                | п                                                  | 18      |
|                           | 11                                                             | " <u>scabellum</u>           | 11            | Т      | 11                     |                                                  |                                                                   | 11                                                 | 18      |
| 11                        |                                                                | " t etrasporum               |               | Т      | n                      |                                                  | 11                                                                | u.                                                 | 18      |
| 11                        |                                                                | " vacuolatum                 | 11            | т      |                        |                                                  | 11                                                                | u .                                                | 18      |
| 11                        | IT IT                                                          | " <u>w immeri</u>            |               | Т      |                        |                                                  |                                                                   | 11                                                 | 18      |

|           | Source of Compound                                |                             | 1                       |        | Laborate               | ory Bioassays                                     | a u a d                                                         |                                                  |      |
|-----------|---------------------------------------------------|-----------------------------|-------------------------|--------|------------------------|---------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------|------|
| Compound  | (Observance in natural                            | Microorganism               | Contents                |        |                        | sponse to Comp                                    |                                                                 |                                                  | Ref. |
|           | system; group; reference)                         |                             | Concentration<br>(mg/l) | Effect | Time of<br>Observation | Study<br>Method                                   | Parameter<br>Measured                                           | Conditions<br>Temp.; pH; Light                   |      |
|           |                                                   | MYXOPHYCEAE                 |                         |        |                        |                                                   |                                                                 |                                                  |      |
| Neomycin_ | Streptomyces <u>fradiae</u><br>(; Bacteria; 28.3) | <u>Nostos</u> sp            | 0 - 4                   | Т      | 5 da                   | culture solution<br>(25 ml Erlen-<br>meyer flask) | examination of<br>zone of inhibi-<br>tion (disk tech-<br>nique) | 22 <sup>°</sup> C; 8.2, 140 ft-c,<br>continuous  | 33   |
|           |                                                   | Phormidium sp               |                         | Т      |                        | *1                                                |                                                                 | 11                                               | 33   |
|           |                                                   | CHLOROPHYCEAE               |                         |        |                        |                                                   |                                                                 |                                                  |      |
|           |                                                   | Chlamydomonas               |                         | т      | 11                     | п                                                 | u                                                               | 11                                               | 33   |
|           |                                                   | Chlorococcum<br>aplanoporum | 30 meq                  | Т      | 0-3 wk                 | agar medium                                       | 11                                                              | 22 <sup>°</sup> C;; 250-300 ft-c,<br>12 hr daily | 18   |
| н         |                                                   | " diplobionticum            | 11                      | Т      | s 11                   | 11                                                | 11                                                              | 11                                               | 18   |
| 11        | 11                                                | " echinozygotum             | 1 11                    | Т      | 11                     | п                                                 |                                                                 | 11                                               | 18   |
| 11        | 11                                                | " ellipsoideum              | T1                      | N      | i.                     |                                                   |                                                                 |                                                  | 18   |
| 11        | 11                                                | " hypnosporum               | 11                      | N      | 11                     |                                                   |                                                                 | 11                                               | 18   |
| п         | 11                                                | " intermedium               | 11                      | т      |                        |                                                   | 11                                                              | 11                                               | 18   |
|           | 11                                                | " macrostigmatic            | um "                    | Т      | 11                     |                                                   | **                                                              | 11                                               | 18   |
| 11        | u u                                               | " minutum                   | 17                      | Ν      | 11                     | 11                                                | 11                                                              | 11                                               | 18   |
|           | 0                                                 | " multinucleatum            | 11                      | Т      | 11                     | n                                                 | 11                                                              | u                                                | 18   |
|           | u .                                               | " oleofaciens               |                         | N      |                        |                                                   |                                                                 | 11                                               | 18   |
| 11        | п                                                 | " perforatum                | n                       | т      |                        |                                                   |                                                                 | u .                                              | 18   |
| 11        | п                                                 | " pinguideum                |                         | N      |                        |                                                   | 17                                                              | 11                                               | 18   |
| п         | 11                                                | " punctatum                 |                         | N      |                        |                                                   | U U                                                             | u                                                | 18   |
|           |                                                   | " scabellum                 | 51                      | N      |                        | **                                                | 11                                                              | 11                                               | 18   |
| 11        |                                                   | " <u>t etrasporum</u>       |                         | Р      | 0                      | 11                                                | 11                                                              |                                                  | 18   |
| ţI        | п                                                 | " vacuolatum                |                         | Т      | u .                    | 11                                                |                                                                 |                                                  | 18   |
| п         | 11                                                | " <u>wimmeri</u>            |                         | P      |                        |                                                   |                                                                 | н                                                | 18   |
| 11        | 11                                                | " <u>scenedesmus</u> s      | p 16-32 units           | Т      | l mo                   | culture solution<br>(25 ml Erlen-<br>meyer flask) | zone of inhibit-                                                | 22 <sup>°</sup> C; 8.2; 140 ft-c,<br>continuous  | 33   |
|           |                                                   | CHRYSOPHYCEAE               |                         |        |                        |                                                   |                                                                 |                                                  |      |
| 11        | 11                                                | <u>Gomphonema</u> sp        | 0-4 units               | Т      |                        |                                                   | *1                                                              | 11                                               | 33   |
| 11        | 11                                                | $\underline{Nitzschia}$ sp  |                         | Т      | 21                     | 11                                                | "                                                               | 11                                               | 33   |
|           |                                                   |                             |                         |        |                        |                                                   |                                                                 |                                                  |      |

I I

1

| Compound                              | Source of Compound                                                                     |                              |                         |                                   |                        | ory Bioassays               |                                               |                                |       |
|---------------------------------------|----------------------------------------------------------------------------------------|------------------------------|-------------------------|-----------------------------------|------------------------|-----------------------------|-----------------------------------------------|--------------------------------|-------|
| Compound                              | (Observance in natural                                                                 | Microorganism                |                         |                                   |                        | sponse to Com               | pound                                         |                                |       |
|                                       | system; group; reference)                                                              |                              | Concentration<br>(mg/l) | Effect                            | Time of<br>Observation | Study<br>Method             | Parameter<br>Measured                         | Conditions<br>Temp.; pH; Light | Ref.  |
|                                       |                                                                                        | CHLOROPHYCEAE                |                         |                                   |                        |                             |                                               |                                |       |
| eothiolutin                           | (;;)                                                                                   | Chlorella pyrenoidosa        | a 2.5                   | P(21%) <sup>b</sup>               | 40 hr                  | culture solution<br>(flask) | noptical density<br>at 610 mµ                 | 25°C; 5.1;                     | 106.  |
| 11                                    |                                                                                        | 11 11                        | 11                      | P(48%) <sup>b</sup>               |                        |                             |                                               | 25°C; 6.0;                     | 106.  |
| 11                                    |                                                                                        | 11 H                         | 1 11                    | T(100%)                           | 11                     |                             | 11                                            | 25°C; 7.4;                     | 106.  |
| 11                                    | 11                                                                                     | 11 11                        | 5                       | P(37%) <sup>b</sup>               |                        |                             |                                               | 25°C; 5.1;                     | 106.  |
|                                       | н                                                                                      | 11 11                        | 11                      | P(75%) <sup>b</sup>               | 11                     | 11                          | 11                                            | 25°C; 6.0;                     | 106.  |
|                                       | п                                                                                      | u n                          |                         | T(100%) <sup>b</sup>              |                        |                             | 11                                            | 25°C; 7.4;                     | 106.9 |
|                                       | 11                                                                                     | н н                          | 10                      | T(100%) <sup>b</sup>              | 11                     | 11                          |                                               | 25°C; 6.0;                     | 106.5 |
| 11                                    | 11                                                                                     | 11 11                        |                         | T(100%) <sup>b</sup>              | 11                     |                             |                                               | 25 <sup>°</sup> C; 7.4;        |       |
| etrospsin                             | Streptomyces ambofaciens                                                               | 11 11                        | 5                       | P(67%) <sup>b</sup>               | 11                     | 1,                          |                                               | 25°C; 7.4;<br>25°C; 5.1;       | 106.9 |
|                                       | " <u>chromogenus</u><br>" <u>netropsis</u><br>" <u>reticuli</u><br>(; Bacteria; 114.8) |                              |                         |                                   | 1                      |                             |                                               | 25 0; 5.1;                     | 106.  |
| "                                     | 11                                                                                     | 11 11                        | 11                      | $P(71\%)^{b}$                     | 11                     | **                          | 11                                            | 25°C; 6,0;                     | 106.5 |
| 11                                    |                                                                                        | [ u u                        | 11                      | P(70%) <sup>b</sup>               | 11                     |                             |                                               | 25°C; 7.4;                     | 106.5 |
| 11                                    |                                                                                        | п п                          | 10                      | T(100%) <sup>b</sup>              | 11                     |                             | 11                                            | 25°C; 5.1;                     | 106.5 |
| 11                                    | 11                                                                                     | 11 11                        | 11                      | T(100 <sup>%</sup> ) <sup>b</sup> | 11                     | 11                          | 11                                            | 25°C; 6.0;                     | 106.  |
|                                       | 11                                                                                     | 11 11                        |                         | T(100%) <sup>b</sup>              | 11                     | 11                          |                                               | 25°C; 7.4;                     | 106.5 |
| ovobiocin<br>treptonivicin,           | Streptomyces niveus<br>(; Bacteria; 39.6)                                              | Chlorococcum<br>aplanosporum | 30 meq                  | N                                 | 0-3 wk                 | agar medium                 | examination of                                | 22°C;; 250-300 ft-c,           | 108.5 |
| athomycin,<br>bamycin,<br>ardelmycin) |                                                                                        |                              |                         |                                   | ,                      |                             | zone of inhibit-<br>ion (disk tech-<br>nique) | 12 hr daily                    |       |
| * 1                                   | "                                                                                      | " <u>diplobionticum</u>      | 11                      | 11                                | 11                     | 11                          | 0                                             | 11                             | 18    |
| **                                    | 11                                                                                     | " <u>echinozygotum</u>       |                         | 11                                |                        |                             |                                               | 11                             | 18    |
| 13                                    | 11                                                                                     | " ellipsoideum               | 11                      |                                   | 11                     | 11                          |                                               | 11                             | 18    |
| 11                                    | 11                                                                                     | " hypnosporum                |                         | 1                                 | 17                     | 11                          | 17                                            | н                              | 18    |
| 11                                    | "                                                                                      | " intermedium                |                         |                                   |                        | 11                          |                                               |                                | 18    |
| 11                                    | 11                                                                                     | " m.acrostigmatic            | um "                    | 11                                | 71                     | 11                          |                                               | 11                             | 18    |
| U .                                   | 11                                                                                     | " minutum                    |                         |                                   | 17                     | 11                          |                                               |                                | 18    |
|                                       |                                                                                        | " multinucleatum             |                         |                                   | 11                     | 11                          |                                               | 11                             | 18    |
| 11                                    |                                                                                        |                              |                         |                                   |                        |                             | 1                                             |                                | 10    |

I.

(%)<sup>b</sup> inhibition, comparison with control

| Compound                                             | Source of Compound<br>(Observance in natural |                                 | <u></u>                 |                   |                        | ory Bioassays                                     |                                                           |                                                   |     |
|------------------------------------------------------|----------------------------------------------|---------------------------------|-------------------------|-------------------|------------------------|---------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------|-----|
| Compound                                             | system; group; reference)                    | Microorganism                   |                         |                   | <u></u>                | sponse to Com                                     |                                                           |                                                   |     |
|                                                      | system; group; reference)                    |                                 | Concentration<br>(mg/l) | Effect            | Time of<br>Observation | Study<br>Method                                   | Parameter<br>Measured                                     | Conditions<br>Temp.; pH; Light                    | Ret |
| ovobiocin                                            | Streptomyces niveus                          | CHLOROPHYCEAE<br>Chlorococcum   | 30 meg                  | N                 | 0-3 wk                 | agar medium                                       | examination of                                            | 22 <sup>°</sup> C;; 250-300 ft-c,                 | 18  |
| reptonivicin,<br>thomycin,<br>bamycin,<br>rdelmycin) | (; Bacteria; 39.6)                           | <u>perforatum</u>               |                         |                   |                        |                                                   | zone of inhibit-<br>ion (disk tech-<br>nique)             | 12 br daily                                       | 10  |
| 11                                                   | n                                            | " pinguideum                    | 11                      | N                 |                        | U.                                                |                                                           | 11                                                | 18  |
| 11                                                   | 11                                           | " punctatum                     | **                      | N                 | 11                     | 11                                                |                                                           | 12                                                | 18  |
|                                                      | h h                                          | " <u>scabellum</u>              |                         | N                 | 11                     | 11                                                |                                                           | 11                                                | 18  |
| 11                                                   | n n                                          | " <u>tetrasporum</u>            | -11                     | Ν.                | 11                     | 11                                                | 11                                                        | 11                                                | 18  |
| 11                                                   | tt .                                         | " vacuolatum                    | 11                      | Т                 |                        | 1 11                                              | 11                                                        | 11                                                | 18  |
|                                                      | ) U                                          | " <u>wimmeri</u><br>MYXOPHYCEAE | 11                      | N                 | 11                     | n                                                 |                                                           | "                                                 | 18  |
| r <u>statin</u><br>lycostatin)                       | Streptomyces noursei<br>(; Bacteria; 39.6)   | <u>Anabaena</u> cylindrica      | 200                     | N                 | 1, 2, 3 wk             |                                                   | macro and/or<br>microscopic<br>comparison<br>with control | 24 <sup>°</sup> C;; 200 ft-c,<br>12 hr daily      | 46  |
| 11                                                   | 11                                           | Fremyella diplosiphon           | 200                     | N                 | 11                     |                                                   |                                                           |                                                   | 46  |
| 11                                                   | 11                                           | Nostoc_sp                       | 200                     | N                 |                        | 11                                                | 1                                                         | п                                                 | 46  |
| 11                                                   | 1                                            | Phormidium sp                   | 50                      | Р                 | l wk                   | 11                                                | 11                                                        | н                                                 | 46  |
| 11                                                   |                                              | 11 17                           | 100                     | Р                 | 2, 3 wk                | 11                                                | 11                                                        |                                                   | 46  |
| 11                                                   |                                              | 11 11                           | 200                     | T(algi-<br>cidal) | 1, 2, 3 wk             | culture solutio<br>(50 ml Erlen-<br>meyer flask)  | <b>m</b> , 11                                             | n                                                 | 46  |
| 11                                                   | "<br> <br>                                   | Plectonema boryanum             | 1                       | 11                | 5 da                   | culture solution<br>(150 x 16 mm<br>test tube)    | optical density<br>(Klett colori-<br>meter at 540 m       | 23 <sup>°</sup> C;; 500 ft-c,<br>continuous<br>u) | 58. |
|                                                      |                                              | CHLOROPHYCEAE                   |                         | 1                 |                        |                                                   | 1                                                         |                                                   |     |
| 17                                                   | "                                            | Ankistrodesmus<br>falcotus      | 2                       | P                 | 1, 2, 3 wk             | agar medium                                       | macro and/or<br>microscopic<br>comparison<br>with control | 24 <sup>°</sup> C;; 200 ft-c,<br>12 hr daily      | 46  |
|                                                      | 11                                           | 11 11                           | 20                      | T(Algi-           | 11                     |                                                   | "                                                         | 11                                                | 46  |
| 11                                                   | 1                                            | Chlamydomonas<br>agloeoformis   | 20                      | cidal)            | 11                     | culture solutior<br>(50 ml Erlen-<br>meyer flask) | 1<br>1<br>1                                               |                                                   | 46  |

94

| Compound                      | Source of Compound                         |                                          | -,                      |                   |                        | ory Bioassays                                     |                                                           |                                                  |     |
|-------------------------------|--------------------------------------------|------------------------------------------|-------------------------|-------------------|------------------------|---------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------|-----|
| Compound                      | (Observance in natural                     | Microorganism                            |                         |                   |                        | esponse to Comp                                   |                                                           |                                                  |     |
|                               | system; group; reference)                  |                                          | Concentration<br>(mg/l) | Effect            | Time of<br>Observation | Study<br>Method                                   | Parameter<br>Measured                                     | Conditions<br>Temp.; pH; Light                   | Ref |
|                               |                                            | CHLOROPHYCEAE                            |                         |                   |                        |                                                   |                                                           |                                                  |     |
| <u>ystatin</u><br>Aycostatin) | Streptomyces noursei<br>(; Bacteria; 39.6) | <u>Chlamdomonas</u><br><u>reinhardti</u> | 1                       | T(algi-<br>cidal) | 3 da                   | culture solution<br>(50 ml Erlen-<br>meyer flask) | n optical density<br>(Klett colori-<br>meter at 540 mµ    | 23 <sup>°</sup> C; 6.8; 500 ft-c,<br>continuous  | 58. |
| **                            | 11                                         | 11 11                                    | 4                       |                   | 11                     | nutrient broth                                    |                                                           |                                                  | 58. |
|                               | n ,                                        | Chlorella vulgaris                       | 3                       | 11                | 11                     | culture solution<br>(50 ml Erlen-<br>meyer flask) | <b>m</b> 11                                               | 11                                               | 58. |
| 13                            |                                            | 11 11                                    | 3                       | 11                | - u                    | nutrient broth                                    |                                                           | 11                                               | 58. |
| 11                            | н<br>                                      | " pyrenoidosa                            | 50                      | P.                | l wk                   | culture solution<br>(150 x 16 mm<br>test tube)    | macro and/or<br>microscopic<br>comparison<br>with control | 24 <sup>°</sup> C;; 200 ft-c,<br>12 hr daily     | 48  |
| 11                            | 11                                         | 11 11                                    | 100                     | Т                 | 11                     | 11                                                | 11                                                        | 11                                               | 48  |
|                               | 1                                          | 11 11                                    | 50                      | т                 | 2, 3 wk                |                                                   | 11                                                        | 11                                               | 48  |
| <u>ystatin</u>                |                                            | Chlorococcum<br>aplanosporum             | 100 units               | N                 | 0-3 wk                 | agar medium                                       | examination of<br>zone of inhibit-<br>ion                 | 22 <sup>°</sup> C;; 250-300 ft-c,<br>12 hr daily | 18  |
| 11                            | 1 II                                       | " <u>diplobionticum</u>                  |                         | Т                 |                        | 11                                                | 11                                                        | u .                                              | 18  |
|                               | 11                                         | " <u>echinozygotum</u>                   | 11                      | Т                 |                        | 17                                                | u u                                                       |                                                  | 18  |
|                               | 11                                         | " ellipsoideum                           | 11                      | N                 | 11                     | 11                                                | 11                                                        | 11                                               | 18  |
| 11                            | n                                          | " hypnosporum                            | 11                      | N                 | **                     |                                                   |                                                           | 11                                               | 18  |
| 11                            | 11                                         | " intermedium                            | l                       | N                 | 11                     |                                                   | 11                                                        | 11                                               | 18  |
| 11                            | 11                                         | " macrostigmatic                         | um "                    | N                 |                        | 11                                                |                                                           | 11                                               | 18  |
| 11                            | 11                                         | " minutum                                | 17                      | Р                 |                        | 11                                                | 11                                                        | 11                                               | 18  |
| 11                            | n                                          |                                          | 1                       | Р                 | l wk                   |                                                   | Macro and/or<br>microscopic<br>comparison<br>with control | 24 <sup>°</sup> C;; 200 ft-c,<br>12 hr daily     | 46  |
| 11                            | п                                          | н н                                      | 2                       | T(algi-<br>cidal) | 1, 2, 3, wk            | 11                                                | 11                                                        |                                                  | 46  |
| 11                            | , n                                        | " <u>multinucleatum</u>                  | 100 units               | N                 | 0-3 wk                 | , n                                               | examination of<br>zone of inhibit-<br>ion                 | 22 <sup>°</sup> C;; 250-300 ft-c,<br>12 hr daily | 18  |
| 11                            |                                            | " oleofaciens                            | 11                      | N                 |                        | 11                                                |                                                           |                                                  | 18  |

95

I i

| Compound | Source of Compound                                  |                            |                         |                   | Laborat                | ory Bioassays                                     |                                                           |                                                  |     |
|----------|-----------------------------------------------------|----------------------------|-------------------------|-------------------|------------------------|---------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------|-----|
| Compound | (Observance in natural<br>system; group; reference) | Microorganism              | Canada di               | 1                 | Re                     | sponse to Comp                                    |                                                           |                                                  | Re  |
|          | system; group; reference)                           |                            | Concentration<br>(mg/l) | Effect            | Time of<br>Observation | Study<br>Method                                   | Parameter<br>Measured                                     | Conditions<br>Temp.; pH; Light                   | Re  |
|          |                                                     | CHLOROPHYCEAE              |                         |                   |                        |                                                   |                                                           |                                                  |     |
| statin_  | Streptomyces noursei<br>(; Bacteria; 39.6)          | Chlorococcum<br>perforatum | 100 units               | Т                 | 0-3 wk                 | agar medium                                       | examination of<br>zone of inhibit-<br>ion                 | 22 <sup>°</sup> C;; 250-300 ft-c,<br>12 hr daily | 18  |
| н        | 11                                                  | " pinguideum               | 11                      | N                 | 11                     |                                                   |                                                           | ш                                                | 18  |
| 11       | 11                                                  | " punctatum                | 11                      | N                 | 11                     | 11                                                | 11                                                        | н                                                | 18  |
| 11       | 11                                                  | " scabellum                | 11                      | N                 | 11                     |                                                   |                                                           | 11                                               | 18  |
| 11       | 11                                                  | " tetrasporum              | 11                      | N                 | 11                     |                                                   |                                                           | ,                                                | 18  |
| 11       | 11                                                  | " vaculatum                | 11                      | N                 |                        |                                                   |                                                           |                                                  | 18  |
| 11       | 11                                                  | " <u>wimmeri</u>           | *1                      | N                 | 11                     |                                                   |                                                           | 11                                               | 1   |
| "        | "                                                   | Goccomyxa elongata         | 200                     | N                 | 1, 2, 3 wk             | culture solution<br>(150 x 16 mm<br>test tube)    | macro and/or<br>microscopic<br>comparison<br>with control | 24 <sup>°</sup> C;; 200 ft-c,<br>12 hr daily     | 46  |
| 11       |                                                     | Haematococcum<br>lacustris | 50                      | P                 | l wk                   | agar medium                                       | 11                                                        | U.                                               | 4   |
| 11       | "                                                   | 11 11                      | 100                     | P                 | 2, 3 wk                | 11                                                | 11                                                        |                                                  | 46  |
| 11       |                                                     | н п                        | 200                     | T(algi-<br>cidal) | 1, 2, 3,wk             |                                                   | 11                                                        | 11                                               | 4 ( |
| 11       | 11                                                  | Hormidium sp               | 1                       | 11                | u.                     |                                                   | 11                                                        | 11                                               | 46  |
| 17       |                                                     | Scenedesmus<br>obliquus    | 200                     | N                 | 11                     | culture solution<br>(150 x 16 mm<br>test tube)    |                                                           | п                                                | 46  |
|          |                                                     | 11 11                      | 1                       | T(algi-<br>cidal) | 3 da                   | culture solutior<br>(50 ml Erlen-<br>meyer flask) | optical density<br>(at 540 mµ)                            | 23 <sup>°</sup> C;; 500 ft-c,<br>continuous      | 58  |
| 11       | n                                                   | Stichococcum<br>bacillaris | 100                     | P                 | l wk                   | culture solution<br>(150 x 16 mm<br>test tube)    | macro and/or<br>microscopic<br>comparison<br>with control | 24 <sup>°</sup> C;; 200 ft-c,<br>12 hr daily     | 46  |
| 11       |                                                     | 11 11                      | 200                     | T (algi-          | l wk                   |                                                   |                                                           |                                                  | 46  |
| 11       |                                                     | 11 11                      | 100                     | çidal)            | 2, 3 wk                | 11                                                |                                                           |                                                  | 46  |
| 11       | u                                                   | Prototheca zopfi           | 1                       | 11                | 3 da                   | culture solution<br>(50 ml Erlen-<br>meyer flaks) | optical density<br>(at 540 mµ)                            | 23 <sup>°</sup> C;; 500 ft-c,<br>continuous      | 58  |

