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S~+~ 
J,l 
o S .. 
J,l 

t 
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point 
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AZ Mesh size in the z-direction 

AT Magnitude of the time step 

A Difference operator 
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ABSTRACT 

This study deals with unsaturated, unsteady water movement through 

heterogeneous porous media. The specific problem investigated is the 

transient three-dimensional axisymmetric flow resulting from water being 

applied on a horizontal circular area. The heterogeneity of the soil is 

described by allowing any or all of the five parameters in the Brooks·­

Corey equations to be any continuous function of dept~. 

Methodologies for obtaining numerical solutions to the resulting 

nonlinear partial differential equation and its associated initial­

boundary value problem have been developed and implemented in a computer 

program. The numerical solution is based on the Crank-Nicolson method 

of finite differencing and the solution to the resulting system of non­

linear algebraic equations for each time step is by the Newton method 

combined with the line successive over-relaxation (LSOR) method. 

The numerical solutions -provide the following at each time step 

used: (1) the distribution of soil water saturation throughout the 

region, (2) the distribution of capillary pressure throughout the region, 

(3) the distl"ibution of hydraulic head throughout the region, (4) the 

rate of infiltration if the area of application is specified at a given 

moisture level, (5) the extent and amount of lateral and vertical water 

movement, and (6) the rate of advance and position of the wetting front. 

The solutions resulting from various variations of linearly specified 

heterogeneities have been studied and their influence of such quantities 

are infiltration rate or intake capacities and wetting front movements 

have been analyzed. To determine the effects of lateral water movement, 
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solution results from the axisymmetric solutions have been compared with 

solutions from a one-dimensional vertical flow model that permitted the 

same specification of heterogeneity. 

A number of graphs are presented that illustrate influences of 

different soil heterogeneities. Coaxial graphs were developed to sum-

marize the results of a number of solutions that relate the difference 

in infiltration in heterogeneous and homogeneous soils to the variations 

of the five parameters in the Brooks-Corey equations. 

The numerical solutions are verified with reasonable agreement with 

field data at the Reynolds Creek experimental watershed obtained from 

experiments which duplicate the geometry of the mathematical model 

closely, if not the heterogeneity, also. 

KEYWORDS: Soil Science, Water, Infiltration~ Soils Pore-water Pressures, 
Irrigation, Heterogeneous, Axisymmetric, Unsaturated 



INTRODUCTION 

Water movement through porous media has been of great interest to 

mankind since early history. A scientific basis for the design of 

irrigation and drainage works was lacking until about a century ago, 

that is, until Henry Darcy, who, in 1856 found experimentally the 

famous basic linear law of flow of water through porous materials. 

Infiltration is defined as the process of the entry into the soil of 

water made available,.at the soil surface, together with the associated 

downward flow. Infiltration is an important factor in watershed 

management, ground water recharge, overland flow prediction and irriga­

tion. Efficient water management requires accurate knowledge of the 

infiltration rate at which different soils will take water under 

different conditions. Most of the water falling on the ground surface 

moves through unsaturated soil during subsequent processes of drainage, 

evaporation and root extraction. 

In more recent times, the flow equation has been solved analytically 

after making some simplifying assumptions and for simple boundary 

conditions. The majority of these solutions are for steady state 

isothermal flow through saturated isotropic homogeneous soils, an 

idealized case that does not exist in nature. The more complicated 

problems are unsteady flows through unsaturated heterogeneous media 

resulting in nonlinear partial differential equations for which no 

general exact solution is available. 
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During the past decade, knowledge of soil water flow under 

unsaturated conditions has advanced rapidly. High speed digital 

computers are used widely for solving initial-boundary-value problems 

numerically. Use of digital computers has allowed solution of more 

the realistic situation of flow of water in porous media. More 

detailed attention can now be devoted to unsaturated transient flow 

systems in heterogeneous porous media or soils. Steady state flow 

conditions do not exist for any appreciable time and heterogeneity 

of the soil is the rule rather than the exception in nature. At the 

present time, mathematical models for transient flow in heterogeneous 

porous media, with the exception by Watson and Whisler (109), assume 

that the soils consist of discrete layers of homogeneous soil. 

Basically this is little more than a modification of a numerical 

solution for homogeneous soils in which the hydraulic properties are 

changed between finite difference grid points while advancing the water 

through one layer to the next layer of soil. In the developed models, 

the hydraulic head and pressure head, but not the moisture content are 

assumed continuous across the interface of the two layers. The 

validity of this approach may be questioned because the soil water 

flow differential equation is developed under the assumption that all 

the dependent variables and their derivatives are continuous. The 

equation of flow describing water movement through soils is obtained 

by substituting Darcy's law into the differential form of the 

continuity equation. However, only the integral form of the continuity 
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equation is valid across an interface since in the derivative form the 

variables are discontinuous. In order for the differential form of 

the continuity equation to be valid, the seepage velocity and its 

derivative must be continuous. Furthermore, experimental results for 

steady downward flow through a sand into another sand having a slightly 

finer texture by Scott and Corey (91) demonstrates an abrupt (dis­

continuous) change in capillary pressure that can exist across the 

junction of two different sand layers. They assumed that pressure must 

be continuous regardless of abrupt change in texture and erroneously 

argue for a very rapid but continuous change in pressure which is 

unsupported by their data. If capillary pressure is not cont-inuous, 

there would be an infinite pressure gradient at the interface of the 

layer. An alternative method is presented in this study that describes 

soil heterogeneity by specifying that the physical and hydraulic 

properties of the soil vary continuously as a function of depth. 

Jeppson and Nelson (47), Jeppson and Schreiber (48) and Watson and 

Whisler (109) used this approach to unsaturated flow problems in which 

they allowed only saturated hydraulic conductivity to vary with depth. 

The problem which has been studied herein is one of three­

dimensional axisymmetric unsaturated unsteady flow through homogeneous 

porous media resulting from water applied at the soil surface. In this 

problem heterogeneity is described by specifying that the hydraulic 

properties of the soil vary continuously with depth. The Brooks-Corey 

equations are used to describe the hydraulic properties (relative 

hydraulic conductivity and soil saturation) of the soil. The equations 

are relatively simple and also provide a reasonably good fit to 

capillary pressure-saturation and capillary pressure-hydraulic 
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conductivity data, and involve only three parameters, the residual 

saturation, Sr' pore size distribution exponent, A, and bubbling 

pressure, Pb, whose magnitudes will depend upon the functions specified. 

Descr"iption of the soil heterogeneity by letting the saturated hydraul ic 

conductivity, Ko soil porosity n, as well as Sr' A, and Pb be any 

continuous function of vertical coordinate allows for an infinite 

number of different problem specifications. Different solutions which 

were obtained for different problem specifications have been analyzed 

to determine influence of various distributions of heterogeneity and 

other factors on infiltration rate, amount and the distribution of 

soil moisture, accumulated infiltration, extent and amount of lateral 

moisture spreading and rate of advance and position of wetting front. 

The results obtained from the numerical solution are compared to field 

data from Lower Sheep Creek within the Reynolds Creek experimental 

watershed west of Boise, Idaho. 

Objectives 

1. To develop a computer program for numerically solving the 

initial-boundary-value problem which defines transient unsaturated 

isothermal flow (i.e., infiltration problems) in heterogeneous soils 

for three-dimensional, axisymmetric water movement. 

2. To verify the numerical solution by comparing the results 

with field data of soil moisture and capillary pressure distribution. 

3. To summarize and compile in the form of graphs, coaxial 

plots and/or equations, the results of a series of solutions in which 

different combinations of parameter values and problem specifications 

are varied to define how each of these effect such items of interest 
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as magnitude and characteristics of intake capacities, amount and 

distribution of moisture content increases, extent and amount of 

lateral moisture spreading, and rate of advance and position of wetting 

front. 

It is expected that these relationships will provide considerable 

insight into what and how factors influence infiltration and prove 

valuable in classifying soils according to their infiltration properties. 
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REVIEW OF LITERATURE 

Analytical Solutions 

Green and Ampt (29) studied one-dimensional vertical infiltration 

under flooded conditions and presented the earliest infiltration 

equation based on Poiseuille's Law of capillary and on the analogy 

in which the soil is considered as "a bundle of capillary tubes. 1I They 

assumed that the water content characteristic is a stepped curve and 

that the advancing water profile consists of two distinct zones, namely, 

a completely saturated upper part and a sharp and discontinuously 

separated lower zone that is at the original water content. It is also 

assumed that at the moving boundary of the wetting front, the suction 

is constant and equivalent to the air entry value. 

The Equation (1) which was developed by Green and Ampt agrees 

well with laboratory experiment results but has disadvantages in that 

the rate of infiltration is expressed in terms of depth of penetration 

of wetting front. Green and Ampt equation is: 

Ko _ 
-;;e t - y - (d + 1JJa) 1 n (1 + -d--=---{-1J;-a- (1 ) 

in which K is the saturated hydraulic conductivity, LIT; ~e is the 
o 

difference between the original and saturated water content of soil, 

dimensionless; t is the time, T; y is the depth of wet soil, measured 

from soil surface to wetting front, L; d is the depth of water on soil 
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surface, L; and ~ is a soil constant depending on the capillary 
a 

forces acting on the moving boundary of the water, equivalent to 

air entry value, L. 

Philip (72) analytically solved the one-dimensional flow equation 

and presented an equation to determine the infiltration rate. The 

equation is in the form of a series in terms of time and multipliers 

which depend on the water content. Equation (2) below shows the 

cumulative infiltration, C, in an expression in which only two terms 

of the solution series is included. The infiltration rate, II, as a 

function of elapsed time (Equation 3) is derived by differentiation of 

Equation (2). 

C = A.tl / 2 + B·t (2) 

r = 1/2 At- l / 2 + B (3) 

in which A is a soil parameter called sorptivity (capacity of a soil 

to release or absorb water) L/T1/2; and B is a transmissivity soil 

parameter which results primarily from gravity forces (B becomes a 

progressively more important parameter in the equation with increasing 

time) LIT. 

For large elapsed times, the term At-1/2 becomes insignificant, 

and parameter B in Equation (3) has to be equal to the saturated 

hydraulic conductivity. 

Whisler and Bouwer (112) studied and compared the Green and Ampt 

equation, Equation (1), with the Philip equation, Equation (3). They 

concluded that the Green and Ampt equation, was not only simple to use, 

but also gave a better result. 
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Fok (22) compared the Green and Ampt and Philip infiltration 

equations. He showed that Philip's two term Equation can be derived 

from the Green and Ampt Equation, Equation (1). 

Scott and Hanks (92) solved the one dimensional moisture flow 

equation by power series. They assumed that the diffusivity is an 

exponential function of moisture content, an approach which was used 

extensively by Gardner and Mayhugh (28) and is linear function of 

moisture content in another case. Also they assumed that diffusivity 

is a single-valued function of water content, and that a relation 

between soil moisture content and tension exists which is also a single 

valued function. They noted that if this analytical solution favorably 

compared with a numerical solution, there is reason to hope that the 

numerical solution may be successfully applied to more complicated 

problems. 

Wooding (118) assumed that the hydraulic conductivity of an 

unsaturated soil is an exponential function of the pressure head. He 

used the method of linearization proposed by Philip (73, 74, 75) and 

reduced the nonlinear differential equation to a linear type and 

solved the problem of steady infiltration from a shallow, circular 

flooded area on a horizontal surface of a semi-infinite porous media, 

and showed the variation of soil moisture movement in a radial 

direction for different types of soils. Philip (75) assuming the 

hydraulic conductivity is an exponential function of moisture potential, 

applied Kirchhoff's transformation to linearize the nonlinear equation 

of steady flow, and obtained solutions for steady infiltration from a 

buried point source and spherical cavities. He stated for a small 

radius of sperical cavity the effect capillary dominates, but 
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gravitation force becomes more important when the radius increases. 

Philip (77) analyzed steady two and three dimensional infiltration in 

heterogeneous soils. He assumed that the hydraulic conductivity depends 

exponentially on both moisture content and depth, and applied 

Kirchhoff's transformation to linearize the nonlinear flow equation. 

Raats (78) upon assuming that the hydraulic conductivity is an 

exponential function of pressure head, linearized the steady nonlinear 

axisymmetric flow equation by using matrix flux potential (Kirchhoff's 

Transformation). He analyzed steady infiltration from buried point 

sources and surface point sources, and obtained explicit equations for 

the pressure head, total head and matrix flux potential and the Stoke's 

stream function. 

Empirical Equations 

Kostiakov (55) suggested the following empirical equation for the 

infiltration rate, r: 

(4) 

in which l' is the quantity of water infiltrating a unit cross sectional 

area of soil per unit time; t is the elapsed time of infiltration; 

M is a constant that depends on the soil and its physical condition, 

and equals r at unit time, t, (dimensiona.lly inconsistent); and n is a 

constant between -1 and zero, that depends on the soil and its 

physical condition, and represents the arithmatic slope of the infiltra­

tion rate line with time on log-log paper, (dimensionless). 

The Kostiakov equation, Equation (4), does not hold for large 
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values of time, because as the equation shows, the infiltration rate 

approaches zero instead of a constant value. However, because of its 

simplicity, and because it fits much infiltration data well over a 

short time interval, it is widely used in irrigation practices. 

Horton (36) proposed the following equation for the infiltra­

tion rate, t: 

(5) 

in which 100 is the final infiltration rate, i.e., r at t = 00, LIT; 10 

is the initial infiltration rate, i.e., II at t = 0, LIT; and Kf is a 

constant which governs the time required under given conditions for 

infiltration rate to change from its initial value 10 to 1
00

• 

I 

At large values of time, the infiltration rate, I, decreases to 

nearly constant value I . 
00 

Solutions by Means of Numerical Techniques 

Unfortunately, the governing equation for unsaturated flow is 

nonlinear and boundary conditions are complicated. Exact analytical 

solutions of the partial differential equation governing the flow of 

water through the porous media are not available, except for over-

simplified cases. Therefore, numerical approximations need to be 

employed to solve unsaturated flow problems. Freeze (24) reviewed the 

available literature of one-dimensional, vertical, unsaturated unsteady 

flow problems in soils studied by a number of researchers, and Remson, 

Hornberger and Molz (83) give an outline of published numerical solu­

tions mostly applied to porous media flow. The numerical method most 
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widely used in the solution of the problems dealing with flow through 

porous media is the method of finite differences. Examples are: 

(1) Infiltration (32, 33, 11, 44, 38, 94), (2) flow towards wells 

(61, 102, 12, 18), (3) subsurface hydrology (34, 57, 58), (4) seepage 

through earth dams (25), (5) seepage from earth canals (15, 47), 

(6) trickle irrigation (6), (7) Drainage (60, 101, 50, 40, 104, 94,89, 

62, 83, 65). 

Depending upon the nature of the problem, different forms of the 

flow equation have been used. Also auxiliary conditions differ to 

account for the geometry (one, two, or three dimensional), the medium 

characteristics (homogeneous or heterogeneous, and isotropic or 

anisotropic), the initial condition which must be specified for unsteady 

problems, and the boundary conditions. Table 1 summarizes various past 

problems studied by a number of researchers. 

Gardner and Mayhugh (28) applied the Bo1tzman Transformation 

to concentration-dependent diffusivity equation which describes the 

movement of water in unsaturated soils, to reduce the partial 

differential equation to an ordinary differential equation. They 

assumed diffusivity to be an exponential function of water content, 

and observed that the distance to the wetting front during infiltration 

increased as the square root of time. There was a good agreement 

between measured distribution of water content and those predicted 

by their numerical solution. 

Hanks and Bowers (32) in their pioneering work presented a method 

to solve the water flow equation for vertical infiltration in layered 

(heterogeneous) soils. They defined a variable time increment, ~t, as 

the time required for a constant amount of water to enter the soil 



TABLE l.--Review of Some Available Numerical Solution of Flow Equation. 

Dimensions Medium Characteristics Flow Conditions Saturation 
Date 
and Homo- Hetero- Un- Satura- Unsat- Com-

Name Reference 1 2 3 geneous Layered geneous Steady steady ted urated posite 
(1 ) (2) (3) (4) (5) (6) (7) (8) (9) (10) ( 11 ) (12 ) (13 ) 

Klute 1952 (51 ) X X X X 

Day and Luthin 1956 (20) X X X X 

Youngs 1957 (119) X X X X 

Philip 1957 (72) X X X X 

Isherwood 1959 (40) X X X X 

Hanks and Bower 1962 (32 ) X X X X 

Ashcroft, et a1. 1962 (3) X X X X 

Nelson 1962 (68) X X X X 

Reisenauer 1963 (79) X X X X 

Reisenauer et a1. 1963 (80) X X X X 

Sewell and 1963 (95) X X X X Van Schi1fgaarde 

Wang et a1. 1964 (107) X X X X 

Whisler and Klute 1965 (113) X X X X 

Liakopou1os 1965 (56) X X X X 

Remson et a1. 1965 (81) X X X X 

w 



TABLE l.--Continued. ...r;::::. 

Dimensions Medium Characteristics Flow Conditions Saturation 
Date 
and Homo- Hetero- Un- Satura- Unsat- Com-

Name Reference 1 2 3 geneous Layered geneous Steady steady ted urated posite 
( 1 ) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11 ) (12 ) (13 ) 

Klute, Whisler 1965 (53) X X X X and Scott 

Staple 1966 (96) X X X X 

Rubin 1966 (87) X X X X 

Whisler and Klute 1966 (114) X X X X 

Kobayashi 1966 (54) X X X X 

Freeze and 1966 (26) X X X X Witherspoon 
Burejev and 1966 (15 ) X X X X Burejeva 
Rubin 1967 (88) X X X X 

Remson et a1. 1967 (82) X X X X 

Whisler and Klute 1967 (115) X X X X 

Ibrahim and 1968 (38) X X X X 
Brutsaent 

Rubin 1968 (89) X X X X 

Freeze 1969 (24) X X X X 



TABLE l.--Continued. 

Dimensions Medium Characteristics Flow Conditions Saturation 
Date 
and Homo- Hetero- Un- Satura- Unsat- Com-

Name Reference 1 2 3 geneous Layered geneous Steady steady ted urated posite 
( 1 ) (2 ) (3) (4) (5) (6) (7) (8) (9) (10) ( 11 ) (12 ) (13 ) 

Whisler and 1969 (116) X X X X Watson 
Taylor and Luthin 1969 (102) X X X X 

Hounberger et al. 1969 (35 ) X X X X 

Jeppson 1970 (42) X X X X 

Green et al. 1970 (30) X X X X 

Todsen 1971 (104) X X X X 

Brandt et ale 1971 (6) X X X X 

Burtsaert et al. 1971 (12 ) X X X X 

Freeze 1971 (25) X X X X 

Burtsaert 1971 ( 11 ) X X X X 

Wei and Jeppson 1971 (110) X X X X 

Jeppson 1974 (44) X X X X 

van Der Ploeg 1974 (106) X X X X 
et ale 
Amerman 1976 (2) X X X X 

c..n 
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profile. Since the infiltration rate of the soil decreases with 

time, the calculated time increment will be smaller at the beginning 

of infiltration computation relative to its value at later stages. 

They plotted the distribution of the pressure head and water content 

versus depth for layered soils (coarse soils overlaying a fine soil 

and vice versa). They noticed that for water content, there is a 

discontinuity at the boundary between the two layers, however, pressure 

distribution along the profile was continuous for all cases of hetero­

geneity. There was excellent agreement between the Hanks and Bowers 

numerical model and theoretical solution presented by Scott et ale (93) 

and Philip (71) for horizontal infiltration through a horizontal layer 

of soil at uniform initial water content. 

Ashcroft et al., (3) developed a numerical solution for solving a 

one dimensional horizontal flow equation in a semi-infinite porous 

medium. They indicated that the results of their numerical method and 

the Boltzman transformation used by Gardner and ~~ayhugh (28) gave very 

similar solutions. Also they found that the experimental results are 

similar to the solutions obtained from both numerical solution and 

Boltzman transform techniques. 

Jeppson (42) numerically solved the partial differential equation 

which describes three dimensional (axisymmetric) unsaturated flow in 

the soil below infiltrometers to determine the influence of soil 

properties, rate of application- and initial hydraulic head on the 

subsurface flow pattern (penetration and lateral movement of wetting 

front). He noticed that whenever a portion of flow field reaches to 

high values of relative saturation approximately 0.90, depending on 

the hydraulic properties of the soil, numerical difficulties occur in 
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the solution process unless the time increment, ~T, is decreased 

sufficiently. He suggested that the solution capability can be improved 

by transforming the dependent variable (hydraulic head) in general 

flow equation to a new variable ~ by means of the Kirchhoff Transforma­

tion. This latter technique has been widely used by many researchers 

(78, 118, 75, 89, 6, 103, 108). 

The goal of this transformation is to linearize (under some 

conditions) and make the equation of flow more amenable to analytical 

solution methods. 

Jeppson (43) reported that for problems in which a portion of 

flow region approaches unit saturation, the use of the Kirchhoff­

Transformation in formulation of the mathematical problem of partially 

saturated transient flow from an infiltrometer improved the solution 

capabilities. 

Brand, et al. (6) developed two mathematical models (a plane flow 

model and a cylindrical model) to analyze multi-dimensional, unsteady 

infiltration from a trickle source into homogeneous soils. In the case 

of the cylindrical model (axisymmetric) the emitters were placed far 

enough apart to prevent interaction between emitters. Upon applying 

the Kirchhoff Transformation, they introduced a new function of water 

content. They compared the numerical results with Wooding1s solution 

for steady state infiltration from a circular pond for different values 

of time to show how the unsteady flow approaches steady state flow. For 

verification of this model, Bresler, et al., (7) conducted laboratory 

experiments. They compared the location of wetting front and water 

content distribution in both numerical solution and by experiment. They 
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concluded the agreement between theory and experiment was good and that 

application of the theory to the field is justified. 

Wei and Jeppson (110) studied the problem of steady-state axi­

symmetric infiltration of water applied on a horizontal surface, to 

determine the influence of various soil properties on the flow pattern 

as well as on the magnitude of lateral movement of soil moisture 

(spreading effect). They used an inverse formulation for solution of 

the problem by finite difference method. They reported that the 

infiltration rate is closely related to various soil parameters and 

infiltration rate is higher at the edge of source circle than near 

center due to the spreading effect. 

Watson and Whisler (109) studied the gravity drainage of a 

heterogeneous porous media. They defined the heterogeneity of porous 

media in terms of a linear variation of the saturated hydraulic con­

ductivity with depth. They allowed the hydraulic conductivity to 

decrease with depth and obtained hydraulic head and water content 

profiles with depth. They reported that by applying one of the avail­

able experimental methods for determining saturated hydraulic 

conductivity in the field at different depths, it is possible to 

check the homogeneity of the profile. 

Jeppson (44) studied different numerical techniques for solution 

of transient, three dimensional (axisymmetric), unsaturated moisture 

movement through homogeneous soil resulting from infiltration over a 

horizontal circular surface area. To minimize the difficulties due to 

the strong nonlinearities of the flow equation, he compared the three 

adaptations of Crank-Nicolson method and three variations of the 

alternating direction implicit (ADI) method. Since no constraints have 
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been seen in applying Crank-Nicolson method, he favored this method. 

In another effort Jeppson (45) used the previous model (Jeppson, 44) 

and compiled a series solution for different problem specification 

such as size of the circle of application and for different parameters 

describing the hydraulic properties of unsaturated soils. He stated 

that greater understanding of the infiltration process can result when 

one problem specification is incremented over a range of possible 

situations. Samadi (90) used Jeppson's (41) computer one-dimensional 

program to evaluate the effect of interaction between the soil 

parameters used to describe heterogeneity. He concluded that there is 

a minor to insignificant effect on infiltration due to interaction 

between the soil parameters. Based on the results of study, the 

additive law of effect can be applied in using the results. 

Darcy's Law for Saturated and Unsaturated Systems 

Darcy's Law for Saturated Soi1s.--1n 1856 Henry Darcy (19) 

observed the characteristics of downward flow of water through 

saturated sand filters, and published his famous experimental law. 

Darcy's law states that the flow of water through a column of 

saturated soil is directly proportional to the head loss and inversely 

proportional to the length of path of flow. Darcy (19) used various 

potential gradients across columns of saturated, homogeneous granular 

materials and measured the flows. He found that 

v = - K ~ (6) 
1 

where V is the flux L3T- l /L2; 1 is the length of the column, L; ~h is 

~(P/pg + Z), difference in hydraulic head, L; K is hydraulic 
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conductivity, coefficient with units of velocity depending on the 

permeability of porous media. Hydraulic conductivity is related to 

intrinsic permeability, k, of the medium with units of L2, by the 

expression K = kpg/~ (intrinsic permeability depends only on the 

internal geometry of the medium); P is the pressure head, FL- 2; Z is 

the elevation head, L; p is the density of the fluid, FT2L-4; g is 

the acceleration of gravity, LT-2 and ~ is the dynamic viscosity of 
-2 the fluid FT L . 

This basic linear law of soil water flow was originally found for 

vertical downward flow through saturated homogeneous sand column. 

Muskat (67) found applicability of Darcy's law in any direction 

of flow in the earth's gravity field and generalized Darcy's law for 

saturated flow in three dimensional space as follows: 

v = - K grad. h (7) 

in which V is the velocity vector, LT- l and h is the hydraulic head, L. 

The negative sign indicates that flow occurs in the direction of 

decreasing hydraulic head. Since flow can occur only through the 

interconnected pores of s~turated porous media, the velocity across any 

section must be thought of in a statistical sense. Muskat (67) noted 

that application of Navier-Stokes equations for porous media problems 

is particularly difficult regardless of making some logical simplifi-

cation and neglecting the inertia forces due to very low velocities. 

This is because the use of Navier-Stokes equations that describe flow 

in a microscopic way requires knowledge of all different size of pores, 

which is practically impossible. Hall (31) and Hubbert (37) proved 

analytically that Darcy's law is a statistical macroscopic equivalent 
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of the Navier-Stokes equations of motion for the flow of water through 

porous media. 

The limitations of Darcy's Law are: 

1. The velocity of flow must be relatively low in order to 

neglect inertia forces. 

2. There must be no interaction between the soil and fluid. 

3. The fluid must be homogeneous and incompressible. 

Olsen (69, 70) found good agreement between Darcy's equation and 

seepage flow in nonsw,e 11 ; ng so; 1 s. He also reported on so i 1 s conta i n­

ing swelling type clay (montmorillonite), in which there is interaction 

between fluid and soil for which Darcy's law is not applicable since 

the velocity becomes a nonlinear function of the head gradient. 

Swartzendruber (97, 98, 99) suggests that this deviation from linearity 

is primarily due to non-Newtonian behavior of the fluid caused by 

soil-water-interaction. 

Darcy's Law for Unsaturated Media.--Even though Darcy's equation 

was developed for saturated flow in homogeneous porous media, it has 

application to porous media problems that are partially saturated. Two 

important forces act on an element of volume of soil water, namely the 

gravitational force causing the element to fall down, and the capillary 

forces tending to transfer the element from zones of higher to zones of 

lower pressure. Buckingham (13) who studied the capillary flow of soil 

water, visualized that the flow of water through the soil is analogous 

to heat flow (Fourier's law) and to flow of electricity through a 

conductor (Ohm's law). He introduced the term capillary potential 

(analogous to electric potential) to describe the attraction of soil 

for water. 
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Richards (85) applied the heat flow equation to unsaturated flow 

and assumed that the flow of water in unsaturated media obeys Darcy1s 

law. He developed a general equation of flow in unsaturated media in 

which the water content and capillary conductivity are independent 

functions of the capillary potential. The theory (85) was proven 

experimentally by Childs and Collis-George (17) and analytically by 

Hall (31). According to this theory~ Darcy's law holds for flow of 

water in unsaturated media. In a modified form in which hydraulic 

conductivity, K, is a function of the volumetric water content, S, 

Oarcy1s law for the flow of water through unsaturated porous media can 

be written as follows: 

v = - K(S) grad. h (8) 

in which K is a variable even for homogeneous soil and rapidly becomes 

smaller as the water content s decreases (see Fig. 1). Philip (76) 

noted the following reasons for K(S): 

1. As the water content decreases the actual cross-section for 

flow decreases. 

