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Depth of wet soil, measured from soil surface to wetting front
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ABSTRACT

This study deals with unsaturated, unsteady water movement through
heterogeneous porous media. The specific problem investigated is the
transient three-dimensional axisymmetric flow resulting from water being
applied on a horizontal circular area. The heterogeneity of the soil is
described by allowing any or all of the five parameters in the Brooks-
Corey equations to be any continuous function of depth.

Methodologies for obtaining numerical solutions to the resulting
nonlinear partial differential equation and its associated initial-
boundary value problem have been deveioped and implemented in a computer
program. The numerical solution is based on the Crank-Nicolson method
of finite differencing and the solution to the resulting system of non-
linear algebraic equations for each time step is by the Newton method
combined with the 1ine successive over-relaxation (LSOR) method.

The numerical solutions provide the following at each time step
used: (1) the distribution of soil water saturation throughout the
region, (2) the distribution of capillary pressure throughout the region,
(3) the distribution of hydraulic head throughout the region, (4) the
rate of infiltration if the area of application is specified at a given
moisture level, (5) the extent and amount of Tateral and vertical water
movement, and (6) the rate of advance and position of the wetting front.

The solutions resulting from various variations of linearly specified
heterogeneities have been studied and their influence of such quantities
are infiltration rate or intake capacities and wetting front movements

have been analyzed. To determine the effects of lateral water movement,
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solution results from the axisymmetric solutions have been compared with
solutions from a one-dimensional vertical flow model that permitted the
same specification of heterogeneity.

A number of graphs are presented that illustrate influences of
different soil heterogeneities. Coaxial graphs were developed to sum-
marize the results of a number of solutions that relate the difference
in infiltration in heterogeneous and homogeneous soils to the variations
of the five parameters in the Brooks-Corey equations.

The numerical solutions are verified with reasonable agreement with
field data at the Reynolds Creek experimental watershed obtained from
experiments which duplicate the geometry of the mathematical model

closely, if not the heterogeneity, also.

KEYWORDS: Soil Science, Water, Infiltration, Soils Pore-water Pressures,
Irrigation, Heterogeneous, Axisymmetric, Unsaturated




INTRODUCTION

Water movement through porous media has been of great interest to
mankind since early history. A scientific basis for the design of
irrigation and drainage works was lacking until about a century ago,
that is, until Henry Darcy, who, in 1856 found experimentally the
famous basic linear Taw of flow of water through porous materials.
Infiltration is defined as the process of the entry into the soil of
water made available_ at the soil surface, together with the associated
downward flow. Infiltration is an important factor in watershed
management, ground water recharge, overland flow prediction and irriga-
tion. Efficient water management requires accurate knowledge of the
infiltration rate at which different soils will take water under
different conditions. Most of the water falling on the ground surface
moves through unsaturated soil during subsequent processes of drainage,
evaporation and root extraction.

In more recent times, the flow equation has been solved analytically
after making some simplifying assumptions and for simple boundary
conditions. The majority of these solutions are for steady state
isothermal flow through saturated isotropic homogeneous soils, an
idealized case that does not exist in nature. The more complicated
problems are unsteady flows through unsaturated heterogeneous media
resulting in nonlinear partial differential equations for which no

general exact solution is available.



[AS]

During the past decade, knowledge of soil water flow under
unsaturated conditions has advanced rapidly. High speed digital
computers are used widely for solving initial-boundary-value problems
numerically. Use of digital computers has allowed solution of more
the realistic situation of flow of water in porous media. More
detailed attention can now be devoted to unsaturated transient flow
systems in heterogeneous porous media or soils. Steady state flow
conditions do not exist for any appreciable time and heterogeneity
of the soil is the rule rather than the exception in nature. At the
present time, mathematical models for transient flow in heterogeneous
porous media, with the exception by Watson and Whisler (109), assume
that the soils consist of discrete layers of homogeneous soil.
Basically this is little more than a modification of a numerical
solution for homogeneous soils in which the hydraulic properties are
changed between finite difference grid points while advancing the water
through one layer to the next layer of soil. In the developed models,
the hydraulic head and pressure head, but not the moisture content are
assumed continuous across the interface of the two Tayers. The
validity of this approach may be questioned because the soil water
flow differential equation is developed under the assumption that all
the dependent variables and their derivatives are continuous. The
equation of flow describing water movement through soils is obtained
by substituting Darcy's law into the differential form of the

continuity equation. However, only the integral form of the continuity



equation is valid across an interface since in the derivative form the
variables are discontinuous. In order for the differential form of
the continuity equation to be valid, the seepage velocity and its
derivative must be continuous. Furthermore, experimental results for
steady downward flow through a sand into another sand having a slightly
finer texture by Scott and Corey (91) demonstrates an abrupt (dis-
continuous) change in capillary pressure that can exist across the
junction of two different sand layers. They assumed that pressure must
be continuous regardless of abrupt change in texture and erroneously
argue for a very rapid but continuous change in pressure which is
unsupported by their data. If capillary pressure is not continuous,
there would be an infinite pressure gradient at the interface of the
layer. An alternative method is presented in this study that describes
soil heterogeneity by specifying that the physical and hydraulic
properties of the soil vary continuously as a function of depth.
Jeppson and Nelson (47), Jeppson and Schreiber (48) and Watson and
Whisler (109) used this approach to unsaturated flow problems in which
they allowed only saturated hydraulic conductivity to vary with depth.

The problem which has been studied herein is one of three-
dimensional axisymmetric unsaturated unsteady flow through homogeneous
porous media resulting from water applied at the soil surface. In this
problem heterogeneity is described by specifying that the hydraulic
properties of the soil vary continuously with depth. The Brooks-Corey
equations are used to describe the hydraulic properties (relative
hydraulic conductivity and soil saturation) of the soil. The equations
are relatively simple and also provide a reasonably good fit to

capillary pressure-saturation and capillary pressure-hydraulic



conductivity data, and involve only three parameters, the residual
saturation, Sr’ pore size distribution exponent, A, and bubbling
pressure, Pb, whose magnitudes will depend upon the functions specified.
Description of the soil heterogeneity by letting the saturated hydraulic
conductivity, K0 soil porosity n, as well as Sr’ X, and Pb be any
continuous function of vertical coordinate allows for an infinite
number of different problem specifications. Different solutions which
were obtained for different problem specifications have been analyzed
to determine influence of various distributions of heterogeneity and
other factors on infiltration rate, amount and the distribution of

soil moisture, accumulated intTiltration, extent and amount of lateral
moisture spreading and rate of advance and position of wetting front.
The results obtained from the numerical solution are compared to field
data from Lower Sheep Creek within the Reynolds Creek experimental

watershed west of Boise, Idaho.
Objectives

1. To develop a computer program for numerically solving the
initial-boundary-value problem which defines transient unsaturated
isothermal flow (i.e., infiltration problems) in heterogeneous soils
for three-dimensional, axisymmetric water movement.

2. To verify the numerical solution by comparing the results
with field data of soil moisture and capillary pressure distribution.
3. To summarize and compile in the form of graphs, coaxial
plots and/or equations, the results of a series of solutions in which
different combinations of parameter values and problem specifications

are varied to define how each of these effect such items of interest



as magnitude and characteristics of intake capacities, amount and
distribution of moisture content increases, extent and amount of
lateral moisture spreading, and rate of advance and position of wetting
front.

It is expected that these relationships will provide considerable
insight into what and how factors influence infiltration and prove

valuable in classifying soils according to their infiltration properties.






REVIEW OF LITERATURE

Analytical Solutions

Green and Ampt (29) studied one-dimensional vertical infiltration
under flooded conditions and presented the earliest infiltration
equation based on Poiseuille's Law of capillary and on the analogy
in which the soil is considered as "a bundle of capiliary tubes." They
assumed that the water content characteristic is a stepped curve and
that the advancing water profile consists of two distinct zones, namely,
a completely saturated upper part and a sharp and discontinuously
separated lower zone that is at the original water content. It is also
assumed that at the moving boundary of the wetting front, the suction
is constant and equivalent to the air entry value.

The Equation (1) which was developed by Green and Ampt agrees
well with Taboratory experiment results but has disadvantages in that
the rate of infiltration is expressed in terms of depth of penetration

of wetting front. Green and Ampt equation is:

K
_°_t=y-(d+¢a)1n(1+~d—%—¢—a—) (1)

X

in which Ko is the saturated hydraulic conductivity, L/T; A6 is the
difference between the original and saturated water content of soil,
dimensionless; t is the time, T; y is the depth of wet soil, measured

from soil surface to wetting front, L; d is the depth of water on soil



surface, L; and wa is a soil constant depending on the capillary
forces acting on the moving boundary of the water, equivalent to
air entry value, L.

Philip (72) analytically solved the one-dimensional flow equation
and presented an equation to determine the infiltration rate. The
equation is in the form of a series in terms of time and multipliers
which depend on the water content. Equation (2) below shows the
cumulative infiltration, C, in an expression in which only two terms
of the solution series is included. The infiltration rate, I', as a
function of elapsed time (Equation 3) is derived by differentiation of

Equation (2).

1/2

o
1]

A-t'/¢ + Bet (2)

1/2

I'=1/2 At/ + B (3)

in which A is a soil parameter called sorptivity (capacity of a soil
to release or absorb water) L/T]/Z; and B is a transmissivity soil
parameter which results primarily from gravity forces (B becomes a
progressively more important parameter in the equation with increasing
time) L/T.

For large elapsed times, the term At"]/2 becomes insignificant,
and parameter B in Equation (3) has to be equal to the saturated
hydraulic conductivity.

Whisler and Bouwer (112) studied and compared the Green and Ampt
equation, Equation (1), with the Philip equation, Equation (3). They
concluded that the Green and Ampt equation, was not only simple to use,

but also gave a better result.



Fok (22) compared the Green and Ampt and Philip infiltration
equations. He showed that Philip's two term Equation can be derived
from the Green and Ampt Equation, Equation (1).

Scott and Hanks (92) solved the one dimensional moisture flow
equation by power series. They assumed that the diffusivity is an
exponential function of moisture content, an approach which was used
extensively by Gardner and Mayhugh (28) and is linear function of
moisture content in another case. Also they assumed that diffusivity
is a single-valued function of water content, and that a relation
between soil moisture content and tension exists which is also a single
valued function. They noted that if this analytical solution favorably
compared with a numerical solution, there is reason to hope that the
numerical solution may be successfully applied to more complicated
problems.

Wooding (118) assumed that the hydraulic conductivity of an
unsaturated soil is an exponential function of the pressure head. He
used the method of linearization proposed by Philip (73, 74, 75) and
reduced the nonlinear differential equation to a linear type and
solved the problem of steady infiltration from a shallow, circular
flooded area on a horizontal surface of a semi-infinite porous media,
and showed the variation of soil moisture movement in a radial
direction for different types of soils. Philip (75) assuming the
hydraulic conductivity is an exponential function of moisture potential,
applied Kirchhoff's transformation to linearize the nonlinear equation
of steady flow, and obtained solutions for steady infiltration from a
buried point source and spherical cavities. He stated for a small

radius of sperical cavity the effect capillary dominates, but
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gravitation force becomes more important when the radius increases.
Philip (77) analyzed steady two and three dimensional infiltration in
heterogeneous soils. He assumed that the hydraulic conductivity depends
exponentially on both moisture content and depth, and applied
Kirchhoff's transformation to linearize the nonlinear flow equation.
Raats (78) upon assuming that the hydraulic conductivity is an
exponential function of pressure head, linearized the steady nonlinear
axisymmetric flow equation by using matrix flux potential (Kirchhoff's
Transformation). He analyzed steady infiltration from buried point
sources and surface point sources, and obtained explicit equations for
the pressure head, total head and matrix flux potential and the Stoke's

stream function.

Empirical Equations

Kostiakov (55) suggested the following empirical equation for the

infiltration rate, I:

I'= Mt" (4)

in which I' is the quantity of water infiltrating a unit cross sectional
area of soil per unit time; t is the elapsed time of infiltration;

M is a constant that depends on the soil and its physical condition,

and equals T at unit time, t, (dimensionally inconsistent); and n is a
constant between -1 and zero, that depends on the soil and its

physical condition, and represents the arithmatic slope of the infiltra-
tion rate line with time on log-log paper, (dimensionless).

The Kostiakov equation, Equation (4), does not hold for large
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values of time, because as the equation shows, the infiltraticn rate
approaches zero instead of a constant value. However, because of its
simplicity, and because it fits much infiltration data well over a
short time interval, it is widely used in irrigation practices.

Horton (36) proposed the following equation for the infiltra-
tion rate, I:

I'=1_ +(I -1)exp (-Ket) (5)

(o]

in which I_ is the final infiltration rate, i.e., Iat t = =, L/T; I

is the initial infiltration rate, i.e., I'at t = 0, L/T; and K¢ is a
constant which governs the time required under given conditions for
infiltration rate to change from its initial value I0 to I.

At large values of time, the infiltration rate, I: decreases to

nearly constant value I .

Solutions by Means of Numerical Techniques

Unfortunately, the governing equation for unsaturated flow is
nonlinear and boundary conditions are complicated. Exact analytical
solutions of the partial differential equation governing the flow of
water through the porous media are not available, except for over-
simplified cases. Therefore, numerical approximations need to be
employed to solve unsaturated flow problems. Freeze (24) reviewed the
available literature of one-dimensional, vertical, unsaturated unsteady
flow problems in soils studied by a number of researchers, and Remson,
Hornberger and Molz (83) give an outline of published numerical solu-

tions mostly applied to porous media flow. The numerical method most



12

widely used in the solution of the problems dealing with flow through
porous media is the method of finite differences. Examples are:

(1) Infiltration (32, 33, 11, 44, 38, 94), (2) flow towards wells

(61, 102, 12, 18), (3) subsurface hydrology (34, 57, 58), (4) seepage
through earth dams (25), (5) seepage from earth canals (15, 47),

(6) trickle irrigation (6), (7) Drainage (60, 101, 50, 40, 104, 94, 89,
62, 83, 65).

Depending upon the nature of the problem, different forms of the
flow equation have been used. Also auxiliary conditions differ to
account for the geometry (one, two, or three dimensional), the medium
characteristics (homogeneous or heterogeneous, and isotropic or
anisotropic), the initial condition which must be specified for unsteady
problems, and the boundary conditions. Table 1 summarizes various past
problems studied by a number of researchers.

Gardner and Mayhugh (28) applied the Boltzman Transformation
to concentration-dependent diffusivity equation which describes the
movement of water in unsaturated soils, to reduce the partial
differential equation to an ordinary differential equation. They
assumed diffusivity to be an exponential function of water content,
and observed that the distance to the wetting front during infiltration
increased as the square root of time. There was a good agreement
between measured distribution of water content and those predicted
by their numerical solution.

Hanks and Bowers (32) in their pioneering work presented a method
to solve the water flow equation for vertical infiltration in layered
(heterogeneous) soils. They defined a variable time increment, At, as

the time required for a constant amount of water to enter the soil



TABLE 1.--Review of Some Available Numerical Solution of Flow Equation.

Dimensions  Medium Characteristics Flow Conditions Saturation

Dgﬁg Homo- Hetero- Un- Satura- Unsat- Com-
Name Reference 1 2 3 geneous Layered geneous Steady steady ted urated posite
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (1) (12)  (13)
Klute 1952 (51) X X X X
Day and Luthin 1956 (20) X X X X
Youngs 1957 (119) X X X X
Philip 1957 (72) X X X X
Isherwood 1959 (40) X X X X
Hanks and Bower 1962 (32) X X X X
Ashcroft, et al. 1962 (3) X X X
Nelson 1962 (68) X
Reisenauer 1963 (79) X
Reisenauer et al. 1963 (80) X X
Sggeglh??ggaarde 1963 (95) X X X X
Wang et al. 1964 (107) X X X X
Whisler and Klute 1965 (113) X X X X
Liakopoulos 1965 (56) X X X X
Remson et al. 1965 (81) X X X X

€l



TABLE 1.--Continued.

Pl

Dimensions  Medium Characteristics Flow Conditions Saturation

Date

and Homo- Hetero- Un- Satura- Unsat- Com-
Name Reference 1 2 3 geneous Layered geneous Steady steady ted urated posite
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)
Klute, Whisler
and Seott 1965 (53) X X X X
Staple 1966 (96) X X X
Rubin 1966 (87) X X X
Whisler and Klute 1966 (114) X X X X
Kobayashi 1966 (54) X X X X
Freeze and
Witherspoon 1966 (26) X X X X
Burejev and
Burejeva 1966  (15) X X X X
Rubin 1967 (88) X X X
Remson et al. 1967 (82) X X X
Whisler and Klute 1967 (115) X X X X
Ibrahim and
Brutsaent 1968 (38) X X X X
Rubin 1968 (89) X X X X
Freeze 1969 (24) X X X X



TABLE 1.--Continued.

0 Dimensions  Medium Characteristics Flow Conditions Saturation
aﬁge Homo- Hetero- Un- Satura- Unsat- Com-
Name Reference 1 2 3 geneous Layered geneous Steady steady ted urated posite
(1) (2) (3) (4) (5)  (6) (7) (8) (9 (10)  (17) (12)  (13)
phisler and 1969 (116) X X X X
Taylor and Luthin 1969 (102) X X X
Hounberger et al. 1969 (35) X X X
Jeppson 1970 (42) X X X
Green et al. 1970 (30) X X
Todsen 1971 (104) X X
Brandt et al. 1971  (6) X X X
Burtsaert et al. 1971 (12) X X
Freeze 1971 (25) X X X
Burtsaert 1971 (11) X X X
Wei and Jeppson 1971 (110) X X
Jeppson 1974 (44) X X
van Der Ploeg 1974 (106) X
et al.
Amerman 1976 (2) X X X X

Gl
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profile. Since the infiltration rate of the soil decreases with

time, the calculated time increment will be smaller at the beginning
of infiltration computation relative to its value at later stages.

They plotted the distribution of the pressure head and water content
versus depth for layered soils (coarse soils overlaying a fine soil

and vice versa). They noticed that for water content, there is a
discontinuity at the boundary between the two layers, however, pressure
distribution along the profile was continuous for all cases of hetero-
geneity. There was excellent agreement between the Hanks and Bowers
numerical model and theoretical solution presented by Scott et al. (93)
and Philip (71) for horizontal infiltration through a horizontal layer
of soil at uniform initial water content.

Ashcroft et al., (3) developed a numerical solution for solving a
one dimensional horizontal flow equation in a semi-infinite porous
medium. They indicated that the results of their numerical method and
the Boltzman transformation used by Gardner and Mayhugh (28) gave very
similar solutions. Also they found that the experimental results are
similar to the solutions obtained from both numerical solution and
Boltzman transform techniques.

Jeppson (42) numerically solved the partial differential equation
which describes three dimensional (axisymmetric) unsaturated flow in
the soil below infiltrometers to determine the influence of soil
properties, rate of application- and initial hydraulic head on the
subsurface flow pattern (penetration and lateral movement of wetting
front). He noticed that whenever a portion of flow field reaches to
high values of relative saturation approximately 0.90, depending on

the hydraulic properties of the soil, numerical difficulties occur in
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the solution process unless the time increment, At, is decreased
sufficiently. He suggested that the solution capability can be improved
by transforming the dependent variable (hydraulic head) in general

flow equation to a new variable & by means of the Kirchhoff Transforma-
tion. This latter technique has been widely used by many researchers
(78, 118, 75, 89, 6, 103, 108).

The goal of this transformation is to linearize (under some
conditions) and make the equation of flow more amenable to analytical
solution methods.

Jeppson (43) reported that for problems in which a portion of
flow region approaches unit saturation, the use of the Kirchhoff-
Transformation in formulation of the mathematical problem of partially
saturated transient flow from an infiltrometer improved the solution
capabilities.

Brand, et al. (6) developed two mathematical models (a plane flow
model and a cylindrical model) to analyze multi-dimensional, unsteady
infiltration from a trickle source into homogeneous soils. In the case
of the cylindrical model (axisymmetric) the emitters were placed far
enough apart to prevent interaction between emitters. Upon applying
the Kirchhoff Transformation, they introduced a new function of water
content. They compared the numerical results with Wooding's solution
for steady state infiltration from a circular pond for different values
of time to show how the unsteady flow approaches steady state flow. For
verification of this model, Bresler, et al., (7) conducted laboratory
experiments. They comparéd the location of wetting front and water

content distribution in both numerical solution and by experiment. They
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concluded the agreement between theory and experiment was good and that
application of the theory to the field is justified.

Wei and Jeppson (110) studied the problem of steady-state axi-
symmetric infiltration of water applied on a horizontal surface, to
determine the influence of various soil properties on the flow pattern
as well as on the magnitude of lateral movement of soil moisture
(spreading effect). They used an inverse formulation for solution of
the problem by finite difference method. They reported that the
infiltration rate is closely related to various soil parameters and
infiltration rate is higher at the edge of source circle than near
center due to the spreading effect.

Watson and Whisler (109) studied the gravity drainage of a
heterogeneous porous media. They defined the heterogeneity of porous
media in terms of a linear variation of the saturated hydraulic con-
ductivity with depth. They allowed the hydraulic conductivity to
decrease with depth and obtained hydraulic head and water content
profiles with depth. They reported that by applying one of the avail-
able experimental methods for determining saturated hydraulic
conductivity in the field at different depths, it is possible to
check the homogeneity of the profile.

Jeppson (44) studied different numerical techniques for solution
of transient, three dimensional (axisymmetric), unsaturated moisture
movement through homogeneous soil resulting from infiltration over a
horizontal circular surface area. To minimize the difficulties due to
the strong nonlinearities of the flow equation, he compared the three
adaptations of Crank-Nicolson method and three variations of the

alternating direction implicit (ADI) method. Since no constraints have
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been seen in applying Crank-Nicolson method, he favcred this method.
In another effort Jeppson (45) used the previous model (Jeppson, 44)
and compiled a series solution for different problem specification
such as size of the circle of application and for different parameters
describing the hydraulic properties of unsaturated soils. He stated
that greater understanding of the infiltration process can result when
one problem specification is incremented over a range of possible
situations. Samadi (90) used Jeppson's (41) computer one-dimensional
program to evaluate the effect of interaction between the soil
parameters used to describe heterogeneity. He concluded that there is
a minor to insignificant effect on infiltration due to interaction
between the soil parameters. Based on the results of study, the

additive law of effect can be applied in using the results.

Darcy's Law for Saturated and Unsaturated Systems

Darcy's Law for Saturated Soils.--In 1856 Henry Darcy (19)

observed the characteristics of downward flow of water through
saturated sand filters, and published his famous experimental Tlaw.
Darcy's law states that the flow of water through a column of
saturated soil is directly proportional to the head loss and inversely
proportional to the length of path of flow. Darcy (19) used various
potential gradients across columns of saturated, homogeneous granular

materials and measured the flows. He found that
V=-K-—— (6)

where V is the flux L3T1/L%; 1 is the Tength of the column, L; ah is

A(P/pg + Z), difference in hydraulic head, L; K is hydraulic
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conductivity, coefficient with units of velocity depending on the
permeability of porous media. Hydraulic conductivity is related to
intrinsic permeability, k, of the medium with units of L2, by the
expression K = kpg/u (intrinsic permeability depends only on the

internal geometry of the medium); P is the pressure head, FL-Z; Z is

the elevation head, L; p is the density of the fluid, FTZL'A; g is
the acceleration of gravity, LT_2 and u is the dynamic viscosity of
the fluid FT L72.
This basic linear law of soil water flow was originally found for
vertical downward flow through saturated homogeneous sand column.
Muskat (67) found applicability of Darcy's law in any direction
of flow in the earth's gravity field and generalized Darcy's law for

saturated flow in three dimensional space as follows:

V=-Kgrad. h (7)

1 and h is the hydraulic head, L.

in which V is the velocity vector, LT
The negative sign indicates that flow occurs in the direction of
decreasing hydraulic head. Since flow can occur only through the
interconnected pores of saturated porous media, the velocity across any
section must be thought of in a statistical sense. Muskat (67) noted
that application of Navier-Stokes equations for porous media problems
is particularly difficult regardiess of making some logical simplifi-
cation and neglecting the inertia forces due to very low velocities.
This is because the use of Navier-Stokes equations that describe flow
in a microscopic way requires knowledge of all different size of pores,

which 1is practically impossible. Hall (31) and Hubbert (37) proved

analytically that Darcy's law is a statistical macroscopic equivalent
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of the Navier-Stokes equations of motion for the flow of water through
porous media.

The limitations of Darcy's Law are:

1. The velocity of flow must be relatively low in order to
neglect inertia forces.

2. There must be no interaction between the soil and fluid.

3. The fluid must be homogeneous and incompressible.
Olsen (69, 70) found good agreement between Darcy's equation and
seepage flow in nonswelling soils. He also reported on soils contain-
ing swelling type clay (montmorillonite), in which there is interaction
between fluid and soil for which Darcy's law is not applicable since
the velocity becomes a nonlinear function of the head gradient.
Swartzendruber (97, 98, 99) suggests that this deviation from Tinearity
is primarily due to non-Newtonian behavior of the fluid caused by

soil-water-interaction.

Darcy's Law for Unsaturated Media.--Even though Darcy's equation

was developed for saturated flow in homogeneous porous media, it has
application to porous media problems that are partially saturated. Two
jmportant forces act on an element of volume of soil water, namely the
gravitational force causing the element to fall down, and the capillary
forces tending to transfer the element from zones of higher to zones of
lower pressure. Buckingham (13) who studied the capillary flow of soil
water, visualized that the flow of water through the soil is analogous
to heat flow (Fourier's law) and to flow of electricity through a
conductor (Ohm's law). He introduced the term capiliary potential
(analogous to electric potential) to describe the attraction of soil

for water.
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Richards (85) applied the heat flow equation to unsaturated flow
and assumed that the flow of water in unsaturated media obeys Darcy's
law. He developed a general equation of flow in unsaturated media in
which the water content and capillary conductivity are independent
functions of the capillary potential. The theory (85) was proven
experimentally by Childs and Collis-George (17) and analytically by
Hall (31). According to this theory, Darcy's law holds for flow of
water in unsaturated media. In a modified form in which hydraulic
conductivity, K, is a function of the volumetric water content, o,
Darcy's law for the flow of water through unsaturated porous media can

be written as follows:
V = - K(e) grad. h (8)

in which K is a variable even for homogeneous soil and rapidly becomes
smaller as the water content 6 decreases (see Fig. 1). Philip (76)
noted the following reasons for K(e):

1. As the water content decreases the actual cross-section for
flow decreases.

2. The value of hydraulic conductivity is dependent to the
square of pore radius, K = kpg/u and larger pores are emptied first as
saturation decreases.

