Water Well Pump Efficiency Monitor Units

Calvin G. Clyde

Duard S. Woffinden
Graeme Duncan

Follow this and additional works at: https://digitalcommons.usu.edu/water_rep
Part of the Civil and Environmental Engineering Commons, and the Water Resource Management Commons

Recommended Citation

Clyde, Calvin G.; Woffinden, Duard S.; and Duncan, Graeme, "Water Well Pump Efficiency Monitor Units" (1985). Reports. Paper 525.
https://digitalcommons.usu.edu/water_rep/525

This Report is brought to you for free and open access by the Utah Water Research Laboratory at DigitalCommons@USU. It has been accepted for inclusion in Reports by an authorized administrator of DigitalCommons@USU. For more information, please contact digitalcommons@usu.edu.

```
by
    Calvin G. Clyde,
Duard S. Woffinden,
            and
Graeme Duncan
```

HYDRAULICS AND HYDROLOGY SERIES
UWRL/H-86/01

Utah Water Research Laboratory
Utah State University Logan, Utah 84322

November 1985

ACKNOWLEDGMENTS

This project was a cooperative effort of the Utah Water Research Laboratory of Utah State University and the Agricultural Research Service of the U.S. Department of Agriculture, Kimberly, Idaho. Most of the funds for the work were furnished by USDAARS. The contribution of Dr. Allan S. Humpherys, the project monitor for ARS, is gratefully acknowledged. His many constructive suggestions and patience are much appreciated.

During the course of the project Duard S. Woffinden, one of the authors, passed away. His contributions to the success of this and many other projects at UWRL will long be remembered. This volume is dedicated to his memory.

Calvin G. Clyde

TABLE OF CONTENTS

PageChapter
I. INTRODUCTION 1
The Problem and Opportunity 1
Objectives and Scope 1
II. WATER WELL PUMP EFFICIENCY MONITOR UNIT COMPONENTS 3
Overall System 3
Flow Rate Measurements 5
Pumping Lift Measurement 8
Input Power Measurements 9
III. LOW COST SEMI-AUTOMATIC MONITOR DEVELOPMENT 13
Prototype Model 13
Production Models 15
IV. FULLY AUTOMATIC MONITOR SYSTEM DEVELOPMENT 25
Concept and Capability 25
Description of the Fully Automatic System 25
Sequence of Events During Monitor Operation 26
V. SUMMARY 29
APPENDIX A: COMPUTING ELECTRONICS FOR THE AUTOMATIC PUMP EFFICIENCY MONITOR 31
APPENDIX B: PROGRAM LISTING FOR THE AUTOMATIC PUMP EFFICIENCY MONITOR AS STORED IN EPROM 63
Figure Page

1. Pump efficiency measurement system components 4
2. Counter/timer circuit diagram for input power measurement 11
3. Input power measurement counting sequence diagram. 12
4. Low cost monitor unit 17
5. Medium cost monitor unit 20
6. Sensor ring for winterized operation 24
7. Automatic monitor unit 26
8. Typical printer tape 28
A-1. Pump 1 ift diagram 32
A-2. Overall computing system diagram 34
A-3. Reset circuit diagram 35
A-4. Clock circuit 35
A-5. Address bus 36
A-6. Data bus 38
A-7. Buffering of address, data, and control busses 39
A-8. Memory address decoding 40
A-9. Counter/timer circuits 41
A-10. Input/output circuits 42
A-11. Analog to digital conversion circuits 45
A-12. RAM/ROM memory devices 46
A-13. Switched ROM devices 48
A-14. Real time clock variable map 49

LIST OF FIGURES (Continued)

Figure Page
A-15. Normal location variable map 50
A-16. Display circuit 52
A-17. Real time clock 54
A-18a. RTC map for switched ROMs 55
A-18b. Example switch settings for RTC 56
A-19. Example switch settings for site variables in the switched ROMS 56
A-20. Power supply for compressor unit 57
A-21. Diagram of solenoid valves and relay controls 58
A-22. Compressor unit connector, solenoid, relay, and transducer connections 59
A-23. Solenoid valve timing diagram 61
A-24. Smoothing circuitry for (a) velocity and(b) line pressure62

LIST OF TABLES

Table Page

1. Doppler ultrasonic meter tests on wells in Cache Valley 7
2. Pump efficiency monitor instruction for proto- type unit installed at Kimberly City Well No. 1 14
3. Pump efficiency data--Kimberly City Well No. 1 16
4. Pump efficiency monitoring instructions (Gary Nebeker Well) 18
5. Pump efficiency monitor data sheet (Gary Nebeker We11) 19
6. Pump efficiency monitor instructions (Kevin Stanger Well) 22
7. Pump efficiency monitor data sheet (Kevin Stanger Well) 23

CHAPTER I

INTRODUCTION

The Problem and Opportunity

As the costs for pumping municipal, industrial and irrigation water rise, owners and the public are giving increased attention to energy conservation. One way to conserve energy is to operate water pumps at or near peak efficiency. The measurement of pump efficiency usually requires special test equipment, a skilled operator and time to perform the test. Owners may find it more economical to waste power than to monitor for inefficiencies. One way to help change this situation is to develop inexpensive equipment for unskilled people to use to obtain rapid measurements of pump efficiency under typical operating conditions. Such equipment would enable pump owners to find out quickly when their equipment was operating below maximum efficiency so the problems could be corrected. Prudent and timely maintenance work would pay off by making the pumping operation more ecoomical and conserving energy resources.

Objectives and Scope

The general objectives of this project were to develop, fabricate,
install, field test and evaluate low and medium cost pump efficiency monitor units for use by owners, operators or consultants. The low cost unit utilizes a "pitot" type flow rate meter while the medium cost unit includes an ultrasonic doppler type strap-on flow meter. Both units require simple computations to be done by the non-skilled operator using a hand held calculator. Recommendations for winter operation of the units were to be considered.

In a second phase of the study the objectives were enlarged to include experimentation with new flow rate measurement devices and the development, fabrication, installation, and testing of a totally automatic unit which requires no operator computations and has a timer and printer for recording the pump efficiency data.

This project report describes the pump efficiency monitors that were built as well as their installation, testing and evaluation.
.

WATER WELL PUMP EFFICIENCY MONITOR UNIT COMPONENTS

Overal1 System

Determining water well pump efficiency requires the measurement of three quantities: The flow rate, Q, in cubic feet per second (CFS) ; the pump lift, E_{p}, in feet (FT); and the input power, $P_{i n}$, in kilowatts (KW) are shown in Figure 1. From these quantities the pump efficiency, E, in percent can be easily calculated from:

$$
\text { Pump Efficiency }=E=\frac{\text { Pout }_{\text {out }}}{P_{\text {in }}}(100)
$$

Where

$$
\begin{align*}
& \text { Out put Power }=P_{\text {out }}=0.0846 \mathrm{QE}_{\mathrm{p}} \\
& \text { [KW] } \tag{2}\\
& \text { Pump Lift }=E p=H+\frac{V^{2}}{2 g} \\
& +2.31\left(\mathrm{P}_{\mathrm{L}}-\mathrm{P}_{\mathrm{B}}\right) \quad[\mathrm{FT}] \tag{3}\\
& \text { Pipe Velocity }=V=Q /\left(A_{L}\right) \quad[F P S] \tag{4}\\
& A_{L}=\text { delivery pipe internal area } \\
& \text { [SQ FT] } \\
& P_{L}=\text { delivery pipeline pressure } \\
& \text { [PS I] } \\
& P_{B}=\text { bubbler line pressure [PSI] } \\
& \Delta P=P_{L}-P_{B}=1 i f t \text { differential } \\
& \text { pressure gage reading [PSI] }
\end{align*}
$$

$H=$ vertical distance from center of delivery line pressure gage to the bottom end of the bubbler tube in the well

The computation c an be easily done by an untrained person using an inexpensive hand held calculator by following a simple set of instructions.

While the overall concept of pump efficiency measurement is simple, some of the parameters may be either difficult or costly (or both) to measure in existing pump installations where provision has not been made beforehand for the necessary instruments. Ideally, the measurement should be done with inexpensive, portable equipment that requires no alterations in the system, little time to set up and also requires little training to operate. Such ideal conditions are never met in practice-especially at low cost. There are always tradeoffs to be considered; between portability and permanence, among accuracy, precision and cost; between summer and all season operation; between systems requiring piping alterations and those that are noninvasive; and between automatic and manually operated systems, etc. Actually, cost is a prime consideration in all the tradeoffs 1 isted above as well as others not mentioned.

Usually the measurements of pump efficiency has required the use of several special purpose tools and instruments by a highly trained expert over several hours time for each measurement. The technology may now be at hand to package the required instruments

Figure 1. Pump efficiency measurement system components.
for pump efficiency measurements in one box at a mass production price low enough to be attractive to the pump owner. Installation and checkout should still be done by an expert, but the system could be attractive to the owner provided operation was either automatic or required only a semiskilled, non-technical person for routine use.

In this part of the report the major components of the pump efficiency monitor unit are discussed, the various alternative devices are described and those selected for use in the prototype production models are given.

Flow Rate Measurements

Devices considered for measuring the flow rate were pitot tube devices, ultrasonic flow meters, other miscellaneous commercial flow meters (such as orifice plates, venturi meters, propellor meters, magnetic meters, etc.) and experimental equipment using injection of salt, dye, heat, or some other tracer to measure the flow rate.

Pitot tube devices. These instruments consist of a special tube inserted into the pipe. Inside the tube are two separate chambers. From one chamber one or more holes exit in the upstream direction and from the other chamber a hole exits downstream. The difference in pressure between the upstream and downstream ports is related to the velocity in the pipe by:

$$
\begin{equation*}
\mathrm{V}=\mathrm{K} \sqrt{\Delta \mathrm{~h}_{\mathrm{w}}} \quad[\mathrm{FPS}] \tag{5}
\end{equation*}
$$

where Δh_{w} is the pressure difference between the two ports (usually measured in'inches of water). K is a constant depending on the location of the ports, the shape and size of the tube, the size of pipe, kind of fluid, the shape of the velocity distribution, the Reynolds number and back pressure conditions. For standard conditions K is determined by calibration done by the manufacturer.

For standard installation with a straight, uniform approach pipe of at least 10 diameters upstream, the manufacturer's K will give good results. For locations that are non-standard (low downstream pressure, nearby elbows, valves or branches closer than 10 diameters upstream) the pitot type meter must be calibrated in place to give accurate measurements.

Many brands of pitot tube devices are available. The Utah Water Research Laboratory has used and calibrated many of these, such as Accutubes, the Annubars and Collins meters. An Accutube and an Annubar were selected for use with two of the units developed by this project. They were calibrated at the UWRL for standard approach conditions.

Pitot tube meters have the advantages of availability and low cost, but the disadvantage of requiring a hole to be drilled in the pipeline and a threaded fitting must be welded in place.

Ultrasonic meters. These meters are a relatively new development in flow measurement technology. While early models were quite expensive, costs have come down and reliability and precision have improved. Two types are commonly available from many manu-facturers--the dual path and the doppler strap-on types.

The dual path ultrasonic meter requires either a special pipe spool with transducers already installed or the two transducer mounts must be welded to the existing pipe diagonally across along a line at 45° from the centerline. Ultrasonic signals are beamed from one transducer to the other in both upstream and downstream directions. The downstream signal is speeded up by the flowing water and arrives early while the upstream signal arrives 1 ate. Comparison of the travel times enables computation of the flow velocity. The required circuits are complex and expensive
and installation costs are high but the device gives accurate and precise results with good reliability in both clean and somewhat dirty water. Because of the meter costs and the permanent installation required, this meter type was not considered appropriate for most pump efficiency units where portability, low cost and ease of installation were needed.

The doppler type strap on meter was better suited for many pump efficiency measurements. This unit will not work with completely clear water, but must have a small amount (about 5 percent) of sediment particles, air bubbles or intense, fine scale eddies present in the water. Only one transducer unit is required and it is attached with tape or a strap to the outside of the pipe with a layer of silicone grease between transducer and pipe. An ultrasonic frequency signal is produced by the meter unit which travels through the pipe wall and is directed upstream into the water. There the sound penetrates into the flow and then is reflected back by the particles of air or sediment and is at the same time transported downstream. Due to the well known doppler effect, the frequency of the reflected beam will be higher than the frequency of the transmitted signal. The higher the pipeline velocity, the greater the frequency change. This provides a way to compute the pipeline velocity.

