Utah State University DigitalCommons@USU

Reports

Utah Water Research Laboratory

January 1970

Subcritical Flow at Open Channel Structures Bridge Constructions

Gaylord V. Skogerboe

Lloyd H. Austin

Kuan-Tao Chang

Follow this and additional works at: https://digitalcommons.usu.edu/water_rep

Part of the Civil and Environmental Engineering Commons, and the Water Resource Management Commons

Recommended Citation

Skogerboe, Gaylord V.; Austin, Lloyd H.; and Chang, Kuan-Tao, "Subcritical Flow at Open Channel Structures Bridge Constructions" (1970). *Reports.* Paper 92. https://digitalcommons.usu.edu/water_rep/92

This Report is brought to you for free and open access by the Utah Water Research Laboratory at DigitalCommons@USU. It has been accepted for inclusion in Reports by an authorized administrator of DigitalCommons@USU. For more information, please contact digitalcommons@usu.edu.

Subcritical Flow at Open Channel Structures

BRIDGE CONSTRICTIONS

Prepared by

Gaylord V. Skogerboe Lloyd H. Austin Kuan-Tao Chang

OWRR Project No. B-018-UTAH Matching Grant Agreement No. 14-01-0001-1952 Investigation Period - July 1, 1968 to June 30, 1970

Partial technical completion report prepared for Office of Water Resources Research United States Department of the Interior

and

Utah Center for Water Resources Research Utah State University

> Utah Water Research Laboratory College of Engineering Utah State University Logan, Utah 84321

> > September 1970

ii

•

ABSTRACT

Subcritical Flow at Open Channel Structures BRIDGE CONSTRICTIONS

The techniques previously employed by the writers for describing subcritical flow at open channel constrictions have been found valid for analyzing nonuniform flow in open channels. Combining the nonuniform flow analysis with the submerged flow ratings for various bridge geometries has provided an analytical means for determining the backwater due to the bridge constriction under "abnormal stage - discharge" conditions.

Skogerboe, Gaylord V., Lloyd H. Austin, and Kuan-Tao Chang.

SUBCRITICAL FLOW AT OPEN CHANNEL STRUCTURES: BRIDGE CONSTRICTIONS. Partial Technical Completion Report to Office of Water Resources Research, Department of the Interior, and Utah Center for Water Resources Research, PRWG 71-2, Utah Water Research Laboratory, College of Engineering, Utah State University, Logan, Utah. September 1970.

KEYWORDS - backwater, bridges, *energy losses, head loss, hydraulic design, *hydraulic structures, nonuniform flow, *open channel flow, subcritical flow.

ACKNOWLEDGMENTS

The existance of this publication is based on support in part from funds provided by the United States Department of the Interior. Office of Water Resources Research, as authorized under the Water Resources Research Act of 1964, Public Law 88-379. The project providing the information used in this report is a part of the program of the Utah Center for Water Resources Research, Utah State University, Logan, Utah. Without the financial assistance of the Office of Water Resources Research, this research project could never have been undertaken. The authors are indeed grateful for the support given this project and have actively pursued the proposed research effort in order to prove this gratitude.

The cooperation of Mr. Gilbert Peterson in providing the technical service in operating and maintaining test facilities in the Utah Water Research Laboratory was very much appreciated. Mr. Ray S. Bennett was of considerable assistance in setting up test facilities and in collecting data. For editing and supervising the publication of this report, the authors are deeply indebted to Mrs. Donna Falkenborg, Editor, Utah Water Research Laboratory.

> Gaylord V. Skogerboe Lloyd H. Austin Kuan-Tao Chang

TABLE OF CONTENTS

Page

Introduction	1
Importance	1 3 4
Literature Review	5
Flow Characteristics	5 7 17 20
Subcritical Flow Analysis	23 29 31
Physical Layout	31 35
Channel Flow Resistance	37
Uniform Flow	37 41
Discharge at Bridge Constrictions	47 51
Uniform Flow and Free Flow 6 Uniform Flow and Submerged Flow 6 Nonuniform Flow and Free Flow 6 Nonuniform Flow and Submerged Flow 6 Special Cases 6	51 51 52 52 53
Summary	<u>5</u> 5
elected References	<u>i9</u>
Appendix	71

LIST OF FIGURES

•

Figure	·	Page
1	Definition sketch of simple vertical board constriction	6
2	Classification by Rehbock and Yarnell for flow through a contracted opening. (Taken from Yarnell, 1934b.)	8
3	Discharge coefficient for constriction of type I opening, vertical embankments and vertical abutments. (a) Base curve for coefficient of discharge; (b) variation of discharge coefficient with Froude number; (c) variation of discharge coefficient with entrance rounding	. 11
3	(Continued) (d) Variation of discharge coefficient with length of 45° wingwalls or chamfers; (e) variation of discharge coefficient with length of 60° wingwalls; (f) variation of discharge coefficient with length of 30° wingwalls; (g) variation of discharge coefficient with angularity. (Taken from Kindsvater, Carter, and Tracy, 1953.)	. 12
4	Variation of backwater ratio with contraction ratio and Manning's roughness coefficient. (Taken from Tracy and Carter, 1955.)	. 14
5	Variation of backwater ratio adjustment factor with discharge coefficient ratio. (Taken from Tracy and Carter, 1955.)	. 15
6	Variation of correction factor, Φ , with normal flow Froude number, F_n , and opening ratio, M, for vertical board model. (Taken from Liu, Bradley, and Plate, 1957.)	. 16
7	Comparison of experimental data with empirical backwater equation for vertical board model. (Taken from Liu, Bradley, and Plate, 1957.)	. 17
8	Generalized backwater ratio. (Taken from Biery and Delleur, 1962.)	. 18
9	Base backwater coefficient curves for wingwall abutments. (Taken from Bradley, 1960.)	. 19

LIST OF FIGURES (Continued)

Figure		P	age
10	Incremental backwater coefficient for piers. (Taken from Bradley, 1960.)		20
11	Incremental backwater coefficient for eccentricity. (Taken from Bradley, 1960.)		21
12	Incremental skew backwater coefficient for wingwall abutments. (Taken from Bradley, 1960.)		22
13	Definition sketch for abnormal stage-discharge condition. (Taken from Liu, Bradley, and Plate, 1957.)		22
14	Illustration of free flow (a,b) and submerged flow (c,d) in a constriction		24
15	Typical example of submerged flow and free flow rating curves for a constriction. (Taken from Skogerboe and Hyatt, 1967a.)		25
16	Typical discharge-energy loss curves for a constriction under subcritical flow conditions	•	26
17	Experimental tilting flume		31
18	Detailed drawing of tilting flume		32
19	Overflow tailgate used at tilting flume outlet		33
20	Roughness pattern used in tilting flume		34
21	Instrument carriage for tilting flume	•	35
22	Location of constrictions in tilting flume and cross-sections where flow depths were measured		36
23	Plot of discharge against A(8gRS _e) ^{1/2} for data collected by Ragan (1965). (Taken from Overton, 1967.)	-	38
24	Plot of discharge against $A'(8gR'S_e)^{\frac{1}{2}}$ for a roughness parameter of 0.030 feet. (Taken from Overton, 1967.)		39
25	Plots of discharge against A '(R 'S _e) ^{$\frac{1}{2}$} for tilting flume		40

LIST OF FIGURES (Continued)

Figure		Page
26	Definition sketch for datum in tilting flume	41
27	Plot of nonuniform flow data for tilting flume with no constriction	43
28	Energy ratio distribution for nonuniform flow in tilting flume	44
29	Theoretical relationship between opening ratio, M, and subcritical flow exponent, n_2 , for open channel constrictions	45
20		40
30	Free flow ratings for vertical board models	48
31	Free flow ratings for 60° wingwall abutment models \ldots \ldots	49
32	Submerged flow rating for vertical board bridge model with M = 0.245	50
33	Submerged flow rating for vertical board bridge model with M = 0.497	51
34	Submerged flow rating for vertical board bridge model with M = 0.733	52
35	Distribution of constant energy ratio for three vertical board bridge models	53
36	Variation of submerged flow exponent with opening ratio for vertical board and 60° wingwall abutment bridge models	54
37	Submerged flow rating for 60° wingwall abutment bridge model with M = 0.252	55
38	Submerged flow rating for 60° wingwall abutment bridge model with M = 0.502	56
39	Submerged flow rating for 60° wingwall abutment bridge model with M = 0.738	57
40	Distribution of constant energy ratio for three 60° wingwall abutment bridge models	58
41	Energy backwater for special cases of abnormal stage-discharge condition	64

NOMENCLATURE

Symbol

Definition

A ₁	area of flow including backwater at section 1
A _n	normal area at bridge site before the bridge is in place
A _{n1}	area of flow below normal water surface at section 1
A _{n2}	area of flow in constriction below normal water surface at section 2
A _p	flow area obstructed by piers
A ₄	area of flow at section 4 at which normal water surface is reestablished
a	area of flow in a subsection of a channel
В	width of channel
b	width of constriction
b '	minimum width of jet = $b C_c$
С	Chezy resistance coefficient; or free flow discharge coefficient
C _c	coefficient of contraction
C _K	Kindsvater and Carter's discharge coefficient
С' _К	Kindsvater discharge coefficient for standard condition
E ₁	specific energy at section 1
E4	specific energy at section 4
E _d	specific energy at section downstream from constriction
Eu	specific energy at section upstream from constriction
E _r	ratio of E_d/E_u or E_4/E_1
E _{rt}	transition energy ratio
e	eccentricity of bridge centerline from channel centerline
F	Froude number
F ₁	Froude number at section 1, $V/(gy_1)^{\frac{1}{2}}$

NOMENCLATURE (Continued)

Symbol Definition		
F _n	Froude number at normal depth, $V/(gy_n)^{\frac{1}{2}}$	
f	Darcy-Weisbach friction factor	
g	acceleration of gravity (32.2 ft./sec. ²)	
у ₁ *	total backwater or rise above normal depth at section 1	
h _L	head (energy) loss	
J	ratio of area obstructed by piers to gross area of bridge waterway below normal water surface at section 2, A_p/A_{n2}	
K [*]	total backwater coefficient, $K_b + \Delta K_p + \Delta K_e + \Delta K_s$	
K _b	backwater coefficient from base curve	
$\Delta \mathbf{K}_{\mathbf{p}}$	incremental backwater coefficient for piers	
$\Delta \mathbf{K}_{\mathbf{e}}$	incremental backwater coefficient for eccentricity	
ΔK_s	incremental backwater coefficient for skew	
L*	distance from point of maximum backwater to water surface on upstream side of roadway embankment, measured parallel to centerline of stream	
L ₁₋₂	distance from point of maximum backwater to upstream face of bridge deck	
L ₁₋₃	distance from point of maximum backwater to water surface on downstream side of roadway embankment	
L ₁₋₄	distance from point of maximum backwater to reestablishment of normal water surface downstream, measured along centerline of stream	
М	bridge opening ratio	
m	contraction ratio [1 - M]	
n	Manning roughness coefficient	
n ₁	exponent, in the free flow equation	
n ₂	submergence exponent in the denominator of the submerged flow equation	

NOMENCLATURE (Continued)

Symbol	Definition
Q	total discharge, cfs
$Q_{h_{L}^{\pm 1}}$	value of Q when $h_L = 1$
R	hydraulic radius
S	submergence; ratio of a downstream flow depth to an upstream flow depth
S _e	slope of energy line
S _t	transition submergence
V	flow velocity
V ₁	average velocity at section 1
V ₄	average velocity at section 4
V _d	average velocity in channel downstream from constriction
V _{n2}	average velocity in constriction for flow at normal depth, Q/An2
V _u	average velocity in channel upstream from constriction
у	flow depth
У 1	flow depth at section I
у ₃	flow depth at section III
У 4	flow depth at section IV
У _А	abnormal (nonuniform) stage at section II prior to placement of bridge constriction
У _с	critical depth
y _d	flow depth at a section downstream from constriction
y _n	normal flow depth
y _u	flow depth at a section upstream from constriction
σ	multiplication factor for influence of M on incremental backwater coefficient for piers
Φ	correlation coefficient between constriction and resistance backwater

INTRODUCTION

Importance

The importance of developing an understanding for the hydraulics of bridge constrictions is given by Bradley (1960):

Structural designers are well aware of economies which can be attained in the structural design of a bridge of a given overall length. The role of hydraulics in establishing what the length and vertical clearance of a bridge should be and even where it should be placed is less well understood. Confining the flood water unduly may cause excessive backwater with resultant damage to upstream land and improvements and overtopping of the roadway or may induce excessive scour endangering the bridge itself. Too long a bridge may cost far more in added capital investment than can be justified by the benefits obtained. Somewhere in between is the design which will be the most economical to the public over a long period of years. Finding that design is the ultimate goal of the bridge designer.