2. The value of hydraulic conductivity is dependent to the 

square of pore radius, K = kpg/~ and larger pores are emptied first as 

saturation decreases. 

3. As saturation decreases, continuity of water at interconnected 

pores fails and there can be no flow in the liquid phase. 

Relations of Saturation and Hydraulic 

Conductivity to Capillary Pressure 

Water content of soils has been determined gravimetrically in the 

laboratory for many years. Field as well as laboratory measurement of 
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FIG. l.--Relationship Between Hydraulic Conductivity, K, and Moisture 
Content, 8, for Yolo Light Clay (66). 

water content can readily be obtained with devices such as the neutron 
( 

meter or garnna probe. Tensiometers, pressure plates, and psychrometers 

are widely used to measure the capillary pressure (suction) in the 

partially saturated soils. 

Buckingham (13), first suggested that water content and hydraulic 

conductivity of partially saturated soil are functions of capillary 

pressure. In order to obtain a solution to the flow equation, it is 

necessary to have functional relationships between saturation, 

capillary pressure and hydraulic conductivity. Klute (52) noted that 

less hysteresis is expected in the hydraulic conductivity-saturation 

relationship than in the hydraulic conductivity-capillary pressure 

relation. According to Child (16), Bear, Zaz1avsky, and Irmay (39) 

and van Bave1 (105), capillary pressure-saturation is hysteretic and 
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consequently the hydraulic conductivity-capillary pressure is 

hysteretic. Unfortunately, laboratory determinations of the capillary 

pressure-hydraulic conductivity relation are difficult and time 

consuming and in effect are impossible to obtain from field measure­

ments. 

The capillary pressure-hydraulic conductivity-saturation relation­

ship is important in analyzing water movement through unsaturated 

soils. In order for the measured data to be useful in the numerical 

solution, they can be reduced in one of the following ways: 

1. Tabular form of corresponding values of water content, 

hydraulic conductivity, and capillary pressure for their particular 

me d i a (20, 32, 4 1, 11 5, 11 6, 33, 24 , 30, 1 09 ) . 

2. Fitting the data with special functions (94, used 

exponential fits). 

3. The functional forms of relationships in which some of these 

relationships are based on empirical fitt-ing of data (27, 49). Some 

are based on conceptual idealized models of porous media "bundles of 

capillary tubes" coupled with empirical fitting (14). 

The functional forms of these relationships in soil water flow 

modeling are highly desirable, especially when the relationship 

involves meaningful and measurable hydraulic and physical properties 

of the porous media. These relationships greatly reduce the computa­

tion time and computer storage space for the solution of flow problems 

and simplify the handling of input data and programming for solution 

of flow problems using the digital computer. 

Saturation-Capillary Pressure Relations.--Taylor and Luthin (102) 

used the following equation: 
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8 = 3 
ahs + 1 

(9) 

where, 8
0

, is the water content at saturation; hs' suction head, and 

a is a soil parameter. 

Brooks and Corey (8) carried out laboratory experiments on 

homogeneous and isotropic samples where air and water were nonwetting 

and wetting fluids, respectively. They found the experimental data of 

effective saturation Se (defined in Equation 10 below) as a function of 

the ratio of capillary pressure to bubbling pressure plots close to a 

straight on log-log graph paper for capillary pressure Pc greater than 

the bubbling pressure Pb (Fig. 2). Brooks and Corey suggested the 

empirical relationship of the following form: 

U;- Fin. Sond/ 
c 
Q 

"2 
",-J 

b 
(f) 

(1) 010 
.~ 
u ... 

W 

Solid Line Indlcotes 
8rooks -Corey 
Approllimotion 

0010 
~~--~'O~O-----L--~,~ 

CaPIllary Pressure Head Pelr-em Waler 

(10) 

(11 ) 

FIG. 2.--Relation Between Effective Saturation and Capillary Pressure 
Head (9). 
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in which A is the negative of the slope of the plot on log-log graph 

paper and is defined as the pore-size distribution index. They found 

that for typical porous media A is about 1.0, and ranges from 0.4 for 

aggregated clay soil to 5 or more for clean uniform sand. The A is a 

dimensionless soil parameter and may depend on the liquid and capillary 

history of the system for some soils. Capillary pressure at Se = 1. 

is equal to bubbling pressure (Pc = Pb) at which the air first begins 

to flow through the media. 

The effective saturation is defined by 

(12 ) 

in which saturation, S, is the ratio of volume of water to volume of 

voids and Sr' residual saturation (irreducible water). Fig. 2 shows 

capillary pressure-saturation curves and the Brooks-Corey approxima-

tions. 

Brutsaert (10) proposed a more general relationship between 

capillary pressure and effective saturation Se where 

Se = P b 
(_c_) +a 

Pb 

(13 ) 

in which a and b are parameters whose magnitude depends on the soil 

type. In the case of a = 0, the Brooks-Corey equation will result. 

Su and Brooks (100) used a Pearson Type VIII distribution function 

to develop a retention function which describes the retention of fluids 

in porous media as follows: 
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S - Sr 
P = P ( ___ )-m' ( 
c f a 

1 - S 
b (14 ) 

where Pc is the capillary pressure, Pf is the capillary pressure at 

the fictitious inflection point, S is the saturation, m'the shape 

function of the retention curve, and therefore is a pore-size distribu-

tion parameter of the medium, and a and b are the domains of saturation 

separated by the fictitious inflection point (Fig. 3). The function 

was verified experimentally on the drainage and imibition cycles. They 

assumed the Burdine integral is valid. Therefore, the relative 

hydraulic conductivity has been derived through the substitution of the 

retention function of the pressure, P, in the Burdine equation giving: 

P 

I 

I 
I 

-2bm' ) 
a + 1 

P
f 

- - - - ·1- - -- - - ---
I 

\1------'--------'---~1. 0 

~sr-I~I·~-a---~-b~ 
S 

(15 ) 

FIG. 3.--Definitive Retention Curves Depicting the Relationships of 
the Parameters in the Theoretical Retention Function (100). 
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where IS is the incomplete beta function ratio with its arguments given 
e 

in the parentheses. 

Saturation-Hydraulic Conductivity Relations.--Irmay (39) used the 

following relation to relate saturation to hydraulic conductivity: 

K K =--
r Ko 

= S 3 
e (16 ) 

in which K is the unsaturated hydraulic conductivity; Ko is the satura­

ted hydraulic conductivity and Kr is relative hydraulic conductivity. 

The theory developed by Burd -j ne (14) can be used wi th sa tura ti on-

capillary pressure relations for determining saturation-hydraulic 

conductivity relationships. The use of Burdine theory are discussed by 

Brooks and Corey (8, 9). Fig. 4 shows that computed relative hydraulic 

conductivities from imbibition saturation pressure data, which were 

obtained from laboratory tests on distributed soil samples taken from 

the Reynolds Creek Experimental Watershed in southwestern Idaho, can 

produce satisfactory values when compared with observed values. 

Hydraulic conductivities computed by numerical integration of the 

modified Burdine Equation (17) are good agreement with those obtained 

from equations developed by Millington and Quirk (63, 64), especially 

under desaturation conditions. To handle imbibition, a pressure head 

parameter Po is added to capillary pressure P to prevent division by 

zero as the soil becomes fully saturated, P = 0, and the saturation 

parameter, 5s ' is replaced by 1. 
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r ds 
S - S 2 (P + P )2 S 
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K [ r ] r 0 (17 ) = r S - S ts s r ds 

Sr 
(P + P )2 

0 

in which P is the capillary pressure, L. 

The modified Burdine equation (integral) for relative hydraulic 

conductivity in a simple form is given by Brooks and Corey (9) as: 
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J: 
ds 

S - S 2 P 2 
K = [ r ] c (18 ) r 1 - S 

i: ds r 
P 2 
c 

Substituting Equation (10) into Equation (18) and changing S to Se 

wi 11 res u 1 tin 

S 

J e(S )2/"A dS o e e 
(1 

(19 ) 

J (S) 2/"A dS o e e 

upon integration of Equation (19), the relative hydraulic conductivity 

becomes: 

2 + 3"A 

2 + 3"A 
"A 

£=---
"A 

(20) 

(21 ) 

When Equation (10) is substituted into Equation (20), the relative 

hydraulic conductivity as a function of capillary pressure is: 

K =_K_= 
r Ko 

P 2 + 3"A +) 
c 

Application of the Brooks-Corey equations is limited to: 

1. An isotropic porous media. 

(22) 

2. Relative hydraulic conductivities, Kr = 1 for IPcl < IPbl-

3. Conditions for which S < Sr' and even they are inaccurate at 

saturation slightly greater than Sr-



31 

4. Stable porous media. 

Hydraulic Conductivity-Capillary Pressure Relations.-- Richards 

(85) proposed a linear relation for hydraulic conductivity-capillary 

pressure which was used in some analytical solutions in the form 

K = aH + b 
r 

p 
in which a and b are constants; H is pressure head, - H = p~ 

(23) 

Gardner (27) made a survey of proposed equations and from studies 

of available data concluded that conductivity can be related to the 

capillary pressure by the following equation 

a K = ----
hn + b s 

where a, b, and n are constants depending on the soil, fluid and 

capillary pressure history of the system. 

Taylor and Luthin (102) used the equation of the form 

Ko 
K = ----

a he + 1 
s 

in which a is a constant. 

Sewell and van Schilfgaarde (95) used the following equation 

a 
K = -......----
r p b + a c 

in which a and b are constants. 

Wesseling and Wit (111) applied the relation in the form 

(24) 

(25) 

(26) 
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-b 
k = ahs 

where a and b are constants. 

Raats (78) used the following equation 

(27) 

K = beaH (28) 

in which a and b are constants. In this equation hydraulic conductivity 

is an exponential function of pressure head. 

Brooks and Corey (8) used the Burdine (14) equation of relative 

hydraulic conductivity and their saturation-capillary pressure relation 

as presented earlier to derive the following equation 

P 2 + 3:\ 
K = [_b ] 
r Pc 

(29) 

Experimental data from large number of soils show that equation (29) 

fits experimental data except for values of capillary pressure very 

close to the bubbling pressure. 

King (49) found that the equation proposed by Gardner (27) is 

dimensionally inconsistent. He modified Gardner's equation and 

suggested the following dimensionless equation: 

1 K = ---=----r P (_c_t +b 
P

l 

(30) 

where a and b are positive dimensionless parameters. The parameter P
l 

is positive having the same dimensions as Pc. King (49) found that the 

modified Gardner's equation gave a good fit to imbibition as well as 
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to drainage data. The Brooks-Corey equation and Gardner's approxima­

tion which was modified by King (49) are well known and widely used 

in solving unsaturated flow problems. 
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MODELING OF WATER MOVEMENT THROUGH POROUS MEDIA 

Modeling is a process whereby physical conditions are simulated 

by using suitable mathematical equations (mathematical model). The 

steps involved in development of such models are: 

1. Definition of physical problem 

2. Mathematical model. 

Definition of the Physical Problem 

The particular problem which is described herein is that of 

unsteady unsaturated three-dimensional axisymmetric infiltration 

through heterogeneous soil from a circular horizontal area. The 

circular area over which the water enters the soil is very small 

compared with the total soil surface. Therefore, three-dimensional 

axisymmetric unsteady-unsaturated infiltration of water occurs. The 

water region of seepage below the water entry zone are symmetric 

about the vertical centerline. Therefore, the boundary value 

problem can be formulated for one half of any vertical plane 

containing the centerl"ine of axis of symmetry. Fig. 5 shows the 

physical problem and typical assumed boundaries of the flow field. The 

soil is treated as a heterogeneous medium by letting the saturated 

hydraulic conductivity, Ko' the soil porosity, n, residual saturation, 

Sr' pore size distribution exponent, A, and bubbling pressure, Pb, be 

any continuous functions of the vertical coordinate. The soil is 

assumed to be isotropic. Since only the wetting cycle occurs in the 

solution, hysteresis is not considered in the soil characteristic 
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Axisymmetric Transient Unsaturated Flow Through Heterogeneous Media 
From a Circular Application Area· 

relationships. The effect of evaporation from the soil surface is 

neglected. 

The Mathematical Model 

The mathematical model consists of the partial differential 

equations of flow through porous media which provide the basis for 

specification of the functioning system, together with the boundary 

and initial conditions. Assumptions are also made in the mathematical 

formulation and in analyzing the problem. 



Assumptions in the f~athematical Formulation.--The following 

assumptions are included in the definition of the flow equation: 

1. Darcy's law is valid in both saturated and unsaturated 

portions of the flow region. Inertia effects are neglected. 

2. The water is incompressible (p = constant). 
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3. The porous medium is stable (exhibits no swelling, shrinkage 

or consolidation, n = constant at any depth with time, but may be 

variable with depth). 

4. Only the liquid phase of water is considered. Water vapor 

flow is neglected (vapor flow is small compared with the liquid flow). 

5. No osmotic potentials affect the flow. 

6. The flow is assumed to be isothermal. 

7. The condition of flow is not affected by the biological 

process (uptake by plant, or biological action that may change the 

conducti vi ty with time, etc.). 

8. There is no interaction between soil and water. 

9. The functions which describe the flow and their derivatives 

are assumed to be continuous, so that the differential form of the 

continuity equation is to be valid. 

10. Air in the unsaturated parts of the system is assumed to be 

at atmospheric pressure, and there is no entrapped air in the system. 

11. Since only the imbibition cycle is considered, it is 

assumed that the capillary pressure and hydraulic conductivity of the 

porous medium are single-valved, unique and continuous with soil water 

content (no hysteresis). 
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DIFFERENTIAL EQUATIONS FOR DESCRIBING WATER MOVEMENT IN SOILS 

Continuity Equation in Cyl-indrical Coordinates 

In axisymmetric flow problems, it is convenient to work with 

cylindrical coordinates. Since the pattern of axisymmetric flow is 

the same in all planes containing the axis of symmetry, (the Z-axis), 

it is independent of ~ in cylindrical coordinate (Z, R, ~) with the 

exception of spiral type flow. Axisymmetric flow has no cp-component 

of velocity. The interrelationship of the coordinates for pointG is 

shown in Fig. 6. 

Z Y 

Z 

x 

FIG. 6.--Coordinate System. The Coordinates of Point G are: 
Cartesian: X, Y, Z and Cylindrical: Z, R, CPo 
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Now~ consider an elemental portion of a cylinder of dimensions 

oZ, oR, o~, through which fluid is flowing (Fig. 7). Assume the 

velocity at the center of the element, whose axis is parallel to the 

Z-axis, is V, and its axial, radial and tangential components are 

W, Vr and V~, respectively. The net gain in mass per unit time within 

a cylindrical element of three pairs of faces are: 

a. Axial - ~z (p W • Ro ~ · oR) oZ d _ (31 ) 

b. radial d - aR (p Vr • Ro ~ • oZ) 0 R (32) 

....... ---t---~-. - -. V oZ r 

Ro~ 

FIG 7.--Equation of Continuity in Cylindrical Coordinates. 
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c. Tangential (33 ) 

The total gain in mass per unit time of all faces is: 

(34 ) 

which should equal the time rate of increase in mass within the element 

in which p is the density of water; and e is soil water content on 

volume basis, thus 

= a(pee) (R8~e8Re8Z) 
at 

Dividing the above equation by the volume element (R8~·8Re8Z) yields 

the equation of continuity in cylindrical coordinate. 

a(pee) 
at 

for an incompressible fluid, p is constant, therefore 

aW 1 a ( ) + _1_ a V ~ __ a (e) 
ar+-R-a-R Vre R R ~- 3t 

(35) 

(36) 

(37) 

(38) 



42 

In axisymmetric flow the transverse of tangential velocity V~ = 0 and 

equation of continuity becomes as: 

aW + 1 a (V R) = az RaR r· 
ae 

-at (39) 

ae 
-at (40) 

Let, 

e = nS (41 ) 

where n is the soil porosity; S is the soil saturation, which is the 

ratio of volume of water to volume of voids in a soil elemental 

volume. Equation (40) becomes 

V aV 
~+-L+-.r.= - n~ aZ R aR at 

The General Flow Equation 

(42) 

For homogeneous porous media, the Brooks and Corey's equations 

can be written as: 

(43) 

p 
S = (_b )A 
e P

t 
(44) 

(45) 

Therefore in case of heterogeneous porous media the saturation 
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and relative hydraulic conductivity can be obtained by the following 

equations, respectively: 

and 

2+3A(Z) 
] 

(46) 

(47) 

in which S is the saturation and varies as a function of depth and 

radial position; Sr is the residual saturation and is a given function 

of depth; Pb equals Pb/yL, is the dimensionless bubbling pressure, and 

is a given function of depth; Pt equals Pc/yL, and is the dimensionless 

pressure head, and varies as a function of rand t; r equals R/L and 

is the dimensionless radial coordinate; z equals Z/L and is the 

dimensionless axial coordinate; A equals pore size distribution 

exponent and is a given function of depth; L equals a scaling length 

used to non-dimensionalize the radial and axial coordinates and 

pressure heads; Kr equals KIKo and is the relative hydraulic con­

ductivity at each position in which K is the effective hydraulic 

conductivity and Ko is the saturated hydraulic conductivity, which 

is constant for homogeneous soil. 

The saturated hydraulic conductivity, Ko' is defined as the 

product of a constant Ka , with units of velocity, and a dimensionless 

quantity which is a given function of the depth Kv' or 

(48) 
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where for the soil surface, the value of constant Ka will be taken equal 

to the saturated hydraulic conductivity on the surface; therefore 

Kv(Z) = 1.0 on the soil surface. The effective hydraulic conductivity 

with velocity dimensions is defined as the saturated hydraulic con­

ductivity, Ko' multiplied by the relative hydraulic conductivity Kr . 

(49) 

(50) 

For three dimensional axisymmetric seepage flow through a porous 

medium, Oarcy·s law gives the velocity component in the radial, r, and 

axial, Z, coordinate directions, respectively by: 

h h =-­
t yL 

z 
Z =-

L 

R r =-
L 

-p 
P = c 

t yL 

h = Z - Pt t 

V = K 
aht 

r ar 

ah
t 

W = - K az 

= - K 

- 1) 

(51 ) 

(52) 

( 53) 

(54) 

(55) 

(56) 

(57) 

(58) 
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in which K(r,z,p) is the hydraulic conductivity of the soil with a 

dimension of velocity, and h is the potential energy per unit weight 

of water with dimension of length as the sum of elevation head Z and 

pressure head Pc. 

The pressure head is given by 

P =_P_=_P-
c pg y (59) 

in which P is the pressure of water and is positive for saturated 

zones and negative for partially saturated zones, g is the acceleration 

of gravity and p is the fluid density. 

The partial differential equation which describes water movement 

through the heterogeneous soils can be derived by substituting Darcy's 

law into the differential form of the continuity of mass equation for 

three dimensional axisymmetric flow. 

From Brook-Corey's Equation (46) we have 

Pb A 
a[ (l-Sr) ( ~) ] 

at 

P A-l 
= (1 - S ) · A • (_b ) 

r Pt 

P A-l 
= (1 - Sr) A (_b ) Pt 

pA 
b 

A(l - Sr) P A+l 
t 

a Pb at ( -p-) 
t 

(60) 

substituting seepage velocity components, Equations (57) and (58) and 
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term ~~ in the equation of continuity in cylindrical coordinates, 

Equation (42) we have "" 
aPt aPt 

_a_(_K_a_r __ + _a [_K_( _a_z ___ --_l_)_J _ + ~ a P t _ n>.. ( 1 - Sr) 
aR aZ R ar - P t 

(61 ) 

Hydraulic conductivity is defined as Equation (50) and let dimension-

1 ess time 
.' 

K a 
T=-L- t (62) 

(63) 

(64 ) 

Substituting Equations (50) and (64) in Equation (61) and letting R = 

rL and Z = zL, we have 

Ka 
aPt 

Ka 
aPt 

KKK aPt Kv a(Kr ar ) 
+ 

a [KvKr (az - 1) J 
+ a v r _ = 

Lar Laz Lr' ar 

n>..(l-Sr) Pb >.. Ka aPt 
(65) --( P t) L aT Pt 

Dividing Equation (65) by Ka and multiplying by L, the equation of 

flow in dimensionless form after using Brooks and Corey's Equation (60) 

is used to evaluate ~~ is 

(66) 



Rewriting Brooks-Carey's equation for heterogeneous media: 

Pb(Z) 2+3>.(z) 
Kr = [ Pt(r,z) ] 

P 
1n Kr = (2+3>.) 1n (_b_) Pt 

P 
K = e(2+3>.)ln ( pb ) 
r t 

aK r _ 
aPb-

p (1 +3>.) 
b 

(2+3>.) (2+3>.) 
Pt 
K 

= (2+3>.) P r 
b 

P 
aK (2+3>.) 1n (~) r Pt 
~= e 

since 

P 
K = e(2+3>.) 1n ( ~) 
r Pt 

aK P 
a~ = 3 Kr 1n ( P~ ) 

• [3 1 n 
P 

( ~ )] 
Pt 

aK
r 

_ - (2+3>.) p
t

(1+3>.) • P
b

(2+3>.) • P
t 

aPt - P 2(2+3>.) Pt t 

K 
__ (2+3>.) pr 

t 
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(67) 

(68) 

(69) 

(70) 

(71 ) 

(72) 

(73) 

(74) 

(75) 
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Therefore 

aK _r = K [(2+3A) 
az r Pb 

K :arP 
(2+3A) ..J:. • _t 

Pt ar 

(76) 

(77) 

Substituting Equation (76) and (77) in the Equation (66) we have 

aPt aPt 
a (Kr ar-) + d [Ky Kr (az - 1)] + Ky Kr aPt 

I\t ar az r ar 

P aPt 
a(~) aP t aKr a(3"Z - 1) aPt aK 

[KyKr 
ar + K 1) _r ) (a;-)(ar-)] + [Ky(Kr + (--ar y az az az 

(79) 

aPt aK K K aPt nA(l-Sr ) A Pb aPt 
+ K (-- l)_r]+ [~ a-r] Pt 

(-) - = 0 r az az Pt P t aT 

K K aPt nA(l-Sr ) Pb A aPt 
+[~ ] () 0 r 3r - P

t 
P

t 
a; = 



dividing Equation (80) by Kr 

2 
a Pt 2+3A 

K --- --K 
v ar2 P t v 

P 
+ 3 ln (~) aA 

Pt az 

2 
aPt 2 a Pt aPt 2+3A aPb 
-) + K - + (- - 1) [Kv (- -
~r 2 ~z P ~z 
a V az a b a 
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(81 ) 

Equation (81) is a nonlinear parabolic partial differention 

equation, since the right hand side does not vanish. For the initially 

unsaturated soils the flow equation will remain parabolic at all times, 

since saturation occurs at most only at the surface of water application. 

To obtain the required finite difference solutions to the 

initial-boundary value problem, a number of computer programs were 

written. Whenever there is an abrupt wetting front, the solution is 

less accurate than desirable even though a solution might be obtained. 

Across the wetting front, the change is too rapid for the second degree 

polynomial used in the finite differences equations to duplicate. 

Therefore, the continuous variables Pt or ht are not defined adequately, 

a condition which is aggravated by the strongly nonlinear nature of the 

partial differential equation. Jeppson (43) indicated that a more 

straight forward approach is to introduce a new dependent variable by 

means of a Kirchhoff-Transformation (Ames, 1), that changes by a 

relative small amount at higher capillary pressure in comparison to its 

magnitude changes at low capillary pressure. This modification is 

necessary since across the wetting front the capillary pressure varies 
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rapidly from a large positive to a moderately negative magnitude. The 

introduced dependent variable obtained by applying the Kirchhoff-

Transformation varies more smoothly across the wetting front than 

capillary pressure head, Pt , or the hydraulic head, ht" 

The Kirchhoff-Transformation is: 

J
P

t 
ljJ = K d P' r t 

1 

in which pta is a dimensionless dummy variable of integration. 

(82) 

In the case of heterogeneous soils where the Sr' Pb' and A are 

variable parameters in the Brooks-Corey's equations, using the Kirchhoff-

Transformation will not produce a relationship between the new 

dependent variable and pressure head as it does for homogeneous soils. 

The integration of the Equation (82) is not possible for heterogeneous 

soils, because A is a function of depth. For the integration it is 

necessary to define a specific variation of A for a given problem. The 

Brooks-Corey Equation can be written as: 

and defi ne Peas 

Pb 2+3A 
-) L 

K = P P -(2+3A) 
ret 

and integration of Equation (82) in the case of homogeneous soil 

produces 

(83) 

(84) 

(85) 



_ p -(1+3A) 
t 

(1 + 3 A) 
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(86) 

For the integration of Equation (82) it is not desirable to have it be 

restricted to a functional variation of A(Z), that allows it to be 

integrated. An alternative which introduces a new dependent variable 

~ is defined by the equation 

1 _ p - (1 + 3Ao) 
t 

~ = --------
1 + 3 A o 

~ = [ 1 - (1+3A )] o 

(87) 

(88) 

(89) 

where AO is a reference value of A(Z) (values of A at soil surface 

Z = D) Equation (86) is the same as Equation (87) only the A and ~ 

replaced with AO and ~. 

The new variable ~ has the desirable characteristics that it 

changes much less abruptly across the wetting front. 

Now it is possible to express 

in terms of the new dependent variable ~ and its derivatives: 

.ar. = _ (1 t 3) ) 
d~ '0 

(90) 

(91 ) 
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1 

~1 = - 1 [ (1 3 )] [1 (1 3 ) ] 1+3\0 [1-(1+3\0)~]-1 a~ (1+3\0) - + AO - + \0 t;. s 

Therefore 

Also, we can write 

and 

1 
1+3\ o 

Therefore, from Equation (92) we have 

ar 

and 

Now for the second derivatives we can write: 

p 

a 2p a ( a ~ ) 
t ____ = 

--2 -
az az 

(92) 

(93) 

(94) 

(95) 

(96) 

(97) 

(98) 
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(99) 

Therefore 

(-laO) 

and 

a2p 
aP P 

a( _t ) a( ....1 ~ ) = Pt 
2 a (P tl r;) t ar r; ar LS. + li 7= = ar ar r; ar2 ar ar 

(101 ) 

a (P t l r;) aP a( 1 ) 
= [l_t+p r; ] ar r; ar t ar 

P
t 

1 
[ 1 ~ + P

t 
a ( Z ) a~ 

= a~ ar ] r; r; ar 

(102 ) 

Therefore 

a
2p

t Pt a2~ (~)2 [P t + Pt (1+3"'0) ] 
7 = Z-;;Z + ar r;2 r;2 



54 

(103) 

The Equations (93), (96), (100), and (103) are the first and 

second derivatives of dimensionless hydraulic head Pt with respect 

to dimensionless depth, z, and dimensionless radius, r, and Equation 

(97) is the first derivative of Pt with respect to dimensionless time, 
.. a;\ aKv aPb 

T, 1n the Equat10n (81). The values of az and az- ' az- ' n, Sr' and 

AO in the general flow equation are known from the specified variation 

of hydraulic properties of the soil. 