1

| Compound  | Source of Compound          |                      |           | <u> </u>                |                   |                        | ory Bioassays                                     |                                                           |                                              |     |
|-----------|-----------------------------|----------------------|-----------|-------------------------|-------------------|------------------------|---------------------------------------------------|-----------------------------------------------------------|----------------------------------------------|-----|
| Сотгроина | (Observance in natural      | Microo               | rganism   |                         |                   | Re                     | esponse to Com                                    | pound                                                     |                                              |     |
|           | system; group; reference)   |                      |           | Concentration<br>(mg/l) | Effect            | Time of<br>Observation | Study<br>Method                                   | Parameter<br>Measured                                     | Conditions<br>Temp.; pH; Light               | Re  |
|           |                             | CHLOROP              | HYCEAE    |                         |                   |                        |                                                   |                                                           |                                              | -   |
| statin    | <u>Streptomyces</u> noursei |                      | _         |                         |                   |                        |                                                   |                                                           |                                              |     |
|           | (; Bacteria; 39.6)          | Navicula p           | elluclosa | 1                       | T(algi-<br>cidal) | 1, 2, 3 wk             | agar medium                                       | macro and/or<br>microscopic<br>comparison<br>with control | 24 <sup>°</sup> C;; 200 ft-c,<br>12 hr daily | 46  |
| U.        | u<br>I                      |                      | 11        | 60                      |                   | 3 da                   | culture solution<br>(50 ml Erlen-<br>meyer flask) | optical density<br>(at 540 mµ)                            | 23 <sup>°</sup> C;; 500 ft-c,<br>continuous  | 58. |
| 11        |                             | Ochromona<br>malh    | amensis   | 1                       |                   | *1                     |                                                   | u                                                         | 11                                           | 58. |
| 11        |                             | Polydriella<br>helve |           | 50                      | Р                 | 1, 2 wk                | culture solution<br>(150 x 16 mm<br>test tube)    | macro and/or<br>microscopic<br>comparison<br>with control | 24 <sup>°</sup> C;; 200 ft-c,<br>12 hr daily | 46  |
| 11        | 11                          | 11                   |           | 100                     | Р                 | 3 wk                   | 11                                                | 11                                                        | 11                                           | 46  |
| 17        |                             | 11                   | 11        | 200                     | T(algi-<br>cidal) | 1, 2, 3 wk             | 11                                                | 11                                                        |                                              | 46  |
|           |                             | EUGLENO              | PHYCEAE   |                         |                   |                        |                                                   |                                                           |                                              |     |
| 11        | "                           | Euglena gr           |           | 50                      | Р                 | lwk                    |                                                   | 11                                                        |                                              | 46  |
| 11        | п                           | 11                   | 11        | 100                     | T(algi-<br>cidal) | n                      |                                                   | 11                                                        |                                              | 46  |
| 11        | 11                          |                      | н         | 50                      |                   | 2, 3 wk                | +1                                                | 13                                                        | 11                                           | 46  |
| *1        |                             | 11                   | " No. 75  | 2 30                    | , 11              | 3 da                   | culture solution<br>(50 ml Erlen-<br>meyer flask) | optical density<br>at 540 mµ)                             | 23 <sup>°</sup> C;; 500 ft-c,<br>continuous  | 58. |
| U.        | "                           | 11                   | 11 11     | 10                      |                   |                        | nutrient broth<br>(50 ml Erlen-<br>meyer flask)   | 11                                                        |                                              | 58. |
| 11        |                             |                      | " No. 75  | 3 30                    | 11                |                        | culture solution<br>50 ml Erlen-<br>meyer flask)  |                                                           | п                                            | 58. |
| Π         | "                           | 11                   | 17 11     | 5                       | 11                |                        |                                                   | 11                                                        | 11                                           | 58. |
|           |                             |                      |           |                         |                   |                        |                                                   |                                                           |                                              |     |

I I I

|              | Source of Compound                                            |      |                         |                         |        | Laborat                | ory Bioassays   |                                                         |                                                    |          |
|--------------|---------------------------------------------------------------|------|-------------------------|-------------------------|--------|------------------------|-----------------|---------------------------------------------------------|----------------------------------------------------|----------|
| Compound     | (Observance in natural                                        |      | icroorganism            |                         |        |                        | sponse to Com   | pound                                                   |                                                    |          |
|              | system; group; reference)                                     |      |                         | Concentration<br>(mg/l) | Effect | Time of<br>Observation | Study<br>Method | Parameter<br>Measured                                   | Conditions<br>Temp.; pH; Light                     | Re       |
|              |                                                               | CHI  | OROPHYCEAE              |                         |        |                        |                 |                                                         |                                                    |          |
| Dleandomycin | <u>Streptomyces</u> <u>antibioticus</u><br>(; Bacteria; 39.5) |      | ococcum<br>aplanosporum | 15 meq                  | N      | 0-3 wk                 | agar medium     | examination of<br>zone of inhibitio<br>(disk technique) | 22 <sup>°</sup> C;; 250-300 ft-c,<br>n 12 hr daily | 18       |
|              | 11                                                            | 11   | diplobionticum          |                         |        |                        | 11              | 11                                                      | н                                                  | 18       |
| *1           | 11                                                            | 11   | echinozygotum           | 11                      | - 11   |                        |                 | 11                                                      |                                                    | 18       |
| 11           | 11                                                            | 11   | ellipsoideum            | 1                       | ( n    |                        |                 |                                                         | 11                                                 | 18       |
| 11           | 11                                                            |      | hypnosporum             |                         |        |                        |                 |                                                         | 11                                                 | 18       |
|              | 11                                                            | 11   | intermedium             | 11                      | 11     | 11                     | 0               |                                                         | 11                                                 | 18       |
| **           | 11                                                            | 11   | macrostigmatic          | um ''                   |        | 11                     |                 |                                                         | 11                                                 | 18       |
| 11           | u u                                                           |      | minutum                 |                         | 11     |                        |                 | 11                                                      | 11                                                 | 18       |
| 0            | п.                                                            |      | oleofaciens             | 11                      |        |                        |                 |                                                         | 11                                                 | 18       |
| 11           | н                                                             |      | perforatum              |                         |        |                        | 11              | 11                                                      |                                                    | 18       |
| 11           | 11                                                            | 1 11 | pinguideum              |                         |        |                        | 11              |                                                         |                                                    | 18       |
| 11           | 11                                                            |      | punctatum               |                         |        |                        | 11              |                                                         | 11                                                 | 18       |
| 11           | 11                                                            | 11   | scabellum               |                         |        | 11                     | 11              |                                                         | 11                                                 | 18       |
| н            |                                                               | 11   | tetrasporum             |                         | 11     | - 11                   | 11              |                                                         | 11                                                 | 1        |
| 11           |                                                               | 11   | vacuolatum              | 11                      |        |                        |                 |                                                         | 11                                                 | 18       |
| н            |                                                               |      | wimmeri                 | 11                      | τı     |                        |                 |                                                         |                                                    | 18       |
| Paromomycin  | Streptomyces rimosus                                          | 11   | aplanosporum            | 30 meq                  | т      |                        |                 | u                                                       | u.                                                 | 18<br>18 |
|              | (; Bacteria; 114.8)                                           |      |                         |                         |        |                        |                 |                                                         | -                                                  |          |
| 11           | 11                                                            |      | diplobionticum          |                         | 11     | 11                     | 11              |                                                         | 11                                                 | 18       |
| 11           | "                                                             | 11   | echinozygotum           |                         | 11     | n                      | 11              | "                                                       | н                                                  | 18       |
| 11           | 11                                                            | 11   | ellipsoideum            |                         |        | 11                     | t1              | 11                                                      | 11                                                 | 18       |
| 17           | н                                                             |      | hypnosporum             | 11                      |        | 11                     | 1 u             |                                                         | 11                                                 | 18       |
| *1           | 11                                                            | 11   | intermedium             | 1                       |        | 11                     |                 |                                                         | 11                                                 | 18       |
|              |                                                               | 11   | macrostigmatic          | um "                    | 11     | *1                     | 11              | 11                                                      |                                                    | 18       |
| 11           | 11                                                            |      | minutum                 |                         | N      | 11                     | 11              | 11                                                      | 11                                                 | 18       |
| *1           |                                                               | 11   | multinucleatum          |                         | Т      | 11                     | 11              |                                                         | 11                                                 | 18       |
| 11           | 11                                                            | 11   | oleofaciens             | 11                      |        |                        | 11              |                                                         | n                                                  |          |
| 11           | 11                                                            | 11   | perforatum              |                         |        |                        | 11              | 11                                                      |                                                    | 18<br>18 |

I. I

· · · ·

66

| Compound          | Source of Compound                                                       |                                 |                         |                    |                        | ory Bioassays   |                                                           |                                                                             |    |
|-------------------|--------------------------------------------------------------------------|---------------------------------|-------------------------|--------------------|------------------------|-----------------|-----------------------------------------------------------|-----------------------------------------------------------------------------|----|
| Compound          | (Observance in natural                                                   | Microorganism                   |                         |                    |                        | sponse to Comp  |                                                           |                                                                             |    |
|                   | system; group; reference)                                                |                                 | Concentration<br>(mg/l) | Effect             | Time of<br>Observation | Study<br>Method | Parameter<br>Measured                                     | Conditions<br>Temp.; pH; Light                                              | R  |
|                   |                                                                          | CHLOROPHYCEAE                   |                         |                    |                        |                 |                                                           |                                                                             |    |
| romomycin         | Streptomyces rimosus<br>'' forma<br>paromomycinus<br>(; Bacteria; 114.8) | Chlorococcum<br>pinguideum      | 30 meq                  | Т                  | 0-3 wk                 | agar medium     | examination of<br>zone of inhibitio<br>(disk technique)   | 22 <sup>°</sup> C;; 250-300 ft-c,<br>n 12 hr daily                          | 18 |
| 11                | 11                                                                       | " punctatum                     | н                       |                    | 11                     | 31              | 11                                                        | 11                                                                          | 18 |
|                   | 11                                                                       | " scabellum                     | 11                      | 11                 | 11                     |                 |                                                           | н                                                                           | 18 |
| 11                | 11                                                                       | " tetrasporum                   | 11                      |                    |                        |                 | 11                                                        | 11                                                                          | 18 |
|                   | 11                                                                       | " vacuolatum                    | *1                      |                    | - u                    | 11              |                                                           | 11                                                                          | 18 |
| 11                |                                                                          | " wimmeri                       | *1                      | 1.1                |                        | 11              |                                                           | 11                                                                          | 18 |
|                   |                                                                          | MYXOPHYCEAE                     |                         | ł                  | }                      |                 |                                                           |                                                                             | 18 |
| <u>nicillin G</u> | Penicillium chrysogenum<br>(; Bacteria; 28.3)                            | Anabaena <u>variabili</u> s     | . 1                     |                    | 5 da                   | (500 ml Erlen-  | n % transmittance<br>(spectrophoto-<br>meter) 550 mµ      | 25 <sup>0</sup> C; 7; 700-1000 ft-c,<br>continuous                          | 36 |
| 11                | n<br>I                                                                   | <u>Calothrix</u> sp             | 10 unit                 | N(0) <sup>C</sup>  | 1 mo                   | agar medium     | examination of<br>zone of inhibitio<br>(disk technique)   | 22 <sup>0</sup> C; 8.2; 140 ft-c,<br>n continuous                           | 33 |
| 11                | n n                                                                      | cylindiospermun<br>licheniforme | 2                       | P                  | 3, 7 da                | (25 ml Erlen-   | macro and/or<br>microscopic<br>comparison<br>with control | 22 <sup>°</sup> C;; 140 ft-c,<br>continuous (125,000<br>cell/ml inoculated) | 81 |
| 0                 | 11                                                                       | 11 11                           | 2                       | N                  | 14, 21 da              | 11              |                                                           | 11                                                                          | 81 |
| 11                | 11                                                                       | Microcystis aeruginosa          | 2                       | Т                  | 3, 7, 14, 21 d         | la. ''          |                                                           | 11                                                                          | 81 |
|                   |                                                                          | '''''sp                         | l unit                  | N(0) <sup>C</sup>  | 5 da                   | agar medium     | examination of<br>zone of inhibition<br>(disk technique)  | 22 <sup>°</sup> C; 8.2; 140 ft-c,<br>continuous                             | 33 |
| 11                | 11                                                                       |                                 | 10 unit                 | T(65) <sup>C</sup> | 1                      |                 | 11                                                        | 11                                                                          | 33 |
| 11                | n                                                                        | Nostoc sp                       | l unit                  | T(12) <sup>C</sup> | 11                     |                 | 11                                                        |                                                                             | 33 |
| 11                | ) n                                                                      | 11 11                           | 10 unit                 | T(18) <sup>C</sup> | 11                     | 11              | 11                                                        | 11                                                                          | 33 |
| 11                | 11                                                                       | Phormidium sp                   | 10 unit                 | $N(0)^{c}$         |                        | 11              | 11                                                        | 1                                                                           | 33 |
| п                 | ιτ                                                                       | Symploca sp                     | l unit                  | T(14) <sup>c</sup> | 1                      |                 |                                                           | 11                                                                          | 33 |
|                   | 11                                                                       | 11 11                           | 10 unit                 | 11                 |                        |                 |                                                           |                                                                             | 33 |
|                   |                                                                          |                                 |                         |                    | -                      |                 |                                                           |                                                                             |    |
|                   |                                                                          |                                 |                         |                    | e of dilution in       |                 |                                                           |                                                                             |    |

()<sup>c</sup> zone of dilution in millimeters

1

1

| Compound   | Source of Compound                            |                              | · · · · · · · · · · · · · · · · · · · |                   |                        | ory Bioassays                                                       |                                                           |                                                                             |      |
|------------|-----------------------------------------------|------------------------------|---------------------------------------|-------------------|------------------------|---------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------|------|
| Compound   | (Observance in natural                        | Microorganism                |                                       |                   |                        | sponse to Comp                                                      |                                                           |                                                                             |      |
|            | system; group; reference)                     |                              | Concentration<br>(mg/l)               | Effect            | Time of<br>Observation | Study<br>Method                                                     | Parameter<br>Measured                                     | Conditions<br>Temp.; pH; Light                                              | - Re |
|            |                                               | CHLOROPHYCEAE                | 1                                     |                   |                        |                                                                     |                                                           |                                                                             |      |
| nicillin G | Penicillium chrysogenum<br>(; Bacteria; 28.3) | Ankistrodesmus sp            | l unit                                | N(0) <sup>C</sup> | 5 da                   | agar medium                                                         | examination of<br>zone of inhibition<br>(disk technique)  |                                                                             | 33   |
| 11         | 11                                            | 11 11                        | 10 unit                               | T(4) <sup>c</sup> |                        | 11                                                                  |                                                           | 11                                                                          | 33   |
|            |                                               | Chlamdomonas sp              | 10 unit                               | N(0) <sup>c</sup> | 11                     |                                                                     |                                                           |                                                                             | 33   |
| n          | 1                                             | Chlorella pyrenoidosa        | 1000 unit                             | P                 | 11                     | culture solution<br>(500 ml Erlen-<br>meyer flask)<br>(organic medi | % transmittance<br>(spectrophoto-<br>meter) 550 mμ<br>a)  | 25 <sup>°</sup> C; 7; 700-1000 ft-c,<br>continuous                          | 36   |
| 11         |                                               |                              | 1000 unit                             | N                 |                        | culture solutio<br>(500 ml Erlen-<br>meyer flask)<br>inorganic med: |                                                           |                                                                             | 36   |
| п          | n<br>l                                        | " <u>variegata</u>           | 2                                     | N                 | 3, 7, 14, 21 da        | culture solutior<br>25 ml Erlen-<br>meyer flask)                    | macro and/or<br>microscopic<br>comparison<br>with control | 22 <sup>o</sup> C;; 140 ft-c,<br>continuous (125,000<br>cell/ml inoculated) | 81   |
| 11         |                                               | Chlorococcum<br>aplanosporum | 10 units                              | N                 | 0-3 wk                 | agar medium                                                         | examination of<br>zone of inhibitio<br>(disk technique)   | 22 <sup>°</sup> C;; 250-300 ft-c,<br>n 12 hr daily                          | 18   |
| 11         | 1                                             | " diplobionticum             | 1 11                                  |                   | 1 11                   |                                                                     |                                                           | 11                                                                          | 18   |
| н          | п                                             | " echinozygotum              |                                       | 11                | 13                     | 11                                                                  |                                                           | 11                                                                          | 18   |
| 11         | 17                                            | " ellipsoideum               | 11                                    |                   | ] 11                   |                                                                     |                                                           |                                                                             | 18   |
| н          | 11                                            | " hypnosporum                |                                       |                   | 1,                     |                                                                     |                                                           |                                                                             | i i  |
| н          | 1                                             | " intermedium                | 1 11                                  | 1.1               | 1                      |                                                                     |                                                           | 11                                                                          | 18   |
| 11         | 1                                             | " macrostigmaticu            |                                       |                   | 11                     |                                                                     |                                                           |                                                                             | 18   |
| 11         |                                               | " minutum                    |                                       | 11                | 11                     |                                                                     |                                                           | 11                                                                          | 18   |
| 11         |                                               | minutum                      |                                       |                   |                        |                                                                     |                                                           | 11                                                                          | 18   |
|            |                                               | matthacteatan                |                                       |                   |                        | 11                                                                  | 11                                                        | 11                                                                          | 18   |
| 11         |                                               | " <u>oleofaciens</u>         | 11                                    | 1 11              | 11                     | 11                                                                  | 1 11                                                      | 11                                                                          | 18   |
|            | 11                                            | " perforatum                 | 1                                     | "                 | 11                     |                                                                     | 11                                                        | 11                                                                          | 18   |
|            | 11                                            | " pinguideum                 | 11                                    | 11                |                        | 11                                                                  | **                                                        | 11                                                                          | 18   |
| 11         |                                               | " punctatum                  |                                       | "                 | 11                     | 11                                                                  | 11                                                        | 11                                                                          | 18   |
| 11         | n                                             | " scabellum                  | п                                     | [ 11              |                        |                                                                     | 11                                                        | 11                                                                          | 18   |
|            | †1                                            | " tetrasporum                |                                       |                   | 1 11                   |                                                                     |                                                           | 1                                                                           | 1 18 |

()<sup>c</sup> zone of inhibition in millimeters

1

| Compound   | Source of Compound<br>(Observance in natural                                    |                                     |                         |                     |                        | ory Bioassays                                      |                                                            |                                                                              |      |
|------------|---------------------------------------------------------------------------------|-------------------------------------|-------------------------|---------------------|------------------------|----------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------------------------|------|
| Compound   | system; group; reference)                                                       | Microorganism                       |                         | T                   |                        | esponse to Com                                     |                                                            |                                                                              |      |
|            | system; group; reference)                                                       |                                     | Concentration<br>(mg/l) | Effect              | Time of<br>Observation | Study<br>Method                                    | Parameter<br>Measured                                      | Conditions<br>Temp.; pH; Light                                               | - R  |
|            |                                                                                 | CHLOROPHYCEAE                       |                         |                     |                        |                                                    |                                                            | · · · · · · · · · · · · · · · · · · ·                                        |      |
| nicillin G | Penicillium chrysogenum<br>(; Bacteria; 28.3)                                   | Chlorococcum<br>vacuolatum          | 10 units                | N                   | 0 - 3 wk               | agar medium                                        | examination of<br>zone of inhibitio<br>(disk technique)    | 22°C;; 250-300 ft-c,<br>n 12 hr daily                                        | 1    |
|            | 11                                                                              | " <u>wimmeri</u>                    | 11                      |                     | 11                     | н                                                  | 11                                                         | 11                                                                           | 1    |
| U          |                                                                                 | <u>Scenedesmus</u> obliquus         | 1000                    | 1                   | 5 da                   | culture solution<br>(500 ml Erlen-<br>meyer flask) | % transmittance<br>(spectophoto-<br>meter) 550 mµ          | 25 <sup>°</sup> C; 7; 700-1000 ft-c,<br>continuous                           |      |
| 11         | "                                                                               | <u>Oocystis</u> sp<br>Chrysophyceae | 10 units                | N(0)                | 1 mo                   | agar medium                                        | examination of<br>zone of inhibition<br>(disk technique)   | 22 <sup>°</sup> C; 7.8; 140 ft-c,<br>continuous                              | 3    |
| n          | п                                                                               | Gomphonema<br>parvulum              | 2                       | N                   | 3,7, 14, 21 da         | culture solution<br>(25 ml Erlen-<br>meyer flask)  | macro and /or<br>microscopic<br>comparison<br>with control | 27 <sup>°</sup> C;; 140 ft-c,<br>continuous (125,000<br>cells/ml inoculated) | 8    |
| п          | 11                                                                              | Nitzschia palea                     | 2                       | 11                  | u .                    | 11                                                 | 11                                                         | *1                                                                           | 6    |
|            |                                                                                 | BACTERIUM                           | 1                       |                     |                        |                                                    |                                                            |                                                                              | 1    |
| 11         | , n                                                                             | Archromobacter sp l                 | 100                     | P                   | 2 da                   | (500 ml Erlen-                                     | % transmittance<br>(spectophoto-<br>meter) 615 mµ          | 25 <sup>°</sup> C; 7; 700-1000 ft-c,<br>continuous                           | 3    |
| 11         |                                                                                 | 11 11 11                            | 1000                    | Т                   | 17                     |                                                    | U U                                                        | 11                                                                           | 3    |
| 11         | "                                                                               | '' '' sp 2                          | 1000                    | N                   | 3 da                   |                                                    |                                                            |                                                                              | 3    |
| 11         | 11                                                                              | Flavabacterium sp                   | .1                      | Р                   | 5 da                   | 11                                                 |                                                            | 11                                                                           | 3    |
|            | 11                                                                              |                                     | 1                       | 11                  | 11                     |                                                    |                                                            | *1                                                                           | 1    |
| 11         | 11                                                                              | 11 11                               | 10                      | т                   |                        |                                                    |                                                            | 11                                                                           | 3    |
| 11         |                                                                                 | Pseudomonas sp                      | 1000                    | N                   | 3 da                   | 11                                                 |                                                            |                                                                              | 3    |
|            |                                                                                 | CHLOROPHYCEAE                       | 1000                    | IN                  | 5 da                   |                                                    |                                                            | 11                                                                           | 3    |
| ocidin     | Streptomyces sp<br>resembling<br>Streptomyces lavendulae<br>(; Bacteria; 114.8) | Chlorella pyrenoidosa               | 1                       | P(75%) <sup>b</sup> | 40 hr                  | culture solution                                   | optical density<br>(610 mµ)                                | 25°C; 5.1;                                                                   | 10   |
|            | 11                                                                              |                                     | 1                       | P(75%) <sup>b</sup> | . 11                   |                                                    |                                                            | 25°C; 6.0;                                                                   | 10   |
| 11         |                                                                                 |                                     | 1                       | $P(30\%)^{b}$       |                        |                                                    |                                                            | 25°C; 7.4;                                                                   |      |
| 11         | 11                                                                              | 11 11                               | 5                       | T(100%)             | 1                      | 11                                                 |                                                            |                                                                              | 10   |
|            | п                                                                               |                                     |                         | 1                   |                        |                                                    |                                                            | 25°C; 5.1;                                                                   | 10   |
|            |                                                                                 | 10 11                               | I 5<br>5                | T(100%)             | 1 11                   | 11                                                 | 1 11                                                       | 25°C; 6.0;                                                                   | 1 10 |

1

I. . . . .

,

ł.

| _                                   | Source of Compound                                           | L                     |                |                         |                      |                        | ory Bioassays   |                                                          |                                |      |
|-------------------------------------|--------------------------------------------------------------|-----------------------|----------------|-------------------------|----------------------|------------------------|-----------------|----------------------------------------------------------|--------------------------------|------|
| Compound                            | (Observance in natural                                       | Microorg              | anism          | <u> </u>                | 1                    |                        | sponse to Comp  |                                                          |                                | - Re |
|                                     | system; group; reference)                                    |                       |                | Concentration<br>(mg/l) | Effect               | Time of<br>Observation | Study<br>Method | Parameter<br>Measured                                    | Conditions<br>Temp.; pH; Light |      |
|                                     |                                                              | CHLOROPH              |                | 10 <sup>-4</sup> M      |                      |                        |                 |                                                          | 0                              |      |
| uromycin<br>tylomycin<br>chromycin) | Streptomyces alboniger<br>(; Bacteria; 114.8)                | <u>Chlorella</u> py   | renoidosa      | 10 M                    | S(-27%)              | 40 hrs                 | (flask)         | a optical density<br>(610 mμ)                            | 25 C <sup>.</sup> 5.1:         | 106. |
| "                                   |                                                              | 11                    |                | 11                      | S(-9%) <sup>b</sup>  | 11                     |                 | 11                                                       | 25°C; 6.0;                     | 106. |
|                                     | п                                                            |                       | 17             | 11                      | S(-21%) <sup>b</sup> | 11                     |                 | 11                                                       | 25°C; 7.4                      | 106. |
| *1                                  |                                                              |                       | 11             | 10 <sup>-3</sup> M      | S(-5%) <sup>b</sup>  | 11                     |                 |                                                          | 25°C; 5.1;                     | 106. |
|                                     | 11                                                           | 11                    | п              | 11                      | P(30%) <sup>b</sup>  |                        | · · ·           |                                                          | 25°C; 6.0;                     | 106. |
|                                     |                                                              |                       | u -            |                         | P(30%) <sup>b</sup>  |                        | 11              |                                                          | 25 <sup>°</sup> C; 7.4;        | 106. |
| н                                   |                                                              |                       |                | 10 <sup>-2</sup> M      | T(100%) <sup>b</sup> | 2                      |                 | 11                                                       | 25°C: 5, 1:                    | 106. |
| 11                                  |                                                              | 11                    | 11             | 11                      | T(100%               | 11                     | <b>`</b> 13     |                                                          | 25 C; 6.0;                     | 106. |
| 11                                  |                                                              |                       |                | 11                      | T(100%               |                        |                 |                                                          | 25°C; 6.0;                     | 106. |
| imocidin<br>lfate                   | (;;)                                                         | n                     | "              | 100                     | P(11%) <sup>b</sup>  | 11                     | 11              | 11                                                       | 25°C; 5.1;                     | 106. |
|                                     | 11                                                           |                       | u –            | 11                      | P(13%) <sup>b</sup>  | - 11                   |                 |                                                          | 25°C; 6.0;                     | 106. |
| 17                                  | п                                                            | [ II                  | 11             | 11                      | P(31%) <sup>b</sup>  | 1                      | 11              | - 11                                                     | 25°C; 7.4;                     | 106. |
| stocetin                            | <u>Nocardia</u> <u>lurida</u><br>(; Bacte <b>ria</b> ; 39.5) | Chlorococcu<br>aplano | sporum         | 30 meq                  | N                    | 0-3 wk                 | agar medium     | examination of<br>zone of inhibition<br>(disk technique) |                                | 18   |
|                                     | 11                                                           | " diplob              | ionticum       | 11                      | 11                   | ш                      | 11              | 51                                                       | 71                             | 18   |
|                                     | 11                                                           | " echino              | zygotum        |                         |                      | 11                     |                 |                                                          | . 11                           | 18   |
|                                     | 11                                                           | " ellipso             | ideum          | 11                      |                      | 11                     | - 11            | 11                                                       | 11                             | 18   |
| 11                                  |                                                              | " hypnos              |                | 11                      | 11                   |                        |                 |                                                          |                                | 18   |
| 11                                  | 11                                                           | " interm              | •              |                         | 1.                   |                        | 11              |                                                          |                                | 18   |
| 11                                  | 11                                                           | " macro               | <br>stigmaticu | m "                     |                      |                        |                 | n                                                        | 11                             | 18   |
|                                     | 11                                                           | " minutu              |                |                         |                      |                        |                 | 11                                                       | 11                             | 18   |
|                                     | 11                                                           |                       | —<br>ucleatum  |                         | 11                   |                        | 11              | 11                                                       |                                | 18   |
| 11                                  |                                                              | " oleofad             |                | 11                      |                      | 11                     |                 | 11                                                       |                                | 18   |
| 11                                  |                                                              | " perfor              |                |                         |                      |                        |                 | 11                                                       | n                              | 18   |
| 11                                  |                                                              | " pinguio             |                |                         | 11                   |                        |                 |                                                          | U.                             | 18   |
| 11                                  |                                                              | " puncta              |                |                         | 1.                   | 11                     |                 | 11                                                       |                                | 18   |
| "                                   | 11                                                           | " scabel              |                |                         | 11                   | 11                     | 11              |                                                          | 11                             | 18   |
|                                     | 11                                                           | " tetras              | -              |                         |                      |                        |                 |                                                          |                                | 1 18 |

 $()^{b}$  percent inhibition comparison with control

I.