It is seldom economically feasible or necessary to bridge the entire width of a stream as it occurs at flood flow. Where conditions permit, approach embankments are extended out onto the flood plain to reduce costs, recognizing that, in so doing, the embankments will constrict the flow of the stream during flood stages. This is an acceptable practice. When carried to extremes, however, constriction of the flow can result in damage to bridges, costly maintenance, backwater damage suits, or even contribute to the complete loss of the bridge or the approach embankments.

Izzard (1955) has discussed the relative accuracy required by highway engineers in estimating the amount of backwater that can be expected at any particular bridge constriction:

> The following distinction between the objectives of the hydrologic engineer and those of the highway designer is important. The former is expected to achieve a fairly high standard of accuracy in his estimate of the flood discharge as computed from backwater, and that estimate is the end result. The highway engineer, however, reverses the computation and wants to know approximately how much backwater can be expected for floods of various frequencies whose peak discharge can probably be estimated no more accurately than plus or minus 20

percent (unless a gaging station having a long record happens to exist nearby). Obviously, then, the highway engineer does not have to work to the close tolerances expected of the engineer who is gaging streams.

Izzard's point is significant when considering model studies to predict prototype behavior. The hydraulic analysis of a model bridge constriction in the laboratory would be expected to have an accuracy within 5 percent. If the model hydraulic analysis is used to predict the hydraulic performance of a prototype structure, the prediction error will be more than 5 percent. In fact, it is not at all inconceivable that the accuracy in predicting the prototype discharge may be only within 20 percent.

Bridges are usually constructed so that the abutments constrict the river channel. Ofttimes, piers are used which also constrict the river. The effect of constricting the river channel is to raise the water surface upstream from the bridge, while at the same time the flow through the bridge constriction is accelerated. The backwater (y_1^*) is defined as the maximum water surface difference occurring upstream from the bridge at design flood discharge between the normal water surface in the river prior to construction of the bridge and the water surface profile after construction of the bridge. The backwater occurs a short distance upstream from the bridge, but the backwater curve may extend upstream for miles. The accelerating flow through the constriction results in higher velocities and greater turbulence, with a consequent increased potential for scouring the stream bed. The analysis of flow conditions wherein scour is taking place becomes extremely complex.

The usual analysis of backwater at bridge constrictions requires a knowledge of the boundary resistance and bed slope of the river channel in order that the normal flow depth can be computed from Manning's or Chezy's equation for the design flood discharge. If uniform flow does actually occur in the vicinity of the bridge site, then a unique stage-discharge relation exists at the bridge site. The hydraulic characteristics of the proposed bridge design are then superimposed upon the river flow conditions to arrive at the backwater which would be caused by construction of the bridge.

If nonuniform flow exists in the reach at the bridge site, then a unique stage-discharge relation does not exist. Instead, stage-fall-discharge relations are used to describe flow conditions in the river. Since normal (uniform) flow does not exist, the term "abnormal stage-discharge conditions" has been applied to this phenomena. Nonuniform flow at the bridge site is due to downstream control, examples of which might include flood conditions at the confluence of two streams, downstream reservoir or spillway regulation, influence of tides, or changes in vegetative or moss conditions in flat gradient channels. Abnormal stage-discharge conditions complicate the analysis of backwater due to bridge constrictions, as evidenced by statements of Bradley (1960):

> Estimating the design stage at a bridge site under abnormal conditions can be a complicated process requiring much individual judgement; thus the approach to the computation of backwater in this case has been treated strictly as an approximate solution. This is a case

where it is more important to understand the problem than to attempt precise computations.

In a preliminary report by the American Society of Civil Engineers (ASCE) (1966), 12 recommendations were presented regarding needed research on the hydraulics of bridged waterways. One of the recommendations stated that it may be possible to derive experimental data which would simplify the procedure for analyzing backwater due to bridge constrictions under abnormal stage-discharge conditions.

Background

The work reported herein represents a portion of the second phase of a research project involving subcritical (submerged) flow analysis at open channel constrictions. Both phases of this project have been supported by the Office of Water Resources Research (OWRR). A method of analyzing submerged (subcritical) flow was first developed for a trapezoidal flume by Hyatt (1965). Later studies verified the method of analysis for a rectangular flume (Skogerboe, Walker, and Robinson, 1965) and weirs (Skogerboe, Hyatt, and Austin, 1967). Because of these findings, along with limited analysis of data reported by other investigators, the writers were encouraged to extend the subcritical flow analysis to the so-called "abnormal stage-discharge condition" at bridge constrictions.

The original development of the parameters and relationships which describe the submerged flow condition came from a combination of dimensional analysis and empiricism. Further verification of the parameters developed in this manner was obtained by employing momentum relationships. This method of analysis can be applied directly in developing a stage-discharge relationship for each bridge constriction studied in the laboratory. In order to describe the backwater at such constrictions, it becomes necessary to incorporate an analysis of flow resistance in the main channel. Thus, the channel flow resistance must be related to the subcritical flow rating of the bridge constriction in order to compute the backwater caused by the bridge being placed in the river channel.

Many studies have been reported in the literature regarding the hydraulics of bridge constrictions. Most of the research has involved laboratory studies using a tilting flume. Typically, the tilting flume is placed at a particular slope, a certain value of discharge is set, and normal flow is established. Then, a bridge constriction is placed in the flume and measurements are made of flow depths upstream from the model bridge, through the bridge constriction, and downstream from the constriction. From these water surface profile measurements, the maximum backwater can be determined. The procedure is continued using a series of discharge values and then changing the flume bed slope until the desired number of slopes have also been investigated.

Unfortunately, only limited studies have been made to establish the backwater when downstream control exists. In laboratory studies, backwater effects under subcritical flow conditions (downstream control) could be established by adding another dimension to the typical studies described above. Namely, for each value of bed slope and discharge, the tailwater depth would have to be varied.

Purpose

The intent of this research effort was to develop a method of backwater analysis for bridge constrictions when abnormal stage-discharge conditions exist. The use of the term "abnormal" is somewhat unfortunate since this refers to subcritical flow existing at the bridge constriction, as well as upstream and downstream from the constriction. The subcritical flow techniques previously developed at Utah State University for flow measuring flumes and weirs can be applied in describing subcritical flow at bridge constrictions. The subcritical flow analysis was combined with the flow resistance analysis of the main channel without a constriction in order to arrive at the backwater analysis. Through laboratory studies, data were generated for a few geometrical forms of bridge constrictions, thereby allowing the development of a design methodology, or design criteria, for bridge constrictions operating under subcritical flow conditions throughout the structure.

LITERATURE REVIEW

Some of the early investigators of open channel flow through contractions, as well as backwater due to contractions and/or bridge piers, were Nagler (1918), Lane (1920), Rehbock (1921), and Yarnell (1934a, 1934b). This same subject material was further investigated by Kindsvater, Carter, and Tracy (1953), Kindsvater and Carter (1955), Tracy and Carter (1955), Liu, Bradley, and Plate (1957), and Biery and Delleur (1962).

Flow Characteristics

The flow characteristics at bridge constrictions have been described by Kindsvater and Carter (1955), Liu, Bradley, and Plate (1957), and by the Task Committee on Hydraulics of Bridges of ASCE (1966). The following material has been extracted primarily from these sources.

A channel constriction may be defined as a local change in cross-section which produces a variation in flow. An open channel constriction, such as a highway bridge crossing, is an example of a transition of this type. The flow through such constrictions is most often in the tranquil range, and produces gradually varied channel flow far upstream and downstream, although rapidly varied flow occurs at the constriction. The effect of the constriction on the water surface profile, both upstream and downstream, is conveniently measured with respect to the normal water surface profile, which is the water surface in the absence of the constriction under uniform flow conditions. Upstream from the constriction, an M1 backwater profile occurs. In this region, the velocities, and consequently the rate of loss of flow energy, are less than for normal flow conditions. The backwater effect may extend for a considerable distance in the upstream direction. At some upstream point, the constricted and the normal water surface profiles practically coincide as shown at section 0 in Fig. 1.

Near the constriction (Fig. 1), the central body of water begins to be accelerated at section I, whereas deceleration occurs along the outer boundaries, and a separation zone (zone Ia) is formed in the corners upstream from the constriction. At the constriction, as the flow is accelerated, the water surface profile falls rapidly between sections II and III, and the jet stream contracts to a width somewhat less than the width of the opening. The spaces between the jet and the constriction boundaries are occupied by eddying water (zone IIIa). Immediately downstream from the constriction, the expansion process begins and continues until the normal regime of flow has been reestablished in the full-width channel downstream. At that point, the normal and constricted profiles again coincide as shown at section IV. The downstream reach between

sections III and IV is one of decelerated flow in which the average velocities and energy losses are greater than for the normal case because of the additional turbulent mixing resulting from the expansion process. In the whole backwater reach (the reach between the two points at which the normal and constricted profiles coincide, which is the reach between sections 0 and IV) the total energy loss is the same as that for normal flow.

Figure 1. Definition sketch of simple vertical board constriction.

The effect of the constriction is to cause a redistribution of the energy of the flow system over the backwater reach between sections 0 and IV. At the constriction, the available energy is greater than the frictional resistance under normal flow conditions by an amount required for the increased losses in the downstream reach. The increase in energy is a result of smaller boundary drag loss (as compared with normal uniform flow conditions) upstream from the constriction. In the downstream reach, the increased energy losses when compared with frictional resistance under normal flow conditions, are due primarily to the increased turbulent mixing caused by the diffusion of the jet as it expands from section III to section IV. These energy losses are a function of discharge, contraction ratio, and constriction geometry. Therefore, these losses may be decreased by a decrease in discharge, a smaller contraction ratio, or by streamlining the abutment and constriction geometry to more nearly allow the jet to occupy the full width of the constricted opening. In general, the same statement is applicable to the backwater caused by the constriction.

Methods of Approach

Although it may be desirable in some cases to predict the complete longitudinal profile of the constricted flow throughout the backwater reach, the highway engineer is usually concerned with the maximum upstream water surface change produced by the constriction, and it is to the definition of this latter quantity that the greater part of the backwater studies to date have been devoted. Thus far, general approaches to the problem are found in the literature. The first is a routing procedure based on the equations of continuity, momentum, and energy. Another approach follows from laboratory measurements upon model structures, which is the technique employed by the writers on the research reported herein. Consequently, the literature review has been limited to studies using model structures.

The use of laboratory model studies has yielded a more direct attack on the backwater problem than the routing procedure. These studies have had as their objective the measurement and subsequent generalization of the maximum upstream difference between the normal and the constricted longitudinal water surface profiles, which usually occurs a short distance upstream from the constriction. Considerable attention has been directed, also, to the influence of piers and piling placed in the constricted section as supports for bridge structures at highway crossings.