When too few particles are present to give a useful reflected signal most meters display a warning that the signal levels are too low to be reliable. Then air or sediment must be added upstream to the flow if a successful measurement is to be made.

A portable doppler type unit was rented from Polysonics for testing to see if such a meter was suitable for use in a pump efficiency monitor. Measurements of flow in eight wells were made. A summary of the test wells and the results are given in Table 1.

Although signal levels were often marginal in the clean water without air injection, the results were promising enough to justify purchase of a unit.

One portable unit marketed by Bestobel (Model P-12) in Great Britain sells for about $\$ 2,000$ in this country. A $P-12$ was acquired and further testing confirmed the conclusions drawn earlier as follows:
(1) If the pump is set within 50 feet of the ground level, air injection is not necessary for a good measurement. Entrained air and intense eddies give adequate reflection for the measurement.
(2) if 10 diameters or more unobstructed approach distance is not available, the meter will likely give an incorrect flow rate due to the abnormal velocity distribution in the pipe. In this case an in-place field calibration of the unit should be done against some other flow measurement device.

Where air injection is needed, it can be supplied by a small, low cost (\$20) 12 volt air compressor and power supply. A small storage tank with pressure switch allows the compressor to run intermittently.

Other flow meters. Many other flow meters are available for permanent installation. Most require modification of the piping system and are thus not readily portable. Venturi meters, orifice plates, propellor meters, etc., belong in the group. Magnetic meters were once large and bulky but now are smaller and lighter. Most are built into special sections of pipe and thus require modification of the pipe system. However, some magnetic meters require only the insertion of a small diameter probe into the pipe and are just as easily installed as a pitot type meter, but are more costly.

Tracer methods. A tracer injected into a flow can be used to measure velocity by measuring the time to move a fixed distance. Thus a velocity

Table l. Doppler ultrasonic meter tests on wells in Cache Valley.

Well Identification	Signal Strength	Would Air Injection Be Required?	Unobstructed Upstream Distance	Depth to Pump (ft)
UWRL Turbine Pump	High	No	> 10 Diameters	10
Drainage Farm Booster	High	No	$\sim 5 \mathrm{D}$.	4
Crockett Ave., Logan City	Low	Yes	~ 4 D., Unstable	>130
Smithfield Irr. Co. (150 W. Center)	High	No	> 5 D., Very Stable	<50
Smithfield Irr. Co. (450 S. 2nd W.)	High	No	> 15 D, Stable	<50
Lions Lodge Well	Low	Yes	~ 5 D., Unstable	>100
Smithfield City Well (Ballpark)	Begins High, Later Low	No Yes	Entrained air gives stable signal at first but not good later	Unknown
Logan City, 7 N. 6 E.	Low	Yes	$\sim 6 \mathrm{ft}$, Very Stable	Unknown

measurement becomes a matter of counting elapsed time. Since a counter/timer unit had been developed to measure power input, some experiments with tracers were conducted to see if a low cost tracer/flow meter could be developed.

The concept was tried out first using dye injection in a transparent section of pipe. A TV camera recorded the movement of the cloud past two lines inscribed around the pipe at a known distance apart. Using the built-in frame by frame advance system, the elapsed time was measured. The system was obviously not suitable for installation in a municipal or irrigation piping system, but did give some valuable insights into the design and operation of the tracer injection system.

Abstract

The next tracer used was common salt water. Simple probes signaled passage of the tracer cloud with a rise in conductivity. A counter gave elapsed time between signals from the probes. However, because of understandable objections to adding salt to drinking water or irrigation water, this

 method was abandoned.The last tracer tried was hot water. There usually is no objection to adding a little hot water to the flow, but problems in finding sensors to detect the passage of the warm cloud were formidable. When sensor and circuit development costs became too great, attempts to use a tracer technique for flow rate measurement were $a b$ and oned.

Pumping Lift Measurement

The pumping lift is the difference in elevations of the total energy line at the inlet and outlet of the pump as illustrated in Figure 1.

Bubbler tube. The pumping lift, E_{p}, in a pumped we 11 can be most conveniently measured by means of a bubbler tube and a differential pressure
gage. A bubbler tube is a small diameter fixed pipe installed in the well so that an end is always below the water surface in the well. The upper end is connected to a pressure gage and a source of air so that a small amount of air can be forced out the lower end a bubble at a time. Pressure, P_{b}, in the bubbler tube then depends on the depth of the lower end below the water surface. By connecting the bubbler tube to the low side of a differential pressure gage and the delivery line to the high side, the pumping lift is then given by Equation 3 where $P_{L}-P_{B}$ is the reading of the differential pressure gage in psi.

Every water well should have a bubbler tube installed at the time the pump is set in the well, but most wells are not so equipped. Fortunately it usually is possible to add a plastic (Tygon) tube to the well at a later date. This can be done by attaching some small segments of articulated weights (about $1 / 21 b$ is sufficient for Tygon tubing) to the end of $1 / 4$ inch plastic tubing which is then lowered down the annular space between the $c a s i n g$ and the delivery line in the well. The end of the tubing should be far enough below the water surface so that the bubbler line is al ways submerged. Purpose of the segmented weights is to allow it and the tubing to be threaded through the small diameter access hole usually found in the base plate of the motor. Stretching of the Tygon tubing was experimentally found to be non-significant compared to other inaccuracies in the system.

Due to irregularities in the hole alignment, the tubing sometimes becomes stuck between c asing and delivery line. When this happens it sometimes helps to turn the pump on and off. This shakes the pump column and often frees the bubbler 1 ine so that it will slide on down the hole.

Low cost air supply. Commercial

 bubbler tube supply units are available.These consist of a high pressure tank for air storage and a flow controller which releases the air in at a very slow rate. For this project another approach was developed. Air was supplied by a small, inexpensive air compressor for emergency inflation of automobile tires. The compressor delivers air to a small pressure tank and is turned on and off as needed by a pressure controller. Air from the tank is controlled and measured into the bubbler line by a low cost tapered tube flow meter. A flow of 0.5 to 1.0 SCFH (standard cubic feet per hour) is sufficient for the bubbler tube and can be easily supplied by the small compressor for long periods of time. Furthermore, air for injection into the pipeline for the ultrasonic doppler flow meter measurement can be supplied by the same system.

Input Power Measurements

Reading the wattmeter manually. Electrical wattmeters measure energy consumption by using a rotating disc in an electrical field. The strength of the field and therefore the rate of rotation of the disc (power) is directly proportional to the product of the applied voltage and the resultant current. The shaft of the disc connects to a set of gears which turn pointers to indicate the energy consumed in kilowatt-hours. To determine the power or rate of energy consumption all that needs to be done is first determine the meter constant (K_{h}) which is generally printed somewhere on the face of the meter and then measure the time required for a revolution of the disc. This is easily done with a stop watch since the disc has a short black stripe on it thus enabling an observer to determine when a revolution has occurred. Units of K_{h} are usually watt-hours per disc revolution. To improve the accuracy of measurement, it is best to time the disc for 10 revolutions. Since units if K_{h} are watt-hours per revolution and disc revolution measurement is in seconds, it is necessary to multiply the resulting number by 3600 to
find the correct power in watts. An example should help to explain this measurement :

Suppose the meter $\mathrm{K}_{\mathrm{h}}=46.3$ and the disc made 10 revolutions in 15 seconds. The power consumption would be

$$
\begin{aligned}
& P_{\text {in }}=46.3 \times \frac{10}{15} \times 3600 \\
& =111.12 \text { watts or } 111.12 \text { kilowatts }
\end{aligned}
$$

This number would then be substituted into Equation 1 to find the pumping system efficiency.

Semi-automatic power measurement. Using a regular wattmeter to determine the instantaneous power requires a measurement of the rate of rotation of the wattmeter disc. The power can then be found by using the K_{h} factor printed on the meter face. When automating power measurement it is convenient to count the time for 1 revolution. Then

$$
\text { Watts }=\left(3600 \mathrm{~K}_{\mathrm{h}}\right) / \mathrm{M}
$$

where

$$
\mathrm{M}=\mathrm{sec} / \mathrm{rev}
$$

To evaluate M it would be necessary to have a counter which counts seconds during one revolution. As an alternative, since 60 cps is conveniently present, the number of 60 cps cycles which occur during one revolution could be counted. This number will be 60 times M and the equation

$$
\text { Watts }=\frac{(60)(3600) \mathrm{K}_{\mathrm{h}}}{60 \mathrm{M}}=\frac{216,000 \mathrm{~K}_{\mathrm{h}}}{\mathrm{C}}
$$

or

$$
\begin{equation*}
\mathrm{KW}=\frac{216 \mathrm{~K}_{\mathrm{h}}}{\mathrm{C}} \tag{6}
\end{equation*}
$$

where C is the number of 60 cps cycles in one revolution. Some meter installations have a current transformer in the
circuit. If so, it will produce a multiplying factor on K_{h}. The factor is stamped on the coil and usually is between 2 and 10. For a semi-automatic monitor system, the monitor unit will count and display the factor C. The operator need only obtain K_{h} from the meter face, read the displayed count and substitute into the above equation.

The semi-automatic system to accomplish the power measurement is shown in the schematic diagram of Figure 2. In order to use this system it is necessary that the power company install a switch on the meter. This is a standard accessory and can readily be added to any power meter for about $\$ 500$. This switch (one type is called a D-52 pulse initiator) will briefly close once for each revolution of the meter disc and thus facilitate the required measurement.

The circuit functions as follows: The D-52 switch sends a + signal to 4098 -A through a 4093 Schmidt Trigger NAND gate. The output of $4098-\mathrm{A}$ does two things, 1) toggles the 4027 (through 4098-B) and 2) produces an
out put (reset) pulse out of 4093 pin 10 , if the $4027 \bar{Q}$ line is high at the time. If the $4027 \bar{Q}$ line is low, no reset pulse will be produced. If a reset pulse is produced, the counter is reset and the display goes to 0 . The rising edge of the \bar{Q} pulse from 4098-B toggles the 4027 whose Q line enables 4093 pin 13 so that the 60 Hz pulses on pin 12 are passed on to the counter. The counter accumulates 60 cps counts until the next closure of $D-52$ which repeats the above sequence except that with 4027 \bar{Q} high there will be no 60 N pulses to the counter so it just holds the count obtained at the end of the first revolution.

The waveform at various indicated points in the circuit are shown in Figure 3. It will be seen that the display counts during one disc revolution and displays during the next. This affords the operator sufficient time to observe and manually record the count to be entered into the equation. For improved accuracy, if power fluctuates, it is recommended that several sequential readings be recorded and the average taken.

Figure 2. Counter/timer circuit diagram for input power measurement.

during this revolution

Figure 3. Input power measurement counting sequence diagram.

The semi-automatic pump efficiency monitor development began with an experimental prototype model which was followed by two improved production models.

Prototype Model

The prototype monitor unit had the following components:

Power supply to make available 12 v. DC for the compressor and the 5 v. DC for the timer circuits.

Compressor, air tank and controls to supply air for the bubbler tube and for air injection if the ultrasonic flow meter was used.

Accutube and differential pressure gage ($0-10$ inches water) to determine the pump discharge rate.

Pump lift differential pressure gage to measure pumping lift ($0-60 \mathrm{psi})$.

Counter-timer and display to measure the number of 60 cps counts during one revolution of meter disc.

Miscellaneous wiring, switches, tubing, bleed valves, air flow meters and control valves.

Hand held calculator for efficiency computations.

Most of the components were roughly mounted in a carrying case for
convenience of transport. The prototype unit was first built, installed, tested and evaluated for ease and accuracy of operation on one of the pumps at the Utah Water Research Laboratory. Later in the spring of 1980 it was installed on the Kimberly, Idaho, city well No. 1 where it operated intermittently for over two years until it was dismantled and used for parts when the totally automatic unit was developed. Site parameters for the Kimberly No. 1 well were as follows:

Delivery line I.D. = 8.225 inches.
Approximate discharge $=800 \mathrm{gpm}$. Measurement by means of an "Accutube" pitot device and a differential pressure gage or by a Bestobel Ultrasonic Meter.