4

| Compound                                                          | Source of Compound<br>(Observance in natural   |                                        |                         |                    |                        | ory Bioassays    |                                                          |                                                    |    |
|-------------------------------------------------------------------|------------------------------------------------|----------------------------------------|-------------------------|--------------------|------------------------|------------------|----------------------------------------------------------|----------------------------------------------------|----|
| Compound                                                          | system; group; reference)                      | Microorganism                          | Concentration           | 1 .                |                        | sponse to Comp   |                                                          |                                                    | Re |
|                                                                   | system; group; reference)                      |                                        | Concentration<br>(mg/l) | Effect             | Time of<br>Observation | Study<br>Method  | Parameter<br>Measured                                    | Conditions<br>Temp.; pH; Light                     | Re |
|                                                                   |                                                | CHLOROPHYCEAE                          |                         |                    |                        |                  |                                                          |                                                    |    |
| istocetin                                                         | <u>Nocardia lurida</u><br>(; Bacteria; 39.5)   | Chlorococcum<br>vacuolatum             | 30 meq                  | N                  | 0-3 wk                 | agar medium      | examination of<br>zone of inhibition<br>(disk technique) | 22 <sup>0</sup> C;; 250-300 ft-c,<br>12 hr daily   | 18 |
| 11                                                                | 11                                             | " wimmeri                              | 11                      | 11                 |                        |                  |                                                          | н                                                  | 18 |
| piramycin<br>ovamycin,<br>equamycin,<br>electomycin<br>rovomycin) | Streptomyces ambofaciens<br>(; Bacteria; 39.5) | " aplanosporum                         | "                       |                    |                        |                  | п                                                        | 11                                                 | 18 |
| "                                                                 | 11                                             | " diplobionticum                       | 11                      |                    | 11                     |                  |                                                          | 11                                                 | 18 |
|                                                                   |                                                | " echinozygotum                        | 11                      | 11                 | 18                     |                  |                                                          | н                                                  | 18 |
|                                                                   | 11                                             | " ellipsoideum                         | 11                      | 11                 | 17                     | 11               |                                                          | 11                                                 | 18 |
| 11                                                                | "                                              | " hypnosporum                          | 11                      | 11                 | 11                     |                  |                                                          | 11                                                 | 18 |
| 11                                                                | п                                              | " intermedium                          | 11                      |                    | п                      | 11               |                                                          | 11                                                 | 18 |
| 11                                                                | n                                              | " macrostigmatic                       | cum "                   |                    | 11                     | 11               | п                                                        | 11                                                 | 18 |
| 11                                                                |                                                | " <u>minutum</u>                       | 11                      |                    | 11                     | 11               |                                                          | 11                                                 | 18 |
| 11                                                                | "                                              | " <u>multinucleatum</u>                | <u>ı</u> [ "            | 11                 | 11                     | 11               |                                                          | 11                                                 | 18 |
| "                                                                 | 11                                             | " <u>oleofaciens</u>                   | u                       | 11                 | 11                     | 11               |                                                          |                                                    | 18 |
| 11                                                                | 11                                             | " perforatum                           | 11                      | . 11               |                        |                  |                                                          | n                                                  | 18 |
| 11                                                                | "                                              | " pinguideum                           | 11                      |                    |                        | 81               | 11                                                       |                                                    | 18 |
| 11                                                                | 11                                             | " punctatum                            | 11                      | 11                 |                        |                  | 11                                                       |                                                    | 18 |
| 11                                                                | 41                                             | " scabellum                            | 11                      | 11                 | **                     |                  | 11                                                       | n                                                  | 18 |
| 11                                                                | 11                                             | " tetrasporum                          | 11                      | P                  | 11                     | п                | 11                                                       | 11                                                 | 18 |
| 11                                                                | 11                                             | " vacuolatum                           | 11                      | N                  | 11                     | п                | 1 11                                                     | н                                                  | 18 |
| 11                                                                | U U                                            | " <u>wimmeri</u><br><u>MYXOPHYCEAE</u> | 11                      | 1                  | 11                     | 11               | 11                                                       | 11                                                 | 18 |
| reptomycin                                                        | Streptomyces griseus<br>(; Bacteria; 28.3)     | Anabaena variabilis                    | .1                      | T                  | 5 da                   | culture solution | n % transmittance<br>(spectophoto-<br>meter) 615 mµ      | 25 <sup>0</sup> C; 7; 700-1000 ft-c,<br>continuous | 36 |
|                                                                   | u<br>I                                         | <u>Calothrix</u> sp                    | 10 µg                   | T(58) <sup>C</sup> | l mo                   | agar medium      | examination of<br>zone of inhibition<br>(disk technique) | 22 <sup>°</sup> C; 7.2; 140 ft-c,<br>continuous    | 33 |
| 11                                                                | "                                              | 11 11                                  | 100 µg                  | T(72) <sup>C</sup> |                        |                  | 11                                                       | 11                                                 | 33 |

1

103

I.

Class of Compound: ANTIBIOTICS

| Compound    | Source of Compound                         |                                |          |                         |                    |                        | ory Bioassays                                     |                                                             |                                                                              |    |
|-------------|--------------------------------------------|--------------------------------|----------|-------------------------|--------------------|------------------------|---------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------|----|
| Compound    | (Observance in natural                     | Microorg                       | anism    |                         |                    |                        | sponse to Comp                                    | ound                                                        |                                                                              |    |
|             | system; group; reference)                  |                                |          | Concentration<br>(mg/l) | Effect             | Time of<br>Observation | Study<br>Method                                   | Parameter<br>Measured                                       | Conditions<br>Temp.; pH; Light                                               | R  |
|             |                                            | MYXOPHY                        | CEAE     |                         | ļ                  |                        |                                                   |                                                             |                                                                              | 1  |
| treptomycin | Streptomyces girseus<br>(; Bacteria; 28.3) | Cylindrospe<br>licher<br>B & F | niforme  | 2                       | Т                  | 3, 7, 14, 21 da        | culture solutio<br>(25 ml Erlen-<br>meyer flask)  | n macro and/or<br>microscopic<br>comparison<br>with control | 22 <sup>0</sup> C;; 140 ft-c,<br>continuous (125,000<br>cells/ml inoculated) | 81 |
| 11          | 11                                         | Microcystis<br>aerug           | inosa    | 2                       | Т                  | 11                     | 11                                                | 11                                                          | 11                                                                           | 81 |
| "           | n n                                        | - u                            | sp       | 10 µg                   | T(40) <sup>c</sup> | 1 mo                   |                                                   | examination of<br>zone of inhibition<br>(disk technique)    | 22 <sup>0</sup> C; 7.2; 140 ft-c,<br>continuous                              | 33 |
| 11          | 11                                         | 11                             |          | 100 µg                  | T(75)C             | 11                     | 11                                                |                                                             | 11                                                                           | 33 |
| "           | 1                                          | <u>Nostoc</u> sp               |          | 10 µg                   | T(50) <sup>C</sup> |                        |                                                   | 11                                                          | 11                                                                           | 33 |
| 11          | n.                                         |                                |          | 100 µg                  | T(70) <sup>C</sup> |                        | 11                                                | 11                                                          | 11                                                                           | 33 |
| 11          | n                                          |                                |          | 2                       | T(algi-<br>cidal)  | t t                    | culture solutior<br>(25 ml Erlen-<br>meyer flask) | macro and/or<br>microscopic<br>comparison<br>with control   | 11                                                                           | 33 |
| n           | 11                                         | Phormidium                     | sp       | 10 µg                   | T(14) <sup>C</sup> |                        | agar medium                                       |                                                             | 11                                                                           | 33 |
| 11          | 11                                         | 11                             | 11       | 100 µg                  | T(56) <sup>C</sup> | 11                     |                                                   |                                                             | 11                                                                           | 33 |
| 11          |                                            |                                | н        | 2                       | T (algi-<br>cidal) |                        | culture solution<br>(25 ml Erlen-<br>meyer flask) | macro and/or<br>microscopic<br>comparison<br>with control   | 11                                                                           | 33 |
| 11          | 11                                         | Scenedesmus                    | obliquus | 2                       | Р                  | 3, 7 da                |                                                   | 11                                                          | *1                                                                           | 81 |
| 11          |                                            |                                | 11       | 2                       | т                  | 14, 21 da              |                                                   | 11                                                          |                                                                              | 81 |
| TI.         |                                            | Symploca sp                    |          | lộ <sub>µ</sub> g       | т(28) <sup>с</sup> | 1 mo                   | agar medium                                       | examination of<br>zone of inhibition<br>(disk technique)    | 22 <sup>0</sup> C; 8.2; 140 ft-c,<br>continuous                              | 33 |
| 11          |                                            | 11                             | †1       | 100 µg                  | т(80) <sup>с</sup> |                        | 11                                                | 17                                                          | 11                                                                           | 33 |
|             |                                            |                                |          |                         |                    |                        |                                                   |                                                             |                                                                              |    |
|             |                                            |                                |          |                         |                    |                        | )<br>a in millimeters                             |                                                             |                                                                              |    |

| Compound   | Source of Compound<br>(Observance in natural |                     |              |               |                    |                        | ory Bioassays                                                         |                                                           |                                                                              |    |
|------------|----------------------------------------------|---------------------|--------------|---------------|--------------------|------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------------|----|
| Compound   | system; group; reference)                    | Microorganis        | m            | Concentration |                    |                        | sponse to Comp                                                        |                                                           |                                                                              | Re |
|            | system; group; reference)                    |                     |              | (mg/l)        | Effect             | Time of<br>Observation | Study<br>Method                                                       | Parameter<br>Measured                                     | Conditions<br>Temp.; pH; Light                                               |    |
|            |                                              | CHLOROPHYCE.        |              |               |                    |                        |                                                                       |                                                           |                                                                              |    |
| reptomycin | Streptomyces griseus<br>(; Bacteria; 28.3)   | Ankistrodesmus      | sp           | 10 µg         | T(19) <sup>C</sup> | l mo                   | agar medium                                                           | examination of<br>zone of inhibition<br>(disk technique)  | 22 <sup>°</sup> C; 7.8; 140 ft-c,<br>continuous                              | 33 |
| 11         | 11                                           |                     | 11           | 100 µg        | T(58) <sup>C</sup> |                        |                                                                       | *1                                                        | *1                                                                           | 33 |
| 11         | н                                            | Chlamydomonas       | sp           | 10 µg         | T(10) <sup>C</sup> |                        | **                                                                    | 11                                                        | 11                                                                           | 33 |
| "          |                                              |                     | 11           | 100 µg        | T(30) <sup>C</sup> |                        |                                                                       |                                                           | 11                                                                           | 33 |
| 11         |                                              | 1                   | 11           | 18            | T(algi-<br>cidal)  |                        |                                                                       | macro and/or<br>microscopic<br>comparison<br>with control |                                                                              | 33 |
| II         |                                              | Chlorella pyreno    | <u>idosa</u> | 1             | P                  | 5 da                   | (500 ml Erlen-                                                        | meter ) 550 mµ                                            | 25 <sup>0</sup> C; 7; 700-1000 ft-c,<br>continuous                           | 36 |
| 11         | 11                                           | 11 11               |              | 10            | т                  | 11                     | ti .                                                                  | 11                                                        | 11                                                                           | 36 |
| "          | n                                            |                     |              | 100           | Т                  | LT.                    | culture solution<br>(500 ml Erlen-<br>meyer flask);<br>(organic media | 1                                                         | 11                                                                           | 36 |
| 11         |                                              | " <u>variegat</u> z | <u>a</u> B   | 2             | N                  | 3, 7, 14, 21 da        | culture solution<br>(25 ml Erlen-<br>meyer flask)                     | macro and/or<br>microscopic<br>comparison<br>with control | 22 <sup>°</sup> C;; 140 ft-c,<br>continuous (125,000<br>cells/ml inoculated) | 81 |
| n          | , ""                                         | Scenedesmus obl     | iquus        | . 1           | P                  | 5 da                   | (500 ml Erlen-                                                        | (spectophoto-<br>meter) 550 mµ                            | 25 <sup>0</sup> C; 7; 700-1000 ft-c,<br>continuous                           | 36 |
| 11         | 11                                           | n n                 |              | 1             | т                  | *1                     |                                                                       |                                                           | 11                                                                           | 36 |
| "          |                                              | 11 11               |              | 100           | P                  | 11                     | culture solution<br>500 ml Erlen-<br>meyer flask)<br>(organic media   |                                                           | 11                                                                           | 36 |
| 11         | 11                                           | 11 11               |              | 1000          | т                  |                        | 11                                                                    |                                                           | 11                                                                           | 36 |
| "          |                                              |                     |              | 2             | Р                  | 3, 7 da                | culture solution<br>(25 ml Erlen-<br>meyer flask)                     | macro and/or<br>microscopic<br>comparison<br>with control | 22 <sup>°</sup> C;; 140 ft-c,<br>continuous (125,000<br>cells/ml inoculated) | 81 |

()<sup>C</sup> zone of inhibition in millimeters

1

105

i.

| Compound          | Source of Compound                                |                                       |                         |                    | Laborat                | ory Bioassays                                      |                                                           |                                                                              |     |
|-------------------|---------------------------------------------------|---------------------------------------|-------------------------|--------------------|------------------------|----------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------------|-----|
| Compound          | (Observance in natural                            | Microorganism                         |                         |                    |                        | sponse to Comp                                     |                                                           |                                                                              |     |
|                   | system; group; reference)                         |                                       | Concentration<br>(mg/l) | Effect             | Time of<br>Observation | Study<br>Method                                    | Parameter<br>Measured                                     | Conditions<br>Temp.; pH; Light                                               | Re. |
| <u>reptomycin</u> | <u>Streptomyces</u> griseus<br>(; Bacteria; 28.3) | CHLOROPHYCEAE<br>Scenedesmus obliquus | 2                       | T                  | 14, 21 da              | culture solutio:<br>(25 ml Erlen-<br>meyer flask)  | macro and/or<br>microscopic<br>comparison                 | 22 <sup>°</sup> C;; 140 ft-c,<br>continuous (125,000<br>cells/ml inoculated) | 81  |
| 11                |                                                   | '' sp                                 | 36                      | т                  | l mo                   | 11                                                 | with control                                              |                                                                              | 33  |
| 11                | 11                                                | <u>Oocysti</u> s sp                   | 10 µg                   | T(12) <sup>C</sup> | 1 mo                   | agar medium                                        | examination of<br>zone of inhibition<br>(disk technique)  | 22 <sup>0</sup> C; 7.8; 140 ft-c,<br>continuous                              | 33  |
| 11                | ( n                                               | " "<br>CHRYSOPHYCEAE                  | 100 µg                  | т(28) <sup>с</sup> |                        |                                                    | 11                                                        | 11                                                                           | 33  |
| 11 11             | n                                                 | <u>Gomphonema</u> sp                  | 9                       | T(algi-<br>cidal)  | 11                     | culture solution<br>(25 ml Erlen-<br>meyer flask)  | macro and/or<br>microscopic<br>comparison<br>with control | "                                                                            | 33  |
| 11                |                                                   | " parvulum                            | 2                       | N                  | 3, 7, 14, 21 da        | culture solution<br>(500 ml Erlen-<br>meyer flask) | 11                                                        | 25 <sup>°</sup> C; 7; 700-1000 ft-c,<br>continuous                           | 36  |
| 17                |                                                   | <u>Nitzschia</u> sp                   | 4                       | T(algi-<br>cidal)  | l mo                   | culture solution<br>(25 ml Erlen-<br>meyer flask)  | 11                                                        | 22 <sup>°</sup> C; 7.8; 140 ft-c,<br>continuous                              | 33  |
| "                 | ा स                                               | " palea                               | 2                       | N                  | 3 da                   | culture solution<br>(25 ml Erlen-<br>meyer flask)  | 11                                                        | 22 <sup>0</sup> C;; 140 ft-c,<br>continuous (125,000<br>cells/ml inoculated  | 81  |
| "                 | 11                                                | BACTERIUM                             | 2                       | т                  | 7,14, 21 da            | 11                                                 | 11                                                        | "                                                                            | 81  |
| u                 | n                                                 | Archromobacter                        | 100                     | P                  | 3 da                   | culture solutior<br>(500 mlErlen-<br>meyer flask)  | 11                                                        | 11                                                                           | 36  |
| 11                | "                                                 | " sp 1                                | 1000                    | т                  |                        | 11                                                 | "                                                         | 11                                                                           | 36  |
| 11                |                                                   | '' sp 2                               | 1000                    | Р                  | 2 da                   | 11                                                 | 11                                                        | 11                                                                           | 36  |
| 11                | n                                                 | <u>Flavabacterium</u> sp              | 10                      | Р                  | 5 da                   |                                                    |                                                           | 11                                                                           | 36  |
| 11                | 11                                                | n u                                   | 100                     | т                  |                        |                                                    | 11                                                        | 11                                                                           | 36  |
| 11                | U. U.                                             | Pseudomonas sp                        | 1000                    | т                  | 3 da                   | 11                                                 |                                                           |                                                                              | 36  |

1 I I

i

106

I

Class of Compound: ANTIBIOTICS

I i

| Compound                                                                                                                                          | Source of Compound                                |                                          | ,                       |                    | Laborat                | ory Bioassays                                     |                                                             |                                                                 |     |
|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|------------------------------------------|-------------------------|--------------------|------------------------|---------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------|-----|
| Compound                                                                                                                                          | (Observance in natural system; group; reference)  | Microorganism                            |                         | r                  |                        | sponse to Comp                                    |                                                             |                                                                 |     |
|                                                                                                                                                   | system; group; reference)                         |                                          | Concentration<br>(mg/l) | Effect             | Time of<br>Observation | Study<br>Method                                   | Parameter<br>Measured                                       | Conditions<br>Temp.; pH; Light                                  | Ref |
| T                                                                                                                                                 |                                                   | MYXOPHYCEAE                              |                         |                    |                        |                                                   |                                                             |                                                                 |     |
| <u>Terramycin</u><br>(oxytetracycline)<br>Note: Terra-<br>mycin loses it's<br>activity (strength<br>after 1 day in<br>alkaline medium<br>ref. 33) | <u>Streptomyces rimosus</u><br>(; Bacteria; 28.3) | <u>Anabaena</u> <u>variabilis</u>        | 1                       | Ρ                  | 5 da                   | culture solutio<br>(500 ml Erlen-<br>meyer flask) | n % transmittanc<br>(spectophoto-<br>meter) 550 mμ          | e 22 <sup>°</sup> C; 7; 700-1000 ft-c,<br>continuous            | 36  |
| 11                                                                                                                                                | 11                                                | 11 11                                    | 10                      | т                  |                        |                                                   |                                                             | 11                                                              | 36  |
| "                                                                                                                                                 | U.                                                | <u>Calothrix</u> sp                      | 10 µg                   | N(0) <sup>C</sup>  | l mo                   | agar medium                                       | examination of<br>zone of inhibition<br>(disk technique)    | 22 <sup>°</sup> C; 7.2; 140 ft-c,<br>continuous                 | 33  |
|                                                                                                                                                   | "                                                 | 17 11                                    | 100 µg                  | N(0) <sup>C</sup>  |                        |                                                   |                                                             | н                                                               | 33  |
| "                                                                                                                                                 | n                                                 | Cylindrospermun<br>licheneforme<br>B & F | 2                       | P                  | 3, 7 da                | culture solution<br>(25 ml Erlen-<br>meyer flask) | n macro and/or<br>microscopic<br>comparison<br>with control | 22°C;; 140 ft-c,<br>continuous (125,000<br>cells/ml inoculated) | 81  |
| 11                                                                                                                                                | 11                                                | 11 11                                    | 2                       | N                  | 14, 21 da              | ) n                                               |                                                             | 11                                                              | 81  |
| 11                                                                                                                                                | ш                                                 | <u>Microcystis</u><br>aragenosa          | 2                       | т                  | 3, 7, 14, 21           | 11                                                | 11                                                          | "                                                               | 81  |
| n                                                                                                                                                 | 11                                                | '' sp                                    | 10 µg                   | T(19) <sup>c</sup> | l mo                   | agar medium                                       | examination of<br>zone of inhibitio<br>(disk technique)     | 22 <sup>0</sup> C;; 140 ft-c,<br>n continuous                   | 33  |
| 11                                                                                                                                                | 11                                                | п п                                      | 100 µg                  | T(33) <sup>C</sup> | - 11                   | 11                                                |                                                             | 11                                                              | 33  |
| "                                                                                                                                                 |                                                   | Nostoc sp                                | 10 µg                   | T(10) <sup>C</sup> |                        | 11                                                |                                                             | u                                                               | 33  |
| **                                                                                                                                                | 11                                                | 11 11                                    | 100 µg                  | T(15) <sup>C</sup> |                        | 11                                                |                                                             | н                                                               | 33  |
| 11                                                                                                                                                |                                                   | Phormidium sp                            | 10 µg                   | N(0) <sup>C</sup>  |                        | 11                                                |                                                             | 11                                                              | 33  |
| 11                                                                                                                                                | 11                                                | 1 II II                                  | 100 µg                  | N(0) <sup>C</sup>  |                        | 11                                                |                                                             | u                                                               | 33  |
| 11                                                                                                                                                | 11                                                | Symploca sp                              | 10 µg                   | T(20) <sup>C</sup> | +I                     | tr                                                |                                                             | 11                                                              | 33  |
| 11                                                                                                                                                | 11                                                |                                          | 100 µg                  | т(20) <sup>с</sup> | 11                     | u u                                               |                                                             | **                                                              | 33  |
|                                                                                                                                                   |                                                   | CHLOROPHYCEAE                            |                         |                    |                        |                                                   |                                                             |                                                                 |     |
| *1                                                                                                                                                | 11                                                | Ankistrodesmus sp                        | 10 µg                   | N(0) <sup>C</sup>  | 13                     | u                                                 |                                                             |                                                                 | 33  |
| 18                                                                                                                                                |                                                   | 11 11                                    | . –                     | N(0) <sup>C</sup>  |                        |                                                   |                                                             |                                                                 | 33  |
| "                                                                                                                                                 | 11                                                | Chlamydomonas sp                         |                         | N(0) <sup>C</sup>  | 13                     | 11                                                |                                                             | 11                                                              | 33  |
| 11                                                                                                                                                | 11                                                | " "                                      | <br>100 µg              | T(11) <sup>C</sup> | 11                     |                                                   |                                                             | 11                                                              | 33  |

()<sup>C</sup> zone of inhibition in millimeters

4 .