Laboratory Model Studies

Early investigations by Nagler (1918), Lane (1920), and Yarnell (1934a, 1934b) were concerned with developing coefficients for constriction discharge formulas proposed by d'Aubuisson and Weisbach. In addition, Yarnell was concerned with the work reported by Rehbock (1921). Nagler and Yarnell studied the backwater effects of bridge piers and pile trestles, while Lane was concerned with constricting the sides of the channel, as would be the case for

many bridge abutments. Limitations in experimental design, along with certain assumptions made in the analyses, produced little information of a general nature.

Yarnell (1934b) compared Rehbock's flow classification system involving three flow classes with a two-class system used by Yarnell (Fig. 2). The system

Figure 2. Classification by Rehbock and Yarnell for flow through a contracted opening. (Taken from Yarnell, 1934b.)

used by Rehbock (1921) is strictly empirical, whereas Yarnell's system has physical meaning. For example, the classification "Iowa Class B" is for the situation wherein critical depth occurs in the constriction, whereas "Iowa Class A" indicates that the flow throughout the constriction is tranquil, or subcritical (flow depth is everywhere greater than critical depth). The backwater that occurs under critical depth conditions is referred to as "contraction backwater," whereas the backwater that occurs when subcritical flow exists in the constriction is called "resistance backwater." Contraction backwater is not affected by downstream conditions. The resistance backwater is primarily a function of the energy losses occurring in the flow expansion downstream from the constriction.

Contraction backwater is the easiest case to analyze, since critical depth occurs in the constriction. Normally, supercritical flow conditions at a bridge would be avoided, because a hydraulic jump would occur downstream from the bridge and the potential for considerable scouring of the river bed would exist, thereby possibly endangering the safety of the bridge if the abutment and/or pier foundations have been constructed in the river bed.

The most common situation encountered at bridge constrictions is tranquil flow. Investigations in recent years regarding backwater at bridges have been concerned mostly with superimposing a constriction upon normal (uniform) flow occurring in an open channel.

Kindsvater and Carter (1955) studied the hydraulics of bridge constrictions in the laboratory at Georgia Institute of Technology using a horizontal steel flume 18 inches deep, 10 feet wide and 21 feet long. From laboratory investigations, a method of estimating the discharge through a contracted section was proposed. A combination of an energy equation and continuity equation (from Fig. 1) results in the discharge equation

$$Q = C_{K} by_{3} \sqrt{2g[(y_{1} - y_{3}) - E_{f} + \alpha_{1} v_{1} \frac{2}{2}/2g]} \dots (1)$$

in which

Q	=	discharge in cfs;
CK	=	Kindsvater's discharge coefficient;
b	=	width of the contracted opening;
У 1	=	flow depth at section I;
У 3	=	flow depth at section III;
g	=	gravitational acceleration;
^α 1 ^V 1 ²	= /	weighted average velocity head in feet at section I, where V_1 is the average velocity at section I, and α_1 is a coefficient which
2g		takes into account the variation in velocity in section I; and
Ε _f	=	the head loss in feet due to friction between sections I and III.

By the aid of dimensional analysis, the discharge coefficient is found to be a function of the following variables

$$C_{K} = f[F, m, \frac{y_{3}}{b}, \frac{L}{b}, e, \phi, abutment type]_{...(2)}$$

in which

$$F = \frac{Q}{by_3 \sqrt{gy_3}} \qquad (3)$$

which is a Froude number

m	=	1 - b/B, which is called the contraction ratio;
L	=	length equivalent to the contracted opening in the flow direction:
e	=	eccentricity of the opening;
φ	=	skew angle of the abutment with respect to the flow.

In case of an irregular, natural channel, the contraction ratio m can be evaluated from

in which K_b is the conveyance of that part of the approach channel which occupies an area of width b, and K_B is the conveyance of the total section. Conveyance is defined in terms of the Manning formula as

$$K = \frac{1.49}{n} A R^{2/3}$$
 ... (5)

in which A is the area, R is the hydraulic radius, and n is the Manning's roughness factor.

By ignoring the ratio y_3/b , in Eq. 2, which was shown by experiment to be insignificant, Kindsvater and Carter defined a standard condition such that F = 0.5, e = 1, $\phi = 0^\circ$ with the abutment type vertical-faced with square-edges. From the experimental data for the standard condition, a family of base curves showing the relationship between C_K , m, and L/b was constructed (Fig. 3). If the discharge coefficient for the standard condition is designated as C'_K , the value of C'_K should be adjusted for the effects of F, e, ϕ and abutment type. Such an adjustment value of discharge coefficient can be substituted into Eq. 1 for computing the discharge. A set of figures for the adjustment of C'_K is given in Fig. 3 for a simple vertical board (type I) constriction.

To apply this method for computing discharge, the stages of the flow in the vicinity of the constriction must be obtained from field measurements, in addition to such information as contraction ratio and abutment geometry. This process of computing the discharge is opposite to the one of computing the maximum backwater. In the later case, the stages of the flow in the vicinity of the constriction are unknown, but the discharge, which is a design discharge for a certain flood frequency, is always given. In Eq. 1, if Q and b are known and if C_K can be estimated, the remainder of the terms which represent the flow stages

Figure 3. Discharge coefficient for constriction of type I opening, vertical embankments and vertical abutments. (a) Base curve for coefficients of discharge; (b) variation of discharge coefficient with Froude number; (c) variation of discharge coefficient with entrance rounding.

Figure 3. (Continued) (d) Variation of discharge coefficient with length of 45° wingwalls or chamfers; (e) variation of discharge coefficient with length of 60° wingwalls; (f) variation of discharge coefficient with length of 30° wingwalls; (g) variation of discharge coefficient with angularity. (Taken from Kindsvater, Carter, and Tracy, 1953.)

can be expressed as a function of the discharge and the discharge coefficient. Thus, a laboratory investigation intended for determining the discharge characteristics for an open-channel constriction can be adopted to determine the maximum backwater as well, or vice versa (Liu, Bradley, and Plate, 1957).

By extending the investigation of Kindsvater and Carter (1955), Tracy and Carter (1955) developed a method for computing the maximum backwater. The maximum backwater, y_1^* measured upstream from the constriction inlet at a distance, b, can be divided by Δy , which is the difference in water surface elevation between section I and section III for the constricted channel as shown in Fig. 1. The ratio $y_1^*/\Delta y$, according to Tracy and Carter, has been shown by laboratory data to be a function primarily of the percentage of channel contraction. The influences of bed roughness and constriction geometry are secondary. Variables characteristic of the flow, such as the Froude number, depth, and constriction length are largely unimportant in their effect on this

ratio. The variation of the dimensionless backwater ratio, $[y_1^*/\Delta y]_{base}$, with the contraction ratio m, and the Manning's roughness factor n, is shown in Fig. 4, in which $[y_1^*/\Delta y]_{base}$ is the ratio $y_1^*/\Delta y$ for a channel having a vertical-faced constriction with square-edged abutments (simple vertical board model).

Letting

$$K_{c} = \frac{y_{1}^{*}/\Delta y}{[y_{1}^{*}/\Delta h]_{base}} \qquad (6)$$

in which $y_1^*/\Delta y$ is for any type of abutments, it was found that K_c varies with the contraction ratio and the ratio of existing discharge coefficient C_K to the discharge coefficient C_K' for the base condition (Fig. 4). The discharge coefficient C_K is Kindsvater's discharge coefficient which was mentioned previously.

Tracy and Carter claimed that the quantity $\triangle y$ can be computed from

$$\Delta y = \frac{Q^2}{2gb^2y_3^2c_K^2} - \alpha_1 \frac{v_1^2}{2g} + E_f \qquad (7)$$

In application, $y_1 * / \Delta y$ is selected from Fig. 4. The ratio $y_1 * / \Delta y$ is then adjusted for a constriction-geometry effect by the factor K_c obtained from Fig. 5. The adjusted ratio $y_1 * / \Delta y$ may be multiplied by Δy to yield the value of $y_1 * .$

The data used by Tracy and Carter were obtained in a channel having a level bottom. The difficulty of using the data from a level channel is the lack of standards representing the unobstructed flow conditions, because in a given channel the velocity, the depth, and the energy gradient of the unobstructed flow vary from section to section for a given discharge (which means that the flow is nonuniform). According to Liu, Bradley, and Plate (1957) such standards are in general essential for both theoretical and laboratory investigation.

Thus, Liu, Bradley, and Plate at Colorado State University undertook hydraulic studies of model bridge constrictions in tilting flumes having widths of 4 feet and 7.9 feet. For most of the experiments, the model was placed in the flume after uniform flow had been established. Limited studies of the abnormal stage-discharge condition were conducted. In addition to studying various geometries of bridge models, the roughness of the flume bed was varied in order to establish the effects of roughness upon backwater.

Liu, Bradley, and Plate (1957) used a combination of the continuity and energy equations to arrive at a general equation for the maximum backwater.

$$\left[\frac{y_1}{y_n}\right]^3 = \frac{3}{2} F_n^2 \left[\frac{9\Phi}{4M^2}\right] - 1 \cdots \cdots \cdots (8)$$

Figure 4. Variation of backwater ratio with contraction ratio and Manning's roughness coefficient. (Taken from Tracy and Carter, 1955.)

Figure 5. Variation of backwater ratio adjustment factor with discharge coefficient ratio. (Taken from Tracy and Carter, 1955.)

The coefficient, ϕ , serves a three-fold purpose:

- 1. The coefficient corrects for nonuniform velocity distribution at sections I and II (Fig. 1), as well as nonhydrostatic pressure distribution at section II.
- 2. The coefficient corrects for the deviation of the actual flow conditions from critical depth (free flow) conditions at the contraction inlet.
- 3. The coefficient corrects for certain approximations due to neglecting terms of higher order in the derivation of Eq. 8, which is only important when M > 0.8.

The variation of ϕ with the uniform flow Froude number, F_n , and the opening ratio, M, is shown in Fig. 6 for the vertical board (VB) model studied by Liu, Bradley, and Plate (1957). The coefficient, ϕ , approaches unity for all

Figure 6. Variation of correction factor, Φ , with normal flow Froude number, F_n , and opening ratio, M, for vertical board model. (Taken from Liu, Bradley, and Plate, 1957.)

values of M when F_n approaches unity, whereas Φ approaches infinity for all values of M as F_n approaches zero. From a plot of actual data for the vertical board model (Fig. 7), along with a dimensional analysis of the backwater phenomena, an empirical backwater equation was developed.

$$\left[\frac{y_1}{y_n}\right]^3 = 4.48 F_n^2 \left[\frac{1}{M^2} - \frac{2}{3}(2.5 - M)\right] + 1 ... (9)$$

By combining Eqs. 8 and 9, the relationship for ϕ can be obtained.

Biery and Delleur (1962) investigated the backwater due to single span arch bridge constrictions. They compared the results of their hydraulic tests with the data collected at Colorado State University for the vertical board model. A

Figure 7. Comparison of experimental data with empirical backwater equation for vertical board model. (Taken from Liu, Bradley, and Plate, 1957.)

comparison of backwater data for various bridge geometries is shown in Fig. 8. A generalized empirical equation for the backwater ratio can be written as

where M^{\dagger} is the channel opening ratio, which is b/B for rectangular constrictions, but is a function of flow depth for arch bridges.

Design Procedure

Bradley (1960) compiled the results of the Colorado State University studies (Liu, Bradley, and Plate, 1957) into a design manual on "Hydraulics of

Figure 8. Generalized backwater ratio. (Taken from Biery and Delleur, 1962.)

Bridge Waterways." The general equation used for computing the backwater is

$$y_1^* = K^* \frac{v_{n2}^2}{2g} + \alpha_1 \left[\left(\frac{A_{n2}}{A_4} \right)^2 - \left(\frac{A_{n2}}{A_1} \right)^2 \right] \frac{v_{n2}^2}{2g}$$
 (12)

where K* is the total backwater coefficient, A $_{n2}$ is the cross-sectional flow area in the constriction at normal stage (A $_{n2}$ = by $_n$ for rectangular constrictions), and V $_{n2}$ = Q/A $_{n2}$. As a first approximation of the backwater, y $_1$ *, the first term in Eq. 12 is used.