3. As saturation decreases, continuity of water at interconnected

pores fails and there can be no flow in the liquid phase.

Relations of Saturation and Hydraulic

Conductivity to Capillary Pressure

Water content of soils has been determined gravimetrically in the

laboratory for many years. Field as well as laboratory measurement of
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FIG. 1.--Relationship Between Hydraulic Conductivity, K, and Moisture
Content, 6, for Yolo Light Clay (66).

water content can readily be gbtained with devices such as the neutron
meter or gamma probe. Tensiometers, pressure plates, and psychrometers
are widely used to measure the capillary pressure (suction) in the
partially saturated soils.

Buckingham (13), first suggested that water content and hydraulic
conductivity of partially saturated soil are functions of capillary
pressure. In order to obtain a solution to the flow equation, it is
necessary to have functional relationships between saturation,
capillary pressure and hydraulic conductivity. Klute (52) noted that
less hysteresis is expected in the hydraulic conductivity-saturation
relationship than in the hydraulic conductivity-capillary pressure
relation. According to Child (16), Bear, Zazlavsky, and Irmay (39)

and van Bavel (105), capillary pressure-saturation is hysteretic and
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consequently the hydraulic conductivity-capillary pressure is
hysteretic. Unfortunately, laboratory determinations of the capillary
pressure-hydraulic conductivity relation are difficult and time
consuming and in effect are impossible to obtain from field measure-
ments.

The capillary pressure-hydraulic conductivity-saturation relation-
ship is important in analyzing water movement through unsaturated
soils. In order for the measured data to be useful in the numerical
;o1ution, they can be reduced in one of the following ways:

1. Tabular form of corresponding values of water content,
hydraulic conductivity, and capillary pressure for their particular
media (20, 32, 41, 115, 116, 33, 24, 30, 109).

2. Fitting the data with special functions (94, used
exponential fits).

3. The functional forms of relationships in which some of these
relationships are based on empirical fitting of data (27, 49). Some
are based on conceptual idealized models of porous media "bundles of
capillary tubes" coupled with empirical fitting (14).

The functional forms of these relationships in soil water flow
modeling are highly desirable, especially when the relationship
involves meaningful and measurable hydraulic and physical properties
of the porous media. These relationships greatly reduce the computa-
tion time and computer storage space for the solution of flow problems
and simplify the handling of input data and programming for solution

of flow problems using the digital computer.

Saturation-Capillary Pressure Relations.--Taylor and Luthin (102)

used the following equation:
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(9)

where, eo, is the water content at saturation; hs’ suction head, and

a is a soil parameter.

Brooks and Corey (8) carried out Taboratory experiments on

homogeneous and isotropic samples where air and water were nonwetting

and wetting fluids, respectively.

They found the experimental data of

effective saturation Se (defined in Equation 10 below) as a function of

the ratio of capillary pressure to bubbling pressure plots close to a

straight on log-log graph paper for capillary pressure PC greater than

the bubbling pressure Pb (Fig. 2). Brooks and Corey suggested the

empirical relationship of the following form:

w
1]

P
( P

c

1., for [P | < [P

Se

uralion -

Effective Sa¢

[e1e) o

b A
)" s for [P| > [P

bl

Pu/y=10% cm Py /y =190 cm
©,
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Caopilary Pressure Heod Pe/7-cm Woter

FIG. 2.--Relation Between Effective Saturation and Capillary Pressure
Head (9).
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in which A is the negative of the slope of the plot on log-log graph
paper and is defined as the pore-size distribution index. They found
that for typical porous media A is about 1.0, and ranges from 0.4 for
aggregated clay soil to 5 or more for clean uniform sand. The X\ is a
dimensionless soil parameter and may depend on the liquid and capillary
history of the system for some soils. Capillary pressure at Se = 1.

is equal to bubbling pressure (PC = Pb) at which the air first begins

to flow through the media.

The effective saturation is defined by

S = 5 -5 (12)
e (T-57

in which saturation, S, is the ratio of volume of water to volume of
voids and Sr’ residual saturation (irreducible water). Fig. 2 shows
capillary pressure-saturation curves and the Brooks-Corey approxima-
tions.

Brutsaert (10) proposed a more general relationship between

capillary pressure and effective saturation Se where

in which a and b are parameters whose magnitude depends on the soil
type. In the case of a = 0, the Brooks-Corey equation will result.

Su and Brooks (100) used a Pearson Type VIII distribution function
to develop a retention function which describes the retention of fluids

in porous media as follows:
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bm'
S-S —
_ r vty 1 -8 ha
P = Pe (—— )" () (14)

where PC is the capillary pressure, Pf is the capillary pressure at

the fictitious inflection point, S is the saturation, m' the shape

function of the retention curve, and therefore is a pore-size distribu-

tion parameter of the medium, and a and b are the domains of saturatiaon

separated by the fictitious inflection point (Fig. 3). The function

was verified experimentally on the drainage and imibition cycles. They

assumed the Burdine integral is valid. Therefore, the relative

hydraulic conductivity has been derived through the substitution of the

retention function of the pressure, P, in the Burdine equation giving:

(on'+ 1, 204 ) (15)

FIG. 3.--Definitive Retention Curves Depicting the Relationships of
the Parameters in the Theoretical Retention Function (100).
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where I. is the incomplete beta function ratio with its arguments given

Se

in the parentheses.

Saturation-Hydraulic Conductivity Relations.--Irmay (39) used the

following relation to relate saturation to hydraulic conductivity:

K =K _ -3 (16)

in which K is the unsaturated hydraulic conductivity; K0 is the satura-
ted hydraulic conductivity and Kr is relative hydraulic conductivity.
The theory developed by Burdine (14) can be used with saturation-
capillary pressure relations for determining saturation-hydraulic
conductivity relationships. The use of Burdine theory are discussed by
Brooks and Corey (8, 9). Fig. 4 shows that computed relative hydraulic
conductivities from imbibition saturation pressure data, which were
obtained from laboratory tests on distributed soil samples taken from
the Reynolds Creek Experimental Watershed in southwestern Idaho, can
produce satisfactory values when compared with observed values.
Hydraulic conductivities computed by numerical integration of the
modified Burdine Equation (17) are good agreement with those obtained
from equations developed by Millington and Quirk (63, 64), especially
under desaturation conditions. To handle imbibition, a pressure head
parameter P0 is added to capillary pressure P to prevent division by
zero as the soil becomes fully saturated, P = 0, and the saturation

parameter, Ss’ is replaced by 1.
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FIG. 4.--Comparison of Hydraulic Conductivities Computed from
Saturation-Pressure Data by a Modified Burdine Equation, with Those

Measured in the Laboratory (46).

in which P is the capillary pressure, L.

The modified Burdine equation (integral) for relative hydraulic

conductivity in a simple form is given by Brooks and Corey (9) as:



30

S ds
S-s. 2 Jo p.°

K.=1[ 1 - (18)
r 1 -5S '(-' ds
0o .t

Substituting Equation (10) into Equation (18) and changing S to Se

will result in

S
€ \2/x
[0 (Se) dSe

2
Ky = (5% =5 (19)

2/x
JO (Se) dSe

upon integration of Equation (19), the relative hydraulic conductivity

becomes:

2 + 3
Kp = (Sg) A (20)
e = £ (21)

When Equation (10) is substituted into Equation (20), the relative

hydraulic conductivity as a function of capillary pressure is:

2 + 3\
K= —4—= (5> (22)

Application of the Brooks-Corey equations is Timited to:

1. An isotropic porous media.

2. Relative hydraulic conductivities, K. =1 for [P_| < [P,].
3. Conditions for which S < Sr’ and even they are inaccurate at

saturation slightly greater than Sr'
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4. Stable porous media.

Hydraulic Conductivity-Capillary Pressure Relations.-- Richards

(85) proposed a linear relation for hydraulic conductivity-capillary

pressure which was used in some analytical solutions in the form

K. = aH + b (23)

P
c

rg
Gardner (27) made a survey of proposed equations and from studies

in which a and b are constants; H is pressure head, - H =

of available data concluded that conductivity can be related to the

capillary pressure by the following equation

K= —2 (24)
hg + b

where a, b, and n are constants depending on the soil, fluid and

capillary pressure history of the system.

Taylor and Luthin (102) used the equation of the form

ah® +1
S

in which a is a constant.

Sewell and van Schilfgaarde (95) used the following equation

Kp = =5 (26)

in which @ and b are constants.

Wesseling and Wit (111) applied the relation in the form
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k = ah P (27)

where a and b are constants.

Raats (78) used the following equation

K = ped (28)

in which a and b are constants. In this equation hydraulic conductivity
is an exponential function of pressure head.

Brooks and Corey (8) used the Burdine (14) equation of relative
hydraulic conductivity and their saturation-capillary pressure relation

as presented earlier to derive the following equation

p 2 + 3 (29)

Experimental data from large number of soils show that equation (29)
fits experimental data except for values of capillary pressure very
close to the bubbling pressure.

King (49) found that the equation proposed by Gardner (27) is
dimensionally inconsistent. He modified Gardner's equation and

suggested the following dimensionless equation:

where a and b are positive dimensionless parameters. The parameter P1
is positive having the same dimensions as Pc’ King (49) found that the

modified Gardner's equation gave a good fit to imbibition as well as
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to drainage data. The Brooks-Corey equation and Gardner's approxima-
tion which was modified by King (49) are well known and widely used

in solving unsaturated flow problems.
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MODELING OF WATER MOVEMENT THROUGH POROUS MEDIA

Modeling is a process whereby physical conditions are simulated
by using suitable mathematical equations (mathematical model). The
steps involved in development of such models are:

1. Definition of physical problem

2. Mathematical model.

Definition of the Physical Problem

The particular problem which is described herein is that of
unsteady unsaturated three-dimensional axisymmetric infiltration
through heterogeneous soil from a circular horizontal area. The
circular area over which the water enters the soil is very small
compared with the total soil surface. Therefore, three-dimensional
axisymmetric unsteady-unsaturated infiltration of water occurs. The
water region of seepage below the water entry zone are symmetric
about the vertical centerline. Therefore, the boundary value
problem can be formulated for one half of any vertical plane
containing the centerline of axis of symmetry. Fig. 5 shows the
physical problem and typical assumed boundaries of the flow field. The
soil is treated as a heterogeneous medium by letting the saturated
hydraulic conductivity, Ko’ the soil porosity, n, residual saturation,
Sr’ pore size distribution exponent, A, and bubbling pressure, Pys be
any continuous functions of the vertical coordinate. The soil is
assumed to be isotropic. Since only the wetting cycle occurs in the

solution, hysteresis is not considered in the soil characteristic
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cylindrical
outer
boundary

FIG. 5.--Physical Conditions Representing Three-Dimensional
Axisymmetric Transient Unsaturated Flow Through Heterogeneous Media
From a Circular Application Area-

relationships. The effect of evaporation from the soil surface is

neglected.

The Mathematical Model

The mathematical model consists of the partial differential
equations of flow through porous media which provide the basis for
specification of the functioning system, together with the boundary
and initial conditions. Assumptions are also made in the mathematical

formulation and in analyzing the problem.
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Assumptions in the Mathematical Formulation.--The following

assumptions are included in the definition of the flow equation:

1. Darcy's law is valid in both saturated and unsaturated
portions of the flow region. Inertia effects are neglected.

2. The water 1is incompressible (p = constant).

3. The porous medium is stable (exhibits no swelling, shrinkage
or consolidation, n = constant at any depth with time, but may be
variable with depth).

4. Only the 1iquid phase of water is considered. Water vapor
flow is neglected (vapor flow is small compared with the liquid flow).

5. No osmotic potentials affect the flow.

6. The flow is assumed to be isothermal.

7. The condition of flow is not affected by the biological
process (uptake by plant, or biological action that may change the
conductivity with time, etc.).

8. There is no interaction between soil and water.

9. The functions which describe the flow and their derivatives
are assumed to be continuous, so that the differential form of the
continuity equation is to be valid.

10.  Air in the unsaturated parts of the system is assumed to be
at atmospheric pressure, and there is no entrapped air in the system.

11. Since only the imbibition cycle is considered, it is
assumed that the capillary pressure and hydraulic conductivity of the
porous medium are single-valved, unique and continuous with soil water

content (no hysteresis).
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DIFFERENTIAL EQUATIONS FOR DESCRIBING WATER MOVEMENT IN SOILS

Continuity Equation in Cylindrical Coordinates

In axisymmetric flow prcbhlems, it is convenient to work with
cylindrical coordinates. Since the pattern of axisymmetric flow is
the same in all planes containing the axis of symmetry, (the Z-axis),
it is independent of @ in cylindrical coordinate (Z, R, &) with the
exception of spiral type flow. Axisymmetric flow has no ¢-component
of velocity. The interrelationship of the coordinates for pointG is

shown in Fig. 6.

» X

FIG. 6.--Coordinate System. The Coordinates of Point G are:
Cartesian: X, Y, Z and Cylindrical: Z, R, o.
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Now, consider an elemental portion of a cylinder of dimensions
sZ, s8R, 8%, through which fluid is flowing (Fig. 7). Assume the
velocity at the center of the element, whose axis is parallel to the
Z-axis, is V, and its axial, radial and tangential components are
W, Vr and VQ, respectively. The net gain in mass per unit time within

a cylindrical element of three pairs of faces are:

) d
a. Axial - —57;-(0W - Rso - &R) &Z (31)

. 3
b. radial - —Eﬁ—-(pvr - R§® » 8Z) 6R (32)

Z
V@ N
| \\
G
»—— |-V §Z
ol r

R&o

FIG 7.--Equation of Continuity in Cylindrical Coordinates.
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c. Tangential oo (pV_ « S8R » 3Z) Réo {33)

R§® d

The total gain in mass per unit time of all faces is:
A—— . L] —@—— L ] L] ~L . .
- 57 (oW-R88-8p)8Z + 5 (V| .~R8-6Z)6R + o (pV® SR+8Z)Rse] (34)

which should equal the time rate of increase in mass within the element

%E (p+R80+6R-5Z+8) = _ng_tfﬁ G YA (35)

in which p is the density of water; and 6 is soil water content on

volume basis, thus

1

d 3

- [57-(pw-R6¢-aR)az + gﬁ'(pvr°R6®'BZ)6R * R5s (pV®°6R'SZ)R5®] (36)
= 3 p‘e 3 .
= =5t (R6®-8R-68Z)

Dividing the above equation by the volume element (Rs2-8R-8Z) yields

the equation of continuity in cylindrical coordinate.

8 (o) 1 3 ) 1 . _ 3(p-8)
5Z T R R oV oR) + 73 (pvé) ot (37)

for an incompressible fluid, p is constant, therefore

bkl ot LR - (30)




42

In axisymmetric flow the transverse of tangential velocity V® = 0 and

equation of continuity becomes as:

%ﬂ_+ %'gﬁ'(vr'R) - %g
o, Ve 2V g
3Z R R d
Let,

& =nS

(41)

where n is the soil porosity; S is the soil saturation, which is the

ratio of volume of water to volume of voids in a soil elemental

volume. Equation (40) becomes

oW, Ve, Vel s
°Z R 3R N5t

The General Flow Equation

(42)

For homogeneous porous media, the Brooks and Corey's equations

can be written as:

S = _E_:_Eﬁw
e 1 - Sr
p
_ b A
Se T ( Pt )
P
_ b 2+3)
Kr = Pt )

(45)

Therefore in case of heterogeneous porous media the saturation
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and relative hydraulic conductivity can be obtained by the following

equations, respectively:

Pb(z) A(2)
$=5.(z) + 1 -5.(2)] [ —5;(;:gy— ] (46)
and
Pb(z) 2+3x(2)
Ky = ['——;(F:Zy‘ ] (47)

in which S is the saturation and varies as a function of depth and
radial position; Sr is the residual saturation and is a given function
of depth; Py equals PglyL, is the dimensionless bubbling pressure, and
is a given function of depth; Pt equals PC/yL, and is the dimensionless
pressure head, and varies as a function of r and t; r equals R/L and
is the dimensionless radial coordinate; z equals Z/L and is the
dimensionless axial coordinate; A equals pore size distribution
exponent and is a given function of depth; L equals a scaling Tength
used to non-dimensionalize the radial and axial coordinates and
pressure heads; Kr equals K/K0 and is the relative hydraulic con-
ductivity at each position in which K is the effective hydraulic
conductivity and KO is the saturated hydraulic conductivity, which
is constant for homogeneous soil.

The saturated hydraulic conductivity, Ko’ is defined as the
product of a constant Ka’ with units of velocity, and a dimensionless

quantity which is a given function of the depth Ky» oOr

KO(Z) = Ka Kv (2) (48)
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where for the soil surface, the value of constant Ka will be taken equal
to the saturated hydraulic conductivity on the surface; therefore

Kv(z) = 1.0 on the soil surface. The effective hydraulic conductivity

with velocity dimensions is defined as the saturated hydraulic con-

ductivity, K_, multiplied by the relative hydraulic conductivity Kr'

0

K=K/(z) K

ol?) (49)

=~
n

Ka Ky (z) K. (Pb, As Pt) (50)

For three dimensional axisymmetric seepage flow through a porous
medium, Darcy's law gives the velocity component in the radial, r, and

axial, z, coordinate directions, respectively by:

h=2+p, (51)
h, = ﬁL (52)
z = —%— (53)
re - (54)
P
Py = =T (55)
h, =z - P, (56)
o -k )
W= - K T K 2P K ( e 1) (58)
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in which K(r,z,p) is the hydraulic conductivity of the soil with a
dimension of velocity, and h is the potential energy per unit weight
of water with dimension of length as the sum of elevation head Z and
pressure head Pc'

The pressure head is given by

p P
P = — = —
¢ g Y , (59)

in which P is the pressure of water and is positive for saturated
zones and negative for partially saturated zones, g is the acceleration
of gravity and o is the fluid density.

The partial differential equation which describes water movement
through the heterogeneous soils can be derived by substituting Darcy's
law into the differential form of the continuity of mass equation for
three dimensional axisymmetric flow.

From Brook-Corey's Equation (46) we have

L5 (-2 ]
sl (1-5.) ( —2—
S _ ¢ + r Py
ot t ot
P A=1 P
b 3 b
=1 -s) o () 2 ()
r Pt at Pt
3P 3P
b £
P A=1 P, — - P —
_ b t ot b at
(1-50 % (5>) =
t
A
p 3P
) b t
=- A1 -5) b M1 ot (60)
t

substituting seepage velocity components, Equations (57) and (58) and
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term gi in the equation of continuity in cylindrical coordinates,

Equation (42) we have N
8Pt aPt
a(K o ) , a[K( T 1)] . K aPt i nx(]—sr) ( EE_)A EEE
3R LYA R or Pt Pt ot

~

Hydraulic conductivity is defined as Equation (50) and let dimension-

less time
K
=t (62)
L
t=— (63)
Ka
L L
dt = d( —==— ) = ( —— ) dr (64)
Ka Ka

Substituting Equations (50) and (64) in Equation (61) and letting R =

rL and Z = zL, we have

aPt aPt
Ky Ky a(Kr 5;—-) K, 3[K K. (52—-— 1)] . K K Ky aPt _
Lar L3z Ly~ ar
nx(]-sr) Pb A Ka aPt (65)

—(5)

Dividing Equation (65) by Ka and multiplying by L, the equation of

flow in dimensionless form after using Brooks and Corey's Equation (60)

is used to evaluate g% is

BPt BPt A
K\/B(Kr I . 3[ KVKY‘( 5z - )]+ KVKY‘ aPt ) nx(]—Sr) (Eg) S_Pt_
or 3z r oar Pt Pt ot



Rewriting Brooks-Corey's equation for heterogeneous media:

P (z) 2+3x(z)
K. = [ 2 ]
r Ptir,zi
P

_ b
In K. = (2+31) In ( P, )
(2+32) %
_ (2430 ( 22)
Kr e &
oK, oK, an+aKr'§A+a_Kr Py
Y4 an Y4 A 3z 3Pt 9z
BK (1+3A)
= (2+3A)m
( ) K
= (243)) >
Pb
Pb
3Kr (2+3X) 1n (5—
an = e t - [31n ( )]
since
(2+31) Tn (2 )
_ (2+3x) In ( 5
Kr =@ t
aK Pb
——8—)\-- 3K ]N(ﬁg)
- (1+3x) (2+31)
aKr i (2+3x) Pt - Py . EL
aPy Pt2(2+3A) P,
Kr
s - (2+3}\)p‘—'

47

(67)

(68)

(69)

(70)

(71)

(73)

(74)

(75)



48

Therefore
aK oP p ) 9P
_r.ox [§2+3)\) ,_R+3]n(_9_)§_~_&%l __t] (76)
Y4 r Pb VA t 9z t YA
aKr i} aKr . aPt
ar aPt ar
2P
r t
= - (2+3x) P 3 (77)
Substituting Equation (76) and (77) in the Equation (66) we have
aPt aPt N
B(Kl" 5—}7‘——) N B[KVKr(gz— - )] N KVKY‘ 3Pt nk(]—sr) Pb BPt -
Ky or 3z v or p (5_0 ot
t t
(78)
P 5P
23 t t
3 (==2) 3P, oK — - 1) 3P aK
ar _tyr 3z t_ _r
[KvKr ar T Kv (ar )(3r )] [Kv(Kr 3z * (az 1) 3z )
(79)
aP aK K K. oP na(1-S.) P A p
t r vr t r b t
+ K. ( 1) 1+ ] (7)) —=0
r ‘3z Y4 Pt ar Pt t T
2 2
o P oP oP 3 P oP
- t t 2432 t t _t _
[KvKr arz Ky (ar ) ( Py Kr ™ )]+ [KvKr 822 + K, ( 37 1).
(80)
oP P oP oP K
2+32 b b ax  243A t ot v
Ky ( Py az T 3 1n ( t) 3z Py Y )+ Ky (az ) Y ]
. KVKr aPt ;- nx(]-sr) (ED_)A EEE.= .
r ar Pt Pt ot
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dividing Equation (80) by Kr

2 2
¢t oza (Py? o 2P R e
v ar2 Pt v ' oar Vv az2 9z v P 52
PPRTAAL S N ) W e O T b
Pt 9z Pt Y4 Y4 r ar Pt r
P A oP
byt _
(52) 5+ =0 (81)

Equation (81) is a nonlinear parabolic partial differention
equation, since the right hand side does not vanish. For the initially
unsaturated soils the flow equation will remain parabolic at all times,
since saturation occurs at most only at the surface of water application.

To obtain the required finite difference solutions to the
initial-boundary value problem, a number of computer programs were
written. Whenever there is an abrupt wetting front, the solution is
less accurate than desirable even though a solution might be obtained.
Across the wetting front, the change is too rapid for the second degree
polynomial used in the finite differences equations to duplicate.
Therefore, the continuous variables Pt or ht are not defined adequately,
a condition which is aggravated by the strongly nonlinear nature of the
partial differential equation. Jeppson (43) indicated that a more
straight forward approach is to introduce a new dependent variable by
means of a Kirchhoff-Transformation (Ames, 1), that changes by a
relative small amount at higher capillary pressure in comparison to its
magnitude changes at low capillary pressure. This modification is

necessary since across the wetting front the capillary pressure varies



rapidly from a large positive to a moderately negative magnitude. The
introduced dependent variable obtained by applying the Kirchhoff-
Transformation varies more smoothly across the wetting front than
capillary pressure head, Pt’ or the hydraulic head, ht'

The Kirchhoff-Transformation is:

Pt

Y = J K., d P% (82)
1

in which Pt‘ is a dimensionless dummy variable of integration.

In the case of heterogeneous soils where the Sr’ Pb’ and x are
variable parameters in the Brooks-Corey's equations, using the Kirchhoff-
Transformation will not produce a relationship between the new
dependent variable and pressure head as it does for homogeneous soils.
The integration of the Equation (82) is not possible for heterogeneous
soils, because A is a function of depth. For the integration it is
necessary to define a specific variation of X for a given problem. The
Brooks-Corey Equation can be written as:

Py 2+3)
Kp = (5 ) (83)
t
and define Pe as

Pb 2+3)
P = (2) (84)

_ -(2+31)
K. = P, Py (85)

and integration of Equation (82) in the case of homogeneous soil

produces
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1-p -(1+32)
Tt
V= T+ 32) (86)

For the integration of Equation (82) it is not desirable to have it be
restricted to a functional variation of A(z), that allows it to be
integrated. An alternative which introduces a new dependent variable

¢ is defined by the equation

1-p -(1+3x0)
- t (87)
1+ 3 Ao
c=[1- (1+3A0)] (88)
- ) I
P, = [1 - (1+3A0)g] (]+3Ao) = TT¥§X;7' (89)

where A, is a reference value of A(z) (values of A at soil surface
z = D) Equation (86) is the same as Equation (87) only the A and y
replaced with xo and &.

The new variable & has the desirable characteristics that it
changes much less abruptly across the wetting front.