Substituting appropriate values of derivatives in the Equation 

(81) the more general equation of three dimensional transient flow 

of water through unsaturated, heterogeneous media will result in 

Equation (105). 

p 2 (2+3;\0) 
( ~ ) 2] _ 

P 
F = K [ --.1 ( .LS. + Kv 

[ 2+3A (.--t. E.1.)2] 
v 1:; a r2 1:; ar Pt 1:; ar 

P n + 2+3AO 
P 2+3A aPb 

+ K [ -.-1 ( ( R )2] + ( --.1 R _ 1) [Kv ( 0 
v 1:; az2 1:; az 1:; az Pb az 

P aK K P 
+ 3 1n (~).£.l_ 2+3A R) + _r ] + [~--.1E.1.J 

Pt az 1:; az az r 1:; r 

(104 ) 

P 2+3 A 
Simp1 ifying the above equation and using K = (~) r P

t 
, the above 

equation becomes: 
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(105 ) 
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INITIAL AND BOUNDARY CONDITIONS 

The equation of flow is a nonlinear parabolic type, consequently, 

initial conditions and boundary conditions for the geometry of the flow 

field are necessary. 

The Initial Conditions 

Initial conditions must be specified for transient problems, 

including the distribution of the hydraulic head and moisture content 

throughout the region of flow prior to infiltration. The results from 

any time step solution serve as an initial condition to the new time 

step. This will enable the user to terminate the solution after any 

time step and store the results on tape in which those computed values 

can be picked up again as the initial condition to continue the 

computation. To start the solution it is assumed that prior to 

infiltration the movement of water is negligible everywhere in the soil 

and that static equilibrium exists which causes the hydraulic head to 

be constant throughout the flow field, or the capillary pressure 

(pressure head) varies linearly with depth of the soil profile. The 

water content of the soil profile increases (capillary pressure becomes 

less in absolute magnitude) with depth below the soil surface. 

Pt = z - ht (106) 

(107) 



58 

The Boundary Conditions 

The boundary conditions for any system geometry must be defined 

for the problem. The rectangular area in Fig. 8 shows the flow field 

and different segments of the boundaries having different boundary 

conditions. 

Axis of Symmetry CD - ® .--The flow region below the circular 

water entry zone ® - ® is syrnmetri c about thi s bounda ry. For the 

homogeneous soils boundary CD - ® is a streaml ine and all constant 

head lines (equipotential) are perpendicular to the axis of symmetry. 

The boundary condition along the center line is 

o < z < 0 

r = 0 

(108 ) 

(109 ) 

Surface of Water Appl ication ® - @ .--The surface over which 

the water is applied or water entry zone is assumed to be horizontal 

at a finite height above the drained layer. Only two conditions 

are gi ven for boundary ® - ~. 

a. The flux rate is specified. This conditions applies when 

the intake capacity of the soil is assumed to be greater than the 

water application rate. Consequently no portion of the seepage zone 

will be fully saturated. 

The specified rate of flux can be a function of time (rain 

hystogram). All streamlines leave the surface of water application 

vertically. The boundary conditions for the water entry zone are: 



D 

z = D 

o < r < r - - a 
if flux specified 

~ = 0 ar 
1-(1+3Ao)t: W 

a~ = P ( -K + 1) az t 

if saturation specified 
Pb P = --::---::----=-

z 

Cl 

vii 
N 

vi 
a 

... J 
a 
II 

s-

t (S-Sr) 1 / A 
l-Sr 

l-P -(1+3Ao) 
t t: = -----1+3A o 

z = D 

~; = [1-(1+3Ao)~J/Pt 

aPt = 
az 

4 

0 
'" N 
'" 
4-

s-
W 

II -l-' 

'" N ' 4-
'" s-
4-

s- II 
-... 
W s-
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Cl 

vi 
N 

vi 
a 

<D 
~ ________________________________________ ~ ____ ~.r 

@ z = 0, 

if partially saturated: 

aPt 
= 1 az 

~= 1-(1+3Ao)t: 
az P t 

if saturated: 

FIG. 8.--Formulation of the Boundary Value Problem for the Transient 
Unsaturated Three-Dimensional Axisymmetric Flow From a Circular Area 
Through Heterogeneous Porous Media. 
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~=O ar 

z= 0 

o < r < r a 

~ = [1 - (1+3Ao)~] W 
az P [ K + 1 ] 

t 

in which 

(110) 

(111 ) 

(112) 

(113 ) 

(114) 

b. Surface saturation specified (Dirichlet boundary condition). 

If the saturation at the circular water entry zone is specified, the 

values of pressure head or hydraulic head will be determined directly 

for this boundary. When the soil is completely saturated, the 

capillary pressure is equal to the bubbling pressure (P t = Pb), and 

the rate of water application is equal to the intake capacity of the 

saturated soil. The specified saturation can be a function of time 

and boundary conditions as: 

P
b Pt = ----=-1-

S-S i 
( l-S r ) 

r 

-(1+3A ) 
1 _ P 0 

t 
~ = ----:;---=----

1 + 3A o 

(115 ) 

(116) 
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Surface Beyond Radius of Water Application (J) - (4) .--This 

surface is at a constant height, 0, above drained layer, is 

horizontal and no evaporation occurs across it. The boundary condition 

is the same as the boundary ® - @ except that there is not vert i ca 1 

flux rate W = o. The boundary conditions are as 

z = D (118) 

aPt 
--= 1 az 

(119 ) 

(120) 

Outer Boundary Beyond the Radi us of Infl uence ® - ®. --The 

outer boundary is assumed far enough removed from the water source that 

no moisture movement will occur across this boundary and at all times 

it is in a static equilibrium condition. It is a Dirichlet type 

boundary and boundary value need not be evaluated in the solution of 

the problem. The condition is: 

r = r f (121) 

o < z < D (122) 

h = h (123) o 

in which r f is the radius of influence and ho is the initial 

hydraulic head. 

(124) 
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Bottom Boundary ® - CD --A hori zonta 1 lower boundary at depth 

z = 0 is assumed to exist. Water will pass into this lower boundary 

after the soil profile becomes approximately saturated. 

It is assumed that the surface of the bottom boundary is at a 

constant pressure. When the unit or maximum saturation is attained 

at this boundary, water will begin to pass through the boundary. The 

boundary conditions are 

z = 0 

when the soil profile is not fully saturated 

aPt 
--= 1 az 

when unit saturation first occurs 

-(1 + 3 A ) 
1 - (P

b
) 0 

1 + 3 A o 

(125 ) 

(126 ) 

(127 ) 

(128) 

(129) 

(130 ) 
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FINITE DIFFERENCE SOLUTION 

For this study the Crank-Nicolson method of differencing was 

chosen. In the Crank-Nicolson method, difference approximation of the 

derivatives with respect to the space coordinates z and rare 

weighted at the current and advanced time step equally as the 

derivative wit~ respect to time, T, is approximated by a second order 

central difference evaluated midway between these two time steps. 

Generally, the finite difference equations will converge faster, 

when the truncation error involved is small. At the forward and 

backward difference approximation, the truncation error is of first 

order, O(~t). The central difference approximation has the advantage 

that the truncation error reduces from first order O(~t) to second 

order O(~t)2. Consequently, the Crank-Nicolson method provides a 

second order approximation in space and time with a truncation error 

of O[(~t)2 + (~z)2 + (~r)2]. Also the system of equations produced 

by the Crank-Nicolson method for boundary-value problems retains the 

computationally advantageous tridiagonal form. It is unconditionally 

stable for all values of ratio ~t2 
(~x) 

In application of the Crank-Nicolson method for nonlinear 

problems, different schemes have been used by different researchers. 

One method which multiplies the average of the nonlinear coefficients 

eva,luated at (K) and (K+l) time levels, by the average of differences 

at (K) and (K+ 1) t"ime 1 ine is used by Forsythe and Wason (23), Dougl as 
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(21); Remson, Hornberger and Molz, (83). In another method which 

takes the average of the two products of the nonlinear coefficient 

evaluated at (K) time level multiplied by the difference at (k) time 

level and nonlinear coefficient evaluated (k+l) time level multiplied 

by differences at the (K+l) time level was used by Richtmyer (86) 

and Jeppson (44). 

This study utilizes the Crank-Nicolson method, and the second 

approach (44) was selected as it is easier in computation. 

Finite Difference Operators for 

Interior Grid Points 

The finite difference operator for Equation (105) can be 

obtained by replacing the derivatives by the first and second order 

central differences. If the OIS and 021 s denote first and second 

central difference operators, we have: 

2llZ~ ~ o ~ = ~. 1 . - ~ 0+ 1 . az z J - ,1 J ,1 
(131 ) 

211r~ ~ 0 r~ = t;, 0 0 + 1 - ~ 0 ° 1 ar 1 , 1 J,l-
( 132) 

b.Z
2 a2

t;, 
~ 02t;, = t;, 0+ 1 . + ~ ° 1 . - 2 ~. ° 

az2 z J ,1 J - ,1 J,l 
(133 ) 

b.r2 a2
t;, 2 + ~ .. 1 2t;, .. 
2 

~ o t;, = t;,. . + 1 -
ar r J , 1 J,l- J , 1 

(134 ) 

and therefore, 

(135) 



(~j-l,i - ~j+l,i)2 
4~z2 

] 
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( 136) 

( 137) 

(138 ) 

Replacing the derivative by the equivalent finite difference 

operators in the Equation (105) 

P
t 

0r~ P
t 

0z~ aK K+l P 0 2~ 0 2~ 
+ ___ }+( l)~] [{ t[ r z 

rl; 2~r Z- Uz - az + Kv - -- - + --r; ~r2 flz2 

+ 
2+3A 0 ~2 0 2~ (2+3A)P

t 
0 ~2 P 0 ~ 

__ o(_r_+_z_)]_ _r_+ t z 
r; 4flr2 4~z2 r;2 4flr2 (--Z 2flz - 1) 

(2+31. aPb + 3 ln (Pb) ~ _ 2+3A °z~) Pt °r~ Pt °z~ 
P ':Iz P 2A + ~ -2 . } + (- -- - 1) bOt az r; uz r." flY' s 2flz 

aK K 2nA(l-S) P 2+2A 
_v] _ r _t __ 
az P 2+2A S 

b 

(139) 
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in which K+l subscript denotes the advance time step and K subscript 

denotes the current time step. 

Let us use the square grid network, ~s = ~r = ~z and multiply the 

above equation by ~ and ~s2 = ~r2 = ~z2 to get the following equation: 

K+l 

2+3). 
+ 8 2~ + 0 

z ~ 

8 ~2 8 ~2 (2+3A)Pt 8r~2 
_r_+_z_)J_ __+ 

4 4 ~ 4 

3P P _ 2+3). 8z~ ) Pt 8r~ (2+3). _b ~s + 3 ln (~) rt). 
~s +--- ~s } Pb 3z Pt 3z ~ 2 r 2 

8z~ 3K K 2n).(1-Sr) ~s2 
+ (Pt-2-- ~ ~s) 3 z v llSJ - P 2+2). 

p 2+2). 
llT t 

b 

(140 ) 

If subscripts j and i denote the space subscripts at axial and radial 

directions respectively, and subscript K denotes the time step such 

that: 

j = 1 + (D-z)/~s 

i = +~ 
~s 

(141 ) 

(142 ) 
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K = 1 + ~T 

The finite difference equation for the interior grid point is, 

67 

( 143) 

_2+_3_A_O ( (~j,i+l 4- Sj,i_l)2 + (~j-l,i 4- ~j+l,i)2 ) ] 
- 2~. .) + 

J , 1 l; 
2 

(2+ 3A) Pt (~. . +1 - ~. . 1) ( ~. 1 . - ~"+1 .) 
(l; J , 1 4 J , 1- ) + (P t J - , 1 2 J , 1 ..: l; ~s) 

2+3A aPb ~s + 3 1n (Pb) II ~s _ (2+3A) ((;j-l,i - Sj+l,i) ( P"b az P t az l; 2 

Pt (~. '+1 -~ .. ,) + (_ J,1 J,1-
r 2 

(~. 1 . - ~'+l .) 
~s} } + (P t J - ,1 2 J , 1 - l; ~s) 

K K+1 
a v. 
az ~s ] + [ Kv { P t [ ( ~ j , i + 1 + ~ j , i- 1 - 2 ~ j , i) + (~ j + 1 , i 

2+3A (~ ~)2 o ( Sj,i+l - Sj,i-l 
+ ~. 1 " - 2~" .) + -- 4 + J- ,1 J,l l; 

2 2 
(~. 1 . - ~J"+l ,1') (2+3A)Pt (~. "+1 - ~ .. 1) J- ,1 _ ) ] _ ( J,l J,l- ) + 

4 l; 4 

(~. 1 . - ~. 1 .) 2+3A aPb Pb ( P J - , 1 J + , 1 _ l; ~ s) ( ~ s + 3 1 n (-) ~ ~ s 
t 2 ~az Pt az 

(2+3A) (~j-l,i - ~j+l,i) 
l; 2 

P (~." 1 - ~ .. l) 
+ (~ J ,1+ J ,1- ~s ) } 

r 2 

(~. 1 . - ~'+l .) 
+ (P

t 
J-,l 2 J ,1 

aK K 2nA (1-Sr) 
- r ~s) _v ~s] - ---

~ az P 2+2A 
b 

~s·2 2+2A K+ 1 K 
- P (~.. - ~ .. ) = 0 
~T ave J,l J,l 

(144 ) 
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in which 

Finite Difference Operators for Boundary 

Grid Points 

(145 ) 

Operator for Boundary <D - ® .--Since the value of r equals 
Pt (s, '+l-s, i-l) 

zero at the axis of symmetry, the term, r J,l 2 J, ~s, 

in the flow equation will be undefined along the line singularity. 

This is the reason why an operator cannot be developed by combining 

the central difference approximation of ~ = 0 and replacing it 

with those in the flow equation to handle the nonexisting points 

s· . 1 (i.e., 8 S = s· 2 - s· 0 = 0). The boundary condition J,l- r J, J, 

1 2 in this problem has been handled by setting Sj,l = Sj,2 in 

the finite difference equation. 

Operator for Boundary (g) - G). --The fl ux rate speci fied case 

(non Dirichlet type) leads to the condition that the axial component 

of velocity is constant over the boundary and equal to the infiltra-

tion rate. Therefore the boundary condition equation from Darcy's 

law is 

w - - (146 ) 

ht = z - Pt 
(147 ) 

in which W equals the axial component of seepage velocity, which is 

negative in magnitude being LT- l in a downward direction; (input data 

is a positive value but the computer program adopts a different sign 
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convention, that is the minus sign of W is considered in developing 

the related function); K equals hydraulic conductivity, LT- l ; ht 
equals dimensionless hydraulic head; z equals dimensionless depth; 

and Pt equals the pressure head or capillary pressure, dimensionless. 

a(z - Pt } aPt 
W=-K ---=K(--l) az az 

W aPt 
KKK+ 1 =V 

a. v r 

( 148) 

(149 ) 

(150 ) 

( 151 ) 

(152) 

Approximating ~~ with second order central differences centered on 

the boundary (j=l) will finally eliminate the value of ~ at a 

nonexistent grid point outside of the boundary ® - @ by combining 

with the finite difference operation for interior grid points. 

"I ~ ~J. - 1 ,i - ~J. + 1 ,i + 1 ] = _0 s = ----.:::..--..-'=-= ___ '---::.-.-

az 211S 

211S 1- [ ~ + 1 ] = Pt K 

The value of ~ for a nonexistent grid point outside of the 

boundary for j=l from above equation is 

~O,i = ~2,i + 2hS ~t [~+ 1] 

(153 ) 

(154) 

(155) 
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which combines with finite difference operator for interior grid 

points Equation (144) and results the following finite difference 

operator for the boundary @ - <J) • 

F1,i = [ Kv { Pt [ (l;]'i+1 + I;l,i-1 - 21;1 ,i) + 2(1;2,i + LIS P~ ( ~ + 1) 

2+ 3>.. ( £;'1 i + 1 - £;'1 i _ 1 ) 
2 

[2i1s L ( !i + 1) J 2 
c- ) + 0 ( . , , + Pt 4 K ) J 

- "'1, i c:; 4 

W Pt (£;'1 . +1 - ~1 i -1 ) Pt l K + 1) - £;'2, i) ) + ( r - ,1 2 ' i1 S ) } + (2 

+ [K {P t [ (£;'1 . +1 + £;'1 . -1 - 2E;,1 .) + 2 (E;,2 • + i1S _pC:; (~K + 1) 
V ,1 ,1 ,1 ,1 t 

2 [2L1S L (1i + 1)J2 
_ E;,1 .) + 2+3"0 (~1 ,i+1 - I;l,i-1) + Pt K ) ] 

,1 c:; 4 4 

2 
_ 

( (2+3>")Pt (E;,1 ,i+1 '4£;,1 ,i-1) ) + Pt L (~+ 1) 
c:; [2 (E;,2, i + 2L1S P t K 

- E;, .) - c:;i1SJ ( 2+p3" ~Pb LIS + 3 1n ( Pb ) ~ LIS (2+3,,) 
2,1 b 02. Pt az 2c:; 

K 



K+l K 
(~l·· - ~l .) = a , , , , 

Assume ~ to be the dimensionless flux, VK 
a 

from Equation (45) we can write 

W _ VK K---------
P 2+3A 

( -1l ) 
P

t 
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(156 ) 

(157 ) 

(158) 

The input data for parameter, W, is a positive number with units of 

LT- l . The negative sign of the W is handled in the subroutine Fl and 

by multiplying the equation above by a minus sign. Upon simplifying 

the above equation, the finite difference operator for the boundary 

over which water is applied, ® - ® is as follows: 

Pb d 2+3 W (P t ~l,,· +1 - ~l, i - 1 ) 
+ 3 1 n ( P t ) a; 115 - ptA 115 (K + 1)) + r 2 -

K K+l 
W d 

~s) } + (s ~s K ) azv ~s] + [ Kv{ Pt [ ( ~l,i+l + ~l,i-l -
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s W 2+3:\0 
2~1 .) + 2(~2 . + /).S -P (-K + 1) - ~1 .) + --

,1 ,1 t ,1 S 

2 

( 
(~l,i+l - ~l,i-l) s W 2 (2+3:\)P t 4 + [/). s - (- + 1) ] ] - ( r 

P t K ':> 

(~l,i+l 
2 aPb P - ~l,i-l) 

) + (s /).s }i ) ( 2+3:\ /).S + 3 1 n (~) 4 K Pb az Pt 

2+3:\ 
(*+1))+ 

( p t ~1 , i + 1 - ~ . ) 
~ /).s /).s 1 , 1-1 /).s ) } + 
az - --rt r 2 

for 

i = 2 • • • N2X 

(159 ) 

where N2X is the number of points in radial direction to outer edge 

of circle of application. 

Operator for Boundary ® - ® .--Along this horizontal boundary 

the vertical component of seepage velocity is zero (no water application 

or evaporation from this surface). The finite difference operator for 

this boundary will be obtained by substituting W equals zero in the 

Equat ion (105). The operator for boundary (J) - ® is as fo 11 ows: 

Fl . = [ Kv { P t [ (~l . + 1 + ~ 1 . -1 - 2 ~ 1 .) + 2 ( ~ . + /). s Sp 
,1 ,1 ,1 ,1 2,1 t 

2+3;\ 
) + 0 

- ~l . , 1 S 

(~ _ ~ )2 P ( ) 
_ ( (2+ 3:\) P 1 , i + 1 1 , i - 1 ) + (-1. ~ 1 , i + 1 - ~ 1 , i -1 

s t 4 r 2 



for 

K+l 
t:$.) } ] + [ Kv { P t [ (t;, 1 , i + 1 + t;, 1 , i - 1 - 2 1, i) + 2 ( t;, 2 , ; 

2 

+ 
2+3AO ( (t;,l,i+l - t;,l,i-l) 2 

+ L\S Lp - t;,l .) 4 + [L\S Lp J) ] 
t ,1 r; t 

2 
( (2+ 3;\1 P (I; 1 • i + 1 - 1;1. i -1) ) + ( P t I; 1 • i+ 1 - 1;1. i -1 ) 

r; t 4 r 2 

K 2nA ( l-Sr) 2 (2+2A) K+ 1 K 
L\ S) } ] - J;§ - p (c - c ) - 0 

P 2+2A L\T ave sl,i sl,i -
b 

= N2X + 1 • • • Nr - 1 

r 
i > (1 + ~ ) 

L\S 
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( 160) 

where Nr equals subscript denoting number of grid lines from the axis 

of symmetry to the outside radius of the problem. 

Operator for Boundary ® - ® .--This boundary is assumed to be 

far enough from the source of water that no flow occurs in its 

vicinity. Thus, the values of hydraulic head do not change along 

boundary ® - @. No finite difference operator is needed (Dirichlet 

type) . 

t;, = t;, o 

for 

j = 1, Nz 
i = N r 

(161 ) 

Operator for Boundary @ - CD .--The finite difference equation 

for the bottom boundary (when un it sa turat i on has not been 
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achieved, or is not of the Dirichlet type) is the same as the operator 

for boundary (t - ® in which the subscript J=l is replaced by Nz 

and 2 by N2-1, (i = 2, . . . Nr - 1), where Nz equa 1 s subscri pt 

denot i ng number of gri d 1 i nes from the surface to the bottom bounda ry. 

Pt = z - ht 

Also 

ap ~ P 
__ t ___ t_ ~ 

az s az 

a t bot tom bou nda ry 

j = N z 

therefore 

~N - 1 i - ~N +1 i z' z' ----:------ = 1 2L1s 

(162 ) 

(163) 

(164 ) 

(165 ) 

(166 ) 

(167 ) 

~ Since Nz+l is a nonexistant grid point, therefore, the value of Nz+l ,; 

can be replaced by: 

~Nz-l,i ~N = 2L1 s L 
z+l,i Pt 

( 168) 

~ = ~N 2L1 s L Nz+1,; z-l , i Pt 
(169) 
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Note this is the same as top boundary condition (soil surface), but 

W 
T<+ 1) is ~2,i is replaced by ~Nz_l i and the sign of ~s t- ( 

, t 
changed and there is no fl ux, W, at thi s boundary. 

Replacing the term ~NZ+l.i = ~NZ-l.i - 2~s ~ in the general 

form of flow equation and considering W = 0, we have 

2+3A 0 ~2 (2+3A)P
t 

0 ~2 P 0 ~ K+l 
+ 0 ( _r_ + [ ~s ~ps ] 2 )] _ ( _r_) + (-1 -I- ~s)} ] 

1; 4 t 1; 4 r 2 

[Kv{Pior2~ + 2.0 (~N . 

2 
2+3A 0r~ 2 

- bS L - ~ ) + 0 (-4 + [ ~s -~ ] ) ] 
z-l ,1 P t Nz , i 1; P t 

(2+3A)P t °r~2 
-( 1; -4-)+ 

P 0 ~ K 
(~_r_~}] 

r 2 
2nA(1-Sr) ~s2 

P 2+2A ~L 
b 

for i = 2, ... Nr - 1.' (170 ) 

Method of Solution 

Writing finite difference operators for all grid points (interior 

or boundary) produces a system of nonlinear algebraic equations for 

the unknown ~~+~. Since the coefficients involved, finite difference 
J ,1 

operators, are function of ~, the produced system of equations is 

nonlinear. All values of ~ in the system of equation with superscript 

K are known, and within the region of computation, the number of 

equations is equal to the number of grid points. By solving the 
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system of nonlinear equations, the solution of the infiltration 

problem advances through one time step ~T. 

For solving the finite difference equation, this study utilizes 

the scheme proposed by Jeppson (43) which in essence combines the line 

successive relaxation iterative method with the Newton-Raphson method, 

that is, an iteration is created within an iteration. The Newton-

Raphson method starts with an estimate of the solution and iteratively 

computes better estimates. It has quadratic convergence, which means 

that each subsequent error at the (m+l) iterate is proportional to 

square of the previous (m)th iterate error. 

The iterative Newton-Raphson formula for a system of equations 

is: 

(171 ) 

in which m equals iteration number; F consists of the elements 

composed of the finite difference operators, Fj,i' when the solution 

is obtained Fj,i = 0; D equals the Jacobian matrix which consists of 

derivative elements, where in the case of three dimensional axi-

symmetric problem it is a banded matrix. 

The elements of individual rows 'of this matrix are derivatives 

of that particular function, F. 1· with respect to unknown vectors J, , 

~~+~ (~~ . is known). The rows and column corresponding to the known 
J,l J,l 

value of ~~+11· at the boundaries (Dirichlet type) are omitted. The 
J , 

innermost iteration solves for the values of ~K+lls along a con-

secutive vertical lines from the system of equations resulting under 

the assumption that the ~K+l IS on the previous and next line are 

known. That is, two outer bands of matrix, D, were assumed zero, 
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consequently, the banded matrix reduced to a tridiagonal matrix. In 

this way for utilizing an inner iteration scheme considerable reduction 

in storage requirements and reduction in computer execution time will 

be achieved. The matrix is in tridiagonal form, so this system can be 

solved by a single pass through tbe runs with a Gaussian elimination 

to bring the terms below the diagonal of matrix to zero, then the 

unknown values of ~K+lls are computed by back substitution. The inner 

most iteration will continue until the sum of absolute change in ~IS 

along the line becomes less in magnitude than specified error 

(approximately 10-7) term, then sk-ips to next vertical line, and a pass 

through all lines constitutes an outer iteration, and provides values 

of ~IS throughout the flow region which are close to those that would 

be obtained from one iteration by the Newton-Raphson method (Equati,on 

171). During each outer iteration the sum of accumulated absolute 

changes in the values of 6 from the inner iterations along individual 

lines is accumulated. When this sum (SUMT) becomes less than a second 

error (error x 100), the iteration is terminated. However, when the 

Newton-Raphson iteration does not converge within a specified error 

and number of iterations, a message to this effect is printed and 

solution is terminated to another time step. The implementation of 

this solution method can be found in the listing of the FORTRAN program 

at Appendix II. The proposed method of solution referred as the 

Newton-Line-Relaxation method. 

Since the division of a matrix is undefined, the D- l in the 

Equation (171) is the inverse of matrix D, and for implementation of 

Newton-Raphson method the inverse is never obtained as Equation (171) 

implies. At the actual implementation of the Newton-Raphson method 
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a F11 aF'l o ° 

aF1, 
o 0 0--

a~'l a~21 a~12 

aF21 aF21 aF21 aF2, 
o 0 --0 0--

a~ll a~21 a~31 a~22 

0 
aF 3' aF 31 aF 31 

0 
aF 31 

--0 --0 

o = 
a~21 a~31 a~41 a~32 

aF'2 aF'2 aF12 aF12 
--0 0--
a~11 a~12 a~22 a~13 

0 
oaF

22 
a~21 

aFN N ° aFN N aFN N 
z r z r z r 

as N at a~N N 
Nz r-l ~Nz-l Nr z r 

( 172) 
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the solution vector X of the linear system (D)m xm = (F)m is 

subtracted from the iterative vector of unknowns. Less computations 

are required in solving the linear system (D)Xm = (F)m than computing 

the inverse of Jacobian matrix, D, thus the practica.l form of the 

Equation (171) is: 

(173) 

A reasonably accurate guess of the unknown (~K+l)o is required to 

assure convergence. The initialization for (~K+l)O is obtained 

(174 ) 

+(K+l) +K + 
~ = ~ - b.~ (175 ) 

by changing the values of ~'s at each grid point by the amount which 

they changed during the previous time step. 