After the first approximation of y_1^* has been computed from Eq. 13, the value of A_1 (which will also be approximate) can be computed. Then, a second approximation of y_1^* can be computed using Eq. 12. By trial and error, the backwater can be evaluated. The total backwater coefficient is the sum of the base coefficient, K_b , which is obtained from Fig. 9 for wingwall abutments; the incremental backwater coefficient for piers, ΔK_p , which is obtained from Fig. 10; the incremental backwater coefficient for eccentricity, ΔK_e , which is obtained from Fig. 11; and the incremental backwater coefficient for skew, ΔK_s , which is shown in Fig. 12 for wingwall abutments. Thus, the expression for K* becomes

Figure 9. Base backwater coefficient curves for wingwall abutments. (Taken from Bradley, 1960.)

Figure 10. Incremental backwater coefficient for piers. (Taken from Bradley, 1960.)

Abnormal Stage-Discharge Condition

A design procedure for determining the backwater at bridge constrictions when abnormal stage-discharge conditions exist in the main channel has been developed by Liu, Bradley, and Plate (1957). This same design procedure has

Figure 11. Incremental backwater coefficient for eccentricity. (Taken from Bradley, 1960.)

also been utilized in the design manual compiled by Bradley (1960). A definition sketch for the abnormal stage-discharge condition is shown in Fig. 13. The abnormal stage used in the design procedure is the depth of flow, y_{AY} that would occur in the river channel at section II prior to construction of the bridge. The subscript A has been used in the analysis to signify the abnormal condition.

The equation used to compute the maximum backwater at section I under abnormal stage is

in which $v_{2A} = Q/A_{2A}$ and A_{2A} is the cross-sectional flow area in the constriction for abnormal stage ($A_{2A} = by_A$ for rectangular bridge constrictions). In order to determine the total backwater coefficient, K*, Eq. 14 is used in conjunction with Figs. 9, 10, 11, and 12. Because the solution for backwater under abnormal stage conditions is only a rough approximation, the terms involving the difference in kinetic energy between sections I and IV used in Eq. 12 have been omitted from Eq. 15.

Figure 12. Incremental skew backwater coefficient for wingwall abutments. (Taken from Bradley, 1960.)

Figure 13. Definition sketch for abnormal stage-discharge condition. (Taken from Liu, Bradley, and Plate, 1957.)

SUBCRITICAL FLOW ANALYSIS

Techniques for analyzing subcritical flow at side constrictions (e.g. flow measuring flumes) and overflow structures (e.g. weirs) have been reported by Skogerboe and Hyatt (1967a, 1967b). Discharge ratings for either flumes or weirs have been developed for both free flow and submerged flow. The distinguishing difference between the two flow conditions is the occurrence of critical depth, usually near the weir crest or inlet to the flume throat. When free flow conditions exist, the flow is subcritical upstream from the constriction (depth of flow greater than critical depth) whereas in the constriction the flow is supercritical (depth of flow less than critical depth). With supercritical flow occurring in the constriction, a change in flow depth downstream from the constriction will not change the depth of flow upstream from the constriction. This critical flow control requires only the measurement of a flow depth at some location upstream from the section having critical depth in order to determine the discharge.

Submerged (subcritical) flow conditions exist when the downstream, or tailwater, depth is raised to such a level that the flow depths at every point through the constriction become greater than critical depth. Under submerged flow conditions, a change in the tailwater depth also affects the upstream depth. Thus, a discharge rating for the constriction requires that two flow depths be measured, one upstream and one downstream from the constriction.

The condition at which the flow changes from free flow to submerged flow is a transition state that is unstable. The value of submergence, S (where submergence is defined as the ratio of a downstream flow depth divided by an upstream flow depth usually expressed as a percentage) at which this condition occurs is referred to as the transition submergence, S_t . This change from supercritical flow in the constriction to subcritical flow signifies that the Froude number is equal to 1 at a single flow cross section (the cross section at which critical depth occurs), and for every other cross section upstream the Froude number is less than 1 (subcritical flow). At the transition from free flow to submerged flow, the discharge equations for the two flow conditions should give the same flow. Consequently, if the discharge equations are known, the transition submergence can be obtained by setting the free flow and submerged flow equations equal to one another.

Free flow, submerged flow, and the transition submergence are illustrated in Fig. 14 for a simple side constriction. Water surface profile a represents free flow conditions, whereas profile b illustrates the transition submergence condition, and water surface profiles c and d portray submerged flow. Profile a

Figure 14. Illustration of free flow (a,b) and submerged flow (c,d) in a constriction.

represents a low submergence resulting in a jetting action at the constriction outlet. Profile b represents the transition from free flow to submerged flow, and the difference between profiles a and b illustrates the wide range of tailwater depths that still result in critical-depth flow in the constriction. Water surface profiles c and d represent submerged flow conditions with profile c having a value of submergence slightly greater than the transition submergence (profile b), whereas profile d illustrates an even higher degree of submergence. Of particular importance is the change in upstream flow depth under subcritical conditions.

The free flow discharge equation can be written as

in which y_u is a flow depth upstream from the constriction, C is the free flow coefficient, and n_1 is an exponent primarily dependent upon the constriction geometry (e.g. n_1 is approximately equal to 3/2 for rectangular constrictions). The above equation will plot as a straight line on logarithmic paper.

The submerged flow discharge equation (Skogerboe, Hyatt, and Eggleston, 1967) can be written as

in which y_{d} is a flow depth downstream from the constriction, S is the submergence (S = y_{d}/y_{u}), C₁ and C₂ are coefficients, and n₂ is the submergence exponent. Usually, C₂ is very small and can be taken as zero. The exponent n₂ varies between 1 and 3/2 for rectangular constrictions (n₂ approaches 1 for fully constricted (M approaches 0) channels and n₂ approaches 3/2 for channels having no constriction). The submerged flow equation can be plotted as a family of straight lines on logarithmic paper, where Q is the ordinate, $y_{u} \cdot y_{d}$ is the abscissa, and each straight line represents a particular value of the submergence, S. A typical submerged flow plot (y₁ upstream flow depth and y₄ downstream flow depth) is shown in Fig. 15. The line in Fig. 15, which represents the free flow equation, corresponds to the transition submergence, S_t.

Figure 15. Typical example of submerged flow and free flow rating curves for a constriction. (Taken from Skogerboe and Hyatt, 1967a.)

The technique shown above for analyzing submerged flow at open channel constrictions can be modified in order to analyze energy losses due to constrictions. This is accomplished by substituting E_u and E_d for y_u and y_d in Eqs. 16 and 17, where E_u and E_d are the specific energies at locations upstream and downstream from the constriction. Thus, the abscissa of a submerged flow plot would become $E_u - E_d$, which is the energy loss, or head loss, h_L . A typical family of discharge-energy loss curves for a constriction is shown in Fig. 16.

Figure 16. Typical discharge-energy loss curves for a constriction under subcritical flow conditions.

In designing a constriction to be placed in an open channel which will be used as a flow measuring device, the hydraulic engineer would prefer to constrict the channel sufficiently to insure free flow throughout the entire range of expected discharges. In designing a bridge constriction, the hydraulic engineer prefers to limit the amount of channel constriction in order to avoid having supercritical flow in the constriction, which would result in an increased scour potential at the bridge.

If a river channel is sufficiently constricted by the bridge abutments, critical depth will occur in the constriction, thereby resulting in free flow conditions and the backwater will be called "contraction backwater." The amount of river constriction caused by the construction of a bridge can be limited to insure subcritical flow through the bridged waterway. For subcritical flow, two flow conditions are described in the literature. The most common subcritical flow condition referred to in the literature regarding bridge constrictions is the "resistance backwater," wherein a unique stage-discharge relation exists for the constriction. The "abnormal stage-discharge condition" referred to in the literature is comparable to the usual submerged flow condition encountered with flow measuring devices. In fact, the "resistance backwater" condition is a special case of the "abnormal stage-discharge condition." For this abnormal condition, a unique stage- discharge rating does not exist except in the limiting case. Instead, a stage-fall-discharge rating, or a submerged flow rating, must be developed for the constriction in order to evaluate the discharge.

ł

28

.

EXPERIMENTAL DESIGN

As mentioned earlier, the intent of this research effort was to develop a method of backwater analysis for bridge constrictions when abnormal stagedischarge conditions exist. Basically, the technique to be developed will incorporate the subcritical flow analysis previously developed at Utah State University (Skogerboe and Hyatt, 1967a, 1967b) for flow measuring flumes and weirs. In order to compute the backwater caused by bridge constrictions, an analysis of flow resistance will be necessary for the main channel without a constriction under both uniform and nonuniform flow conditions.

Since the investigations at Colorado State University (Liu, Bradley, and Plate, 1957) regarding backwater due to bridge constrictions represent the most recent and extensive analysis available, it was decided that certain portions of their studies should be duplicated. Then, the investigations and analysis of abnormal stage-discharge conditions could be added. By using some of the same bridge constriction models studied by Colorado State University, there was the advantage of possibly being able to project the backwater analysis developed from a few bridge constriction geometries under abnormal stage-discharge conditions to all of the bridge geometries investigated by Liu, Bradley, and Plate (1957). In addition, it was necessary to duplicate the same roughness pattern placed on the flume bed.

A tilting flume is necessary in order to evaluate backwater under uniform flow conditions. After placing the roughness pattern used in these studies, the tilting flume could be placed at a particular slope and uniform flow established for a series of discharge values. This procedure could be accomplished for a number of bed slopes. The flow resistance analysis reported by Overton (1967) could be incorporated in developing the relationship between discharge, Q, and normal flow depth, y_n .

In order to evaluate backwater due to bridge constrictions under abnormal stage-discharge conditions, it becomes necessary to develop the nonuniform flow relationship for the tilting flume without any constriction (zero constriction case). This can be accomplished by using a constant discharge, but varying the tailgate and consequently, increasing the depth of flow. This procedure can be repeated for a series of discharge values. Also, data can be collected for a number of bed slopes. In all cases under this investigation, the nonuniform flow depth is greater than the normal flow depth. Thus, all of the water surface profiles for nonuniform flow are M1 backwater curves.

The bridge constrictions selected for study were the vertical board, which is frequently referred to as a simple normal crossing by Liu, Bradley, and Plate (1957), and 60° wingwall abutments. For each constriction geometry, the width of opening was varied to give opening ratios, M (M = b/B for rectangular constrictions where b is the constriction width and B is the channel width), of approximately 1/4, 1/2, and 3/4. Consequently, 6 constrictions would be studied--3 vertical board bridge models and 3 60° wingwall bridge models. In each case, both free flow and submerged flow ratings would be developed for the same series of bed slopes, S_b, used in developing uniform and nonuniform flow relationships for the tilting flume without a constriction (zero constriction case).

A comparison of the free flow rating for a constriction with uniform flow conditions in the main channel yields the "contraction backwater," whereas a comparison of the submerged flow rating with uniform flow would be called the "resistance backwater." Whenever the backwater is computed using nonuniform flow conditions as a base, the term "abnormal stage-discharge backwater" would be used, but it should be remembered that either free flow or submerged flow conditions could exist at the constriction. Therefore, the backwater analysis would be expected to be different depending upon whether or not free flow or submerged flow occurred at the bridge.

EXPERIMENTAL FACILITIES

Physical Layout

The experimental tilting flume used for studying the application of subcritical flow techniques to backwater analysis at bridge constrictions is shown in Fig. 17. The flume is located in the Utah Water Research Laboratory at Utah State University. Detail regarding the layout and operation of the flume is shown in Fig. 18.

Figure 17. Experimental tilting flume.

Figure 18. Detailed drawing of tilting flume.