| Comre            | Source of Compound                                |                              |                         |                     |                        | ory Bioassays                                      |                                                           |                                                                              |      |
|------------------|---------------------------------------------------|------------------------------|-------------------------|---------------------|------------------------|----------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------------|------|
| Compound         | (Observance in natural                            | Microorganism                |                         |                     |                        | sponse to Comp                                     |                                                           |                                                                              | R    |
|                  | system; group; reference)                         |                              | Concentration<br>(mg/l) | Effect              | Time of<br>Observation | Study<br>Method                                    | Parameter<br>Measured                                     | Conditions<br>Temp.; pH; Light                                               |      |
|                  |                                                   | CHLOROPHYCEAE                |                         |                     |                        |                                                    |                                                           |                                                                              |      |
| <u>rramyci</u> n | <u>Streptomyces</u> rimosus<br>(; Bacteria; 28.3) | Chlorella pyrenoidosa        | 100                     | P                   | 5 da                   | culture solution<br>(500 ml Erlen-<br>meyer flask) | macro and/or<br>microscopic<br>comparison<br>with control | 22 <sup>0</sup> C; 7; 700-1000 ft-c.<br>continuous                           | 36   |
| 11               | 11                                                | н н                          | 1000                    | Т                   | -11                    | 11                                                 | 11                                                        | 11                                                                           | 36   |
| 11               | 11                                                | н п                          | 1                       | s                   | 40 hr                  | culture solution<br>(flask)                        | pptical density<br>(610 mµ)                               | 25 <sup>°</sup> C; 5.1. 3.0, 7.4;                                            | 106. |
|                  | n                                                 | н н                          | 10                      | s                   | 17                     |                                                    |                                                           | 25°C; 5.1, 6.0, 7.4;                                                         | 106. |
| 11               | н                                                 | Chlorococcum<br>aplanosporum | 30 meq                  | г(?) <sup>d</sup> N | 0-3 wk                 | agar medium                                        | examination of<br>zone of inhibition<br>(disk technique)  | 22°C;; 250-300 ft-c.                                                         | 18   |
|                  | п                                                 | " dilplobionticum            |                         | г(?) <sup>d</sup> N |                        | 11                                                 | u.                                                        | 11                                                                           | 18   |
|                  |                                                   | " echinozygatum              | 11                      | Г(?) <sup>d</sup> N | 11                     |                                                    |                                                           | 11                                                                           | 18   |
|                  |                                                   | " ellipsoideum               | 11                      | )<br>N              |                        |                                                    |                                                           |                                                                              | 18   |
| 11               |                                                   | " hypnosporum                |                         | N                   | 11                     |                                                    | .11                                                       | 11                                                                           | 18   |
|                  | п                                                 | " intermedium                |                         | T(?) <sup>d</sup> P |                        |                                                    | 11                                                        | 11                                                                           | 18   |
| 11               | 11                                                | " macrostigmaticum           |                         | N                   | 11                     | n                                                  |                                                           | 11                                                                           | 18   |
|                  |                                                   | " minutum                    |                         | Р                   | 11                     | 1                                                  |                                                           | 11                                                                           | 18   |
|                  |                                                   | " multinucleatum             | 11                      | N                   | 11                     | 11                                                 | 11                                                        |                                                                              | 18   |
|                  |                                                   | " oleofaciens                |                         | N                   |                        | n                                                  | 11                                                        | 11                                                                           | 18   |
|                  |                                                   | " perforatum                 |                         | N                   |                        |                                                    | 11                                                        |                                                                              | 18   |
| П                | 11                                                | " pinguideum                 | - 11                    | N                   | 11                     |                                                    |                                                           | 11                                                                           | 18   |
| 11               |                                                   | " punctatum                  | 11                      | N                   | 11                     | 11                                                 | 11                                                        |                                                                              | 18   |
| н                | 11                                                | " scabellum                  |                         | N                   |                        |                                                    |                                                           | 11                                                                           | 18   |
|                  |                                                   | " tetrasporum                | 11                      | т                   | 11                     | 11                                                 |                                                           | 11                                                                           | 18   |
|                  | u .                                               | " vacuolatum                 |                         | N                   |                        | u u                                                | *1                                                        |                                                                              | 18   |
| н                |                                                   | " wimmeri                    | 11                      | N                   | 11                     |                                                    | н                                                         |                                                                              | 18   |
| "                | 17                                                | <u>Scenedesmus</u> obliquus  | 2                       | N                   | 3, 7, 14, 21 da        | culture solution<br>(25 ml Erlen-<br>meyer flask)  | macro and/or<br>microscopic<br>comparison<br>with control | 22 <sup>°</sup> C;: 140 ft-c,<br>continuous (125.000<br>cells'ml inoculated) | 81   |
| 11               | 11                                                | 11 11<br>                    | 100                     | P                   | 5 da                   | 500 ml Erlen-                                      | % transmittance<br>(spectophoto-<br>meter) 550 mµ         | 22 <sup>°</sup> C; 7; 700-1000 ft-c,<br>continuous                           | 36   |

(?)<sup>d</sup> both results reported

1

Class of Compound: ANTIBIOTICS

| Compound   | (Observance in natural                            | 1                           |               |                    |                        |                                                                   |                                                           |                                                                              |    |
|------------|---------------------------------------------------|-----------------------------|---------------|--------------------|------------------------|-------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------------|----|
|            | system; group; reference)                         | Microorganism               | Concentration | <u> </u>           |                        | sponse to Comp                                                    |                                                           |                                                                              | R  |
|            | system; group; reference)                         |                             | (mg/l)        | Effect             | Time of<br>Observation | Study<br>Method                                                   | Parameter<br>Measured                                     | Conditions<br>Temp.; pH; Light                                               |    |
|            |                                                   | CHLOROPHYCEAE               |               |                    |                        |                                                                   |                                                           |                                                                              |    |
| erramycin  | <u>Streptomyces rimosus</u><br>(; Bacteria; 28.3) | <u>Scenedesmus</u> obliquus | 1000          | P                  | 5 da                   | culture solutio;<br>(500 ml Erlen-<br>meyer flask)<br>(organic)   | % transmittance<br>(spectophoto-<br>meter) 550 mµ)        | 22 <sup>°</sup> C; 7; 700-1000 ft-c,<br>continuous                           | 26 |
|            |                                                   | - II - 11                   | 11            | Т                  | 11                     | culture solutio;<br>(500 ml Erlen-<br>meyer flask)<br>(inorganic) | n, 11                                                     |                                                                              | °6 |
| "          |                                                   | <u>Oocystis</u> sp          | 10 µg         | (N(0) <sup>C</sup> | l mo                   | agar medium                                                       | examination of<br>zone of inhibition<br>(disk technique)  |                                                                              | 33 |
| 11         | n                                                 | " "<br>CHRYSOPHYCEAE        | 100 µg        | T(12) <sup>C</sup> |                        | 11                                                                |                                                           | "                                                                            | 33 |
| 11         |                                                   | Gomphonema<br>parvulum      | 2             | N                  | 3, 7, 14, 21 da        | culture solution<br>(25 ml Erlen-<br>meyer flask)                 | macro and/or<br>microscopic<br>comparison<br>with control | 22 <sup>°</sup> C;; 140 ft-c,<br>continuous (125,000<br>cells/ml inoculated) | 81 |
| 11         | 11                                                | Nitzschia palea             | 2             | т                  | 3 da                   |                                                                   | 11                                                        |                                                                              | 81 |
| 11         |                                                   | 11 11                       | 2             | Р                  | 7 da                   | 13                                                                |                                                           | 11                                                                           | 81 |
|            | 11                                                | 11 11                       | 2             | N                  | 14, 21 da              |                                                                   |                                                           | 11                                                                           | 81 |
|            |                                                   | BACTERIUM                   |               |                    |                        |                                                                   |                                                           |                                                                              |    |
| 11         | 11                                                | Archromobacter sp 1         | 10            | Р                  | 2 da                   | culture solution<br>(500 ml Erlen-<br>meyer flask)                | % transmittance<br>(spectophoto-<br>meter) 550 mµ         | 22 <sup>°</sup> C; 7; 700-1000 ft-c,<br>continuous                           | 36 |
| .,         |                                                   |                             | 100           | Т                  |                        | п                                                                 | 11                                                        | 11                                                                           | 36 |
|            | 11                                                | " sp 2                      | 10            | Р                  | 3 da                   |                                                                   | 11                                                        |                                                                              | 36 |
|            | 11                                                |                             | 100           | Т                  | 11                     | п                                                                 | 11                                                        | 11                                                                           | 36 |
| 11         | 11                                                | <u>Flavabacterium</u> sp    | 10            | P                  | 5 da                   | 11                                                                | **                                                        | 11                                                                           | 36 |
|            | 11                                                | II II                       | 100           | Т                  | 11                     |                                                                   |                                                           | 11                                                                           | 36 |
|            | 11                                                | Pseudomonas sp              | 10            | P                  | 3 da                   |                                                                   |                                                           |                                                                              | 36 |
| 11         | 11                                                | 91 D                        | 100           | т                  | н                      | 11                                                                |                                                           | 11                                                                           | 36 |
| tracycline | Streptomyces viridifaciens                        | Chlorella pyrenoidosa       | 100           | P                  | 5 da                   | 11                                                                | 11                                                        | 11                                                                           | 36 |
| 11         | 11                                                | 11 11                       | 1000          | т                  |                        | u                                                                 |                                                           | п                                                                            | 36 |

1 i

ċ

|                            | Source of Compound         |                                     |                         |                     | Laborato               | ory Bioassays   |                                                          |                                                      |    |
|----------------------------|----------------------------|-------------------------------------|-------------------------|---------------------|------------------------|-----------------|----------------------------------------------------------|------------------------------------------------------|----|
| Compound                   | (Observance in natural     | Microorganism                       | <u> </u>                | 1                   |                        | sponse to Comp  |                                                          |                                                      | Re |
|                            | system; group; reference)  | Ŭ                                   | Concentration<br>(mg/l) | Effect              | Time of<br>Observation | Study<br>Method | Parameter<br>Measured                                    | Conditions<br>Temp.; pH; Light                       |    |
|                            |                            | CHLOROPHYCEAE                       |                         | T(?) <sup>d</sup> P |                        |                 |                                                          | 22°C;; 250-300 ft-c,                                 |    |
| etracycline<br>achromycin) | Streptomyces viridifaciens | <u>Chlorococcum</u><br>aplanosporum | 30 meq                  | T(?) P              | 1 mo                   | agar medium     | examination at<br>zone of inhibition<br>(disk technique) | 22 C;; 250-300 ft-c,<br>12 hr daily                  | 18 |
| n                          | u.                         | " diplobionticum                    | - 11                    | Р                   | 11                     |                 | 11                                                       | . 11                                                 | 18 |
| n                          |                            | " echinozygotum                     | 11                      | Р                   |                        |                 | - 11                                                     | 11                                                   | 18 |
| 0                          |                            | " ellipsoideum                      | 11                      | N                   |                        | 11              | 11                                                       | 11                                                   | 18 |
| 11                         |                            | " hypnosporum                       | 11                      | N                   | 11                     |                 | 11                                                       | !!                                                   | 18 |
|                            | 11                         | " intermedium                       |                         | т(?) <sup>d</sup> р | 11                     |                 | 11                                                       | 11                                                   | 18 |
| 11                         |                            | " macrostigmaticum                  | 17                      | N                   | 11                     |                 |                                                          | 11                                                   | 18 |
|                            | 11                         | " minutum                           | 11                      | Р                   | 11                     | 11              | п                                                        | 11                                                   | 18 |
| 0                          | 11                         | " multinucleatum                    | - 11                    | N                   | 11                     | 11              | 11                                                       | 11                                                   | 18 |
| u –                        | 11                         | " <u>oleofaciens</u>                | 17                      | Р                   | 11                     |                 | 11                                                       | 11                                                   | 18 |
|                            | 11                         | " perforatum                        | 17                      | N                   | 1                      | 11              | 11                                                       | 17                                                   | 18 |
| 11                         | 11                         | " pinguideum                        | 11                      | N                   | 0                      |                 |                                                          |                                                      | 18 |
| 11                         | 11                         | " punctatum                         | 1 11                    | N                   | 11                     | 11              | 11                                                       | 11                                                   | 18 |
|                            | 11                         | " <u>scabellum</u>                  | 11                      | N                   | 11                     |                 |                                                          | 11                                                   | 18 |
| * *                        | 11                         | " tetrasporum                       | 11                      | Т                   | 11                     | 11              | 11                                                       | 11                                                   | 18 |
| 11                         | 11                         | " vacuolatum                        | 11                      | N                   | 11                     | 11              | 11                                                       | 11                                                   | 18 |
| .,                         | ui ui                      | " wimmeri                           |                         | N                   | 1                      | 11              | 11                                                       |                                                      | 18 |
| 11                         | n                          | <u>Scenedesmus</u> obliquus         | 100                     | P                   | 5 da                   |                 | n % transmittanc<br>(spectophoto-<br>meter)              | e 22 <sup>°</sup> C; 7; 700-1000 ft-c,<br>continuous | 36 |
| 11                         | 11                         |                                     | 1000                    | Т                   |                        | 11              | 11                                                       | U U                                                  | 26 |
|                            |                            | BACTERIUM                           |                         |                     |                        |                 |                                                          |                                                      | 1  |
| 11                         | 11                         | Archromobacter sp 1                 | 100                     | Т                   | 3 da                   | 1 1             | 11                                                       |                                                      | 36 |
| 11                         |                            | " sp 2                              | 10                      | Т                   | 2 da                   | 11              |                                                          | 11                                                   | 36 |
| 11                         | 11                         | <u>Flavabacterium</u> sp            | 10                      | Т                   | 5 da                   | 11              | 11                                                       | 11                                                   | 36 |
| 11                         | 11                         | <u>Pseudomonas</u> sp               | 100                     | Т                   | 3 da                   | 11              | 11                                                       | n n                                                  | 36 |
|                            |                            |                                     |                         | Į                   |                        |                 |                                                          |                                                      | ļ  |
|                            |                            |                                     |                         |                     |                        |                 |                                                          |                                                      | 1  |
|                            |                            |                                     | 1                       |                     |                        | 1               |                                                          |                                                      | 1  |

(?)<sup>d</sup> both results reported

1

| Compound                  | Source of Compound<br>(Observance in natural                                         |                                                  |                         | · · · · · ·          |             | ory Bioassays           |                                                          |                                                  |            |
|---------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------|-------------------------|----------------------|-------------|-------------------------|----------------------------------------------------------|--------------------------------------------------|------------|
| - and po and              | system; group; reference)                                                            | Microorganism                                    | Concentration<br>(mg/l) | Effect               | Time of     | sponse to Comp<br>Study | Parameter                                                | Conditions                                       | Re         |
|                           |                                                                                      |                                                  | (IIIg/ I)               |                      | Observation | Method                  | Measured                                                 | Temp.; pH; Light                                 |            |
| <u>iolutin</u><br>iburon) | <u>Streptomyces</u> albus<br>'' <u>celluloflavus</u><br>'' sp<br>(; Bacteria; 114.8) | CHLOROPHYCEAE<br>Chlorococcum<br>aplanosporum    | l mg                    | т                    | 0-3 wk      | agar medium             | examination of<br>zone of inhibition<br>(disk technique) | 22 <sup>°</sup> C;; 250-300 ft-c,<br>12 hr daily | 18         |
|                           |                                                                                      | " diplobionticum                                 | 11                      |                      | 11          | 11                      |                                                          | 11                                               | 1.10       |
| ••                        | 11                                                                                   | " echinozygotum                                  |                         |                      |             | 11                      |                                                          | 11                                               | 18         |
| н                         | 11                                                                                   | " ellipsoideum                                   | 11                      | 11                   | 11          | u u                     |                                                          |                                                  | 18         |
| "                         | 11                                                                                   | " hypnosporum                                    | п                       |                      |             | 11                      |                                                          | 11                                               | 18         |
| 11                        | 11                                                                                   | " intermedium                                    | 11                      | - u                  |             | п                       | 11                                                       | 11                                               | 18         |
| 11                        | 11                                                                                   | " macrostigmaticum                               | , ''                    | 11                   | 11          | 11                      | 11                                                       | 11                                               | 18         |
|                           | 11                                                                                   | " <u>minutum</u>                                 | 11                      |                      | 11          |                         | t1                                                       | 11                                               | 18         |
| t1                        |                                                                                      | " multinucleatum                                 | **                      | - 11                 | 17          |                         |                                                          | 11                                               | 18         |
| н.,                       | 11                                                                                   | " <u>oleofaciens</u>                             | 11                      | 11                   |             |                         |                                                          | п                                                | 18         |
| 11                        | 11                                                                                   | " perforatum                                     | 11                      | 11                   |             | 1                       | 11                                                       | 11                                               | 18         |
| *1                        | 11                                                                                   | " pinguideum                                     |                         | 11                   | 11          |                         | 13                                                       | 11                                               | 18         |
|                           | 11                                                                                   | " punctatum_                                     | 11                      |                      | н           | 11                      | 11                                                       | 11                                               | 18         |
|                           | 11                                                                                   | " <u>scabellum</u>                               | 11                      | 11                   | 11          |                         | 11                                                       | 11                                               | 18         |
| 11                        |                                                                                      | " <u>tetrasporum</u>                             | 11                      |                      | 11          | 11                      | τ1                                                       | 11                                               | 18         |
| ц                         |                                                                                      | " <u>vacuolatum</u>                              | 11                      |                      | 11          |                         | . 11                                                     | T.                                               | 18         |
| 11                        | n                                                                                    | " <u>wimmeri</u><br><u>Chlorella</u> pyrenoidosa | 2                       | P(82%) <sup>b</sup>  | 40 hr       |                         | "<br>optical density<br>(610 mµ)                         | 25°C; 5.1;                                       | 18<br>106. |
| ч.                        | 11                                                                                   | в п                                              |                         | P(77%) <sup>b</sup>  |             | **                      |                                                          | 25°C; 6.0;                                       | 106.       |
| 11                        | 11                                                                                   | 31 II II                                         | 11                      | P(95%) <sup>b</sup>  | - u         | 11                      | 11                                                       | 25°C; 7.4;                                       | 106.       |
| 11                        | 11                                                                                   | 11 11                                            | 5                       | T(100%) <sup>b</sup> | 11          |                         | u.                                                       | 25°C; 5.1;                                       | 106.       |
|                           | 11                                                                                   | 11 11                                            | "                       |                      | 11          |                         | 11                                                       | 25 <sup>°</sup> C; 6.0;                          | 106.       |
| 11                        | 11                                                                                   | 11 11                                            | 11                      |                      | 11          | 11                      | 11                                                       | 25°C; 7.4;                                       | 106.       |
|                           |                                                                                      |                                                  | I                       |                      |             |                         |                                                          |                                                  |            |
|                           |                                                                                      |                                                  |                         | 1                    | 1           |                         |                                                          |                                                  |            |

()<sup>b</sup> percent inhibition comparison with control

I.

Class of Compound: ANTIBIOTICS

:

| Compound             | Source of Compound                                          |                              |                         |        |                        | ory Bioassays   |                                   |                                    |     |
|----------------------|-------------------------------------------------------------|------------------------------|-------------------------|--------|------------------------|-----------------|-----------------------------------|------------------------------------|-----|
| Compound             | (Observance in natural                                      | Microorganism                |                         |        |                        | sponse to Com   |                                   |                                    | R   |
|                      | system; group; reference)                                   |                              | Concentration<br>(mg/l) | Effect | Time of<br>Observation | Study<br>Method | Parameter<br>Measured             | Conditions<br>Temp.; pH; Light     |     |
|                      |                                                             | CHLOROPHYCEAE                |                         |        |                        |                 |                                   |                                    |     |
| ncomycin<br>ancosin) | <u>Streptomyces</u> <u>orientalis</u><br>(; Bacteria; 39.5) | Chlorococcum<br>aplanosporum | 30 meq                  | N      | 0-3 wk                 | agar medium     | examination of zone of inhibition | 22°C; 250-300 ft-c,<br>12 hr daily | 18  |
| 11                   | 11                                                          | " diplobionticum             |                         | 11     | 11                     |                 | disk teghnique)                   | t r                                | 18  |
| n.                   | 11                                                          | " echinozygotum              | 11                      |        | 1 11                   |                 | 11                                | 11                                 | 18  |
| 11                   | 11                                                          | " ellipsoideum               | 11                      | 11     | 11                     |                 | 11                                | 11                                 | 18  |
|                      | 11                                                          | " hypnosporum                | 17                      | 11     | - 11                   |                 | 11                                | 11                                 | 18  |
|                      | 1                                                           | " intermedium                | 11                      | 11     | 11                     | ii.             | 11                                | 1                                  | 18  |
| U .                  | 11                                                          | " macrostigmaticum           |                         |        | 11                     |                 | 11                                | n                                  | 18  |
| U.                   | 11                                                          | " minutum                    | 11                      |        |                        |                 |                                   | 11                                 | 18  |
| 11                   | 11                                                          | " multinucleatum             | 11                      |        | ( u                    | 11              |                                   | 11                                 | 18  |
|                      |                                                             | " <u>oleofaciens</u>         |                         |        |                        | 11              |                                   | 11                                 | 18  |
| 11                   | 11                                                          | " perforatum                 | 11                      | 11     | н                      | 11              |                                   | 11                                 | 18  |
|                      | 11                                                          | " pinguideum                 |                         | 11     | 11                     | 11              |                                   | 11                                 | 18  |
| 11                   | п                                                           | " punctatum                  |                         |        | 11                     | 11              |                                   | 11                                 | 18  |
| *1                   | 11                                                          | " <u>scabellum</u>           | 11                      |        | 11                     | 11              |                                   | 11                                 | 18  |
|                      | 11                                                          | " tetrasporum                | 11                      | 11     | 11                     | 11              |                                   |                                    | 18  |
| 11                   | 11                                                          | " vacuolatum                 | 11                      | 11     |                        | 11              | u .                               |                                    | 18  |
| 11                   | 11                                                          | " wimmeri                    |                         |        |                        | , ,,            | 11                                | 11                                 | 18  |
| mycin<br>ocin)       | Streptomyces floridae<br>(; Bacteria; 39.5)                 | Chlorococcum<br>aplanosporum | 10 meq                  | 11     | п                      |                 | 11                                |                                    | 18  |
| 11                   | 11                                                          | " diplobionticum             |                         |        | п                      |                 |                                   | 18                                 | 118 |
|                      | 11                                                          | " echinozygotum              |                         | 111    | ( u                    | 11              |                                   | 11                                 | 18  |
| 11                   |                                                             | " ellipsoideum               |                         |        | 11                     |                 |                                   | 11                                 | 18  |
| 11                   | 11                                                          | " hypnosporum                | 11                      | j      |                        |                 |                                   | 11                                 | 18  |
| 18                   | 11                                                          | " intermedium                |                         | т      | 11                     |                 |                                   | 11                                 | 18  |
|                      | 11                                                          | " macrostigmaticum           |                         | N      | 11                     |                 | п                                 | 11                                 | 18  |
| 11                   | 11                                                          | " minutum                    | 11                      |        |                        |                 |                                   | 11                                 | 18  |
|                      | 11                                                          | " multinucleatum             | 11                      |        | n                      |                 | 11                                | 11                                 | 18  |
| 11                   |                                                             | " oleofaciens                | 11                      |        |                        | 11              | 11                                | 11                                 | 18  |
| u                    | 11                                                          | " perforatum                 |                         |        | п                      |                 |                                   | 11                                 | 18  |
|                      | "                                                           | " pinguideum                 | 1 ,,                    | l      |                        |                 |                                   | 11                                 | 18  |

| Compound          | Source of Compound                                  |                           |                         |        | Laborat                | ory Bioassays   |                                                          |                                                  |     |
|-------------------|-----------------------------------------------------|---------------------------|-------------------------|--------|------------------------|-----------------|----------------------------------------------------------|--------------------------------------------------|-----|
| Compound          | (Observance in natural<br>system; group; reference) | Microorganism             |                         | r——    | Re                     | sponse to Com   |                                                          | · · · · · · · · · · · · · · · · · · ·            |     |
|                   | system; group; reference)                           |                           | Concentration<br>(mg/l) | Effect | Time of<br>Observation | Study<br>Method | Parameter<br>Measured                                    | Conditions<br>Temp.; pH; Light                   | Re  |
|                   |                                                     | CHLOROPHYCEAE             |                         |        |                        |                 |                                                          |                                                  | †—— |
| omycin<br>riocin) | <u>Streptomyces floridae</u><br>(; Bacteria; 39.5)  | Chlorococcum<br>punctatum | 10 meq                  | N      | 0-3 wk                 | agar medium     | examination of<br>zone of inhibition<br>(disk technique) | 22 <sup>°</sup> C;; 250-300 ft-c,<br>12 hr daily | 18  |
| 11                | 11                                                  | " <u>scabellum</u>        |                         |        |                        | 11              |                                                          | 11                                               | 18  |
| 11                | 11                                                  | " tetrasporum             | 11                      | - 11   |                        | 1 11            | 11                                                       | 11                                               | 18  |
| 11                | 11                                                  | " vacuolatum              |                         | - 11   | 11                     | н               | 11                                                       |                                                  | 18  |
| 0                 |                                                     | " wimmeri                 | 11                      | - 11   | 11                     | 11              |                                                          | 11                                               | 18  |
|                   |                                                     |                           |                         |        |                        |                 |                                                          |                                                  |     |