Evaluating Derivatives of Jacobian D 

(a) For The Soil Surface or First Row of Jacobian D.--

2 

+ 
2+3AO ( (~l,i+l - ~1,i-1) + r; W 2 

- ~l 0) ( b.S -P (-K + 1» ] 
,1 r; 4 t 

aP P ar; - r; 
W t P~l;'i a~l,i 

+ Pt [ -2 + (2 b.S ( K + 1) P 2 - 2) + (2+3Ao) 
t 

2 

( _ L '='1'" ) ( (~1, 1°+1 - ~1 1° 1) r W 2 
o~ 4 ,- + [ {).s P

t 
( K + l)J 

r;2 a~l,i 
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W 3 0 _a>.. "s. 1 aPt W ( -K + 1)) + ~ ( - u - (2+3>..) (!J.s)( -K + 1) • 
. az pta ~1 , i 

~1 . 1 - ~l . 1 aP ] + (~,1+ ,1- t ) } 
r 2 a~l . , 1 

" aKv as ) 
a~1' • 3Z /J.s 

, 1 

P 2+2>.. 
ave 

• P 2+2>.. = 0 (176) 
ave 

Upon simplifying,the following equation is obtained 

2 

+ 
2+3>"0 ( (~l, i + 1 - ~l, i - 1 ) W 2 

- ~l,i) ~ 4 + (~S ~t ( K + 1)) ] 
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(2+3A
O

)(LlS)(* + 1) 2 
+ (llS f- ( ~ + 1)) 2 ) - 2 (p ) ] 

t t 

2 3 aP P 2+3A W 
[ ( - (l+3A

o
)) ( ~ _b LlS + 3 1 n ( i ).£l llS - -P- LlS ( -K + 1) ) 

Pb az P t az t 

(2+3A)(LlS)( * + 1) ~l,i+l - ~l . 1 
+ ( - 3. 0 ~~ f,S + P t ) ] + ( ~S • 2' 1 -

211 A(1-Sr) lls2 2+2A ( K+ 1 K 1 
P 2+2A 

-P ~l . - ~l,i) (2+2A) ( ~) • (Pt ) LlT: ave , 1 
b 

( 1 ) -
211A(l - Sr) 

LlS
2 

Pave 
2+2A ( 177) 

l; Pave P 2+2A LlT: 
b 

dF1 . 
--=......,~l = 2 Kv P

t d S2 
. 

, 1 
(178) 

Pt Lls _ 2+3A 
(2 ~ j , i + 1 -2 ~ 1 , i - 1) + r 2"" } - Kv P t [ 1 + 2l; 

0 (~l, i + 1 - ~ 1 , i - 1 ) 

_ 2+3A ( _ ) + ~ 
2l; ~l,i+l ~l,i-l 2r] (179 ) 
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aF, . 2+3A 
_-:.-' '- = Kv { P t [ , + 4 r 0 ( 2 ~, ,i - , 
a~"i-1 '0> 

2~ . )] _ (2+3A) 
1 , 1 + 1 4s 

( ) + 2+3A ( ) - ~ ] 
~1,i+1 - ~1,i-1 2s ~1,i+1 - ~1,i-1 2r 

(180 ) 

(b) For flow field or interior elements of Jacobian 0.--

a F .. 
a ~ . J ~ 1 = K v { P t [ (- 2 - 2) + (2+ 3Ao) 

J,l 

2 
(~j,;+l - ~j,i-1) 

4 + 

(~. 1 . 
2 a(l) d P

t (~j,;+' - ~j+1,i) + l;. . 1 J- ,1 (_s -) ] + [ J ,1-
4 dE; a~ .. J , 1 

4 

(l;j+1,i 2l;. .) 2+3A (l;. '+1 - l;. 1 . - - l; . . 1) 
+ J- ,1 J , 1 + 0 ( J , 1 J ,1-

4 s 4 

2 
+ (~j-"i - l;j+1,;) 

2 
(2+3A)(l;. '+1 - l; . . ,) )] _ ( J,l J,l-

4 4 
aPt 

s - P ds 
d~.. tal;.. a Pt J,l J,l)} ( ----~--~~ + y 2 al;. . s J,l 

dS I1S 
dl;. . 

J , 1 

l;j-1,i - ~j+1,i 
2 

1 ( l;J' , i + 1 -l;J', i - 1 ) 
- S I1s) ( - 3 K ~ I1S - - Kv (2+3A) - 2 v az S 

2 

- 2~. .) 
J , 1 
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---)+ (-r- 2 
a~j, i 

~. 1 . - ~j+l,i aPt as 
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J,l J,l 

211 A(1-Sr) 
- P 2+21. 

b 

211 A(1-Sr ) 
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b 

65
2 2+21. -p 
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a~ .. 
J , 1 

P 
a(ln ( ~)) a(ln Pb - 1n Pt ) 
___ Pt~ = 3.0 Kv ~~ 65 ------
a~. . 0 a~J. , i J ,1 

aA a(ln Pt ) 
- - 3.0 Kv az 65 

a~ .. 
J ,1 

a [1 - (1+31. )~] 
3 0 K .Zl 65 

0 - - · v az a~ .. 
J ,1 

3 0 K .Zl 65 
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0 

- - 3 0 K ~ 65 _1_ 
· v az s 
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(181 ) 

( 182) 

( 183) 

(184 ) 

(185 ) 
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and making some algebraic manipulation the Equation (181) will be in 

the following form: 

aF. . P
t J,l = K - [( 2 ) ( 2 ) as" v <; Sj,i+1 + Sj,i-1 - Sj,i + Sj+1,i + Sj-1,i - Sj,i 

J, I 

2 2 
2+3>. (s. '+1 - S· . 1) + (s· l' - s'+l .) + <; 0 (J,l J,l- 4 J-,l J ,1 ) 2+31. ---

<; 

( S S 2 [( 2 + 3 A) ( 1 + 3 1.0 ) j,i+1 - j,i-1) 
] + Kv Pt -4. + 2 

4 <; 

2 2 
(s· '+1 - S~ . 1) + (s· 1 . - s'+l') (2+31.)(1+31.0 ) 

( J,l 4 J,l- 1-,1 J,l 2 

<; 

(S· '+1 
2 

[ 2+31. aP b K I1S + 3. 
P - s· . 1) . J , 1 J,l- ] + Kv 1n ( ~ ) 

4 Pb az v P
t 

.2A 115 
Kv (2+31.) S· 1 . - Sj+1,i aK P

t J - ~ 1 +_v ] - 2 I1S (-az <; az <; 

I1s2 (2+21.) 
-;;:r Pave (186 ) 
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( 
2+3A aPb l:. + 3 1 (Pb ) ~ l:.S _ (2+3A) (i;j-l,i - i;j+l,;) ) ] 

P
b 

az s n Pt az z; 2 

aF .. 
J ,1 

a ~ . +1 . = Kv P t [ 1. 
J ,1 

2+3A 
--=---~o (t" t") _ 1 (2+3A . 

2z; Sj-l,i - Sj+l,i 2 P
b 

aP P ~) ~zb ~s + 3 In (~) ~ ~s _ 2+3A ( j-l,i ~j+l,i ) ] 
a Pt az z; 2 

pta Kv (~. 1 . - ~. +1 .) ( ____ ~s + K (P J - , 1 J, 1 _.,. ~s) 2+ 3A) 
2 az v t 2 ." 2z; 

( 188) 

( ~. . 1 - ~. . 1) + 2L\S ] J,l+ J,l- r 
(189 ) 

aF .. 
J ,1 = K P [1 

a~. . 1 v t J ,1-

2+3A 
---,-...-_0 (t" _ t".. ) + 2+ 3A 

2z; Sj,i+1 sJ,1-1 2z; 

(190 ) 
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(c) For the Bottom Boundary or Bottom Row of Jacobian 0.--

aFN · P Z,1 t l;; 
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(192 ) 
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a ~N i + 1 = v t + z;; --"-----:4=-----=--- z;; t 
z' 

(2~ - 2~N .) P 
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2~N ;-1 - 2~N ,;+1 
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r; t 
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2+31. 
= Kv Pt [ 1 - 0 (~ _ ~ ) + 2+3:\ P 
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THE COMPUTER PROGRAM 

Description and Structure of the Program 

The program is written in FORTRAN IV language. A flow chart 

which describes the basic logic used in development of the program is 

given in Appendix I. The FORTRAN program consists of the main program, 

several subroutines and two function subroutines. 

Main Program~-Main program reads and calculates the following 

parameters to establish the dimensions and solution characteristics, 

initializes the problem and determines the manner of computation and 

outputing of the solution: 

N2X Number of grid points in the radial direction to outer edge 

of circle ra over which water is applied 

MX Number of grid points in radial direction to outer radius 

of problem. 

MY Number of grid pOints in axial direction between top surface 

and bottom of problem. 

NT Number of time steps through which computation are to be 

completed. 

HI Value of the static equilibrium initial hydraulic head hoe 

(Minus must be punched into card). 

DEPTH The depth between top surface and bottom of the problem. 

DELT Size of dimensionless time step increments bT which are to 

be used in obtaining the solution. 

SL The characteristic length used to nondimensionalize all length 

parameters of the problem. 
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iteration. The individual line iterations are terminated 

~hen the absolute sum of change between consecutive iteration 

is less than ERR. 

ERRT A parameter used to terminate Newton-Relaxation iteration in 

each time plane iteration when the absolute sum of change 

between consecutive iteration is less than ERRT (ERRT = 100 * 

SATMAX 

OMEGA 

NRIT2 

NHSTAR 

ERR). 

Maximum saturation which can be attained in the soil 

surface which is used to transfer top boundary condition from 

specified application rate to specified saturation. 

Maximum saturation the soil can attain in the bottom 

boundary drain layer and moisture begins to build up in the 

soil profile. When OMEGA is less than computed saturation 

at the bottom boundary the Pt = Pb· 

Number of regular time steps between which solution are 

printed. 

If HNSTAR is less than zero only the values of the dependent 

variable s will be printed at the specified time steps. If 

NHSTAR = 0 the value of S, the saturation and hydraulic head 

will be printed at the specified time steps. If NHSTAR is 

greater than zero, values of s will not be printed, but 

values of saturation and hydraulic head will be printed. 

MAX Maximum Newton-line iterations that will be allowed. The 

number of iterations on any time plane which will be allowed 

will be one-half this many. 

MAXT The maximum number of iterations on any time plane that 
MAX will not be allowed MAXT = 2.0 . 
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An index when it is greater than one the first time step will 

be subdivided to some unequal but smaller time steps. 

Dimensionless space increment bS DELS = ~~:fT. 

Dimensionless radius of circle of application ra ' 

R = DELS * FLOAT (N2X-l) 

Dimensionless area of circle of application 

AREAC = IT * R * R 

Q Application rate per area of the circle of application 

Q = VK * AREAC 

TIME Dimensionless time T. 

HO(J,I) Values of pressure head at time = 0.0, HO(J,I) = H(J,I). 

HD(J,I) Difference between pressure head at previous time step and 

current time step. HD(J,I) = HO(J,I) - H(J,I). 

H(J,I) 

B(J,I) 

D(I) 

SATT 

Values of pressure head at any time. 

Values of hydraulic head at any time. 

Values of saturation calculated from Brooks-Corey Equation 

Magnitude of saturation on the circular water application 

rate. When SATT equals or is greater than the SATMAX the 

specified flux condition will be changed to specified 

saturation (NSSUR = 1) and pressure head will be calculated 

from the SSUR specified. 

Sl(I) Initial saturation. 

The main program specifies the problem and directs the order of 

computation and nature of output by calling subroutines and also 

changes the boundary condition. The program is capable of reading a 
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constant flux rate or an array of rainfall records (intensity and its 

time of occurrence). This condition defining the specified flux rate 

is true when the intake capacity of the soil is greater than the 

applied flux. When the intake capacity is exceeded, which is a 

normal phenomenon in the nature, the soil surface becomes fully 

saturated and the soil properties will govern infiltration. In this 

type of infiltration phenomenon, the boundary condition of soil 

surface ® - ® changes to a speci fi ed saturati on of about 90 percent 

and solution continues. Also data from a hystogram can be read in to 

calculate and evaluate some dependent variables of infiltration. In 

the case of constant flux it is possible to obtain very useful informa­

tion about flow from a trickle source or a low head sprinkler 

irrigatton for example. For the flow of water from infi1trometers 

used to determine the infiltration rate of a soil, the program is 

capable of simulating this condition by setting a specified saturation 

at the beginning of the infiltration process. In the main program 

subroutines INITIA, DERV, TIMSTH, RITOUT are called, and a brief 

description of these subroutines is given in the following: 

Subroutine INITIA.--Subroutine INITIA initializes the static 

equilibrium pressure head H(J,I), dependent variable (~) XI(J,I) and 

distribution of saturation in the soil profile by the following 

equations: 

H(J,I) = HEIGT - DELS * FLOAT(J-L) - HIT 

XI(J,I) = (H(J,I) * * ERR 1-1.)/ERRT 

SI(J) = SR(J) + SR1(J) * (BB(J)/H(J,I) * * AMBDA(J) 

(195 ) 

(196 ) 

(197) 
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But, whenever the saturation is specified the pressure head and ~ 

values for the boundary ® - (1) is obtained by the known saturation 

in this surface by the following equation: 

H(l,I) = BB(l)/((SSUR - SR(l))/SR1(1)) * * (l./AMBDA(l)) (198) 

XI(l,I) = (H(l,I) * ERR1-l.)/ERRl ( 199) 

for I = 1, . . . . . N2X 

Subroutine DERV.--In subroutine DERV the coefficient of the 

quadratic equations which will be used in defining the variation of 

pore size distribution exponent, A, bubbling pressure, Pb, residual 

saturation, Sr' and porosity, n, saturated hydraulic conductivity was 

read. In this subroutine the magnitudes of all variables and their 

derivatives for each grid point and other parameters are determined 

and written out. The calculated values of each variable for every 

grid point passed through common statement which they will be used by 

the function subroutines Fl and F3 and one subroutine FJ. The quad-

ratic distribution of soil parameters are as: 

A = AMBDA(J) = AL + (BL + CL * Z) * Z 

Kv = VKS(J) = AKV + (BKV + CKV * Z) * Z 

n = POR(J) = APOR + (BPOR + CPOR * Z) * Z 

S = SR(J) = ASR + (BSR + CSR * Z) * Z r 

Pb = BB(J) = APB + (BPB + CPB * Z) + Z 

in which 

AKV = 1.0 - (BKV + CKV * HEIGT) * HEIGT 

Z = HEIGT - DELS * FLOAT (J-l) 

(200) 

(201) 

(202) 

(203) 

(204 ) 

(205) 

(206) 
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Subroutine TIMSTH.--Subroutine TIMSTH carries out the computation 

needed to advance one time step. This subroutine calls function 

subroutines Fl and F3 and subroutine FJ for the previous and current 

time steps. (K and K+l time level) and subroutine FIBNOK. The major 

amount of computations take-place in this subroutine. The function 

subroutine F3 will not be called unless the wetting front penetrates 

to the bottom boundary. When the values of the function 

F at each grid point are calculated in the flow region, the main 

computation will start by the Newton-line-Relaxation method. In this 

method, as described before, iteration is created within an interation. 

When the iteration numbers and error terms are satisfied, the process 

is terminated. The initial guess for (~)O in the Newton method is 

obtained by changing H(J,I) or X](J,I) at each grid point by the 

amount they changed during the previous time step. 

Function Fl.--This function solves the function Fl and its 

derivatives P(l) and DP(l) at each grid point for both previous 

(NN=O) and current time step (NN f 0). The value of parameters 

which they are computed in subroutine DERV for J=l are used in this 

subroutine to evaluate the equations Fl, D(l) and DP(l). This 

subroutine calculates the value of Fl and its derivatives P(l) and 

DP(l) just for one grid point at soil surface when it is called. 

Subroutine FJ.--For the interior portion of flow field subroutine 

FJ is used to solve the function F and its derivatives DM(J), D(J) 

and DP(J) by having the values of parameters which are determined in 

subroutine DERV for J=2 in MY-l. 
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Function F3.--The equation F3 which has been developed for the 

bottom boundary condition, and its derivatives equations D(MY) and 

DM(MY) are solved by this Function F3. Again values of parameters 

which have been evaluated in subroutine DERV for J=MY are used in 

this computation. 

Subroutine FIBNOK.--Subroutine is called when ERRl * XI(J,I) is 

less than -0.99999. When the value of ERRl * XI(J,I) is less than or 

equal to -1.0, there is no solution for equation and computer will 

stop. For example, when the magnitude of ERRl * XI(J,I) is equal 

to -1.0 the computed pressure head will be Pt = 00. In another case 

when the computed value of pressure head, Pt , is less than zero which 

is going to be used in functions Fl, F3 and subroutine FJ to evaluate 

the term: 

log ( ~ ) Pt 
(235) 

It is obvious that taking logarithm from a negative number is 

undefined. This subroutine then determines the root to each F by 

first squaring and then utilizing a Fibonacci search (117) to obtain 

the minimum of a squared function. After using the Fibonacci search 

iterative scheme for a few iterations, the solution process is again 

turned over to the Newton-Raphson iteration. 

Subroutine RITOUT.--Subroutine RITOUT will print pressure head, 

hydraulic head and saturation at each grid point if specified through 

an input parameter. When the value of NM (NM = NHSTAR) is greater 

than zero only the values of saturation and hydraulic head will be 
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K+ 1 0 3. K+ 1 0 V - Vw = r 2n n ~s (1-1) (S .. - S .. ) 
w J i "J~ J,l 

(218) 

The values of dimensionless time T and dimensionless volume of 

water which has infiltrated is recorded in each time step (TIM1 and 

WATC01). The average and instantaneous infiltration and infiltration 

per unit area is computed from 

Average Infiltration rate = W~I~~T 

Instantaneous Infiltration Rate = WATCOT - WATCOl 
TIME - TH~l 

Instantaneous Infiltration per unit area = Ins t . In f i 1. rate 
--AO:-::R-="EA"::"""'OC,,-----

(219) 

(220) 

(221) 

in which WATCOT is the volume of water at current time step (dimension­

less); WATC01 is the volume of water at previous time step (dimension­

less); TIME is the actual dimensionless time; TIM! is the magnitude 

of dimensionless time at previous time step; and AREAC is the dimension-

less area circle of application. 
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DATA AND SPECIFICATION REQUIRED TO OBTAIN A SOLUTION 

The required data and specifications of a problem are provided by 

means of several cards containing input data. The required data can 

be categorized as follows: 

1. Establishing the dimensions of the problem. 

2. Defining the physical properties of the soil. 

3. Specifying the initial hydraulic head distr"ibution and 

rainfall records. 

4. Controlling the flow of computation including the type and 

a.mount of information printed out. 

Establishing Dimensions for the Problem 

The dimensions for the problem are established by specifying input 

data for soil depth (i.e. distance between the drained layer and the 

soil surface) and the number of grid lines to be used for the finite 

difference computations. The input data of the number of grid lines 

consists of number of lines radial from the axis of infi1trometer 

(circular area) to the outer boundary (MX), number of axial lines (MY) 

and the number of radial lines from the center of the infiltrometer to 

the edge of infiltrometer (circular water input area) N2X. 

The incremental distance between adjacent grid lines in the axial 

direction, ~z, is obtained by dividing the depth of soil, D, by the 

number of axial grid lines minus one (minus one because the number of 

grid spaces is one less than the number of grid lines). Since the square 
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grid points are used in finite difference operators, the radial 

increment Ar is equal to the axial increment AZ. The radius of 

infiltrometer is obtained by multiplying the increment (Ar = AZ = AS) 

by specified number of grid lines to the infiltrometer ring (or 

circular water entry zone) minue one ra = As·(N2X-l). The outer 

radius of the problem is determined by the following: 

r = AS· (MX-1 ) 
f 

and the number of grid lines from the axis of symmetry to the 

infi1trometer ring of radius ra is given by: 

N2X = ( 
iV1Y - 1 

o ). r +1 a 

(222) 

(223) 

In carrying out the computations required in the solution of flow 

equation, only those grid points within the region affected by 

infiltrating water are used during any time step, that is, the field 

over which the computations takes place is expanded gradually as 

required to be just ahead of the wetting front. Therefore, a 

solution to a problem not underlain by horizontal lower boundary 

can be accomplished by specifying a depth of soil greater than the 

depth through which the wetting front will penetrate. Generally, 

it is better to specify the number of grid lines to the outer boundary 

of the problem equal to the size of FORTRAN array dimensions correspond­

i ng to the radi a.l 1 ines. In thi s way there is 1 ess chance that the 

wetting front will penetrate laterally far enough to reach this outer 

boundary. But when a relatively shallow depth of soil is specified 

and computation is extended over a considerably longer time period, 

relatively much lateral movement occurs, then the wetting may reach 



the outer boundary of the flow region and computation will be 

terminated. 

Defining Hydraulic Properties of the Soil 
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The program utilizes the Brooks-Corey equations in the solution 

of the problem, requires that the following parameters and their 

variations be specified: 

1. residual saturation, Sr 

2. pore size distribution index, A 

3. bubbling pressure head, Pb 

4. the soil porosity, n 

5. saturated hydraulic conductivity, Ko 

Residual Saturation.--The residual saturation is defined as the 

saturation at which water movement ceases. Brooks and Corey (9) 

reported that there was not too much difficulty in determination 

of residual saturation from desaturation curves. But when the wetting 

fluid is water and the medium is clay determination of the Sr is 

difficult. For example, clay soils, whose structure deteriorates on 

wetting, will not follow the typical S-shaped curve (S-Pc)' and a 

residual saturation will not exist. Brooks and Corey (9) carefully 

removed all the clay from s~ne sandstone cores and reduced the 

residual saturation almost to zero. Consequently, they reported high 

values of residual saturation for the sands containing some clay. 

Also they showed that the residual saturation is not entirely a 

function of clay content, perhaps the physical significance of residual 



104 

saturation can be explained in terms of a discontinuity in the 

distribution of pore sizes. 

Pore-Size Distribution Exponent.--The pore size distribution 

exponent is the negative slope of the best-fit straight line drawn 

through effective saturation (S-Sr) and capillary pressure Pc data 

points plotted on log-log paper, Fig. 2. Sandy soils which have only 

a very narrow range of pore sizes have larger values of pore size 

distribution exponent, A, than soils with structure and a larger range 

of pore sizes. 

Bubbling Pressure Head.--The bubbling pressure is the capillary 

pressure at which air first begins to flow through the saturated 

porous media. Bower (5) defined the term critical tension as the 

capillary pressure head at the center of the range over which a 

permeability reduction occurs, which is similar to bubbling pressure 

head. Extrapolation of a straight line on log-log graph (Fig. 2) to 

the intercept of effective saturation Se = 1.0 gives the value of 

bubbling pressure head, Pb. The values of parameters Sr' A, and Pb 
can be obtained from a desaturation curve. 

Soil Porosity.--Soil porosity is the ratio of volume of voids 

and total volume of the soil. For the single-grain materials, its 

value is smaller than for well developed soils. 

Initialization of Hydraulic Head 

The initial hydraulic head can be established by assigning all 

the values equal to a constant which is read in as one of input 
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parameters. The initialization with a constant hydraulic head 

represents a static equilibrium in which no external forces other 

than gravity are acting on the system. It is apparent that good 

judgment is required in specifying a problem to insure that all 

specifications are consistent with one another. For instance, 

specifying a flux rate which exceeds the infiltration capacity of 

the soil, or specifying an unrealistic initial hydraulic head, gives 

results that may not be valid in representing a physical condition. 

When the time increment ~T is too large with respect to other features 

of the problem, this also will create difficulty in the numerical 

computation. Also smaller values of ~T causes little difference in 

the value of hydraulic head and saturation to occur between the two 

consecutive time steps. Specifying a large infiltration rate creates 

some numerical computation difficulties. In order to obtain a 

solution to the problem, the infiltration rate is increased in magni­

tude during the first few time steps until a large rate is specified. 

Thereafter the infiltration rate can remain constant at a desired 

level for all other time steps. 

Controlling the Flow of Computations 

A number of parameters are required as input data which control 

whether or not specific computations are performed and the type and 

amount of output. These parameters serve to determine whether 

specified flux conditions or ,specified saturation is going to be used 

and when the flow of computation changes from one condition to another 

condition, and also those time steps when calculated values of 

hydraulic head, pressure head and saturation should be printed out. 
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saturation condition) of 90 percent. A horizontal lower boundary 

is assumed to exist at the bottom of the soil profile and no water 

will flow into the bottom boundary unless the soil at the bottom of 

the profile becomes fully saturated. The outer boundary is far enough 

from the s04rce of water that the wetting front can not reach to this 

boundary. 

2. Dimensions and Problem Specification 

For all problems the dimensionless depth from soil surface to 

the bottom boundary was D = 2.0 and the dimensionless radius of circular 

area was taken as ra = 0.3. A dimensionless time increment ~~ of .005 

was used to start the solution. Thereafter value of ~~ are period­

ically multiplied by values larger than one to increase the efficiency 

and decrease the printout time. The solutions shown were terminated 

before the wetting front had penetrated to the bottom boundary or 

cylindrical outer boundary. 

3. Methodology 

To study the effect of heterogeneity of the soil a base 

solution for homogeneous soil in which all parameters are constant 

throughout soil profile and several solutions in which only one 

parameter in each is varied, were obtained. The variation of each 

parameter is a linear and continuous function of depth z. The 

variable z has a maximum value of 2 on the soil surface and z = 0 

at drained layer. Except for variation of parameter Kv which is a 

dimensionless function of the depth, the other variations of parameter 

were chosen such that the average value of the parameter would be 

equal to its constant value in the homogeneous soil example. 
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Table 2 summarizes the specifications used in obtaining the 

solutions presented in the various figures hereafter. Subsequently, 

these solutions are referred to by the number in the first column of 

Table 2. 

As the water moves into the soil filling a portion of the voids, 

the capillary pressure is increased (decreased in absolute magnitude) 

with a resulting increase in hydraulic head. Therefore, an examina­

tion of the variation of capillary pressure or head in the flow field 

reveals much about the nature of water movement. By noting the extent 

of the change from the initial capillary pressure in the lateral and 

vertical directions, an indication of the "importance of soil hetero­

geneity effects on the flow pattern can be seen. Lines of constant 

capillary pressure head for different variables are shown in Figs. 9 

through 13 for two dimensionless times, T = 0.0 and T = 1.46. The 

figures were drawn using the solution results from problems number 

through 11 in Table 2. In each figure, a few lines of the constant 

capillary pressure head (iso-pressure head) lines have been plotted. 