Approximate 1 ine pressure $=34$ psi.

Vertical distance from pump lift gage to bottom of the existing bubbler tube $=228.3 \mathrm{ft}$.

Power meter is equipped with $\mathrm{D}-52$ pulse initiator switch.

Power meter factor is 57.6 and current transformer factor $=2$.

The delivery pipe has a check valve and a 90° elbow, then a straight piece of pipe about 10 diameters 1 ong before the pipe goes underground. The set of operating instructions shown in Table 2 were prepared based on the site parameters and monitor characteristics.

While the monitor unit was set up at UWRL, several persons were invited to

Table 2. Pump efficiency monitor instructions for prototype unit installed at Kimberly City Well No. 1.

1. Turn on master switch " A ". Compressor will start and pump air tank up to 30 psi (gage "C") and shut off.
2. Close bypass valve below gage " B ". Read gage " B " and record the differential pressure head, Δh_{w} (inches of water) after the gage stabilizes.
3. Turn on bubbler tube air flow gage " D " until indicator shows 1.0 SCFM (ball at red line). The ball will slowly drop as the pressure in the air tank goes down. Thus, small adjustments may be needed until gage "E" stabilizes. Read gage "E" and record pressure ΔP (psi) after gage stabilizes and reaches its lowest point.
4. Note the 3 digit electronic time display " F " and record the average of at least 5 readings (T).
5. Calculate pump efficiency, E, from equations shown below.
6. Record the reading from the pressure gage on the discharge pipe.
7. At end of monitor test: (a) Turn off air flow gages
(b) Turn off master switch "A"
(c) Open bypass valve beneath gage "B"
(d) Turn off and stow calculator
8. Equations for individual calculations:
(a) Velocity, ft/sec: $V=(1.548) \sqrt{\Delta h_{W}}$
(b) Discharge: $\quad Q_{c f s}=0.369 \mathrm{~V} ; \mathrm{Q}_{\mathrm{gpm}}=0.369(449) \mathrm{V}$
(c) Pumping head or
total lift, ft: $\quad E_{p}=(2.31)(\Delta P)+228.3+V^{2} / 64.4$

$$
\left(v^{2} / 64.4=0.35 \mathrm{ft}\right)
$$

(d) Power out, (KW): $P_{o}=(0.0846)(Q$ in $c f s)\left(E_{p}\right)$
(e) Power in, (KW): $\quad P_{i}=24883 / T$
(f) Pump efficiency in
percent: $\quad E=$ Power out (100)/Power in
9. Alternate method to obtain V in ft/sec: Read directly from the Bestobel meter "G" while injecting air into the pump delivery line by turning on air flow gage "H" to 1 SCFH.
use the monitor to determine the pumping system efficiency. Some were engineers, some were shop technicians and some were students. With just a few minutes to study the written instructions but with no other training with the unit, each person was able to successfully complete an efficiency measurement. While such persons who were not familiar with the monitor unit could use it to determine pump efficiency, they probably could not recognize if something was wrong with the unit, and could not cope with malfunctions or diagnose the cause of failures. Trained persons would still be needed to make periodic inspections of the monitor to see that it was in working order.

Since the prototype unit was installed inside a pump house, there was no need to weatherproof it or take special care to guard against freezing conditions in the wintertime.

Table 3 shows some typical efficiency values for the Kimberly City Well No. 1. The data indicate a drop in efficiency in 1982.

Production Models

One production model was a low cost semi-portable unit and the other was a medium cost, portable unit. Both units were carefully packaged in a carrying case for protection from the weather and from vandals and for convenience when transporting them.

Low cost unit. This unit is shown in figure 4 and has the following components:

Power supply for the compressor.
Compressor system to supply air to the bubbler tube.
"Annubar" and differential pressure gage to measure pump discharge.

Bubbler tube pressure gage.

Miscellaneous wiring, switches, tubing, valves and air flow meter.

Hand-held calculator with stop watch capability for timing the disc and computing the efficiency.

The low cost unit was initially installed on a well belonging to Gary Nebeker 1 ocated $1 / 2$ mile south and $1 / 2$ mile east of $N 3000$, E4300 near Kimberly. Site parameters are as follows:

100 H. P. pump.
Delivery 1 ine I.D. $=8.06$ inches.
Approximate discharge $=640 \mathrm{gpm}$. Measurement by "Annubar" pitot tube device.

The line pressure was not measured since the pump delivery is into an open ditch after just 14 ft of pipe. Bubbler tube pressure was measured by pressure gage.

No bubbler tube was in the well, but a plastic bubbler line was successfully installed. Vertical distance from the end of the bubbler tube to the center of the delivery line at the ditch is 451 ft .

The power meter was not equipped with pulse initiator switch so the disc rotation was timed by the calculator/stop switch.

The operating instructions for the unit are given in Table 4 and a typical measurement in Table 5. Approximate production cost of the unit was $\$ 2,250$ not including development costs. Mass production and purchasing would reduce this somewhat, but manufacturers profit would make the selling price near the above amount.

Medium cost unit. The unit is shown in Figure 5 and has the following components:

Table 3. Pump efficiency data--Kimberly City Well No. 1.

Date	Discharge Flow Rate (gpm)	Power (Kw)	Pumping Head (ft)	Pump Efficiency (\%)
1980				
6/10	790	67.6	283	62.2
6/11	803	67.6	285	64.0
7/30	807	67.4	285	64.3
$\underline{1981}$				
6/11	807	68	283	63.1
6/19	790	68	284	62.8
7/16	803	67	286	64.5
7/24	799	67.4	284	63.2
7/30	799	67.4	284	63.2
8/20	798	67.4	284	63.3
9/10	798	67.2	282	63.0
9/23	808	67.6	277	63.9
1982				
5/27	726	68.1	285	57.2
6/11	726	67.8	290	58.6
7/2	734	67.2	284	58.3
7/9	734	67.8	281	57.3
8/6	726	67.4	284	57.7

Figure 4. Low cost monitor unit.

Table 4. Pump efficiency monitor instructions (Gary Nebeker Well).

1. Remove front cover of monitor box. Attach extension cord between the monitor box and the 110 V outlet on bottom of the pump starter box. Turn on master switch "A". Compressor will start and pump air tank up to 40 psi (gage "b") and will shut off.
2. Open both of the small valves on top of the flow sensor in the pump delivery line. These control the flow through the $1 / 4$ inch tubing connecting the monitor box and the flow sensor. Both $1 / 4$ inch lines must be completely full of water. Close the bypass valve connecting the two $1 / 4$ inch tubes where they enter the monitor box.
3. Turn on bubbler tube air flow gage " C " until indicator shows 1.0 SCFH. Record lift pressure, p, from gage " D " in psi after the gage stabilizes and reaches its highest point.
4. Record differential pressure, Δh_{W}, from gage " E " in inches of water after the gage stablizes at its highest reading.
5. Familiarize yourself with the operation of the calculator as a stopwatch. Time the seconds, T, required for 10 revolutions of the power meter disc. Take an average of at least 3 readings of T and record it.
6. Calculate the discharge, pumping lift, power output, power input, and the efficiency using the equations below.
7. At the end of the efficiency test:
(a) Turn off air flow gage "C".
(b) Close both tubing valves on top of flow sensor on pipeline.
(c) Open bypass valve between tubing where it enters box.
(d) Turn off master switch "A".
(e) Stow calculator.
(f) Remove extension cord and replace monitor box cover. Velocity, V, in feet per second $V_{f p s}=1.526 \sqrt{\Delta h_{w}}$

Equations:

(a) Discharge, Q	$\mathrm{Q}_{\mathrm{cfs}}=0.541 \sqrt{\Delta \mathrm{~h}_{\mathrm{W}}} \quad \mathrm{Qgpm}=243 \sqrt{\Delta \mathrm{~h}_{\mathrm{W}}}$
(b) Pumping Lift, E_{p}	$\mathrm{E}_{\mathrm{p}}=451.3-(2.31)(\Delta \mathrm{P})$
(c) Power Output, P_{O}	$\mathrm{P}_{\mathrm{o}}=(0.0846)\left(\mathrm{Q}_{\mathrm{cfs}}\right)\left(\mathrm{E}_{\mathrm{p}}\right)$
(d) Power Input, P_{i}	$\mathrm{P}_{\mathrm{i}}=1,728 / \mathrm{T} \mathrm{T}=$Time in seconds for 10 revolutions of the disc
(e) Efficiency (\%), E	$\mathrm{E}=\left(\mathrm{P}_{\mathrm{o}} / \mathrm{Pi}\right)(100)$

Table 5. Pump efficiency monitor data sheet (Gary Nebeker Well).

$\begin{aligned} & \text { Date } \\ & (1981) \end{aligned}$	Bubbler Pressure $\Delta \mathrm{P}$ psi		Time for 10 Revolutions Seconds	F1 ow Rate Q cfs	```Pumping Lift Ep ft.```	Power Output P_{o} kw	Power Input P_{i} kw	Pump Efficiency E \%
19 June	13.6	6.9	20.5	1.42	419.9	50.4	84.3	59.8
16 July	7.1	6.7	20.9	1.40	434.9	51.5	82.7	62.3
24 July	5.6	6.4	21.0	1.37	438.4	50.8	82.3	61.7
31 Aug.	13.0	6.9	20.6	1.42	421.3	50.6	83.9	60.3
10 Sept.	13.5	7.0	20.4	1.43	420.1	50.8	84.7	60.0
23 Sept.	12.6	6.8	20.3	1.41	422.2	50.4	85.1	59.2

Figure 5.

Power supply for compressor and timing circuit.

Compressor system for the bubbler air and injection air for the Ultrasonic flow meter.

Bestobel Ultrasonic flow meter to measure pump discharge.

Pump lift differential pressure gage.

Counter-timer and display to measure the 60 cps counts during a revolution of the disc.

Miscellaneous wiring, switches, tubing, valves and air flow meters.

Hand held calculator to compute efficiency.

The medium cost unit was initially installed on a well belonging to Kevin Stanger located $1 / 2$ mile south of the Kevin Stanger home at N3200, E4000 near Kimberly. Site parameters are as follows:

Delivery line I.D.= 10.5 Inches
Approximate discharge $=900 \mathrm{gpm}$. Measurement by Ultrasonic flow meter.

Approximate line pressure $=75$ psi

From the pump there was $21 / 2 \mathrm{ft}$ of delivery line, then a welded-in check valve, then $1 / 2 \mathrm{ft}$ of pipe, followed by a 45° elbow and then only $31 / 2 \mathrm{ft}$ before the delivery pipe went underground.

No bubbler tube was in the well but a plastic bubbler line was successfully installed. Vertical distance from end of bubbler tube to center of 1 ift gage is 298 ft .

The power meter was equipped with a pulse initiator switch (charges by Idaho Power for this was \$516).

The operating instructions for the unit are given in Table 6 and a typical measurement in Table 7. The efficiency is thought to be higher than is likely for the well. This is believed to be due to the extremely short line ($21 / 2$ ft) available above ground for location of the sensor for the Bestobel Ultrasonic flow meter. The check valve, elbow and short distance means the velocity is not distributed as it should be for a factory calibrated measurement. The meter could give accurate flows if the meter could be calibrated in place, but this was not possible without extra costs. Since the primary purpose of this work was to test the reliability and ease of operation of the unit, no effort was made to check the calibration of the meter in place. This should be done if accurate readings are required.

Cost of the medium unit was about $\$ 3,300$ to which should be added cost of the pulse initiation switch.

Both production units were packaged in a weatherproof box. Both units had to be drained in the fall to prevent damage to the components by freezing. This is not a problem on an irrigation well, but additional "winterizing" work would be needed to keep the units located outdoors running in the winter. For winter operation, pressure taps must be replaced by a sensor ring such as those marketed by Red Valve Co. and shown in Figure 6. Thus, one sensor ring would be needed at each pressure tap location. The Nebeker well would need two (for flow measurement). The "flow" differential pressure gage would have to be replaced by two identical pressure gages of a type that would measure the pressure without much movement of fluid in the lines. The fluid in the lines between sensor rings and transducers would be anti-freeze. Stanger's well would also require two sensor rings on the lift differential pressure gage. The ultrasonic meter would need no winterizing. Costs per sensor ring would be about $\$ 300$ or $\$ 600$ for each unit.