Now it is possible to express

2 2
aPt aPt aPt d Pt 3 P
FYA4 or T 322

t
and —

ar

in terms of the new dependent variable £ and its derivatives:

9L - _
y, (1+310) (90)
aPt ) aPt 3

52 3 oz (91)
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1
2P -
—E-- (TI§X" [-(1+33)] [1-(1+33)e] R0 [1-(1432)e]”

1

(1-(1+33)e) o p
=+ [ 1=+ ;
[1-T]+3A £ ] [1-(1+3x,) ]
p
-t
—= (92)
Therefore
oP p
_t__t 3¢
9z C oZ (93)
Also, we can write
)
EEE.: _BE. 1Y (94)
or o ar
and
oP p
t_ _toag .
oT 9z 9T (95)
Therefore, from Equation (92) we have
aP P
t_ t 3
or z ar (96)
and
oP, _ Pe o (97)
oT g T
Now for the second derivatives we can write:
p p
t t ag
2 M =) s+ 2
3 P z 6z P 2 a(P
t_ _ P oa%, ae 20 (98)
2 3z 9z z 2 sz Y4

0z



P P P —
a t/c)= _3(Py/z) 9E . BE [13t+Pt3(c)]
9z o 9z rY4 z 9d& 13
a(l)
=_3_§[lit_+p AN
Y4 i 4 t 9E
=i€.[p_t+-(-(]+3ko)) =[P_t+ﬂt3_>\2)_]ai
Therefore
2
P Pra, caegz Pr, Pe(lHS)
2 7t (52 ) L=+ ?
YA Y z 4
3z
and
oP P
2 Tt t 3¢
Py ) a0 ar ) Py %, e 2D
arc ar ar z arz ar ar
1
a(Pt/;) 1 aPt o —
ar [ zar TPt ar ]
1
z ¢ or t 9 or
= [ E%-§§.+ Py (1+32,) 5 9%
SR B QC% WO TS
=[E+Pt(1+3xo) ] %%
2 2 or
g 4
Therefore
2
3r>t=_|>i;‘32€+(%)2[P_t+ Py (1431
a2 Tl ar 2 z2
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(99)

(100)

(101)

(102)
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2
- Z}_[ __%_ ( §§_) ] (103)
The Equations (93), (96), (100), and (103) are the first and
second derivatives of dimensionless hydraulic head Pt with respect
to dimensionless depth, z, and dimensionless radius, r, and Equation
(97) is the first der1vat1ve of P, with respect to dimensionless time,

oK an

T, in the Equation (81). The values of %%-and<——~ s 57

3z s N> SY" and

o in the general flow equation are known from the specified variation
of hydraulic properties of the soil.

Substituting appropriate values of derivatives in the Equation
(81) the more general equation of three dimensional transient flow
of water through unsaturated, heterogeneous media will result in

Equation (105).

p 2 (2+3x ) P
= Tt 0 3 2 2+3A t 38,2
Fek [ (o —— ()1 - K D5 (507
ar
P 2 2+3) 2+3x_ 9P
_t g 0 ( 3g t _§‘_ o _b
T A °1+ (- DRUVEC el
oK K P
X _ 2#3) 3t r v _t g
*31n (P ) 3z r 9z ) * 0z 1+ r cr ]
_[?X_U_S_F)(F_Q)Ait_a_ho (104)
Pt Kr Pt 4 ot
p 2+3)\
Simplifying the above equation and using K. = (590 , the above

equation becomes:
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INITIAL AND BOUNDARY CONDITIONS

The equation of flow is a nonlinear parabolic type, consequently,
initial conditions and boundary conditions for the geometry of the flow

field are necessary.

The Initial Conditions

Initial conditions must be specified for transient problems,
including the distribution of the hydraulic head and moisture content
throughout the region of flow prior to infiltration. The results from
any time step solution serve as an initial condition to the new time
step. This will enable the user to terminate the solution after any
time step and store the results on tape in which those computed values
can be picked up again as the initial condition to continue the
computation. To start the solution it is assumed that prior to
infiltration the movement of water is negligible everywhere in the soil
and that static equilibrium exists which causes the hydraulic head to
be constant throughout the flow field, or the capillary pressure
(bressure head) varies 1inearly with depth of the soil profile. The
water content of the soil profile increases (capillary pressure becomes
less in absolute magnitude) with depth below the soil surface.

Pt =27 - ht (106)

1 - (z-ht)-(1+3ko)
£ = (107)
(1+34,)
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The Boundary Conditions

The boundary conditions for any system geometry must be defined
for the problem. The rectangular area in Fig. 8 shows the flow field
and different segments of the boundaries having different boundary

conditions.

Axis of Symmetry (D) - @ .--The flow region below the circular

water entry zone @ - @ 1is symmetric about this boundary. For the
homogeneous soils boundary (D - @ is a streamline and all constant
head Tines (equipotential) are perpendicular to the axis of symmetry.

The boundary condition along the center line is

0<z<D (108)

.= 0 (109)

Surface of Water Application @ - () .--The surface over which

the water is applied or water entry zone is assumed to be horizontal
at a finite height above the drained layer. Only two conditions
are given for boundary @ - (3.

a. The flux rate is specified. This conditions applies when
the intake capacity of the soil is assumed to be greater than the
water application rate. Consequently no portion of the seepage zone
will be fully saturated.

The specified rate of flux can be a function of time (rain
hystogram). A1l streamlines leave the surface of water application

vertically. The boundary conditions for the water entry zone are:
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z=0D
<rsr,
if flux specified
& _
ar 0
€ - 1:51i§392§.( LI 1)
0z Pt K
if saturation specified
P = Py z=0D
t (S Sr)1/A
1-Sr re>r>r,
z 1-p,~(1#3%) 25 = [1-(1+3n)e/P
g =
’ 1+3A0 aP
_t .
2z
MR ERRE NI, 7
fa—— I, —
]
e
= ~
21 o
D N W
V' i
© — o
l.;
- N4 vl
o &_L N
1] “ n v
s T s o
_JL_ >
© z =0, 0<r=< re ®
if partially saturated if saturated:
oP
_t =] P, =P
3z t b (1432 )
9z Pt 1+3A0

FIG. 8.--Formulation of the Boundary Value Problem for the Transient
Unsaturated Three-Dimensional Axisymmetric Flow From a Circular Area
Through Heterogeneous Porous Media.



._..B_E-’__: ( s
= 0 (110)
Z= (]]])
[T - (143x))e]

38 _ 0 W

o Pt [ K + 1] (113)
in which
K=Ky K, (2) K. (P, 25 P) (114)

b. Surface saturation specified (Dirichlet boundary condition).
If the saturation at the circular water entry zone 1is specified, the
values of pressure head or hydraulic head will be determined directly
for this boundary. When the soil is completely saturated, the
capillary pressure is equal to the bubbling pressure (Pt = Pb), and
the rate of water application is equal to the intake capacity of the
saturated soil. The specified saturation can be a function of time

and boundary conditions as:

Py =.___ij_7__ (115)
S-S
( 1 S” )
O
-(1+3x2)
1 - Py 0
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Surface Beyond Radius of Water Application 3) - @ .--This

surface is at a constant height, D, above drained layer, is
horizontal and no evaporation occurs across it. The boundary condition
is the same as the boundary @ - (3 except that there is not vertical

flux rate W = 0. The boundary conditions are as

rg <rs<re (117)
z=0D (118)
[1 - (1+3x)¢ ]

9f - 0 (119)

V4 Pt

aP

t _
TR 1 (120)

Quter Boundary Beyond the Radius of Influence @ - ® .--The

outer boundary is assumed far enough removed from the water source that
no moisture movement will occur across this boundary and at all times
it is in a static equilibrium condition. It is a Dirichlet type
boundary and boundary value need not be evaluated in the solution of

the problem. The condition is:

r=re (121)
0<z <D (122)
h0 = h (123)
E(rf, z, T) = g(rfs zZ, 0) (]24)

in which re is the radius of influence and hO is the initial

hydraulic head.
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Bottom Boundary () - (I1--A horizontal lower boundary at depth

z = 0 is assumed to exist. Water will pass into this lower boundary
after the soil profile becomes approximately saturated.

It is assumed that the surface of the bottom boundary is at a
constant pressure. When the unit or maximum saturation is attained
at this boundary, water will begin to pass through the boundary. The

boundary conditions are

z=0 (125)

0<rc< re (126)

when the soil profile is not fully saturated

5P
t
Y A 1 (127)
1T -(1+32x)¢
3E 0
T P (128)

t

when unit saturation first occurs

P, =Py (129)

(130)
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FINITE DIFFERENCE SOLUTION

For this study the Crank-Nicolson method of differencing was
chosen. In the Crank-Nicolson method, difference approximation of the
derivatives with respect to the space coordinates z and r are
weighted at the current and advanced time step equally as the
derivative with respect to time, t, is approximated by a second order
central difference evaluated midway between these two time steps.

Generally, the finite difference equations will converge faster,
when the truncation error involved is small. At the forward and
backward difference approximation, the truncation error is of first
order, 0(At). The central difference approximation has the advantage
that the truncation error reduces from first order 0(At) to second
order O(At)z. Consequently, the Crank-Nicolson method provides a
second order approximation in space and time with a truncation error
of 0[(At)2 + (Az)2 + (Ar)2]. Also the system of equations produced
by the Crank-Nicolson method for boundary-value problems retains the

computationally advantageous tridiagonal form. It is unconditionally
At

(ax)?

In application of the Crank-Nicolson method for nonlinear

stable for all values of ratio

problems, different schemes have been used by different researchers.
One method which multiplies the average of the nonlinear coefficients
evaluated at (K) and (K+1) time levels, by the average of differences

at (K) and (K+1) time line is used by Forsythe and Wason (23), Douglas
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(21); Remson, Hornberger and Molz, (83). In another method which
takes the average of the two products of the nonlinear coefficient
evaluated at (K) time level multiplied by the difference at (k) time
level and nonlinear coefficient evaluated (k+1) time level multiplied
by differences at the (K+1) time level was used by Richtmyer (86)
and Jeppson (44).

This study utilizes the Crank-Nicolson method, and the second

approach (44) was selected as it is easier in computation.

Finite Difference Operators for

Interior Grid Points

-

The finite difference operator for Equation (105) can be

obtained by replacing the derivatives by the first and second order

2,

central differences. If the §'s and &6™'s denote first and second

central difference operators, we have:

9 = -
2027 % 8,8 T By g § 7 Eia, (131)
P Bg ~ = -
2ar—S— = 88 = £y i1 - &y i (132)
2 % 2
sl S P R AR R (133}
ar? e L2, ¥ -2 (134)
A S S N R
and therefore,
aﬁz EI'.EZE: E.t.. (Ej_1’1 _ gj+]’1) (]35)



5P )
e Pe St Pe (B 50 7 &) (136)
ar r 2Ar ¢ 2Ar
2 2 L2
I UL LT I I B S Bl KLY
28 ° T aZ8 ¢ 4nz° ¢ az%
2431 A
@3y - gy - 5n,i? (137)
¢ 4A22
2 2
Pr fz.[ r_, BP) (o) ]= EE.[ (85,50 * 85,91 7 25,4
arz ¢ Ar2 ¢ 4Ar2 ¢ Arz
2+3) - E. .
+ (2r30g) (85,441 = %5,1-1)° ] (138)

c 4Ar2

Replacing the derivative by the equivalent finite difference

operators in the Equation (105)

2 2 2 2

P 8§~ & 8" &  2+3A RS S 2+3
z Ar Az ¢ 4ar 4A22 ;2
2
8 P
rt + "t 025 1) (2i§&.38§.+ 3 1n (ED) A §i§l.féi)
4Ar2 z 2Az Pb 3z Pt 9z z 20z
P s p K+1 2 2
B S AN A S
rz  2Ar ¢ 2Az 3z v E"'[ Ar2'+ A 2
Z
2+3) 8 52 8 zg (2+3))P, ¢ 52 P, ¢
o (g 2g) ] o
c aarl  4az? 2 aarl ¢ 2hz
3
(23 ", o5 (fgd a_zen bh PSP S
P, oz P, oz r  2Az rt 2ar (Eﬂ' az "
ok, K (1) PERY ek
V7 . r.t (=% )=0 (139)
3z p 242 z AT

b
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in which K+1 subscript denotes the advance time step and K subscript

denotes the current time step.

Let us use the square grid network, As = Ar = Az and multiply the

above equation by z and A52 = Ar2 = Az2 to get the following equation:

) 2432, argz azgz (2+32)P Sraz
F = [ KV { Pt [ 6P g + 62 g+ z ( 4 + 4 ) ] - C 4
§_¢ aP P; g
z 23y _ b By 3a o _ 2432 “z7
+ Py 5 - was p, oz 45+ (Pt) R
K+1
Py Spk 8,8 %y 2
te T as b (P —cas) —as ]+ LK UP [
o 23 argz azgz (2+30)Py 5r52 §,&
po e (v ) e g (P - o)
oP P 8§ P, s.&
2431 7' b _by 3 _ 23 “z° _tr
—EE—~52—-AS + 3 1n (Pt) 5 A o )+ % bs )
5 & ok & 2m(1-s) 2
+ (P, == - zas) —¥ as] roAs p 242
t 2 3z p 2+2 At t
b
Gl (140)

If subscripts j and i denote the space subscripts at axial and radial

directions respectively, and subscript K denotes the time step such

that:
j =1+ (D-z)/as (141)
i=1+ = (142)
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s = [ KV { Pt [ (Ej,.i.,,] + 53‘,1’-1 - 25- ) + (Ej'ﬂ,'i +

67
1 + At (]43)

finite difference equation for the interior grid point is,

J,] gj"‘l,‘i

2 2
L8P B - &)t (i - g )
2
(2432)P, (£, .., - E. . (. 1y . = €E.iq )
( - t t°j,it] . j,i-1) ) + (P, j-1,i 5 LiT -, As)

-Zg

P (£: 4 & = Eiypq s)
b by 8 o _ (2+3)) “2j-1,1 1,1
AS + 3 1n (Pt) o As . 5

Vv
7851 F DK P DCgy gy * 65 oy - 285 50 + (B34

2
2+3, ( (&0 = &)
7

(2430)Py (&5 441 ~ 85,41
g 4

) +

s = Eiiq i) : aP P
cj-1,i jH1,i7 2+3x "' b _by 38X
(p z As) ( —ﬁg— 57 As+3 In (Pt) 7 A4S

(Eiq.5 = Es47.4) P. (&, 5,7 = &5 5 1)
_ (2+3)) *7j-1,i . jl,i7 (-t 3,i+1 > j,i-1 As)}

oY
=

K
(8 v 5 = Espq :) oK 2na(1-S.)

b

ASZ 2+2

K+1 Ky _
~Z?'Pave (g, -£..)=0 (144)

Js1 Js1
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in which

+ P )/2 (145)
Y, Y.i

Finite Difference Operators for Boundary

Grid Points

Operator for Boundary (1) - (2).--Since the value of r equals
Pro (55,0178,
2

zero at the axis of symmetry, the term, As,

in the flow equation will be undefined along the Tine singularity.
This is the reason why an operator cannot be developed by combining
the central difference approximation of %%—= 0 and replacing it

with those in the flow equation to handle the nonexisting points

3.i-1 (i.e., 8.8 = 5.2 7 55,0 " 0 ). The boundary condition

1 - 2 in this problem has been handled by setting gj 1= Es

3.2 in

the finite difference equation.

Operator for Boundary &) - (3 .--The flux rate specified case

(non Dirichlet type) leads to the condition that the axial component
of velocity is constant over the boundary and equal to the infiltra-

tion rate. Therefore the boundary condition equation from Darcy's

Taw is

aht
W=-K T (146)
ht =2z - Pt (147)

in which W equals the axial component of seepage velocity, which is
negative in magnitude being LT_] in a downward direction; (input data

is a positive value but the computer program adopts a different sign
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convention, that is the minus sign of W is considered in developing

the related function); K equals hydraulic conductivity, LT‘]; ht

equals dimensionless hydrau]ic'head; z equals dimensionless depth;

and Pt equals the pressure head or capillary pressure, dimensionless.

a(z - P,) apP
W=-K —— =K (33 1) (148)
K =K, K, K. (149)
o,
w-l<aKvKr(-~-1) (150)
aP
W t
N 7=t (151)
Ka Kv Kr 9z
aP P
L.t 3% (152)

Y- T oz

E with second order central differences centered on

Approx1mat1ng 0
the boundary (J=1) will finally eliminate the value of £ at a
nonexistent grid point outside of the boundary @ - () by combining

with the finite difference operation for interior grid points.

e q s = Esuq s
E‘* —-——-—w————- = _a.gz J-]’.] J+]s1
Py L KK 11=5 57 (153)
4 W -
e SR R RN (154)

The value of ¢ for a nonexistent grid point outside of the

boundary for j=1 from above equation is

- 4 W
f0,i =82, *ASp- Lyt (155)
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which combines with finite difference operator for interior grid
points Equation (144) and results the following finite difference

operator for the boundary @ - 3) .

- - (4
L T U U LG g v 5y g - 25 5) + 2l 5 v S 52 (%
2 W 2
2430 (& o0 - & i) [2as 5= ( &+ 1)]
0 1,i+1 1,1-1 P+ * K
“ e, T q ¥ 4
(2630Py (57 3410 81,5000, Py .M
A 3 A R T
: P 92 P, oz 20 (g0t S B

TR+ -5 ) )+ (2=t Telel ey v (f

oK K+1
W «
(€Z,i+2AS%£(—K_+])-£2,1)—CAS)—S-Z_V_&‘]

+

LKy EPy D (g 4uq * & 51 - 25 5) *+ 2(gy ;

b

2 [2ss = (Z+1
B L I T Ml IS 5 L
g],i z 4 ) ]

2
(2+32)P, (& & . q) P
t %1,i41° °1,4-] t z_ (W
: 7 A N Y

- (

3P p
) ) 2433 °"p Phyoan o (2+31)
gp,i) —eS] (557 as + 3 1In ( P, ) 5z 48 o

) - t AL
(g5 5 + 288 P (g+1) -5 )+ (5 5 is)

N o
ct

+ 1)

52,1)
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ZnA(l—Sr) ASZ 242

K+1 K _ -
p 242 At Pave (gT,i - 5l,i) =0 (156)
b
Assume %—-to be the dimensionless flux, VK
a
W W _ VK ’
o> = =5 = 157
K™K K K~ KK, (157)
from Equation (45) we can write
_% - VK (158)
P 2+3x
K ()
t

The input data for parameter, W, is a positive number with units of
LT']. The negative sign of the W is handled in the subroutine F1 and
by multiplying the equation above by a minus sign. Upon simplifying
the above equation, the finite difference operator for the boundary

over which water is applied, @ - ) 1is as follows:

n
!

] _ T
1,1 7 DREPe Dy g * &g 40y = 28 4) + 205 5 +as 5

2+3AO
c

f
g1 -H )Y

( (6,441 = &1,4-1) s i (M v )12

~—~

(2+3x)P (£9 5017 = 57 5.1)
t . V51,941 1,i-1 W
- ( z 4 ) + (C AS K

by ax .. 243n . (MW
P, ) Sy As P AS (K

+
w
p—
-
—
|

’ 2K K+1
v
as) ¥+ (zas ¢ ) 57 sl DK UP LA 81,141 T 81,441 T
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2+3\
2&]’1) + 2(&2’ + AS Pt ( K + ]) - g],1) + _E___
2
(81 509 = €7 _1) (2+3\)P
1,i+] 1,i-1 Z (W 24 t
( 7 [as (gt 1171 - ( : .
(&1 441 = & 1-1)2 W 243, 9Py Py
) )+ (g oas g ) P, oz 7 3 (57)
t
P, g - )
N 243y W Tt 51,4 1,i-1
o7 AS P AS (K rI)) (2 AS )} o+
K K 2m(1 -S.) 2 K+1 K
W, ° ) n r’ AS 2427 _
(Cas i) gz 051 =~ ae Tave  (E1,i 7ELi)T O
b
for
i=2...N2X

(159)
where N2X is the number of points in radial direction to outer edge

of circle of application.

Operator for Boundary (3) - @ .--Along this horizontal boundary

the vertical component of seepage velocity is zero (no water application
or evaporation from this surface). The finite difference operator for
this boundary will be obtained by substituting W equals zero in the

Equation (105). The operator for boundary 3) - @ is as follows:

- i s
P TER P Ly g by g = 2550 2e, 0 5
2+3A0 (g] i+] - E] i_])z z 2
- g4t el 7 + [as ﬁ;‘] ) ]

3 - £ -
cemp Crin =iy P i - 6 ia)
z t 4 r
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K+1

)31 DK O Dey g * ey 50 - 2 5) + 25

2

2+3) (87 509 = &7 :.7) ;
g 1,i+1 ,i-1 z

+ AS pt'f;],i)"' z 0( 1 ) 1, +[AS Pt ]2) ]

2
C(2e3) o (ErLier T 1,41 Pt €1,ie1 7 B1,i-1)

K ZnX(]—Sr) Asz (242)) K+1 K

AS - — B - =
) 1] p 22 Pave (&7, & ,3) =0
for
i=N2X+1. .. Nr -1
Ta
i>(1+ Zg-) , (160)

where Nr equals subscript denoting number of grid lines from the axis

of symmetry to the outside radius of the problem.

Operator for Boundary & - (& .--This boundary is assumed to be

far enough from the source of water that no flow occurs in its
vicinity. Thus, the values of hydraulic head do not change along

boundary & - ® . No finite difference operator is needed (Dirichlet

type).

(161)

Operator for Boundary & - (D .--The finite difference equation

for the bottom boundary (when unit saturation has not been
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achieved, or is not of the Dirichlet type) is the same as the operator
for boundary (3 - @ in which the subscript J=1 is replaced by N,
and 2 by N2—1, (i=2, ... Nr - 1), where N, equals subscript
denoting number of grid lines from the surface to the bottom boundary.

Pt =7 - ht (]62)
oP
t _
52 =] (163)
Also
d .
P p
t _ t 2E
Y3 3z : (164)

at bottom boundary

j= NZ (165)
g . & .
N_-1,i ~>N_+1,1
ok - 2 2 (166)
9z 2AS
therefore
Eny _1 3 _ & .
aPt ) Pt . NZ 1,1 NZ+],1 _ (167)
Py 3 2AS

Since NZ+1 is a nonexistant grid point, therefore, the value of gNZ+1 j

can be replaced by:

g _ & = [

Nz—1,1 Nz+1,i 245 Pt (168)
3 = £ - [

Nz+1,1 Nz 1,1 218 P (169)
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Note this is the same as top boundary condition (soil surface), but

and the sign of as %—-( L 1) is
£ K

changed and there is no flux, W, at this boundary.

£ 5 is replaced by gNz-] ;

= &y . - 2AS = in the general

z-1,i P
t
form of flow equation and considering W = 0, we have

; g
Replacing the term Nz+],i

2
F =K, { P, [ 65 +20(c - S 5= - gy )
Nz,i v t r Nz_],1 Pt Nz,1
243X 8 gz (2+32)P, & 52 P, o ¢t K+1
0 t r t r

r — (”4+[mg;fn-< )+ CE L as) ]

z
2
2+3x §. E 2
[K,tPgs, % + 2.0 (° s - B ) =0 (T [as & 1)
vy N1, Pe Ny 8 4 Pt
2
» (2+3A)Pt 8. L EL.EIE.AS}]K 2nx(1-sr) A52
z 4 r 2 p 2+2) AT
b
2422 K+1 K
P (¢ - £ ) =0
ave Nz,i Nz,i
for i =2, .. .N.-1." (170)

Method of Solution

~

Writing finite difference operators for all grid points (interior
or boundary) produces a system of nonlinear algebraic equations for
the unknown g?f}. Since the coefficients involved, finite difference
operators, are function of g, the produced system of equations is
nonlinear. All values of £ in the system of equation with superscript

K are known, and within the region of computation, the number of

equations is equal to the number of grid points. By solving the
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system of nonlinear equations, the solution of the infiltration
problem advances through one time step At.

For solving the finite difference equation, this study utilizes
the scheme proposed by Jeppson (43) which in essence combines the Tine
successive relaxation iterative method with the Newton-Raphson method,
that is, an iteration is created within an iteration. The Newton-
Raphson method starts with an estimate of the solution and iteratively
computes better estimates. It has quadratic convergence, which means
that each subsequent error at the (m+1) iterate is proportional to
square of the previous (m)th iterate error.

The iterative Newton-Raphson formula for a system of equations
is:

m+1 m

m m
) = @ T oh (B (171)

in which m equals iteration number; F consists of the elements

composed of the finite difference operators, F. ., when the solution

Jsi
is obtained Fj i = 0; D equals the Jacobian matrix which consists of

derivative elements, where in the case of three dimensional axi-
symmetric problem it is a banded matrix.
The elements of individual rows of this matrix are derivatives

of that particular function, Fj with respect to unknown vectors

S]’

g§+} (g? ; is known). The rows and column corresponding to the known
value of g§+} at the boundaries (Dirichlet type) are omitted. The

K+1,

innermost iteration solves for the values of ¢ s along a con-

secutive vertical Tines from the system of equations resulting under

K+1,

the assumption that the g s on the previous and next line are

known. That is, two outer bands of matrix, D, were assumed zero,
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consequently, the banded matrix reduced to a tridiagonal matrix. In
this way for utilizing an inner iteration scheme considerable reduction
in storage requirements and reduction in computer execution time will
be achieved. The matrix is in tridiagonal form, so this system can be
solved by a single pass through the runs with a Gaussian elimination

to bring the terms below the diagonal of matrix to zero, then the

K+]‘s are computed by back substitution. The inner

unknown values of g
most iteration will continue until the sum of absolute change in ¢'s
along the line becomes Tess in magnitude than specified error
(approximately 10'7) term, then skips to next vertical 1ine, and a pass
through all lines constitutes an outer iteration, and provides values
of &'s throughout the flow region which are close to those that would
be obtained from one iteration by the Newton-Raphson method (Equation
171). During each outer iteration the sum of accumulated absolute
changes in the values of g from the inner iterations along individual
lines is accumulated. When this sum (SUMT) becomes less than a second
error (error x 100), the iteration is terminated. However, when the
Newton-Raphson iteration does not converge within a specified error

and number of iterations, a message to this effect is printed and
solution is terminated to another time step. The implementation of
this solution method can be found in the listing of the FORTRAN program
at Appendix II. The proposed method of solution referred as the
Newton-Line-Relaxation method.

1 in the

Since the division of a matrix is undefined, the D~
Equation (171) is the inverse of matrix D, and for implementation of
Newton-Raphson method the inverse is never obtained as Equation (171)

implies. At the actual implementation of the Newton-Raphson method
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oFyy OF oF 1
S 0 0~ 0
11 %2 12
oFyy  9Fy 3Fy ; ; oF ;
9817 3Ep1 9E3y 999
oF 4 9Fy 9Fy oF 51
0 0. . . 0 0
D - a1 % %ty 9832
3F1o ) . oF15 oy 8Fyo
3¢ 31y ¥ 93
: oF 5,
3E
21
oF oF oF
NN, NN, NN
9E 9E 3L
NNy N, gl NN

(172)
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the solution vector X of the linear system (D)rn XM = (?)m is
subtracted from the iterative vector of unknowns. Less computations
are required in solving the linear system (E)Xm = (F)™ than computing
the inverse of Jacobian matrix, D, thus the practical form of the

Equation (171) is:

m+] m
T L @y o (173)

A reasonably accurate guess of the unknown (F,K”)o is required to

assure convergence. The initialization for (aKﬂ)0 is obtained
o = E) K (174)
LD LN (175)

by changing the values of £'s at each grid point by the amount which

they changed during the previous time step.