The computer program defines the wetting front to be at a position 

where capillary pressure exceeds the initial hydraulic head by .0003 

dimensionless units. The vertical position of the wetting front 

represents the depth of water penetration, and the difference between 

the maximum radial movement and the radius of the circle of the water 

application zone, ra, equals the amount of lateral movement at that 

time step. Figs. 9 through 13 show the effect of soil heterogeneity 

on the position of wetting front since its position will lie just 

beyond the -7.0 ft curve. The distribution of dimensionless 



TABLE 2.--Summary of Specification of Problems. --' 

0 

Soil Parameters Initial pi -
A Sr n Ko Hydrau1 i c Flux, in Surface Radi us of Characteristic 

Problem in ~eet In Inches Head, Depth, Inches Per Saturation, Circular Area Length, 
Number Per Hour in Feet in Feet Hour Percent in Feet in Feet 

(1) (2) ( 3) (4) (5) (6) (7) (8) (9) (10) (11 ) (12 ) 

1.0 1.0 0.15 0.40 1.0 -8.0 2.0 90 0.3 1.0 
2 0.7+0.3z 1.0 0.15 0.40 1.0 -8.0 2.0 90 0.3 1.0 
3 1.3-0.3z 1.0 0.15 0.40 1.0 -8.0 2.0 90 0.3 1.0 
4 1.0 0.7+0.3z 0.15 0.40 1.0 -8.0 2.0 90 0.3 1.0 

5 1.0 1. 3-0. 3z 0.15 0.40 1.0 -8.0 2.0 90 0.3 1.0 
6 1.0 1.0 0.05+0.1z 0.40 1.0 -8.0 2.0 90 0.3 1.0 
7 1.0 1.0 0.25-0.1z 0.40 1.0 -B.O 2.0 90 0.3 1.0 
8 1.0 1.0 0.15 0.lB+0.22z 1.0 -8.0 2.0 90 0.3 1.0 
9 1.0 1.0 0.15 0.62-0.22z 1.0 -B.O 2.0 90 0.3 1.0 

10 1.0 1.0 0.15 0.40 0.6+0.2z -B.O 2.0 90 0.3 1.0 
11 1.0 1.0 0.15 0.40 1.40-0.2z -B.O 2.0 90 0.3 1.0 

12 1.0 1.0 0.15 0.40 1.0 -4.0 2.0 90 0.30 1.0 

13 1.0 1.0 0.15 0.40 1.0 -6.0 2.0 90 0.30 1.0 

14 1.0 1.0 0.15 0.40 1.0 -B.O 2.0 0.10 0.30 1.0 

15 1.0 1.0 0.15 0.40 1.0 -B.O 2.0 0.20 0.30 1.0 

16 1.0 1.0 0.15 0.40 1.0 -B.O 2.0 0.30 0.30 1.0 

17 1.0 1.0 0.15 0.40 1.0 -B.O 2.0 0.50 0.30 1.0 

1B 1.0 1.0 0.15 0.40 1.0 -B.O 2.0 0.70 0.30 1.0 
19 1.0 1.0 0.15 0.40 1.0 -8.0 2.0 90 0.60 1.0 

20 1.0 1.0 0.15 0.40 1.0 -B.O 2.0 90 0.90 1.0 

21 1.0 1.0 0.15 0.40 1.0 -8.0 2.0 90 1.20 1.0 



0.0 
J 1-, _. ~.' I • . , \ \ , , J _ .. _- problems no.1, 

J \ . 
I , I - 9.6 2, and 3, T = .0 
I 

.. 
0.5 -I \ / 

, 
I 

problem no. 1, I 

homogeneous, T = 1.46 
~ : '----7-: I .f-J - 9.2 af p. _.-.- problem no. 2, 
0 - / 
IJ) 

1.0 " 
parameter decreasing with 

IJ) 
a> '-' -- . depth, T = 1.46 
r-i 
~ - 8.8 0 problem no. 3, 'r-! ..- ...... ----
IJ) 0.--
6j 

I 
parameter increasing ~th e:; depth, T = 1.46 'r-! 

L_ ....... ·---0 
1.5 - 8.4 Pb = .70 to 1.30 

2.0 - 8.0 

FIG. 9.--Effect of Variation of Bubbling Pressure, Pb, on Distribution of Dimensionless 
Capillary Pressure P Prior to Infiltration and at Dlmensionless Time T = 1.46 from Maintaining 
the Surface Circle o~ Application at 90 Percent Saturation for Problems 1 through 3. The Values 
on the Curves Represent Capillary Pressure Head. 

/ 

--' 
---i 



0.0 -, I 
'I'TI" I! 1 ! \ \ \ ) 

I _ .. - problems no. 1, 

I ++ .. 4, and 5, T = .0 
- 9.6 . 

problem no. 1, 7 0.5 -4 1-,1 /1 ' I 
/ homogeneous, T = 1.46 

/ - 9.2 -._-- problem no. 4, 
..c: 

~ \1.-l%tt .. Vj' . ~ parameter decreasing with 
~ 
0 . 1.. /. 1 depth, T = 1.46 
If) 1.0 
If) 

j ~ .~ ---- problem no. 5, (!) 

I .~ .• L . ,/ . . / -. ? · 0 - 8.8 r--l 

§ parameter increasing with 
'M depth, T = 1.46 If) 

!=: 
(!) 

.~ 1.5 ~ ~~ A = .70 to 1.30 
0 - 2.0 - 8.4 

I 

L., - 8.0 
2.0.......J .. _- .. 

FIG. 10.--Effect of Variation of Pore Size Distribution Exponent, A, on Distribution of 
Dimensionless Capillary Pressure Pc Prior to Infiltration and at Dimensionless Time T = 1.46 
From Maintaining the Surface Circle of Application at 80 Percent Saturation for Problems 1, 
4, and 5. The Values of the Curves Represent Capillary Pressure Head. 

--I 

N 



0.0 
I r- If ~, \" 

-"- problems no. 1, 

6, and 7, T = .0 
- 9.6 

problem no. 1, 
0.5 
~ l homogeneous, T = 1.46 ~ h .~ 

....c: . /, 

problem no. 6, ~ ;--- - 1 5 .f! -_._.-P.. I ~. h 
- 9.2 

parameter decreasing'wit~ ~ 
Cfl depth, T = 1.46 Cfl .,' -~ (]) 1.0 r-t 

problem no. 7, J:: 

j E~ .. ~~. - 8.8 0 
'r-! 

parameter increasing with Cfl 

ffi depth, T = 1. 46 .~ 
q 

] ~~-7() S = .05 to .25 1.5 
- 8.4 r 

2.0 
- 8.0 

FIG. ll.--Effect of Variation of Residual Saturation, Sr' on Distribution of Dimensionless 
Capillary Pressure Pc Prior to Infiltration and at Dimensionless Time T = 1.46 From Maintaining 
the Surface Circle OT Application at 90 Percent Saturation for Problems 1, 6, and 7. The 
Values of the Curves Represent Capillary Pressure Head. 

w 



0.0 l 
I 
tit * , 

.t ! ~\ , , - - .. -- problems no. 1, 

- 9.6 8, and 9, T = .0 

0.5 ....J I ~071 I II I J problem no. 1, 

I homogeneous, T = 1.46 

..c: 

1.0 j ~/./ 
- 9.2 -._.- problem no. 8, 

..j.J . .. . . . .. 
~ /0 / / / parameter decreasing with 0 
If) - 0/ 1

0
• / depth, T = 1.46 

If) 
(l) 

~- -~ ':- - 8.8 problem no. 9, r-I ----
~ 
0 

'r-! parameter increasing with if) 

53 - 7.0 depth, T = 1.46 
S 

.r-! 1.5 n = .18 to 062 0 - 8.4 

2.0 - 8.0 

FIG. 12.--Effect of Variation of Porosity, n, on Distribution of Dimensionless Capillary Pressure 
Pc Prior to Infiltration and at Dimensionless Time T = 1.46 from Maintaining the Surface Circle 
OT Application at 90 Percent Saturation for Problems 1, 8, and 9. The Values of the Curves 
Represent Capillary Pressure Head. 

·r;:::. 



0.0 

1 Jj \\ !\l - .. _- problems ll<;>. 1, 

- 9.6 10, 11, T = .0 

0.5 J "1/ 
./ I 

~1·J . - :7; problem no. 1, 

homogeneous, L = 1.46 ;".. ......... -
~ ..c: 

.;.J 

~1 .. 5/. 
- 9.2 

problem no. 10, ar -._.-0 

parameter decreasing depth, U) 

T = 1.46 
U) 

1.0 Q) 
~ 

- 8.8 § 
---- problem no. 11, 'M 

U) 

parameter increasing with [j 
.~ 

..,.". depth, T = 1.46 0 

1.5 
- 8.4 

K = 1.0 to 1.40 and 1.0 to .60 v 

2.0 L .. - 8.0 

FIG. l3.--Effect of Variation of Saturated Hydraulic Conductivity, K , on Distribution of 
Dimensionless Capillary Pressure P Prior to Infiltration and at Dimgnsion1ess Time T = 1.46 
from Maintaining the Surface Circl~ of Application at 90 Percent Saturation for Problems 1, 
10, and 11. The Values of the Curves Represent Capillary Pressure Head. 

U1 



116 

capillary pressure head prior to the start of the solution (i.e., 

initial capillary pressure head distribution, T = 0.0) is the same for 

all problems and is given by horizontal lines consisting of a long 

line and two dots. In order to find the difference between the 

results of the heterogeneous condition and the homogeneous condition, 

three solutions are plotted on the same graph for each varied 

parameter considered. In all figures presented hereafter, the dashed 

line gives solution results for the heterogeneity for which the 

magnitude of the variable parameter linearly increases with depth. 

The dash-dot-dash line is for heterogeneity where the magnitude of 

the variable parameter linearly decreases with depth. Finally, the 

homogeneous soil conditions where the soil parameters are constant, 

is shown by solid lines. 

The increase in relative saturation in the soil from the beginning 

of water application is another item of interest. Distribution of 

saturation on a plane passing through the axis of symmetry at several 

time steps from results of the solutions in Table 2 are plotted in 

Figs. 14 through 24. The individual graphs show the vertical pene­

tration and lateral movement of the wetting front at different 

dimensionless times. 

The resultant flow patterns from the solutions to the problems 

in Table 2 have been plotted for several dimensionless times, T, in 

Figs. 25 through 31. These figures show how heterogeneity effects 

saturation with depth and how changes continue during the infiltration 

process. The saturation condition before there is water movement is 

shown for each problem at the ri9ht side of Figs. 25 through 31. 

Each different heterogeneity causes a different initialization of 
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saturation except for the porosity, n, and saturated hydraulic 

conductivity, Ko' For these two parameters the initial saturation is 

identical to the homogeneous case. In Fig. 25, the value of bubbling 

pressure used in solution of problem 1, the homogeneous case, is the 

average of the bubbling pressure heads of problems 2 and 3 

( .70 ~ 1.30 ) = 1.0. Introducing this heterogeneity not only causes 

the initial saturation under no moisture movement (T = 0.0) to be 

different in each problem, but also influences the position of 

subsequent iso-saturation lines. Fig. 25 shows that the iso­

saturation line of 30 percent at dimensionless time 1 = 1.46 has 

occurred at a depth of approximately 1.5 units for homogeneous soil 

(problem 1). For the same 30 percent iso-saturation line from problem 

3, in which the bubbling pressure increases linearly with depth of 

soil, it is at a depth of 1.7 units. The lateral water movement for 

homogeneous and heterogeneous soil (Problems 1 and 3) is about 0.80 

and 0.65 units, respectively, from the edge of the circular water 

application area. Where the bubbling pressure decreases linearly with 

depth (problem No.2), at the same dimensionless time as T = 1.46, the 

vertical and lateral movement of the 30 percent iso-saturation line 

is 1.35 and 1.05, respectively (Fig. 25). Thus Fig. 25 shows that the 

rate of vertical penetration of the wetting front is more rapid and 

that lateral (or radial) movement of the wetting front is slower for 

soils with larger values of bubbling pressure near the surface, 

provided the other conditions and soil parameters are held constant. 

Small bubbling pressures generally correspond to coarse textured soils. 

Water applied to the surface of coarse soils will normally enter more 

rapidly than it does into fine soils. The pores are larger in coarse 
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soils and the movement of the free water is under less restriction 

than in the fine soils with smaller pores. In problem 2, where the 

soil texture becomes coarser with depth, i.e., Pb decreases, the 

wetting front has a tendency to spread laterally in the soil profile 

and the ratio of horizontal movement and vertical penetration is 0.83. 

Whereas this ratio for the problems 1 and 3 is 0.61 and 0.44, 

respectively. 

The effects of variation of the pore size distribution exponent, 

A, on the flow patterns for solutions of problems 1, 4, and 5 are 

shown in Figs. 26 and 27. The different distributions of saturation 

at the beginning of water application in Figs. 26 and 27 shows how A 

affects the water movement patterns. Usually sandy soils which have 

a narrow range of pore sizes have larger values for pore size 

distribution exponent than soils with finer texture. That is, a larger 

range of pore sizes in a soil causes A to be smaller. Fig. 26 shows 

that at dimensionless time T = 0.50, the iso-saturation line of 40 

percent for homogeneous soil (problem no. 1) lies between the hetero­

geneous cases (problems No. 4 and 5) where the wetting front has not 

penetrated to the middle of the soil profile. The vertical penetra­

tion for the problems 1, 4, and 5 are 0.87, 0.72, and 0.94 and 

lateral movements are 0.42,0.21, and 0.50, respectively. At later 

times, when the wetting front has passed the middle of the soil profile, 

the condition changes. For example, in Fig. 27 at dimensionless time 

T = 1.46, the 40 percent iso-saturation line for homogeneous soil 

(problem no. 1) has moved faster in the vertical direction and is 

ahead of the other 40 percent than lines from problems 4 and 5. 

Iso-saturation lines for problem 4 are always inside the iso-saturation 
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lines of the homogeneous soil (problem 1). The iso-saturation lines 

of the problem 5 in which the values of A increase with depth, are 

crossed by the iso-saturation lines of homogeneous soil after the 

wetting front has passed the middle of the soil profile. In problem 5 

the value of pore size distribution exponent, A, increases linearly 

with depth (A = 0.70 at soil surface) and at the middle of the soil 

profile its magnitude is A = 1.0. The pore size distribution 

exponent affects the relative hydraulic conductivity as given by the 

Brooks-Carey's Equation (45). An examination of Equation (45) shows 

that smaller values of the, A, will result in higher relatively 

conductivity. Consequently, smaller values of A, are related to a high 

hydraulic conductivity of the soil, and soil with larger values of, 

A, may act as a hard pan. 

Figs. 28 and 29 indicate the influence of the variation of 

residual saturation, Sr' on the water distribution before infiltra­

tion on and on the position of the iso-saturation lines during 

infiltration. The range of variation of the initial saturation (at 

T = 0.0) for problems 6 and 7 is larger than for all problems shown 

in Table 1. The magnitude of residual saturation directly affects the 

value of computed saturation from the Brooks-Corey Equation (1) and 

as Figs. 28 and 29 show, the vertical penetration of water has not 

been greatly affected. More effect can be seen in lateral water 

movement. For example, for time T = 0.50 (Fig. 28) and T = 1.46 

(Fig. 29) the iso-saturation lines of 40 percent show that the 

difference between vertical penetration for the three problems 1, 6, 

and 7 is small and that this difference increases with time. Also, 

Figs. 28 and 29 show that the rate of vertical penetration of the 
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wetting front is decreased when the values of residual saturation 

are decreased. At dimensionless time T = 0.50 as Fig. 28 shows, the 

iso-saturation line of 40 percent for problem 1 lies between the iso-

saturation lines of the problems 6, 7. Later on, at T = 1.46, the 

iso-saturation line of 40 percent of problems 6, 7 is shifted. In 
~ 

the lateral direction the water movement pattern is consistent at 

all times. Since the initial value of saturation is high (32.50 

percent for the problem 6 on the soil surface) and decreases with 

depth, the wetting front moves more rapidly. Also the increasing 

residual saturation causes the wetting front to move more rapidly in 

the lower layers. 

Variation of soil porosity does not affect the initial distribu­

tion of saturation because the computed saturation is independent of 

the porosity. Consequently, the initial saturation conditions of the 

homogeneous and heterogeneous cases are the same. An examination of 

Fig. 30 shows that for the three problems 1, 8, and 9 whose solutions 

are plotted, the 30 percent iso-saturation line for homogeneous soils 

lies between the heterogeneous solutions. This is caused by the 

linear variation of the porosity, n with depth. In the case where the 

porosity decreases with depth, the volume of wetted soil is smaller 

than for both the homogeneous and the heterogeneous case in which 

porosity i:~creases linearly with depth. Soils with high porosity at 

the upper layers have larger water storage capacity and therefore the 

rate of advance of wetting front 1s smaller. A longer time is 

required to fill the pore spaces. 

The positions of the iso-saturation lines from solution of 

problems 1, 10, and 11 are shown in Fig. 31. The heterogeneity is 
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caused by linear variation of saturated hydraulic conductivity with 

depth. Since the values of the computed saturation are independent 

of the magnitude of the saturated hydraulic conductivity, K , the o 

saturation at the beginning of the solution (at T = 0.0) for the 

problems 10 and 11 is the same as for homogeneous soil (problem 1). 

The saturated hydraulic conductivity is defined as the product of a 

constant, Ka , with units of velocity and a dimensionless function 

of the depth, Kv' [Ko(Z) = Ka Kv(z)]; in which the constant Ka is 

taken to be equal to the saturated hydraulic conductivity on the soil 

surface. Therefore, on the soil surface the value of Kv is always 

equal to one for all problems and linearly decreases or increases with 

depth. The magnitudes of all soil parameters on soil surface (~, 

Pb, Sr' n, and Ko) are the same in problems 1, 10, and 11. For this 

reason the rate of lateral movement near the soil surface is the same 

for all cases. It can be concluded that the heterogeneity caused by 

variations of the saturated hydraulic conductivity does not have a 

significant effect on the resulting flow patterns in the upper layers. 

The distribution of iso-saturation lines in Fig. 30 for variable 

porosity, the 30 percent iso-saturation line for homogeneous soil lies 

between the lines for the heterogeneous soils (problems 10 and 11). 

Also Fig. 31 indicates that as saturated hydraulic conductivity 

increases with depth, the wetting front moved faster than when its 

magnitude decreased with depth. But the difference between the verti­

cal penetration of the iso-saturation lines for heterogeneous cases 

and homogeneous cases are not great. These differences may be 

greater for a greater range of variation of saturated hydraulic 

conductivity. Otherwise, the properties of the soil near the surface 
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is governing the resulted water flow patterns. Since near the soil 

surface these properties are almost the same, it is expected that an 

almost unique iso-saturation line would exist for three problems 1, 

10, and 11. 

The changes in soil saturation at different times at the center-

line and at a radial distance of 0.4 beyond the circle of application 

are shown on Figs. 32 through 42. Comparison of the individual curves 

on these figures indicates how the initialization of saturation in the 

soil profile, rate of penetration and spreading of wetting front, and 

distribution of saturation are affected by the heterogeneity defined 

by variation of the indicated soil hydraulic property. Fig. 32 
./ 

(problem No.1, homogeneous soil) shows that at the centerline and at 

a radial distance of 0.7 units, the wetting front has penetrated 

to a dimensionless depth of approximately 1.8 and 1.6 units, respect­

ively, at dimensionless time of T = 2.0. Figs. 33 through 42 (problems 

2 to 11, heterogeneous soils) show how rates of penetration of wetting 

front and distributions of saturation differ for different problem 

specifications. For example, in the homogeneous soil (Fig. 32) at 

T = 2.0, the bottom boundary saturation has not yet been changed by 

the movement of the wetting front. Whereas, when bubbling pressure 

increases with depth (Fig. 34) at T = 2.0 the saturation at the bottom 

has increased by 6 percent. As another example, the degree of 

saturation at depth 0.90 units below soil surface at time T = 0.60 is 

32.5 percent, whereas when there is an increasing of porosity with 

depth, for the same time, and depth, the saturation is approximately 

50 percent. Large values of bubbling pressure, Pb, at the soil surface 

(heavy soils) caused the moisture to spread more laterally but not to 
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move as deep. At dimensionless time of T = 0.2 and a radial distance 

of 0.7 units, the soil is not affected by moisture movement when Pb 

is small at the soil surface (Fig. 34). However, for larger values of 

Pb, at the soil surface the wetting front has penetrated beyond a 

radial distance of 0.7 units (Fig. 33). Further comparison of Figs. 

33 and 34 indicates that the wetting front has moved deeper when the 

value of Pb is small at the soil surface. 

Brooks and Corey's data show that when a soil contains a wide 

range of pore sizes its value of pore size distribution, A, is small. 

In general, sandy soils have only a very narrow range of pore sizes, 

have higher hydraulic conductivities and have larger values of A. 

Fig. 35 indicates that larger values of A on the soil surface with its 

magnitude decreasing with depth inhibits the infiltration process 

throughout the soil profile. However, when A is small at soil surface 

and increasing with depth, infiltration rates are larger (Fig. 36). 

The effect of heterogeneity caused by the decreasing and increas­

ing residual saturation with depth are shown in Figs. 37 and 38. These 

figures indicate that at both the centerline and radial distance of 0.7 

units, the soil profile becomes saturated more rapidly when the value 

of, Sr' is increased with depth. For example at dimensionless time 

T = 3.38, saturation at the bottom boundary is 63 percent for the case 

in which Sr increases with depth, whereas for the decreasing case, 

saturation at the bottom boundary is 37 percent at the same relative 

time. 

When the porosity is assumed to be small at the soil surface, 

water is spread on the soil surface more rapidly as revealed by noting 

that at a radial distance of 0.7 units the saturation increases much 
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sooner than when the soil ha~ a large value of porosity. For example, 

Fig. 39 shows at time 0.20 the wetting front has not reached to a 

radial distance of 0.7 units whereas in Fig. 40 which has smaller 

values of porosity on the soil surface, the radial distance of 0.7 

has been reached and there are changes in saturation at that distance. 

Similarly, when the value of saturated hydraulic conductivity 

increases with depth, the wetting front moved deeper than when its 

magnitude is decreased, Figs. 41 and 42. 

The variation of infiltration rate with time for the solution of 

the problems in Table 2 have been plotted in Figs 43 through 47. 

Each figure contains three curves; one for homogeneous soil, one for 

heterogeneity in which the indicated parameter increases with depth 

and the last in which the same parameter decreases with depth. The 

figures show the well known trend of declining rate of infiltration 

with time. For almost all of the solutions (with one exception, 

solution for variation of A) the average rate of infiltration from 

T = .0 to any time resulting from decreasing and increasing the 

magnitude of each parameter with depth, is almost equal to the 

infiltration rate obtained for homogeneous soil. Varying the pore 

size distribution exponent, A, has a larger effect on the rate of 

infiltration, particularly in cases where its value is large at the 

soil surface and decreases with depth, (Fig. 44). A study by 

Jeppson (45) showed that for the same soil specifications, when the 

value of A increases (homogeneous soil) the rate of infiltration 

decreases. The phenomena on Fig. 44 reflects this same conclusion 

since the surface soils exert a greater influence on infiltration rates 

than do the deeper soils. 
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Probe No . 1 , homogeneous soil 
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movement of moisture in the vertical direction have been plotted 

against the dimensionless time parameter, T, in Figs. 53 through 

57. All of the figures indicate that the wetting front has penetrated 

to the bottom boundary before the solution was terminated at T = 3.38. 

The time at whic~ the wetting front fir§t penetrates to the bottom 
,I 

boundary is different for the various problem specifications. For 

example, Fig. 57, which gives the results when saturated hydraulic 

conductivity, Ko' increases with depth, shows that the wetting front 

penetrates to the bottom boundary at time T = 1.76, whereas it took 

T = 2.30 when Ko decreases with depth. The results for homogeneous 

soil indicates the time of penetration of the wetting front to the 

bottom boundary is T = 1.94. An examination of Figs. 53 through 57 

shows that increasing bubbling pressure with depth causes the wetting 

front to move faster, while decreasing its value with depth resulted 

in slower movement of wetting front in the vertical direction than 

for all other variations of parameters, A, Sr' Kv' n and the homo­

geneous condition. 

The radial movement of the wetting front at any time is also of 

interest and how this position is related to hydraulic properties and 

heterogeneity of the soil. The Figs. 58 through 62 shows the maximum 

radial movement of the wetting front beyond the circle of water 

application for the problems in Table 1. 

The figures indicate the vertical heterogeneity caused by 

variation of residual saturation, Fig. 60, and saturated hydraulic 

conductivity, (dimensionless function of depth, Kv) Fig. 62 has a 

small effect on the spreading of wetting front. The effect of the 

other three variables A, Pb and n is significant. For example, in 
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Fig. 59 which shows the results of heterogeneity caused by variation 

of A, the radial movement of the wetting front is approximately twice 

as great for A increasing with depth as for A decreasing with depth. 

At T = 2.22 the wetting front passed the point 1.8 units beyond the 

circle of application, but for the decreasing case it was at distance 

0.8 units beyond the radius of ' circle of application after the same 

time. 

Solutions of problems 1,12, and 1-3 indicate the effect of differ­

ent magnitude of hydraulic head, ho' used in the initialization of the 

problem on the flow patterns. All specifications are assumed to be 

identical and constant (homogeneous) except initial hydraulic head, 

hoe Figs. 63 and 64 are the variation of infiltration rate and volume 

of water infiltrated with time, respectively. Fig. 63 shows that the 

rate of infiltration is larger for the soil with the smaller initial 

hydraulic head. The infiltration capacity curve for the same 

specification at an initial hydraulic head of -4.0 feet lies above the 

curve for the problem of initial hydraulic head of -6.0 feet and the 

curve for the higher hydraulic head of -8.0 is the lower curve. After 

(T = 2.50) the infiltration rate of the three soils becomes almost a 

constant value of about 0.38. Therefore, the initial hydraulic head 

or static equilibrium condition of the soil has no significant effect 

on infiltration rate, particularly after a longer time. This 

observation confirms Jeppson's (42) conclusion. 

The effect of initial hydraulic head on the variation of vertical 

movement of the wetting front with depth is shown in Fig. 65. As the 

figure shows, water moves more rapidly in wet soils than in a dry soil. 

When the soil has an initial hydraulic head of -4.0 at T = 1.12 the 
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wetting front reaches the bottom boundary whereas for soil of hydraulic 

head of -B.O it reached the bottom boundary at T = 1.9B. Lateral 

movement of the wetting front in wet soil is much faster than the dry 

soil. For example, Fig. 66 shows that at T = 2.20 the lateral move­

ment in wet soil (ho = -4) is 1.75 units and in drier soil (-B.O) at 

the same time it is 1.375 units beyond the circle of water application 

area. 

The increase in saturation at any time is also of interest. The 

variation of saturation of the soil on the centerline at 0.4 unit 

depth and on soil surface at 0.3 units beyond the circle of application 

with time parameter, T, has been plotted "in Figs. 67 and 6B. A 

comparison of these curves reveals that a change of the initial 

hydraulic head has no noticeable effect on the saturation at any point 

in the flow field, particularly after a period of time. The difference 

between the curves exists from T = .0 and is a consequence of the 

initial saturation at the beginning of infiltration. 

Solutions to Problems 14 through lB show the effect of different 

application rates on the flow patterns, and other dependent functions 

of infiltration. Figs. 69 and 70 show the effect of specified appli­

cation rates on the penetration of the wetting front in both vertical 

and lateral directions for the same soil type (homogeneous soil), 

respectively. As the application rate increases, the vertical and 

lateral movement, and consequently the volume of wetted soil, increases. 

For the same flux the lateral movement of wetting front is less than 

the vertical penetration. This difference is a consequence of a 

constant gravitational gradient of unity in the vertical direction. 

Figs. 71 and 72 are plotted to show how thedimensionless application 
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rate VK is related to the depth of penetration and lateral movement 

of wetting front. 