The water supply for the laboratory is obtained from a small dam and reservoir located on the Logan River a short distance upstream. The water is conveyed from the reservoir to the laboratory through a 48-inch pipeline. Branches from this main pipeline convey water to the headbox of the tilting flume. The amount of discharge entering the headbox is controlled by a gate valve (Fig. 18).

The geometry of the headbox, along with the baffle arrangement in the headbox, insures that the flow pattern will be established in a short distance downstream from the flume inlet. The tilting flume is 24 feet long, 3.02 feet wide, and approximately 2.5 feet deep. The depth of flow in the flume can be controlled by an overflow tailgate located at the flume exit. The tailgate, which is shown in Fig. 19, is operated manually by a threaded rod connected to the gate.

Figure 19. Overflow tailgate used at tilting flume outlet.

The water passing over the tailgate drops into a concrete channel recessed in the laboratory floor (Fig. 18). The concrete channel conveys the water to the weighing tanks. The water is then discharged from the weighing tanks and is conveyed back to the Logan River.

The bed slope of the flume can be adjusted by means of the scissor jack arrangement shown in Fig. 18. The upstream end of the tilting flume pivots, while the downstream end of the flume is raised or lowered by the electric motor operation of the jack.

An artificial roughness was installed on the flume floor which was similar to the roughness used by Liu, Bradley, and Plate (1957). The roughness pattern was constructed from 1/4 inch diameter smooth rod. The roughness pattern, which is shown in Fig. 20, has a 6 inch longitudinal spacing and a 9 inch transverse (perpendicular to the direction of flow) spacing. The longitudinal rods rest directly on the flume floor. Consequently, the top of the transverse bar is 1/2 inch above the flume bottom. The roughness pattern was welded on the downstream side of each joint and anchored to the flume bottom by bolting small straps of metal over the rods.

Figure 20. Roughness pattern used in tilting flumes.

Instrumentation

The data collected during the studies reported herein consisted of the bed slope, flow depths along the flume length, channel width, bridge constriction shape (whether vertical board or 60° wingwall), constriction width, and discharge.

By taking into account the flume length, a vertical scale could be located at the downstream end of the flume which indicated the bed slope. The slope scale was particularly useful since fixed values of bed slope were used in conducting the experiments. The predetermined bed slopes of 0.0012, 0.0020, 0.0032, and 0.0050 could be quickly set using this method.

The measurement of flow depths along the flume length required a considerable amount of effort. The tilting flume is equipped with brass rods located along the top of each flume wall, which serve as rails for the instrument carriage shown in Fig. 21. The carriage is equipped with three point gages which are located at the 1/4, 1/2, and 3/4 points across the flume width. In order to establish water surface profiles, flow depth measurements were collected every 2 feet along the 24-foot length of the flume. At each cross section, all three point gages were used to measure both the flume bottom and water surface, except when a bridge constriction prevented the use of the two outside point gages. When a constriction was located in the flume, up to six additional flow depth measurements were collected depending upon the amount of data needed to describe the water surface profile in the immediate vicinity of the constriction. The cross-sections where flow depth measurements were collected, as well as the location of the six model bridge constrictions, are shown in Fig. 22.

Figure 21. Instrument carriage for tilting flume.

In constructing the vertical board and 60° wingwall model bridges, an attempt was made to have opening ratios of 1/4, 1/2, and 3/4. After constriction was placed in the tilting flumes, the width was carefully measured throughout the height of the constriction. In each case, the opening ratio differed slightly from the desired values.

As previously indicated, the discharge was measured by means of weighing tanks. The weighing tanks are operated automatically and the water can be continually switched from one tank to the other. The flow rate was measured several times during each run.

Figure 22. Location of constrictions in tilting flume and cross-sections where flow depths were measured.

CHANNEL FLOW RESISTANCE

Uniform Flow

Overton (1967) has used data collected by Ragan (1965) to illustrate a technique for flow resistance analysis. The data reported by Ragan were obtained using a flume 72 feet long and 8 inches square constructed of sheet aluminum and artificially roughened with 1/4 inch angle aluminum cemented to the sides and bottom of the flume at 1-foot intervals. The slope of the flume was 0.2 percent for all seven steady uniform flow runs.

The Chezy equation can be written as

where C is the Chezy resistance coefficient, A is the cross-sectional area of flow, R is the hydraulic radius, and S_e is the slope of the energy line (which is equal to the bed slope for uniform flow). The Darcy-Weisbach equation can be written as

where f is the Darcy-Weisbach resistance coefficient. Thus, the Chezy and Darcy-Weisbach resistance coefficients can be related by the equation

If the discharge is plotted against $A(RS_e)^{\frac{1}{2}}$ or $A(8gRS_e)^{\frac{1}{2}}$, a linear relationship should result where the slope is equal to C or $(1/f)^{\frac{1}{2}}$, respectively. The discharge has been plotted against $A(8gRS_e)^{\frac{1}{2}}$ in Fig. 23 using the data collected by Ragan (1965). A linear regression was performed on these data by Overton (1967) and the following equation was obtained.

$$Q = 2.67 \text{ A}(8 \text{gRS}_{e})^{1/2} - 0.0075 \dots (21)$$

As shown in Fig. 23, the regression line did not intersect the origin. Instead, a negative regression intercept of 0.0075 resulted. The existence of this intercept suggests that a diminished cross-sectional flow area, obtained by referencing flow depths to some statistically determined height above the flume floor, would shift the line through the origin. This height or roughness parameter may be viewed as a forcing function to affect the proportionality in the Chezy and Darcy-Weisbach flow resistance formulas (Overton, 1967). The roughness parameter is apparently related to roughness length in a manner similar to the Karman-Prandtl logarithmic velocity profile intercept (Overton, 1967).

Figure 23. Plot of discharge against A(8gRS_e)^{1/2} for data collected by Ragan (1965). (Taken from Overton, 1967.)

¥

By introducing a roughness parameter, y_s , which becomes a correction to the effective flow depth, the effective flow area, A^{\prime}, and effective hydraulic radius, R^{\prime}, become

where B is the channel width and y is the flow depth under uniform flow conditions measured from the channel bed to the water surface. Using an iterative procedure for the Ragan data, Overton (1967) determined that the

roughness parameter was equal to 0.030 feet and the flow resistance equation becomes

$$Q = 2.84 \text{ A'} (8gR' S_e) 1/2 \dots (24)$$

Using the calculated value of the roughness parameter ($y_s = 0.030$ feet) in Eqs. 22 and 23, which are then inserted into Eq. 24, a constant resistance coefficient resulted as shown in Fig. 24. The calculated roughness parameter was of the same order of magnitude as the height of the roughness elements in the flume, since the 1/4 inch aluminum roughness elements were 0.0208 feet high and y_s was 0.030 feet.

The flow resistance technique portrayed in Figs. 23 and 24 was utilized in analyzing the uniform flow data collected in the tilting flume. Plots were

Figure 24. Plot of discharge against A' (8gR' S_e)^{1/2} for a roughness parameter of 0.030 feet. (Taken from Overton, 1967.)

prepared for each of the four slopes used as a part of this study, namely 0.0012, 0.0020, 0.0032, and 0.0050 (Fig. 25). From a composite of these four plots, the roughness parameter, y_s , was determined to be 0.030 feet and the Chezy resistance coefficient was 68. Similar plots were prepared using Manning's equation. Interestingly, the roughness parameter was still 0.030 feet. For the range of discharges and flow depths used in this study, the Manning roughness coefficient, n, is about 0.019. The total height of the roughness pattern used in this study was 0.041 feet (two 1-inch diameter rods). Thus, the effective bed level is below the top of the roughness pattern.

After studying the water surface profiles with the bridge constrictions in place, it was determined that the flow depths measured at station 6 (which is 6 feet downstream from the tilting flume inlet) could be used to represent

Figure 25. Plots of discharge against A' (R' S_e)^{1/2} for tilting flume.

section I (Fig. 1), while the flow depths measured at station 18 could represent section IV (Fig. 1). Then, setting the datum as the effective bed level at section IV, as shown in Fig. 26, the energy at section IV becomes

while the energy at section I is

Figure 26. Definition sketch for datum in tilting flume.

Nonuniform Flow

The nonuniform flow data used in this study were obtained immediately following the establishment of uniform flow. For a fixed bed slope and constant discharge, the overflow tailgate at the exit of the tilting flume (Fig. 19) was adjusted until uniform flow existed in the flume. Then, the tailgate would be raised slightly, thereby increasing the flow depth and creating an M1 backwater curve. When the flow had again become steady, the flow depths along the flume length would be measured. Then, the tailgate would be raised again, and again, until a number of sets of data had been collected. This procedure was followed for each discharge and each bed slope used in this study.

If a bridge constriction had been placed in the channel, and the above procedure followed, submerged (subcritical) flow ratings for the constriction could have been developed from the data, which would have been similar to the ratings shown in Fig. 15 or 16. Nonuniform flow in an open channel (such as the tilting flume) without a constriction is a limiting case, which could be termed the "zero constriction case." An important question, then, is whether or not the subcritical flow analysis used in developing ratings for constrictions would still be valid for the special "zero constriction case." As shown in Fig. 27, the data do plot in straight lines and form the family of E_4/E_1 , lines which show that the subcritical flow analysis applies to nonuniform flow in open channels.

The data have been plotted in Fig. 27 using the energy at sections I and IV, rather than the flow depths. As mentioned earlier, this substitution has been shown to be valid (Skogerboe and Hyatt, 1966). When using energy, the submerged flow discharge equation (Eq. 17) becomes

where E_r is the energy ratio E_4/E_1 . Recognizing that the difference in energy is equal to the energy loss (head loss, h_L), and assuming C_2 is zero, Eq. 27 can be rewritten

The discharge equation describing nonuniform flow in the tilting flume can be developed from Fig. 27 by plotting the discharge intercept at an energy loss of 1.0 for each line of constant energy ratio. Defining the discharge intercept at $h_L = 1.0$ as denoting this with the following symbol, $Q_{h_L=1}$ and recognizing that $h_L^{n_1}$ is equal to one, when h_L is one, Eq. 28 can be reduced to

By plotting $Q_{h_L} = 1$ against -log E_r on logarithmic paper, a linear relationship will result where C_1 is the value of $Q_{h_L} = 1$ at -log $E_r = 1$ and n_2 is the slope of the straight line. This relationship for the tilting flume is shown in Fig. 28. The discharge equation for nonuniform flow in the tilting flume having the roughness pattern shown in Fig. 20 is

Figure 28. Energy ratio distribution for nonuniform flow in tilting flume.

The exponent $n_1 = 2$ in Eq. 30 is the slope of the lines of constant energy ratio in Fig. 27. For a rectangular open channel constriction, the expected value of n_1 is 3/2. The discharge in an open channel without a constriction is a function of the square root of the energy slope, which is $(E_1 - E_4)^{1/2}$. Therefore, for nonuniform flow in a rectangular open channel, the expected value of $n_1 = 2$, 3/2 + 1/2.

The subcritical flow exponent in Eq. 30 is $n_2 = 3/2$. Theoretically, the expected value of n_2 for zero constriction is 3/2 as shown in Fig. 29.

Figure 29. Theoretical relationship between opening ratio, M, and subcritical flow exponent, n_2 , for open channel constrictions. (Taken from Skogerboe and Hyatt.)

46

.

•

 $\overline{}$

DISCHARGE AT BRIDGE CONSTRICTIONS

In order to evaluate the backwater due to bridge constrictions, it is necessary to determine the discharge rating, both free flow and submerged flow, for various bridge geometries. For this study, three simple vertical board models and three 60° wingwall abutment models were selected.