1

( ) ( )

| Compound            | Source of Compound<br>(Observance in natural                                                                                                                    |                                  |               |        |                        | ory Bioassays                                    |                                                                             |                                                   |     |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|---------------|--------|------------------------|--------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------|-----|
| Compound            | system; group; reference)                                                                                                                                       | Microorganism                    | Concentration |        |                        | esponse to Comp                                  |                                                                             |                                                   | - R |
|                     | system, group, reference)                                                                                                                                       |                                  | (mg/l)        | Effect | Time of<br>Observation | Study<br>Method                                  | Parameter<br>Measured                                                       | Conditions<br>Temp.; pH; Light                    |     |
|                     |                                                                                                                                                                 | <u>CHLOROPHYCEAE</u>             |               |        |                        |                                                  |                                                                             |                                                   | +   |
| lucose              | <u>Chlamydomonas</u> sp<br><u>Chlorella miniota</u><br><u>vulgaris</u><br><u>Scenedesmus obliquus</u><br>(12, 17, 66, 110, 112, 122,<br>125, 124; Algae; 70, 3) | <u>Chlorella</u> <u>vulgaris</u> | 10,000        | S      | 15 days                | liquid cultures<br>(25 ml Erlen-<br>meyer flask) | cell count and<br>material balanc<br>(Van Slyke<br>macrometric)             | 30 <sup>°</sup> C;; 200 ft-c,<br>e                | 75  |
| ructose             | (110, 112, 122;; )                                                                                                                                              | 11 11                            |               | п      | 11                     | 11                                               | cell count                                                                  | 11                                                | 75  |
| <u>olactos</u> e    | Chlamydomonas angulosa<br>'' chlamydogama<br>'' debaryana<br>'' sp<br>(14, 66, 71, 110, 122; Algae;<br>70.3 <sup>e</sup> )                                      |                                  |               | 11     |                        | n                                                | (hemocytometer                                                              | 11                                                | 75  |
| ethyl D-<br>ucoside | (;;;)                                                                                                                                                           | 11 11                            | 11            |        | 11                     | 11                                               | n                                                                           | u                                                 | 75  |
| ellobiose           | (;;;)                                                                                                                                                           | 11 11                            | 11            | 11     | 11                     |                                                  |                                                                             | 11                                                | 75  |
| actose              | (110;;;)                                                                                                                                                        | 11 11                            | 11            | 11     | 11                     |                                                  |                                                                             | 11                                                | 75  |
| esculin             | (;; )                                                                                                                                                           | 11 11                            | 5,000         | - 13   |                        |                                                  |                                                                             | 11                                                | 75  |
| <u>ylulose</u>      | (;; )                                                                                                                                                           | Chlorococcum<br>echinozygotum    | .15           | P      | 2 da                   | liquid cultures                                  | colorimetric<br>(535 mµ) &<br>direct cell count<br>ing (Petroff-<br>Hansen) | 20 <sup>0</sup> C;; 800 ft-c,<br>12 hr daily<br>- | 126 |
| rabinose            | <u>Chlorella miniata</u><br>(110; Algae; 70.3 <sup>e</sup> )                                                                                                    | Chlorococcum<br>aplanosporum     | 5,000         | S      | 2 wk                   | culture solution                                 | macroscopic<br>comparison<br>with control                                   | 22 <sup>°</sup> C;; 250-300 ft-c,<br>12 hr daily  | 18  |
| 11                  | 1                                                                                                                                                               | 11 11                            | 7,500         | s      | 11                     | 11                                               | 11                                                                          |                                                   | 18  |
| 11                  | 1                                                                                                                                                               | " diplobionticum                 | 5,000         | P      | 8.8                    |                                                  | 11                                                                          | 11                                                | 18  |
|                     |                                                                                                                                                                 | 11 11                            | 7,500         | s      |                        |                                                  | 11                                                                          | "                                                 | 18  |
| 11                  |                                                                                                                                                                 | " <u>echinozygotum</u>           | 5,000         | s      | 11                     |                                                  | 11                                                                          | 11                                                | 18  |
| 11                  |                                                                                                                                                                 |                                  | 7,500         | S      |                        |                                                  | 11                                                                          | 11                                                | 18  |
| 11                  |                                                                                                                                                                 | " <u>ellipsoideum</u>            | 5,000         | S      | 11                     | 11                                               |                                                                             |                                                   | 18  |
|                     |                                                                                                                                                                 |                                  | 7,500         | P      |                        |                                                  | 11                                                                          | 11                                                | 18  |
|                     |                                                                                                                                                                 | " <u>hypnosporum</u>             | 5,000         | P      |                        | 11                                               | 11                                                                          | 11                                                | 18  |
|                     |                                                                                                                                                                 |                                  | 7,500         | S      | 11                     | u                                                | 11                                                                          | 11                                                | 18  |

I. Contraction of the second se

| Compound | Source of Compound<br>(Observance in natural                        |                             | <u> </u>                |        | Laborat                | ory Bioassays    |                                           |                                     |     |
|----------|---------------------------------------------------------------------|-----------------------------|-------------------------|--------|------------------------|------------------|-------------------------------------------|-------------------------------------|-----|
| Compound | (Observance in natural<br>system; group; reference)                 | Microorganism               | Content                 | ı —    | Re                     | sponse to Comp   |                                           |                                     |     |
|          | system; group; reference)                                           |                             | Concentration<br>(mg/l) | Effect | Time of<br>Observation | Study<br>Method  | Parameter<br>Measured                     | Conditions<br>Temp.; pH; Light      | Ref |
|          |                                                                     | CHLOROPHYCEAE               |                         |        |                        |                  |                                           |                                     |     |
| rabinose | <u>Chlorella</u> <u>miniata</u><br>(110; Algae; 70.3 <sup>e</sup> ) | Chlorococcum<br>intermedium | 5,000                   | Р      | 2 wk                   | culture solution | macroscopic<br>comparison<br>with control | 22°C;; 250-300 ft-c,<br>12 hr daily | 18  |
| 11       | 11                                                                  | 11 11                       | 7,500                   | Р      | 11                     |                  | 11                                        | 11                                  | 18  |
| 0        | п                                                                   | " macrostigmaticum          | 5,000                   | Р      | - 11                   | 11               | 11                                        | н                                   | 18  |
| 11       | 11                                                                  | U U                         | 7,500                   | Р      | 11                     | 11               | 11                                        |                                     | 18  |
| Tİ       | 11                                                                  | " minutum                   | 5,000                   | s      |                        |                  | 11                                        | 11                                  | 18  |
| 11       | 11                                                                  | U 11                        | 7,500                   | Р      | 11                     | 11               | "                                         | 11                                  | 18  |
| n.       | 11                                                                  | " multinucleatum            | 5,000                   | . P    |                        | 11               | 11                                        |                                     | 18  |
| 11       | 11                                                                  | 11 (1                       | 7,500                   | т      | 11                     | 11               | n                                         |                                     | 18  |
| 11       | 11                                                                  | " <u>oleofaciens</u>        | 5,000                   | s      | 11                     |                  | и                                         |                                     | 18  |
| 11       | 11                                                                  | 11 11                       | 7,500                   | s      | 11                     |                  | 11                                        | 11                                  | 18  |
| tt       | 11                                                                  | " perforatum                | 5,000                   | т      | 11                     |                  | 11                                        | 11                                  | 18  |
| 11       | 11                                                                  | п и                         | 7,500                   | Р      |                        |                  |                                           | 11                                  | 18  |
| 11       |                                                                     | " pinguideum                | 5,000                   | s      | **                     |                  | 17                                        | n                                   | 18  |
| н        |                                                                     | и и                         | 7,500                   | s      |                        |                  | 11                                        | 11                                  | 18  |
| н        | 11                                                                  | " punctatum                 | 5,000                   | s      |                        | 11               | 11                                        |                                     | 18  |
| 11       |                                                                     |                             | 7,500                   | s      |                        |                  |                                           | 11                                  | 18  |
| 11       | 1                                                                   | "_scabellum                 | 5,000                   | s      |                        | 11               | 11                                        |                                     | 18  |
| 11       |                                                                     | п п                         | 7,500                   | Р      |                        | 1                |                                           |                                     | 18  |
| 11       | 11                                                                  | " tetrasporum               | 5,000                   | Р      | 11                     |                  |                                           |                                     | 18  |
|          |                                                                     | 11 11                       | 7,500                   | Р      |                        |                  | 11                                        |                                     | 18  |
| u.       |                                                                     | " vacuolatum                | 5,000                   | S      | 11                     | 1 11             |                                           |                                     | 18  |
| 11       |                                                                     |                             | 7,500                   | s      |                        |                  |                                           | 11                                  | 18  |
|          | 11                                                                  | " wimmeri                   | 5,000                   | P      | 11                     | 11               |                                           | 11                                  | 18  |
| ш        |                                                                     |                             | 7,500                   | P      | n                      |                  |                                           | 11                                  | 1   |
|          | 1                                                                   |                             | .,                      | -      |                        | 1                |                                           |                                     | 18  |
|          |                                                                     |                             | ļ                       |        |                        | ]                |                                           |                                     |     |
|          |                                                                     |                             |                         | l      | ļ                      |                  |                                           |                                     |     |
|          | ļ.                                                                  | ]                           | ]                       |        |                        | 1                |                                           |                                     |     |

1 1

# Class of Compound: CARBOHYDRATES

T i i i

4 · · · · ·

| Compound | Source of Compound                                          | <u> </u>                     |                         |        |                        | ory Bioassays   |                                                     |                                     |      |
|----------|-------------------------------------------------------------|------------------------------|-------------------------|--------|------------------------|-----------------|-----------------------------------------------------|-------------------------------------|------|
| Compound | (Observance in natural                                      | Microorganism                |                         |        |                        | sponse to Com   |                                                     |                                     | Re   |
|          | system; group; reference)                                   |                              | Concentration<br>(mg/l) | Effect | Time of<br>Observation | Study<br>Method | Parameter<br>Measured                               | Conditions<br>Temp.; pH; Light      | I Re |
|          |                                                             | CHLOROPHYCEAE                |                         | 1      |                        |                 |                                                     |                                     |      |
| bose     | Chlamydomonas Debaryana<br>(110; Algae; 70.3 <sup>e</sup> ) | Chlorococcum<br>aplanosporum | 7,500                   | S      | 2 wk                   | culture solutio | onmacrosc <b>opic</b><br>comparison<br>with control | 22°C;; 250-300 ft-c,<br>12 hr daily | 18   |
|          | 11                                                          | " diplobionticum             |                         | Р      |                        | 11              | 11                                                  | 11                                  | 18   |
|          |                                                             | " echinozygotum              | 11                      | s      | 51                     |                 |                                                     | 11                                  | 18   |
| н        | 11                                                          | " ellipsoideum               | **                      | Р      | 11                     |                 | 11                                                  | п                                   | 18   |
| 11       | 11                                                          | " hypnosporum                | 11                      | s      | 11                     |                 |                                                     |                                     | 18   |
| 11       | 11                                                          | " intermedium                |                         | Р      | 11                     |                 |                                                     |                                     | 18   |
|          | 11                                                          | " macrostigmaticu            | man ''                  | Р      |                        |                 |                                                     | 11                                  | 18   |
| 11       | 11                                                          | " minutum                    | 11                      | s      | 11                     |                 | 11                                                  | 11                                  | 18   |
| 11       | 11                                                          | " multinucleatum             |                         | т      |                        | 13              | .,                                                  | 11                                  | 18   |
| 11       | [ · · · ·                                                   | " oleofaciens                |                         | s      |                        |                 |                                                     | 11                                  | 18   |
| 11       | 11                                                          | " perforatum                 |                         | P      | п                      | .11             |                                                     | u u                                 | 18   |
| "        | 11                                                          | " pinguideum                 | n                       | Р      |                        | ·               |                                                     |                                     | 18   |
|          | 11                                                          | " punctatum                  |                         | s      | 11                     | 11              |                                                     |                                     | 18   |
| 11       |                                                             | " scabellum                  |                         | Р      |                        |                 |                                                     | 11                                  | 18   |
|          | 11                                                          | " tetrasporum                |                         | Р      | п                      |                 |                                                     | н                                   | -18  |
|          |                                                             | " vacuolatum                 | 11                      | s      |                        | n               | 13                                                  | 11                                  | 18   |
| 11       | 11                                                          | " wimmeri                    | 11                      | т      | 11                     | 1               |                                                     | 11                                  | 18   |
| se       | Scenedesmus obliquus                                        |                              |                         |        |                        |                 |                                                     |                                     | 10   |
| 11       | (110; Algae; 70.3 <sup>e</sup> )                            | apianosporum                 | 5,000                   | s      |                        | 0               | 1 11                                                | 11                                  | 18   |
| 11       | 11                                                          | 11 11                        | 7,500                   | s      | 1 11                   | 11              |                                                     | 11                                  | 18   |
|          | п                                                           | " <u>diplobionticum</u>      | 5,000                   | Р      | 11                     | ''              |                                                     | 11                                  | 18   |
|          |                                                             | 11 11                        | 7,500                   | P      | 11                     | 11              | 11                                                  | 11                                  | 18   |
| 11       | "                                                           | " <u>echinozygotum</u>       | 5,000                   | P      | 11                     | 11              | 11                                                  |                                     | 18   |
| n        | ų 11                                                        | 11 11                        | 7,500                   | Т      |                        | 17              | 11                                                  | i ii                                | 18   |
| *1       | п                                                           | " <u>ellipsoideum</u>        | 5,000                   | s      | 11                     | 17              | 11                                                  | 11                                  | 18   |
| 11       | 11                                                          | 11 11                        | 7,500                   | P      |                        |                 | 11                                                  | 11                                  | 18   |
| 11       | 11                                                          | " hypnosporum                | 5,000                   | s      | 11                     |                 | 11                                                  |                                     | 18   |
| 11       |                                                             | п п                          | 7,500                   | Т      | 11                     |                 |                                                     | 11                                  | 18   |

T

1 I I I

| Compound | Source of Compound<br>(Observance in natural                     |                             |                         |        | Laborat                | ory Bioassays    |                                           |                                                  |    |
|----------|------------------------------------------------------------------|-----------------------------|-------------------------|--------|------------------------|------------------|-------------------------------------------|--------------------------------------------------|----|
| Somboana |                                                                  | Microorganism               | Componity               |        |                        | sponse to Comp   |                                           | 1                                                |    |
|          | system; group; reference)                                        |                             | Concentration<br>(mg/l) | Effect | Time of<br>Observation | Study<br>Method  | Parameter<br>Measured                     | Conditions<br>Temp.; pH; Light                   | R  |
|          |                                                                  | CHLOROPHYCEAE               |                         |        |                        |                  |                                           |                                                  | f  |
| vlose    | <u>Scenedesmus</u> obliquus<br>(110; Algae; 70, 3 <sup>®</sup> ) | Chlorococcum<br>intermedium | 7,500                   | Р      | 2 wk                   | culture solutior | macroscopic<br>comparison<br>with control | 22 <sup>°</sup> C;; 250-300 ft-c,<br>12 hr daily | 18 |
| 11       | 11                                                               | " macrostigmaticun          | n_ 5,000                | Р      | 11                     | 11               | 11                                        |                                                  | 18 |
| 11       | 11                                                               | 11 11                       | 7,500                   | P      | u                      | 11               | 11                                        |                                                  | 18 |
| 11       | 11                                                               | " <u>minutum</u>            | 5,000                   | s      |                        |                  |                                           | 11                                               | 18 |
| 16       | п                                                                | 11 11                       | 7,500                   | Р      |                        |                  | "                                         | 11                                               | 18 |
| 11       | 11                                                               | " multinucleatum            | 5,000                   | т      | 11                     | n                | 11                                        | 11                                               | 18 |
| 11       | 11                                                               | 11 11                       | 7,500                   | P      |                        | n                |                                           | 1 11                                             | 18 |
| 11       | , 11                                                             | " <u>oleofaciens</u>        | 5,000                   | P      | 11                     |                  | 11                                        | 11                                               | 18 |
| 11       | 11                                                               | и н                         | 7,500                   | P      | 11                     |                  | 11                                        |                                                  | 18 |
| rt       | 11                                                               | " perforatum                | 5,000                   | Т      | 11                     | 11               |                                           | *1                                               |    |
| ш        | 11                                                               | 11 11                       | 7,500                   | Р      | 11                     | u u              | 11                                        | 11                                               |    |
| 11       | 11                                                               | " pinguideum                | 5,000                   | т      | 11                     |                  | 11                                        |                                                  |    |
| 11       | 11                                                               | п п                         | 7,500                   | т      |                        |                  | 13                                        | 11                                               | 1  |
| п        | 11                                                               | " punctatum                 | 5,000                   | Р      | 11                     | 11               |                                           |                                                  | 18 |
| "        | 11                                                               | 11 a                        | 7,500                   | Р      | 11                     |                  |                                           |                                                  | 18 |
| U.       | 11                                                               | " scabellum                 | 5,000                   | Р      |                        |                  | 11                                        |                                                  | 18 |
| п        | 11                                                               | и п                         | 7,500                   | P      |                        | 11               |                                           |                                                  | 18 |
| п        | 11                                                               | " tetrasporum               | 5,000                   | Р      |                        | - u              | **                                        | 11                                               | 18 |
| U.       | 11                                                               | 11 11                       | 7,500                   | P      |                        | 11               | н                                         | 11                                               | 18 |
| 11       | rt .                                                             | " vacuolatum                | 5,000                   | s      |                        |                  | 11                                        |                                                  | 18 |
| п        |                                                                  | u `u                        | 7,500                   | s      | 11                     | п                | 11                                        | 11                                               | 18 |
| 11       | 18                                                               | " <u>wimmeri</u>            | 5,000                   | P      |                        | 11               | U                                         |                                                  | 18 |
| 11       | п                                                                | и п.                        | 7,500                   | т      | - n                    | 11               | 11                                        | 11                                               | 18 |
| ctose    | (110;; )                                                         | " aplanosporum              | 5,000                   | s      |                        | 11               |                                           | 11                                               | 18 |
| 11       |                                                                  | и н                         | 7,500                   | s      |                        | 11               | 11                                        |                                                  | 18 |
| "        |                                                                  | " diplobionticum            | 5,000                   | P      |                        | 1                | 11                                        | 11                                               | 18 |
| 11       | 1                                                                | 11 11                       | 7,500                   | Р      |                        | 11               | 11                                        | 11                                               | 18 |
|          | 11                                                               | " echinozygot um            | 5,000                   | s      | 1                      | 11               | 11                                        |                                                  | 18 |
|          |                                                                  |                             | 7,500                   | s      | 1                      | 11               |                                           | 11                                               | 18 |

I I

e free sugar formed by the induced hydrolysis of excreted polysaccharide

---

ł.

| Compound | Source of Compound                               |                                            |                         |          | Laborat                | ory Bioassays    |                                           |                                     |     |
|----------|--------------------------------------------------|--------------------------------------------|-------------------------|----------|------------------------|------------------|-------------------------------------------|-------------------------------------|-----|
| Compound | (Observance in natural system; group; reference) | Microorganism                              |                         | <u> </u> |                        | sponse to Comp   |                                           |                                     |     |
|          | system; group; reference)                        |                                            | Concentration<br>(mg/l) | Effect   | Time of<br>Observation | Study<br>Method  | Parameter<br>Measured                     | . Conditions<br>Temp.; pH; Light    | Rei |
|          |                                                  | CHLOROPHYCEAE                              |                         |          |                        |                  |                                           |                                     |     |
| ructose  | (110;; )                                         | <u>Chlorococcum</u><br><u>ellipsoideum</u> | 5,000                   | S        | 2 wk                   | culture solution | macroscopic<br>comparison<br>with control | 22°C;; 250-300 ft-c,<br>12 hr daily | 18  |
| 11       |                                                  | 11 11                                      | 7,500                   | P        | **                     |                  |                                           | 11                                  | 18  |
| 11       | 11                                               | " hypnosporum                              | 5,000                   | s        |                        | 11               |                                           | ш                                   | 18  |
| 11       |                                                  | 11 11                                      | 7,500                   | s        |                        | LT LT            |                                           |                                     | 18  |
| 11       |                                                  | " intermedium                              | 5,000                   | Р        | 17                     |                  | 11                                        | н                                   | 18  |
| 11       | 11                                               | 11 11                                      | 7,500                   | P        | н                      | 11               | 11                                        | н                                   | 18  |
| 11       | n n                                              | " <u>macrostigmatic</u> ur                 | n 5,000                 | Р        | UT                     |                  | 11                                        | 11                                  | 18  |
| 11       |                                                  | и п                                        | 7,500                   | Р        | 11                     |                  | 11                                        | п                                   | 18  |
| 11       | "1                                               | " <u>minutum</u>                           | 5,000                   | s        | . 11                   |                  |                                           | п                                   | 18  |
| *1       |                                                  | и и                                        | 7,500                   | Р        | 11                     | 11               | 11                                        | 11                                  | 18  |
| **       |                                                  | " <u>multinucleatum</u>                    | 5,000                   | Р        | 11                     |                  |                                           | н                                   | 18  |
| 11       | U U                                              | 11 11                                      | 7,500                   | т        | 11                     |                  | 11                                        |                                     | 18  |
| U.       | п.                                               | " <u>oleofaciens</u>                       | 5,000                   | s        |                        | 11               | н                                         | н                                   | 18  |
| н        | 11                                               | н п                                        | 7,500                   | s        | **                     |                  | 11                                        | 11                                  | 18  |
|          | 11                                               | " perforatum                               | 5,000                   | т        | 11                     |                  | п                                         | н                                   | 18  |
| 11       |                                                  | " "                                        | 7,500                   | Р        | 11                     | 11               | 11                                        | Ħ                                   | 18  |
| 11       | 1 U                                              | " pinguideum                               | 5,000                   | s        |                        |                  | 11                                        | 13                                  | 18  |
| н        | 11                                               | и и                                        | 7,500                   | Р        |                        |                  | 11                                        | 11                                  | 18  |
| **       |                                                  | " punctatum                                | 5,000                   | s        |                        |                  |                                           |                                     | 18  |
| 11       | 11                                               | н н                                        | 7,500                   | s        |                        |                  | 11                                        | n                                   | 18  |
| 11       | 11                                               | " <u>scabellum</u>                         | 5,000                   | s        |                        |                  | 11                                        | "                                   | 18  |
| 11       | 11                                               | п п                                        | 7,500                   | s        | 11                     |                  | 11                                        | 11                                  | 18  |
| 11       | 11                                               | " <u>tetrasporum</u>                       | 5,000                   | Р        | 11                     |                  | п                                         |                                     | 18  |
| 11       | 11                                               | 11 11                                      | 7,500                   | P        |                        | 11               |                                           |                                     | 18  |
| **       | 11                                               | " <u>vacuolatum</u>                        | 5,000                   | s        |                        | 11               | 11                                        | 11                                  | 18  |
| 11       | 11                                               | 11 11                                      | 7,500                   | s        |                        |                  |                                           |                                     | 18  |
| 11       | 13                                               | " <u>wimmeri</u>                           | 5,000                   | P        | 11                     |                  |                                           |                                     | 18  |
| н        | 11                                               | 11 11                                      | 7,500                   | Р        |                        | 11               |                                           |                                     | 18  |

, 1

118

1

.