Table 6. Pump efficiency monitor instructions (Kevin Stanger Well).

1. Remove front cover of monitor box. Attach extension cord between the monitor box and the 110 Volt outlet on bottom of the pump starter box. Turn on master switch "A". Compressor will start and pump air tank up to 100 psi (gage "B") and will shut off.
2. Open both of the small valves on top of the pump delivery line. These control the flow through the $1 / 4$ inch tubing connecting the monitor box and the delivery pipe.
3. Turn on bubbler tube air flow gage "C" until indicator shows 0.5 SCFH. Record lift pressure, p, from gage " D " after the gage stabilizes and reaches its lowest point.
4. Turn on air injection flow gage " G " until indicator shows 2.0 SCFH. Turn on Bestobel flow meter "E" by pushing "On" button. After a short time the signal strength meter should read greater than 6 and the velocity meter will reach a maximum. Record the velocity, V, on data sheet. The meter will automatically turn off after 1 minute. Be sure the "Fluid Calibrate" dial is set at 0.5 and the "Noise Cancel" dial is full clockwise. Because of electrical interference from the compressor unit, read the flow meter only when the air compressor is not running.
5. Note the 3 digit electronic timer display " F ". Record the average of at least 5 readings of T.
6. Calculate the discharge, pumping lift, power output, power input and the efficiency using the equations below.
7. At the end of the efficiency test:
(a) Turn off air flow gages " C " and " G ".
(b) Close both tubing valves on top of pump delivery line.
(c) Turn off master switch "A".
(d) Turn off and stow calculator.
(e) Remove extension cord and replace monitor box cover.

Velocity, V, in feet per second from Bestobel flow meter

Equations:

(a) Discharge, Q

$$
\begin{aligned}
& Q_{c f s}=0.601 \mathrm{~V} \quad Q_{g p m}=269.8 \mathrm{~V} \\
& E_{p}=298.2+(2.31)(p) \\
& P_{o}=(0.0846)\left(Q_{c f s}\right)\left(E_{p}\right) \\
& P_{i}=82,944 / T \quad T=\begin{array}{l}
\text { Number of } 60 \mathrm{cps} \\
\text { counts in one revolution } \\
\text { of the disc }
\end{array}
\end{aligned}
$$

(b) Pumping Lift, E_{p}
(c) Power Output, P_{O}
(d) Power Input, P_{i}
(e) Efficiency (\%), $E \quad E=\left(P_{o} / P_{i}\right)(100)$

Table 7. Pump efficiency monitor data sheet (Kevin Stanger Well).

$\begin{gathered} \text { Date } \\ (1981) \end{gathered}$	```Lift Pressure P psi```	$\begin{gathered} \text { Flow } \\ \text { Velocity } \\ \text { V } \\ \text { fps } \end{gathered}$	$\begin{gathered} \text { Timer } \\ \text { Reading } \\ \mathrm{T} \end{gathered}$	Flow Rate Q cfs	```Pumping Lift E ft.```	Power Output P_{0} kw	Power Input Pi kw	Pump Efficiency E $\%$
19 June	71.3	3.6	822	2.16	462.9	84.6	100.9	83.8

Both units operated successfully for two summers at their initial installations. They performed consistently and reliably except for the flow measurement on the stanger well as already discussed.

Both units could be operated by inexperienced people if they would take time to study and follow the given directions.

Figure 6. Sensor ring for winterized operation.

CHAPTER IV

FULLY AUTOMATIC MONITOR SYSTEM DEVELOPMENT

Concept and Capability

The fully automatic monitor system was developed under an extension of the original contract in response to the perceived need for a system that would not require an operator to do any part of the measurement, computations, or recording of the data. The objective was to produce a compact, semi-portable system which could initiate a measurement of pump efficiency at any preselectable time, measure and store all the necessary parameters, make the needed computations, and then both display and print the relevant information.

Initially the plans were to convert an available calculator or computer device to perform the tasks. Soon it became apparent that a unique, special purpose computer system could be developed just as readily which would have the added advantage of greater flexibility and reliability. The computer system chosen is based on the 8 bit Z-80A microprocessor.

Description of the Fully
Automatic System
The fully automatic system was packaged in two cases as shown in Figure 7 which contain the following components:

Auxiliary equipment case.
Power supplies for compressor, transducers, and solenoid valves.

Compressor, air tank, and air flow controls to supply air for the bubbler tube.

Pump 1 ift differential pressure transducer to measure pumping lift (0-100 PSID).

Accutube and differential pressure transducer to measure pump discharge rate (0-20 inches water).

Solenoid valves for protecting the flow transducers between measurements, bleeding accumulated air from the lines, and determining the zero $f 1$ ow condition.

Miscellaneous wiring, connectors, switches, bleed valves, etc.

Computer case.

Power supplies for computer, printer, clock, and other circuits and controls.

Computer to control operations, make calculations, and display and print the results.

Display module for Efficiency, Power In, Lift, and Flow.

Paper tape printer with choice of continuous or once a day readings.

Real time clock with initialization (setting) capability.

EPROM for programmable memory.
ROM for storing site data through switch selectable inputs.

Umbilical connection to auxiliary case.

The operations done by the monitor unit make the necessary measurements and

Figure 7. Automatic monitor unit.
then evaluate the pumping system efficiency using the following equation:

Efficiency (\%) =

$$
0.0846 \mathrm{VAA}_{L}\left(H+\frac{\mathrm{V}^{2}}{64.4}+2.31 \Delta \mathrm{P}\right)
$$

$$
\text { meter factor } \div \text { time for } 1 \text { disk rev. }
$$

where $V=1.52 \Delta h_{w}$, and h_{w} is the differential pressure head in inches of water.

The pitot tube device used to determine the flow rate requires the measurement of a small (about 10 inches of water) differential pressure in a pipe with a high 1 ine pressure (usually >50 psi). The small differential pressure to be measured requires a sensitive transducer which is vulnerable to damage should a larger differential occur for any reason. Furthermore, air bubbles may accumulate in the tubing and this requires bleeding
the air bubbles from the system. Finally, some electrical drift occurs in all transducers if given enough time and this requires some means of taking a "zero" reading as a reference for the measurement.

The pumping lift is usually large so a much less sensitive transducer is used. Only an occasional manual air bleed is needed to keep this transducer in operating condition.

Sequence of Events During

 Monitor OperationThe operation of the monitor system can best be described by listing the sequence of events which occur during a set of measurements. It is assumed that the monitor unit has been installed at a well site, that the real time clock has been set to local time, and the site constants have been loaded in the
computer memory by following the instructions in Appendix A.

1. Begin a measurement upon a signal from a switch or from the real time clock.
2. Measure 10 revolutions of the power meter $d i s k$ and compute and store the power input, $P_{\text {IN }}$.
3. Measure and store the lift pressure, $\Delta \mathrm{P}$.
4. Operate solenoid valves to protect the flow transducer between readings, to bleed air from the lines prior to a reading, and to make and record a "zero" reading of the transducer.
5. Measure the velocity differential pressure head, Δh_{w}, by reading the flow transducer and subtracting the zero reading. Then compute and store the velocity, V, in Equation 5.
6. Compute and store the pumping lift, E_{p}, in Equation 3 .
7. Compute and store the flow rate, Q, in Equation 4.
8. Compute and store the efficiency, E, in Equation 7 .
9. Display the Efficiency, Power In, Lift, and Flow Rate.
10. Print the well number, day, date, time, Efficiency, Power In, Lift, and Flow Rate.
11. Repeat the sequence above two more times to complete a set of three measurements.
12. Wait for the signal to begin the next series of measurements (2 min to 24 hr as selected by setting the switch to "Continuous" or "24 hr").

Since the monitor unit is completely automatic in its operation, no instructions are needed for operation once it has been installed and set up by a qualified person. The experimental unit was not installed in a weatherproof box, however, and it must be given suitable protection in a shelter and kept above freezing temperature.

The automatic monitor unit was installed initially inside the pump house of the Kimberly City well where it operated successfully for two periods of several months each. Figure 8 shows typical data from the printer. Each time service was ended by failure of the same integrated circuit chip at the time of a power outage. Apparently a transient power surge damaged the chip. Protection of the unit with a constant voltage transformer or surge arrestor is recommended.

Once a week the air that accumulates in the 1 ine pressure transducer tubing should be bled out by slowly opening the bleed valve for a few seconds. Now and then the paper tape in the printer must be replenished and the printed tape record removed. Normally no other routine maintenance is need ed.

A more detailed description of the monitor unit and its electrical circuits is given in Appendix A. Instruction for initial installation at a site, inputing the site parameters, setting the realtime clock, and starting up the unit are also given in Appendix A. The computer program that runs the unit is listed in Ap pendix B.

```
GRE# z% IG U|& E4
HE बEQTध,
PGEE In फी E8,g
HT :EET% ETB
FH|,G% 1.7E
GTE# GA 1G UH# E4
TME GE:13:4
EFTGIEMप(A, E0.4
Pu|er In धny 68.g
HFT FEET; ETB
FHu,0Fg i.7e
GITE# GA 1E JUH 84
THE WES0:10
EFIGEUC(% 59.9
POER In (M, 6B.5
HFT (FEETY ZTB
FLH (TE) 1.74
GTT## SU 17 JH| 84
THE gembe:ge
EFMGMपपद 5g.g
PUEE FM (WH BB.E
LIPT PEETM ETS
FLO (SFG 1.70
GRTE#: BU 17 |U| 84
TME geales5
EFTMEMG(%) 5, B
FU|E In (WH 68.G
LHT PEETY ETG
FHG OFE 1.7e
GITE# SU 17 HW E4
TME GE:10:01
EFTGEMप& E9.3
PपEF Iी (W, कह.8
MPT FEET, QT
FLO|,G% 1.74
```

Figure 8. Typical printer tape.

CHAPTER V

The Utah Water Research Laboratory of Utah State University has developed, tested, and evaluated four low-cost, pump efficiency monitors. The units are packaged for convenience in a carrying case(s) and can be installed permanently or used as portable units. The prototype and two of the simpler units require the operator to read some gages and then use a hand-held calculator to make some simple calculations to determine efficiency. One model uses a pitot tube device and the
other an ultrasonic meter to measure flow rate. The final model is totally automatic in its operation. A timer turns the unit on at a programmed time and the unit itself makes all the measurements and calculations, displays the results, and also prints a permanent record. The unit can also be set for continuous operation. Costs of the units, not including development costs, are between $\$ 2,250$ and $\$ 5,500$ depending on the sophistication.

APPENDIX A

COMPUTING ELECTRONICS FOR THE AUTOMATIC
PUMP EFFICIENCY MONITOR

This appendix describes the computing electronics for the automatic pump efficiency monitor. The accumulation of data from the velocity, pressure and kwh meter-timer peripheral transducers is accomplished via this unit and the computation of the efficiency of the pumping system is done using the following equation:

$$
\begin{aligned}
& \text { EFFICIENCY }(\%)=\frac{\mathrm{P}(\text { OUT })}{\mathrm{P}(\mathrm{IN})} \times 100= \\
& \frac{0.0846 \mathrm{VA}_{\mathrm{L}}\left(\mathrm{H}+\frac{\mathrm{V}^{2}}{64.4}+2.31 \Delta \mathrm{P}\right)(100)}{\text { meter factor } \div \text { time for } 1 \text { disk rev. }}
\end{aligned}
$$

where

V		velocity of water in pipe $\left(\right.$ feet/sec) $=1.548 \sqrt{\Delta h_{w}}$
Δh_{W}		velocity differential head (inches of water)
A_{L}		cross-sectional area of pipe (square feet)
H		indicated in Figure $A-1$, vertical distance from center of 1 ift gage to the end of the bubbler tube (feet)
P_{L}	$=$	line pressure (pounds per square inch, psi)

$$
\begin{aligned}
P_{B}= & \text { bubbler pressure (psi) } \\
\Delta P= & P_{L}-P_{B} \text { (psi) }=\text { lift pres- } \\
& \text { sure differential (psi) }
\end{aligned}
$$

The computer system is based on an 8-bit microprocessor, the $\mathrm{Z}-80 \mathrm{~A}$, which was chosen for its availability and copious documentation, ease of operation for the job specification, and the experience with the device.