Evaluating Derivatives of Jacobian D

(a) For The Soil Surface or First Row of Jacobian D.--

oF; . aP W
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e 4

g " (o 5 (s 1)° 1
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Upon simplifying, the following equation is obtained
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(176)
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(b) For flow field or interior elements of Jacobian D.--
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and making some algebraic manipulation the Equation (181) will be in

the following form:
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(c) For the Bottom Boundary or Bottom Row of Jacobian D.--
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THE COMPUTER PROGRAM

Description and Structure of the Program

The program is written in FORTRAN IV language. A flow chart
which describes the basic logic used in development of the program is
given in Appendix I. The FORTRAN program consists of the main program,

several subroutines and two function subroutines.

Main Program.-- Main program reads and calculates the following

parameters to establish the dimensions and solution characteristics,
initializes the problem and determines the manner of computation and

outputing of the solution:

N2X Number of grid points in the radial direction to outer edge

of circle r, over which water is applied

MX Number of grid points in radial direction to outer radius
of problem.
MY Number of grid points in axial direction between top surface

and bottom of problem.

NT Number of time steps through which computation are to be
completed.
HI Value of the static equilibrium initial hydraulic head ho‘

(Minus must be punched into card).
DEPTH The depth between top surface and bottom of the problem.
DELT Size of dimensionless time step increments At which are to
be used in obtaining the solution.
SL The characteristic length used to nondimensionalize all length

parameters of the problem.
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ERRT

SATMAX

OMEGA

NRIT2

NHSTAR

MAX

MAXT

iteration. The individual line iterations are terminated
when the absolute sum of change between consecutive jteration
is less than ERR.

A parameter used to terminate Newton-Relaxation iteration in
each time plane iteration when the absolute sum of change
between consecutive iteration is less than ERRT (ERRT = 100 *
ERR).

Maximum saturation which can be attained in the soil

surface which is used to transfer top boundary condition from
specified application rate to specified saturation.

Maximum saturation the soil can attain in the bottom
boundary drain layer and moisture begins to build up in the
soil profile. When OMEGA is less than computed saturation

at the bottom boundary the Py = Pb'

Number of regular time steps between which solution are
printed.

If HNSTAR is Tless than zero only the values of the dependent
variable £ will be printed at the specified time steps. If
NHSTAR = 0 the value of £, the saturation and hydraulic head
will be printed at the specified time steps. If NHSTAR is
greater than zero, values of £ will not be printed, but
values of saturation and hydraulic head will be printed.
Maximum Newton-1line iterations that will be allowed. The
number of iterations on any time plane which will be allowed
will be one-half this many.

The maximum number of iterations on any time plane that

will not be allowed MAXT = %A§ .
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DELS

AREAC

TIME
HO(J,1)
HD(J,1)

H(J,I)
B(J,I)
D(I)
SATT

S1(1)
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An index when it is greater than one the first time step will
be subdivided to some unequal but smaller time steps.
Dimensionless space increment As DELS = %%%%I.
Dimensionless radius of circle of application ry >
R = DELS * FLOAT (N2X-1)

Dimensionless area of circle of application

AREAC = T * R * R

Application rate per area of the circle of application

Q = VK * AREAC

Dimensionless time <.

Values of pressure head at time = 0.0, HO(J,I) = H(J,I).
Difference between pressure head at previous time step and
current time step. HD(J,I) = HO(J,I) - H(J,I).

Values of pressure head at any time.

Values of hydraulic head at any time.

Values of saturation calculated from Brooks-Corey Equation
Magnitude of saturation on the circular water application
rate. When SATT equals or is greater than the SATMAX the
specified flux condition will be changed to specified
saturation (NSSUR = 1) and pressure head will be calculated

from the SSUR specified.

Initial saturation.

The main program specifies the problem and directs the order of

computation and nature of output by calling subroutines and also

changes the boundary condition. The program is capable of reading a
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constant flux rate or an array of rainfall records (intensity and its
time of occurrence). This condition defining the specified flux rate
is true when the intake capacity of the soil is greater than the
applied flux. When the intake capacity is exceeded, which is a

normal phenomenon in the nature, the soil surface becomes fully
saturated and the soil properties will govern infiltration. In this
type of infiltration phenomenon, the boundary condition of soil

surface @ - (@ changes to a specified saturation of about 90 percent
and solution continues. Also data from a hystogram can be read in to
calculate and evaluate some dependent variables of infiltration. In
the case of constant flux it is possible to obtain very useful informa-
tion about flow from a trickle source or a low head sprinkler
irrigation for example. For the flow of water from infiltrometers

used to determine the infiltration rate of a soil, the program is
capable of simulating this condition by setting a specified saturation
at the beginning of the infiltration process. In the main program
subroutines INITIA, DERV, TIMSTH, RITOUT are called, and a brief

description of these subroutines is given in the following:

Subroutine INITIA.--Subroutine INITIA initializes the static

equilibrium pressure head H(J,I), dependent variable (&) XI(J,I) and

distribution of saturation in the soil profile by the following

equations:
H(J,I) = HEIGT - DELS * FLOAT(J-L) - HIT (195)
XI(J,I) = (H(J,I) * * ERR 1-1.)/ERRT (196)

SI(J) = SR(J) + SR1(J) * (BB(J)/H(J,I) * * AMBDA(J) (197)
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But, whenever the saturation is specified the pressure head and g
values for the boundary @ - (@ 1is obtained by the known saturation

in this surface by the following equation:

H(1,I) = BB(1)/((SSUR - SR(1))/SR1(1)) * * (1./AMBDA(1)) (198)
XI(1,I) = (H(1,I) * ERR1-1.)/ERRI (199)
forI=1,..... N2X

Subroutine DERV.--In subroutine DERV the coefficient of the

quadratic equations which will be used in defining the variation of
pore size distribution exponent, A, bubbling pressure, Pb, residual
saturation, Sr’ and porosity, n, saturated hydraulic conductivity was
read. In this subroutine the magnitudes of all variables and their
derivatives for each grid point and other parameters are determined
and written out. The calculated values of each variable for every
grid point passed through common statement which they will be used by
the function subroutines F1 and F3 and one subroutine FJ. The quad-

ratic distribution of soil parameters are as:

A = AMBDA(J) = AL + (BL + CL * Z) * Z (200)
Ky = VKS(J) = AKV + (BKV + CKV * Z) * Z (201)
n = POR(J) = APOR + (BPOR + CPOR * Z) * Z (202)
S. = SR(J) = ASR + (BSR + CSR * Z) * Z (203)
P, = BB(J) = APB + (BPB + CPB * Z) + Z (204)
in which

AKV = 1.0 - (BKV + CKV * HEIGT) * HEIGT (205)

Z = HEIGT - DELS * FLOAT (J-1) (206)
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Subroutine TIMSTH.--Subroutine TIMSTH carries out the computation

needed to advance one time step. This subroutine calls function
subroutines F1 and F3 and subroutine FJ for the previous and current
time steps. (K and K+1 time level) and subroutine FIBNOK. The major
amount of computations take-place in this subroutine. The function
subroutine F3 will not be called unless the wetting front penetrates
to the bottom boundary. When the values of the function

F at each grid point are calculated in the flow region, the main
computation will start by the Newton-Line-Relaxation method. In this
method, as described before, iteration is created within an interation.
When the iteration numbers and error terms are satisfied, the process
is terminated. The initial guess for (£)° in the Newton method is
obtained by changing H(J,I) or XI(J,I) at each grid point by the

amount they changed during the previous time step.

Function F1.--This function solves the function F1 and its
derivatives P(1) and DP(1) at each grid point for both previous
(NN=0) and current time step (NN # 0). The value of parameters
which they are computed in subroutine DERV for J=1 are used in this
subroutine to evaluate the equations F1, D(1) and DP(1). This
subroutine calculates the value of F1 and its derivatives P(1) and

DP(1) just for one grid point at soil surface when it is called.

Subroutine FJ.--For the interior portion of flow field subroutine

FJ is used to solve the function F and its derivatives DM(J), D(J)
and DP(J) by having the values of parameters which are determined in

subroutine DERV for J=2 in MY-1.
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Function F3.--The equation F3 which has been developed for the
bottom boundary condition, and its derivatives equations D(MY) and
DM(MY) are solved by this Function F3. Again values of parameters
which have been evaluated in subroutine DERV for J=MY are used in

this computation.

Subroutine FIBNOK.--Subroutine is called when ERR1 * XI(J,I) is

less than -0.99999. When the value of ERR1 * XI(J,I) is less than or
equal to -1.0, there is no solution for equation and computer will
stop. For example, when the magnitude of ERR1 * XI(J,I) is equal

to -1.0 the computed pressure head will be Pt = », In another case
when the computed value of pressure head, Pt’ is less than zero which

is going to be used in functions F1, F3 and subroutine FJ to evaluate

the term:
Py

109 ( —P—— ) (235)
t

It is obvious that taking logarithm from a negative number is
undefined. This subroutine then determines the root to each F by
first squaring and then utilizing a Fibonacci search (117) to obtain
the minimum of a squared function. After using the Fibonacci search
iterative scheme for a few iterations, the solution process is again

turned over to the Newton-Raphson iteration.

Subroutine RITQUT.--Subroutine RITOUT will print pressure head,

hydraulic head and saturation at each grid point if specified through
an input parameter. When the value of NM (NM = NHSTAR) is greater

than zero only the values of saturation and hydraulic head will be



100

K+1 ° 3.
Vw - Vw = §12W n As (‘I—'l)‘.(Sj;i

K+1 °
The values of dimensionless time t and dimensionless volume of
water which has infiltrated is recorded in each time step (TIM1 and

WATCO1). The average and instantaneous infiltration and infiltration

per unit area is computed from

Average Infiltration rate = WATCOT (219)
TIME

N _ WATCOT - WATCO] 220

Instantaneous Infiltration Rate = =Ty (220)

Inst. Infil. rate (221)

Instantaneous Infiltration per unit area = AREAC

in which WATCOT is the volume of water at current time step (dimension-
less); WATCO1 is the volume of water at previous time step (dimension-
less); TIME is the actual dimensionless time; TIMI is the magnitude

of dimensionless time at previous time step; and AREAC is the dimension-

less area circle of application.
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DATA AND SPECIFICATION REQUIRED TO OBTAIN A SOLUTION

The required data and specifications of a problem are provided by
means of several cards containing input data. The required data can
be categorized as follows:

1. Establishing the dimensions of the problem.

2. Defining the physical properties of the soil.

3. Specifying the initial hydraulic head distribution and
rainfall records.

4. Controlling the flow of computation including the type and

amount of information printed out.

Establishing Dimensions for the Problem

The dimensions for the problem are established by specifying input
data for soil depth (i.e. distance between the drained layer and the
soil surface) and the number of grid lines to be used for the finite
difference computations. The input data of the number of grid lines
consists of number oflines radial from the axis of infiltrometer
(circular area) to the outer boundary (MX), number of axial lines (MY)
and the number of radial lines from the center of the infiltrometer to
the edge of infiltrometer (circular water input area) N2X.

The incremental distance between adjacent grid lines in the axial
direction, Az, is obtained by dividing the depth of soil, D, by the
number of axial grid Tines minus one (minus one because the number of

grid spaces is one less than the number of grid lines). Since the square
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grid points are used in finite difference operators, the radial
increment Ar is equal to the axial increment Az. The radius of
infiltrometer is obtained by multiplying the increment (ar = Az = As)
by specified number of grid lines to the infiltrometer ring (or
circular water entry zone) minue one ry = As<(N2X-1). The outer

radius of the problem is determined by the following:

re = As+(MX-T) (222)

and the number of grid lines from the axis of symmetry to the

infiltrometer ring of radius ry is given by:

MY-1

N2X = ( D

).ra+] (223)

In carrying out the computations required in the solution of flow
equation, only those grid points within the region affected by
infiltrating water are used during any time step, that is, the field
over which the computations takes place is expanded gradually as
required to be just ahead of the wetting front. Therefore, a

solution to a problem not underlain by horizontal lower boundary

can be accomplished by specifying a depth of soil greater than the
depth through which the wetting front will penetrate. Generally,

it is better to specify the number of grid lines to the outer boundary
of the problem equal to the size of FORTRAN array dimensions correspond-
ing to the radial lines. In this way there is less chance that the
wetting front will penetrate laterally far enough to reach this outer
boundary. But when a relatively shallow depth of soil is specified
and computation is extended over a considerably longer time period,

relatively much lateral movement occurs, then the wetting may reach
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the outer boundary of the flow region and computation will be

terminated.

Defining Hydraulic Properties of the Soil

The program utilizes the Brooks-Corey equations in the solution
of the problem, requires that the following parameters and their
variations be specified:

1. residual saturation, S,
pore size distribution index, A
bubbling pressure head, Py

the soil porosity, n

Gl W N

saturated hydraulic conductivity, Ko

Residual Saturation.--The residual saturation is defined as the

saturation at which water movement ceases. Brooks and Corey (9)
reported that there was not too much difficulty in determination

of residual saturation from desaturation curves. But when the wetting
fluid is water and the medium is clay determination of the Sr is
difficult. For example, clay soils, whose structure deteriorates on
wetting, will not follow the typical S-shaped curve (S-PC), and a
residual saturation will not exist. Brooks and Corey (9) carefully
removed all the clay from some sandstone cores and reduced the
residual saturation almost to zero. Consequently, they reported high
values of residual saturation for the sands containing some clay.
Also they showed that the residual saturation is not entirely a

function of clay content, perhaps the physical significance of residual
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saturation can be explained in terms of a discontinuity in the

distribution of pore sizes.

Pore-Size Distribution Exponent.--The pore size distribution

exponent is the negative slope of the best-fit straight 1ine drawn
through effective saturation (S'Sr) and capillary pressure Pc data
points plotted on log-log paper, Fig. 2. Sandy soils which have only
a very narrow range of pore sizes have larger values of pore size
distribution exponent, A, than soils with structure and a larger range

of pore sizes.

Bubbling Pressure Head.--The bubbling pressure is the capillary

pressure at which air first begins to flow through the saturated
porous media. Bower (5) defined the term critical tension as the
capillary pressure head at the center of the range over which a
permeability reduction occurs, which is similar to bubbling pressure
head. Extrapolation of a straight Tine on log-log graph (Fig. 2) to
the intercept of effective saturation Se = 1.0 gives the value of
bubbling pressure head, Pb' The values of parameters Sr’ X, and Pb

can be obtained from a desaturation curve.

Soil Porosity.--Soil porosity is the ratio of volume of voids

and total volume of the soil. For the single-grain materials, its

value is smaller than for well developed soils.

Initialization of Hydraulic Head

The initial hydraulic head can be established by assigning all

the values equal to a constant which is read in as one of input
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parameters. The initialization with a constant hydraulic head
represents a static equilibrium in which no external forces other
than gravity are acting on the system. It is apparent that good
judgment is required in specifying a problem to insure that all
specifications are consistent with one another. For instance,
specifying a flux rate which exceeds the infiltration capacity of

the soil, or specifying an unrealistic initial hydraulic head, gives
results that may not be valid in representing a physical condition.
When the time increment Ar is too large with respect to other features
of the problem, this also will create difficuity in the numerical
computation. Also smaller values of At causes little difference in
the value of hydraulic head and saturation to occur between the two
consecutive time steps. Specifying a large infiltration rate creates
some numerical computation difficulties. In order to obtain a
solution to the problem, the infiltration rate is increased in magni-
tude during the first few time steps until a large rate is specified.
Thereafter the infiltration rate can remain constant at a desired

level for all other time steps.

Controlling the Flow of Computations

A number of parameters are required as input data which control
whether or not specific computations are performed and the type and
amount of output. These parameters serve to determine whether
specified flux conditions or specified saturation is going to be used
and when the flow of computation changes from one condition to another
condition, and also those time steps when calculated values of

hydraulic head, pressure head and saturation should be printed out.
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saturation condition) of 90 percent. A horizontal lower boundary
is assumed to exist at the bottom of the soil profile and no water
will flow into the bottom boundary unless the soil at the bottom of
the profile becomes fully saturated. The outer boundary is far enough
from the source of water that the wetting front can not reach to this
boundary.

2. Dimensions and Problem Specification

For all problems the dimensionless depth from soil surface to
the bottom boundary was D = 2.0 and the dimensioniess radius of circular
area was taken as ry = 0.3. A dimensionless time increment At of .005
was used to start the solution. Thereafter value of At are period-
jcally multiplied by values larger than one to increase the efficiency
and decrease the printout time. The solutions shown were terminated
before the wetting front had penetrated to the bottom boundary or
cylindrical outer boundary.

3. Methodology

To study the effect of heterogeneity of the soil a base
solution for homogeneous soil in which all parameters are constant
throughout soil profile and several solutions in which only one
parameter in each is varied, were obtained. The variation of each
parameter is a linear and continuous function of depth z. The
variable z has a maximum value of 2 on the soil surface and z = 0
at drained layer. Except for variation of parameter KV which is a
dimensionless function of the depth, the other variations of parameter
were chosen such that the average value of the parameter would be

equal to its constant value in the homogeneous soil example.
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Table 2 summarizes the specifications used in obtaining the

solutions presented in the various figures hereafter. Subsequently,
these solutions are referred to by the number in the first column of
Table 2.

As the water moves into the soil filling a portion of the voids,
the capillary pressure is increased (decreased in absolute magnitude)
with a resulting increase in hydraulic head. Therefore, an examina-
tion of the variation of capillary pressure or head in the flow field
reveals much about the nature of water movement. By not{ng the extent
of the change from the initial capillary pressure in the lateral and
vertical directions, an indication of the importance of soil hetero-
geneity effects on the flow pattern can be seen. Lines of constant
capillary pressure head for different variables are shown in Figs. 9
through 13 for two dimensionless times, v = 0.0 and t = 1.46. The
figures were drawn using the solution results from problems number 1
through 11 in Table 2. In each figure, a few lines of the constant
capillary pressure head (iso-pressure head) lines have been plotted.
The computer program defines the wetting front to be at a position
where capillary pressure exceeds the initial hydraulic head by .0003
dimensionless units. The vertical position of the wetting front
represents the depth of water penetration, and the difference between
the maximum radial movement and the radius of the circle of the water
application zone, rys equals the amount of lateral movement at that
time step. Figs. 9 through 13 show the effect of soil heterogeneity
on the position of wetting front since its position will lie just

beyond the -7.0 ft curve. The distribution of dimensionless



TABLE 2.--Summary of Specification of Problems.
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Soil Parameters

Py A S n K H;z:*ga?}c Flux, in Surface Radius of Characteristic

Problem in Peet r In I‘r)lches Head, Depth, Inches Per Saturation, Circular Area Length,
Number Per Hour in Feet in Feet Hour Percent in Feet in Feet
(M (2) (3) (4) (5) (6) (7) (8) (9) (10) () (12)
1 1.0 1.0 0.15 0.40 1.0 -8.0 2.0 -- 90 0.3 1.0
2 0.7+0.3z 1.0 0.15 0.40 1.0 -8.0 2.0 -- 90 0.3 1.0
3 1.3-0.3z 1.0 0.15 0.40 1.0 -8.0 2.0 -- 90 0.3 1.0
4 1.0 0.7+0.3z 0.15 0.40 1.0 -8.0 2.0 -- 30 0.3 1.0
5 1.0 1.3-0.32 0.15 0.40 1.0 -8.0 2.0 -- 90 0.3 1.0
6 1.0 1.0 0.05+0.1z 0.40 1.0 -8.0 2.0 -- 90 0.3 1.0
7 1.0 1.0 0.25-0.1z 0.40 1.0 -8.0 2.0 -- 90 0.3 1.0
8 1.0 1.0 0.15 0.18+0.22z 1.0 -8.0 2.0 -- 90 0.3 1.0
9 1.0 1.0 0.15 0.62-0.22z 1.0 -8.0 2.0 -- 90 0.3 1.0
10 1.0 1.0 0.15 0.40 0.6+0.2z -8.0 2.0 -- 90 0.3 1.0
1 1.0 1.0 0.15 0.40 1.40-0.2z -8.0 2.0 -- 90 0.3 1.0
12 1.0 1.0 0.15 0.40 1.0 -4.0 2.0 -- 90 0.30 1.0
13 1.0 1.0 0.15 0.40 1.0 -6.0 2.0 -- 90 0.30 1.0
14 1.0 1.0 0.15 0.40 1.0 -8.0 2.0 0.10 -- 0.30 1.0
15 1.0 1.0 0.15 0.40 1.0 -8.0 2.0 0.20 -- 0.30 1.0
16 1.0 1.0 0.15 0.40 1.0 -8.0 2.0 0.30 -- 0.30 1.0
17 1.0 1.0 0.15 0.40 1.0 -8.0 2.0 0.50 -- 0.30 1.0
18 1.0 1.0 0.15 0.40 1.0 -8.0 2.0 0.70 -- 0.30 1.0
19 1.0 1.0 0.15 0.40 1.0 -8.0 2.0 -- 90 0.60 1.0
20 1.0 1.0 0.15 0.40 1.0 -8.0 2.0 -- 90 0.90 1.0
21 1.0 1.0 0.15 0.40 1.0 -8.0 2.0 -- 90 1.20 1.0
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capillary pressure head prior to the start of the solution (i.e.,
initial capillary pressure head distribution, t = 0.0) is the same for
all problems and is given by horizontal lines consisting of a long
line and two dots. In order to find the difference between the
results of the heterogeneous condition and tne homogeneous condition,
three solutions are plotted on the same graph for each varied
parameter considered. In all figures presented hereafter, the dashed
line gives solution results for the heterogeneity for which the
magnitude of the variable parameter linearly increases with depth.
The dash-dot-dash line is for heterogeneity where the magnitude of
the variable parameter linearly decreases with depth. Finally, the
homogeneous soil conditions where the soil parameters are constant,
is shown by solid lines.

The increase in relative saturation in the soil from the beginning
of water application is another item of interest. Distribution of
saturation on a plane passing through the axis of symmetry at several
time steps from results of the solutions in Table 2 are plotted in
Figs. 14 through 24. The individual graphs show the vertical pene-
tration and lateral movement of the wetting front at different
dimensionless times.

The resultant flow patterns from the solutions to the problems
in Table 2 have been plotted for several dimensionless times, t, in
Figs. 25 through 31. These fiqures show how heterogeneity effects
saturation with depth and how changes continue during the infiltration
process. The saturation condition before there is water movement is
shown for each problem at the right side of Figs. 25 through 31.

Each different heterogeneity causes a different initialization of
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saturation except for the porosity, n, and saturated hydraulic

conductivity, K For these two parameters the initial saturation is

o
identical to the homogeneous case. In Fig. 25, the value of bubbling
pressure used in solution of problem 1, the homogeneous case, is the
average of the bubbling pressure heads of problems 2 and 3

( ijgl{%—llgg-) = 1.0. Introducing this heterogeneity not only causes
the initial saturation under no moisture movement (t = 0.0) to be
different in each problem, but also influences the position of
subsequent iso-saturation lines. Fig. 25 shows that the iso-
saturation Tine of 30 percent at dimensionless time ' = 1.46 has
occurred at a depth of approximately 1.5 units for homogeneous soil
(problem 1). For the same 30 percent iso-saturation line from problem
3, in which the bubbling pressure increases linearly with depth of
soil, it is at a depth of 1.7 units. The lateral water movement for
homogeneous and heterogeneous soil (Problems 1 and 3) is about 0.80
and 0.65 units; respectively, from the edge of the circular water
application area. Where the bubbling pressure decreases linearly with
depth (problem No. 2), at the same dimensionless time as t = 1.46, the
vertical and lateral movement of the 30 percent iso-saturation line

is 1.35 and 1.05, respectively (Fig. 25). Thus Fig. 25 shows that the
rate of vertical penetration of the wetting front is more rapid and
that lateral (or radial) movement of the wetting front is slower for
soils with larger values of bubbling pressure near the surface,
provided the other conditions and soil parameters are held constant.
Small bubbling pressures generally correspond to coarse textured soils.

Water applied to the surface of coarse soils will normally enter more

rapidly than it does into fine soils. The pores are larger in coarse
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soils and the movement of the free water is under less restriction
than in the fine soils with smaller pores. In problem 2, where the
soil texture becomes coarser with depth, i.e., Pb decreases, the
wetting front has a tendency to spread laterally in the soil profile
and the ratio of horizontal movement and vertical penetration is 0.83.
Whereas this ratio for the problems 1 and 3 is 0.61 and 0.44,
respectively.

The effects of variation of the pore size distribution exponent,
X, on the flow patterns for solutions of problems 1, 4, and 5 are
shown in Figs. 26 and 27. The different distributions of saturation
at the beginning of water appiication in Figs. 26 and 27 shows how A
affects the water movement patterns. Usually sandy soils which have
a narrow range of pore sizes have larger values for pore size
distribution exponent than soils with finer texture. That is, a larger
range of pore sizes in a soil causes X to be smaller. Fig. 26 shows
that at dimensionless time t = 0.50, the iso-saturation line of 40
percent for homogeneous soil (problem no. 1) lies between the hetero-
geneous cases (problems No. 4 and 5) where the wetting front has not
penetrated to the middle of the soil profile. The vertical penetra-
tion for the problems 1, 4, and 5 are 0.87, 0.72, and 0.94 and
lateral movements are 0.42, 0.21, and 0.50, respectively. At later
times, when the wetting front has passed the middle of the soil profile,
the condition changes. For example, in Fig. 27 at dimensionless time
t = 1.46, the 40 percent iso-saturation line for homogeneous soil
(problem no. 1) has moved faster in the vertical direction and is
ahead of the other 40 percent than lines from problems 4 and 5.