| Compound                              | Source of Compound        |             |                          | ,                       |                           | Laborat                  | ory Bioassays                                    |                                           |                                                     |           |
|---------------------------------------|---------------------------|-------------|--------------------------|-------------------------|---------------------------|--------------------------|--------------------------------------------------|-------------------------------------------|-----------------------------------------------------|-----------|
| Compound                              | (Observance in natural    | M           | icroorganism             |                         |                           | Re                       | sponse to Com                                    |                                           |                                                     |           |
|                                       | system; group; reference) |             |                          | Concentration<br>(mg/l) | <u>Effect</u><br>% contro | Time of<br>1 Observation | Study<br>Method                                  | Parameter<br>Measured                     | Conditions<br>Temp.; pH; Light                      | Re        |
|                                       |                           | CHI         | LOROPHYCEAE              |                         |                           |                          |                                                  |                                           |                                                     | <u> </u>  |
| odium                                 | Chlorella pyrenoidosa     | Chla        | mydomonas                |                         |                           |                          |                                                  | 1                                         |                                                     |           |
| formate<br>utilized 93)               | (73.8, 110; Algae; 65)    |             | reinhardi                | 0.5                     | P(98) <sup>f</sup>        | 4 da                     | culture solutio<br>(125 ml Erlen<br>meyer flask) | n cell count,<br>- growth rate            | 18 <sup>°</sup> C; 7.25; 250-300 ft-c<br>continuous | 104       |
| 11                                    | 11                        | п           |                          | 1.0                     | P(95) <sup>f</sup>        |                          |                                                  | 11                                        | 11                                                  | 104       |
| 11                                    | 11                        | n           | 11                       | 2.0                     | $P(92)^{f}$               | 11                       |                                                  |                                           | 11                                                  |           |
| 11                                    | 11                        | 0           | ħ                        | 4.0                     | P(88) <sup>f</sup>        | **                       |                                                  |                                           |                                                     | 104       |
| п                                     | 11                        |             | 11                       | 10.0                    | $P(72)^{f}$               | 11                       | 11                                               | н                                         |                                                     | 104       |
| dium                                  | 11                        | 11          |                          | 0.5                     | S(109) <sup>f</sup>       | 11                       |                                                  | 11                                        | 1                                                   | 104       |
| <u>etate</u><br>tilized 87, 96<br>93) | (104, 110; Algae; 65)     |             |                          |                         | 5(109)                    |                          |                                                  |                                           |                                                     | 104       |
| 11                                    | 11                        | 11          | 11                       | 1.0                     | S(111) <sup>f</sup>       | 11                       |                                                  |                                           |                                                     | 104       |
| 11                                    | 11                        | 11          | 11                       | 2.0                     | S(111) <sup>f</sup>       | 18                       |                                                  |                                           | 11                                                  | ļ         |
|                                       | п                         |             | 11                       | 4.0                     | S(112) <sup>f</sup>       | 18                       |                                                  | 11                                        | 11                                                  | 104       |
|                                       | 11                        | n           | 11                       | 10.0                    | S(114) <sup>f</sup>       |                          |                                                  | et .                                      |                                                     | 104       |
| 11                                    | п                         |             | rococcum<br>aplanosporum | 5,000                   |                           | 2 wk                     | 11                                               | macroscopic<br>comparison<br>with control | 22 <sup>°</sup> C;; 250-300 ft-c,<br>12 hr daily    | 104<br>18 |
| 11                                    | 11                        | 11          |                          | 7,500                   | Т                         | 11                       |                                                  |                                           |                                                     | 18        |
| 11                                    | 11                        |             | diplobionticum           | 5,000                   | P                         | 11                       |                                                  |                                           |                                                     | 18        |
| п                                     | 11                        |             |                          | 7,500                   | Р                         | 11                       | 11                                               |                                           |                                                     | 18        |
| **                                    | 11                        |             | echinozygotum            | 5,000                   | s                         | ۲.T                      |                                                  |                                           |                                                     |           |
| 11                                    | 11                        | <u> </u>    | 11                       | 7,500                   | s                         |                          |                                                  |                                           |                                                     | 18        |
| **                                    | 11                        | 1           | llipsoideum              |                         |                           | 11                       |                                                  |                                           |                                                     | 18        |
| 11                                    |                           | <u> </u>    | u u                      | 5,000                   | S                         |                          |                                                  | 11                                        |                                                     | 18        |
| 11                                    | 11                        | [           |                          | 7,500                   | s                         | 17                       | 1 11                                             | 11                                        | 11                                                  | 18        |
| 11                                    |                           |             | nypnosporum              | 5,000                   | S                         | 11                       |                                                  | 71                                        | 11                                                  | 18        |
|                                       | 11                        | 13          | 11                       | 7,500                   | Р                         | 11                       |                                                  | 13                                        | 11                                                  | 18        |
| 11                                    |                           | " <u>i</u>  | ntermedium               | 5,000                   | Р                         | 11                       |                                                  |                                           | 11                                                  | 18        |
| п                                     | 11                        | **          | **                       | 7,500                   | Р                         | u.                       | 0                                                | 11                                        |                                                     | 18        |
| 11                                    | 11                        | '' <u>r</u> | macrostigmaticun         | 5,000                   | Р                         |                          |                                                  | 11                                        | 11                                                  | 18        |
| 11                                    |                           | 10          | 11                       | 7,500                   | Т                         | 11                       |                                                  | U                                         | 11                                                  | 18        |

( )<sup>f</sup> percent growth comparison with control

Г |

· · · · ·

119

Class of Compound: FATTY ACIDS

| Compound                                             | Source of Compound                                                                |                                       |                         |                    |                        | ory Bioassays                                     |                                           |                                                  |     |
|------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------|-------------------------|--------------------|------------------------|---------------------------------------------------|-------------------------------------------|--------------------------------------------------|-----|
| Compound                                             | (Observance in natural<br>system; group; reference)                               | Microorganism                         | Gauge                   |                    |                        | sponse to Comp                                    |                                           |                                                  | . r |
|                                                      | system; group; reference)                                                         |                                       | Concentration<br>(mg/l) | Effect             | Time of<br>Observation | Study<br>Method                                   | Parameter<br>Measured                     | Conditions<br>Temp.; pH; Light                   | R   |
|                                                      |                                                                                   | <u>CHLOROPHYCEAE</u>                  |                         | -                  |                        |                                                   |                                           |                                                  |     |
| <u>dium</u> <u>acetate</u><br>tilized 93, 87,<br>96) | <u>Chlorella pyrenoidosa</u><br><u>'' vulgaris</u><br>(104,110; Algae; 65)        | <u>Chlorococcum</u><br><u>minutum</u> | 5,000                   | P                  | 2 wk                   | culture solution                                  | macroscopic<br>comparison<br>with control | 22 <sup>°</sup> C;; 250-300 ft-c,<br>12 hr daily | 18  |
| **                                                   | 11                                                                                | 11 11                                 | 7,500                   | т                  | 11                     | i ii                                              | 11                                        | 1                                                | 18  |
| 11                                                   | 11                                                                                | " multinucleatum                      | 5,000                   | т                  | 11                     |                                                   | 11                                        | 11                                               | 18  |
| 11                                                   | IT IT                                                                             | 11 11                                 | 7,500                   | т                  |                        | 11                                                |                                           | 11                                               | 18  |
| ч                                                    | 11                                                                                | " <u>oleofaciens</u>                  | 5,000                   | Р                  | 11                     | 11                                                | 13                                        | 11                                               | 18  |
| 11                                                   |                                                                                   | 11 11                                 | 7,500                   | Р                  | 11                     | 11                                                |                                           | н                                                | 18  |
| 11                                                   | 1                                                                                 | " perforatum                          | 5,000                   | Р                  | 11                     |                                                   | 11                                        | u                                                | 18  |
| 11                                                   | 11                                                                                | 11 11                                 | 7,500                   | Р                  |                        | TT                                                | 11                                        | u u                                              | 18  |
| 11                                                   |                                                                                   | " pinguideum                          | 5,000                   | Р                  |                        |                                                   | 11                                        | ii ii                                            | 18  |
| rt                                                   |                                                                                   | 11 11                                 | 7,500                   | т                  | **                     |                                                   | IT                                        | 11                                               | 18  |
| 11                                                   | 11                                                                                | " punctatum                           | 5,000                   | s                  | 11                     | 11                                                | 11                                        | п                                                | 18  |
| 11                                                   | "                                                                                 | п п                                   | 7,500                   | т                  |                        | 11                                                | 11                                        | 11                                               | 18  |
| 11                                                   |                                                                                   | " scabellum                           | 5,000                   | Р                  | t 1                    | 11                                                | 13                                        | 11                                               | 18  |
| 11                                                   |                                                                                   | 11 11                                 | 7,500                   | Р                  | 11                     | 11                                                |                                           | 11                                               | 18  |
| н                                                    |                                                                                   | " tetrasporum                         | 5,000                   | Р                  |                        | 1                                                 | 11                                        | 11                                               | 18  |
| н                                                    |                                                                                   | 11 11                                 | 7,500                   | P                  |                        | п                                                 | 11                                        |                                                  | 18  |
| 11                                                   | "                                                                                 | " vacuolatum                          | 5,000                   | s                  |                        | 11                                                | 11                                        | 11                                               | 18  |
| 11                                                   |                                                                                   | п п                                   | 7,500                   | Р                  |                        | 11                                                | 11                                        |                                                  | 18  |
| 11                                                   |                                                                                   | " wimmeri                             | 5,000                   | Р                  | 13                     | 11                                                |                                           | 11                                               | 18  |
| н                                                    | 11                                                                                | и и                                   | 7,500                   | Р                  | 11                     |                                                   | 11                                        | 11                                               | 18  |
| <u>etic acid</u><br>ilized 93, 87,<br>6)             | <u>Chlorella pyrenoidosa</u><br><u>'' vulgaris</u><br>(73.8, 104, 110; Algae; 65) | Haematococcus<br>pluvialis            | 0.5                     | P(98) <sup>f</sup> | 8 da                   | liquid cultures<br>(125 ml Erlen-<br>meyer flask) | turbidity (250 r                          | nµ) 21 <sup>°</sup> C; 5; 3000 lux<br>continuous | 69  |
| 11                                                   |                                                                                   | . 11 - 11                             | 1.0                     | т                  | - 11                   | LT.                                               | п                                         | 11                                               | 69  |
| **                                                   | 11                                                                                | и п                                   | 3.0                     | т                  | п                      | п                                                 |                                           | 11                                               | 69  |
| 11                                                   | 1                                                                                 | 11 11                                 | 5.0                     | P(75) <sup>f</sup> | 4 da                   |                                                   |                                           | 21°C; 7.5; 3000 lux<br>continuous                | 69  |
| 11                                                   | н                                                                                 | . 11 11                               | 5.0                     | т                  | **                     |                                                   |                                           | 21 <sup>°</sup> C; 5.0; 3000 lux<br>continuous   | 69  |

Ŧ

| Compound                                    | Source of Compound                                                         |                            | <u> </u>                |                    |                        | ory Bioassays                                      |                       |                                                                   |              |
|---------------------------------------------|----------------------------------------------------------------------------|----------------------------|-------------------------|--------------------|------------------------|----------------------------------------------------|-----------------------|-------------------------------------------------------------------|--------------|
| Compound                                    | (Observance in natural                                                     | Microorganism              |                         | ŋ                  |                        | sponse to Comp                                     |                       |                                                                   |              |
|                                             | system; group; reference)                                                  |                            | Concentration<br>(mg/l) | Effect             | Time of<br>Observation | Study<br>Method                                    | Parameter<br>Measured | Conditions<br>Temp.; pH; Light                                    | Re           |
|                                             |                                                                            | CHLOROPHYCEAE              |                         |                    |                        |                                                    |                       |                                                                   |              |
| <u>cetic acid</u><br>tilized 93, 87,<br>96) | Chlorella pyrenoidosa<br>'' <u>vulgaris</u><br>(73.8, 104, 110; Algae; 65) | Haematococcus<br>pluvialis | 5.0                     | т                  | 8 da                   | liquid cultures<br>(125 ml Erlen-<br>meyer flask)  | turbidity (250 m      | μ) 21 <sup>0</sup> C; 5.0; 3000 lux<br>continuous                 | 69           |
| dium                                        | 11                                                                         | Chlamydomanas              | 5.0                     | N .                | 11                     | 11                                                 | 11                    | 21 <sup>°</sup> C; 7.5; 3000 lux<br>continuous                    | 69           |
| ropionate<br>tilized 96)                    | (73.8, 104, 110;;)                                                         | reinhardi                  | 0.5                     | P(96) <sup>f</sup> | 4 da                   | culture solution<br>(125 ml Erlen-<br>meyer flask) |                       | 18 <sup>°</sup> C; 7.25; 250-300 ft-c<br>continuous               | <b>,</b> 104 |
| 11                                          |                                                                            | 11 11                      | 1.0                     | P(88) <sup>f</sup> | 11                     | 11                                                 | 11                    | н                                                                 | 104          |
| 11                                          | 11                                                                         | и п                        | 2.0                     | P(81) <sup>f</sup> | 11                     |                                                    | 11                    | 11                                                                | 10           |
|                                             |                                                                            | 11 11                      | 4.0                     | P(67) <sup>f</sup> | 11                     |                                                    | 11                    | 11                                                                | 10           |
| 11                                          | н                                                                          | 11 11                      | 10.0                    | P(35) <sup>f</sup> | 17                     |                                                    | 11                    |                                                                   | 10-          |
| ropionic_acid<br>tilized 96)                | (73.8, 104, 110;;)                                                         | Haematococcus<br>pluvialis | 0.05                    | N                  | 11                     | t T                                                | 11                    | 18 <sup>°</sup> C; 6.7; 250-300 ft-c,<br>continuous               | 10           |
| 11                                          | It                                                                         | 11 11                      | 0.05                    | N                  | 11                     | 11                                                 |                       | 18 <sup>°</sup> C; 7.0; 250-300 ft-c,<br>continuous               | 10           |
| 11                                          | 11                                                                         | 17 11                      | 0.05                    | N                  | 11                     | IT                                                 |                       | 18 <sup>°</sup> C; 7.3; 250-300 ft-c,<br>continuous               | 104          |
| 11                                          | 11                                                                         | 11 11                      | 0.1                     | P(90) <sup>f</sup> |                        | 11                                                 | 11                    | 18 <sup>°</sup> C; 6.7; 250-300 ft-c,<br>continuous               | 104          |
| 11                                          | 11                                                                         | 11 11                      | 0.1                     | P(90) <sup>f</sup> | 1                      | 11                                                 |                       | 18 <sup>0</sup> C; 7.0; 250-300 ft-c,<br>continuous               | 10           |
| 11                                          | 11                                                                         | н н                        | 0.1                     | P(90) <sup>f</sup> | 31                     | 11                                                 | T1                    | 18 <sup>°</sup> C; 7.3; 250-300 ft-c,<br>continuous               | 104          |
| 11                                          | 11                                                                         | 11 11                      | 0.2                     | P(10) <sup>f</sup> | 11                     | 11                                                 | 11                    | 18 <sup>°</sup> C; 6.6; 250-300 ft-c,<br>continuous               | 104          |
| 11                                          | 11                                                                         | 11 11                      | 0.2                     | P(68) <sup>f</sup> | п                      | 11                                                 | 11                    | 18 <sup>°</sup> C; 6.8; 250-300 ft-c,<br>continuous               | 104          |
| 11                                          | 11                                                                         | 11 11                      | 0.2                     | P(95) <sup>f</sup> | 11                     | 11                                                 | 11                    | 18 <sup>°</sup> C; 7.0; 250-300 ft-c,<br>continuous               | 104          |
| † f                                         | 11                                                                         | 11 11                      | 0.3                     | P(10) <sup>f</sup> | 11                     | 11                                                 |                       | 18°C; 6.8; 250-300 ft-c,                                          | 104          |
|                                             | 11                                                                         | 11 II                      | 0.3                     | P(30) <sup>f</sup> | 11                     | 11                                                 | 11                    | continuous<br>18 <sup>°</sup> C; 7.0; 250-300 ft-c,<br>continuous | 104          |
| 11                                          | u.                                                                         | и и                        | 0.3                     | P(88) <sup>f</sup> | - 11                   | 11                                                 |                       | 18°C; 7.1, 250-300 ft-c,                                          | 10           |
|                                             | 11                                                                         |                            | 0.3                     | N                  |                        |                                                    |                       | continuous<br>18 <sup>0</sup> C;7.3; 250-300 ft-c,                | 104          |

ł

| Compound                         | Source of Compound<br>(Observance in natural |                                          |                         |                     |                        | ory Bioassays                                      |                       |                                                      |      |
|----------------------------------|----------------------------------------------|------------------------------------------|-------------------------|---------------------|------------------------|----------------------------------------------------|-----------------------|------------------------------------------------------|------|
| Compound                         | system; group; reference)                    | Microorganism                            |                         | т                   |                        | sponse to Comp                                     |                       |                                                      | R    |
| <u> </u>                         | system; group; reference)                    |                                          | Concentration<br>(mg/l) | Effect              | Time of<br>Observation | Study<br>Method                                    | Parameter<br>Measured | Conditions<br>Temp.; pH; Light                       | R    |
|                                  |                                              | CHLOROPHYCEAE                            |                         | [                   |                        |                                                    |                       |                                                      |      |
| ropionic acid<br>utilized 96)    | (73.8, 104, 110;;)                           | Haematococcus<br>pluvialis               | 5.0                     | т                   | 4 da                   | liquid cultures<br>(125 ml Erlen-<br>meyer flask)  | turbidity<br>(250 mµ) | 21 <sup>°</sup> C; 5.0; 3000 lux<br>continuous       | 6    |
| 11                               | u                                            | 11 11                                    | 5.0                     | Т                   | 11                     | 11                                                 | 11                    | 21 <sup>°</sup> C; 7.5; 3000 lux<br>continuous       | 6    |
| 11                               |                                              | 11 11                                    | 5.0                     | Т                   | 8 da                   | 11                                                 | 11                    | 21 <sup>°</sup> C; 5.0; 3000 lux<br>continuous       | 6    |
|                                  | н                                            | 11 11                                    | 5.0                     | Т                   | 11                     | 11                                                 | п                     | 21°C; 7.5; 3000 lux<br>continuous                    | 69   |
| odium<br>utyrate<br>utilized 96) | (73.8, 110;;)                                | <u>Chlamydomonas</u><br><u>reinhardi</u> | 0.5                     | N(100) <sup>f</sup> | 4 da                   | culture solution<br>(125 ml Erlen-<br>meyer flask) | cell count            | 18 <sup>°</sup> C; 7.25; 250-300 ft-c.<br>continuous | 10   |
| 11                               | 11                                           | 11 11                                    | 1.0                     | 5(101) <sup>f</sup> | 11                     | 1 11                                               |                       |                                                      | 10   |
| 11                               | 11                                           | 11 11                                    | 2.0                     | N                   | 11                     | 1                                                  |                       | 11                                                   | 10   |
| и                                | 11                                           | 11 11                                    | 4.0                     | N                   | 11                     | 1 11                                               |                       | 11                                                   | 1(   |
| 11                               |                                              | и и                                      | 10.0                    | P(97) <sup>f</sup>  | ,,                     |                                                    |                       | 11                                                   | 10   |
| <u>yric acid</u><br>lized 96)    | (73.8, 110;;)                                | <u>Haematococcus</u><br>pluvialis        | 5.0                     | т                   | 11                     | 11                                                 | turbidity<br>(750 mµ) | 21 <sup>°</sup> C; 5.0; 3000 lux<br>continuous       | (    |
| "                                | 11                                           | 11 11                                    | 5.0                     | P(90) <sup>f</sup>  | 11                     |                                                    | 11                    | 0<br>21 C; 7.5; 3000 lux<br>continuous               | e    |
| 11                               | 11                                           | п п                                      | 5.0                     | Т                   | 8 da                   |                                                    | 11                    | 21°C; 5.0; 3000 lux<br>continuous                    | 6    |
| 11                               |                                              | <sup>11</sup> 11                         | 5.0                     | N                   | 11                     | 11                                                 | 11                    | 21 <sup>°</sup> C; 7.5; 3000 lux<br>continuous       | 6    |
| ium <u>valerate</u><br>lized 96) | (110;;)                                      | <u>Chlamydomanas</u><br><u>reinhardi</u> | 0.5                     | S(102) <sup>f</sup> | 4 da                   | 1 11                                               | cell count            | 18 <sup>°</sup> C; 7.25; 250-300 ft-c<br>continuous  | , 1( |
| 11                               | 11                                           | и и                                      | 1.0                     | N                   |                        | 11                                                 | **                    | 11                                                   | 10   |
| - 11                             | 11                                           | 11 11                                    | 2.0                     | P (99) <sup>f</sup> |                        | п                                                  | 1                     | 11                                                   | 10   |
|                                  | 11                                           | 11 II                                    | 4.0                     | P(98) <sup>f</sup>  | 11                     | 1 11                                               | 11                    | 11                                                   | 10   |
|                                  | 11                                           | ч п                                      | 10.0                    | P(97) <sup>f</sup>  | 17                     |                                                    | 11                    |                                                      | 10   |
| eric <u>acid</u><br>lized 96)    | (110;;)                                      | Haematococcus<br>pluvialis               | 5.0                     | Т                   | 11                     | 1                                                  | turbidity<br>(750 mµ) | 21 <sup>°</sup> C; 5.0; 3000 lux<br>continuous       | 6    |
|                                  | 11                                           | _ u _ u                                  | 5.0                     | Т                   | 8 da                   | <b>u</b> 11                                        | 11                    | n                                                    | e    |
|                                  | 11                                           | () <sup>f</sup> percent growth           | 5.0                     | P(91) <sup>f</sup>  | · 11                   | "                                                  |                       | 21°C; 7.5; 3000 lux<br>continuous                    | 6    |

1

| Compound                          | Source of Compound<br>(Observance in natural | ·                                        | 1             |                          | Laborat                | ory Bioassays                                      |                       |                                                | _   |
|-----------------------------------|----------------------------------------------|------------------------------------------|---------------|--------------------------|------------------------|----------------------------------------------------|-----------------------|------------------------------------------------|-----|
| p o anta                          | system; group; reference)                    | Microorganism                            | Concentration |                          |                        | sponse to Comp                                     |                       |                                                | - R |
|                                   |                                              |                                          | (mg/l)        | Effect                   | Time of<br>Observation | Study<br>Method                                    | Parameter<br>Measured | Conditions<br>Temp.; pH; Light                 |     |
|                                   |                                              | CHLOROPHYCEAE                            | 1             | [                        |                        |                                                    |                       |                                                |     |
| <u>aproic acid</u><br>tilized 96) | (110;;)                                      | Haematococcus<br>pluvialis               | 5.0           | Т                        | 8 da                   | culture solutio:<br>(125 ml Erlen-<br>meyer flask) |                       | 21 <sup>°</sup> C; 5.0; 3000 lux<br>continuous |     |
| 11                                | 11                                           |                                          | 5.0           | P(91) <sup>f</sup>       | u                      | 11                                                 | 11                    | 21 <sup>°</sup> C; 7.5; 3000 lux<br>continuous |     |
| andic acid                        | . n                                          | Anacystics nidulans                      | 100           | T                        | 2-3 da                 | liquid cutures<br>(125 ml Erlen-<br>meyer flask)   | cell count            | 23°C; 8.2; 200 ft-c,<br>constant               | 8   |
| 11                                | 11                                           | <u>Chlamydomonas</u><br><u>reinhardi</u> | 100           | N(?)P                    | 11                     | 11                                                 |                       |                                                | 8   |
| 11                                | 11                                           | <u>Chlorella</u> <u>vulgaris</u>         | 100           | N(?)P                    | 11                     | 11                                                 | 11                    | 11                                             | 8   |
| **                                | 11                                           | Haematococcus<br>pluvialis               | 5             | T                        | 6-8 da                 |                                                    | 11                    | п                                              | 8   |
| 11                                | 11                                           | <u>Scenedesmus</u><br><u>quadricauda</u> | 100           | т                        | 11                     | 11                                                 |                       | 11                                             | 8   |
|                                   |                                              | CHRYSOPHYCEAE                            |               |                          |                        |                                                    |                       |                                                |     |
| (†                                | 11                                           | Navicula pelliculosa                     | 50            | Т                        | 11                     | 11                                                 |                       | 11                                             | 8   |
| ecanoic acid                      | 11                                           | Anacystics nidulans                      | 100           | d<br>N(?)P<br>d<br>N(?)P | 2-3 da                 | **                                                 | п                     | 11                                             | 8   |
|                                   | 11                                           | Chlamydomonas<br>reinhardi               | 100           | 1                        | 11                     | 1                                                  | 11                    | 11                                             | 8   |
| n                                 | 11                                           | Chlorella vulgaris                       | 100           | d<br>N(?)P               | 11                     |                                                    |                       | п                                              | 8   |
| 11                                | 11                                           | Haematococcus<br>pluvialis               | 5             | Т                        | 6-8 da                 |                                                    |                       |                                                | 8   |
|                                   | 11                                           | Scenedesmus<br>quadricauda               | 100           | N(?) <sup>d</sup> P      |                        | 11                                                 | 11                    | II.<br>I                                       | 8   |
| н                                 | 11                                           | CHRYSOPHYCEAE<br>Navicula pelliculosa    | 50            | Т                        | TT                     |                                                    | 11                    | п                                              | 8   |
| auric acid<br>atilized 96)        | п                                            | CHLOROPHYCEAE<br>Anacystics nidulans     | 10            | Т                        | 2-3 da                 |                                                    | x II                  | п                                              | 8   |
| 11112ed 96)                       | н                                            | Chlamydomonas                            | 25            | т                        | 11                     |                                                    |                       | 11                                             | 8   |
|                                   |                                              | reinhardi                                |               |                          |                        |                                                    |                       |                                                |     |
|                                   | 11                                           | Chlorella vulgaris                       | 100           | d<br>N(?)P               | 11                     | 11                                                 |                       |                                                | 8   |
| 11                                | n                                            | Haematococcus<br>pluvialis               | 5             | Т                        | 6-8 da                 | n                                                  |                       |                                                | 8   |

T

.