The free flow ratings for the vertical board constriction are shown in Fig. 30. The free flow equations are:

for M = 0.245, Q =
$$2.03E_1^{3/2}$$
 (31)

- -

for M = 0.497, Q =
$$4.13E_1^{3/2}$$
 ... (32)

for M = 0.733, Q =
$$6.08E_1^{3/2}$$
 (33)

A general free flow discharge equation can be written as

Although Eq. 34 is a general equation describing free flow (critical-depth flow) for the vertical board constrictions used in this study, it is recognized that the free flow coefficient would not be correct for prototype bridges due to scale effects. Also, Eq. 34 was developed for opening ratios between 1/4 and 3/4. Because it approaches the case of no constriction (M = 1) considerable error could be expected in projecting Eq. 34 for opening ratios larger than 3/4.

For the 60° wingwall abutment models, the free flow ratings are shown in Fig. 31. The free flow equations are:

for M = 0.252,
$$Q = 2.25E_1^{3/2}$$
....(35)

~ / -

for M = 0.502, Q =
$$4.45E_1^{3/2}$$
 ... (36)

for M = 0.738, Q =
$$6.50E_1^{3/2}$$
 ... (37)

A more general free flow discharge equation can be written as

The submerged flow ratings for the three vertical board bridge models are shown in Figs. 32, 33, and 34. From these ratings, the intercepts for each line of constant energy ratio at $h_L = 1.0$ are plotted as the ordinate in Fig. 35 against -log E_r . From the straight-line relationships in Fig. 35, and knowing from the

Figure 30. Free flow ratings for vertical board models.

Figure 31. Free flow ratings for 60° wingwall abutment models.

Figure 32. Submerged flow rating for vertical board bridge model with M = 0.245.

Figure 33. Submerged flow rating for vertical board bridge model with M = 0.497.

Figure 34. Submerged flow rating for vertical board bridge mdoel with M = 0.733.

Figure 35. Distribution of constant energy ratio for three vertical board bridge models.

free flow ratings (Fig. 30) that n_1 is 3/2, the submerged flow discharge equations are: 3/2

for M = 0.245, Q =
$$\frac{1.64(E_1 - E_4)^{5/2}}{(-\log E_r)^{1.05}}$$
 (39)

for M = 0.497, Q =
$$\frac{3.33(E_1 - E_4)^{5/2}}{(-\log E_1)^{1.09}}$$
(40)

for M = 0.733, Q =
$$\frac{4.91(E_1 - E_4)^{3/2}}{(-\log E_r)^{1.16}}$$
 ... (41)

A more general submerged flow discharge equation for the vertical board models can be written as

Q =
$$\frac{2.22 \text{ b} (E_1 - E_4)^{3/2}}{(-\log E_r)^{n_2}}$$
....(42)

where n_2 is obtained from Fig. 36. By setting the free flow equations equal to the submerged flow equations, the transition energy ratio, E_{rt} , can be determined by trial and error. For example, the transition energy ratio for an opening ratio of 0.245 would be computed by setting Eq. 31 equal to Eq. 39. Following this procedure, the transition energy ratios are 0.575, 0.717, and 0.860 for opening ratios of 0.245, 0.497, and 0.733, respectively.

Figure 36. Variation of submerged flow exponent with opening ratio for vertical board and 60° wingwall abutment bridge models.

For the 60° wingwall abutment bridge models, the submerged flow ratings are shown in Figs. 37, 38, and 39. From these ratings, the intercept at $h_L = 1.0$ for each line of constant energy ratio has been plotted against -log E_r in Fig. 40. The lines of constant energy ratio in Figs. 37, 38, and 39 have been drawn at a slope of 3/2, which corresponds with the value of the free flow exponent. From the straight-line relationships in Fig. 40, the submerged flow discharge equations become:

for M = 0.252, Q =
$$\frac{1.84 (E_1 - E_4)^{3/2}}{(-\log E_r)^{1.05}}$$
 . . .(43)

Figure 37. Submerged flow rating for 60° wingwall abutment bridge model with M = 0.252.

Figure 38. Submerged flow rating for 60° wingwall abutment bridge model with M = 0.502.

LS

for M = 0.502, Q =
$$\frac{3.66 (E_1 - E_4)^{3/2}}{(-\log E_r)^{1.09}}$$
 (44)
for M = 0.738, Q = $\frac{5.39 (E_1 - E_4)^{3/2}}{(-\log E_r)^{1.16}}$ (45)

Of particular importance in the above equation is that the submerged flow exponents are compatible to the values in Eqs. 39, 40, and 41. Thus, the

Figure 40. Distribution of constant energy ratio for three 60° wingwall abutment bridge models.

variation of the submerged flow exponent with opening ratio shown in Fig. 36 is valid for both the vertical board and 60° wingwall abutment bridge models. A more general submerged flow discharge equation for the 60° wingwall abutment bridge models can be written as

where n₂ is obtained from Fig. 36. By setting the free flow equation for each bridge model equal to the submerged flow equation for the same model, the transition energy ratios, E_{rt} , are 0.616, 0.741, and 0.871 for opening ratios of 0.252, 0.502, and 0.738, respectively.
BACKWATER ANALYSIS

Now that the groundwork has been laid in the previous chapters, it is possible to discuss the various flow conditions under which backwater can occur, along with the technique for analyzing or computing the backwater for each flow condition. The base from which the backwater is computed is the depth of flow in the river channel prior to placement of the bridge constriction. Now, either uniform flow or nonuniform flow conditions could have existed in the river channel prior to construction of the bridge. After placement of the constriction, either free flow or submerged flow can occur in the constriction. Thus, there are two flow conditions that could have been encountered in the river channel, along with two different flow conditions at the constriction, thereby resulting in four possible combinations for which the backwater analysis would be different for each combination.

In the paragraphs that follow, the backwater analysis will be described using flow depths. The nonuniform channel resistance, along with the free flow and submerged flow ratings, have been reported herein using the energy above a particular datum for each flow cross-section. The descriptions of backwater analysis that follow could just as well have incorporated the energy at sections I and IV (Fig. 1) instead of the flow depths at these sections.

Uniform Flow and Free Flow

The simplest case would involve uniform flow in the river channel prior to construction of the bridge and with critical depth occurring in the constriction. Either Manning's or Chezy's equation would be used to compute normal flow depth, y_n , for the design discharge. The primary difficulty in using either of these equations is selecting a resistance coefficient. If the free flow rating for the bridge constriction is known, then the upstream flow depth, y_1 , can be computed directly for the design discharge. The backwater is then the difference between y_1 and y_n .

Uniform Flow and Submerged Flow

With uniform flow existing in the river channel before constriction of the bridge, but with submerged flow occurring at the constriction, the backwater must be computed by a trial and error procedure. Again, the normal flow depth, y_n , can be computed from either Manning's or Chezy's equation. Now, in order to compute the flow depth upstream from the bridge constriction, the normal flow depth is substituted for the downstream flow depth, y_4 . Entering the submerged flow rating curves along the ordinate for the design discharge, there is only one unique point for which the change in water surface elevation, $y_1 - y_4$, and the submergence, y_4/y_1 , will yield the normal flow depth, y_n , which is also

the value of y_1 . This unique point would have to be found by trial and error. Once this point is found, the value of y_1 can be computed and the backwater will be $y_1 \cdot y_n$. For this particular case, abscissa of the submerged flow rating, $y_1 \cdot y_4$, is also the backwater, y_1^* . When the change in energy, $E_1 \cdot E_4$, is plotted, the abscissa is also the energy backwater, E_1^* . The backwater analysis could be accomplished on a computer by using the submerged flow discharge equation. Values of y_1 would have to be assumed and the correct value of y_1 would be arrived at by an iterative procedure.

When nonuniform flow conditions occur in the river channel prior to construction of the bridge, two techniques are available for arriving at the flow depths upstream and downstream from the proposed bridge site. The common technique is to begin at a point somewhere along the river where the stage-discharge relation is known. Then, the desired flow depths can be computed by the usual procedures involving M1 backwater curves. The second technique involves the nonuniform flow resistance procedure discussed in the section, "Channel Resistance." The nonuniform flow resistance curves are similar to the submerged flow rating curves for a constriction. Thus, knowing the design discharge and one of the flow depths (either the flow depth upstream or downstream from the site of the proposed bridge), the other flow depth can be determined by the same trial and error procedure described above when submerged flow conditions occur in a bridge constriction. Here, the difficulty is knowing one of the flow depths, which may have to be computed using one of the common techniques for analyzing M1 backwater curves, but starting at a point of known flow depth for the design discharge either upstream or downstream from the bridge.

Nonuniform Flow and Free Flow

For the case where nonuniform flow conditions existed prior to constriction, the flow depths upstream and downstream prior to construction of the bridge would be established using one of the techniques described above. The upstream flow depth, y_1 , after construction can be determined directly for the design discharge by using the free flow rating curve or the free flow discharge equation.

Nonuniform Flow and Submerged Flow

The most difficult case would occur when nonuniform flow would occur in the river channel if the bridge constriction were not present and then, submerged flow occurs in the constriction. In this case, the flows depths that would have occurred upstream and downstream from the bridge were it not present must be established using one of the techniques described above. The downstream flow depth, y_4 , is the same before and after placement of the bridge. The upstream flow depth, y_1 , due to submerged flow in the bridge constriction must be obtained by the trial and error procedure described above for the case of submerged flow, but with uniform flow prior to construction. Again, the backwater is the difference between the two computed upstream flow depths.

Special Cases

Most of the research regarding backwater at bridge constrictions (e.g. Kindsvater and Carter, 1955, and Liu, Bradley, and Plate, 1957) has involved a special case of submerged flow at the constriction, along with uniform flow in the river channel prior to construction of the bridge. The laboratory data for this special case is collected by establishing uniform flow in a tilting flume and then placing the model bridge constriction in the flume and measuring the increased flow depth upstream from the model bridge. For this case the control is at the constriction, not in the downstream section. Very little data have been collected for the abnormal stage-discharge condition. The data that have been reported by others, involve a special case of constant downstream control.

To test the effect of a constant downstream control, a series of experiments were conducted using the tilting flume and the vertical board bridge model having an opening ratio of 0.733. All tests were run with a fixed bed slope of 0.0020. First, uniform flow was established for an intermediate discharge. Then, a M1 backwater curve was created by lowering the discharge. Flow depth measurements at the 6-foot (y_1) and 18-foot (y_4) sections were collected, along with the discharge. Next, the discharge was decreased another small increment and the flow depths and discharge were again measured. This process was continued for a series of discharge values.

After collecting the above nonuniform flow data, and with the tailgate setting remaining fixed, the vertical board constriction was placed in the flume. Then, a series of discharge values were again used and the corresponding flow depths measured.

After collecting data for the first constant tailgate setting, which included nonuniform flow data for both the flume and the constriction, the bridge model was removed and uniform flow was established for a high discharge. Then, a M1 backwater curve was created by lowering the flow rate, and the discharge and corresponding flow depths were measured. The discharge was decreased in a series of small increments with the flow depths being measured for each discharge. Next, the bridge model was again placed in the flume and a set of data was collected for nonuniform flow conditions, but with the tailgate setting remaining fixed.

The above nonuniform flow data for the tilting flume with two constant tailgate settings are plotted in Fig. 27, while the similar data for the bridge model are shown in Fig. 34. For the first constant tailgate setting,

for M = 1.00, Q = 570
$$(E_1 - E_4)^{3/2}$$
 (47)

For the second constant tailgate setting,

for M = 1.00, Q = 1600
$$(E_1 - E_4)^{3/2}$$
....(49)

The above equations are plotted in Fig. 41. For each constant tailgate setting, the energy backwater, E_1^* , is the difference between the curves plotted in Fig. 41a or Fig. 41b. For this special case of the abnormal stage-discharge condition, the exponents in the above equations (Eqs. 47, 48, 49, and 50) are exactly 1/2 less than the exponents in the general equations (Eqs. 30 and 41).

Figure 41. Energy backwater for special cases of abnormal stage-discharge condition.