Iso-saturation lines for problem 4 are always inside the iso-saturation



137

lines of the homogeneous soil (problem 1). The iso-saturation lines
of the problem 5 in which the values of X increase with depth, are
crossed by the iso-saturation Tines of homogeneous soil after the
wetting front has passed the middle of the soil profile. 1In problem 5
the value of pore size distribution exponent, A, increases linearly
with depth (A = 0.70 at soil surface) and at the middle of the soil
profile its magnitude is A = 1.0. The pore size distribution

exponent affects the relative hydraulic conductivity as given by the
Brooks-Corey's Equation (45). An examination of Equation (45) shows
that smaller values of the, A, will result in higner relatively
conductivity. Consequently, smaller values of ), are related to a high
hydraulic conductivity of the soil, and soil with larger values of,

2> may act as a hard pan.

Figs. 28 and 29 indicate the influence of the variation of
residual saturation, S., on the water distribution before infiltra-
tion on and on the position of the iso-saturation lines during
infiltration. The range of variation of the initial saturation (at
t = 0.0) for problems 6 and 7 is larger than for all problems shown
in Table 1. The magnitude of residual saturation directly affects the
value of computed saturation from the Brooks-Corey Equation (1) and
as Figs. 28 and 29 show, the vertical penetration of water has not
been greatly affected. More effect can be seen in lateral water
movement. For example, for time t = 0.50 (Fig. 28) and t = 1.46
(Fig. 29) the iso-saturation lines of 40 percent show that the
difference between vertical penetration for the three problems 1, 6,
and 7 is small and that this difference increases with time. Also,

Figs. 28 and 29 show that the rate of vertical penetration of the
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wetting front is decreased when the values of residual saturation
are decreased. At dimensionless time t = 0.50 as Fig. 28 shows, the
iso-saturation line of 40 percent for problem 1 lies between the iso-
saturation lines of the problems 6, 7. Later on, at t = 1.46, the
iso-saturation line of 40 percent of problems 6, 7 1§ shifted. In
the lateral direction the water movement pattern is consistent at
all times. Since the initial value of saturation is high (32.50
percent for the problem 6 on the soil surface) and decreases with
depth, the wetting front moves more rapidly. Also the increasing
residual saturation causes the wetting front to move more rapidly in
the Tower layers.

Variation of soil porosity does not affect the initial distribu-
tion of saturation because the computed saturation is independent of
the porosity. Consequently, the initial saturation conditions of the
homogeneous and heterogeneous cases are the same. An examination of
Fig. 30 shows that for the three problems 1, 8, and 9 whose solutions
are plotted, the 30 percent iso-saturation line for homogeneous soils
lies between the heterogeneous solutions. This is caused by the
linear variation of the porosity, n with depth. In the case where the
porosity decreases with depth, the volume of wetted soil is smaller
than for both the homogeneous and the heterogeneous case in which
porosity increases linearly with depth. Soils with high porosity at
the upper layers have larger water storage capacity and therefore the
rate of advance of wetting front is smaller. A longer time is
required to fill the pore spaces.

The positions of the iso-saturation Tines from solution of

problems 1, 10, and 11 are shown in Fig. 31. The heterogeneity is
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caused by linear variation of saturated hydraulic conductivity with
depth. Since the values of the computed saturation are independent
of the magnitude of the saturated hydraulic conductivity, Ko’ the
saturation at the beginning of the solution (at t = 0.0) for the
problems 10 and 11 is the same as for homogeneous soil (problem 1).
The saturated hydraulic conductivity is defined as the product of a
constant, Ka’ with units of velocity and a dimensionless function

of the depth, K, > [Ko(z) = K, Kv(z)]; in which the constant K, is
taken to be equal to the saturated hydraulic conductivity on the soil
surface. Therefore, on the soil surface the value of Kv is always
equal to one for all problems and linearly decreases or increases with
depth. The magnitudes of all soil parameters on soil surface (i,

Pb’ Sr’ n, and KO) are the same in problems 1, 10, and 11. For this
reason the rate of lateral movement near the soil surface is the same
for all cases. It can be concluded that the heterogeneity caused by
variations of the saturated hydraulic conductivity does not have a
significant effect on the resulting flow patterns in the upper layers.
The distribution of iso-saturation lines in Fig. 30 for variable
porosity, the 30 percent iso-saturation Tine for homogeneous soil lies
between the lines for the heterogeneous soils (problems 10 and 11).
Also Fig. 31 indicates that as saturated hydraulic conductivity
increases with depth, the wetting front moved faster than when its
magnitude decreased with depth. But the difference between the verti-
cal penetration of the iso-saturation Tines for heterogeneous cases
and homogeneous cases are not great. These differences may be

greater for a greater range of variation of saturated hydraulic

conductivity. Otherwise, the properties of the soil near the surface
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is governing the resulted water flow patterns. Since near the soil
surface these properties are almost the same, it is expected that an
almost unique iso-saturation line would exist for three problems 1,
10, and 11.

The changes in soil saturation at different times at the center-
line and at a radial distance of 0.4 beyond the circle of application
are shown on Figs. 32 through 42. Comparison of the individual curves
on these figures indicates how the initialization of saturation in the
soil profile, rate of penetration and spreading of wetting front, and
distribution of saturation are affected by the heterogeneity defined
by variation of the indicated soil hydraulic property./,Fig. 32
(problem No. 1, homogeneous soil) shows that at the centerline and at
a radial distance of 0.7 units, the wetting front has penetrated
to a dimensionless depth of approximately 1.8 and 1.6 units, respect-
jvely, at dimensionless time of t = 2.0. Figs. 33 through 42 (problems
2 to 11, heterogeneous soils) show how rates of penetration of wetting
front and distributions of saturation differ for different problem
specifications. For example, in the homogeneous soil (Fig. 32) at
t = 2.9, the bottom boundary saturation has not yet been changed by
the movement of the wetting front. Whereas, when bubbling pressure
increases with depth (Fig. 34) at t = 2.0 the saturation at the bottom
has increased by 6 percent. As another example, the degree of
saturation at depth 0.90 units below soil surface at time r = 0.60 is
32.5 percent, whereas when there is an increasing of porosity with
depth, for the same time, and depth, the saturation is approximately
50 percent. Large values of bubbling pressure, Pb, at the soil surface

(heavy soils) caused the moisture to spread more laterally but not to
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move as deep. At dimensionless time of v = 0.2 and a radial distance
of 0.7 units, the soil is not affected by moisture movement when Pb

is small at the soil surface (Fig. 34). However, for larger values of
Pb’ at the soil surface the wetting front has penetrated beyond a
radial distance of 0.7 units (Fig. 33). Further comparison of Figs.
33 and 34 indicates that the wetting front has moved deeper when the
value of Pb is small at the soil surface.

Brooks and Corey's data show that when a soil contains a wide
range of pore sizes its value of pore size distribution, A, is small.
In general, sandy soils have only a very narrow range of pore sizes,
have higher hydraulic conductivities and have larger values of A.

Fig. 35 indicates that larger values of A on the soil surface with its
magnitude decreasing with depth inhibits the infiltration process
throughout the soil profile. However, when X is small at soil surface
and increasing with depth, infiltration rates are larger (Fig. 36).

The effect of heterogeneity caused by the decreasing and increas-
ing residual saturation with depth are shown in Figs. 37 and 38. These
figures indicate that at both the centerline and radial distance of 0.7
units, the soil profile becomes saturated more rapidly when the value
of, Sr’ is increased with depth. For example at dimensionless time
T = 3.38, saturation at the bottom boundary is 63 percent for the case
in which Sr increases with depth, whereas for the decreasing case,
saturation at the bottom boundary is 37 percent at the same relative
time.

When the porosity is assumed to be small at the soil surface,
water is spread on the soil surface more rapidly as revealed by noting

that at a radial distance of 0.7 units the saturation increases much
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sooner than when the soil has a large value of porosity. For example,
Fig. 39 shows at time 0.20 the wetting front has not reached to a
radial distance of 0.7 units whereas in Fig. 40 which has smaller
values of porosity on the soil surface, the radial distance of 0.7
has been reached and there are changes in saturation at that distance.

Similarly, when the value of saturated hydraulic conductivity
increases with depth, the wetting front moved deeper than when its
magnitude is decreased, Figs. 41 and 42.

The varijation of infiltration rate with time for the solution of
the problems in Table 2 have been plotted in Figs 43 through 47.
Each figure contains three curves; one for homogeneous soil, one for
heterogeneity in which the indicated parameter increases with depth
and the last in which the same parameter decreases with depth. The
figures show the well known trend of declining rate of infiltration
with time. For almost all of the solutions (with one exception,
solution for variation of ) the average rate of infiltration from
r = .0 to any time resulting from decreasing and increasing the
magnitude of each parameter with depth, is almost equal to the
infiltration rate obtained for homogeneous soil. Varying the pore
size distribution exponent, A, has a larger effect on the rate of
infiltration, particularly in cases where its value is large at the
soil surface and decreases with depth, (Fig. 44). A study by
Jeppson (45) showed that for the same soil specifications, when the
value of A increases (homogeneous soil) the rate of infiltration
decreases. The phenomena on Fig. 44 reflects this same conclusion
since the surface soils exert a greater influence on infiltration rates

than do the deeper soils.
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FIG. 43.--Effect of Variation of Dimensionless Bubbling Pressure,
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oblems 1 through 3.
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FIG. 44 _--Effects of Variation of Pore Size Distribution, A, on

Infiltration Capacity Curves Obtained from Solutions of Problem
1, 4, and 5.
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FIG. 46.--Effect of Variation of Porosity, n, on Infiltration
Capacity Curves Obtained From Solutions of Problems 1, 8, and 9.
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FIG. 50.--Effect of Variation of Residual Saturation, S.., on Volume
of Water Absorbed With Time as Obtained from Solution o¥ Problems
1, 6, and 7.
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FIG. 51.--Effect of Variation of Porosity, n, on Volume of Water
Absorbed With Time as Obtained From Solutions of Problems 1, 8,
and 9.
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movement of moisture in the vertical direction have been plotted
against the dimensionless time parameter, t, in Figs. 53 through

57. A1l of the figures indicate that the wetting front has penetrated
to the bottom boundary before the solution was terminated at v = 3.38.
The time at whicp the wetting front first penetrates to the bottom
boundary is different for the various problem specifications. For
example, Fig. 57, which gives the results when saturated hydraulic
conductivity, Ko’ increases with depth, shows that the wetting front
penetrates to the bottom boundary at time t = 1.76, whereas it took

v = 2.30 when KO decreases with depth. The results for homogeneous
soil indicates the time of penetration of the wetting front to the
bottom boundary is T = 1.94. An examination of Figs. 53 through 57
shows that increasing bubbling pressure with depth causes the wetting
front to move faster, while decreasing its value with depth resulted
in slower movement of wetting front in the vertical direction than
for all other variations of parameters, A, Sr’ Kv’ n and the homo-
geneous condition.

The radial movement of the wetting front at any time is also of
interest and how this position is related to hydraulic properties and
heterogeneity of the soil. The Figs. 58 through 62 shows the maximum
radial movement of the wetting front beyond the circle of water
application for the problems in Table 1.

The figures indicate the vertical heterogeneity caused by
variation of residual saturation, Fig. 60, and saturated hydraulic
conductivity, (dimensionless function of depth, K,) Fig. 62 has a
small effect on the spreading of wetting front. The effect of the

other three variables 2, Pb and n is significant. For example, in
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FIG. 53.--Effect of Variation of Dimensionless Bubbling Pressure,
P, on Vertical Depth of Penetration of Wetting Front with Time
OBtained from Solutions of Problems 1 through 3.
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FIG. 54.--Effect of Variation of Pore Size Distribution Exponent,
A, on Vertical Depth of Penetration of Wetting Front with Time
Obtained from Solutions of Problems 1, 4, and 5.
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FIG. 56 .--Effect of Variation of Porosity, n, on Vertical Depth of
Penetration of Wetting Front With Time Obtained From Solutions of
Problems 1, 8 and 9.
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FIG 57.--Effect of Variation of Saturated Hydraulic Conductivity,
» on Vertical Depth of Penetration of Wetting Front with Time
OBta1ned from Solutions of Problems 1, 10, and 11.
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FIG. 59.--Effect of Variation of Pore Size Distribution Exponent,
A, on Lateral Movement of Wetting Front with Time for Problems
1, 4, and 5.
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FIG. 60.--Effect of Variation of Residual Saturation, S., on
Lateral Movement of Wetting Front with Time for Problems
1, 6, and 7.
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Fig. 59 which shows the results of heterogeneity caused by variation
of A, the radial movement of the wetting front is approximately twice
as great for A increasing with depth as for \ decreasing with depth.
At t = 2.22 the wetting front passed the point 1.8 units beyond the
circle of application, but for the decreasing case it was at distance
0.8 units beyond the radius oflcircle of application after the same
time.

Solutions of problems 1, 12, and }3 indicate the effect of differ-
ent magnitude of hydraulic head, ho’ used in the initialization of the
problem on the flow patterns. A1l specifications are assumed to be
identical and constant (homogeneous) except initial hydraulic head,
ho' Figs. 63 and 64 are the variation of infiltration rate and volume
of water infiltrated with time, respectively. Fig. 63 shows that the
rate of infiltration is 1afger for the soil with the smaller initial
hydraulic head. The infiltration capacity curve for the same
specification at an initial hydraulic head of -4.0 feet lies above the
curve for the problem of initial hydraulic head of -6.0 feet and the
curve for the higher hydraulic head of -8.0 is the lower curve. After
(t = 2.50) the infiltration rate of the three soils becomes almost a
constant value of about 0.38. Therefore, the initial hydraulic head
or static equilibrium condition of the soil has no significant effect
on infiltration rate, particularly after a longer time. This
observation confirms Jeppson's (42) conclusion.

The effect of initial hydraulic head on the variation of vertical
movement of the wetting front with depth is shown in Fig. 65. As the
figure shows, water moves more rapidly in wet soils than in a dry soil.

When the soil has an initial hydraulic head of -4.0 at v = 1.12 the
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FIG. 63.--Effect of Different Values of Dimensionless Initial
Hydraulic Head, ho, on Infiltration Capacity Curve Obtained
From Solutions of Problems 1, 2, and 13.
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FIG. 64.--Effect of Different Values of Dimensionless Initial Hydraulic
Head, h_, on Volume of Water Absorbed as Obtained from Solutions
of Probfems 1, 12, and 13.
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Vertical Penetration of Wetting Front, Dimensionless

2.0

1.8 4

Prob. No. 1 initial hydraulic

head = -8.0
—— —— — Prob. No. 12 initial hydraulic
head = -6.0
—-—+— Prob. No. 13, initial hydraulic
head = -4.0
.24
T | T ¥ T T 1 H T T 1
.0 4 8 1.2 1.6 2.0
Dimensionless Time Parameter, t = %—Ka

FIG. 65.--Effect of Different Values of Dimensionless Initial Hydraulic
Head, h_, on Vertical Depth of Penetration of Wetting Front with Time
for Pro8iems 1, 12, and 13.
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wetting front reaches the bottom boundary whereas for soil of hydraulic
head of -8.0 it reached the bottom boundary at t = 1.98. Lateral
movement of the wetting front in wet soil is much faster than the dry
soil. For example, Fig. 66 shows that at t = 2.20 the Tateral move-
ment in wet soil (h0 = -4) is 1.75 units and in drier soil (-8.0) at
the same time it is 1.375 units beyond the circle of water application
area.

The increase in saturation at any time is also of interest. The
variation of saturation of the soil on the centerline at 0.4 unit
depth and on soil surface at 0.3 units beyond the circle of application
with time parameter, t, has been plotted in Figs. 67 and 68. A
comparison of these curves reveals that a change of the initial
hydraulic head has no noticeable effect on the saturation at any point
in the flow field, particularly after a period of time. The difference
between the curves exists from = =.0 and is a consequence of the
initial saturation at the beginning of infiltration.

Solutions to Problems 14 through 18 show the effect of different
application rates on the flow patterns, and other dependent functions
of infiltration. Figs. 69 and 70 show the effect of specified appli-
cation rates on the penetration of the wetting front in both vertical
and lateral directions for the same soil type (homogeneous soil),
respectively. As the application rate increases, the vertical and
lateral movement, and consequently the volume of wetted soil, increases.
For the same flux the lateral movement of wetting front is less than
the vertical penetration. This difference is a consequence of a
constant gravitational gradient of unity in the vertical direction.

Figs. 71 and 72 are plotted to show how thedimensionless application
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Radial (Horizontal) Movement of Wetting Front Beyond The
Radius of Circle of Application, Dimensionless
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FIG. 66.--Effect of Different Values of Dimensionless Initial
Hydraulic Head, h_, on Lateral Movement of Wetting Front With
Time for Problems™1, 12, and 13.
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FIG. 67.--Changes in Saturation at the Centerline at a Dimensionless
Depth of 0.4 Units as Obtained from Solutions to Problems 1, 12, and
13 in Different Values of Dimensionless Initial Hydraulic Head, ho.
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Obtained From Solutions to Problems 1, 12, and®13 with Different
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FIG. 69.--Effect of Different Values of Dimensionless Application
Rate, VK, on Vertical Depth of Penetration of Wetting Front with
Time for Problems 14 through 18.
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Radial (Horizontal) Movement of Wetting Front Beyond The
Radius of Circle of Application, Dimensionless
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FIG. 70.--Effect of Different Values of Dimensionless Application
Rate, VK, on Lateral Movement of Wetting Front with Time for

Problems 14 through 18.
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Radial (Horizontal) Movement of Wetting Front Beyond The
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FIG. 72.--Changes in Lateral Movement of Wetting Front Beyond the
Radius of Circle of Application with Dimensionless Application Flux,
v3, for Different Dimensionless Time Parameter, 1, as Obtained From
Solutions of Problems 14 through 18.
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rate VK is related to the depth of penetration and Tateral movement
of wetting front.

Change in saturation at several points for different application
rates is also of interest. The variation of saturation on the surface
centerline, on the surface at 0.4 units beyond the circle of applica-
tion and at 0.4 units depth on centerline are shown in Figs. 73, 74
and 75, respectively. The figures indicate for the same time, 7,
saturation increases with increasing rate of water application. The
increase in the saturation in vertical direction is more than in the
lateral direction. For example the initial (at t = 0.0) saturation
for depth 0.4 units below soil surface on axis of symmetry (Fig. 75)
was about 24.0 percent and after time v = 1.0 increased 42.0 percent
for the application rate 0.1, (change in saturation = 42 - 24 = 18)
whereas for the same soil, time, and application rate the change in
saturation of the soil surface at 0.4 units beyond circle of
application (Fig. 74) was about 26 - 23.5 = 5.5 percent. This is also
true for the higher values of application rate (see Figs. 74 and 75).
Further, the Fig. 74 shows up to time t = 0.25 there is no change in
saturation on the 0.4 unit beyond the circle of application for all
application rates. At t = 0.70 there are noticeable changes 1in
saturation for higher application rates while for a low application
rate of 0.1, the satﬁration is almost at the initial saturation, (Fig.
72).

Another item of interest is the effect of the radius of circle
of application, rys On the infiltration rate and other dependent
functions of infiltration. Several solutions were obtained in which

all of the parameters were identical except the radius of water
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FIG. 73 --Changes in Saturation at Centerline on Soil Surface with
Time for Different Values of Dimensionless Application Rate, VK,
as Obtained from Solutions of Problems 14 through 18.
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Saturation at the Centerline at a Dimensionless Depth of 0.4, Percent
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Application Rate, VK, as Obtained from Solutions of Problems
14 through 18.
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application ry (problems 19 through 22). The infiltration capacity
curves obtained from this solution are shown in Figs. 76 and 77 in
which Fig. 76 is the infiltration rate from the entire circular area
and Fig. 77 indicates the infiltration rate per unit surface area.

An examination of Fig. 76 and 77 shows that infiltration increases with
decreasing radius of water application area. For example the infiltra-
tion rate at t = 1.4 from circular area of radius r,=0.3 unit 1is
about 1.14 and for a circular area of radius 1.2 is approximately 0.60
for the same soil and at the same time. This relationship of the
radius, rys and infiltration rate can provide a quantitative measure
of how much the infiltration rate as measured from a small radius
infiltrometer, should be reduced to predict rainfall intake capacity
which is occurring in one dimension.

Fig. 78 which is a result from Figs. 76 and 77 indicates that more
water infiltrated from unit area of a smaller circular area than larger
area at the same time. For example, the dimensionless volume of water
infiltrated from a circular area of radius 0.30 at the time t = 1.4 is
approximately 1.6 whereas at the same time and soil this value is about
0.775 for an area of radius 1.2 (see Fig. 78). The variation of
saturation at the centerline for the several radii of application is
shown in Fig. 79. The figure shows at the beginning of infiltration,
the rate of increase in saturation is almost the same for all radii
ra thereafter a rapid change in saturation occurs in the vicinity of
the wetting front. Thereafter the saturation changes a decreasingly
small amount and approaches constant saturation. Since the saturations

are smaller for small radii of application, r_, it is obvious that the

a’

hydraulic gradients are substantially increased by the lateral movement
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of water. The gradient developed by the Tateral movement is larger
than the gradients that exist for water movement only in vertical
direction. Because not only saturations are less for a smaller area
of application, but also quantity of infiltration water per unit area

js also larger (see Fig. 78).

Coaxial Graphs

The qualitative illustration of how various types of hetero-
geneity effects infiltration are given in previous section. In order
to quantify and define the relationship between varying soil parameters
and dependent variables of the infiltration process data obtained from
the numerical solutions were fitted by linear regression analyses.

For these analyses, data were obtained from solutions to problems 1
through 11 at the following dimensionless times, t: 0.2, 0.5, 1.0,
and 1.5. The independent variables for these analyses are the B
coefficient (in Eq. 227, 228, and 229)of all five soil parameters and
1, and differences between homogeneous and heterogeneous infiltration
rates; the depth of penetration and radial movement are dependent
variables. The regression program has the capability that the
iﬁdependent variable could either have its actual value or a trans-
formation of it. For example, (BPB)Z, (BL)2 are transformations of
B coefficients of bubbling pressure, and pore size distribution
exponent. Several analyses were made for different transformations
of independent variables. The best fit was found to be a quadratic
relationship for all five soil variables and cubic relationships for
the time, t. The coefficients for general equations to fit a curve

through data for 13 independent variables and one dependent variable
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were computed. The general expressions relate the difference between
the dependent variable of infiltration for homogeneous and hetero-

geneous case or

Al = Ihomo. - Ihetero. (224)
AD = Dyomo, - Dhetero. (225)
AR = Rhomo. - Rhetero. (226)

to the soil parameters and time, in which I is the dimensionless
infiltration rate; D is the dimensionless vertical penetration of
wetting front, and R is the dimensionless Tateral movement of wetting
front.

The resulting regression equations are:

Al = - .003658 + .03855(BKV) - .00075(BKV)Z + .2777(BSR) + .2110(BSR)?
_ .0882(BPB) - .00844(BPB)Z + .45487(BL) + 1.0393(BL)%
_ .08291(BPOR) + .018182(BPOR)Z + .0080363(r) - .0051842(c)?
+.0014946(<)° (% = 0.98) (227)

AD = - .014 + .232(BKV) - .155(BKV)2 + .173(BSR) - .03(BSR)Z
+ .23567(BPB) - .12111(BPB)Z + .23367(BL) + .83444(BL)2
+ .28864(BPOR) - .12397(BPOR)? + .038548() - .033138(r)2
+ .010726(x)3 (R% = 0.92) (228)

AR = .0070762 + .0185(BKV) + .0125(BKV)Z - .18900(BSR) - .15(BSR)Z

- .55(BPB) - .27778(BPB)Z + .99667(BL) - .10(BL)2

- .85455(BPOR) - 1.2479(BP0R)2 - .024151(7) + .028802(1)2

2

- .011772(1)3 (r% = 0.98) (229)
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in which BKV, BSR, BPB, BL, and BPOR represent the B coefficients of
K, > Sr, Pb’ X, and n, respectively. The above three equations, (227),
(228), and (229) are solved by the three coaxial graphs, Figs. 80,

81, and 82, respectively. Each coaxial graph provides the magnitude
of dependent variables AI, AD, and AR, and shows how time, t, and

rate of change of n, Pb’ Xs Sr’ and KO effect them.

In using the coaxial graphs, first take a specific dimensionless
time parameter, t, next select appropriate B coefficient for each soil
parameter, then enter each individual plots with these coefficients
in the order shown by the line with an arrow, until the axis for
AI, AD, or AR is reached. On each figure the homogeneous case is
solved.

The values of Al, AD, and AR can be considered as correction
factors in obtaining infiltration rate, vertical penetration and
lateral movement of the wetting front when homogeneous assumptions
are made. For example, AI can be obtained from coaxial graph, Fig.
80, or can be computed from Equation (227), for any known soil (i.e.,

the magnitude of soil parameters and their variation are known).

Thus

I =1 (230)

hetero homo ~ Al

hetero

Because of the following assumptions, caution should be exercised
in using the coaxial graphs.

1. The regression equation used in developing these graphs
assumes no interaction of the soil parameters.

2. The problems that have been solved and compared herein are

based on a single soil parameter, varying in a given case.
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3. Other analyses for axisymmetric infiltration, in which
actual or more realistic interactions between soil parameters are made,

are needed to evaluate parameter interaction effects.

Comparison of Results with the Results

of a One Dimensional Infiltration

Jeppson (45) developed a computer program which solves the problem
of unsaturated, unsteady one dimensional infiltration through hetero-
geneous soil. Problems 1 through 11 were solved using this one
dimensional model. In order to show the difference between the results
of three-dimensional and one-dimensional infiltration problems the
infiltration rate per unit area and saturation at several points in
flow field are compared. Fig. 83 gives the difference between three-
dimensional axisymmetric and one-dimensional infiltration at a specific
time, t, for different soils. The plotted points on log-log graph
paper are essentially straight lines. As the figure indicates this
difference, Al = 13 - I], is constant for the variation of pore size
distribution exponent, x. For the other problems the following form

can be suggested:

Al = a(r - 0.1) (231)
Since the slope of the separate straight Tines on Fig. 83 is nearly
constant except the curve for BL = - .3, the exponent b' in Equation
(231) will be the same for all Tines and is equal to 0.0625. The
intercept a is equal to Al when the time (r - 0.1), is unity.
Differences between the three-dimensional and one-dimensional

saturation at a dimensionless depth of 0.4 on center line, and at a

given radial distance, ry» are presented in Fig. 84. These figures
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show that the difference of saturation for three and one-dimensional

infiltration decreases with time, except for variation of pore size

distribution exponent and when bubbling pressure is decreasing with
depth (see Fig. 84a).