1

Class of Compound: FATTY ACIDS

| Company                     | Source of Compound        |                                             | T                       |                     |                        | ory Bioassays                                     |                       |                                                 |       |
|-----------------------------|---------------------------|---------------------------------------------|-------------------------|---------------------|------------------------|---------------------------------------------------|-----------------------|-------------------------------------------------|-------|
| Compound                    | (Observance in natural    | Microorganism                               |                         | T                   |                        | sponse to Comp                                    |                       |                                                 | Ref   |
|                             | system; group; reference) |                                             | Concentration<br>(mg/l) | Effect              | Time of<br>Observation | Study<br>Method                                   | Parameter<br>Measured | Conditions<br>Temp.; pH; Light                  | _ Kei |
|                             |                           | CHLOROPHYCEAE                               |                         |                     |                        |                                                   |                       |                                                 |       |
| auric acid<br>utilized, 96) | 110;;)                    | Scenedesmus<br>quadricauda<br>CHRYSOPHYCEAE | 100                     | N(?) <sup>d</sup> P | 6-8 da                 | liquid cultures<br>(125 ml Erlen-<br>meyer flask) | cell count            | 23 <sup>°</sup> C; 8.2; 200 ft-c,<br>continuous | 87.5  |
| 11                          | 11                        | Navicula pelliculosa                        | 5                       | Т                   |                        | ,1                                                | 11                    | 11                                              | 87.5  |
|                             |                           | CHLOROPHYCEAE                               |                         |                     |                        |                                                   |                       |                                                 |       |
| <u>yristic</u> (utilized 9  | 96) ''                    | Anacystics nidulans                         | 4                       | т                   | 2-3 da                 | 11                                                |                       |                                                 | 87.5  |
| 11                          | n                         | <u>Chlamydomonas</u><br><u>reinhardi</u>    | 4                       | Т                   |                        | 11                                                | 11                    | 1                                               | 87.5  |
| "                           | 11                        | Chlorella vulgaris                          | 100                     | N(?) <sup>d</sup> P |                        |                                                   | 11                    | 11                                              | 87.5  |
|                             | n                         | Haematococcus<br>pluvialis                  | 5                       | т                   | 6-8 da                 |                                                   | н                     | 11                                              | 87.   |
| 11                          |                           | Scenedesmus<br>quadricauda                  | 100                     | N(?) <sup>d</sup> P | 11                     | "                                                 | "                     | п                                               | 87.   |
|                             |                           | CHRYSOPHYCEAE                               |                         |                     | 1                      | {                                                 |                       |                                                 |       |
| 11                          | n                         | Navicula pelliculosa                        | 5                       | Т                   | 11                     |                                                   | 11                    |                                                 | 87.   |
|                             |                           | <u>CHLOROPHYCEAE</u>                        | 1                       |                     |                        |                                                   |                       |                                                 |       |
| tilized 96)                 | 10;;)                     | Anacystics nidulans                         | 5                       | т                   | 2-3 da                 |                                                   | "                     | 11                                              | 87.   |
| 11 90)                      | "                         | Chlamydomonas<br>reinhardi                  | 3                       | Т                   | 11                     |                                                   | 11                    | 11                                              | 87.   |
| n                           | 11                        | Chlorella vulgaris                          | 25                      | Т                   | 11                     |                                                   | 11                    | 0                                               | 87.   |
| 11                          | 11                        | Haematococcus<br>pluvialis                  | 3                       | т                   | 6-8 da                 | "                                                 | 11                    | u                                               | 87.   |
| н                           | 11                        | <u>Scenedesmus</u><br>quadricauda           | 100                     | N(?) <sup>d</sup> F | 11                     | "                                                 |                       | 11                                              | 87.   |
|                             |                           | CHRYSOPHYCEAE                               |                         | Í                   |                        |                                                   |                       |                                                 |       |
| 11                          | "                         | Navicula pelliculosa                        | 3                       | Т                   | 11                     | 11                                                | 11                    | 11                                              | 87.9  |
|                             |                           | ļ                                           |                         |                     |                        |                                                   | i                     |                                                 |       |
|                             |                           |                                             |                         |                     |                        |                                                   |                       |                                                 |       |
| ł                           |                           |                                             |                         |                     |                        |                                                   |                       |                                                 |       |
|                             |                           | ł                                           | 1                       | 6                   | h results report       |                                                   |                       |                                                 |       |

i.

(?)<sup>d</sup> both results reported

| Company 2                  | Source of Compound        |                                              |                         |                     | Laborat                | ory Bioassays                                     |                       |                                                 |      |
|----------------------------|---------------------------|----------------------------------------------|-------------------------|---------------------|------------------------|---------------------------------------------------|-----------------------|-------------------------------------------------|------|
| Compound                   | (Observance in natural    | Microorganism                                |                         |                     | Re                     | sponse to Comp                                    |                       |                                                 | -    |
|                            | system; group; reference) |                                              | Concentration<br>(mg/l) | Effect              | Time of<br>Observation | Study<br>Method                                   | Parameter<br>Measured | Conditions<br>Temp.; pH; Light                  | — Re |
|                            |                           | CHLOROPHYCEAE                                | 1                       |                     |                        |                                                   |                       |                                                 |      |
| earic acid<br>tilized, 96) | (110;;)                   | Anacystics nidulans                          |                         |                     | 2-3 da                 | liquid cultures<br>(125 ml Erlen-<br>meyer flask) | cell count            | 23 <sup>0</sup> C; 8.2; 200 ft-c,<br>continuous | 87.5 |
| 11                         |                           | <u>Chlamydomonas</u><br><u>reinhardi</u>     | 5                       | т                   | 11                     | 11                                                | *1                    | п                                               | 87.5 |
| 11                         |                           | <u>Chlorella</u> <u>vulgaris</u>             | 50                      | т                   |                        | 11                                                | 11                    |                                                 | 87.5 |
| 11                         |                           | Haematococcus<br>pluvialis                   | 5                       | т                   | 6-8 da                 | 11                                                | 11                    | н                                               | 87.5 |
| 11                         | 11                        | <u>Scenedesmus</u><br><u>quadricauda</u>     | 100                     | N(?) <sup>d</sup> P |                        | 11                                                |                       | n                                               | 87.5 |
| 11                         | 11                        | <u>CHRYSOPHYCEAE</u><br>Navicula pelliculosa | 5                       | Т                   | 11                     |                                                   |                       |                                                 | 87.5 |
|                            |                           | CHLOROPHYCEAE                                |                         |                     |                        | 1                                                 |                       |                                                 |      |
| eic acid                   | (110;;)                   | Anacystics nidulans                          | 4                       | т                   | 2-3 da                 |                                                   | 11                    | "                                               | 87.5 |
| *1                         | 11                        | <u>Chlamydomonas</u><br><u>reinhardi</u>     | 5                       | Г                   |                        | 11                                                | 11                    | н                                               | 87.5 |
|                            | 11                        | Chlorella vulgaris                           | 100                     | т                   |                        |                                                   | 11                    | n                                               | 87.5 |
| 11                         | 11                        | Haematococcus<br>pluvialis                   | 3                       | т                   | 6-8 da                 |                                                   | 11                    | 11                                              | 87.5 |
| 11                         | 11                        | <u>Scenedesmus</u><br><u>quadricauda</u>     | 100                     | N(?) <sup>d</sup> P | 11                     |                                                   | 11                    | 11                                              | 87.5 |
| **                         |                           | CHRYSOPHYCEAE<br>Navicula pelliculosa        | 4                       | т                   |                        |                                                   | 11                    | 11                                              |      |
|                            |                           | <u></u>                                      |                         |                     |                        |                                                   |                       |                                                 | 87.5 |
|                            |                           |                                              |                         |                     |                        |                                                   |                       |                                                 |      |
|                            |                           |                                              |                         |                     |                        |                                                   |                       |                                                 |      |
|                            |                           |                                              |                         |                     |                        |                                                   |                       |                                                 |      |
|                            |                           |                                              |                         | ]                   | th results repo        |                                                   |                       |                                                 |      |

(?)<sup>u</sup> both results reported

I

Class of Compound: FATTY ACIDS

| Compound            | Source of Compound        | <u> </u>                          |                         |                     | Laborat                | ory Bioassays                                     |                       |                                                  |          |
|---------------------|---------------------------|-----------------------------------|-------------------------|---------------------|------------------------|---------------------------------------------------|-----------------------|--------------------------------------------------|----------|
| Compound            | (Observance in natural    | Microorganism                     |                         |                     | Re                     | sponse to Comp                                    | ound                  |                                                  | D        |
|                     | system; group; reference) |                                   | Concentration<br>(mg/l) | Effect              | Time of<br>Observation | Study<br>Method                                   | Parameter<br>Measured | Conditions<br>Temp.; pH; Light                   | - Rei    |
|                     |                           | CHLOROPHYCEAE                     |                         | }                   |                        |                                                   |                       |                                                  | <u> </u> |
| inoleic <u>acid</u> | (110;;)                   | Anacystics nidulans               | 3                       | т                   | 2-3 da                 | liquid cultures<br>(125 ml Erlen-<br>meyer flask) | cell count            | 23 <sup>0</sup> C; 8. 2; 200 ft-c,<br>continuous | 87.5     |
| 11                  |                           | Chlamydomonas<br>reinhardi        | 5                       | Т                   | II<br>                 | 11                                                | 11                    |                                                  | 87.5     |
|                     | 11                        | Chlorella vulgaris                | 50                      | Т                   | 11                     | 11                                                |                       | 11                                               | 87.5     |
| 11                  | . 11                      | Haematococcus<br>pluvialis        | 2                       | т                   | 6-8 da                 |                                                   | 11                    | 11                                               | 87.5     |
| П                   | н.,                       | <u>Scenedesmus</u><br>quadricauda | 100                     | N(?) <sup>d</sup> P |                        | 11                                                | 11                    | п                                                | 87.5     |
|                     | 1                         | CHRYSOPHYCEAE                     |                         |                     | 1                      | 1                                                 |                       |                                                  | -        |
| 11                  | 11                        | Navicula pelliculosa              | 3                       | т                   |                        |                                                   | 11                    | 11                                               | 87.5     |
|                     |                           |                                   |                         |                     |                        |                                                   |                       |                                                  |          |
|                     |                           |                                   |                         |                     | l                      |                                                   |                       |                                                  |          |
|                     |                           |                                   |                         |                     |                        |                                                   |                       |                                                  |          |
|                     |                           |                                   |                         |                     |                        |                                                   |                       |                                                  |          |
|                     |                           |                                   |                         |                     |                        |                                                   |                       |                                                  |          |
|                     |                           |                                   |                         |                     |                        |                                                   |                       |                                                  |          |
|                     |                           |                                   |                         |                     |                        |                                                   |                       |                                                  |          |
|                     |                           |                                   |                         |                     |                        |                                                   |                       |                                                  | 1        |
|                     |                           |                                   |                         |                     |                        |                                                   |                       |                                                  |          |
|                     |                           |                                   |                         |                     |                        | <br>                                              |                       |                                                  |          |
|                     |                           |                                   |                         |                     |                        |                                                   |                       |                                                  |          |
|                     |                           |                                   |                         |                     |                        |                                                   |                       |                                                  |          |
|                     |                           |                                   |                         |                     |                        |                                                   |                       |                                                  |          |
|                     |                           |                                   |                         |                     |                        |                                                   |                       |                                                  |          |
|                     | 1                         |                                   |                         | <sub>a</sub>        | oth results rep        |                                                   |                       |                                                  |          |

1

I

# Class of Compound: ORGANIC ACIDS

| Compound            | Source of Compound<br>(Observance in natural , |                            |               |                                          | Laborato               | ory Bioassays                                     |                       |                                                  |      |
|---------------------|------------------------------------------------|----------------------------|---------------|------------------------------------------|------------------------|---------------------------------------------------|-----------------------|--------------------------------------------------|------|
| Compound            | system; group; reference)                      | Microorganism              | Concentration | 1                                        |                        | sponse to Comp                                    |                       |                                                  | Re   |
|                     | system; group; reference)                      |                            | (mg/l)        | Effect                                   | Time of<br>Observation | Study<br>Method                                   | Parameter<br>Measured | Conditions<br>Temp.; pH; Light                   | _ Ke |
|                     |                                                | CHLOROPHYCEAE              |               |                                          |                        |                                                   |                       |                                                  | -    |
| <u>Benzoic</u> acid | (110;;)                                        | Haematococcus<br>pluvialis | 5.0           | т(о) <sup>f</sup>                        | 8 da                   | liquid cultures<br>(125 ml Erlen-<br>meyer flask) | turbidity<br>(750 mµ) | 21 <sup>0</sup> C; 5.0; 3,000 lux,<br>continuous | 69   |
| falonic acid        | (;;)                                           | 1 II II                    | 5.0           | P(78) <sup>f</sup>                       | 11                     | 11                                                |                       | 21 <sup>°</sup> C; 7.5; 3,000 lux,<br>continuous | 69   |
|                     | 11                                             | 11 11                      | 5.0           | P(76) <sup>f</sup>                       | 4 da                   |                                                   | 11                    | 21 <sup>°</sup> C; 5.0; 3,000 lux,<br>continuous | 69   |
| 11                  | 11                                             |                            | 5.0           | N                                        | 11                     | 11                                                | 11                    | 21 <sup>0</sup> C; 7.5; 3,000 lux,<br>continuous | 69   |
| 11                  | U.                                             | 11 11                      |               | P(96) <sup>f</sup>                       | 8 da                   | 11                                                |                       | 21 <sup>0</sup> C; 5.0; 3,000 lux,<br>continuous | 69   |
|                     | 11                                             | и п                        |               | P(98) <sup>f</sup>                       | 11                     | 11                                                |                       | 21 <sup>0</sup> C; 7.5; 3,000 lux,<br>continuous | 69   |
| uccinic <u>acid</u> | n                                              | 11 11                      | 1             | P(78) <sup>f</sup>                       | 4 da                   | 11                                                | "                     | 21 <sup>0</sup> C; 5.0; 3,000 lux,<br>continuous | 69   |
| 11                  | n                                              | 11 31                      |               | P(90) <sup>f</sup>                       | **                     | 11                                                | u                     | 21 <sup>0</sup> C; 7.5; 3,000 lux,<br>continuous | 69   |
|                     |                                                | 11 11                      | 1             | ₽(96) <sup>f</sup>                       | 8 da                   | H                                                 | 11                    | 21 <sup>0</sup> C; 5.0; 3,000 lux,<br>continuous | 69   |
| 11                  | "                                              | *1 *1                      | ļ             | P(97) <sup>f</sup>                       |                        | 11                                                | u                     | 21 <sup>0</sup> C; 5.0; 3,000 lux,<br>continuous | 69   |
| 11                  | 11                                             | 11 11                      |               | P(78) <sup>f</sup>                       | 4 da                   | 11                                                | 11.1                  | 11                                               | 69   |
| u                   | 11                                             | 11 11                      | 2.0           | P(98) <sup>f</sup>                       | 8 da                   |                                                   | 11                    | 11                                               | 69   |
| 11                  | 11                                             | 11 11                      | 3.0           | $P(81)^{f}$                              | 4 da                   |                                                   | u .                   |                                                  | 69   |
| n                   | 11                                             |                            |               | P(98) <sup>f</sup>                       | 8 da                   | 11                                                | 13                    | 1                                                | 69   |
| 11                  | 11                                             |                            |               | P(78) <sup>f</sup>                       | 4 da                   |                                                   | 71                    | 1                                                |      |
| 11                  |                                                |                            |               | P(99) <sup>f</sup>                       | 8 da                   |                                                   |                       | 1                                                | 69   |
| (utilized, 96)      | 11                                             |                            |               | $P(72)^{f}$                              | 4 da                   | 11                                                | 11                    | 1                                                | 69   |
|                     | н                                              |                            | 10.0          | $\mathbb{P}(12)$<br>$\mathbb{P}(82)^{f}$ | 4 da                   |                                                   |                       | 21°C; 7.5; 3,000 lux                             | 69   |
|                     |                                                |                            |               |                                          | }                      |                                                   | 11                    | continuous                                       | 69   |
| 11                  | 11                                             | 11 11                      | 10.0          | P(91) <sup>f</sup>                       | 8 da                   |                                                   |                       | 21 <sup>°</sup> C; 5.0; 3,000 lux<br>continuous  | 69   |
| 11                  | 11                                             | ~17 1t                     | 10.0          | N                                        | *1                     |                                                   | 11                    | 21 <sup>0</sup> C; 7.5; 3,000 lux<br>continuous  | 69   |

()<sup>f</sup> percent growth comparison with control

I

ŧ

Class of Compound: ORGANIC ACIDS

| Comm                                | Source of Compound        |                            |                         |                     |                        | ory Bioassays                                     |                       |                                                      |          |
|-------------------------------------|---------------------------|----------------------------|-------------------------|---------------------|------------------------|---------------------------------------------------|-----------------------|------------------------------------------------------|----------|
| Compound                            | (Observance in natural    | Microorganism              |                         |                     |                        | sponse to Comp                                    |                       |                                                      |          |
|                                     | system; group; reference) |                            | Concentration<br>(mg/l) | Effect              | Time of<br>Observation | Study<br>Method                                   | Parameter<br>Measured | Conditions<br>Temp.; pH; Light                       | - Re     |
|                                     |                           | CHLOROPHYCEAE              |                         |                     |                        |                                                   |                       |                                                      |          |
| <u>Glutaric acid</u>                | (110;;)                   | Haematococcas<br>pluvialis | 0.5                     | N                   | 8 da                   | liquid cultures<br>(125 ml Erlen-<br>meyer flask) | turbidity<br>(750 mµ) | 21 <sup>°</sup> C; 5.0; 3,000 lux<br>continuous      | 69       |
|                                     | 11                        | н н                        | 1.0                     | P(43) <sup>f</sup>  | 11                     | 11                                                | · .,                  |                                                      | 69       |
| 11                                  |                           | 11 II                      | 3.0                     | T(0)                |                        |                                                   |                       |                                                      | 69       |
| 0                                   | н.                        | н н                        | 5.0                     | т(0)                | 11                     |                                                   | 11                    |                                                      | 69       |
| 11                                  | 11                        | 11 11                      | 5.0                     | 25                  |                        |                                                   |                       | IT                                                   | 69       |
| dipic acid                          |                           | 11 11                      | 0.5                     | N                   |                        |                                                   |                       | 11                                                   |          |
| 11                                  |                           | 11 11                      | 1.0                     | 51                  |                        |                                                   | 11                    | 11                                                   | 69       |
| н                                   | 11                        | . u u                      | 3.0                     | T(0)                |                        |                                                   |                       |                                                      | 69       |
| †I                                  |                           |                            | 5.0                     | T(0)                | .,                     | 11                                                |                       |                                                      | 69       |
| 11                                  |                           | 11 11                      | 5.0                     | $P(36)^{f}$         | 11                     | u.                                                |                       | "<br>21 <sup>°</sup> C; 7.5; 3,000 lux<br>continuous | 69<br>69 |
| <u>Pimelic</u> acid                 |                           | , u u                      | 5.0                     | т(о)                | 11                     | 11                                                | cell count            | 21 <sup>°</sup> C; 5.0; 3,000 lux<br>continuous      | 69       |
| н                                   |                           | 11 11                      | 5.0                     | P(38) <sup>f</sup>  | 11                     |                                                   |                       | 21 <sup>o</sup> C; 7.5; 3,000 lux<br>continuous      | 69       |
| 11                                  | "                         | 11 11                      | 5.0                     | P(67) <sup>f</sup>  | 4 da                   | u.                                                | i ii                  | 21 <sup>o</sup> C; 5.0; 3,000 lux<br>continuous      | 69       |
| <u>`umaric_acid</u><br>utilized_96) | n                         | 11 11                      | 5.0                     | P(98) <sup>f</sup>  | 11                     |                                                   |                       | 21°C; 7.5; 3,000 lux                                 | 69       |
| *1                                  | 11                        | 11 11                      | 5.0                     | P(95) <sup>f</sup>  | 8 da                   |                                                   | 11                    | 21 °C; 5.0; 3,000 lux<br>continuous                  | 69       |
| 11                                  | n                         |                            | 5.0                     | P(99) <sup>f</sup>  |                        | 11                                                | 11                    | 21 <sup>o</sup> C; 7.5; 3,000 lux<br>continuous      | 69       |
| <u>faleic</u> <u>acid</u>           | 11                        | 11 11                      | 5.0                     | P(79) <sup>f</sup>  | 4 da                   | 11                                                | 11                    | 21 <sup>°</sup> C; 5.0; 3,000 lux<br>continuous      | 69       |
| 11                                  |                           | 11 11                      |                         | S(101) <sup>f</sup> | "                      | 11                                                | 11                    | 21 <sup>°</sup> C; 7.5; 3,000 lux<br>continuous      | 69       |
|                                     |                           | 11 11                      |                         | P(96) <sup>f</sup>  | 8 da                   |                                                   | 11                    | 21 <sup>°</sup> C; 5.0; 3,000 lux<br>continuous      | 69       |
| 11                                  |                           | . 11 11                    | 5.0                     | S(102) <sup>f</sup> |                        | 11                                                | 11                    | 21 <sup>o</sup> C; 7.5; 3,000 lux<br>continuous      | 69       |

1

.

1 1

Ł

# Class of Compound: ORGANIC ACIDS

129

1

| Compound                                    | Source of Compound<br>(Observance in natural                                                                                                         |                                             | 1                       |                    |                        | ory Bioassays                                     |                       |                                                 |       |
|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-------------------------|--------------------|------------------------|---------------------------------------------------|-----------------------|-------------------------------------------------|-------|
| Compound                                    |                                                                                                                                                      | Microorganism                               |                         |                    |                        | sponse to Comp                                    |                       |                                                 |       |
|                                             | system; group; reference)                                                                                                                            |                                             | Concentration<br>(mg/l) | Effect             | Time of<br>Observation | Study<br>Method                                   | Parameter<br>Measured | Conditions<br>Temp.; pH; Light                  | - Ref |
| <u>Citric acid</u><br>(utilized, 96)        | (110, 73.8;;)                                                                                                                                        | CHLOROPHYCEAE<br>Haematococcus<br>pluvialis | 5.0                     | P(59) <sup>f</sup> | 4 da                   | liquid cultures<br>(125 ml Erlen-<br>meyer flask) | cell count            | 21 <sup>0</sup> C; 5.0; 3,000 lux<br>continuous | 69    |
| 11                                          | u                                                                                                                                                    |                                             | 5.0                     | P(74) <sup>f</sup> | н                      | 11                                                |                       | 21 <sup>°</sup> C; 7.5; 3,000 lux<br>continuous | 69    |
| 11                                          | n                                                                                                                                                    | 11 11                                       | 5.0                     | P(91) <sup>f</sup> | 8 da                   |                                                   |                       | 21°C; 5.0; 3,000 lux<br>continuous              | 69    |
|                                             | n                                                                                                                                                    | 11 11                                       | 5.0                     | P(91) <sup>f</sup> | 11                     | n                                                 | 11                    | 21 <sup>o</sup> C; 7.5; 3,000 lux<br>continuous | 69    |
| Aconitic acid<br>(utilized, 96)             | (110;;)                                                                                                                                              |                                             | 5.0                     | P(79) <sup>f</sup> | 4 da                   | 11                                                | н                     | 21 <sup>0</sup> C; 5.0; 3,000 lux<br>continuous | 69    |
| 11                                          | 11                                                                                                                                                   | 11 11                                       | 5.0                     | P(96) <sup>f</sup> | 8 da                   | 11                                                | 11                    | п                                               | 69    |
| Tartaric acid                               | 11                                                                                                                                                   |                                             | 5.0                     | P(67) <sup>f</sup> | 4 da                   |                                                   | turbidity<br>(750 mμ) | 11                                              | 69    |
| 11                                          | 11                                                                                                                                                   |                                             | 5.0                     | P(97) <sup>f</sup> | 11                     | 11                                                | "                     | 21 <sup>o</sup> C; 7.5; 3,000 lux<br>continuous | 69    |
| *1                                          | 11                                                                                                                                                   |                                             |                         | P(90) <sup>f</sup> | 8 da                   | "                                                 | 11                    | 21 <sup>°</sup> C; 5.0; 3,000 lux<br>continuous | 69    |
| n                                           | 11                                                                                                                                                   | 11 11                                       | 5.0                     | P(96) <sup>f</sup> | 11                     | 11                                                | "                     | 21 <sup>°</sup> C; 7.5; 3,000 lux<br>continuous | 69    |
| <u>Malic</u> <u>acid</u><br>utilized 96)    | <u>Chlamydomonas</u> <u>debaryana</u><br>"sp<br><u>Chlorella ellipsidea</u><br>" <u>miniata</u><br><u>Scenedesmus bijugatus</u><br>" <u>obliquus</u> |                                             | 5.0                     | P(76) <sup>f</sup> | 4 da                   |                                                   | "                     | 21 <sup>°</sup> C; 5.0; 3,000 lux<br>continuous | 69    |
| 11                                          | (738, 110; Algae; 70.3)                                                                                                                              | нп                                          | 5.0                     | P(97) <sup>f</sup> |                        | 11                                                | 11                    | 21 <sup>0</sup> C; 7.5; 3,000 lux<br>continuous | 69    |
| "                                           | 11                                                                                                                                                   | 11 11                                       | 5.0                     | P(90) <sup>f</sup> | 8 da                   | "                                                 | u.                    | 21 <sup>°</sup> C; 5.0; 3,000 lux<br>continuous | 69    |
|                                             | IF.                                                                                                                                                  | 11 11                                       | 5.0                     | P(96)              |                        | 71                                                | 11                    | 21 <sup>0</sup> C; 7.5; 3,000 lux<br>continuous | 69    |
| <u>Lactic</u> <u>acid</u><br>(utilized, 96) | Chlamydomonas defaryana<br>Chlorella pyrenoidose<br>'' vulgaris<br>(73.8, 110, Algae; 70.3 6.5)                                                      | 11 11                                       | 5.0                     | P(79)              | 4 da                   | "                                                 |                       | 21 <sup>°</sup> C; 5.0; 3,000 lux<br>continuous | 69    |