Change in saturation at several points for different application 

rates is also of interest. The variation of saturation on the surface 

centerline, on the surface at 0.4 units beyond the circle of applica­

tion and at 0.4 units depth on centerline are shown in Figs. 73, 74 

and 75, respectively. The figures indicate for the same tim~, T, 

saturation increases with increasing rate of water application. The 

increase in the saturation in vertical direction is more than in the 

lateral direction. For example the initial (at T = 0.0) saturation 

for depth 0.4 units below soil surface on axis of symmetry (Fig. 75) 

was about 24.0 percent and after time T = 1.0 increased 42.0 percent 

for the application rate 0.1, (change in saturation = 42 - 24 = 18) 

whereas for the same soil, time, and application rate the change in 

saturation of the soil surface at 0.4 units beyond circle of 

application (Fig. 74) was about 26 - 23.5 = 5.5 percent. This is also 

true for the higher values of application rate (see Figs. 74 and 75). 

Further, the Fig. 74 shows up to time T = 0.25 there is no change in 

saturation on the 0.4 unit beyond the circle of application for all 

application rates. At T = 0.70 there are noticeable changes in 

saturation for higher application rates while for a low application 

rate of 0.1, the saturation is almost at the initial saturation, (Fig. 

72). 

Another item of interest is the effect of the radius of circle 

of application, ra , on the infiltration rate and other dependent 

functions of infiltration. Several solutions were obtained in which 

all of the parameters were identical except the radius of water 
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application ra (problems 19 through 22). The infiltration capacity 

curves obtained from this solution are shown in Figs. 76 and 77 in 

which Fig. 76 is the infiltration rate from the entire circular area 

and Fig. 77 indicates the infiltration rate per unit surface area. 

An examination of Fig. 76 and 77 shows that infiltration increases with 

decreasing radius of water application area. For example the infiltra­

tion rate at T = 1.4 from circular area of radius ra = 0.3 unit is 

about 1.14 and for a circular area of radius 1.2 is approximately 0.60 

for the same soil and at the same time. This relationship of the 

radius, ra , and infiltration rate can provide a quantitative measure 

of how much the infiltration rate as measured from a small radius 

infiltrometer, should be reduced to predict rainfall intake capacity 

which is occurring in one dimension. 

Fig. 78 which is a result from Figs. 76 and 77 indicates that more 

water infiltrated from unit area of a smaller circular area than larger 

area at the same time. For example, the dimensionless volume of water 

infiltrated from a circular area of radius 0.30 at the time T = 1.4 is 

approximately 1.6 whereas at the same time and soil this value is about 

0.775 for an area of radius 1.2 (see Fig. 78). The variation of 

saturation at the centerline for the several radii of application is 

shown in Fig. 79. The figure shows at the beginning of infiltration, 

the rate of increase in saturation is almost the same for all radii 

r , thereafter a rapid change in saturation occurs in the vicinity of a 

the wetting front. Thereafter the saturation changes a decreasingly 

small amount and approaches constant saturation. Since the saturations 

are smaller for small radii of application, r a , it is obvious that the 

hydraulic gradients are substantially increased by the lateral movement 
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of water. The gradient developed by the lateral movement is larger 

than the gradients that exist for water movement only in vertical 

direction. Because not only saturations are less for a smaller area 

of application, but also quantity of infiltration water per unit area 

is also larger (see Fig. 78). 

Coaxial Graphs 

The qualitative illustration of how various types of hetero-

geneity effects infiltration are given in previous section. In order 

to quantify and define the relationship between varying soil parameters 

and dependent variables of the infiltration process data obtained from 

the numerical solutions were fitted by linear regression analyses. 

For these analyses, data were obtained from solutions to problems 1 

through 11 at the following dimensionless times, T: 0.2, 0.5, 1.0, 

and 1.S. The independent variables for these analyses are the B 

coefficient(in Eq. 227, 228, and 229)of all five soil parameters and 

T, and differences between homogeneous and heterogeneous infiltration 

rates; the depth of penetration and radial movement are dependent 

variables. The regression program has the capability that the 

independent variable could either have its actual value or a trans­

formation of it. For example, (BPB)2, (BL)2 are transformations of 

B coefficients of bubbling p~ssure, and pore size distribution 

exponent. Several analyses were made for different transformations 

of independent variables. The best fit was found to be a quadratic 

relationship for all five soil variables and cubic relationships for 

the time, T. The coefficients for general equations to fit a curve 

through data for 13 independent variables and one dependent variable 
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were computed. The general expressions relate the difference between 

the dependent variable of infiltration for homogeneous and hetero-

geneous case or 

~I = Ihomo . - Ihetero. (224) 

~D = Dhomo . - Dhetero. (225) 

~R = R - R homo. hetero. (226) 

to the soil parameters and time, in which I is the dimensionless 

infiltration rate; D is the dimensionless vertical penetration of 

wetting front, and R is the dimensionless lateral movement of wetting 

front. 

The resulting regression equations are: 

~I = - .003658 + .03855(BKV) - .00075(BKV)2 + .2777(BSR) + .2110(BSR)2 

- .0882(BPB) - .00844(BPB)2 + .45487(BL) + 1.0393(BL)2 

- .08291(BPOR) + .018182(BPOR)2 + .0080363(T) - .0051842(T)2 

+ .0014946(T)3 (R2 = 0.98) (227) 

~D = - .014 + .232(BKV) - .155(BKV)2 + .173(BSR) - .03(BSR)2 

+ .23567(BPB) - .12111(BPB)2 + .23367(BL) + .83444(BL)2 

+ .28864(BPOR) - . 12397(~POR)2 + .038548(T) - .033138(T)2 

(228) 

~R = .0070762 + .0185(BKV) + .0125(BKV)2 - .18900(BSR) - .15(BSR)2 

- .55(BPB) - .27778(BPB)2 + .99667(BL) - .10(BL)2 

- .85455(BPOR) - 1.2479(BPOR)2 - .024l51(T) + .028802(T)2 

- .011772(T)3 (R2 = 0.98) (229) 
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in which BKV, BSR, BPB, BL, and BPOR represent the B coefficients of 

Kv' Sr' Pb, A, and n, respectively. The above three equations, (227), 

(228), and (229) are solved by the three coaxial graphs, Figs. 80, 

81, and 82, respectively. Each coaxial graph provides the magnitude 

of dependent variables ~I, ~D, and ~R, and shows how time, T, and 

rate of change of n, Pb, A, Sr' and Ko effect them. 

In using the coaxial graphs, first take a specific dimensionless 

time parameter, T, next select appropriate B coefficient for each soil 

parameter, then enter each individual plots with these coefficients 

in the order shown by the line with an arrow, until the axis for 

~I, ~D, or ~R is reached. On each figure the homogeneous case is 

solved. 

The values of ~I, ~D, and ~R can be considered as correction 

factors in obtaining infiltration rate, vertical penetration and 

lateral movement of the wetting front when homogeneous assumptions 

are made. For example, ~I can be obtained from coaxial graph, Fig. 

80, or can be computed from Equation (227), for any known soil (i.e., 

the magnitude of soil parameters and their variation are known). 

Thus 

Ihetero = Ihomo - ~Ihetero (230) 

Because of the following assumptions, caution should be exercised 

in using the coaxial graphs. 

1. The regression equation used in developing these graphs 

assumes no interaction of the soil parameters. 

2. The problems that have been solved and compared herein are 

based on a single soil parameter, varying in a given case. 
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3. Other analyses for axisymmetric infiltration, in which 

actual or more realistic interactions between soil parameters are made, 

are needed to evaluate parameter interaction effects. 

Comparison of Results with the Results 

of a One Dimensional Infiltration 

Jeppson (45) developed a computer program which solves the problem 

of unsaturated, unsteady one dimensional infiltration through hetero­

geneous soil. Problems 1 through 11 were solved using this one 

dimensional model. In order to show the difference between the results 

of three-dimensional and one-dimensional infiltration problems the 

-infiltration rate per unit area and saturation at several points in 

flow field are compared. Fig. 83 gives the difference between three-

dimensional axisymmetric and one-dimensional infiltration at a specific 

time, T, for different soils. The plotted points on log-log graph 

paper are essentially straight lines. As the figure indicates this 

difference, ~I = 13 - 11' is constant for the variation of pore size 

distribution exponent,~. For the other problems the following form 

can be suggested: 

I b ' 
~I = a(T - 0.1) (231 ) 

Since the slope of the separate straight lines on Fig. 83 is nearly 

constant except the curve for BL = - .3, the exponent b' in Equation 

(231) will be the same for all lines and is equal to 0.0625. The 
J 

intercept a is equal to ~I when the time (T - 0.1), is unity. 

Differences between the three-dimensional and one-dimensional 

saturation at a dimensionless depth of 0.4 on center line, and at a 

given radial distance, ra , are presented in Fig. 84. These figures 
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show that the difference of saturation for three and one-dimensional 

infiltration decreases with time, except for variation of pore size 

distribution exponent and when bubbling pressure is decreasing with 

depth (see Fig. 84a). 

Therefore for the same soil properties and other specifications, 

the comparison between three-dimensional and one-dimensional infiltra-

tion reveals that: 

1. Infiltration per unit area in a three dimensional infiltra-

tion situation is higher than for a one-dimensional case for all cases 

of heterogeneity investigated. 

2. At the same time the increase in relative saturation is 

higher for one-dimensional infiltration than for three-dimensional 

axisymmetric infiltration for all problems. 

.r-

BL=-.3 BPB=+.3 

BSR=+.l 

{
BSR=-.l 

BL=+.3 BPOR=+.22 

{

BKV=-.2, BKV=+.2, 
BPOR=-.22 
:,omogeneous 

.2~----~~--+--+~-4~~H-------+---;-~~~~~~ 
'.01 o. 1 1 .0 

Dimensionless time parameter, (T - 0.1) 

FIG. 83.--Additional Infiltration Rate Due to Applying Water Over a 
Finite Circular Area. 



200 

1 . a 

M 
(./) . 3 

. 1 
BSR=+.l BPB=+.3 BL=-.3 

.06 .01 

a) Dimensionless Time Parameter, (T - 0.1) 

1 .0 

.7 BPB=+.3 

.5 BKV=-.2 

M .4 
(./) 

.3 
r- BL=+.3 

(./) 

.2 

• 1 

BL=- 3 BPOR=-.22 
. BSR=+. 1 

b) Dimensionless Time Parameter (T - 0.1) 
FIG. 84.--Difference Between One-Dimensional and Three-Dimensional 
Axisymmetric Saturation at a Dimensionless Depth of 0.4 Units at 
(a) The Centerline and (b) Radial Distance, ra' 



201 

3. The wetting front movement in vertical direction is more 

rapid than for three-dimensional infiltration. 

Since the water flows radially as well as vertically in the 

three-dimensional infiltration, the items 2 and 3 above are due to 

spreading of flow patterns. 

Comparison of Numerical Solutions 

and Field Data 

Field data used in this study were obtained from Lower Sheep 

Creek, at the Reynolds Creek Experimental Watershed in Southwestern 

Idaho. Field equipment included a portable rainfall simulator, gamma 

probe, and tensiometers, which are used to control surface application 

of water, and to monitor water content of soil and pressure during 

infiltration. The rainfall simulator was able to apply water to a 

plot of 6-by-6 foot (1.83-by-l.83 m) in intensities from 0.15 to 0.8 

inches per hour (3.8 to 203.2 mm per hour). Soil information and 

physical data for this site, equipment, and methods for collecting of 

data are described by Jeppson et ale (46). 

In simulation of field tests, the mathematical specifications 

such as geometry, hydraulic properties, and external boundary 

influences must describe the field conditions. 

In this experiment the water was app'lied over a 6-by-6 foot 

(1.83-by-l.83-m) square plot, whereas surface geometry of the 

mathematical model over which water is applied is a circular area. 

Even though the field data is obtained from the center of the plot, 

this inconsistency in water entry zone geometry seems to have an 

insignificant effect on the magnitude of collected data. 



202 

Jeppson et al. (46) used a matching procedure which consists of 

obtaining a series of numerical solutions, based on different values 

of W/Ka , and selected the solution that both duplicates best the 

saturation-time curves measured in the field and agrees with the field 

application rate. With this technique the saturated hydraulic 

conductivity of Ko = Ka = 1.665 inches per hour (4.23 cm/hr) is 

obtained. 

The porosity, n, at different depths of soil profile has been 

measured and is given as about 0.50. 

Since the field data did not measure the residual saturation, Sr' 

pore size distribution exponent, A, and bubbling pressure head, Pb, 

directly reasonable values for each parameter were obtained by matching 

the field saturation data with solution to problem 1 through 11. 

Saturation at the 2-in (5.08-cm) depth from the field data are 

plotted in Fig. 85 versus time, t, as well as the saturation at 2-

inches-depth from the numerical solution for application rate of 

W = 0.70 inches per hour, estimated soil properties. The field applica-

W 0.70 tion rate was 0.70 inches per hour (1.78 cm/hr), or Ka = 1.665 = 0.42, 

which is the dimensionless application rate specified in the numerical 

solution. When the values of saturation at 2-inches depth on the 

centerline did not agree with the field data in Fig. 85, another 

numerical solution with a different variation of Pb, A, and Sr or 

some combination of these parameters were obtained to examine whether 

better agreement could be achieved. A comparison of capillary pressure 

variation with the field data for 2 inches depth is shown in Fig. 86. 

Table 3 shows various specifications which are used in comparing 

saturation and pressure from numerical solution with field data. 
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TABLE 3.--Values of Hydraulic Properties of Soil Used in Matching. 

Solution W 
W Pb It Sr Ko Ka 

n 

( 1 ) (2) (3 ) (4) (5) (6) (7) (8) 

.7 .42 1 .0-2. 5z .4-.1z .25-. 1 z .55 1 .665-. 3325z 

2 .7 .42 1.lO-.4z . 9-. 1 z .50 1.665-.3325z 

3 .7 .42 1.O-.25z .8-. 1 z .50 1.665-.3325z 
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SUMMARY AND CONCLUSIONS 

Solutions for the problem of transient three-dimensional axi­

symmetric unsaturated flow through heterogeneous soils from water 

applied over a horizontal circular area have been obtained. The needed 

relationships of saturation and relative hydraulic conductivity to 

capillary pressure are defined by Brooks and Corey (9) equations. The 

mathematical model permits any vertical heterogeneity of the soil to be 

specified and describes the heterogeneity so that all the pertinent 

hydraulic properties of the soil can vary continuously as a function of 

depth. Kirchhoff-Transformation is used to transform the dependent 

variable Pt in the partial differential Equation (81) to a new variable 

~ which changes much less abruptly across the wetting front than 

capillary pressure Pt. The Crank-Nicolson method is used to difference 

the partial differential Equation (105) to produce a system of non­

linear algebraic equations. The system of nonlinear algebraic equations 

obtained therefrom are solved by Newton-Line-Relaxation method to 

advance the solution through each time step. 

For solving the problem a FORTRAN IV program has been written. 

To a typical problem such as those presented in this dissertation it 

requires approximately 1600 seconds of execution time and about 10 

second input-output time on a Burroughs 6700 digital computer to obtain 

a solution. The computer output gives the values of saturation, 

capillary pressure, hydraulic head, volume of water applied, infiltra­

tion rate, and instantaneous infiltration rate from time zero to any 

time. 
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From computer solutions of 21 different problems, the distribution 

of saturation, the capillary pressure magnitude, the lateral and 

vertical penetration of wetting front, and the magnitude and character­

istics of intake capacities have been analyzed to show their 

relationship with soil heterogeneity and other problem specifications. 

The results from the analyses are presented in a number of graphs. 

General qualitative conclusions derived therefrom are summarized 

in Table 4. The entries in Table 4 show the difference between a base 

or standard homogeneous soil condition solution and the solution of 

the problem with a single variable described in column 1. The homo­

geneous soil (problem no. 1) and soil with initial hydraulic head of 

ho = - 6.0 (problem No. 13), and problems with having application 

rate of W = 0.3 and ra = 0.9 are the selected as base solutions. 

Positive or negative sign in the table indicates that the 

magnitude of this quantity is greater or less than in the base 

problem solution. A zero entry indicates there is not a difference 

between the solutions from base and actual problems. 

The nomographs, Figs. 80, 81, and 83, provide more detail 

regarding the magnitudes of the plus or minus difference given in 

Table 4. 
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READ PARAMETERS \~hich establish the dimensions, boundary 
conditions, and determine the manner of outputing the 
solutions. 

Read rainfall 
Record data NSSURP-1 

and SECOD < 

no 

'--.-QOl 

yes 

Computes dimensionless, Depth and hydraulic 
head and write the dimensions of problem and 
values of other parameters. 

Compute and write dimensionless space 
increment, radius of application, area, 
flux per unit area. 

Call subroutine DERV which computes anq writes 
the magni tude of all variables and their 
derivatives for each grid point. 

Call subroutine INITIA which initializes and 
prints out the static equilibrium pressure 
head and distribution of saturation. 

Divide the first 
time step for 
unequal sizes. 

Do I 

I If no rlore 
solution spec 
ified, stop~ 

for number of time steps ~ 
sped fied by input parameters-~:"'IJ-----________ ~ 

'--.-----r---~ 



Unstandard 
return yes 

I, 

--~~ Is it ________ 
necessary to multiplY' ________ 

increment. 6T. by some factor~ 
greater than one? 

Call subroutine TIMSTH which carries 
out the computation needed to advance 
one time step 

Call Function Fl for NN=O 
If HSSUR=O J=l. and 1=2. NX 
If NSSUR=l J=2. and 1=2. N2X 

J=l, and I=N2X+l. NX 

Call subroutine FJ NN=O 
J=2 NY 
1=2 . . NX 

Initialize the XI(J.I) for 
Newton-Raphson Iterations. 

IFH(J,I)<O 
estimated pressure head less 

an one (unstandard return) ? ---

DO 5 1=2. NXl 

Call Function Fl for rm=l 
If IJSSUR=O. J= 1. and 1=2, NX 
If NSSUR=l J=2. and 1=2. N2X 

• J=l. and I=N2X+l,NX 

tlultiply I'll by 
some factors 
greater than one) 
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Call FJ for Ntl=l 
J=l, NY 
1=2, rJX 

Call Function F3, 
J=r~Y for NN=l, 1=2,NX 

No 

no 

Call subroutine FIBNOK t 
determine the optimum 
value of XI(J,I). 

Calculate difference between the current and previous pressure 
head at each point and point in which maximum change in 
saturation occurs. 

Call subroutine RITOUT which calculates and prints values of 
hydraulic head at each grid point and average and instantaneous 
infiltration rate, and volume of water applied and also prints 
the values of pressure head and saturation at each grid point. 

~--------------------------o---------------------------~ 

Check the values of pressure in each grid poin 
and expand the region of computation. 

yes Is ~ 

there~~~ ------1' 

8 

II 
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Appendix II 

Fortran Program Listing Typical Input Data and Sample Solutions 



c 
c 
c 
c 
c 
c 
C 
c: 
c: 
c: 
c: 
c: 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
c: 
c: 
c 
c: 
c: 
C 
C 
C 
C 
c: 
C 
C 
C 
c: 
c: 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
c: 

****************************************************** 
* A PQOGRAM TO SOLvE THE PROBLEM OF TRANSIlNT THREE. * 
* DIMENSIONAL AXISYMMETRIC UNSATURATED FLOw THROUGH * 
**************** HETeRO~ENEOUS SOILS ***************** 

*********************** 

N2x • NUM~Ek OF GRID POINTS IN THE RADIAL DIRECTION TO OuTER EDGE OF 
CIR~LE RA O~ER WHICH ~ATER IS APPLIED. 

MX • NUMBER OF GRID POlhTS lh RADIAL DIRECTION TO OUTlR RADIUS OF 
PROBLEM. . 
My - NUMBER OF GRID POINTS IN AXIAL DIRECTION BETwEEh TOP SURFACE 
ANO BOTTOM OF PROBLEM, . 
NT - NUMBER OF TIME STEPS THROUGH WHICH COMPUTATION ARE TO BE 
COMP~ETED, 

~I - VALuE OF THE STATI~ EQuILIBRIUM INITIAL HYDRAULIC HEAD 
(MINUS MUST BE PUNCHED INTO CA~D), 
DEPTH - THE DEPTH BETwEEN TOP SURFACE AND BOTTOM OF THE Pk06LEM, 
DELT • SIZE OF DIMENSIONLESS TIME STEP INCREMENTS WHICH ARE TO 
SE USED IN OBTAINING THE SOLUTION, 
SL • THE CHARACTERISTIC LlNGTH USED TO NONDIMENSIONALIZE ALL LENGTH 
PARA~FTERS OF THE PROBLEM, 
SSUR • IF THE UPPER SURFACE BOUNDARY CONDITION 15 TO BE USEO wHICH 
SPECIFIES THE APPLICATION AATE, SSUR MUST 8E GIVEN A vALUE OF ZERO, 
IF THE CONDITION SPECIFYING THE SURFACE SATUR~TION IS TO Bt USED SSU~ 
EQUA~S THE DECIMAL SURFACE SATURATION, 
SECOO - AN INDEx WHEN ITS VALUE IS GREATER THAN ,001 THE RAIN-FALL 
RECO~D WILL BE READ, 
IMAXJ - THE NUMBER OF GRID POINT IN VERTICAL DIRECTIUN ~HICH THE 
MA~IMUM C~ANGE IN SATURATION IS OCCURRED. 
TI~l - MAGNITUDE OF DIMENSIONLESS TIME IN P~EVIOuS TIME STEP USED TO 
CO~PUTE THE INSTANTENEOUS I~FtLTRATION RATE. 
ft~TCUl • MAGNITUDE OF wATER CONTENT IN PREVIOUS DIMENSIUNLESS TIME 
STEP USED TO COMPuTE THE INTANTENEOUS INFILTERATION RATE 
NFlC • NUMBER OF FACTORS TFAC(I) USfD TO INCREASE THE VALUe 
OIMENSIONLESS TIME INCREMENT DELT, 
TFAC(I) • MAGNITUDES OF THE FACTORS USED TO BE MULTIPLIED BY DELT 
A SpECIFIED TIME STEP I~FAC(I), 
IMFAC(I) • IN THIS TIME STEP THE DIMENSIONLESS TIME INCREMENT DELT 
MULTIPLIED BY THE TFAC(I). 
NSSUR • AN INDEx w~ICH IS USED TO CHANGE THE CONDITION OF THE TOP 
BOUNvARy cuNoITION 2-1, WHEN NSSUR-O UPPER BOUNDARY CONOITION 
APPLICATION RATE IS SPECIFIEo, IN OTHER CASE (NA8SURal) SURFACE 
SATURATION IS SPECIFIED. 
KTIMc - COUNTER INDEx ,OR THE MUSER OF R~IN FALL RATES AT DIFFERfNT 
DIMENSILESS TIMES, AND SUMS UP TO KTIMc • NRAIN 
KKTI - COUNTER INDfX USED IN TO CHANGE VALUE OF IMFAC(I), AND SUMS 
UP TO KKTl • NFAC 
NSKIP • AN INDEx wHE~ ITS VALUE IS ONE THE SOLUTION TO OTHER PROBLEMS 
~lLL ~E PRINTEO ON ANOTHER PAGE. 
NRAIN • NUM~ER OF RAIN FALL RECORDS 
QK(I) - INTENSITY OF RAIN FALL IN INCHEs PER HOUR, WHEN NSwITCI)al, 
QKCI) IS EQUALS TO THE DECIMA~ SURFACE SATURATION. 
TIMHll) - DIMENSLESS TIME wHICH IN THAT TIME THE INTENSITY OF RAIN 
IS Q~(I), 

NS~lT(l) • AN IND!X SI~lLAR TO NSSUR WHICH CHANGES THE Co~DITION OF 
TOP BOUNDARY CONDITION 2-1. WHEN ITS V.LUE IS ZERO THE CONDITION 
OF TuP SURFACE IS SPECI'lED A~PLICATION RATE AND WHEN IT VALUE IS 
EQUAL TO ONE THE SURFACE SATURATION IS SPECI~IED AT THAT pARTICULAR 
DIMENSIONLESS TIME, 

c 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
c: 
C 
c 
c 
C 
c: 
C 
c 
c 
c 
c 
c 
c 
C 
c 
C 
C 
c: 
C 
c 
c 
C 
c 
c 
C 
c: 
c 
c 
c 
C 
c 
C 
c 
C 
c: 
C 
c 
C 
c 

'C 
C 

V( - FORTH AN VARIABLE USED TO SHOw TME RAINFALL RATE OR APPLICATION 
FLUX WHICH IS USED ONLY ~HEN NSSURaO, IT HAS A DIMENSIONS OF INCHES 
PEk HOUR wHEN VK a QK(I) AND IN DIMENSIONLESS FOAM VK a QK(I)/A~ IN 
wHICH A~ IS THE SATURATED HYDRAULIC CONDUCTIVITY ON THE SOIL SURFACE 
UNITS OF LEN~TH P!R TIME, 
HEIGT • DIMENSIONLESS DEPTH BETwEEN TOP SURFACE AND BOTTOM OF THE 
PROdLEM (DEPTH/SL) 
HIT • DIMENSION~ESS STATATIC EQUILIBRIUM HYDRAULIC HEAO (HI/SL) 
AK • SATURATIEO HYDRAULIC CONDUCTIVITy ON THE SOIL SURFACE USED TO 
NONDIMENSIONALIZE THE APPLICATION RATE, OR RAIN FALL RATE, 
EXPAND - A PARAMETER TO EXPAND THE NUMBER OF GRID POINTS AT WHICH 
VALUES ARE COMPUTED AT NEw TIME STEPS, wHEN H(J,I) CHANwES FROM THE 
INITIAL CONDITIONS BY AN AMOUNT GREATER THAN EXPAND THE NUM8ER OF 
GRID POINTS IN EITHER THE RADIAL AND AXIAL DIRECTIONS IS EXPA~DED, 
ER~ - A pARAMETER USE~ TO TERMINATE THE NE~TON·RELAXATIUN METHOO 
ITERATION. THE INDIVIDUA~ LINE ITERATIONS ARE TERMINATEO WHEN THE 
ABSOLUTE SUM OF CHANGE BETwEEN CON8ECUTIVE ITERATION 18 LESS THAN 
~RR, 
ERRT - A PARAMETER USED TO TERMINATE NEwTON-RELAXATION ITERATION IN 
EAC~ ~IME PLANE ITERATION WHEN THE ABSOLUTE SUH 0' CHANGE dETwEEN 
CONSECUTIVE ITERATION IS LESS THAN ERRT (ERRTalOO*ERR), 
SAT~A~ • MAXIMUM SATURATION ~HICH CAN BE ATTAINEO IN THE SOIL 
SURFACE ~HICH IS USEO TO TRANS'ER TOP BOUNDARY CONDITION FROM 
SPECIFIED APPLICATION RATE TO SPECIFIED SATURATION, 
OMEGA • MAXIMUM SATURATION THE SOIL CAN ATTAIh IN THE BOTTOM 
BOUNDARY DRAIN LAVER AND MOISTURE BEGINS TO BUILD UP IN lHE SOIL 
PROFILE. wHEN OMEGA IS LESS THAN COMPUTED SATURATION AT THE BOTTOM 
BOUNOARY H(MY,I)aSB(MY), 
NRITc • NUMbER OF REGULAR TIME STEPS BETwEEN wH1CH SOLUTIONS ARE 
PRINTED, 
NHSTAR • IF HN8TAR IS LESS THAN ZERO ONLY THE VALUES OF THE 
INDEPENDENT ~ARIA~LE XI(J,I) wILL BE PRINTED A THE SPECIFIED TIME 
STEPS. IF NHSTARaO THE ¥ALUE OF ~I(J,I) THE SATURATION AND 
~YORAU~IC HEAO wILL BE PriINTED AT THE SPECIFIED TIME STEPS, IF 
NHSTAR IS GREATER THAN ZERO, vALUES OF XI(J,I) ~ILL NOT BE PRINTED, 
BUT VALUES OF SATURATION AND HYDRAULIC HEAD ~ILL BE PRINTED, 
MAX • MAXIMUM NEwTON-LINE ITERATIONS THAT WILL BE ALLowED, THE 
NUMdER OF iTERATIONS O~ ANy TIME PLANE wHICH wIL~ BE ALLO~ED 
~lLL BE ONE-HALF THIS MANY, 
MAXT • THE MAXIMUM NUMBER OF ITERATIONS ON A~Y TIME ~LANE THAT ~ILL 
8E A~LOwEO MAXTaMAXt2.0 
ISTEP6 • AN INDEX wHEN IT IS GREATER THAN O~E THE FIRST TIME STEP 
wILL 8E SUBDIVIDED TO SOME UNEQUALL BUT SMALLER TIME STEPS, 
OELS - DIMENSIONLESS SPACE INCREMENT (DE~S.HEIGT/MY·l), 
~ • DIMENSILESS RADIUS OF CIRCLE OF APP~ICATION RA (RaDELS*FLOAT 
(N2X-l», 
AREAC • DIMENSIONLESS AREA OF CIRCLE OF ~PP~ICATION A~EAca3,14*R*R 
w • APPLICATION qATE PE~ AREA OF THE CIRC~E OF APPLICAT~ON, 
TIME • DIMENSIONLESS TIME. 
HO(J,I) • VALUES OF PRESSURE HEAO AT TIME a 0,0, HO(J,I)aH(J,I), 
HDeJ,!) • DIFFERENCE 8ETWEEN PRESSURE HEAD AT PREVIOUS TIME STEP A~D 
CUR~ENT TIME STEP, HDCJ,I).HOeJ,I)-H(J,I) 