Because plenty of power was available at the point of use, it was not necessary to base the electronics around a low-power c-mos microprocessor, suitable for battery operation and thus a standard $Z-80 A$ operating at 5 volts, with a 2.4576 MHz crystal clock was used.

The electronics accompanying the microprocessor, as found on the main board, and controlled by and/or supplying data to the $Z-80 \mathrm{~A}$ can be divided into the following main areas:

1. Reset and clock
2. Address/data/control bus buffering
3. Input/output, memory address decoding
4. CTC counter/timer circuits
5. PIO input/output circuits
6. Analog-to-digital conversion
7. RAM/ROM memory devices

Figure A-1. Pump lift diagram.
8. Switched ROM devices
9. 7-segment display
10. RTC real time clock
11. Printer output
12. Compressor unit and secondary electronics

The above areas will be elaborated upon with reference to specific circuitry and basic properties that describe each section with respect to the others. The following overall system diagram, Figure $A-2$, serves to tie in each of the above sections to form the total computer system.

1. RESET and Clock
(a) The RESET function is a most necessary control in that once activated it stops the microprocessor's execution of instructions and loads the program counter within the $\mathrm{Z}-80 \mathrm{~A}$ with 0000 HEX , i.e., the lowest memory address. The program is written into an EPROM with a starting address of 0000 HEX . The application of the $\overline{\operatorname{RESET}}$ signal will interrupt the current sequence of instructions and force the program to be initialized, commencing at 0000 HEX . The RESET (the condition is logic zero) is generated by power-on as well as by push-button momentary contact manual operation. The signal is also fed to the counter/timer circuits.

Upon power-on, the capacitor (47 microfarads in Figure A-3) is initially discharged and a logic 0 will appear on the $\overline{R E S E T}$ output for a fraction of a second. Once power is on a RESET can be obtained by the push-button momentary contact switch being depressed. The processor remains in the RESET state as long as the switch is depressed.
(b) The $Z-80 \mathrm{~A}$ requires a single phase clock only and can be run up to 4 NHz . To provide convenient divisions for the CTC timing sequences
a 2.4576 MHz clock has been used as shown in Figure A-4 (note that 2.4576/ $256=9600 \mathrm{~Hz}, 9600 / 96=100 \mathrm{~Hz}$, i.e., 100 pulses per second or a resolution of $1 / 100 \mathrm{th}$ of a second). For consistent execution time and for more precise timing for the CTC, a crystal controlled circuit is used.

The 330 ohm pull-up resistor satisfies the $A C$ and $D C$ clock signal requirements but a separate inverter gate section is used to drive the pull-up.

2. Address/Data/Control Bus Buffering

The $2-80 \mathrm{~A}$ should drive only one TTL load for each output p in and thus it becomes necessary for buffering to be used on all lines that connect to other circuitry; indeed, even a logic probe applied to an unbuffered line may cause fatal results as far as the microprocessor is concerned. Many lines drive parallel devices and buffering provides extra drive. The 74367 non-inverting tristate bus driver is capable of sinking 48 MA and can accommodate any combination of TTL, LSTTL or memory connections.
(a) Address Bus:

The 16 -bit wide address bus in Figure $A-5$ is uni-directional and the tristate function of the 74367 is controlled by the $\overline{B U S A K}$ signal which is inverted before application to the driver's control inputs. In a non-DMA application, as in this case, the BUSAK is high and the 74367 passes all outputs from the $Z-80 \mathrm{~A}$. If a DMA request was to be acknowledged by the Z-80A then BUSAK would go low, the 74367's placing their outputs in a high impedance mode allowing the address bus to be used by another processor for example.
(b) Data Bus:

The reason for buffering the 8 -bit wide data bus is the same as for the

Figure A-2. Overall computing system diagram.

Figure A-3. Reset circuit diagram.

Figure A-4. Clock circuit.

Figure A-5. Address bus.
address bus, but in this case we wish to make the data bus bidirectional in that data flow is channeled from associated circuits to the microprocessor and vice-versa.

By using the 74367's in opposite pairs we can accomplish the bidirectionality along with the $\overrightarrow{R D}$ read line from the processor. Recall that the tristate nature of the bus drivers enables us to effectively turn the outputs from a normal passing mode to a high impedance mode and the RD line can control this function as diagrammed in Figure A-6.

Note that in a write operation, $\overline{R D}$ is high which places the control inputs on the top two devices in a low state, allowing the data on the $Z-80 \mathrm{~A}$ data pins to be passed out onto the data bus. The lower two devices (inputs/ outputs configured opposite to the other 74367's) have a high logic state present on their control pins which places their outputs in the high impedance state. The read operation is facilitated with the processor putting its $\overline{R D}$ line low and the top two $74367^{\prime} \mathrm{s}$ go into the high impedance state, the lower two passing data from the data bus to the processor.

(c) Control Bus:

The control signals co-ordinate peripherals and channel data and addresses at the proper times, both into and out of the $Z-80 \mathrm{~A}$. The control bus is buffered using 7414 HEX Schmitt triggers and buffering is supplied for the following signals:

$$
\overline{\mathrm{BUSAK}}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \overline{\mathrm{Ml}}, \overline{\text { IORQ }}, \overline{\mathrm{MEMRQ}}
$$

Unused input signals to the $Z-80 \mathrm{~A}$ are tied high. These include: $\overline{W A I T}, \overline{I N T}$, $\overline{N M I}, \overline{B U S R Q}$. Interrupts are not supported in this system, and the $\overline{H A L T}$ and $\overline{R F S H}$ lines are not used. Thus, the $\mathrm{Z}-80 \mathrm{~A}$ is configured such that it is embedded one level using buffering on the address, data, and control busses as in Figure A-7.

3. Input/Output, Memory Address Decoding

By means of the circuit of Figure A-8 the $Z-80 \mathrm{~A}$ can directly address 65,536 (64 K) individual bytes (8 -bits) of program memory and 256 individual input and output ports. In this system there are available 2048 bytes of EPROM and 1024 bytes of RAM, as well as areas used in a memory mapped configuration. The CTC's and PIO's are used in an I/O envirorment. Both memory and I/O device addresses need to be decoded to ensure uniqueness in device selection when the address bus has placed on it a valid address by the processor.

74LS138 decoder/multiplexers are used in the 3 -to- 8 line decoder mode.

The 7-segment LED's and switched ROMs are decoded on 256 byte boundaries. One of the memory mapped signals is used to strobe the A / D 's as shown on the diagram.

4. CTC Counter/Timer Circuits

There are two CTC's available one being used as an event timer for the revolution of the kwh meter disk. Eight revolutions of the meter disk are counted by external hardware and the state of a PIO input is flipped each time eight are counted; the time between successive high states gives the elapsed time for eight revolutions which is divided down in the program so that an average value of the power usage can be calculated. Three channels of the available four on the CTC are used to accomplished this event timing and are configured as shown in (Figure A-9.

5. PIO Input/Ouput Circuits

The PIO circuit is an interface device with 16 I/O pins, divided into two 8 -bit $I / 0$ ports as shown in Figure A-10. Each I / O port has two associated control lines and each port may be specified separately as an input port, output port or control port.

Figure A-6. Data bus.

Figure A-7. Buffering of address, data, and control busses.

Figure A-8. Memory address decoding.
\rightarrow 2.4576 MHZ Clock

Figure A-9. Counter/timer circuits.

Figure A-10. Input/output circuits.

Figure A-10. Continued.

When used as a control port, each of the 8 pins may be individually assigned as an input or output. Furthermore, port "A" may be used as a bi-directional port. While not used in this implementation, the PIO is capable of providing significant interrupt handling capability making the circuit a powerful parallel interface device.

For ease of use, the PIO's in this system have been configured in the control mode (Mode 3). The control signals are not used in this mode and every port pin is defined as either input or output which is easily accomplished in PIO initialization.
6. Analog-to-Digital Conversion

Three $A D C 0804 L C N$ A/D's have been provided as shown in Figure $A-11$, two being used in this system; one A / D is used to convert the voltage produced by the bubbler tube pressure transducer and the other converts the voltage from the accutube velocity measuring device via a pressure transducer. The $A / D ' s$ are used in the free-running mode and strobed by one of the memory mapped out puts.

7. RAM/ROM-Memory Devices

As noted in Figure $A-12$, both volatile (RAM) and non-volatile (EPROM, ROM) memory is provided, and the program itself is contained in an EPROM capable of storing 2048 bytes. It is decoded to reside in the first 2 K of memory, locations 0000HEX - 07FFHEX. The program is listed in Appendix B.

The RAM is used for stack area and temporary storage; 1 K is available in hardware but memory space has been left for an extra 1 K of RAM. It is mapped in the 2 K following the EPROM area, 0800 HEX - 0FFFH (0800HEX - 0BFFHEX in hardware).

8. Switched ROM Devices

Many of the variables contained in the efficiency equation are peculiar to
the physical location of the pumping system and thus need to be altered according to the site. Adapting the EPROM to suit each location would be tedious and thus 8×8-bit switched ROMs in the form of 8 dual-in-line switches have been provided as in Figure $A-13$. Values of relevant site variables can be initially set up on the switches and the program reads these as actual memory locations as if each 8-bit variable was indeed a memory location in ROM for example. A change in site requires only a change in the switch settings, making EPROM alteration unnecessary. The switches also serve the dual purpose of setting up the RTC upon initialization of this timing device.

The switched ROMs are decoded according to the scheme discussed in the memory decoding section. The 74C240 inverting output octal buffer and 1 ine driver with tristate output devices are so designed to drive bus-oriented systems. By strobing the \bar{G} inputs high, the outputs go into the high impedance state. With the DIL switch in the open position the input to the 74 C 240 is high and upon inversion places a low on the data bus for the bus line corresponding to the particular switch. By closing the switch, the current is drawn through the 22 K resistor to ground and the 74 C 240 input goes 1 ow, and again, upon inversion, the data bus line receives a high.

As noted previously, the switches allow initialization data to be input to the real time clock. The RTC must be set up to the actual time of initialization so that events can be related to the real time as it progresses. By setting one bit aside as a flag bit, it is possible to write this information to the RTC via the DIL switches and then after placing the flag switch in the reset mode the normal site switch data can be set on the switches ready for st andard operation (see Figures A-14 and A-15).

Figure 11. Analog to digital conversion circuits.

Figure A-12. RAM/ROM memory devices.

Figure A-12. Continued.

Figure A-13. Switched ROM devices.

Figure A-14. Real time clock variable map.

Figure A-15. Normal location variable map.
9. 7-Segment Display

As noted in the decoding section. The LED display is also memory mapped.

The 4511 BCD-to-7-segment 1atch/ decoder/driver is the integrated circuit used to drive the 7 -segment displays (HP-5082-7740) directly. The 4 low order bits of the data bus are used to provide data to the 4511's which are enabled under program control (see Figure A-16).

10. RTC-Real Time Clock

The real time clock is available to give a record of the events with respect to time; the clock can give readings resolved to one second. The format is as follows:

$1=$ January etc, $0=$ Sunday,
$1=$ Monday etc.

The set-up is accomplished as explained earlier in the switched ROM section; the PIO interface enables data transfer to and from the RTC. Pull-up resistors of 10 K ohms are connected to the data, address and control pins of the clock chip.

11. Printer

The ALPHACOM Sprinter 20 (20 columns wide) is used to provide a more permanent copy of the readings and a full report c an be generated on a once per day basis or on demand. The lines from the accutube flow meter are bled prior to the printed output and the accutube pressure transducer is zeroed
so that errors are kept to a minimum. Once an error voltage on the accutube pressure transducer is recorded in memory it is used to adjust the subsequent velocity readings until another print/zero transducer reading is requested. A switch on the processor unit is used to select once/day readings or a demand reading. If the switch is left in the continuous setting the printout sequence will occur repetitively, whereas with the once/day setting this task is performed at a particular hour each day. The program is written so that a print/zero sequence is only performed if the pump has been operating at 1 east 5 minutes so that any transients have had some time to settle down.