Therefore for the same soil properties and other specifications,
the comparison between three-dimensional and one-dimensional infiltra-
tion reveals that:

1. Infiltration per unit area in a three dimensional infiltra-
tion situation is higher than for a one-dimensional case for all cases
of heterogeneity investigated.

2. At the same time the increase in relative saturation is
higher for one-dimensional infiltration than for three-dimensional

axisymmetric infiltration for all problems.
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FIG. 83.--Additional Infiltration Rate Due to Applying Water Over a
Finite Circular Area.
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3. The wetting front movement in vertical direction is more
rapid than for three-dimensional infiltration.

Since the water flows radially as well as vertically in the
three-dimensional infiltration, the items 2 and 3 above are due to

spreading of flow patterns.

Comparison of Numerical Solutions

and Field Data

Field data used in this study were obtained from Lower Sheep
Creek, at the Reynolds Creek Experimental Watershed in Southwestern
Idaho. Field equipment included a portable rainfall simulator, gamma
probe, and tensiometers, which are used to control surface application
of water, and to monitor water content of soil and pressure during
infiltration. The rainfall simulator was able to apply water to a
plot of 6-by-6 foot (1.83-by-1.83 m) in intensities from 0.15 to 0.8
inches per hour (3.8 to 203.2 mm per hour). Soil information and
physical data for this site, equipment, and methods for collecting of
data are described by Jeppson et al. (46).

In simulation of field tests, the mathematical specifications
such as geometry, hydraulic properties, and external boundary
influences must describe the field conditions.

In this experiment the water was applied over a 6-by-6 foot
(1.83-by-1.83-m) square plot, whereas surface geometry of the
mathematical model over which water is applied is a circular area.
Even though the field data is obtained from the center of the plot,
this inconsistency in water entry zone geometry seems to have an

insignificant effect on the magnitude of collected data.
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Jeppson et al. (46) used a matching procedure which consists of
obtaining a series of numerical solutions, based on different values
of w/Ka, and selected the solution that both duplicates best the
saturation-time curves measured in the field and agrees with the field
application rate. With this technique the saturated hydraulic

conductivity of Ko = K. = 1.665 inches per hour (4.23 cm/hr) is

a
obtained.

The porosity, n, at different depths of soil profile has been
measured and is given as about 0.50.

Since the field data did not measure the residual saturation, Sps
pore size distribution exponent, A, and bubbling pressure head, Pb,
directly reasonable values for each parameter were obtained by matching
the field saturation data with solution to problem 1 through 11.

Saturation at the 2-in (5.08-cm) depth from the field data are
plotted in Fig. 85 versus time, t, as well as the saturation at 2-
inches-depth from the numerical solution for application rate of
W = 0.70 inches per hour, estimated soil properties. The field applica-
tion rate was 0.70 inches per hour (1.78 cm/hr), or %;v= %f%%? = 0.42,
which is the dimensionless application rate specified in the numerical
solution. When the values of saturation at 2-inches depth on the
centerline did not agree with the field data in Fig. 85, another
numerical solution with a different variation of Pb, A, and Sr or
some combination of these parameters were obtained to examine whether
better agreement could be achieved. A comparison of capillary pressure
variation with the field data for 2 inches depth is shown in Fig. 86.

Table 3 shows various specifications which are used in comparing

saturation and pressure from numerical solution with field data.
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FIG. 85.--Variation of Saturation with Time at 2 Inch Depth in The
Soil at Lower Sheep Creek Beneath an Axisymmetric Infiltrometer.



204

-30.-
-25.4
o
Oo

.5—20. . o
q’ -
© o\ﬁe]d data
o o 2 inch (5.08 cm) depth
7-15. -
wn
(3}
[
e- o
o
E—]O. - [e)
.a \\
<
© Solution No. 3

-5. 4 o

o
o
Q -
O 1 1 lo $ 9 L 1
4] 50 100 150 200 250 300

Time (Minute)

FIG. 86.--Variation of Capillary Pressure with Time at 2-inch Depth
in the Soil at Lower Sheep Creek Beneath an Axisymmetric Infiltrometer.
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TABLE 3.--Values of Hydraulic Properties of Soil Used in Matching.

. W
Solution W R;' Pb A Sr n K0
(1) (2) (3) (4) (5) (6) (7) (8)
1 .7 .42 1.0-2.5z A=z 25-.1z 55 1.665-.3325z
2 .7 .42 1.10-.4z  .9-.1z .50 1.665-.3325z
3 .7 42 1.0-.25z .8-.1z .50 1.665-.3325z
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SUMMARY AND CONCLUSIONS

Solutions for the problem of transient three-dimensional axi-
symmetric unsaturated flow through heterogeneous soils from water
applied over a horizontal circular area have been obtained. The needed
relationships of saturation and relative hydraulic conductivity to
capillary pressure are defined by Brooks and Corey (9) equations. The
mathematical model permits any vertical heterogeneity of the soil to be
specified and describes the heterogeneiéy so that all the pertinent
hydraulic properties of the soil can vary continuously as a function of
depth. Kirchhoff-Transformation is used to transform the dependent
variable Pt in the partial differential Equation (81) to a new variable
¢ which changes much less abruptly across the wetting front than
capillary pressure Pt' The Crank-Nicolson method is used to difference
the partial differential Equation (105) to produce a system of non-
1inear algebraic equations. The system of nonlinear algebraic equations
obtained therefrom are solved by Newton-Line-Relaxation method to
advance the solution through each time step.

For solving the problem a FORTRAN IV program has been written.

To a typical problem such as those presented in this dissertation it
requires approximately 1600 seconds of execution time and about 10
second input-output time on a Burroughs 6700 digital computer to obtain
a solution. The computer output gives the values of saturation,
capillary pressure, hydraulic head, volume of water applied, infiltra-
tion rate, and instantaneous infiltration rate from time zero to any

time.
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From computer solutions of 21 different problems, the distribution
of saturation, the capillary pressure magnitude, the lateral and
vertical penetration of wetting front, and the magnitude and character-
jstics of intake capacities have been analyzed to show their
relationship with soil heterogeneity and other problem specifications.
The results from the analyses are presented in a number of graphs.

General qualitative conclusions derived therefrom are summarized
in Table 4. The entries in Table 4 show the difference between a base
or standard homogeneous soil condition solution and the solution of
the problem with a single variable described in column 1. The homo-
geneous soil (problem no. 1) and soil with initial hydraulic head of
hy = - 6.0 (problem No. 13), and problems with having application
rate of W = 0.3 and ry < 0.9 are the selected as base solutions.

Positive or negative sign in the table indicates that the
magnitude of this quantity is greater or less than in the base
problem solution. A zero entry indicates there is not a difference
between the solutions from base and actual problems.

The nomographs, Figs. 80, 81, and 83, provide more detail
regarding the magnitudes of the plus or minus difference given in

Table 4.



TABLE 4.--Summary of Results and Conclusions.

Table Shows the Difference Between a Base

Solution and the Solution From the Problem Described in Column 1 (Base Problem - Problem
in Column 1).

Infiltration
Variable

Problem
Specification

Initial Saturation

Saturation During Infiltration

Wetting Front Penetration

On Soil
Surface

On Bottom
Boundary

At Centerline

on
Soil Surface

On Soil Surface

at Radial

Distance rgt

At Centerline
At a Depth of
0.4

Vertical

Lateral

Infiltration
Rate

Volume of
Water
Absorbed
Per Unit
Surface
Area

Heterogeneous Soi)

P, decreasing
with depth
(1.3 to 0.7)

Py increasing
with depth
(0.7 to 1.3)

A decreasing
with depth
(1.3 to 0.7)

X, increasing
with depth
(0.7 to 1.30)

Sy decreasing
with depth
(0.25 to 0.05)

Sy increasing
with depth
(0.05 to 0.25)

n decreasing
with depth
(3.62 to 0.18)

n increasing
with depth
(0.18 to 0.62)

K decreasing
with depth
(1.0 to 0.60)

Ko increasing
with depth

+
then

then

60¢



TABLE 4.--Continued.

oLe

Initial hy- + + - - -
draulic head, + + 0 close close - close close close
h0 = - 3.0 to zero to zero to zero to zero to zero
Initial hy- - - + + +
draulic head, - - 0 close close + close close close
hy = - 4.0 to zero to zero to zero to zero to zero
“{Radius of water -
Alapplication 0 0 0 close - - 0 + +
wlarea, r, = 1.2 to zero
ES a
2l Radius of water +
%’\ application 0 0 0 close + + 0 - -
£larea, r. = 0.6 to zero
S a
x
Application
rate, 0 i} + + + + + + +
W=20.1
Application
rate, 0 0 - - - - - - -

W=20.7
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Flow Chart
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conditions, and determine the manner of outputing the

TR

solutions.

READ PARAMETERS which establish the dimensions, boundary N

If no more
solution spec
ified, stop-

Read rainfall NSSUR = 1
Record data and SECOD <
~-001

yes

Computes dimensionless, Depth and hydraulic
head and write the dimensions of problem and
values of other parameters.

Are the
Brooks-Corey Equations
valid?

Compute and write dimensioniess space
increment, radius of application, area,
flux per unit area.

T

v

Call subroutine DERV which computes and writes
the magnitude of all variables and their
derivatives for each grid point.

|

Call subroutine INITIA which initializes and
prints out the static equilibrium pressure
head and distribution of saturation.

]

™~

- ks \\\\\\x no| Divide the first

ISTEPB .
less than one2 time step_for
unequal sizes.

|

Do
for number of time steps

> specified by input parameters-a—

T



Is it ~
necessary to multiply
y time increment, At, by some factor™
greater than one?

no

Determine the value Iyes

Multiply 4t by
some factors
greater than one.

of rain intensity, NSSU&éo
time of occurrence, | \\\‘\\\\T”/”/—”
and duratjon of rainfall] y o

Call subroutine TIMSTH which carries
L——a» out the computation needed to advance

one time step

Call Function F1 for NN=0
If NSSUR=0 J=1, and I=2, NX
_. J=2, and =2, N2X
I NSSUR=T 577 and 1=N2X+1, NX

)

Call subroutine FJ NN=0
J=2 . . NY
=2 . . NX

L

Initialize the XI(J,I) for
Newton-Raphson Iterations.

IFH(J,1)<0
Ui:gi:sard ves Is the estimated pressure head less
an one (unstandard return) 2
no
If yes| Call Function F3 for
J=MY NN=0, J=MY, =2, NX
no

DO 5 I=2, NXI <

Call Function F1 for NN=1
If NSSUR=0, J=1, and I=2, NX

. J=2, and =2, N2X
IF NSSUR=T, 517 and 1=N2X+1,NX
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-

Call FJ for NN=1
J=1, NY
1=2, NX

Call Function F3,
J=MY for NN=1, I=2,NX

Do 11 J = NB2, NYl

If NSSUR=0, NB2=2
f NSSUR=1, NR?=3

Solve the tridiagonal matrix

by Gaussian elimination and
Newton Raphson iteration.

Is yes |{Call subroutine FIBNOK tqg
I{y, I)*ERRT < \determine the optimum
=.99999 _ Ljélue of XI(J,I).
Is N
ERR and MAX sat- —
isfie
yes
Is
- RRT and MAXT no -
atisfied?
yes

Calculate difference between the current and previous pressure
head at each point and point in which maximum change in
saturation occurs.

Call subroutine RITOUT which calculates and prints values of
hydraulic head at each grid point and average and instantaneous
infiltration rate, and volume of water applied and also prints
the values of pressure head and saturation at each grid point.

:

Check the values of pressure in each grid point
and expand the region of computation.

|

< v -

yes ///KK

there more
T~ .data?
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Appendix II
Fortran Program Listing Typical Input Data and Sample Solutions




OO0 0000000000000 0000000000000000000000000000a0E 00

A2 A ATl A R R s Y 2222232223222 0
* A PROGRAM TO S8OLvE THE PROBLEM OF TRANSIENT YHREEe «
* DIMENSIONAL AXISYMMETRIC UNSATURATED FLOW THROUGH
wekagprhntnantdr HETERQGENEOUS SOILS wawanmndkgnnwdwky
EERRRAN AR AR AR RN T TR

N2X = NUMBEK OF GRID POINTS IN THE RADIAL DIRECTION TO OUTER EDGE OF
CIRCLE Ra OVER WHICH wATER IS APPLIED,
::OBEENUMBER OF GRID POINTS IN RADIAL DIRECTIUN TO OUTER RADIUS OF
M,
MY = NUMBER OF GRID POINTS IN AXIAL DIRECTION BEYWEEN TOP SURFACE
AND BUTTOM OF PROSLEM, .
NT = NUMBER OF TIME STEPS THROUGH WHICH COMPUTATION ARE TO BE
COMPLETED,
Hl = VALUE OF THE STATIC EQGUILIBRIUM INITIAL HYDRAULIC HEAD
(MINUS MUST BE PUNCHED INTO CARD),
DEPTH e THE DEPTH BETWEEN TOP SURFACE AND BOTTOM OF THE PROBLEM,
OELT = SIZE OF DIMENSIONLESS TIME SYEP INCREMENTS WHICH ARE TO
B8E USED IN OBTAINING THE SOLUTION,
SL = THE CHARACTERISTIC LENGTH USED TO NONDIMENSIONALIZE ALL LENGTH
PARAMETERS OF THE PROBLEM,
SSUR = IF THE UPPER SURFAGE BOUNDARY CONDITION IS TO BE USED WHICH
SPECIFIES THE APPLICATION RATE, SSUR MUST BE GIVEN A VALUE OF ZERO,
IF THE CONDITION SPECIFYING THE SURFACE SATURATION 18 TO g& USED SSUR
EQUALS THE DECIMAL SURFACE SATURATION,
SECOD = AN INDEX WHEN ITS VALUE I8 GREATER THAN ,00f THE RAINeFALL
RECOXD WILL BE READ,
IMAXJ = THE NUMBER OF GRID POINT IN VERTICAL DIRECTIUN WHICH THE
MAXIMUM CHANGE IN SATURATION I8 OCCURRED,
TIML e MAGNITUDE OF DIMENSIONLESS TIME IN PREVIOUS TIME STEP USED TO
COMPUTE THE INSTANTENEQUS INFILTRATION RATE,
wATCUL = MAGNITUDE OF WATER CONTENT IN PREVIOUS DIMENSIUNLESS TIME
STEP USED TO COMPUTE THE INTANTENEOUS INFILTERATION RATE
NFAC « NUMBER OF FACTORS TFAC(I) USED TO INCREASE THE VALUE
DIMENSIONLESS TIME INCREMENT OELT,
TEAC(L1) = MAGNITUDES OF THE FACTORS USED TO BE MULTIPLIED BY DELT
A SPECIFIED TIME STEP IMFAC(I),
IMFAC(I) = IN THIS TIME STEP THE DIMENSIONLESS TIME INCREMENT OELT
MULTIPLIED BY THE TFAC(I).
NSSUR e AN INDEX weICH I8 USED TO CHANGE THE CONDITION OF THE TOP
BOUNVARY CuNDITION 23, WHEN NSSUR®0 UPPER SOUNDARY CONDITION
APPLICATION RATE I8 SPECIFIED, IN QTHER CASE (NASSUR®1) SURFACE
SATURATION IS5 SPECIFIED,
KTIM2 = COUNTER INDEX FOR THE MUBER OF RAIN FALL RATES AT DIFFERENT
DIMENSILESS TIMES, AND 8UMS UP TO KTIM2 ® NRAIN
KKT1 = COUNTER INDEX USED IN TO CHANGE VALUE OF IMFAC(I), AND SuUMS
UP TQ KKT{ ® NFAC
NSKIP = AN INDEXx WHEN ITS VALUE IS ONE THE SOLUTION TO OYHER PROBLEMS
wILL BE PRINTED ON ANOTHER PAGE,
NRAIN « NUMBER OF RAIN FALL RECORDS
GK(I) = INTENSITY OF RAIN FALL IN INCHES PER HOUR, WHEN NSWIT(I)=1,
GK(I) I8 EQUALS TO THE DECIMAL SURFACE SATURATION,
I;HHli) = DIMENSLESS TIME wHICH IN THAT TIME THE INTENSITY OF RAIN
GR(I),
NSAIT(l) =« AN INDEX SIMILAR TO NSSUR WHICH CHANGES THE CONDITION OF
TOP BOUNDARY CONDITION 2=3, WHEN IT8 VALUE IS ZERD TWE CONDITION
OF TUP SURFACE IS SPECIFIED APPLICATION RATE AND WHEN IT VALUE I§
EQUAL TO ONE THE SURFACE SATURATION IS SPECIFIED AT THAT PARTICULAR
DIMENSIONLESS TIME,

OO0 0000000000000 0000000000NNO00000000aA0a000000000000000

VK « FORTWAN VARIABLE USED TO SHOW THE RAINFALL RATE OR APPLICATION

FLUX WHICH I8 USED ONLY wHEN N8SUR=0, IT HAS A DIMENSIONS OF INCHES

PER HOUR wHEN VK ® QK(I) AND IN DIMENSIONLESS FORM VK & Gx(I)/AK IN

WHICH AK 18 THE SATUKATED HYDRAULIC CONDUCTIVITY ON THE S0IL BURFACE

UNITS OF LENGTH PER TIME,

HEIGY = DIMENSIONLESS DEPTH BETWEEN TOP SURFACE AND BOTTOM OF THE

PROGLEM (DEPTH/SL)

MIT = DIMENSIONLESS STATATIC EQUILIBRIUM HMYDRAULIC HEAD (MI/SL)

AK = SATURATIED HYDRAULIC CONDUCTIVITY ON THE 80IL SURFACE USED TO

NONDIMENSIONALIZE THE APPLICATION RATE, OR RAIN FALL RATE,

EXPAND e« A PARAMETER TO EXPAND THE NUMBER OF GRID POINTS AT WHICH

VALUES ARE COMPUTED AT NEW TIME BTEPS., WHEN H(JsI) CHANGES FROM THE

INITIAL CONDITIONS BY AN AMOUNT GREATER THAN EXPAND THE NUMBER OF

GRID POINTYS IN EITHER THE RADIAL AND AXIAL DIRECTIONS 1S EXPANDEOD,

ERR = A pARAMETER USED TO TERMINATE THE NEATON=RELAXATION METHOO

ITERATION, TYHE INDIVIOUAL LINE ITERATIONS ARE TERMINATED WHEN THE

ABSOLUTE SuM OF CHANGE BETWEEN CONSECUTIVE ITERATION I8 LESS THAN

ERR,

ERRT = A PARAMETER USED TO TERMINATE NEWTONeRELAXATION ITERATION IN

EACH TIME PLANE ITERATION WHEN THE ABSOLUTE SUM OF CHANGE BETwWEEN

CONSECUTIVE ITERATION IS LESS THAN ERRT (ERRT=JIO00®ERR).

SATMAX = MAXIMUM SATURATION WHICH CAN BE ATTAINED IN THE SOIL

SURFACE wWICH IS USED TO TRANSFER TOP BOUNDARY CONDITION FROM

SPECIFIED APPLICATION RATE TO SPECIFIED BATURATION,

OMEGA = MAXIMUM SATURATION THE SOIL CAN ATTAIN IN THE BOTTOM

BOUNDARY DRAIN LAYER AND MOISTURE BEGINS TO BUILO uP IN IwE SOIL

PROFILE, WHEN OMEGA IS LESS THAN COMPUTED SATURATION AT THE BOTTOM

BOUNDARY H(MY,I)sBB(MY),

NRITZ « NUMBER OF REGULAR TIME STEPS BETWEEN wHICH SOLUTIONS ARE

PRINTED,

NHSTAR = [F HNBTAR IS8 LESS THAN ZERO ONLY THE VALUES OF THE
INDEPENDENT VARIABLE XxI(JsI1) WILL BE PRINTED A THE SPECIFIED TIME

STEPS. IF NHSTAR=O0 THE VvALUE OF XI(JsI) THE SATURATION AND

HYDRAULIC HEAD WILL BE PRINTED AT THE SPECIFIED TIME STEPS. IF

NHSTAR IS GREATER THAN ZERQOs VALUES OF xI(JeI) wlLL NOT BE PRINTED,

BUT VvALUES OF SATURATION AND HYDRAULIC HEAD wlLL BE PRINTED,

MAX = MAXIMUM NEWTONe_INE ITERATIONS THAT WILL BE ALLOWED., THE

NUMBER OF LTERATIONS ON ANY TIME PLANE wHICH WILL BE ALLOWED

wiLlL BE ONE=HALF THI8 MANY,

MAXT o THE MAXIMUM NUMBER OF ITERATIONS ON ANY TIME PLANE THAT wWILL

BE ALLOWED MAXTmMAX/2,0

ISTEPB = AN INDEX WHEN IT 18 GREATER THAN ONE THE FIRST TIME STEP
wiLL BE SUBDIVIDED TO SOME UNEQUALL BUT BMALLER TIME STEPS,

DELS = DIMENSIONLESS SPACE INCREMENT (DELSaHEIGT/MY={),

R = DIMENSILESS RADIUS OF CIRCLE OF APPLICATION RA (R®DE| S*FLOAT
(NeX=1)),

AREAC o DIMENSIONLESS AREA OF CIRCLE OF APPLICATION AREACE3,14=R#R

G = APPLICATION RATE PER AREA OF THE CIRCLE OF APPLICATION,

TIME = DIMENSIONLESS TImE,

HO(JsI) « VALUES OF PRESSURE HEAD AT TIME m 0,0, HO(J,1)mH(J, 1),

HD(JsI) = DIFFERENCE BETWEEN PRESSURE HEAD AT PREVIOUS TIME STEP AND
CURRENT TIME STEP, HO(J,I)wHO(J,I)=H(J,1)

H{J«1) = VALUES OF PRESSURE HEAU AT ANY TIME,

B(J,1) = VALUES OF HYURAULIC HEAD AT ANY TIME,

0(I) = VALUES OF SATURATION CALCULATED FROM BROOKS=COREY EQUATIUN,
SATT = MAGNITUDE OF SATURATION ON THE CIRCULAR wATER APPLICATION
AREA, WHEN SATT EQUALS OR GREATER THAN THE SATMAX THE SPECIFIED FLUX

CONDITION wlILL BE CHANGEU TO SPECIFIED SATURATION(NSSUKx1). AND

PRESSURE HEAD wILL BE CALCULATED FROM THE SSUR SPECIFIED,

S1(1) = INITIAL SATURATION

AVERAGE INFILTRAYION RATE ® WATCOT/TIME

8¢



OO0

10

427

210

206
420

21

INSTANTENEQUS INFILTERATION WATE & WATCOTewATCOY/TIMEwTIMY
INSTANTENEQUS INFILTERATION PER UNIT AREA ® INST, INFIL, RATE/AREAC
WATCOT » VOLUME OF WATER AT CURRENT TIME S8YEP (DIMENSIONLESS)
wATCOL « VOLUME OF WATER AT PREVIOUS TIME STEP (DIMENSIUNLESS)

TIME « ACTUAL DIMENSIONLESS TIME

TIWI = MAGNITUDE OF DJMENSIONLESS TIME AT PREVIOUS TIME STEP,
AMBDA(J) <« PORE SIZE (ISTRIBUTION EXPONENT, FUNCTION OF DEPTH,
VKB(J) = A DIMENSIONLESS QUANTITY WHEN IV I8 MULTIPLIED BY AK GIVES
THE BATURATED HYDRAULIC CONOUCTIVITY KO(J)mAKwVKS(J),

SR(J) =~ RESIDUAL SATURATION, FUNCTION OF DEPTH
B8B(J) = BUBBLING PRESSURE, FUNCTION OF DEPTH , DIMENSIONLESS,
POR(J) « SOIL POROSITY, FUNCTION OF DEPTH

MAIN PRUGRAM SPECIFIES THE PROBLEM AND DIRECTS THE ORDER OF COMPUTATIONS
AND NATURE OF OUTPUT BY CALLING SUBROUTINES AND ALSO CHANGES THE BOUNDARY
CONDITION,

REAL QK(25),TIMH(25),TFAC(100)

INTEGER NTAPE(32)/,NSWIT(25),IMFAC(100)

COMMON H(32,32),H0(32,32),68(32,32),0M(32),0(32),0P(32),F(32),51(32
$),VK8(33),AMBDA(32),DELS2(32),AMB32(32),AMBDL(32),POR(32),8R(32),
$8R1(32),DVKB(32),0AMBDOA(32),PAVK(32),B8(32),DPB(32),VK,HEIGT AK
$,DEPTH,SL,DELT,DELS,HI,HIT,ERR,ERRT,ERRL,RERRL, TIME,DES2,DELH,SSUR
S, UMEGA, WATCOL,TIML,XI(32,32),XIH(32,32),XI0(32),MYL,NY,NYL,NY2,
SNHBR /MY, NSAT,NSSUR,NB1 ,NB2/MAX s MAXT ,NX,NX1,NRX)NS, N6, JsJM,JP,ME,
SM2, IMAXJ ) IMAXM, IMAX2, STIME, IM, IP,DAMBK(32),DELSCB(32),0CUB(32],
SDELSC2(32),DCUBS(32),HD(32,32),0,R,N2X,MX,MB2,MB3, I1K,N2XP,AREAC

NSKIPa0

INCRT=0

READ(S,428/ENDEI9) N2X,MXs MY NT,HI,DEPTH,DELT,SLsSSUR,SECOD

IF(N2X,GT,50)G0 TO 99 ,

IMAXM=E

IMaxJsio

IMaxe2=12

TIMim0,0

WATCOtmo0,0

FORMAT(41S,6F10,5)

READ(S5,428) NFAC

READ(S,427) (YFAC(I), IMFAC(]),181,NFAC)

FORMAT (B(FS5,2,15))

NSSUR®0

Mizq

IF(SSUR,GT, J001)INBSURe]

IF(NSSUR FQ,1)MIx2

KTiMenmy

RKTis]

1F (NSKIP,EQ.1)WRITE(6,210)

FORMAT(iHL) '