 $()^{f}$  percent growth comparison with control

# Class of Compound: ORGANIC ACIDS

| Compound                           | Source of Compound<br>(Observance in natural                                                              | ·                          |               |                      | Laborat                | ory Bioassays                                    | ·                     |                                                 | _    |
|------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------|---------------|----------------------|------------------------|--------------------------------------------------|-----------------------|-------------------------------------------------|------|
| - ompound                          | system; group; reference)                                                                                 | Microorganism              | Concentration |                      |                        | sponse to Comp                                   |                       |                                                 | Re   |
|                                    |                                                                                                           |                            | (mg/l)        | Effect               | Time of<br>Observation | Study<br>Method                                  | Parameter<br>Measured | Conditions<br>Temp.; pH; Light                  | - Ke |
|                                    |                                                                                                           | CHLOROPHYCEAE              |               | Ì                    | ]                      |                                                  |                       |                                                 |      |
| actic acid<br>ttilized, 96)        | Chlamydomonas debaryana<br>Chlorella pyrenoidosa<br>'' <u>vulgaris</u><br>(73. 8, 110; Algae; 70. 3, 6.5) | Haematococcus<br>pluvailis | 5.0           | P(96) <sup>f</sup>   | 4 da                   | liquid cultures<br>(125 ml Erlen<br>meyer flask) | turbidity<br>(750 mµ) | 21 <sup>°</sup> C; 7.5; 3,000 lux<br>continuous | 69   |
| "                                  |                                                                                                           | н                          | 5.0           | P(95) <sup>f</sup>   | 8 da                   |                                                  | 11                    | 21 <sup>°</sup> C; 5.0; 3000 lux<br>continuous  | 69   |
| 11                                 | 11                                                                                                        | 0 0                        | 5.0           | P(95) <sup>f</sup>   | 11                     | 11                                               | 11                    | 21 <sup>°</sup> C; 7.5; 3,000 lux<br>continuous | 69   |
| yruvic <u>acid</u><br>tilized, 96) | <u>Chlorella</u> sp<br>(73.8, 110; Algae; 65)                                                             | 111 II                     | 5.0           | P(16) <sup>f</sup>   | 4 da                   | 11                                               | 11                    | 21 <sup>°</sup> C; 5.0; 3,000 lux<br>continuous | 69   |
|                                    | n                                                                                                         | 11 H                       | 5.0           | P(75) <sup>f</sup>   | 11                     | 11                                               | 11                    | 21 <sup>0</sup> C; 7.5; 3,000 lux<br>continuous | 69   |
| 11                                 |                                                                                                           | 11 11                      | 5.0           | P(19)                | 8 da                   | 11                                               | 11                    | 21 <sup>°</sup> C; 5.0; 3,000 lux<br>continuous | 69   |
| 11                                 | 11                                                                                                        | 11 11                      | 5.0           | P(93)                | 11                     | 11                                               | **                    | 21 <sup>°</sup> C; 7.5; 3,000 lux<br>continuous | 69   |
| ycolic acid                        | Chlamydomonas     debaryana       "sp                                                                     |                            | 5.0           | P(81) <sup>f</sup>   | 4 da                   | 11                                               | 11                    | 21 <sup>0</sup> C; 5.0; 3,000 lux<br>continuous | 69   |
| 11                                 | 11                                                                                                        | н н                        | 5.0           | S(117) <sup>f</sup>  | · 11                   | 11                                               | 11                    | 21°C; 7.5; 3,000 lux<br>continuous              | 69   |
| 11                                 | п                                                                                                         | 11 11                      | 5.0           | S(117) <sup>f</sup>  | 8 da                   | , 11                                             | 11                    | 21 <sup>°</sup> C; 5.0; 3,000 lux<br>continuous | 69   |
|                                    | н                                                                                                         | 11 11                      | 5.0           | S(124) <sup>f</sup>  | 11                     | 11                                               | 11                    | 21 <sup>°</sup> C; 7.5; 3,000 lux<br>continuous | 69   |
| yoxylic acid                       | <u>Chlorella vulgaris</u><br>(; Algae; 65)                                                                | 11 11                      | 5.0           | P(79) <sup>f</sup>   | 4 da                   | 11                                               | 11                    | 21 <sup>°</sup> C; 5.0; 3,000 lux<br>continuous | 69   |
|                                    |                                                                                                           | 11 II                      | 5.0           | P(107) <sup>†</sup>  | 11                     | 11                                               | 11                    | 21 <sup>o</sup> C; 7.5; 3,000 lux<br>continuous | 69   |
|                                    |                                                                                                           | н н<br>                    | 5.0           | P(82) <sup>f</sup>   | 8 da                   | "                                                | 11                    | 21°C; 5.0; 3,000 lux<br>continuous              | 69   |
| 11                                 | n II                                                                                                      |                            | 5.0           | S (119) <sup>f</sup> |                        | 11                                               | 11                    | 21 <sup>°</sup> C; 7.5; 3,000 lux<br>continuous | 69   |

# Class of Compound:ORGANIC ACIDS

i.

| (utilized, 96)         | (Observance in natural<br>system; group; reference)<br>Chlorella pyrenoidosa | CHLC | croorganism             | Concentration | ]                  | Re                     | ory Bioassays<br>sponse to Comp                   | ound                                        |                                                 | <u> </u> |  |  |  |
|------------------------|------------------------------------------------------------------------------|------|-------------------------|---------------|--------------------|------------------------|---------------------------------------------------|---------------------------------------------|-------------------------------------------------|----------|--|--|--|
| (utilized, 96)         | Chlorella pyrenoidosa                                                        | CHLC |                         |               |                    | Response to Compound   |                                                   |                                             |                                                 |          |  |  |  |
| (utilized, 96)         |                                                                              |      |                         | (mg/l)        | Effect             | Time of<br>Observation | Study<br>Method                                   | Parameter<br>Measured                       | Conditions<br>Temp.; pH; Light                  | Ref.     |  |  |  |
| (utilized, 96)         |                                                                              |      | ROPHYCEAE               |               |                    |                        |                                                   |                                             | Temp., pri; Light                               |          |  |  |  |
|                        | ; Algae; 65)                                                                 | Haem | atococcus<br>pluvailis  | 5.0           | P(79) <sup>f</sup> | 4 da                   | liquid cultures<br>(125 ml Erlen-<br>meyer flask) | turbidity<br>(750 mµ)                       | 21 <sup>°</sup> C; 5.0; 3,000 lux<br>continuous | 69       |  |  |  |
|                        | 11                                                                           | 11   | 11                      | 5.0           | N                  | 11                     | . 11                                              | "                                           | 21°C; 7.5; 3,000 lux<br>continuous              | 69       |  |  |  |
| 11                     | u.                                                                           | 1 11 | 11                      | 5.0           | P(95) <sup>f</sup> | 8 da                   |                                                   | 11                                          | 21 <sup>°</sup> C; 5.0; 3,000 lux<br>continuous | 69       |  |  |  |
| 11                     | 11                                                                           | 11   | 11                      | 5.0           | P(95) <sup>f</sup> | tt                     | 11                                                | 11                                          | 21 <sup>o</sup> C; 7.5; 3,000 lux<br>continuous | 69       |  |  |  |
| <u>Sodium pyruvate</u> | (73.8;;)                                                                     |      | ococcum<br>aplanosporum | 7,500         | Т                  | 2 wk                   | culture solution                                  | n macroscopic<br>comparison<br>with control | 22 <sup>°</sup> C;; 250-300 ft-c<br>12 hr daily | 18       |  |  |  |
| "                      |                                                                              | "    | diplobionticum          |               | Р                  |                        |                                                   | 11                                          | 11                                              | 18       |  |  |  |
| 11                     |                                                                              | - "  | echinozygotum           |               | Р                  | 11                     | н                                                 | 11                                          | 11                                              | 18       |  |  |  |
|                        | 11                                                                           |      | ellipsoideum            | 11            | Р                  | 11                     |                                                   | 11                                          | 11                                              | 18       |  |  |  |
| 11                     | 11                                                                           |      | hypnosporum             | 0             | т                  |                        |                                                   | н                                           |                                                 | 18       |  |  |  |
|                        | п                                                                            | 11   | intermedium             |               | Р                  |                        | 11                                                | п                                           |                                                 | 18       |  |  |  |
| 11                     |                                                                              | 11   | macrostigmaticu         | m ''          | т                  | 11                     |                                                   | 11                                          |                                                 | 18       |  |  |  |
| *1                     | 11                                                                           |      | minutum                 |               | Р                  | 11                     | 11                                                | 11                                          | U                                               | 18       |  |  |  |
|                        |                                                                              | 11   | multinucleatum          | II            | т                  | 11                     |                                                   | 11                                          |                                                 | 18       |  |  |  |
| **                     | 11                                                                           |      | oleofaciens             |               | P                  | 11                     | н                                                 | 11                                          |                                                 | 18       |  |  |  |
| .,                     | 11                                                                           |      | perforatum              |               | Р                  |                        | 11                                                | 11                                          | 11                                              | 18       |  |  |  |
| 11                     | "                                                                            | 11   | pinguideum              |               | P                  | 13                     |                                                   | +1                                          | 11                                              | 18       |  |  |  |
| *1                     | 11                                                                           |      | punctatum               | 11            | s                  |                        | 11                                                | 17                                          |                                                 | 18       |  |  |  |
| 11                     | 11                                                                           | -    | scabellum               | 11            | P                  | , ,,                   | 11                                                | 11                                          |                                                 | 18       |  |  |  |
| 11                     | 11                                                                           |      | tetrasporum             |               | P                  | 10                     | 11                                                | 11                                          | 11                                              | 18       |  |  |  |
| 11                     | 11                                                                           |      | vaculoatum              | п             | S                  | 11                     | 11                                                | **                                          |                                                 | 18       |  |  |  |
| 11                     |                                                                              |      | wimmeri                 | 11            | P                  | 11                     | 11                                                | 17                                          |                                                 | 18       |  |  |  |
| ļ                      |                                                                              | l    |                         |               | -                  |                        |                                                   |                                             |                                                 | 10       |  |  |  |
|                        |                                                                              |      |                         |               |                    |                        |                                                   |                                             |                                                 |          |  |  |  |
|                        |                                                                              |      |                         |               |                    |                        |                                                   |                                             |                                                 |          |  |  |  |
|                        |                                                                              |      |                         |               |                    |                        |                                                   |                                             |                                                 |          |  |  |  |
| 1                      |                                                                              |      |                         | 1             | ۔<br>۲             | 1                      | omparison with                                    |                                             |                                                 |          |  |  |  |

()<sup>\*</sup> percent growth comparison with control

1

131

, 1

Class of Compound: PHENOL-LIKE

| Compound        | (Observance in natural    | Microorganism                             | Laboratory Bioassays<br>Response to Compound |        |                        |                 |                                               |                                                |     |  |  |  |
|-----------------|---------------------------|-------------------------------------------|----------------------------------------------|--------|------------------------|-----------------|-----------------------------------------------|------------------------------------------------|-----|--|--|--|
|                 | system; group; reference) | , which our gamsin                        | Concentration Time of Study D                |        |                        |                 |                                               |                                                |     |  |  |  |
|                 | system; group; reference) |                                           | Concentration<br>(mg/l)                      | Effect | Time of<br>Observation | Study<br>Method | Parameter<br>Measured                         | Conditions<br>Temp.; pH; Light                 | Ref |  |  |  |
|                 |                           | MYXOPHYCEAE                               |                                              |        |                        |                 |                                               |                                                | 1   |  |  |  |
| <u>Catechol</u> | (22;;)                    | <u>Microcystis</u><br><u>aeruginosa</u>   | 5.0                                          | Т      | 24 hr                  | (125 ml Erlen-  | macro and/or<br>microscopic<br>examination    | 22°C;;                                         | 30  |  |  |  |
| anillin         | (22, 110;;)               | Cylindrospermun<br>licheniforme,<br>B & F | 2                                            | N      | 3 da                   | 25 ml Erlen-    | macro-micro-<br>scopic comparis<br>of control | 22 <sup>°</sup> C;; 140 ft-c,<br>on continuous | 81  |  |  |  |
| 0               | 11                        |                                           | 2                                            | N      | 7 da                   |                 |                                               |                                                | 81  |  |  |  |
|                 | 11                        | 1 11 11                                   | 2                                            | N      | 14 da                  | 11              |                                               |                                                | 81  |  |  |  |
| 11              | u u                       |                                           | 2                                            | N      | 21 da                  | 11              | 11                                            | 11                                             | 81  |  |  |  |
| 11              | "                         | Microcystis<br>aeruginosa<br>(KTZ)        | 2                                            | N      | 3 da                   | 11              |                                               | 11                                             | 81  |  |  |  |
| 11              | 11                        | 11 11                                     | 2                                            | N      | 7 da                   | 11              |                                               |                                                | 81  |  |  |  |
|                 | 11                        | 11 11                                     | 2                                            | N      | 14 da                  |                 |                                               |                                                | 81  |  |  |  |
| 11              |                           | 11 11                                     | 2                                            | N      | 21 da                  | 11              | 11                                            | 11                                             | 81  |  |  |  |
|                 |                           | CHLOROPHYCEAE                             |                                              |        |                        |                 |                                               |                                                |     |  |  |  |
| "               | 11                        | Scenedesmus<br>obliquus (KTZ)             | 2                                            | Р      | 3 da                   | 11              |                                               | 11                                             | 81  |  |  |  |
|                 | 11                        | 11 11                                     | 2                                            | N      | 7 da                   |                 | 11                                            | 11                                             | 81  |  |  |  |
| 11              | 11                        | 11 11                                     | 2                                            | N      | 14 da                  | 17              | 11                                            | 11                                             | 81  |  |  |  |
| "               | 11                        | н н                                       | 2                                            | N      | 21 da                  | 11              |                                               | 11                                             | 81  |  |  |  |
| "               | 11                        | <u>Chlorella</u> varcegata E              | 2                                            | Р      | 3 da                   |                 |                                               | 11                                             | 81  |  |  |  |
| 11              | 11                        | 11 11                                     | 2                                            | N      | 7 da                   |                 |                                               | 11                                             | 81  |  |  |  |
| 11              | 11                        | 11 11                                     | 2                                            | N      | 14 da                  | 17              | 11                                            | 11                                             | 81  |  |  |  |
| "               | 11                        | 11 11                                     | 2                                            | N      | 21 da                  | 11              | 11                                            | 11                                             | 81  |  |  |  |
|                 |                           | CHRYSOPHYCEAE                             |                                              |        |                        | 1               |                                               |                                                | 1   |  |  |  |
| 11              | 11                        | Gomphonema<br>parvulum (KTZ)              | 2                                            | т      | 3 da                   | 11              | 11                                            | 11                                             | 81  |  |  |  |
| "               | 11                        | 11 11                                     | 2                                            | Р      | 7 da                   |                 |                                               | 11                                             | 81  |  |  |  |
| 11              | 11                        | 11 11                                     | 2                                            | Р      | 14 da                  | 11              | 11                                            | 11                                             | 81  |  |  |  |
| 11              | 11                        | и и                                       | 2                                            | Р      | 21 da                  |                 | 71                                            | 11                                             | 81  |  |  |  |

1

1 I I

•

#### Class of Compound: PHENOL-LIKE

| Compound | Source of Compound        |                             | ······                  |        | Laborate               | ory Bioassays                                   |                                               |                                                |      |
|----------|---------------------------|-----------------------------|-------------------------|--------|------------------------|-------------------------------------------------|-----------------------------------------------|------------------------------------------------|------|
| Compound | (Observance in natural    | Microorganism               |                         | ·      | Re                     | sponse to Comp                                  |                                               |                                                |      |
|          | system; group; reference) |                             | Concentration<br>(mg/l) | Effect | Time of<br>Observation | Study<br>Method                                 | Parameter<br>Measured                         | Conditions<br>Temp.; pH; Light                 | Ref. |
|          |                           | CHRYSOPHYCEAE               |                         |        |                        |                                                 |                                               | <u> </u>                                       |      |
| Vanillin | (22, 110;;)               | <u>Nitzschia palea</u> (KT2 | 2) 2                    | N      | 3 da                   | liquid culture<br>(25 ml Erlen-<br>meyer flask) | macro-micro-<br>scopic comparis<br>of control | 22 <sup>0</sup> C;; 140 ft-c,<br>pn continuous | 81   |
| 11       | 11                        |                             | 2                       | Р      | 7 da                   | 11                                              | 11                                            |                                                | 81   |
| 17       |                           |                             | 2                       | N      | 14 da                  | 11                                              | ,1                                            | 11                                             | 81   |
| 11       |                           | 11 11                       | 2                       | N      | 21 da                  |                                                 |                                               |                                                | 81   |
|          |                           |                             |                         |        |                        |                                                 |                                               |                                                |      |

### Appendix B

# Gas Chromatograph/Mass Spectral Analysis, Finnigan

#### Corporation, Sunnyvale, California

The analysis was done on a Finnigan 3300 GC/MS with a 6100 Data System under the following conditions:

#### Gas Chromatography

|                       |                              | F minor        |
|-----------------------|------------------------------|----------------|
| Column Packing:       | Porapak P, 80/100 mesh       |                |
| Column Type:          | Glass U-tube, 1/8" i.d. x 5' | Data System    |
| Column Temperature:   | Programmed from 80°C to      | Calibration of |
| •                     | 180°C at 10°/min.            |                |
| Injector Temperature: | 200°C                        | Mass Range     |
| F                     |                              | Integration 7  |
|                       |                              | Scansleecond   |

GC/MS InterfaceGlass Jet Separator:230°CGlass-lined Transfer Line:210°C

Electron Impact Mass Spectrometry Analyzer Temperature: 60°C Analyzer Pressure Reading:5 x 10<sup>-5</sup> torr Electron Energy: 70 eV

lon Energy: Programmed Filament Current: 1 ma. Electron Multiplier Voltage: 2.3 kV Preamplifier Setting: 10<sup>-8</sup> amps/volts of Mass Set: FC-43 (perfluorotributylamine) 10 - 500 Scanned: Time: 8 msec/amu Scans/second:1 Threshold: 1

Three microliters of sample were used for analysis. In the interpretation of the data extensive use of limited mass searches were made to locate and identify the various compounds. Such plots are with the corresponding mass spectra so that it may be seen how the technique is used.



Figure 14. Compounds having mass spectral characteristics similar to the unknown (relative retention of 34 mm, Figure 7) compound in Figure 15.

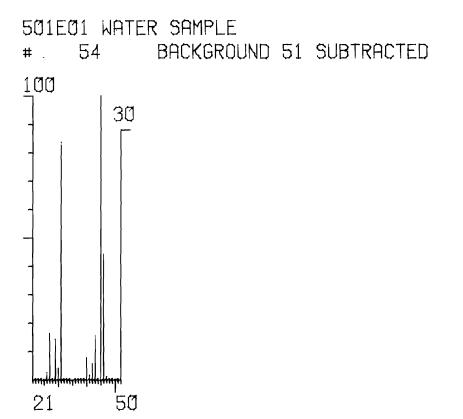



Figure 15. Mass spectrograph of an unknown (relative retention of 34 mm, Figure 7) with a mass of 46 amu which from Figure 14 was identified as ethanol.

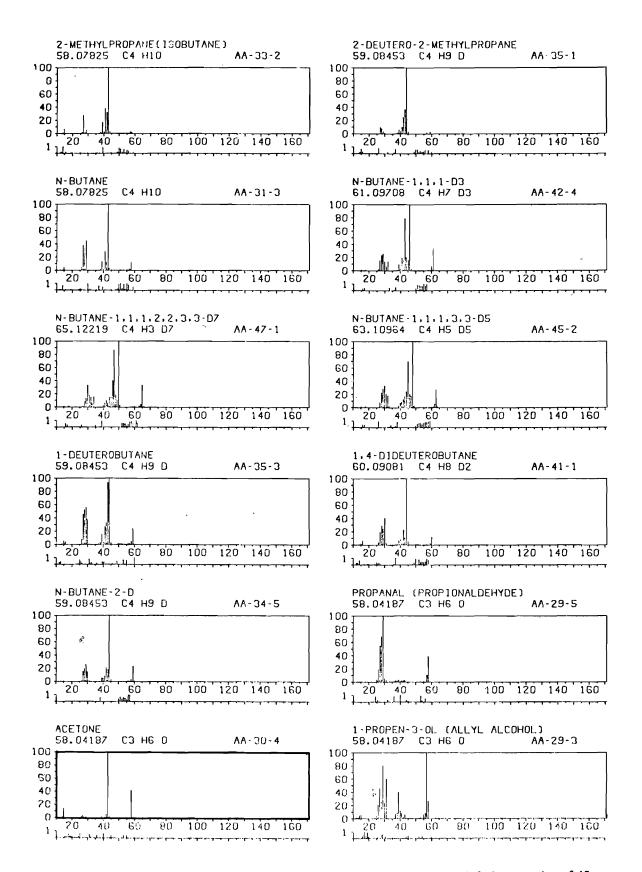



Figure 16. Compounds having mass spectral characteristics similar to the unknown (relative retention of 45 mm, Figure 7) compound in Figure 17.

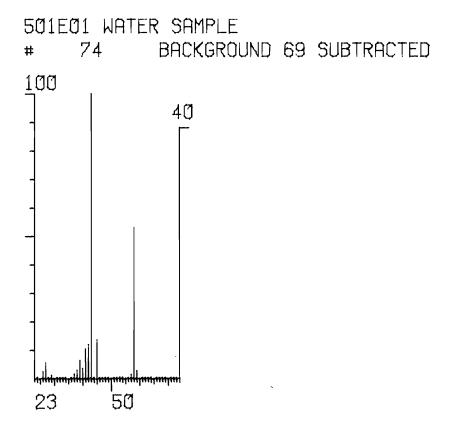



Figure 17. Mass spectrograph of an unknown (relative retention of 45 mm, Figure 7) with a mass of 58 amu which from Figure 16 was identified as acetone.

# Appendix C

# Gas Chromatograph/Mass Spectral Analysis, Material Science

# Department, University of Utah, Salt Lake City, Utah

|                                                       | done on a Hewlett Packard<br>a 5933A data system under | Electron Impact Mass Spe<br>Source Temperature:<br>Mass Filter Temperature: | 200°C                                        |
|-------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------|
| Gas Chromatography<br>Column Packing:<br>Column Type: | Porapak S, 100/120 mesh<br>1/8'' x 5' stainless steel  | Inlet Lines:<br>Pressure Reading:<br>Electron Energy:                       | 180°C<br>3 x 10 <sup>-5</sup> to RR<br>70 eV |
| Column Temperature:<br>Injector Temperature:          | Programmed from 70°C to<br>190°C at 10°C/min<br>200°C  | Data System<br>Mass Range Scanned:                                          | 23-200                                       |
| <u>GC/MS Interface</u><br>Dimethyl silicone membr     | ane: 170°C                                             | A five microliter aqueous<br>Hamilton syringe.                              | sample was injected using a                  |

Table 16. List of compounds having mass spectral characteristics similar to the unknown (relative retention of<br/>45 mm, Figure 7) compound in Figure 18.

| SAMPLE 13007 |   | SPECTRUM 28 RET 1 9 HITS 83                    |
|--------------|---|------------------------------------------------|
| 12           | 9 | AZOMETHANE<br>58                               |
| 12           | 8 | VINYL METHYL ETHER<br>58                       |
| 8            | 5 | ACETIC ANHYDRIDE<br>102                        |
| 8            | 5 | HYDRAZOIC ACID (AZOIMIDE)<br>43                |
| 8            | 5 | ACETIC ANHYDRICE<br>102                        |
| 8            | 5 | 5-METHOXYCARBONYL-5-METHYLISOXAZOLIDINE<br>145 |
| 12           | 6 | 2-PROPANONE (ACETONE)<br>58                    |
| 12           | 6 | 1,2-EPOXYPROPANE (PROPYLENE OXIDE)<br>58       |
| 12           | 6 | TRIMETHYLENE OXIDE                             |
| 12           | 6 | OXETAN<br>58                                   |
| 16           | 7 | N-METHYLACETAMIDE<br>73                        |

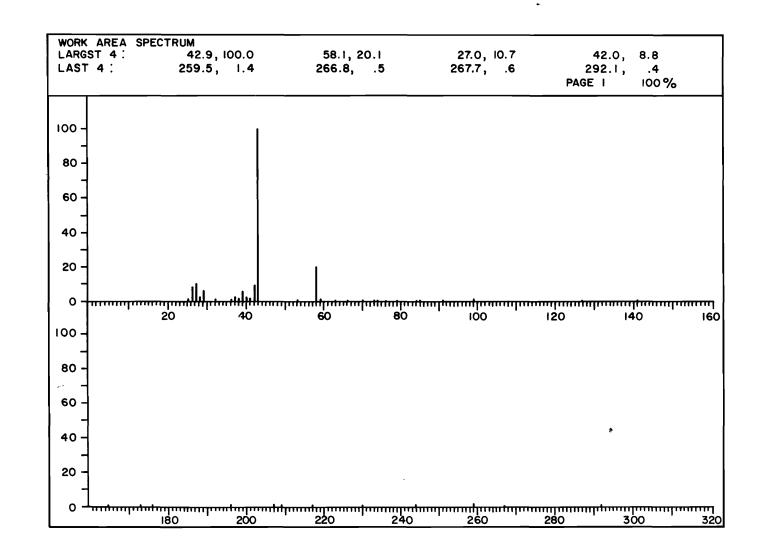



Figure 18. Mass spectrograph of an unknown (relative retention of 45 mm, Figure 7) with a mass of 58 amu which from Table 16 was identified as acetone.

i.

1

Ŧ