The print-out sequence is made up of three sets of bleed, zero, and normal operations (i.e., accutube pressure is across velocity pressure transducer) with velocity data being taken at the end of the zero and normal operating times. A print-out is generated for each of the three sets, the complete operation taking approximately 20 minutes. The system is left in the normal operating mode with the data being displayed on the LED's but not printed. The most recent zero reading is used in subsequent calculations.

The printer receives data and control signals via a PIO interface device. The report includes the following:

Example:

SITE非X XX XX XXX XX	SITE非1 MO 17 JAN 83
TIME XX: XX:XX	TIME 13:39:36
EFFICIENCY (\%) XX.X	EFFICIENCY (\%) 51.5
POWER IN (KW) XX.X	POWER IN (KW) 69.6
LIFT (FEET) XXX	LIFT (FEET) 285
FLOW (CFS) \quad X.XX	FLOW (CFS)

An example depicting initialization is necessary. The RTC is first set up for an appropriate time; this time is chosen so that upon momentary depression of the

Figure A-16. Display circuit.
$\overline{\text { RESET }}$ button the time as set up on the DIL switches will be loaded into the RTC at that very instant. An example time is: Monday the 17 th of January, 1983 and it's 39 minutes past 1 in the afternoon (i.e., 1339 hours).

```
        YEARS TENS = 8 = 1000 LEAST
    YEARS UNITS = 3 = 0011 SIGNIFICANT
    MONTHS TENS = 0 = 0000 AT
    MONTHS UNITS = 1 = 0001 RIGHT
        DAYS TENS = 1 = 0001*
        DAYS UNITS = 7 = 0111
            WEEKDAY = 1 = 0001
        HOURS TENS = 1 = 1101*
    HOURS UNITS = 3 = 0011
MINUTES TENS = 3 = 0011
MINUTES UNITS = 9 = 1001
        FLAG BIT SET = lXXX X=DON'T CARES
```

*The third L.S.B. set on days tens would signify 29 days in February while a reset bit means 28 days. Thus a leap year would have days tens as 0101 . Likewise with the hours tens; the third L.S.B. set means that we are using a 24 hour format, and reset 12 hour format. A set fourth bit in hours tens signifies p.m. and reset a.m.

Using the same time group map as was given in the switched ROM section and repeated again below we can set up the initialization time for the RTC as in Figure A-18.

Once the $\overline{\text { RESET }}$ button has been momentarily depressed. The real time has been loaded in for RTC initialization, and it is now possible to set up the switches to hold the site variables. We can choose some appropriate site variables:

```
LIFT PRESSURE TRANSDUCER FULL SCALE
    (PSI)
    = 100 = 01100100
DISTANCE H (IN TENTHS OF FEET)
    = 2325 = 100100010101
KH KWH METER FACTOR (IN TENTHS)
    = 1152 = 10010000000
AREA OF PIPE (IN THOUSANDTHS OF SQ.
    FEET)
    = 369 = 00101110001
```

TIME OF DAY TO PRINT/ZERO (24 HR. FORMAT)

$$
=\quad 13=\quad 01101
$$

VELOCITY PRESS.TRANS.F.S.(HUNDREDTHS OF INCH)
$=2000=011111010000$
SITE IDENTIFICATION NUMBER
$=1=001$
flag bit must be reset
$=0=0$
Load onto switches using Figure A-19.
The above memory mapped locations will be treated as site variables because the flag bit (bottom right hand corner) is not set. It is a good idea to reset this bit a few seconds after depressing the $\overline{\text { RESET }}$ button momentarily when setting up the RTC initialization data, and then set up the switches for the site variables. This ensures that the switches will not be read as RTC data when the program flow loops back to test this bit. Once the site variables have been loaded with the flag bit previously reset then the complete initialization task is finished.

12. Compressor Unit

The air compressor unit is powered by a separate power supply (Figure A-20) and is controlled by a pressure switch mounted on the air tank. As long as the power is on, this system will maintain the pressure set by the pressure switch (approximately 45 psi maximum). This air pressure is used to feed the bubbler tank to provide data on the effective lift over which the pump operates.

13. Data Gathering and Control Circuits

The data gathering and control electronics consist of control circuits to establish the various measurement conditions and transducers to convert these conditions to electronic signals. The circuitry required to accomplish these measurements is shown in Figure A-21. The solenoid valves are connected as shown in Figure A-22.

Figure A-17. Real time clock circuit.

Figure A-18a. RTC map for switched ROMS.
$\left.\begin{array}{|llllllll}x & x & x & x & 0 & 1 & 0 & 1 \\ x & x & x & x & 0 & 1 & 0 & 0 \\ x & x & x & x & 0 & 0 & 0 & 0 \\ x & x & x & x & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & x \\ 0 & 1 & 0 & 0 & 1 & 1 & 0 & x \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 & x \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1\end{array}\right]$ MIGHT OF BOARD

Figure A-18b. Example switch settings for RTC.

Figure A-19. Example switch settings for site variables in the switched ROMS.

Figure A-20. Power supply for compressor unit.

Relay No. 1 (Solenoid Valves 5 and 6) - Protection
Relay No. 2 (Solenoid Valves 2 and 3) - Zero Reading
Relay No. 3 (Solenoid Valves I and 4) - Bleed

Figure A-21. Diagram of solenoid valves and relay controls.

Figure A-22. Compressor unit connector, solenoid, relay, and transducer connections.

The solenoids operate in pairs with 1 and 4,2 and 3,5 and 6 tied together. As noted in Figure $A-21$, solenoid valves 2,5 , and 6 are normally open and 1,3 , and 4 are normally closed. The function of each pair of valves is described below:

Valve
 Function
 Numbers

1 and 4 Air bleed to purge the system
2 and 3 Establish conditions to obtain a zero reading

5 and 6 Protection of the sensitive pressure transducer

The operation of these is normally controlled by the computer program. The manual controls for initial setup should be used with caution. The protection solenoids (5 and 6) should always be actuated (by pressing the white button) before actuating the bleed valves (pressing the small red button). The zero solenoids (black button) would be actuated whenever a zero reading is desired. The program controls the valves as shown in the timing diagram (Figure A-23).

A readout cycle, initiated by the computer program, begins by closing the protection solenoid valves. Two seconds
later the air bleed valves are opened and remain open for approximately 17 seconds. At the end of the air bleed period solenoid valves $1,4,5$, and 6 are all de-energized and valves 2 and 3 are energized. Solenoid valve 3, when energized, provides a shunt path around the transducer so that no differential pressure can exist across the transducer. Solenoid valve 2, when energized, closes off any flow so that the zero reading is not affected by any dynamic water movements. This zero reading is taken just prior to the data reading so that any drifts due to temperature or supply voltage can be subtracted out of the data reading.

The control signals from the computer are passed through "or" gates which permit manual operation of each pair of solenoid valves as shown in Figure A-22.

Because of the large range of the "1ine pressure" transducer and the resulting low volts/psi output, it is not necessary to zero this unit.

The outputs from the two transducers are fed back to the computer unit where they are smoothed by the circuit shown in Figure $A-24$ and then used in the final efficiency calculation.

Figure A-23. Solenoid valve timing diagram.

Figure A-24. Smoothing circuitry for (a) velocity and (b) line pressure.

Glmum	-6,	Went	
RTEFLG	E.OU	1 OOH	
MONMIN	EDU	1 CHOH	
RAMELK	EOU	gegoh	
RAMNIM	EDU	13 H	
FAMCNT	EDU	72 H	
LINENT	ESI	$¢$	
;			
;			
;			
;	* THE	OHiRAM COMMEN	WITH A ZEROING OF THE INITIAL *
;	\% 26	TES GF FAM	SO THE 12 LEM [ISFLAYS, *
;	****	**********	
;			
;			
	L_L	A, 0	; EERG ACTUMLLATOR
	LI	$\mathrm{HL}, \mathrm{OEOOH}$: FAMETART- STARTING AUMRESS FOR FILL
	LI	B, O	: FILL 256 EYTES WITH ZERGES
FILL:	1.0	(HL), A	: GTGRE EYTE
	INC:	HL	: INCREMENT FIINTER
	[1.1NZ	FILL	: CONTIMUE IF E NOT ZEFIG
	LI	E, O	: ZERG E REGISTER
	LII	$\mathrm{HL}, 1000 \mathrm{H}$; ENTEF LEL STAFTINSi ALILRESS
NULL:	LII	(HL), E	: ZERO LEI
	INC:	H	: PGINT TG NEXT LEEI ALIRESS
	LII	A, 1CH	; HAVE WE ZERGEI ALL Lems?
	CP	H	
	. 15	NZ, NULL	; NO, SOI GO EACK
	LII	A. O	: ZERO ACCUIMULATGR
	LII	(FRIFLG), A	: EET PRINT FLAG FOR INITIATION
;			
;			
;			
;			
;			
;	*SET THE STACK FGINTER ANLI EET UF THE COUNTER TIMER CLT*		
;	*AS WELL AS THE PARALLEL INFUT/GUITPUT CIRCUITE.		
;			
;			
;			
;			
,			
	LII	SF, 0829H	: SET STACK PGINTER TO YIELI 42 EYTES OF STACK.
;			
	LII	A, OCFH	; GET UP PIGI CHANNEL A WITH ALL INFUTS.
	OUT	(OAH), A	: THIS FIG RECEIVES AN INFIIT FROM THE
	LII	A, OFFH	:FRESEURE (IELTA F) ANALGG TG EIIGITAL
	COIT	(OAH), A	; CONVERTER.
; ${ }^{\text {a }}$			
;			
	LI	A, OfFH	; SET LIP FIGI CHANNEL ESEITS O ANI 1 ARE INPUTSE,
	CuT	(OSH), A	: $0=\mathrm{KWH}$ METER SWITEH, $1=Z E R G / F R I N T$ FLACS, EITS 2
	LII	A, 3	: TG 7 ARE OUTPUTS WITH $2=* 56 *$ SOLENGID, $3=* 14 *$
	CHIT	(OEH), A	
;			
;			
	LLI	A, OCFH	: SET UF PIOZ CHANNEL E FGR ALL INPUTS
	0117	(OFH), A	: THIS FIO IS USEC FGR THE VELOGITY A/D
	LT	A. OFFH	
	CHIT	(OFH), A	
;			
;			
	LI	A. OCFH	: SET UP FIGS CHANNEL A FGR ALL GUTPUTS.
	OUT	(12H), A	:EITS O TG \triangle ARE FRINTER LATA ANI EIT 7 IS
	LII	A. O	; The mata etrgee.

```
:
```


[^0]


```
FX1: TE
III
HL E, OFFH
LFX:
[IE:
E
IF \(N Z, L F \times 2\)
A. (7)
EIT O.A
IF NZ.EXZEFII
```

```
;LGAII GUTER LGOF FOR 1OO SECOND TIME-CIUT
```