IF(NSSUR,EQ,1,AND,SECOD,LT,,001)60 To 21

READ(5,428)NRAIN

READ(5,206) (GK(I)yTIMHCI) )NSWIT(L),IN1,NRAIN)

FURMAT(3(2F10,5,15))

WRITE(6,426) (QK(1)yTIMH(I) NSHIT(I),I31,NRAIN)

FORMAT (' RAINFALL RECORD ',4(2F10,5,15))

vKsQgK (L)

MYlaMYe]

HEIGTSDEPTH/SL

HITeHI/SL
IF(NSSUR,GT.0)G0 TO 8
WRITE(6,302IN2X M MY NT NI, HIT,DEPTH, HEIGT,DELY» VK, 5L

102 FORMAT(' N2X®!,13,' Nxm',I3,! NYS!,I3,!' NT®',IS,' nI®!,F8,3,' HIT=

8

$'yF8,3,' DEPTHS',F7,2,' HEIGYS',F8,3,' DELYS',F8,4,' Q%',F10,6,'
$ SL=!,F8,3)

GO 70 9

WRITE(6,204) N2X,MX,MY,NTyHI,HIT,DEPTH,HEIGT,DELT,S8UR,SL

204 FORMAT(' N2X®',13,' NX®',I3,' NYS',I3,! NT®',I5,' HIa!,F8,3,! HITz

9
101

400

176
39y

34

32
103

109

$1,F8e3,"' DEPTHa!,F7,2,' HEIGTS', F8,3,! DELT®',F8,4,' S(1)a',F8,4,!
3 sLs',F8,3)

READ(S,101) AK

FORMAT (8F10,5)

READ(S,400)NRIT1)NRIT2,NNSTAR

PORMAT(31S,6F10,5)

READ(S,176) MAX,ISTEPB

MAXTSMAX/2

ERRT=100,%ERR

FORMAT(1615)

WRITE(6,391)INRITI,NRIT2,NSSUR,MAX

FORMAT(' NRITi®',12,' NRIT28',12,' NSSURs',I2' MAX=',12,]S)

N2XPaN2X ¢l

IF(NSSUR,GT,0)60 TO 34

NB1=l

NBame

MB2ue

MB3a3

GG YO 32

NBlw2

~nBeal

MBREN2XP

MB3aMB2el

WRITE(6,103) ERR

FORMAT(' ERR', E9,3)

NY®b

IF(HEIGT=HIT,GT, ,99) 60 TO &S

WRITE(6,179)

FORMAT('0 PROBLEM SPECIFICATIONS OQUTSIDE RANGE OF vALIDITY OF
SBROOKS=COREY EQUATIONS')

GO T0 to

IF(HITLLT, =,99) GO TO do

WRITE(6,180)

FORMAT ('o BEFORE WATER PENETRATES TQ BOTTOM PROGLEM
SSPECIFICATIONS wILL BE OUTSIDE THME RANGE OF VALIDITY OF THE
$BRUOKS=COREY EQUATIONS')

NXEN2X+6

DELSSHEIGT/FLOAT (MYwl)

DES2=2,0#DELS

DESS=DES2+DELS

DELHRBO,5+DELS

NEeX13N2Xey

ReDELS « FLOAT (N2Xx1)

AREA(®3,1415926 * R * R

IF(vyK,LT, ,001) GO TO 11}

QmvK % AREAC

IF(NSSURGEQ.Q)NRITE (6,109) VK,R,Q,DELS,AREAC

FORMAT(' FLUX PER UNIT AREA HAS BEEN SPECIFIED EQUAL TO',r8,4'
SRADIUSE!' ,FB,U,'Gun' ,F8,4,'DELSS!,FB,3,'aAREAR',F8,3)

GO 10 7

VK2Q/AREAC

IF(NSSUR(GT,0)WRITE (6,108) R,VK,DELS,AREAC

+EXPAND,ERR,SATMAX,)OMEGA

6c¢c



108

49

53

12
i3

43

14

28

9
27

FURMAT(' RADIUS OVER WHICH INFILTRATION OCCURS',F10,5,
S'INFILTRATION FLUXB')F9,4,'DELES',F8,3,'AREAS!,FB8,3)
TIMER0,0

CALL DERV

NXIBNX®]

NYlENYo}

FYSNY)

NX2ENXe2

NY2aNYe2

CALL INITIA
FACLaMEIGTeH]T

D0 49 I=1, Mx
HO(1,1)aFACY

LOISYR S LIISFRSLLIS TR O]
DO 53 Js2, MY

DO 53 Isi, MX

11Ks]

HO(J,1)=0,0
HO(J,1)mH(J, 1)

1F (NSSUR,EQ,1) GO YO 13
D0 12 I=mi,mX

11Kz}

FAC2m0,2 * HO(1,1) » vK
HO(1,1)sFACR

DO 43 sy, Mx

1Ik=z]

FAC3m0,20% HD(1,1])
HD(2,1)aFAC3

NTLiE]

IF(ISTEPB,LT.1) 6O TO 17
NT1se

110

0C 14 ]=y1,]lSTEPS
Ilsllel

ARGI=[]

IF(NSSUR,EQ,1) GO TO 27
DELS2(1)=D(1)

MXisMXel

DO 71 1m2,nNX}

D(2)8HD(1,1)

HO({1,1)8H0(1,1)

D(3)=mHD(2,1)

DELS2(1) s ARG1+D(1)
XI118(HO(g,1)**ERRLe1,)/ERR]
x111P8(HO(1,141)#2ERRL=1,)/ERRY
XI1IMe{rnO(1,I=1)e2ERR1et,)/ERR]
XI121s(HO(2,1)**ERRY=],) /ERR]

ARG 8 FL(HOCLo 1) o XTI (o) o XTClsled) o X101, Im1)eX1t@s1)0s0)4¢F1
SCHOUL I o xXTC1ad) o XICLpT40) ) XICE, I mt),X1CR,1)0 1)
DELS2(1)=D(1)

If (ARG,LY, 0,0) GO TO 29

ISTEPB ® ISTEPB ¢f

ARG ® ARG! + FLOAY (ISTEPS8)

WRITE(6,255) ISTEPB,ARG,ARGE

FORMAT(' pRELIMINARY TIME STEPS HAVE BEEN INCREASED TO',15,3E13,6)
IF(ISTEPB,LY,50) GO TO 28

IF (ISTEPB.EQ,50) 8TO0P

HO(1,1)8D(2)

HO(2,1)=D(3)

ARGSU, 0

22

te

61
81

17
177

661

a4

567

569

s68

Se

DETT = DELT/ARGH

00 15 Isi, ISTEPB

(L. 3

ARG ® ARG ¢ FLOAT(I)

FAC ® ARG1/ARG

D0 16 Ksi, NY

DELS2(K) s FaC « DELS2(K)

ARG} ® ARG

TIME s TIME ¢ DETY » FLOAT(I)

CALL TIMSTH(810)

CALL RITOUT{NHSTAR,KK)

NY2 B NYe2

IF (R(NY2,2) GT,HOINY2,MX)=EXPANDOR,NY EQ,MY) GO TO 18
NY 3 NYel

GO Tu 19

NYl ® NYs§

NY23NYe2

FYBNYY

NAUBNX=Y

IF(R{E,NXE) oGT ,HOCY,MX)=EXPAND ,OR NX ,EQ,MX) GO TO 8%
NXENX+]

GO 10 &1

NXiBNX=]

NX2BNX =2

IF(NSSUR LEQ, 1) GO YO 177

VKe@K (1) /7aK

DO 2 IBNT1,NTY

1IK=]

IF(IMFAC(KKT1) ,NE, I) GO TO 24
DELTEDELY«TFAC(KKYY)

00 661 JKmi,MY
DELS2(JK)SDESS#POR(JIK)IwAMBDA(IK)w SR (JK) /(BB(JIK)weAMBD] (JK)*DELT)
KKT13KKT141

IF(NSSUR,EQ,1) GO TO 23

DO 567 KKmi,N2X
SATYBSR(1)¢SRIC1I«(BB(1)/H(1,KK))**AMBDA(1)
IF(SATT .GE, SATMAX) NSSUR=!

CONTINUE

IF(NSSUR ,EQ, 0) GO TO S68

SSURESATMAXY, 08

NBi=2

NB2&S

MBoEn2XP

MB3IaMBRe 1

0O 569 K={,N2X
HO1,K)BBB(1)}/((SSUR=SR(1))/SRI(1))ww(1,/AMBDACL))
XI(1sK)B({K(],K)*wERRYw],)/ERR}]

GO T0 23
IFCTIMHCKTIMR) oGT TIME,OR,KTIM2,EQ,NRAIN) GO TU 23
KTIMEBKTIME+]

IF(NSHIT(KTIM2) L,EQ.0) GO TO S4

IF(NSWIT(KTIM2=1) ,EQ. NSWIT(KTIM2)) GO 7O Sé
NSSUR =

NBts2

NB2=®3

MB2RN2XP

MB3IaMB2el

SSURBQK (KTIM2)

DO S66 Kay,N2X
H{1,R)BEB(1)/((SSUReSR(1))/SRI(1))wx (1,/AMBDA(1))

566 XI(1,K)B(H(],K)aeERR]=},)/ERK]

0€e



OO0

54

5s
23

99

GO TO 23
IF(NSHIT(KTIM2e1) LEW, NSWIT(KTIMR)) GO TO 5%
NSSUR®D

138 3}

NB2®2

MB2aNZXP

MB3IaMB2¢]

VKeQK (KTIMQ) /7AK
NHERBO
NRReMOD(1,NRIT2)

CALL TIMSTYH(&10)
TIMESTIME«DELTY
IF(NRR,GT,0) 60 70O 3
CALL RITOUT(NHSTAR,I)
NY28NYw2

IF (H(NY2,2)4GT HO(NY2,MX)=EXPAND,OR,NYEQ,MY) GU TO &
NYBNY ¢

GO 70 3

NYl3NYe]

NY2BNYw2

FYsNY)

NX4aNXwg

IF (MO1,NXG) 6T HO(1,4X)=EXPAND,ORNX,EU,MX) GO T0 6
NXENX ¢

GO Y0 S

NX]lahXel

NX2RNX=2

CONTINUE

NSXIPm}i

G0 TO 10

§yop

END

SUBRUUTINE TIMSTHM CARRIES UUT THE COMPUTATIUNS NEEDED TO ADVANCE ONE
TIME STEP,

SUBROUTINE TIMETH(w)

COMMON H(32,32),H0(32,32),8(32,32),0M(32),D(32),0P(32),F(32),81(32
§))VvK8(33),AMBDA(32),0DELB2(32),AMB32(32),aM8D1(32),POR(32),8R(32),
$SR1(32),DvKS(32),DAMBDA(32)sPAVK(32),88(32),DP8(32),VK/HEIGT AK
$,DEPTH,SL,DELT,DELS,HI,HIT,ERR,ERRTERR1,RERRY,; TIME,DES2,DELH,SSUR
S, UMEGA, wATCO1, TIME,XI(32,32),xIH(32,32),X10(32),MYI,NY,NYLTI,NYR,
ENHIR)MY ) NSAT ,NSSUR,NB1,NB2, MAX ) MAXT)NX,NXT ¢ NRXoNS, N6y JJ»JdMr JPeMT,
SM2, IMAXJ, TMAXM, IMAX2, ITIME, IM, IP,DAMBK (32),DE(SCB(32),DCUB(32),
SDELSC2(32),DCUBS(32),HD(32,32),0Q,R,N2X,Mx,4B2,MB3, I1J,N2XP

RERRI=®!,/ERR}

LOGICAL NTURN

VVKeYK

NYfanNYiy

NNXBNX{

NNYBNY L

IF(NX LEQ, MX)} NNXaMX

IF(NY LEQ, MY) NNYaMY

DO 2 l=sMB2,NX{

11Js]

IF(I LEQ, N2XP) VKe0,0

29

33

32

16
i3

31
26

is
i

IPsley
IMs]l=]
@ BUL, I)SFE(H(S D)o XICL oI oXICE IP) o X2(1,IM),X1(2,1),0)
DO 3 I=2,NX}
11vs]
IPe]+l
IMR]=]
00 3 Js2,NY1
JJsJ
JHsJet
JPeJey
CALL FUCHEJ s o XT(Io 1) o XTCIMpT) o XTCQIP o 1) o XTI, IP) 4 XT(J0IM),
$FF,0)
3 8GJ,L)SFF
NBTaNB§
DO 26 J=2,NNX
11Jsl
IF(NBSUR ,GT, 0 ,AND, 1 LEQ., N2XP) NB1s}
DO 31 JsNB1,NNY
JJsyg
ARGEN(J, 1)
FACsi,
IF(J +EGe IMAXJ) GO TO 32
TF(J oLT, IMAXJ) GO TO 29
IF(J 6T, IMAX2) GO TO 166
FAC=},1
IF(J «LTe 4) FACH,!
H(JyI)BARG=FAC®HD(J,I)
GO 10 g3
IF(J +LT, IMAXM) GO TO 166
IF(J +EQ, IMAXM) GO TO 33
H(J,1)SARGw,65%HD(J,I)
GO TU 13
FACn,85
H{JyI)®aRGeFAC*HD(J, 1)
GO YO 13
FACR,25
IF(J oLT, 3) FACH,15
H(J,»1)BARGeFACRHD(J,])
GO TO 3
& H(J)I)BARGeHD(J, 1)
HD(J,1)=ARG
IF(H(JsI) JLT, 0,0) RETURN |
XICJr1)®(M(Js1)*"ERRI],)/ERRY
XIH(J, 1) M (ARGRX*ERRLI=1,) /ERR]
CONTINUE
NBi=NBY
1IFINY LY, MY) GO YO 15
00 16 Is2,nNX}
11J=]
IPeley
IME]el
BIMY  L)BFI(H(MY o I) o XT (MY S T) g XTI (MY IP) o XT(MY2IM)pXI(MYL01),0Q)
S NCOUNTEQ
VKBVVK
SUMTa0,0
MNC TS0
NBB2aNB2
00 S I=2,NX]
11Js]
NTURNe ,FALSE,

Lee



28

11

1

15
is
54

5

NYIBNY1Y
SATBESR(MY)+BRI(MY)# (BB (MY)/H(MY, 1)) wwaAMBDA(MY)
IF(SATB LT, OMEGA) GO TO 288
NY1sMY§
H(MY, T)=8B(MY)
XI(MY, )2 (H(MY, I)#%ERR w1, ) /ERRY
NTURNB ,TRUE,
8 IPBl+}
IMsIw}
NCT20
IF(NSSUR ,6T, 0 ,AND, I LT, N2XP) GO YO 8
IF(1 +EG, N2XP) VKEO,0
IFCHCL, 1) LT, BB(1)) HC1,3)®BB(Y)
ARGEFL(H(1) D)o XICLs 1)aXICL,IP) s XI(1,IM)oXICR0 1))
F{1)3ARG+B(1,I)
DO 9 Js2,NYi
Jing
JPeJey
JMejel

CALL FI(HJoI)aXI(Js D)o XTCIMp I o XI(IPo 1) o XT(JoIP) o XI(J0IMY,

SFF, 1)
9 FJISFF4BLJ, 1)
IF(NY ,LT, MY) GO YO 10
IF(NTURN) GO YO 30
NYiaMy
ABGRF3(H (MY, I) o XT(MYST), XT(MY, IP), XI(MY, IM),XI(MYL,1),1)
F(MY)mABG4B (MY, 1)
IF(1 .EQ, N2XP) NB2s2
00 11 J=NB2,NY!
JJrJ
JMsJ=1
ARGSDM(J) /D (JM)
F(JISF(J)=ARG*F (JM)
0(JIBD(J)wARG*DP(JM)
Janyy
OIF=F (J)/D(J)
XI(Jo1)mXI(JoI)=DIF
IF(J JEds MY JAND, XI(MY,1) 46T, XIO(MY)) XI(MY,I)uxIO(MY)
RH{J,1)8 (1, ¢ERRI*XT(J, 1)) w*RERR]
SUMIABS(DIF)
2 JsJe}
DIFa(F(J)=DP(J)*DIF)/D(J)
XITPeXI(J,1)=DIF
IF(XITP LV, XIH(J,I)) GO TO S4
IF(ERRI*XITP .G, =,99999) GO YD 154
CALL FIBNOK(XI(Jw1,1),XI{J¢1,1),XITP,I,d)
GO TU 158
4 XITPBXIH(JpI)wl,Eal]
S DIFs0,0
HUJs1)3(1 ,¢ERRIXXITP)*aARERKY
XIC(Sy1)aXITP
3 SUMaSUM+ABS(DIF)
IF(J .GE, NB2) GO 10 12
IF(NCT LEQe 0) SUMTEBSUMT#SUM
NCTenCTet
IF(8uM 6T, ERR (AND, NCT ,LT, MAXT) GO T0 &
IF(NCT 6T, MNCT) MNCTanCT
CONTINUE
NB2anBd2
00 47 J={,NNY
HlJ,1)8H(J,2)

i

OO0

47

100
46

24

105
101

100

XI(Js1)mX1(J,2)

NCQUNTSNCOUNT+{

VKBVVK

IF(MNCT LT, 3) GO TO &b

IF(SUMT ,GT. ERRY ,AND, NCOUNT ,LT, MAX ) GO TO 4
IF(NCOUNT LEQ. MAXT) WRITE(6,100) NCT,NCOUNT,8UMT
FORMAT(1IH ,I3," DID NOT CONVERGE IN ALLOWABLE NUMBER OF
SITERATIONS'»13,' SUMTa'E15,8)

SUM=0,0

NBTsNB]

00 24 1Isy,NXi

11Jsl

IF(NSSUR 6T, 0 ,AND, ] ,EQ, N2XP) NBim}

DO 24 JsNB1,NYQ

Jisg

DIFsHD(J,1)=H(J, 1)

IF(DIF LLT, 8UM) GO TO 24

SUMSDIF

IMAXJ B

HD(J,1)SDIF

VKsYyVK

NB1anNBT .

IMAX2BIMAXJT¢2

IMAXMEIMAXJe2

RETURN

END

SUBROUTINE RITOUT COMPUTES SATURATION ,AVERAGE INFILTRATION RATE,
INSTANTENEOUS INFILTRATION RATE ,VOLUME OF WATER APPLIEDs, MYDRAULIC
HEAD AND PRINTS PRESSURE HEADsHYDRAULIC HEAD,SATURATION, AVERAGE
INFILTRATION RATE,INSTANTENEOUS INFILTRATION RATE,VOLUME OF WATER
APPLIED AT EACH GRID POINT,AT ANY TIME STEP,

SUBRUUTINE RITOUT(NM, ITIMEL)

COMMON H(32,32),H0(32,32),8(32,32),0M(32),D(32),0P(32),F(32),81(32
$),vKS(33),AMBOA(32),DELS2(32),AMB32(32),AMBD1(32),POKR(32),5R(32),
$3R1(32),DVKS(32),0AMBDA(32),PAVK(32),8B(32),DPB(32),VK,HETIGY,AK
$/DEPTH,SL,OELT,DELS,HI,HIT,ERR)ERRYJERRT,RERNI, TIME,DES2,DELM,SSUR
$)OMEGA, WATCOL,TIMI,XI(32,32)¢XIH(32,32),XI0(32)sMYL1,NY,NYL,NYS,
SNHSR)MY,NSAT/NSSUR,NB1)NB2, MAX ) MAXT NX,NX1)NRX NS, NE,J,IM, JP, M1,
$M2, IMAXJ, TMAXM, IMAX2, ITIME, IM, IP,DAMBK(32),DELSCB(32),0CUB(32),
SDELSC2(32),DCUBS(32),HD(32,32),0,R,N2X,MX,MB2,MB3,1,N2XP,AREAC

NMial

IF(NM (6T, 0) 60 TO 35S

NM2z16

IF(NM2 ,GT, NX) NM2aNX

WRITE(6,108) ITIMEL, TIME

FORMAT('0 vALUES OF PRESSURE FOR TIME STEP',15,' TAUS',F9,4)

WRITEC6,101) (1,I=NMi,NM2)

FORMAT (3M +15,1518)

DO 2 Jsi,NY

WRITE(6,100) J,(rACJ, 1), IaNME,NM2)

FORMAT(IH ,12,16F8,4)

IF(NM2 ,EQo NX) GO TO 3

NM1aNMis1s

NM2uNMRel 6

%0 TU 1

AR



“

IF(N® LT, 0) RETURN

35 WRITE(6,104) IVIMEL,TIME .

104 FORMAT('0 VALUES OF SATURATION FOR TIME STEP',IS,' TAUZ',F9,4)
HIMSHI+, 0003
O(2)mSR{1)+SRIC1)*(BB(1)/H(1,2))*wAMBDA(])
0(1)=0(2)
Bl1,@)8HEIGTeH(1,2) -
WATCOT=OCUBS(1)»(D(2)«81(1))
182
Jsi

11 I=l+}
D(I)SSR(J)+BRICJII«(BBLJ)I/H(JI,I) ) weAMBDA(L)
WATCOTEWATCOT+DELSC2(1)IW(D(1)=81(J))#FLOAT(Iwl)
B(J,1)BhEIGT=N(J,I)
IF(B(J,1) GT, HIM AND, I ,LT, NX ) GO TO 11
IMAX®e]
B(J,1)a}
WRITE(6,103)J,(DC11)s1Im1,1)

12 JeJel
XXSHEIGT=DELS2FLOAT (Jw1)
D(2)8Sk(J)+8R1(J)*(BB(JI/H(J,2))¥#AMBDA(J)
D(1)sD(2)
WATCOTSAATCOT+DCUB(JI*(D(I)=51(J))
DPEsXXwH{J,2)
8(Js2)SDPE
182

13 =3+l
DCIIRSR(J)I+SRI(JIR(BB(JII/N(J, 1)) *xAMBDA(J)
B(J,1)sxXaM(J, 1)
WATCUT®WATCOT+DELSCB(JI*(D(I)=S1(J))*FLOAT(I=1)
IF(BCJI,1) o6Ts HIM ,AND, 1 LT, NX1) GO TO 13
IF(I .67, IMAX) ImAXm]
B(Js1) a]
WRITE(6,103) Jy(D(I1),11Im1,I)

103 FORMAT(IH ,I12,10(16F8,4,/,1H ))

IF(OPE .G6T, HIM ,AND, J ,LT, NY1) GO TO 12

IF(J LT, MY1) GO TO 29

D(2)aSH(MY)I+5R1(MY)=(BBIMY)/HIMY,2) ) **AMBDA(MY)

DC1)sDtL2)

BIMY,2) ==l (MY,2)

JaMY

HA;CCT-uAYCOV’DCUBS(NY)'(D(ZJ-BI(MV)J

ls

20 Isl+i

D(I)ESR(MY)+SREI(MY) 2 (BB(MY)/H(MY, 1)) e AMBDA(MY)

B(Jsl)mer(Jd,1)

WATCUTaWATCOTHDELSC2(MY)Iw(D(I) =81 (MY))*FLOAT(1=1)

IF(B(J,I),6T, HIM ,AND, I (LT, NX$) GU Tu 20

B(J,1)8]

WRITE(6,103) MY, (D(II),11=},1)
29 XXEBL®NATCOT

RATESWATCOT/TIME

RPTESLARATE

D(1)S(WATCOTeWATCOL)/(TIME=TIM])

D(2)aD({)/AREAC

D(3)a5L=D(R)

#RITE(6,102) WATCOT, XX, RATE,RPT,(D(I)rin1,3),ITIMEL, TIME
102 FORMAY(!' vOL, OF wATER ABSORGED ®',2F10,6,' RATES',2F9,4,! INST,

S HATE®!,F10,5,' RATEIPUAR!,2F9,4,/,'0 VALUES FOR HYDRAULIC MEAD

SFOR TIME STEP',IS,' TAus',F9,4)

®ATCULENATCOT

OO0

OO0

24
106

2
202

201

3

TIMITIME

D0 24 JJmy,J

1188(JJ,1)+,01

WRITE(6,106) JJ,8€JJs2),(B(JJ,1),1m2,11)
FORMAT(IH ,I2,16F8,3,3(/,)3Xs16F8,3))
RETURN

END

SUBKROUTINE INITIA «INITIALIZES THE STATIC EQUILIBRIUM PRESSRE HEAD ,
TRANSFORMED PRESSRE HEAD,AND SATURATION IN THE SOIL PROFILE PRIOK TO
INFILTRATION,

SUBROUTINE INITIA
COMMON H(32,32),H0(32,32),8(32,32),DM(32),D(32),0P(32),F(32),51(32
$),VK8(33),AMBDA(32),0ELB82(32),AMB32(32),AMBD1(32),POR(32),8R(32),
$8R1(32),DVK8(32),0AMBOA(32),PAVK(32),88(32),DPB(32),VK,HEIGT,AK
$,DEPTH/SL,DELT,DELS)HI,HIT)ERR)ERRT,ERR]1,RERRL, TIME,DES2,DELH,SSUR
$,0MEGA, WATCOL ) TIMI,XI(32,32))XIH(32,32),X10(32),MYL,NY/,NYLsNYR,
SNHSRI/MY NSAT)NESUR,NBL,NBRsMAX o MAXT  NX,NXL)NRXsNSsNO,JsIM,JPs M1,
SM2, IMAXJ, IMAXM, IMAX2,ITINE, IM, 1P, DAMBK(32),DELSCB(32),DCUB(32),
SDELS8C2(32),DCUBS(32),HD(32,32),0,R,N2X,MX,MB2,MB3, 1,N2XP
NNCT20
D0 2 Jmy, MY
HYSHEIGT=DELS*FLOAT (J=1)=HIT
XTB(HT*aERR]1e},)/ERR]
S1(J)BSR(J)I+SRI(JI(BB(J)/HT)exAMBDA(J)
XI0(J)axT
DO 2 Isi,Mx
H(Jo1)®HT
XI(Jd,1)mxT
XIHCJsD)uxT
wRITE(6,202) (H(Js1)sJmi,MY)
FORMAT (' INITIAL OISTRIBUTION OF PRESSUKE wITH DEPTH',S5(/1H ,13F10
$,7))
WRITE(6,201) (S1(J),J=i,MY)
FORMAT(+ INITIAL SATURATION THRU PROFILE',S(/)1H ,13F10,4))
IF(NSSUR ,EQ. 0) RETURN
HT=BH(1)/((S8UR=SR(1))/8R1(1))w=(}, /AMEDA(l))
XTa(HTY**ERRL=],)/ERRY
DO 3 Isi,N2X
H(1,1)snT
XI(1,1)mXY
RETURN
END

FUNCTION Fle CALCULATES THE VALUE OF FUNCTION AND ITS DERIVATIVES
AT SUIL SURFACE wHEN IT IS CALLED.