SUMMARY

The primary intent of this research effort has been to develop a method of backwater analysis under abnormal stage-discharge conditions. The present design manual (Bradley, 1960) regarding hydraulics of bridged waterways gives only an approximate backwater solution for abnormal stage-discharge conditions. In fact, the statement is made that "This is a case where it is more important to understand the problem than to attempt precise computations." Also, an ASCE (1966) task committee, as one of 12 recommendations, stated that it may be possible to derive experimental data which would simplify the procedure for analyzing backwater due to bridge constrictions under abnormal stage-discharge conditions.

The flow resistance technique reported by Overton (1967) was used to analyze the uniform flow data collected in the tilting flume used in this study. The roughness parameter, y_s , was determined for each of the four bed slopes 0.0012, 0.0020, 0.0032, and 0.0050. From a composite analysis, the roughness parameter was determined to be 0.030 feet and the Chezy resistance coefficient was 68. From a similar analysis using Manning's equation, the roughness parameter was still 0.030 feet. For the range of discharges and flow depths used in this study, the Manning roughness coefficient, n, is about 0.019. The total height of the roughness pattern was 0.041 feet and consisted of 1/4 inch diameter smooth rod located every 6 inches longitudinally and 9 inches transversely. Thus, the effective bed level is below the top of the roughness pattern.

In order to evaluate backwater due to bridge constrictions under abnormal stage-discharge conditions, it becomes necessary to develop the nonuniform flow relationship for the channel (in this study a tilting flume 3.02 feet wide was used) without any constriction (zero constriction case). In all cases under this investigation, the water surface profiles for nonuniform flow conditions were M1 backwater curves. For the tilting flume used in this study, the nonuniform discharge equation is

Thus, the above equation is similar to the equation previously developed at Utah State University (Skogerboe and Hyatt, 1967a, 1967b) to describe subcritical flow at open channel constrictions.

The bridge constrictions selected for study were the vertical board and 60° wingwall abutment. For each bridge geometry, opening ratios, M(M = b/B for rectangular constrictions where b is the constriction width and B is the channel width), of approximately 1/4, 1/2, and 3/4 were used. In each case, both free flow and submerged flow ratings were developed.

In analyzing the backwater due to the placement of a bridge constriction in a river channel, four combinations of flow conditions are possible. Prior to construction of the bridge, either uniform or nonuniform flow conditions could have prevailed in the river channel. After placement of the bridge, either free flow or submerged flow conditions will occur at the constriction. Normally, free flow conditions at bridged waterways would be avoided because of the scour potential because of supercritical velocities.

A comparison of the free flow rating for a constriction with uniform flow conditions in the main channel yields the "contraction backwater." The free flow rating, or free flow discharge equation, can be used to determine the flow depth, y_1 , at section I (maximum flow depth) upstream from the bridge. Chezy's equation can be used to compute the normal flow depth, y_n , for the design discharge. The backwater, y_1^* , is the difference between these two flow depths $(y_1^* = y_1 - y_n)$.

A comparison can be made between the submerged flow rating for a constriction with uniform flow conditions in the main channel to determine the "resistance backwater." In this case, the flow depths at sections I and IV (upstream and downstream from the bridge) must be analyzed. The downstream flow depth, y_4 , will be equal to the normal flow depth, y_n . The abscissa of the submerged flow rating, $y_1 \cdot y_4$ or $E_1 \cdot E_4$, will then be the backwater, y_1^* , or energy backwater, E_1^* , respectively. The backwater will be determined by a trial and error procedure using either the submerged flow rating or the submerged flow discharge equation.

Whenever the backwater is computed using nonuniform flow conditions in the river channel as a base, the term "abnormal stage-discharge backwater" would be used, but either free flow or submerged flow conditions could exist at the constriction. Therefore, the backwater analysis is dependent upon the type of flow condition prevailing at the bridge.

For the case in which nonuniform flow occurs in the river channel at design discharge without the bridge and free flow occurs with the bridge constriction, the upstream flow depth, y_1 , with the bridge can be determined from the free flow rating or free flow discharge equation. The upstream flow depth, y_1 , without the bridge would probably be determined using one of the computational techniques for backwater curves beginning at a flow cross-section having a known stage-discharge relationship.

The most complicated case involves nonuniform flow in the main channel prior to construction of the bridge and submerged flow at the bridge after construction. In this case, the downstream flow depth, y_{4} , prior to construction

would be determined by one of the computational techniques for backwater curves beginning at a point of known flow depth at design discharge. Then, the upstream flow depth, y_1 , could be determined by a trial and error solution of the nonuniform flow rating at the bridge site or nonuniform flow discharge equation. The downstream flow depth, y_4 , will be the same with or without the bridge. Thus, the upstream flow depth with the bridge in place can be determined from a trial and error solution of the submerged flow rating or submerged flow discharge equation. The backwater, y_1^* , is the difference between the two upstream flow depths.

.

.

SELECTED REFERENCES

- American Society of Civil Engineers (ASCE). 1966. Hydraulics of bridged waterways. Second Draft. Informational Report. Progress report of the Task Committee of the Hydraulic Division, ASCE. Presented at the ASCE Annual Convention, Philadelphia. October.
- Biery, P. F. and J. W. Delleur. 1962. Hydraulics of single span arch bridge constrictions. Proceedings, ASCE, J. of Hyd. Div., Vol. 88, No. HY2, Paper 3076, pp. 75-108, March.
- Bradley, J. N. 1960. Hydraulics of bridge waterways. U.S. Department of Commerce, Bureau of Public Roads, Hydraulic Design Series No. 1. August.
- Davidian, J., P. H. Carrigan, Jr., and J. Shen. 1962. Flow through openings in width constrictions. River Hydraulics, Geological Survey Water-Supply Paper 1369-D, United States Government Printing Office, Washington, D.C.
- Fan, S. S. 1960. Backwater effects at channel constrictions. Unpublished M.S. Thesis, Colorado State University, Fort Collins, Colorado. May.
- Garrett, J. 1956. Relationship between the head loss at bridge piers and drag resistance of the piers. Unpublished M.S. Thesis, University of Texas, Austin, Texas.
- Hyatt, M. L. 1965. Design, calibration, and evaluation of a trapezoidal measuring flume by model study. M.S. Thesis, Utah State University, Logan, Utah. March.
- Izzard, C. F. 1955. Tranquil flow through open-channel constrictions. Discussion of paper by C. E. Kindsvater, and R. W. Carter. Trans., ASCE, Vol. 120, pp. 955-980.
- Kindsvater, C. E. and R. W. Carter. 1955. Tranquil flow through open-channel constrictions. Trans., ASCE, Vol. 120, pp. 955-980.
- Kindsvater, C. E., R. W. Carter, and H. J. Tracy. 1953. Computation of peak discharge at constrictions. U.S. Geological Survey, Circular 284, Washington, D.C.
- Lane, E. W. 1920. Experiments on the flow of water through contractions in an open channel. Trans., ASCE, Vol. 83, pp. 1149- 1219.
- Liu, H. K., J. N. Bradley, and E. J. Plate. 1957. Backwater effects of piers and abutments. Report CER57HKL10, Civil Engineering Section, Colorado State University, Fort Collins, Colorado. October.
- Nagler, A. 1918. Obstruction of bridge piers to the flow of water. Trans., ASCE, Vol. 82, pp. 344-395.

- Overton, D. E. 1967. Flow retardance coefficients for selected prismatic channels. Trans., ASAE, Vol. 10, No. 3, pp. 327-329.
- Ragan, R. M. 1965. Synthesis of hydrographs and water surface profiles for unsteady open channel flow with lateral inflows. Cornell University.
- Rehbock, Th. 1921. Verfahren Zur bestimmung des bruckenstraues bei rein stromendem wasserdurchfluss. Tech. Univ. of Karlsruhe, November. A method for determining the backwater due to bridge piers in streaming flow. Translated by E. F. Wisely, U.S. Bureau of Reclamation.
- Sandover, J. A. 1969. Discharge coefficients of constrictions in open channels. Water Power, pp. 256-261.
- Skogerboe, G. V., and M. L. Hyatt. 1966. Use of baffles in open channel expansions. Discussion of Proc. Paper 4703 by Smith and Yu. Proceedings, ASCE, Journal of the Hydrulics Division, Vol. 92, No. HY5, Proc. Paper 4891, pp. 255-259. September.
- Skogerboe, G. V., and M. L. Hyatt. 1967a. Analysis of submergence in flow measuring flumes. Proceedings, ASCE, J. of Hyd. Div., Vol. 93, No. HY4, Proc. Paper 5348, pp. 183-200. July.
- Skogerboe, G. V., and M. L. Hyatt. 1967b. Subcritical flow over highway embankments. Proceedings, ASCE, J. of Hyd. Div., Vol. 93, No. HY6, Paper 5564, pp. 65-78. November.
- Skogerboe, G. V., M. L. Hyatt, and L. H. Austin. 1967. Design and calibration of submerged open channel flow measurement structures Part 4-Weirs. Report WG 31-5, Utah Water Research Laboratory, College of Engineering, Utah State University, Logan, Utah.
- Skogerboe, G. V., M. L. Hyatt, and K. O. Eggleston. 1967. Design and calibration of submerged open channel flow measurement structures. Part 1 - Submerged flow. Report WG 31-2, Utah Water Research Laboratory, College of Engineering, Utah State University, Logan, Utah.
- Skogerboe, G. V., W. R. Walker, and L. R. Robinson. 1965. Design, operation, and calibration of the canal A submerged rectangular measuring flume. WG 24-3, Utah Water Research Laboratory, College of Engineering, Utah State University, Logan, Utah. March.
- Tracy, H. J. and R. W. Carter. 1955. Backwater effects of open channel constrictions. Trans., ASCE, Vol. 120, pp. 993-1006.
- Vincent. 1963. An experimental investigation of the backwater effects of bridge submergence. M.S. Thesis, University of Nebraska, Lincoln, Nebraska. January.
- Yarnell, D. L. 1934a. Pile trestles as channel obstructions. U.S. Department of Agriculture, Tech. Bul. No. 429. July.
- Yarnell, D. L. 1934b. Bridge piers as channel obstructions. U.S. Department of Agriculture, Tech. Bul. No. 442. November.

APPENDIX

DEFINITION OF CODE

Example of Code Number 1512

1st digit refers to constriction or M value for a given constriction for data in tilting flume where:

1 refers to no constriction	
2 refers to vertical board constriction	M = 0.245
3 refers to vertical board constriction	M = 0.497
4 refers to vertical board constriction	M = 0.733
5 refers to 60 ⁰ wingwall constriction	M = 0.252
6 refers to 60° wingwall constriction	M = 0.502
7 refers to 60 ⁰ wingwall constriction	M = 0.738

2nd digit refers to the bed slope used where:

0.0000
0.0012
0.0020
0.0032
0.0050

3rd and 4th digits refer to the run number for each constriction or change in bed slope.

NOMENCLATURE

Symbol

- STAT station in a downstream direction where STAT 6.0, for example, is 6 feet from the flow entrance
- DPTH measured depth before 0.03 ' correction use in data with constriction
- ENGY energy $y + V^2/2g + Z$ computed from actual depth measurement
- ERGY energy $y + V^2/2g + Z$ computed from a corrected depth value obtained by linear regression of the water surface points
- DIFF ENGY-ERGY

Definition

ELEVATION

Table 1. Hydraulic data for tilting flume with no constriction and with slopevarying from 0.0000 to 0.0050.