;LGAII GUTER LGOF FOR 1OO SECOND TIME-CIUT
SIECREMENT GUTEF LOGF
SIECREMENT GUTEF LOGF
: LGAII INNER LOGF
: LGAII INNER LOGF
: GECREMENT INNEF LDNF:
: GECREMENT INNEF LDNF:
:FINISHEEI INNER LOGP?
:FINISHEEI INNER LOGP?
IS KWH SWITSH HIGH?
IS KWH SWITSH HIGH?
:TEST EIT O = KWH EWITCH INPUT
:TEST EIT O = KWH EWITCH INPUT
:IT'SHIGH, EO SERVIGE

```
:IT'SHIGH, EO SERVIGE
```

	x	a												
	: $\%$	1.	:FINIEHEC MSEYTE CDNAT YET											
	. IF	NZ:LFS 1	: IF NUT THEN GU EACK											
	¢F	1.	: FINTEHED LSEYTE YET											
	IP	NZ, LFXX 1	: IF NOT THEN GIC LACK											
LPX:	(N)	A. (\%)	: 100 SECONLS UP ST WAIT TILL HIGH THENS S MIN											
	EIT	$0 . A$; WAIT SO FIIMP HAE TIME TO ETAEILISE											
	He	2.LFXS												
	CALL	FIVMIN	; WAIT THE FIVE MINUTES											
	EALL	FETN	: ALEO WAIT LINTIL KWH INFUT IS LOW											
	, IF'	TESTK	: REALIY FGR ANGTHER KWH TIMING EVENT											
EXCEFIO:	LI	A. SEH	:YES!: INITIALISE GHANNEL O GF GTGI FOR AN											
	cut	(0), A	: OUTPGUT FREGUENC:Y GF 100 HZ											
	LII	A. 5 OH	: LOWN COUNTER LOAL GF \%G LESIMAL											
	DuT	(0), A												
	IN	A, (2)	- FEAII CHANNEL 2 and stare in the il registef											
	LII	[1. A	: I CONTAINS START TIME - SELINLE											
	IN	A. (1)	; REAI CHANNEL 1 ANI ETORE IN THE E REGIETEF											
	LIt	E, A	: E EINTAINS START TIME - 1/100 TH'S OF EECS											
	LII	HL, OFFFFH	; INITIATE 100 SECOND TIMECIUT FGR FWH											
LFX7:	OEC	HL	: IEGREMENT OUITER LOUF											
	LII	E, OFFH	: LGALI INNER LGIGF											
LPXS:	CEC:	E	- CIECREMENT INNER LOUF											
	. IP	NZ, LFXE	; INNER COUNT AEOUT 1. 5 MILLISECONDS											
	IN	A. (9)	:LOIK. AT THE KWH SWITCH INFIIT AIGAIN											
	EIT	O. A												
	. F	Z, KFIN	; If LOW, NEEI TG STOP THE GTE TIMER											
	XOR	A	; Clear accimmator											
	CF	H	; GUIER LGGP FINIGHEEI?											
	UF	NZ, LPX7	: Nil, SOI GO EAEK TO LFX7 LGOP											
	CF	L	;FINISHEL LSEYTE GUTER LIGIF YET?											
	UF	NZ, LFX7	; NO, SOI EO EACK.											
	LII	A, 3	; YES! 100 SECS LIP EOI TIIRN OFF CHANNEL											
	Cill	(0), A												
LFX9:	IN	A, (9)	; LOCK AT THE KWH INfut Again											
	EIT	O, A												
	. IF	NZ, LFXY	; IF $\because T I L L$ HIGH (FUMP GIFF) THEN KEEF LOUPING											
	CALL	FIVMIN	: FIMME GGING AGAIN EM WAIT E MINS TO STAEILISE											
	CALL	FETN	; WE NEEI TG ENTER THE TESTK FOUTINE WHEN THE ; INFIIT SIGNAL IS LOW SO AS TO EE AELE TO START ; THE KWH TIMER AT THE EEGINNING OF THE EYCLE.											
	1 F	TESTK:	: SWITEH LOW SO AS TO REGORLI START PROPERLY.											
KFIN:	LII	A, 3	; VALIII KWH REALING EGI TURN CHANNEL O GFF.											
	OUT	(0), A												
	LII	C, 2	: STGRE STGP SECGINLS IN REGISTER E											
	IN	E, (C)												
	LII	C, 1	; STORE STGF 1/100 TH'											
	IN	C, (C)	: ELAFSEI TIME IS TIME FGR 3 REVS OF KWH IISE:											
	CALL	TIMER	; CIMPUTE ELAFSEI TIME IN $1 / 100$ TH'S OF EECGINLS											
	LII	(KTIM), DE	; Eave elafseli time in ram - lucation ktim											
	LII	A, (KHFAC:M)	: GET IOEKH FAC:TGR(MSEYTE) GFF SWITCHELI ROM` \\ \hline & ERL & A & : RIGHT UHEIFY TG GETAIN GORRECT EITS \\ \hline & ERL & A & \\ \hline & LII & [1, A & ; TRANGFER MERYTE TO I REGISTER \\ \hline & LII & A. (KHFACL) & : OET IOKKH FAGTGR(LSEYTE) DIFF SWITCHELI FOM E \\ \hline & LII & E. A & ; TfangFer legyte to e register \\ \hline & L. & \(\mathrm{EC}, 708 \mathrm{OH}\) & : LiAdi ec with zesoog nedimal \\ \hline & CALL & MLIL 16 & ; MULTIFLY - RESULTS IN In, E, H, L FEGISTERS \\ \hline & CAI.L & REFEITM & : FISMAT FOR LIVILIE \\ \hline & LH & [EE, (KTIM) & : LOALI LENGIMINATOR WITH ELAFSEI TIME \\ \hline & CALL & [1v16 & ; ITVIIE (10*K'H)*2GSOO EY (100*KTIME)-RESULT HL. \\ \hline & LII & (FOWIN).HL & :GTGRE 100*KW IN FAM = FOWER IN \\ \hline & RET & & \\ \hline \end{tabular} {f98742393-2df9-4c86-862d-03f562032252} {f63e90bc4-e144-4b3a-8346-bf964615b9cc} {f08c85cee-d663-4c4a-9a87-9c51bc53d3a3} {fabce0fa7-db10-4e8a-9bdc-a6ed4d7837b8} STRGEE A/L'S FREPARATGRY FQR CONUERSIGIN ; LOALI IN FREGGIIRE RANGE AIMRESG ; LOALI IN FREGGIIRE RANGE AIMRESG ; GET PRESSLIRE RANGE GFF EWITEHEI ROM`S ; GET PRESSLIRE RANGE GFF EWITEHEI ROM`S ;GET A/II IATA (IELTA F AE E-EIT WORII). ;GET A/II IATA (IELTA F AE E-EIT WORII). ;ANGWER = (FFANGE*IIELTA F') IN HL FAIR ;ANGWER = (FFANGE*IIELTA F') IN HL FAIR :SHIFT INTO IE FAIR :SHIFT INTO IE FAIR MMLTIFLICANL IS 1000 DECIMAL MMLTIFLICANL IS 1000 DECIMAL :MLLTIPLY - FEGILLT IN II,E,H,L :MLLTIPLY - FEGILLT IN II,E,H,L ; LIVIDE EY 11101 [ECIMAL ; LIVIDE EY 11101 [ECIMAL ;IIVIDE TO GET 1O*(IELTA F) IN FEET IN HL FAIF ;IIVIDE TO GET 1O*(IELTA F) IN FEET IN HL FAIF ;STGRE THE 1O*(IIELTA F) RESULLT IN RAM ;STGRE THE 1O*(IIELTA F) RESULLT IN RAM #*************t** *THIS RCMITINE ZEROS THE VELOGITY FRESGURE TFANSINIGER * *ANII SUESEGLIENTLY REAIS IT VIA AN A/I, CALCULATES THE* *VELOMITY GDUAREEI USING V=3.54Sk(SQRT (FRESSUIRE)). * *RESULT IN FVEL ANN FVEL+Z IS 1,000,000*VEL SQUARENI. *THE VELOGITY REALING IS MGDIFIEI EY THE ZERO REALIING, * *I. E. REALIING IE gULETRACTEII FFGM THE ACTUAL A/II FEAIINGG* {fb16c96c0-6b7a-4d8b-a274-36903daf9d96} \begin{tabular}{\|c	c	} \hline LII & A, 4 \\ \hline CUIT & (\%), \(A\) \\ \hline CALL & EIECNT \\ \hline LII & A. OCH \\ \hline GUIT & (\%), A \\ \hline C:ALL & CNT 17 \\ \hline LII & A, E 4 H \\ \hline CuIT & (\%), \(A\) \\ \hline call & BISCNT \\ \hline LII & \(\mathrm{A}, \mathrm{EOH}\) \\ \hline 017 & (\%), A \\ \hline call & ENT17 \\ \hline CALL & CNT17 \\ \hline CAll & CNT17 \\ \hline CALL & CNT17 \\ \hline CAl. & CNT17 \\ \hline CALL & CNT 17 \\ \hline CAl. L & ENT17 \\ \hline CHL & STROEL \\ \hline \end{tabular} {fd97f9e72-b117-4d07-b813-d4471718f848} ;SET EIT Z OF ACCUMULATOR {f3bd25e5d-f64d-43eb-8069-c1d74fc8069b} \begin{tabular}{	c	c	c	} \hline LH & SA \(A\) & : LGM INTO E FEGAETEF \\ \hline tII & [1.0 & : ZERG I FEALY FGR MLILIFIY \\ \hline CALL & MIUL 16 & : RESULT IN L. E.H.L \\ \hline call & FEFGKM & \\ \hline LII & LEF 100 H & ; IIVIne EY \%st hecimal \\ \hline C:ALL & [IV16 & : FESILIT IN HL FAIF IS 100kFRESGURE(VEL) \\ \hline EX & IE, HL & : FUT REGULT INTG DE \\ \hline LII & EC, 519 EH & : MILLTIFLY EY 23\%63 LEEIMAL. \\ \hline C:ALL & MLIL 16 & : RESULT IN II, E,H,L IS 1,000 , OOOFVEL SOLIAREII \\ \hline LII & A, E & : STGRE MSWORI IN FVEL. FIRET SWITEH I ANEI E: \\ \hline LII & E, II & \\ \hline LII & [1, A & \\ \hline LII & (FVEL), DE (& \\ \hline LII & A, L & : STGRE LSWGRI IN FVEL+2. SWITCH H ANI L FIRST. \\ \hline LII & L, H & \\ \hline LIt & H, A & \\ \hline LII & (FVVEL+2), HL. & \\ \hline RET & & \\ \hline \end{tabular} *THE LIFT IS E:ALCULATEI HERE AS FER THE EGUATION EELOW: * *THIS ROUTINE FGLLOWE THE VELGCITY RGUTINE IN THAT THE * *LI, E, H, L REGISTERG ETNTAIN THE VELUGITY GULIAREI REGULTS* *AT THE ENII OF THAT RGUITINE ANI THE V^Z/64. 35 TERM IN * *THE LIFT EDIATION CAN FEAIILY UTILISE THE VELOGITY IN * *IT E GOLIAREI FGRM. {f0fbcf62b-d249-4582-b816-b200e96bfb8d} * LIFT \(=\{\) HEIGHT \(+V \cdots 2 / 64.35+2.31 *(\) IELTA P \()\}\) * {f6eb1c238-0217-41a7-acd3-e868067c6be7} {fe204066f-61c8-43cb-9e5f-9f590ac47a43} {f96790b0a-4782-4257-b988-98c2861e0a8f} \begin{tabular}{	c	c	c	c	} \hline & CALL & FECIULK & : FEACI FROM FET \\ \hline & ALICI & A, 30 H & : AEClJ-IEE \\ \hline & LII & (HL), A & - LIALI YEARE UNITE INTG FRINT ELGİt \\ \hline & LII & IX, MINTH & : TAELE FOINTER FOR MUINTHE \\ \hline & Lec: & E & ; NEXT RTL ALILEESS - MINTH TENS \\ \hline & IEC: & HL & ; NEXT PRINT ELEUKK ALIIRESE \\ \hline & LIEC: & HL & \\ \hline & IEC: & HL & \\ \hline & [IEC: & HL & \\ \hline & IEC: & HL & \\ \hline & LII & E, O & ; ZERO E - If NO LIATE TENS THEN UNCHANGEII \\ \hline & C:ALL & REIIC:LK & ; REALI THE RTC: INFORMATIGN FGR MONTH \\ \hline & EIT & \(0, A\) & ; IS THE MONTH GCTOIEER, NOVEMEER GIR DECEMEER \\ \hline & UF & Z, MTH & : IF IT ISN`T THEN JIIMP
	LII	E, OAH	; IF late tens then change e to 10 necimmal											
MTH:	LEC:	E	: NEXT FTC: ALILRESS - MONTH UNITS											
	CALL	REIICLK	: LOGK AT MONTH LINITS IN RTC:											
	Alid	A, E	: ALIL 10 ON TO UNITS IF EIT O SET FROMM TENS											
	LII	E, A	; HAVE NUMEER GF MCINTH - 1=, IAN ETC: -LGAII IN E											
	Alid	A, A	: Manele A											
	ALILI	A, E	; TRIFLE A											
	LII	$[1,0$: ZERG II REGISTER											
	LII	E, A	; FUT TRIFLEI MCINTH NUMEER EACK IN E											
	AIIC	IX, IIE	; ALII TRIFLEII NUMEER TO MOINTH TAELE PGINTER											
	LII	A, (IX)	: IX CONTAINS GFFSET - LGALI FIFST LETTER INTO A											
	LII	(HL), A	; LGALI FIRST LETTER INTG FRINT ELCIGK											
	INC:	HL	; NEXT PRINT ELOCK ALIIRESS											
	INC:	IX	; NEXT MOINTH TAELE FIIINTEF ALMRESS											
	LII	A, (IX)	; LOAI AC:C. WITH NEXT LETTER											
	LII	(HL), A	; LIALI SECOINI LETTER INTG FRINT ELOCK											
	INC:	HL	; ©IMILARLY FGR THIRI LETTEF											
	INC:	IX												
	LII	A, (IX)	; LOAI ACC. WITH THIRI LETTER											
	LII	(HL), A	; LQAI THIRI LETTER INTG FRINT ELOIC:											
	IEC:	HL	; MCIVE TO NEXT FRINT ELGIGK AIIRESS - LIATE											
	LEC:	HL												
	IEC:	HL												
	IEC:	HL												
	IEC:	HL	; PGIINT TO IN PRINT ELGCK											
	IEC:	E	; LOINK AT TENS OF LIATE IN RTTS:											
	CALL	REIICLK	; REAL TENS GF LIATE											
	ANII	3	:MASK FGR Z LOW SIGNIFICANT EITS											
	ALI	A, 30 H	; AECII-IZE											
	LII	(HL), A	: LIACI TENS Of LIATE INTO PRINT ELIICK:											
	INC:	HL	; NEXT PRINT ELOCK ALIIRESS											
	IES:	E	: LOUK. AT [ATE UNITS IN RTC.											
	CALL	RELICLK	; REAII THE RTC FOR IATE UNITE											
	AIII	A, 30,	; ASCII-IZE											
	LII	(HL), A	; LCIAII IIATE UNITS IN FRINT ELOCK.											
	LII	IX, WK. TIA	: FIIINT TG WEEKIAY TAELE START											
	IEC:	HL	; PGINT TO WEEKTIAY IN FRINT ELIOCK											
	[1EC:	HL												
	HEC:	HL												
	[EE:	HL												
	IIEC:	E	; PGINT TO WEEKIAY LOCATICIN IN RTC:											
	CALL	FELICLK:	: REAII THE WEEKELAY INFGRMATICIN FRGIM RTC.											
	ALIM	A, A	; ICOIELE A											
	LII	[1, 0	: ZERO OUT I REGISTER											
	LII	E, A	; TRANSFER HOUELEI WEEKLIAY INFGRMATICN INTO E											
	ALICI	I X , [IE	; IX Now Eintains giffeet for weekilay letters											
	LII	A. (IX)	- Loali asei l value of firgt weekmay letter toi a											
	LIL	(HL), A	; Filt that firgt lettek into the frint Elick											
	INC:	HL	:FOINT TG SECONI LETTER LOCATIGN IN PRINT ELOCK											
	INC:	IX	: FGint to next letter gif weekilay taEle											
	LII	A, (IX)	- LCAII geconir letter into frint Elouck											
	LII	(HL), A	: LDALI INTG PRINT ELDICK											