FUNCTION FI(MIIoXI1TsXIL1IP,XI1IMsX121/NN)

COMMON H(32,32),H0(32,32),8(32,32),0M(32),D(32),0P(32),F(32),81(32
$),VKS(33),AMBDA(32),DELS2(32),AMB32(32),AMBD1(32),PUR(32),8R(32),
$5R1(32),DVKS(32),04MBDA(32),PAVK(32),BB8(32),0PB(32),VK,HEIGT, AR
$)DEPTH,SL,0ELT/DELS,HI,HIT,ERR)ERRT,ERRY,RERRL, TIME,DES2,DELH, SSUR

€€



OO0

$)OMEGA,RATCOL ) TIML,XT(32,32))XIH(32,32),XI0(32))MYIsNYINYLoNY2,
SNHBR,s MY, NGAT,NSSUR,NB1 ,NB2yMAX ) MAXT ), NX)NXE)NRX NS, N6pJodM, JP ML,
$M2, IMAXJ, TMAXM, TMAX2, ITIME, IM, IP, DAMBK (32),DELBCB(32),0CUB(32),
SDELSC2(32),0CUBS(32),HD(32,32),0,R,N2X,MX,MB2,MB3, I,N2XP

PTeHLI

DRI®,Sw(XI1IPeX]11IM)

ODRRISXIIIP+XI1IMe2 #XI1]

ARGZ1 ,+ERRIXIL]

OLWK=wvK#(BB(1)/PT)X%AMB32(1)/VKS(1)

VKSPBVKS(§)*PY

DRISSDRI#DR]

SBWKBDELSwARGHDL WK

SSPWKES(DELS*AKG/PT)I*(DLWKe1,0)
FTi8(D2R[42,0%(X]2]+SSPWKEwXITITI)+(DM(1)/ARG)*{DRIS+(SSPHKEN®2)))
FT2eAMB32(1)*PT#DRIS/ARG
BRACT2DPE(1)+DAMBR (1) *ALOG(BB(1)/PT)+AMBIR( 1) 2DELE*(DLWK+1,0)/PY
FITePT#ORI/FLOAT(I=1)

FT3mSSAK«DVKSE(1)

Fim VRS(1)I*((PT#FT1)+FT2+SSWKWBRACT+FIT)+FT3

IF(NN LEQ, 0) RETURN

HOAR(],+ERRI*XIH(1,I))nwRERR]L

PAV3,S*(PT+HDA)

TS28DELS2(1) #PAVERAMBD (1)

TS3ITS24(xI11eXIH(, 1))

Fi3F1=TS3

OF1UB=d , 0e2,0#DELS*(DLAK+L,0)*DM(1)/PTe(DM(1)*ERR1/(ARGYARG) ) *
S(ORIB+SSPWKENR2) w2, 0% ((DM(L)DELS# (DLWK+1,0)/PT)aw2) .
DFT2sFT2*DM(1) /ARG

BRACT2EAMBI2 (1) #DELSW (DL WK1 ,0)/PT+DAMBK (1)

OFITaFIT/ARG

OF T3mwDELS*DLWK*ERRI*DVKS(1)

0(1)8 vKS(LI*(((PT/ARGI*FT{)¢PT2DFTU+DFT24DELSADLWK* (EXRIw
SURACT=BRACT2)4DFIT)wDF T3=TS3#AMBDI(1)*#0,5*PT/(ARGRPAV)=TS2
DP(1)22,04VK8(1)#PY

RETURN

END

SUBROUTINE FJ 1S CALLED TO EVALUATE THE FUNCTION AND IT8 DERIVATIVES
FOR THE INTERIOR PORTION OF FLOw FIELD,

SUBROUTINE FJ(HJIT,XIJI,XIJMI ) XTJPIaXTIJIP,)XTJIIM,)FF,NN)

COMAUN H(32,32),H0(32,32),8(32,32),DM(32),D(32),0P(32),F(32),81(32
$),vK8(35),AMBDA(32),DELB2(32) AMB32(32),aMB01(32),POR(32),8R(32),
$§R1(32),DVKS(32),0AMBDA(32),PAVK(32),BB(32),DPB(32),VK,HETIGT, AK
$,0EPTH,SL,DELT/DELS,HI,HIT,ERR,ERRT,ERRI,RERRL, TIME,DES2,DELH,SSUR
S)OMEGA, WATCOL, TIMY, XI(32,32),XIH(32,32),X10(32))MYL)NY,NYL,NYS,
SNHSRy MY NSATINSSURSNBI,NB2yMAXsMAXTINX)NX1sNRXy NS N6oJsIM,JP ML,
$M2, IAAXJT,) IMAXM, IMAXR ) ITIME, IM, IP, DAMBK(32),0EL8CB(32),0CUR(32),
SDELSC2(32),0CuUB5(32),HD(32,32),Q,R,)N2X,MX,*B2,MB3,1,N2XP

PTanJI

OXIeeS*(X1JIMI=XIIPI)

DRIBS*x(XxIJIPeXIJIM)

D2XISXIJPI+X[JMIw2 «XIJT

D2RISXIJIPeXIJIMe2 #X1J1

ARGE] ,+ERRI#XIJI

DPDL®PT#0X1=DELS*ARG

VKSPBVKS(J)*PT

OO0 NOano

FlnvKSP+DRI/FLOAT (Iw1)

DXISEDXIw0X1

OR]SaDRI*ORI
BRACE(DPB(J)+(DAMBDA(JI)/VKS(J))InALOG(BB(J)/PT)I+AMBIZ(JI*OXI/ARG)
$xyK8(J)

FJ2m(DM(1)*(DXIS+DRIS) ¢+AMB3I2(J)2DRIS) /ARG
FJIsVKSP(D2XI+D2RI+FJ2 )

FFSFJL¢OPDLR (BRAC®DVKS(J))+F]

IF(NN LEQ, 0) RETURN

HOAS (14 +ERRI#XIH(J, 1)) *+RERR]

PAVE Sx(PT+HDA)

TS2sDELS2(J)*PAVRwAMBD] (J)

T83mTS2+(X1JI=XIH(J,1))

FFafF=T783 .

DMMBDM (1) *DXI/ARG+,S%(BRAC/VKS(J))

DMPB S (PT#DVKS(J)+VKS(J)*OPDL*AMB32(J)/ARG)
DM(J)BVKSP*(1,¢0MM) +DMP

DP(J)EBVKSPH (] ,®DMM)=DMP
D(J)SFJ1/ARGoVKSP2(FU2AERRL1/ARG+4 )+ (BRACDVKS(J) ) (PT*DXI/ARG=
SERRI*DELS)=DPDL* (DAMBOA(J)4PAVK(JIWERRI*OXI/ARG)/ARGHFI/ARG»TS3e
SAMBDI(J) % 5«PT/ (ARG*PAV)=TS2

RETURN

END

FUNCTION F3 = 18 CALLED wHEN THE WETTING FRONT WAS REACHED TO DRAINED

OR wWATER TABLE AND COMPUTES THE VALUE UF FUNCTION AND ITS DERIVATIVES.

ON THIS BOUNDARY,

FUNCTION F3(HMMYI,XIMY],XIMYIP,XIMYIM)XIMYLII,NN)

COMMUN H(32,32),H0(32,32),8(32,32),0M(32),D(32),0P(32),F(32),81(32
$)ovKS(33),AMBDA(32),DEL82(32),AMB32(32),AMBD1(32),POR(32),8R(32),
S§R1(32),0VK8(32),0aMBDA(32),PAVK(32),BB(32),0DPB(32),VK,HEIGT,AK
$,0EPTH/)SL)OELT/DELS/)HI,HIT,ERR,ERRT,ERN1,RERRL, TIME,DES2,DELH,8SUK
SyOMEGA,WATCOL,TIMI,XI(32,32)9XIA(32,32),XT0(32),MYI,NY,NYLsNY2,
SNHSRI MY ) NSAT, NSSUR,NBL ,NB2yMAX I MAXT ) NX ) NX1 ¢ NRX, NSy N6, JsJM, P ML,
SM2, IMAXJ, IMAXM, IMAX2, ITIME, IM, IP,DAMBK(32),DEL8CB(32),DCUB(32),
SDELSC2(32),0CUBS5(32),HD(32,32),0,R,N2X,MX,MB2,MB3, 1, N2XP

PTeHMY] .

ORIz S« (XIMYIP=XIHYIM)

D2RIBXIMYIP¢XIMYIMe2,#XINY]

ANGE1 ( +ERRI*XIMY]

VKSPEVKS(MY)=PY

DRISEDRIDRI

SSPWRERDELS#ARG/PT

FTI2(D2RI42,0%(XIMY1IeSSPHKE=XIMY )4 (DM(1)/ARG)*(DRIS+(SSPNKE
$+22)))

FT25AMBI2(MY)*PTY#DRIS/ARG

FITSPTADRI/FLOAT(I=1)

F3aVAS(MY)a ((PTFT1)+FT2+4FIT)

IF(NN (EQ, 0) RETURN

HDAZ (1, +ERRI*XIH(MY, 1)) *«RERRY

PAVE,S*(PT+HDA)

T82z2DELS2(MY)wPAVe®AMBDL (MY)

TS3a182* (XIMYI=XIH(MY,1))

F38F3=783

DFTUBay , 42 ,%DELS*DM(1)/PTe(DM(1)RERRL/(ARGHARG) I*(DRIS+SSPNKER*2
$)e2,x((DM(1)%DELS/PT)*u2)

vee



OO0

100

102

DFT28FT22DM(1) /ARG v
DFITSF1T/ARG ’
D(MY)BVKS (MY)R(C(PT/ARG)NFTI)+PT2DFTUIOFT2¢DFIT)eTSINAMBDY (MY)®
$,5*PT/(ARGIPAV)®TS82

DM(MY)N2,0uVKS{MY)&PT

RETURN

END

SUBROUTINE DERV =IN TIIS SUBROUTINE THE MAGNITUDE OF ALL VARIABLES AND
AND THEIR DERIVATIVES FOR EACH GRID POINT ARE OETERMINED AND wRITTEN
ouT,

SUBROUTINE DERV

COMMON H(32,32),H0(32,32),8(32,32),DM(32),D(32),DP(32),F(32),81(32
$),VKS(33),AMBDA(32),DEL82(32),AMB32(32),AMBD1(32),PORC(32),8R(32),
SSR1(32),DvKS(32),DAMBOA(32),PAVK{32),8B(32),DPB(32),VK,HEIGT,AKK
$,DEPTH,SL,DELT,DELS,HI,HIT,ERR,ERRT,ERRI RERR],TIME,DES2,DELM,SSUR
$,)OMEGA, wATCOL»TIME,)XI(32,32),XIH(32,32),XI0(32),MY1,NY,NYJ,NY2,
SNHEBRoMY ) NSATyNSSUR,NB1,NB2)MAX ) MAXT ) NX s NX1 s NRX s NS NSy JoJM,JPI ML,
SM2, IMAXJ, TMAXM, IMAX2, ITIME, IM, IP,DAMBK (32),DELSCB(32),DCUB(32),
SOELSC2(32),DCUBS(32),HD(32,32),Q,R,N2X,MX,MB2,MB3, I,N2XP
READ(5,100) AL,BL,CL/,BK,CK,AS8,B8,C8,AP,8P,CP,APB,BPB,CPB
FORMAT(8F10,S5)

DESS=DES2+DELS

AK®] = (BKeCKAHEIGT)#HEIGT

CLem2, »CL

CK2me, #CK

CPB2m2,+CPB

AMBMINE10G,

DO 1 Jmg,NY

ZuHEIGT«DELS#FLOAT (Je1)

AMBDA(J)mALe(BLICLZ) 7

1F (AMBDA(J) LT, AMBMIN) AMBMIN®AMBDA(J)

AMBOI(JIm2,42,2AMBDA(J)

AMB32(J)me@, @3, #(AL+(BLICLRZ)*2)

VK (J)mAKe (BKeCKuZ)n2

DVKS(J)s(RR+CK2#Z)#DELS

DAMBK (J)=3,0=(BLeCL2*Z)+DELS

DAMBDA(J) g3, #VYKE(J)*(BL¢CL2*2)*DELS

PAVK(J)aVKkS(J)nAMB32(J)

POR(J)mAP+ (BP¢CP2Z) 22

DELSCB(J)=6,2831853*POR(J)IDELSwn]Y
0CUB(J)=,758398+POR(JIXDELE#*23

SR(J)=aS+(BSeCBNZ)I#7

SR1(JI®1,«8R(J)

BB(J)IAPB+ (BPB4CPBAZ) 22

DPB(JIm«DELSH(BPB+CPB2#2) /BB (J)*AMBI2(J)

B88(J)mBB(J)/8L
DELS2(J)=DESS*POR(J)»AMBDA(J)*8BRI(J)/(BB(J)#wAMBD1(J)#DELT)
DELSC2(1)=m.5+DELSCB(1)

oCUBS(1)=2 5#0CUB(YL)

DELSC2(MY)w ,S*DELSCB(MY)

DCUBS(MY)x,S5+DCUB(HY)

OM(1)m2,+3,wAMBMIN

ERRIBY,«DN(])

WRITE(6,102) AMBMIN,ERR{,DM(1)

FORMAT(' REF, LAMBDAS',3F10,4)

IO 0

WRITE(6,101) (BB(J),J31,MY)
WRITE(6,101) (AMBDA(J),Jmi,MY)
WRITE(6,101) (AMBDI(J),Jmi,NY)
WRITE(6,108) (AMB3I2(J),Jmi,NMY)
WRITE(6,101) (POR(J),Juni,MY)
WRITEC6,101) (VKS(J),Jmi,My)
WRITE(6,101) (S8R (J),Jul,MY)
wRITECE,501) (SR1(J)sImy,NY)
WRITE(6,101) (DELS2(J),J m1,MY)
WRITE(6,101) (DAMBOA(J),Jmi,MY)
WRITE(6,101) (PAVK(J),Jmi,MY)
WRITE(6,101) (DAMBK(J),Jsi,MY)
FORMAT(1H ;13F10,5)

RETURN

END

SUBROUTINE FIBNOK 1S CALLED TO OBTIMZE THME VALUES OF TRANSFORMED
PRESSRE HEAD (XI(J,1)),

SUBKOQUTINE FIBNOK(X1,X%X22,X,11,JJ)

COMMON H(32,32),H0(32,32),8(32,32),0M(32),0(32),0P(32),F(32),51(32
$),vKS(33),AMBDA(32),DELS2(32),AMB32(32),AMBD1(32),POR(32),8R(32),
$SR1(32),0vk8(32),0AMBDA(32),PAVK(32),B8B(32),0P3(32),vK,HETIGT,AK
$,0EPTH,SL,DELT,DELS)HI,HIT,ERR,ERRT,ERRT1,RERRL» TINE,DES2,DELH,S8UR
$,OMEGA,WATCOL,TIML,XI(32,32)/XIA(32,32),XI0(32)sMY1,NY,NYL,NY2,
INHERIMY)NSAT NSSUR,NBI ,NB2sMAX ) MAXT s NXyNXE ;NRXpNS oy NEpJK,JM) JP M1y
$M2, ITMAXJT ) IMAXM, IMAX20 ITIME, IM, IP,DAMBK (32),DELSCB(32),DCUB(32),
SDELSC2(32),0CUBS8(32),HD(32,32),0,R,N2X,MX,MB2,MB3, IK,N2XP

x2ax2e

IF(ERRLI#X2 LT, *,9999) X23=,9999/ERR1

KEYme]

ITER®12

J=o

Ke}

RERRi=} ,/ERR}

HIIo(1,+ERRIwX]) w*RERRL

IF(JJ .67, 1) GO Y0 3

XIJIPaXI(JJdoellel)

XIJIMaxI(JJ,11=1)

GO 70 4

XIJIPR(HM(JJ=1s 141 )snERRLe],)/ERRY

XTJIMB(H(JJw1, JIw1)*%ERR]=],) 7ERR]

CALL FUHIL o XTJMIoXIIM], XIJPY,XIJIP/XIJIM,FF,100)

FIR(FF+B(JJ,11)) 92

RUT#(1, tERRIwX2) **RERR]

XIJIPB(H(JJelsIle1)waERRL=],) /ERR]

XIJIME(H(JJI*1,1I=1)a*ERR =], )/ERRL

CALL FU(HJIL ) XIJPI, XIIMI,XIJPL,XTJIP,XIJIM,FF,100)

FRu(FFeB(JJoll))nn2

Yisy,

vyamy,

DO 10 J=i,]ITER

TEMPaY2

YesY2eYi

Y1sTEMP

XABX 1+ (X2eX])2Y1/(Y1¢Y2)

XmXA

Gee
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20 HJIS(1,+ERRI#X )#¥RERR}
XIJIPB(H(JJ)I1¢s)#*ERR w1, )/ERRY
XIJIMS(H(JJ)Ilwg)nnERR w1, )/ERRY

CALL FJCHII) X o XIJMI,XTJPI/XIJIP,XTJIM,FF,100)

FNS(FFeB(JJoI1))wwd
IF(K=2)30,40,40
30 FASFN
KBK¢2
GO TO 100
40 IF(XEY)S50,50,60
50 FBaFN
GO 70 70
60 FASFN
70 Jagel

202 FORMAT(1X,E15,8,1X,E15,8,2X,E15,8,1X,E15,8,2X,E15.8,1%,E15.,8,

12X )E15.8,1%,E15,8/7)
1F(J=1TER)TS,120,120
75 IP(FA=FB)80,80,90
80 x2sX8
F2sF8
KEY®)
XBuXA
FBaFa
XAsXi¢x2exB
. XBXA
GO TO 20
Ximxa
FlsFa
XAasxg
FAsFB
KEYme}
100 xBaxewXxA+xi
X=x8
60 Y0 20
120 IF(KEY)130,130,140
130 XmxaA
FNeFA
G0 Ty 150
140 xsxB
FNRFB
203 FORMAT(' OPTIMAL SOLUTION xm!',E15.8+"
$ 15, 1I%)
150 WRITE(6,203)X,FN,11,JJ
C 150 RETURN

90

_RETURN
END
4 32 21 1 “d, U 2,0 005
u
.8 8 2,0 14 2,0 20 2.0 25
1,664 007 0000003 .90 .95
! 1 0
15 0
0,9 -, 1 0,0 -,1000 0,0
500 () n,n 1,10 .80
4 32 25 3 =20,5 2, 01
u
1.5 18 2,0 25 2.0 35 2,0 -1}
13
.01 Jove 0 .04 LO0U3
.29 L005 n .50 006
40 JUDE 0 245 N09
)] 011 0 -1 012
W LO01d
t.bhS 07 J00G0003 <90 .95
1 1 4
19 0
0,9 “,t 0,0 -, 1000 0,0

AL 040 0,0 1,10 -, 40

cooo

OPTIMAL VALUE FNe!,E15,8/

.35
50
65

.90

168

.0

004
L007
010
W 013

o168

0001

-,129

20001

soCc D

-, 129
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»
£
R

H

22Xz 4 hxz 32 py= 2
RIT1= t =wlloz | N3
FR (300ferb
AvluS Ve aKH]CH In
EF, LavElaz U, 70
6,30090 J,34000Q
04,8900 D ko
0, 71000 da71000
[ ST (Y
3,4u000 S,40000
3.66000 S, hn000
®4, 10000 =d_ 18000
=4 U0 =l Reun(
6,506000 a,80000
c, 500y 04 Sauun
1,93609 Tealoue
1.,13000 1,14un0
0.07000 Ca10351
0,30439 N, 3udde
0,93%00¢ 0,39549
0459501 Nebh13ed
78054904 S5u¢,65372
2.5%873% 2eN358¢
=0,03490  ~=a,a3030
0,330 ed, 03420
=4 10000 =3,17130
*5,07370 =5 152F0
00,0300y =0, 63000
*Q N3O0 =6, 03000

1 4Tz 3 Hl=
SCh= 1 HAX=)S

=5,000 HIT= «8,000 DEPTH= 2,00

FILTRATIUH NDCCURS 9, 300C0IMFILIRATION FLUXS a,

ne =3,1000 41000
0,38000 0,02000 0.,46000
G INGOO 0,94000 0,98000
0,720u00 0,73000 U, Tdno0Q
0,350 0y 0,86000 W b70900
3, L4000 3,46000 3,48000
3,70%00 X,72000 3,74000
U, 10000 «d 1900)  «0,22000
4 ,55000 =4, 56000 =4,61000
0,50000 0,50000 0,59000
0,5000y 0,500H00 n,50000
1,02000 1,0%0099 1,04009
1,13%00 1,16000 1,17000
0,13144 VU,16279 0,18656
0,3017% 0,29R%6 0,28879
0,EBn554 0,83721 n,81144
V,03325 0,70344 0,71121%
34,75395  24,98922 17,91104
1,75292 1.52307 1,33463
=N 03un0  «0,03090 =0,03120
=) ,03450 =0,03480 =0,03510
=d,24d320 <4,31570 =4, 38880
=5.23250 *5,31260 =5,39370
«0 23000 «0,03000 «=0,03000
=0,03000  «0,03000 «0,03600

TNITIAL DISTRINgTIUN (F PTESSUKE WlTH CEFTH
10,000000% 9,9000900

v

@, ArNgnau 9,7000000 9,6000000 S

BoTN00uud B ah0N0G0G A 3000000 R,U000000 B8,3000000 8
INIVTIEL SATURATING THay PIUFILE
Ne14629 0,185 31,2172 0,2474 0,2742
G,d0e} G eGLY 6,d05% 0,4035 0,3996
VAL kS ok PRESSUAE Fik TIME STEP i Taps 0,00%0
1 2 3 < S 6

10,3529 0,3529 0,3529 0,3529 Q,2279 10,4020

2 0,3%h2 0,3%62 00,9562 00,9562 2,5892 4w, 6874

3 r,1499  b,1u09  d_tdoI  &£,1412 99,7783 4,7197e

4 9,09G7 9,6997 GY,0997 9,997 9,7000 9,7000

S 9,e000 Y,6000 G,0000 9,6000 99,6000 99,6000

6 G st Y S50u0 Y8005 99,5000 9,5%000  9,5000
VALUED % SaTusAT Lol Fuw Tiet STEP 1 TAus 0,00
10,9000 0,400 0 ,9u0C  (,9000 {1972 00,7730

2 0,953%7 0,537 n,8337  (¢,5337 00,3156 0,2346
30,2297 00,2297 90,2297 0,¢297 0,2180 90,2178

4 0,274 v, 2478 O,Qu474 0,2474 (,2474

S G,2742 0,274¢ G,2712

AL, JF ~ATEH ApSU~wED = 0,028R13  0,028813 RATE=
VALUES FOW HYDRAULIL HEAD Fuk TIME STEP 1 TAys=s
1 Vo547 1,047 1,047 1,647 1,772 1,558

2 WeNdd 0, 9ul Q4 N,944 =0,689 2,987

3 e, 841 =h, 34l ~p,34l  =H,34] «7,975 «7,99R

G4 =m0 eR A0 e 600 =R 000 =R, 000

§  ex Nug =m0 e

0,50000
1,02000
0,75009
0.,88000
3,50000
3,76000
=4,25000
-y, 64000
0,50000
0,50000
1,05000
1.182000
0,21175
0,27844
0,7882%
0,72156
13,3770%
1,17882
=0,03150
“0,03540
4, 46250
~5,475%20
=0,03000
=0,03000

25000000
2000000

0,2984
0, 3937

7
1,0314
9,1759
9,79909
99,7000
9,6000
9,5000

50

0,4618
0,1899
0.,2178

Se7625

n,005
0,969
=7.,276
~R,000

ne54000
1086000
0476000
0,89000
3,%52000
3.78000
~4,28000
=4 67000
0,500¢0
0450000
1,06000
119000
0,2323A
N,26551
0,76764
0.73449
10,20881
1,04894

=Ne031b0

=0,03570
=-4,53680
=5,55730
=0,03000
=0,03000

9.4000000
841060000

0,3199
0,3857

8
8,0517 9,
9,8998 g
9,8a000 9,
9,7000 9,
9,6000 9,
9,5000 9,

0,130 o,
0,3854

5,7625 1

0

HEIGT= 2,0

0000DELS=

0,58000
1,10000
0,77000
0,000
3,34000
3,80000

“0,31000

-4,70000
0,50000
0,50000
1,07000
1,20000
0,65039
0,25000
0,749%01
0,75000
7.54001
0,93941

=0,03210

=0,03600

-d 61170

«5,64000

=0,03000

*0,03000

9,3000000 @
5,0000000

0,3389
04,3758

9 10

9984 10,0000
9600 9,9000
B0OOO 9,8000
7000 9,7000
6000  9,6000
5600  9,5000

1499 00,1499

NST, RATES®

=b,052 =7,998 =8,000

8,000

00 DELT= 0,0050 S(1}

0.,100AREAS 0,283
0,62000 0,606000
0,78000 0,79000
3,56000 3,58000

=4,34000 =d4,37000
0,50000 0,50000
1,08000 1,09000
0,20584  0,27871
0,73416  0,72129
6,28060  5,00429

-0,03240 =0,03270

-U,68720 =4,76330

«0,03000 =0,03000

22000000 9,1000000 9

0,3554 0,3695

5,76253 RATEIPUAE

}3 0,900

0,70000
0,80000
3,60000

-4,40000
0,50000
1,10000
0,28900
0.71100
4,10806

“0,03300

.4 ,84000

=0,03000

0000000

0,3812

20,3808

0 Si= 1.

0,74000
0,81000
3,62000

“d,43000
0,50000
1,11000
0,29671
0,70329
3, 388068

=0,03330

.4,91730

=0,03000

8,9000000

0,390%

20,3808

000

0,78000
0.,62000
3,64000
-4,46000
0,50000
1,12000
0,30184
0,69816
2,82862
=0,03360
-4,99520

*0,03000

8,8000000

0,3976

LEe
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