H(J,I) - VALUES OF PRESSURE HEAV AT ANY TI~E, 
bCJ,Il - VA~UES OF HYORAULIC HEAD AT ANY TIMf, 
0(1) - VALUES OF SATURATION CALCULATED FROM BROOKS-COREY EQUATION. 
SATT - MAGNITUDE OF SATuRATION ON THE CIRCULAR ~ATER APPL~CATION 
AREA, ~HEN SATT EQUALS OR GREATER THAN THE SAl MAX THE SPECIfIED FLUX 
CONDiTION wILL BE CHANbEv TO SPECIFIED SATURATION(NSSU~.l). AND 
P~ESSURE HEAD wI~L BE CA~CU~ATE~ FROM THE SSUR SPECIFIED, 
Sl(I) • INITIAL SATURAT10h 
AVERAGE INFILTRATION RATE a WATCOT/TIME 

N 
N 
CO 



C I~STANTENEOUS INFILTERATION ~ATE 5 WATCOT·~A1COl/TIMl.TIMI 
C I~8TANTEN~OUS I~'ILT£RATION PER UNIT AREA a I~ST. INFIL. RATE/AR~AC 
C WATCOT - VOLUME OF wATER AT CURRENT TIME STEP (DIMENSIONLESS) 
C wATC01. VOLUME OF WATER AT PREVIOUS TIME STEP (DIMENSIONLESS) 
C TIME· ACTUAL DIMENSIONLESS TIME 
C TIMI - MA,NITUDE OF DIMENSIONLESS TIME AT PREVIOUS TIME STEP. 
C AMBDA(J) - PORE SIZE OISTRI8UTION EXPONENT, FUNCTION OF OEPTH. 
C VK8(J) - A DIMENSIONLESS QUANTITY W"E~ IT IS MULTIPLIED BY AK Gl~ES 
C TME SATURATED HYDRAULIC CONDUCTIVITY KOeJ)aAK*VKSCJ). 
C SR(J) - RESIDUAL SATURATION, FUNCTION OF DEPTH 
C 8S(J) - RUB8LING PRESSU~E, FUNCTION OF DEPTH , DIMENSIONLESS. 
C POR(J) - SOIL POROSITY, FUNCTION OF DEPTH 
C 
C 
C 
C MAIN PROGRAM SPECIFIES TME PROBLEM AND DIRECTS THE ORDER OF COMPUTATIONS 
C AND NATURE OF OUTPUT BY CALLING SU8ROUTINES AND ALSO CHANGES THE BOU~DARY 
C CONDITION. 
C 
C 
C 

REAL QK(l5),TIMHCl5),TFAC(lOO) 
INTEGER NTAPf(ll),NSwIT(l5),lMFAC(100) 
CO~MON H(12,12),hO(31,ll),8(12,ll),DM(32),D(12),OP(ll),F(31), SI(31 
$)'V~8(13),AM80A(12),DELSl(12),AM831(3l),A~SDIC31),POR(ll),SR(12), 
S8R1C31J,DVKS(ll),OAM80A(32),PAV~(ll),B8(31),OP6C32),Vk,MEIGT,Ak 
S,DEPTH,SL,DELT,DELS,HI,HIT,ERR,ERRT,ERR1,RERH1,TIME,OES2,DELH,SSUR 
S,OMEGA,wATC01,TIM1,XIC12,ll),XIHCll,32),XID(32),MY1,NY,NY1,NY2, 
SNHSR,MY,NSAT,NSSUR,N81,N81,MAX,MAXT,NX,NX1,NR~,N5,Nb,J,JM,JP,~1, 
SMl,IMAXJ,IMAXM,IMAXl,ITIME,IM,IP,DAM8K(3l),OELSC8(3l),OCU8(31), 
SOE~SC2(ll),DCUS5(3l),MO(32,3l),Q,R,NlX,MX,M82,M83,IIK,NlXP,AREAC 

NSKIP.O 
INCRTaO 

10 RE4DC5,4iS,ENOaq9) N2X,MX,My,NT,HI,DEPT",OE~T,SL,SSUR,SECOD 
I,(NlX.GT.50)GO TO q9 
IMAXMa8 
IMA~Ja10 
IMAXla12 
TIMl a O.O 
~ATC01aO.O 

428 FORMAT(4I5,bFIO.5) 
REAO(S,41e) NFAC 
READ(S,417)(TFAC(I),lMFACCI),I.l,NFAC) 

417 FORMAT(8CF5.2,I5» 
NSSUR.O 
M1al 
IF(SSUH.GT •• 001)NSSURal 
I'CNSSUR.fQ.l)Mlal 
KTIMla1 
kKT1al 
IFCNSKIP.EQ.1)WRITE(c,lI0) 

110 FO~MATC1H1) 
IF(~8SUR.EQ.l.AND.SECOD.LT •• 001)GO TO 21 
REAO(S,42e)NRAIN 
READ(S,20b)CQK(I),TIMHCI),NS~IT(1),Ial,NRAIN) 

lO~ F~RMATC3(2Fl0.S,IS» 
WRITE(b,420)(QK(I),TIMH(I),NSWITCI),Ia1,NRAIN) 

420 FOHMAT(' RAINFA~L RECORD ',4(2F10.S,IS» 
VKaQK(l) 

11 MY1. MY-l 
HEIGTaOEPTH/SL 

HITDHIISL 
IF(NSSUR.GT.O)GO TO a 
WRITE(&,lOc)NeX,MX,MY,NT,MI,HIT,OEPTH,HEIGT,DELT,VK,SL 

101 FORMAre' Nixa',13,' Nxa',z3,' Nya',13,' NTa',rs,' I1Ia',F8.3,' HIra 
S',F8.1,' DEPTHa','7.2,' hEIGTa','S.l,' DELTa',F8.4,' Qe',FlO.b,' 
S SLa',F8.1) 

GO TO 9 
8 w~IT£(b,i04) NlX,MX,My,NT,HI,HIT,DEPTH,HEIGT,DELT,SSUR,SL 

i04 'ORMAT(' NiXa',ll,' NXa',ll,' Nya',Il,' NTa',IS,' HIa'"a.3,' MITa 
S',F8.3,' DEPTH.',F7.1,' HEIGTa',FS.3,' OE~Ta',F8.4,' S(I)a',F8.4,' 
S SL a' , F 8.3) 

9 REAO(S,101) AK ,EXPANO,ERR,SATMAX,OMEGA 
101 FORMAT(aFIO.S) 

READ(5,400)NHIT1,NRIT2,NHSTAR 
400 FOHMATC]I5,b,lO.5) 

REAO(5,17b) MAX,ISTEPB 
MUTaMUIl 
ERRTalOO.*ERR 

176 fORMAT(lbI5) 
w~ITECb,191)NRIT1,NRITi,NSSUR,MAX 

)ql FORMAT(' NRITla',I2,' NRITia',Il,' NSSu~a',Il' MAXa',I2,I5) 
NlxPaNlX+l 
I'(NSSUR.Gr.O)GO TO 14 
NIHa1 
NBlal 
MSlal 
M81al 
GO TO II 

34 NS1al 
N8laS 
M81aNlXP 
MBlaM82+1 

32 ~RIT£(b,103) ERR 
10] FORMAT(' fHR', eq.l) 

NYab 
I'(HEIGT-HIT.GT •• 99) GO TO 4S 
wRITE (0, 17q) 

179 FORMAT('O PROBLEM SPECIFICATIONS OUTSIUE qAN~E OF vALIDITy OF 
SSROOKS-COREY EQUATIONS') 

GO TO 10 
45 IF(HIT.LT. -.99) GO TO 4~ 

WRlTE(b,181l) 
180 FORMAT ('0 BEFORE WATER PENETRATES TO dOTTO~ PROdLEM 

SSPEC1F1CATIONS wILL BE OUTSIOE THE RANGE OF VALIDITY OF THE 
SBROOKS-COREY EQUATIONS') 

40 NX,u'j2X+b 
DELSaHEIGT/F~OAT(MY-I) 
OESZ.2.O*OELS 
OESSCDESl*OE~S 
DHHaO.5*OEI.S 
N2X1 a N2X-l 
~aOELS * F~OAT (NiX1) 
AREA~al.1415qlb * R * R 
IF(VK.LT •• 001) GO TO 11 
QaVK * AREAC 
IF(NSSUR.EQ.O)wRITE (b,109) VK,R,Q,DELS,AREAC 

109 FORMAT(' FLU~ PER UNIT AREA HAS SEEN SPECIFIED EgUAL TO',F8.4' 
SRAOIUSa',F8.a,'Qa',F8.4,'DELS·',F8.3,'AAEAa',F&.1) 

GO Tv 7 
11 VKaQ/AREAC 

IF(NSSUR.GT.O)WRIJE (~,10e) R,VK,DELS,AAEAC N 
N 
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108 FUkMAT(' RADlUS OVER "HICH INFI~TRATION OCCURS',f10,5, 
S'INFILTRAT10N 'Luxa',Fq,4,IOE~8al,F8.3,IAREAa',F8.3) 

TIMEaO.O 
CALL DERV 
NXlaNX-l 
Nn-NY-! 
naNYl 
NXlalliX-l 
NYlaNY-l 
CA~~ INITIA 
FAe laHElGT-HIT 
00 n Ial, M)I, 
110(1,1)aFACl 

q9 HO(l,I)aHO(l,I)-H(l,l) 
DO 53 Jal, MY 
DO 53 lal, Ml! 
IIKal 
HO(JrI)aO.O 

53 HO(J,I)aH(J,I) 
IF(NSSUR.EG.1) GO TO 11 
00 12 lal,"'l! 
IIKal 
FAClaO.l * HO(l,I) * VK 

12 HOtl,I)aFACl 
13 00 43 lal,MX 

IlJ<al 
FAC3aO.lO* HU(l,l) 

143 rlDtl.!)aFAC3 
NTl81 
IF(ISTEPB.LT.1) GO TO 17 
NTlal 
IIaO 
00 l~ lal,lSTEPB 

U 11-11+1 
ARlilaU 
IF(NSSUR.EQ.l) GO TO l1 
DE~Sl (1) aD (1) 

MXla"'X-l 
00 11 lal,NXl 
0(2)-H0(1,I) 
HD (1, I "~O t 1,1) 
DO)aHO(lrI) 

28 OELS2(1) a ARG1*0(1) 
XIllc(HO(I,ll**ERR1-1,)/ERRl 
~11I~c(HO(1,I+l)**ERRI-l.)/ERRl 
xll1M.(~OCl,1-l)**ERR1.1.)/ERRl 
XI21a(HO(2,1)**ERR1-1.)/ERRl 
ARG a Fl(HO(1,1),XI(1,I),Xl(1,1+1),XI(1,1-1),XICl,I),O).Ft 

$( ~O II , 1) IX I ( 1 , I) , )( 1 ( 1 , 1.1> , l( I ( 1 , 1-1) , )( I (l, Il , 1 ) 
DELSl(l)aD(l) 
IF (ARG.LT. 0,0) GO TO 2q 
ISTEP6 a ISTEP6 +1 
ARGI c ARGI + FLOAT (ISTEPB) 
wRITE(b,l5S) ISTEPB,ARG,ARGI 

lSS FORMAT(' p~ELIMINAqy TIME STEPS HAVE BEEN INCR~ASED TO',IS,3e13.b) 
IF(I5TEPa.~T.50) GO TO 2~ 
IF (lSTEPs,fQ.50) STOP 

cfl HD C1, naO (i) 
71 HD(2, ncD(3) 
21 ARGcU.O 

DETT a DEL T /lRGl 
00 15 lal, ISTEP8 
KK-I 

22 ARG a ARG t '~OAT(I) 
FAC a ARGI/ARG 
DO 16 Kal, NY 

Ib OE~S2(K). FAC * OE~Sl(K) 
. ARGI. ARlO 

TIME a TIME + OETT * F~OAT(l) 
CA~L 11H8TI1"10) 
CALL RITOUT(NH8TAR,KK) 

19 NY2 a NY-i! 
IF (H(N'l,l).G'~HO(NYl,MX)-EXPANO,OR.NV,~Q,MV) GO TO 16 
NY a N't+1 
GO Tu 19 

18 NYl a NY-I 
/,YlaNY-l 
naN't 

fll NlC14aNX-" 
IF(~(I,NX4).GT.HO(I,HX)-EXPANO.OR,NX.EQ.MX) GO TO al 
NX·~)(+l 
GO TO 01 

81 NXlaNX-l 
15 NXlIINX-l 

17 IF(N8SUR ,EG. 1) GO TO t17 
VKaQK(l)/AK 

171 DO 2 laNTI,NT 
IIKa1 
IF(IMFAC(KKT1) .HE. I) GO TO l14 
OE~T·DELT*TF'CtKKT1) 
00 &01 JKal,MY 

bbl OELSc(JK)aOESS*POR(JK)*AMeOA(JK)*SR1(JK)/(BB(J~).*A~8Dl(JK)*DELT) 
t<KTlaKKT1+1 

i14 IF(NSSUR,EG.l) GO TO 25 
1>0 507 KKal,NlX 
S.TTaSR(l)+SRl(l)*(BB(J)/~(l'KK»**'MeDA(l) 
IFCSATT .GE. SAT"AX) NSSURcl 

5b7 CONTINUE 
IF(NSSUR .EG. 0) GO TO 5&B 
SSURII!SA TMAXt. 05 
NBt.&! 
N82d 
MB&!.r~2XP 

MBlIIMBl.1 
DO Soq Ka 1, NlX 
HC1,K)aB8(1)/«SSUR.SR(1»/S~1(1»**(1./AMBDA(1») 

Seq XIC1,K)aCH(1,K)**ERR1-1.)/EPRl 
GO TO 23 

508 IF(TI~~(KTIM2).GT.TIME.OR.KTIMl.EQ.NRAtN) GO TO il 
K TI "Ie at< T1 Mi. t 
1~(NS~IT(KTIM2) .E~.O) GO TO 514 
IF(NSWITCKTIM2-t) ,EG. NSWIT(KTI~2» GO TO 50 
NSSUR a 1 
NBtal 
NB2al 
1'18iaNCXP 
MB3aMSl.l 

50 SSURawK(KT!Mi) 
00 Sob Kal,Ni!X 
~(1,K)a~B(1)/«SSUR-SR(1»/SR1(1»** (1./A"I80A(I» 

Sbb Kl(1,K)a(H(1,Kl**e~Rl.1.)/ERMl 

N 
W 
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C 
C 
C 

GO TO 23 
5" IF'~8~lT(KTI~2-1) .EW. N8wITCKTIM2» GO TO 55 

NS8URBO 
,.81al 
N82al 
MUaNlXP 
M81aMB2.1 

55 VKBQKCKTIMl)/AK 
23 fVHSRaO 

NRRaHOD (l,NRlT2) 
CALL TII"ST"'(10) 
TI"'EaTIME+OEL T 
IFC~RR.GT.O) GO TO 1 
CALL AITOUT(~HSTAR,I) 

3 NYZaNY-2 
IF CHC"Yl,I).GT.HO(NY2,MX)-EXPANO.OR.Ny.EQ.MV) GO TO " 
NYB~Y+l 
GO TO 3 

4 NYlahY-1 
NYZa"Y-l 
FhNYI 

5 NX"aNX-4 
IF C"C1,NX4).'T.HO(I,~X)-EXPAND.OR.NX.EQ.MX) GO TO b 
NXaNX+l 
GO TO 5 

#) t.J)lla"'X-l 
NXla"x-l 

2 CONTINUE 
NSI(IPal 
GO TO 10 

99 STOP 
ENO 

C SUBROuTINE TIMSTH CARRIES uUT THE COHPUTATIONS NtEOEO TO ADVANCE ONE 
C TIlliE STEP. 
C 
C 
C 
C 

SU~ROuTINE Tl"'8TH(*) 
COMMO,. HCll,ll),HOe12,12),8(12,ll),OMC32),De12),OP(3l),F(3l),51(12 

S),VKSCll),AHBOAr3l),DELS2C32),A M632(12),AM801(12),POR(l2),8RC3l), 
SSR1(ll),OVKSC3l),DAHBOACll),PAvKCll),8SC12',DPBC32),vK,HEIijT,AK 
S,DEPTH,Sl,OELT,OElS,HI,HIT,E~R,ERRT,ERR1,~ERR1;TIME,DES2,aElH,SSUR 
S,uMEGA,~ATC01,TIM1'XI(32,3l),XIH(32,12),XIO(12),MV1,Ny,t.JV11,NVc, 
SNHSR,HV,NSAT,NSSUA,N81,NB2,MAX,MAXT,NX,NX1,NRx,NS,N&,JJ,JM,JP,Ml, 
5M2,I"'AXJ,I"AXH,IHAX2'ITIME,IM,IP,OAMeK(32),DELSC~C3l),OCUB(li), 
SDELSC2(12),DCUBSC12),HDCll,32"G,R,NlX,MX,MBZ,MB3,IIJ,~2XP 
RER~1.1./tRRl 
LOGlCAL NTuRN 
VVKaVK 
t.JVlaNY11 
Nt.JxaNXl 
~NYa~Yl 

IF(NX .EQ. MXl NNXaMX 
IF(~Y .EG. ~Y) NNYaMY 
DO 2 IaMB2,NXl 
IIJaI 
IFCI .EG. N2XP) VKeO.O 

IPaI+l 
IMaI-l 

l 8Cl,1)aFl(HC1,I),XI(I,1),XIC1,IP),XI(1,IM),XlCl,I),O) 
00 1 IBl,NXl 
IIJal 
IPaI.l 
H'aI-l 
00 1 JaZ,NYl 
JJaJ 
JMaJ-l 
JPaJ+l 
CALL FJCHeJ,I),XIeJ,I),XleJM,I),XleJP,l),XICJ,IP),XI(J,IH), 

IFF, 0) 
3 8(J,ll a fF 

N8TahSl 
LlO 20 IBl,NNlC 
IIJal 
IF(N8SUR .aT. 0 .AND. I .EQ. NlXP) Nelat 
DO 31 JaN81,NNV 
JJaJ 
ARliaHeJ,I) 
FACal. 
IFeJ .EQ. IMAXJ) GO TO 3i 
IFeJ .LT. IMAlCJ) GO TO 29 
IF(J .GT. IMAlCl) GO TO lob 
FACal.l 
I'CJ .LT. 4) FAca.l 
HeJ,l)a'RG-FAC*HO(J,I) 
GO TO 13 

19 IF(J .LT. IHAXM) GO TO 10~ 
IfCJ .tQ. IMAlCM) GO TO 11 
HeJ,1)BARG-.b5*HDeJ,I) 
GO TO 13 

II ,.'Ca.S5 
HeJ,I)·ARG-'AC*HOeJ,l) 
GO TO 13 

lZ fACa.2S 
IF{J .LT. 3) FACa.1S 
H(J,I)a,RG.'AC*HDCJ,I) 
GO TO 11 

16b H(J,I)aARG-HOeJ,l) 
13 HDCJ,I)BARG 

IF(HeJ,I) .IT. 0,0) RETURN 1 
xleJ,I)aCH(J,I)**ERRl-1.)/ERRl 

31 XIH(J,I)aeARG**ERRl-I.)/ERRl 
16 CONTINUE 

NB1aNBT 
IFCNV .LT. HV) GO TO 1~ 
DO 10 Ia2,NXI 
lIJel 
IPBI+! 
I"'al-1 

Ib BCMY,I)aF1CH(MY,I),XI(MY,I),XI(HV,IP),XICMV,IM),X!CMVl,1),0) 
15 NCOUNTao 

VKaVVK 
" SUMTaO.O 

MNCTao 
NflBZaNb2 
DO 5 I e2,NXI 
IIJal 
NTURNe .FALSE. N 

W 



NytaNY11 
SA~8-$R(Hy)+aAl(MY)*(BBeMY)/HtMy,I»**~M8DAeMY) 
IF(SATB .LT. OM[GA) GO TO 288 
Nytai'\Yl 
H(MY, I)-Ba(My) 
Xl(MY,I)-(HCMY,I)**ERR1-l.)/ERRl 
NTIJRN_ .TRuE. 

l88 IP-l+1 
11'1-1-1 
NCT-O 

~ IF(NSSUR .GT. 0 .AND. 1 .LT. NlXP) GO TO 8 
IF(1 .~Q. N2XP) YKao.o 
IF(H(l,l) .LT. B8(1» H(1,I)a8B(1) 
ARQaFl(H(1,I),XIe1,I),XI(1,IP),XI(1,IM),XIl2,I),1) 
Fe 1 )aARG+B( 1, I) 

8 DO q Ja2,NYI 
JJaJ 
JPaJ+l 
J"'aJ-1 
CALL FJ(HeJ,l),XleJ,I),XleJM,I),XleJP,I),Xl(J,IP),xleJ,I"'), 

SFF,t) 
q F(J)aFF+B(Jrl) 

IFeNv .LT. NY) GO TO 10 
IF(~TURN) GO TO 10 
NY1aMY 
ABGaF3(~eHY,I),XI(MY,I),XI(MY,IP),XI(MY,IM),XI(MY1,1),1) 
F(My)aABG+8(MY,I) 

10 IF(1 .~Q. NiXP) N8l_2 
DO 11 JaNBc,NYl 
JJaJ 
JMaJ-l 
AllIi_OM (J) 10 e JM) 
F(J)aF(J)-ARG*r(JM) 

11 D(J)aD(J)-ARG*opeJM) 
JaNY1 
OIFaF(J)/O(J) 
XleJ,I)aXleJ,Il-oIF 
IF(J .EU. MY .AND. XI(Hy,l) .Gl. XIO(HY» X!(My,I)axIO(MY) 
"(J,I)8(1.+ERRl*xleJ,I»**REkRl 
SUMaABS(oIF) 

12 JaJ-l 
DIF-(F(J)-UP(J)*OIFl/D(J) 
XITPaXI eJ, 1)-oIF 
IF(XITP .LT. XIHeJ,I» GO TO 5~ 
IFeE~Rl*xITP .Gl. -.99999) GO TO 154 
CALL FI~NOK(XI(J-l,I),XI(J~l,l),XITP,I,J) 
GO TO 155 

154 xITP a xIH(J,I)-1.E-11 
155 0IF.0.0 
54 H(J,1)a(1.+ERR1*XITP)**~ER~1 

XICJ,OaXITP 
53 SUMaSUM+ABS(OIF) 

IF(J .GE. ~8c) GO TO 12 
IF(NCT .EQ. 0) SUMTaSUMT+SUM 
Ncrar.CT+l 
IF(SvM .GT. ERR .AND. NCT .LT. MAXT) GO TO b 
IF(NC1 .GT. MNCT) MNCT_NCT 

I) CO"lTINUE 
NiSi.NBti2 
VO 47 J a l,NNY 
HlJ,1)aH(J,2) 

c 
c 
c 

111 XIeJ,1)aXI(J,i) 
NCOUNTa~COUNT+l 
Vt<ayYK 
IF(~NCT .LT, 3) GO TO 4& 
I'(SUMT .GT. EART .ANO. NCOUNT .LT. MAX) GO TO q 
IF(NCOUNT .EQ. MAXT) WRITE(b,lOO) NCT,NtOUNT,8u~T 

100 FORMATtlH ,13,' DID NOT CONYERGf IN ALLOWA8LE ~UHBER OF 
SIT£RATIONS',I3,' SUMTa'E1S.8) 

~~ SUMaO.O 
N8Talll81 
DO iq hl,NXl 
IIJ-I 
IFeN~SUR .GT. 0 .ANO. 1 .EQ. NlXP) N51al 
DO 24 JaN"8l,NYl 
JJaJ 
OIFaHDlJ,I)-M(J,t) 
IFeoI~ .LT. 8UM) GO TO 2~ 
SUMaoIF" 
IMUJaJ 

211 1-4o(J,I)aOIF 
Yt<aVVK 
N8tllN8T 
IMUcDIMAxJ+2 
IHAXMaIMAxJ-Z 
RETUioiN 
END 

C SUB~OUTINE RITOUT COMPUTES SATuRATION ,AVERAGE INFILTRATION ~ATE, 
C INSTANTENEOUS l"1FILT~ATION RATE ,VOLUME OF wATER APPLIEO, HYDRAULIC 
C HEAO AND pRINTS PRESSURE HEAO,HYDRAULIC rlEAo,SATURATION,AyERAGE 
e INFILTRATION RATE,INSTANTENEOUS INFILTRATION RATE,vOLUME OF wATER 
C APPLIED AT EACH GRID POINT.AT AIIIY TIME STEP. 
C 
C 
C 

SU~ROUTINE RITOUT(NM,ITIMEl} 
COMMuN H(3i,32),HO(li,32),Se32,32),DM(32),0(12),DP(32),F(3c),SlCl2 

$),VKS(13),AHSOA(32',OELS2(12),AM832(32),AMBol(12',POk(12),SR(3l), 
SSRl(32),DVKS(32),oAM80A(12),PAVK(121,BBe12),DP~(12),VK,HEIGT,AK 
S,OEPT~,SL,OELT,oELS,HI,HIT,EKR,ERRT,ERR1,RERkl,TlME,OES2,oELH,SSU~ 
S,OMEGA,wATC01,TIM1,XI(32,3i),XIH(32,32),XIOe3l1,MY1,Ny,NY1,NY2, 
SNHSR,My,NSAT,NSSUR,N81,NB2,HAX,MAXT,NX,NA1,~RX,NS,Nb,J,JM,JP,~l, 
SM2,IMAXJ,IMAX~,IMAX2,ITIME,IM,IP,OAM8K(32),oELSC~e12),oCU8(121, 
SDEL8C2(3i),oCUBS(12),Ho(12,321,Q,R,N2X,MX,MBl,MB1,1,N2XP,AREAC 

NM1_l 
IF(~M .GT. 0) GO TO 35 
NMl-l& 
IF(~M2 .GT. NX) NM2aNX 
WRITt(b,lOS) ITIME1,1IME 

105 FO~MAT(IO VALUES OF P~fSSURE 'OR TIME STEP',I5,' TAua',F9.q) 
wRITe(b,101) (I,I BNM1,N Ml) 

101 FORMAT(3" ,15,1518) 
DO 2 J a l,NY 

2 WRITE(b,100) J,(rl(J,11,I-NM1,IIIM2) 
100 '0~MAT(1H ,I2,1&F8.4) 

IFCNM2 .EQ, NX) GO TO 1 
NMl aN Ht+l& 
NMl.N~2+1& 
~O T0 1 

N 
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1 IF(NM .LT. 0) RETURN 
]5 w~lTlCb,10~J ITIME1,TIME 

104 FOA~ATC'O VALUES OF SATURATION FOR TIME STEP',I5,' TAu."F9.~) 
HIMaHU.OOn 
OCZ)aSR(1)+SR1(1)*(BB(I)/HC1,2»**AMBOAC1) 
O(1)aIHZ) 
8(1,2)8HEIGT-H(1,2) 
wATCOTaOCUa5(l,*(O(2)-Slel» 
l a 2 
J a l 

11 IaU1 
D(I)aSA(J)+8Rl(J)*CBBeJ)/HCJ,I»**AMSOA(1) 
WATCOT awA lCOT+OELSC2(1)*(0(I)-Sl(J»*FLOAT(I-1) 
8CJ,I)a~EtGT-H(J,I) 
I'CS(J,I) .GT. HIM .ANO. I .LT. NX ) GO TO 11 
IHUal 
8(J,1)aI 
wRITl(b,IOl)J,(O(II),IIal,l) 

12 JaJ+1 
XXaHEIGT-DELS*FLOAT(J-l) 
D(2)aSk(J)+aAl(J)*(BB(J)/H(J,2»**AMBOACJ) 
o (1)aO(2) 
wATCUTaAATtOT+OCU8CJ)*CDCI)-Sl(J» 
OPEaU-H(J,I) 
8(J,2)aOP[ 
la2 

13 IaUI 
DCI)aSReJ)+SRI(J)*(88CJ)/H(J,1»**AMBDA(J) 
8(J,1)aU.H(J,x) 
wATCUTa~ATCOT+DEL8CS(J)*(DCI)-SICJ»*FLOATCI-l) 
IF(8(J,I) .GT. HIM .A~O. I .LT. NXI) GO TO II 
IFCI .GT. IHAX) IMAXal 
8CJ,1) al 
wRITl(o,I03) J,(OCII),IIal,I) 

103 FORMAT(lH ,I2,10(lbF8.~,I,IH » 
IF(DPE .GT. HIM .AND. J .LT. NV1) GO TO 12 
I'(J .IT. MY1) GO TO Z9 
O(2)·SH(HV)+S~lCMV)*C88eMV)/H(MV,2».*AMijOA(MY) 
Do)aOl,D 
8(MY,2).-"CI1Y,2) 
JaMV 
wATCCTa~ATtOT+OCUB5(MY).eO(2)·8ICMYJl 
182 

20 Ia1+1 
O(I)·S~(MV)+SRI(Mv)*ca8(MV)/He~V,I»**A~BDA(MY) 
8 ( J ,I ) a.H C J .I ) 
~ATCUTa~ATtOT+OElSCZ(MT)~(Del)·SICMY»*FLOAT(I-I) 
IFCS(J,I).GT. HIM .ANO. I .IT. NXI) GO TU 20 
8(J,1)·I 
~RITE(b,101) MY,(D(II),Ila1,!) 