	LII	4.08	
	(110	($1 \mathrm{H}+\mathrm{H}$) $\cdot \mathrm{A}$: HAv: All ITS PINE DESIGNATEL AS UUIFUTE
	! I	4.0	
	01.17	(13H). A	
	LII	E, 0	: GET RTC ADLRESS
	CALI-	WRICLK:	: CIEAAR EECOINIS UNITG
	LD	E, 1	; TENS OF SECONDS ALILRESE
	CAll	WRICLK:	: CLEAR TENS OF SECGINS
	LII	$\mathrm{E}, 2$: NEXT RTC ALIDRESS
	LII	HL. MONM IN	;GET SWITCHEN FOM ALIRESS
TM:	1.5	A. (HL)	; GET LIATA FROM SWITCHEI RCIM - PLIT IN ACC:
	AND	OFOH	: GET MSNIEELE
	OR	C	; AIL TO ALIDRESS NIEELE
	LII	E, A	: TRANSFER TOE TO PASS TG WRICLK FOUTINE:
	CALL	WRICLK	; LIAAII INTG RTE:
	INC:	H	: NEXT SWITCH AIIIRESS
	INC:	C	; NEXT RTC: ALIRESS
	LII	A. $\%$: ALIRESE COUINTER
	CF	C	; FINISHEL YET?
	UF	NZ, TM	; NO, EO EO EACK:
	LII	HL, RTCFLG	; YES, gO LET'S GTART UN LSNIEELE
TIM:	LII	A, (HL)	
	ANII	OFH	; MAEK FOR LOIWER 4 EITS
	SLA	A	: LEFT LHSTIFY
	ELA	A	
	SLA	A	
	SLA	A	
	OR	C	; JIIN TG ALIRESE NIEELE
	LIL	E, A	; TRANGFER TO E TO FASS TG WRIGLK
	CALL	WRICLK:	
	INC:	H	; NEXT SWITCH ALIRESS
	INE:	\bigcirc	: NEXT RTI: ALILRESS
	LII	A, OLH	; ALIRESE COUNTER
	CF	\bigcirc	
	IF-	NZ, TIM	; NOT FINIEHED SOI GOI EACK
	LII	A, OLFH	
	CuT	(13H), A	
	LII	$\mathrm{A}, \mathrm{OFOH}$	
	Gut	(13H), A	
	RET		
;			
;			
;			
;			
;	*THE EG:ICGIN RGUITINE USES THE ECDI RGUITINE TG GOINVERT THE*		
;	*EINARY NUMEER IN THE HL PAIR TO A ECII NUMEER. THIS IIATA*		
;	$* I S$ THEN LGAIEI INTG FAM AS WELL AS EEING IISFLAYEI CIN$*$ \%		
;			
;			
;			
;			
;			
;			
BC:LICON:	C:ALL	ECH	; CONVERT THE EINARY NUMEER TO EC:I
	FUEH	IY	; TRANSFER IY EONTENTS TO HL
	FGIP	HL	
	EXX		
	LII	A, C	; GET IISIIT THREE FRGIM g:
	EXX		
	ANLI	OFH	; MASK FGIR LOWER 4 EITE
	LII	(HL), A	: MEGIGIT INTO LEE
	LII	(IX), A	- LGAI RAMELOCK WITH MEIIGIT
	ExX		
	LII	A. II	: GEE NEXT SISNIFICANT IIGIT FROM ['
	ExX		

UNIT:	LIL	A, OFFH	- COUNTER $=-1$
AEIVE:	INC:	A	: INCREMENT COUNTER
	OR	A	- CARRY Cleared
	EEC	HL, TIE	: SUETFACT FOWERS OF 10
	. $\mathrm{F}^{\text {d }}$	NC. ABOVE	; CONTinue guetracting until fegllat is negiative
	Alig	HL, [IE	; RESTGRE NUMEER IF OFERATIGN WAS NEGATIVE

 *THE MOI FOUITINE ROTATES THE NUMEER IN THE ACEIMULATGR * *FOUR FLAC:ES TG THE LEFT.

 *THE Mulsug rouitine acgomplighes a multifle sugtract. *THE HL REGIGTER PGINTE TO THE LESTINATIGN MGIYTE ANL *THE DE TG THE SGUREE MGEYTE. THE LESTINATIGN GFERANDI * *IS SUIBTRACTEI FROM THE GOULRCE ANII THE RESULLT PLAC:EI * *EACK IN THE IIESTINATIGN LGCATION. THE C: REGISTER HAS * *THE WIITH IN EYTES GF THE GOURCE ANI IEETINATION GPER-* *ANLIS. THE CARFY IS SET TG REFLECT THE LAST (MS) CARFY*

Mulssue:	LII	E, O	; Clear e - C cointaing numeer gif eytes
	ALIT	HL, ETS:	; FGINT TG [IESTINATIGN LSEYTE+1
	LEC:	HL	; POINT TO LSEYTE
	EX	LIE, HL	
	ALIC	HL, EC:	; PGINT TG GOURCE LGEYTE+1
	IEC:	HL	: LSEYTE
	EX	IE, HL	
	OR	A	; CLEAR EORRCIW
GGMORE:	LII	A. (IE)	; CET SCIMRE EYTE
	SEC	A. (HL)	; SCulice minus diestination minus garry
	LII	(HL), A	: STIRE RESUL
	LIEC:	HL	: DEETINATION FGINTER LIECREMENTEII
	IEC:	LIE	: GIIIRIE PGINTER LECREMENTEI
	IEC:	$\underline{\square}$; BYTE COIINT IEECREMENTED
	, IFe	NZ, GOMGRE	:GG IF NGT ALL SUETRACTS [IINE

\%		
;		
;		
:	* DELAY FOUTINES*	
;		
;		
;		
;		
COUNT:	LII	UE, 2 EH
Loupw:	LIEC:	[IE
	LII	A, OFFH
QIRC:	LIEC:	A
	. IF	NZ, CIRC:
	$\times \mathrm{O}$	A
	CP	\square
	If	NZ, LOMFW
	CF	E
	UF	NZ, LOWFW
	RET	
;		
;		
;		
;		
PIGCNT:	LI	[IE, 500 H
Loupls:	neg:	IIE
	LI	A, OFFH
CIFC1:	HEC:	A
	. 19	NZ, CIRC:1
	$\times \mathrm{ClR}$	A
	CF	1
	IF	NZ, LOOFW1
	CF	E
	IF	NZ, LOMF'W1
	FET	
;		
;		
;		
;		
CNT17: LOIIFWS:	LII	[E, 2 CLOH
	LIEC:	LIE
	LII	A, OFFH
Cific:	Lec:	A
	. IF	NZ, C:IRCS
	XGR	A
	CF	I
	. 1 F	NZ, LOCIFW3
	CF	E
	JF RET	NZ, LOTOPW3
:		
;		
;		
;		
FIUMIN:	LII	E, 3
LFX4:	LEE:	E
	LII	HL, OFFFFH
LFXS:	LeE:	HL
	LII	E, OFFH
LPXE:	Lec	E
	. 19	NZ, LFXE
	xors	A
	CF	H
	. F	NZ, LFFX
	CF	L
	WF	NZ, LFX

GALL	FHESE
CALL	VELGI
CALL	LIFT
CALL	FLLOW
CALL	IISF
CALL	SITE
RET	

*THE RETN FUIITINE SIMFLY IISGOVERS WHETHER A RETIIRN TG *

* THE POWER IN TESTK FOUTINE WILL ENAELE THE TIMER TG EE*
*ETARTEI WITH THE RISING EIGE GF THE KWH INFIT SIGNAL
*ANI THIIS MEASURE THE FIILL CORRECT TIME.

RETN: IN A, (9) ;LGOK AT THE KWH SWITCH
EIT $\begin{array}{lll}\text { IN } & \text { O. } & \text { IIGOK AT } \\ \text { EINFGRMATIGIN IN EIT ZERO }\end{array}$
IF NZ,RETN ; IF STILL HIGH THEN WAIT UNTIL LOW
FET
;
;
;
;
;
;
; ねれそれそれそれ
; *TAELES*
- あれたれそれが
;
;
;

IH TTME $X X: X X: X X$
$\begin{array}{ll}\text { IE } & \text { 'EFFICIENC:Y (\%) } \\ \text { IEX. } X \text {, } & \end{array}$
LIE 'LIFT (FEET) $X X X$
LE: FLGW (EFS) $X . X X$,
;
;
;
- LIEFHAEE
ENII

[^0]:
 *THE FILLOWINIG KOITINE TESTS THE STATUS GF THE KWH * * SWITCH INFUTT TG GEE IF IT HAS EEEN FLAGGEII HIGH. IF * *IT HAS, THEN A TIMER (ETE1) IS STARTEI TO TIME EIGHT * *FEVRLUTIGNE IF THE METEF IISK. * * A 100 EECONL TIME-CIUT IS ALSO LIEED TG * *FREVENT AN IUERFLIW: THE TIMING IG AEORTEI IN THIE * KEASE ANI WOULLI FRGIAELY INLIIGATE THAT THE FIMF IS NOT * *IN IPEFATIGN. THE "FGIWER-IN" PART GF THE EFFICIENC:Y * *EDIATIGN IS GOMFITEI AS (B. GKH/TIME) ANII IS STGRELI IN * *RAM AS 100 TIMES THE ACTUAL VALUE IN LCIGATICIN "FCIWIN" *