29 xxa8~*.ATCOT 
IU lEawATCOT ITIME 
RPhSl*~ATE 
D(1)ae wATcOT-WATCOI)/(TIME-TIM1) 
D(2).D(I)IAR~AC 

D(l).Sl*OCZ) 
~RITECb,102) ~ATCOT,XX,RATE,RPT,eD(I),Ial,1),ITIME1,TIME 

102 FOR~ATC' vOL. OF WATER ABSORdED a',2Fl0,o,' RA1EB',2F9.4,' I~ST. 
S ~ATEa',Fl0.5,' AATEIPUAa',2F9.Q,I,'O VALUES FDA HYDRAULIC HeAO 
'FOR TIME STEP',IS,' TAua',F9.4) 

""CUlaWATCOT 

e 
c 
c 

TIMlaTIME 
00 24 JJ a l,J 
u aSeJJ,l)+.OI 

24 WAITECo,10o) JJ,deJJ,2),eBCJJ,I),IaZ,II) 
lOb FORMATC1H ,I2,lbF8.3,lCI,3X,lbF8.1» 

RETURN 
END 

C SUBkOUTINE INITIA -INITIALIZES THE STATIC EQUILIBRIUM PREaSRE HEAD, 
C TRANSFORM[D PRESS~E HEAD, AND SATURATION IN THE SOIL PROFIL~ PRIOk TO 
C INFILTRATION. 
C 
C 
C 

C 
C 
C 

SUBROUTINE INITIA 
COMMON HC1Z,12)~HOC3Z,lZ),Se32,32),O"'(l2),DCjZ),OP(32),F(3i),S1elZ 

S),VKSCll),AM8DA(12),OEL8ZelZ),AM81Z(12),AM6Dl(12',PORC3Z),SA(12), 
SSR1(3Z),OVKSC12),OAMBOAC32),PAVKe12),SBC1Z),OP8C32),VK,HEIGT,AK 
S,OEPTH,SL,DELT,OELS,HI,HIT,ERR,ERRT,ER~t,RERR1,TIME,UESZ,oELH,SSUR 
S,OMEGA,WATC01,TIM1,xICJ2,32),XI~(12,12),XIOC12),HV1,Ny,NY1,~V2, 
$NHSR,My,NSAT,NSSUR,~81,N8i,MAX,I1AXT,NX,NX'I,NRX,NS,NO,J,J~,JP,"'l, 
$M2,IMAXJ,IMAXH,IMAX2,ITIME,IM,IP,DAMS~(12),DELSCbC12),OCU8(12), 
SOELSC2(3l),DCU85C12),HD(12,lZ),Q,R,NiX,MX,H82,M83,1,N2XP 

NNCTao 
00 2 Jat,MV 
HTaHEIGT-OEL8*FLOATCJ-l)-HlT 
XTa(HT**~RR1·1.)/ER~1 
Sl(J)aSR(J)+SR1(J)*(~BCJ)/HT)**AM80ACJ) 
XIO(J).XT 
00 2 Iat,MX 
H(J,l)aHT 

XICJ,I)aXT 
2 XI~(J,l)axT 

~RITE(b,20Z' (HCJ,1),Jat,MY) 
20i FOR~AT(' INITIAL OISTRIBUTION OF PRESSU~E wITH OEPTH',5C/1H ,I3FI0 

5.7» 
~RITE(o,201) (Sl(J),Jal,~V) 

201 FORMATe' INITIAL SATURATION lHRU PROFILE',S(/,lH ,llFl0.~" 
IF(NSSUR .EQ. 0) RETURN 
HTa8~(1)/«SSUR-SR(1»/SR1(1»**(1./lMBDA(t') 
XTa(HT**ERR1-l.'/EARl 
DO 3 lal,N2X 
HC1,I)aHT 

1 XIC1,I)aXT 
RETUR~ 

END 

C FUNCTION Fl. CALCULATES THE VALUE OF FUNCTlON A~O ITS OEHlvATIvES 
C AT SOIL SURFAt~ WHEN IT IS CALLED. 
C 
C 
C 

FUNCTION Fl(HlI,XItI,xIlIP,XI11M,X12I,NN) 
COMMON HC32,12"HO(32,lZ),B(12,32),OMC)2),D(32),OP(lil,FC)i),SI(l2 

S),VKS(13),AMBDA(32),DElS2(32),A M812(32),AMBOI(12),PORC1Z),SR(3i), 
iSR1(12),OVKS(12"OAMBOA(12),PAVk(32',B8(12),OP8C12),V~,HEIGT,Ak 
S,OEPTH,Sl,OELT,OELS,Hl,HlT,ERR,ERRT,ERR1,RERR1,TIME,OES2,OELH,SSuR N 

W 
W 



c 
c 
c 
c 
c 
C 
C 
C 

$,O~E'A,WATtOl,TIM1,Xl(12,3~"XlH(1~,32),XlO(3~),MV1,NV,NV1,NV2, 
SNHSR.MY,~SAT.NSSUR,NS1,N82,MAX,MAXT,NX,NX1,NRX,NS,Nb,J,JM,JP,Ml, 
$Hl,lMAXJ.tHAX~.lHAX2,lTIHE,IM,IP,OAM8K(12),OE~SCbe12).OCUB(32), 
SOELSC2(12),OCU85(12),HO(32,12),Q,R,N2X,~X,MB2,MB1,I,N2XP 

PTaHlI 
OHla.5*exI1IP-XllIM) 
02RlaXllIP+xI1IM-2.*X111 
ARv-l.+ERR1*Xll1 
O~wK--VK*(88(1)/PT)**AMB12(1)/VKS(11 
YKSPaVKS(l,*PT 
ORIS-OAI*ORI 
S8wKaOEL8*ARG*OLWK 
SSP"KEa(OELS*A~G/PT1*CD~~K~1.0) 
FTl a (DZRI+2.U*eX121+SSPWKf-XI11)+eDM(11/ARG)*(ORlS+(SSPWKE**Z») 
'T2aAM8~2(1)*PT*ORlS/AKG 
8RACT-DPbel)+OAMBK(1)*ALOGC88(1)/PT)+AMB12Cl)*OELS*(DLWK+l.0l/PT 
FITaPT*ORI/FLOAT(I-l) 
FT1-SS"K*OV~S(1) 
Fl- VKSC11*C(PT*FT1)+FT2+SSWK*BRACT+~IT)+FT3 
IFCNN .EQ. 0) RETURN 
H~Aa(1.+ERR1*XIH(1,I)'**RERRI 
PAya.S*CPT+HDA) 
TS2aOE~S2el)*PAV**AMS01Cl' 
TSlaTS2*(xlll-XIH(1.I» 
'I-Fl-TS3 
OFT4a-4.0-2.0*DElS*eDlwK+l.O)~DM(I)/PT-(D~(1'*tRR1/eARG*ARw»* 
SeORIS+SSPwKE**2)-Z.O*C(b~Cl)*OE~S*CD~WK+l.0)/PT)**l) 
O~TlaFT2*OM(1)/ARG 
6HACT2aAM812(1)*DELS*(ulwK+l.0)/PT+OAM~~(l' 
O~ITaFIT/ARG 

OFTla-OELS*OlwK*ERR1*DYKSll) 
O(l)a vKS(11*«lPT/ARG)*fTl)+PT*O~T4+DFTa+OElS*D~wK*CEHR1* 
S~RACT-BRACTl)+OFIT).OFT3·TS3*AMB01(1)*O.5*PT/(ARv*PAV)-TSZ 

OP(l,aZ.0*VKSC1,*PT 
RETUWN 
END 

SU~ROu'INE FJ IS CA~lED TO EVALUATE THE FUNCTION AND ITS DERIYATIvES 
FOR THE INTERIOR POR1ION OF FLOw 'lE~D. 

SUBROUTINE FJ(HJI,XIJI,XlJMI,XIJPI,XIJIP,XIJIM,F~,NN) 
COMMUN H(lZ,32),HOCll,ll),BC1Z,ll),OM(12),Dl32),OPtlZ),F(32),S1C3l 

S),VKSllJ),AM8DAC3l),OELS2Cll),AM83l(3l),AM801(12),PORC1Z),SRC32), 
SSR1(ll),DVKSC3l),OAMBDA(12),PAYKC12),b8(3Z),DPS(32),VK,HEIGT,AK 
S,DEpTH,S~,OE~T,OELS,HI,HIT,ERR,ERRT,ERR1,RERR1,TIME,DESl,OELH,SSUR 
$,OMEGA,wATC01,TIM1,XI(ll,lil,XIHCll,32),XIO(3l),MV1,NY,NV1,NV2, 
SNHSR,My,NSlT,NSSUR,Nbl.NH2,HAX,MAXT,NX,NX1,NRX,NS,Nb,J,JM,JP,Ml, 
$Ml,IMAXJ,IMAXM,IMlXc,ITIME,IM,IP,DAMBK(32),OElSCb(32),OCUR(3i), 
SOElSCZ(3Z),OCU85(ll),HO(32,ll),Q,R'N2X,MX,~B2,MB1,1,NlXP 

PTaHJI 
DXIa.5*exIJMI-XIJPI) 
DRla.~*(~IJIP-XIJIM) 
DlXl aX lJPI+XIJ Ml-2.*XIJI 
Ol~IaXIJIP+XIJIM·2.*XIJI 
ARGal.+ERR1*XIJl 
DPOlsPT*Oxl-OELS*ARG 
YKSPsYKS(J)*PT 

c 
C 
e 
C 
C' 
c 
e 
c 
c 

'laVKSP*ORI/FLOATCI-l) 
aXIS.OXI*OXl 
ORIS.ORI*DRI 
BRAca(OP8(J)+(DA~80A(J)/VKa(J»*ALOG(8eCJ)/PT)+AM81l(J,*OxI/ARG) 

S*VKS(J) 
FJlaCOM(l)*eDXIS+ORIS)+AMBJiCJ)*DRIS)/ARG 
FJlaVKSP*(D2XI+DlRl+FJl ) 
F~aFJ1+0PO~*eBRAC+OVKSCJ»+~1 
IFCNN .EQ. 0) RETURN 
HOA.Cl.+ERR1*xIHeJ,I)'**~ERRl 
PAY •• 5*(~T+HOA) 
TSl.OELS2CJ)*PAY**AMS01(J) 
TSlarS2*(XlJI-XIH(J,I» 
FF.FF-TS3 . 

OMM aOM(1)*OXI/ARG+.5*(BRAC/VKS(J» 
OMPa.S*(PT*OYK$(J)+YKSeJ'*DPOL*AH832eJ)/ARG) 
OM(J).VKSP*(l.+OMM)+OMP 
DP(J)aVKSP*(l.-OHM)-OMP 
OCJ).FJ1/ARG-VKSP*(FJ2*ERR1/ARG+4.)+(BRAC+OYKS(J»*(PT*DXI/ARG-

SERR1*OELS)-OPOL*COAMBDAeJ)+PAVK(J)*ERR1*OXI/ARG)/ARG+FI/ARG-TS1* 
SAM8Dl(J)*.S*Pt/CARG*PAV)-TSl 

RETUkN 
END 

FUNCTION Fl • IS CA~lED ~HEN THE WETTING FRONT HAS REACHED TO ORAINED 
OR wATER TA"8L,E AND COMPUTES THE. VALUE uF F.UNCTlON AND ITS OE~hAThES '. 
ON THIS BOUNOARV. 

FUNCTION F3(HMYI,XIMYI,XIHYIP,XIMVIM,XIMV1I,NN) 
COMMON H Cli,}2), HO (ll., 3iD ,.a(32, 32) ,OM (lZ), 0 (3l), DP (12),F Oi), 51 (52 

S),vKS(13),AM&DA(32),DELSlC3l),AM832(32),AM8Dl(32"POR(3l),SR(ll', 
$SR1(12),OYKS(3l),OA"'6DA(ll),PAVK(lZ),S8(3Z),DP~(ll),VK,HErGT,AK 
S,DEPTH,S~,OElT,OElS,HI,HIT,ERR,·ERRT,ER~1,RERR1,TIME,DESl,oELH,SSUk 
$,OMEGA,~ATC01,TIM1,Xle3l,li),xI"(li,3Z),XIO(12"MY1,NY,NV1,NVZ, 
SNHSR,HY,NSAT,NSSUR,N81,N~2,MAX,MAXT,NX,NX1,NRX,NS,Nb,J,JM,JP,Ml, 
SMZ,IMAXJ,IMAXM,IHAXl,ITIME,IM,IP,OAM6K(ll),OElSC8(3l),DCus(ll), 
SDElSCl(32),DCU85C3l"HO(3l,3l),G,R,NlX,MXiMB2,MB1,I,NlXP 

PTaHMYI 
ORla.5*CXIMYIP-XIMYlM) 
02Rl a XIMYIP+XlMYIM-Z.*XIMVI 
A~Gal.+E~Rl*XIMYl 
VKSP a VKS("1V)*PT 
OHUaORI*ORI 
SSPWKEaDE~S*ARG/PT 
FTl s l02RI+Z.O*(XIMY11-SSPWKE-XIMVI)+(DM(1)/ARG)*lDRIS+(SSPWKE 

$ ... Z») 
~Tl.AM~32(MV)*PT*D~lS/ARG 
FITaPT*DRt/FLOATCI-l) 
Fl.V~S(MY)*«PT*FT1)+FTl+FlT) 
IF(NN .EQ. 0) RETURN 
HOA.Cl.+ERR1*XlH(MV,I»**RER~1 
PAVa.5*(PT+HOA) 
TS2·DE~S2(~V)*PAY**AM801(MYl 
T51alS2*(XIMYl-XIM(MY,1» 
naF3-TS3 
OFT4 8 ·4.+2.*OElS*OM(1)/PT-lOM(ll*ERRl/tARG*ARG»*(DRlS+SSPWKE**l 

S)-l.*«DM(l)*OELS/PT)**c) 

N 
W 
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c 
c 
c 

DFTzaFTZ*OM(l)/ARG 
OnTcFlT/AKG 
D(MYlaVKSCMY)*(((PT/ARG)*FTl)+PT*DFT4+0FTZ+DFIT)-TS3*AM8Dl(MY)* 

S.5*PT/CARG*PAV)-TSi 
U~(~Y)-2.0*VKS(MY)*PT 
R!TUHN 
E~O 

C SUBROUTINE DERV -IN TIIS SU8ROUTINE THE MAGNITUDE OF AL.L. VA'RU8LES AND 
C AND THEIR DERIYATIvES FOR EACH GRID POINT ARE DETERMINED AND ~RITTE~ 
C OuT. . 
C 
C 
C 

SU8ROUTINE DERY 
CO~MON H(3l,ll),~OCll.12),8(3l,3l),DM(32),DC32),DP(li),F(32),81(32 

S),VKS(13),AMbDA(3Z),DELSleJZ),AMB3lC12),AMBDIC1Z),POR(ll),aRC32), 
SSR1(lZ),OVkS(ll),DAM80A(lZ),PAVK(32),8B(3Z),DP8(lZ),VK,HEIGT,AKK 
S,OEPTH,SL,DELT,DEL.S,HI,HIT,EAR,ERRT,ERR1,RERR1,TIME,OESl,DEL.M,SSUR 
$,OME&A,wATC01,TIM1,XIC1Z,lZ),XI~(12,lZ),XIOC12),MY1,NV,NY1,NY2, 
SNHSR,HY'NSAT~N88UR,NB1,Nd2,MAX,~AXT'NX,NX1,NRX,NS,N~,J,JM,JP,Ml, 
SM2,I~AXJ,IMAXM,lMAX2,ITIME,IM,IP,DAM8K(lZ),OELSCB(ll),OCUB(lZ), 
SD[L8Ci(li),DCUB5(12),HD(ll,ll),Q,R,N2X,MX,MB2,~Sl,I,~iXP 

REAOtS,100J AL,dL.,CL,8K,CK,AS,88,CS,AP,B~,CP,AP8,BP8,CPS 
100 fORMAT(SFlO.5) 

OESSeOES2*DELS 
4Kel.-(8~+CK*HEIGT)*HEIGT 
CL2e2.*CL 
CK2el.*~ 
CPSZei.*CP8 
AM8HIN-lOO. 
DO 1 Jel,MY 
ZeHEIGT-DEL8*FLOAT(J-l) 
4M8DA(J).AL.(8L.CL*Z)*Z 
lFCAM8D4(J) .L.T. AMSHIN) AMBMIN-AMBDACJ) 
AM801(J)eZ.+i.*AM80A(J) 
AM812CJ)8-2.-1.*(4L.+(8L.CL*Z)*Z) 
VKS(J).lK.tBK.CK*Z)*Z 
OVKS(J).(~K+C~2*Z)*OELS 
DAMB KeJ)83.0*(8L+CL2*Z)*UELS 
OAM8DA(J)81.*VK8(J)*(SL+CL.2*Z)*OEL8 
PAVKtJ).VKS(J)*AM83Z(J) 
POR(J)eAP+(8P+CP*Z)*Z 
OEL.SC8(J).6.l8118S1*POReJ)*DELS**1 
OCUBtJ)·.7S81Q8*POR(Jl*DELS**1 
SR(J)aAS+c8S+C8*Z)*Z 
8Rl(J)a1.-SR(J) 
BBtJ)aAPS+tBP8+CPB*Z)*Z 
OPBtJ)a-DELS*(8P8+CP82*Z)/88(J)*AMB3ieJ) 
88CJ)eS8(J)/8L 
D~L.8ZCJ)aOESS*POR(J)*AM8UA(J)*8Rl(J)/(a8(J)*.AMaOl(J)*DELT) 
OELSCZ(1) •• 5*OEL.SC8(1) 
OCU8S(1) •• S*DCU8(1) 
OELSCZ(MY)-.S*OELSC8(MV) 
OCUB5CMY) •• 5*DtUBtMY) 
OM(1)eZ.+3.*AMBMIN 
ERijl a 1.-OM(1) 
WRITE(b,lOi) AM8MIN,EQR1,OH(1) 

10i FORMATe' REF. LAM8DAa',3F10.~) 

c 
C 
C 

WRITECo.l01) (88(J),Jal,~Y) 
WRITE(b,101) (AM80A(J),J-l,MY) 
WRITE(o,lOl) (AM8Dl(J),J_t,MY) 
WRITE(o,lOl) eAM812(J),Jal,MY) 
WRITf(o,lOl) (POR(J),J-l,MY) 
WRITE(6,lOI) (VKS(J),Jal,HY) 
WRITE(o,lOI) (SR (J),J_l,MY) 
"RITECo,101) (SR1CJ),Jel,MY) 
WRITEC6,101) (O!LS2(J),Je l,MY) 
wRITfCb,101) (OAM8DACJ),Jel,MY) 
wRITEC6,tOl) (PAVK(J),Jel,MY) 
WRITE(6,101) eDA~BK(J),J-l,MY) 

101 FORMATel" illFI0.5) 
RETURN 
END 

C SU8ROUTINE FIBNOK IS CALL.EO TO 08Tl~ZE T~E VALUES 0' T~A~SFORMEO 
C PRESSRE HEAD (XleJ,I». 
C 
c 
C 

SU8kOUTINE F18NOK(Xl,Xl2,X,II,JJ) 
COMMON H(32,12),HO(3l,12),8132,ll),OMC12),OC12),OP(3l),F(3l),Sl(l2 
S),VKS(13),AM8D.(12),OELSl(li),AM81i(32),A~801(ll),POR(lll,8R(3l), 
SSR1(lZ),D~KS(32),OAM8DA(3l),PAVK(li),S8(32),OP.(lZ),~K,H£IGT,AK 
S,OEPTH,SL,OELT,DEL8,HI,HIT,ER~,ERRT,ERR1,RERRl,TIME,DESZ,oELH,SSUR 
S,OME~A,WATC01,TIM1,Xl(3Z,ll),XIH(3l,12),XIO(ll),"YI,~Y,~Yt,HVl, 
$NHSR,My,N8AT,N8SUR,N8l,N8Z,MAX,~AXT,NX,NX1,NkX,~S,N6,Jk,JM,JP,Ml, 
SM2,IMAXJ,IMAXM,I~AXl.ITIME,IM,IP,DAMBK(32),OELIC8(Jl),OCU8(12), 
SOELSCltli),OCUSS(ll),HD(Jl,ll),Q,R,N2X,HX,M82,M8),lK,~lXP 

XiaXl2 
IF(ERR1*Xl .L.T. -.~~QQ) Xl.-.9999/ERRl 
KEye-1 
ITERe12 
J80 
Ka1 
RERR1-l./ERRl 
HJla(1.+ERR1*Xl)**~ERRl 
IF(JJ .~T. 1) GO TO 3 
XIJIPaXl(JJ,II+l) 
XIJIMaXIeJJ,II-1) 
GO TO 4 

1 XIJIP-(HCJJ-l,II+l)**E~Rl·1.)/ERRI 
XIJIM_(HCJJ-1,II-1)**EkRI-1.)/ERRl 

~ CAL.L FJ(HJI,XIJMI,XIJMI,xIJPI,XIJIP,XIJIM,",IOO) 
Fl.(FF+8eJJ,11»**2 
HJIa(1.+ERR1*Xl)*·RERRl 
XIJIPa(H(JJ+1,11.1)**ERR1-1.)/ERRl 
XIJIM.(H(JJ+1,lI-1'**ERR1-1.)/ERRl 
CAL.L 'JCHJl,xIJPI,XIJMI,XIJ~I,XIJIP,XIJIM,FF,lQO) 
Fi-(FF+S(JJ,lI»**2 
V1-l. 
Yi 8 1. 
DO 10 I-l,ITER 
TEMP-Vi 
YZ8Vi+Y1 

10 VI_TEMP 
XA-X1+(X2-Xl)*Yl/(Yl+Vl) 
X_XA N 

W 
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236 

20 HJla(l.+ERR1*X )**~ERHl 
XIJIPII(H(JJ,Il+1)**ER~1·1.)/ERRl 
XIJl~a(H(JJ,11·1)**!RR1·1.)/ERRl 
C.~L FJ(HJI, X ,XIJ~I,XIJ'I,XIJIP,XIJIM,FF,100) 
FNa(FF+8(JJ,lI»**2 
IF(K-Z>10,410,410 

30 'A.FN 
t<aKtc 
GO TO 100 

410 1'(K~V)50,SO,oO 
50 FS.'N 

GO TO 70 
60 F.IIFN 
70 JaJ+l 

lOl FORMAT(lX,E15.8,lX,E15.8,2X,E1S.8,lX,E15.8,2X,E15.8,lX,~15.8, 
lZX,E15.8,lX,E15.8/) 

IF(J-ITER)75,120,120 
75 IFlFA-FB)80,80,qO 
80 X211l(B 

'l1lF8 
"EVa, 
xaaU 
FaaFA 
UIIX 1 +ltZ-XS 

. XIIU 
GO TO 20 

qO' Xl_XA 
F 111FA 
XUXti 
F.IIFti 
KEY.-l 

100 xaaxl!-u+x 1 
XaX8 
GO TO 20 

120 IF(KEY)l30,130,l4l0 
130 XIIXA 

FN.fI'A 
GO TIJ 15(1 

140 )CIIXB 
FNIIFd 

203 FORMAT(' OPTIMAL SOLUTION Xal,ElS.8~1 OPTIMAL VALUE FNa',ElS.S, 
SIS, 15) 

150 WRITE(o,203)X,FN,11,JJ 
150 RETURN 

RETURN 
f NO 
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