•

CODE	STAT	5	8	10	12	14	16	18
1101	DPTH	. 2 32	• 23 0	• 2 26	• 22 4	•2 22	• 21 6	•2 15
	ENGY	• 2 38	• 23 6	.232	• 23 1	•2 29	• 22 3	•2 22
	DIFF	000	• 00 0	000	• 00 0	.0.01	002	• 0 00
	ERGY	• 2 39	• 23 6	• 2 33	• 23 0	•2 27	• 22 5	•2 22
1102	DPTH	.240	• 24 0	• 2' 36	• 23 4	•2 36	• 22 7	•2 27
	ENGY	•246	• 24 6	• 2 42	• 24 0	•2 42	. 23 3	• 2 33
	DIFF	001	• 03 1	000	000	• 0 04	003	-•300
	ERGY	•247	• 24 5	• 2 42	• 24 0	•2 38	• 23 6 、	• 2 34
1103	DPTH	.259	- 25 8	. 2 51	• 25 4	•2 51	. 24 7	-247
	ENGY	• 2 6 4	• 26 3	• 2 56	• 25 9	•2 56	• 25 Z	• 2 52
	DIFF	•000	• 03 1	003	• 00 2	• D DD	001	• 3 00
	ERGY	• 2 6 4	• 26 2	• 2 60	• 25 8	•2 56	• 25 4	• 2 52
1104	DPTH	. 276	. 276	.274	• 27 4	•2 72	. 26 7	•2 69
	ENGY	-280	• 28 0	.278	. 278	•2 76	. 27 2	.274
	DIFF	000	.000	000	• 00 1	•0.00	003	• 3 00
	ERGY	.281	• 28 0	•278	• 27 7	•2 76	. 27 4	•2 73
1105	DPTH	• 5 2 9	. 52 9	• 5 27	. 52 8	•5 25	• 52 3	.5 24
	ENGY	•530	• 53 0	• 5 28	• 52 9	.5 26	• 52 4	•5 25
Ł	DIFF	000	• 00 0	000	• 09 2	- • J 00	001	•0.00
	ERGY	• 5 31	• 53 0	• 5 29	• 52 8	•5 27	• 52 6	•5 25
1106	DPTH	.784	. 78 5	• 7-83	. 78 4	.781	. 77 8	.779
	ENGY	.785	.786	.784	. 78 5	.782	.779	.780
	DIFF	001	• 00 0	-•0 00	. 00 2	.0 00	002	• J DO
	ERGY	.786	. 78 5	.784	. 78 3	.781	. 78 0	.779
1107	DPTH	.342	. 33 9	.333	. 33 1	-328	. 32 0	- 3 18
	ENGY	.361	. 35 8	.353	. 35 1	.348	. 34 1	. 3 39
	DIFF	000	. 00 0	001	.00.0	.0 02	002	.000
	ERGY	.361	. 35 7	• 3 54	• 35 0	.347	. 34 3	• 3, 39
1108	DPTH	• 3 52	. 35 0	.345	. 34 3	. 3 39	• 33 2	.3 30
	ENGY	.370	. 36 8	.363	. 36 1	.358	• 35 2	• 3 50
	DIFF	000	.000	0.00	.001	• J D1	002	•0.00
	ERGY	.371	. 36 7	• 3 64	. 36 0	•3 57	• 35 3	• 3 50
1109	DPTH	.365	• 36 3 [°]	. 3 58	. 35 7	.351	. 34 7	.346
	ENGY	.381	.379	.375	. 374	• 3 69	. 36 5	• 3 64
	DIFF	000	.030	000	. 00 2	- • J ND	001	• 3 00
	ERGY	•382	• 37 9	• 3 76	. 37 3	•3 69	• 36 6	• 3 63
1110	DPTH	• 3 76	. 37 5	.370	. 36 8	.365	. 35 8	.358
	ENGY	.391	• 39 0	• 3 86	. 384	.381	. 37 5	.375
	DIFF	000	.001	000	.000	.001	002	• 0 00
	ERGY	• 3 92	. 38 9	• 3 86	. 38 3	.3 80	. 37 7	• 3 74
1111	рртн	. 6 26	.625	.6 25	627	.5.74	. 62.2	.5.23
	ENGY	.5 32	.631	.6 31	. 63 3	.6 30	. 62.8	.6 29
	DIFF	000	000	000	.002	000	001	.000
	ERGY	• 6 32	.631	.6 31	. 63 0	.6 30	. 62 9	• 6 28
1112		9 5 0	PE C	9 5 9	95.0	6 C <i>h</i>	. pc 7	
	ENGY	961		. 9 5 1	. 35 0	. 4 65	- 85 6	- 859
	DIFF	-001	. 027	- 0 47	. 05.8	324	. 18.2	_ 1 99
	ERGY	.847	.832	.818	. 80.3	.788	. 77 4	.7 59
						- · · · ·		

•

1113	DPTH	. 4 91	. 48 8	. 4 82	. 477	. 4 71	. 46 1	. 4 53
	ENGY	. 5 34	.532	.527	. 52 3	.5 18	.510	.5 04
	DIFF	002	.000	.000	.002	.0 02	000	0 02
	ERGY	.537	. 53 2	. 5.26	• 52 1	.5 16	. 51 1	.506
1114	DPTH	• 5 00	.495	.490	. 48 5	.479	.472	. 4 64
	ENGY	.542	• 53 8	• 5 34	• 53 0	•5 25	. 51 9	• 5 13
	DIFF	000	000	• 0 00	.001	•0.00	.000)01
	ERGY	.543	• 53 8	• 5 33	. 52 8	•5 24	. 51 9	• 5 14
1115	DPTH	• 5 0 8	. 50 7	• 5 01	. 49 9	•4 90	. 48 2	•4 80
	ENGY	• 5 4 9	• 54 8	• 5 43	• 54 1	•5 34	• 52 7	• 5 25
	DIFF	002	.001	•000	.003	000	002	• 3 00
	ERGY	• 5 5 1	• 54 7	• 5 42	• 53 8	•5 34	• 52 9	• 5 25
1114	DOTI		50.1	r 17	50 7	r m	10 F	b 00
1110	ENCY	• 5 U I 5 A 7	• 50 Į	• 5 1 5	• 50 7	• D UZ	• 45 5	• 4 03
		- 005	- 004	• 3 5 3	• 34 6 00 5	• 5 44 0 02	- 002	- 0.05
	FDGV	548		- 5 4 5	- 54 3	- 5 MI	539	- 5 38
	LNUT	• 3 40	• 54.0	• 5 + 5	• 54 5	• 3 +1	• 55 5	• 3 30
1117	DPTH	.763	.759	.759	. 75 8	.754	• 75 3	.754
	ENGY	.781	. 77 7	.777	.776	.7 72	.771	.772
	DIFF	.001	001	.000	. 00 0	001	000	.001
	ERGY	.780	. 77 8	.777	. 77 5	.774	. 77 2	•771
1110								
1118	DPIH	1.003	1.001	1.003	1.002	.999	. 99 4	• 9 94
	DICC	1.013	1.011	1.013	1.012	1-009	1.005	1.00
	DTLL		002	.002	• 00 3	1 0 00	002	1 0.05
	LKOI	1.013	1.01.3	1.011	1.010	1.0000	1.007	1.000
1119	DPTH	• 6 33	.638	.623	. 61 2	•6 10	• 596	•5 83
	ENGY	.711	.715	.704	.696	• 6 94	. 68 4	• 6 75
	DIFF	005	.005	.000	001	- 0 04	000	003
	ERGY	•716	.710	•703	. 69 7	•6 91	. 68 4	• 6 78
1120	0074	C 4 F	C # 7	6 27	C2 b	6.01	CD 7	5.07
1120	DPTH	• 6 4 3	. 64 3	• • • 21	• 62 4	• 6 21	.603	• 5 35
		- 002	• /1 7	- 0.07	. 70 4	-102	- 00 1	• 0 02 - 0 02
	DILL	002	- 00 3		- 00 1	-005 E 97	001	-•UU2 C 9h
	LRDI	• 1 2 3	• /1 0	• / 10	• (0 5	•0.71	• 0 5 1	• 0 04
1121	DPTH	.652	. 65 0	.638	. 63 4	.6 26	.619	• 6 1 6
	ENGY	.726	. 72 4	.715	. 71 2	.706	.701	. 5 99
	DIFF	000	.003	002	.000	000	001	• 0 02
	ERGY	.726	.722	.717	. 71 2	.707	.702	. 5 97
1122								
1122	DPTH	•66Z	•65 3	•6 53	. 64 9	•6 39	• 63 2	• 5 24
	ENGY	•/33	. 726	• / 26	• 12 3	• / 16	• /1 U	• 7 04
	DILL	000		- 0 02	• 10 3	-000	000	-• J UZ
	EROT	• / 54	• 12 3	• / 25	• 12 0	•/15	• (11.	. / 00
1123	OPTH	.885	. 89 3	.885	. 87 8	.8 79	. 874	.876
-	ENGY	.925	• 93 2	.925	. 91 9	.920	• 91 5	.917
	DIFF	004	• 00 6	.000	003	.0 00	002	• D O2
	FRGY	979	97 6	9 74	. 97 7	.919	91 7	9 15
		•	• >2 0	• • • • • •	•	• • • • •	• /1 *	• • • • • •
1124	DPTH	1.119	1.127	1.120	1.118	1.119	1.110	1.117
	ENGY	1.144	1.152	1.145	1.143	1.144	1.135	1.142
	DIFF	004	• 00 5	000	-•000	•0.02	005	.003
	ERGY	1.148	1.146	1.145	1.144	1.142	1.141	1.139

ŧ

CODE	STAT	٢	3	10	12	14	16	18
1201	D₽Тн	. 179	.175	.17 2	• 17 11	.170	.161	•154
	ENGY	.203	.174	•193	.183	.136	.176	•168
	DIFF	001	nin	000	• *** 1	.104	000	003
	EPGY	• ~ ~ 4	•199	.193	.187	•1 92	.176	.171
1202	DPTH	•?17	•2°n	.219	• 21 3	•261	.212	•213
	ENGY	. 741	.241	• 2 3 č	• 234	.772	. 224	.223
	DIFF	104	07?	0.33	005	• 7 35	011	311
	EPGY	.245	.243	•241	.239	. ? 37	• 23 5	• 2 33
1203	DP TH	. 263	. 754	•26F	• 25 5	.245	. 26 3	•26F
	ENGY	.284	•585	• 2 3 2	. 27 9	•275	. 27 ?	.271
	DIFF	001	- . 010	• 0.01	• ^ ^ 1	 ane 	002	•000
	ERGY	• • • • 5	. ? ? ?	• 2 30	• 27 9	• 7 5	• 27 3	•271
1204	DPTH	. 247	.744	.246	. 24 5	. 744	. 24 1	.243
	ENGY	. 205	.267	.26%	. ?5 9	.256	.251	.251
	DIFF	201	- . 018	• 3.92	• CO 1	.100	- • CD 2	•0Ch
	ED C A	. 795	.754	.251	. 25 8	•2.58	• 25 3	• 2 5h
1205	DPTH	. 202	. 293	• 2.35	• 736	.284	.283	.284
	ENGY	302	20.0	.300	. 23.3	.2.75	.291	-289
	DIFE	- 001		.201	.022	.0.00	- 071	200
	FPGY	ڊ ٢٠ .	וייב.	,299	• ? ? ?	. 2 94	.797	• 2 an
1206	DP TH	705	. 77,0	.300	. 31 3	.310	- 15	.312
	ENGY	. 724	375	. 3 2 3	. 325	.319	. 31.7	.316
	DIFE	- 002	, raa	.105	.013	700	001	202
	EPGY	.326	. 374	. 323	• 771	.320	. 31 9	.317
1207	OP TH	. 4 5 5	. 4 = 7	. 4 70	. 47 7	. 471	.470	. 4 73
	ENGY	. 4 2 1	471	4 92	. 4 4 1	478	.474	4 75
	DIFE	001	000		.00.2	.0.00	002	100
	ESCA	.4~3	.451	4 21	.479	.478	.476	. 4 75
1208	Do IH	. 193	•E05	.635	.610	.609	.608	.512
	ENCY	.519	.F12	510	. 61 0	.315	.612	.517
	DIFE	000	.000	- 111	1 17 7	.000	- 002	. 0.00
	ERCY	.F19	.613	.617	.F1F	.615	.614	.517
1209	NP TH	. 774	.279	. 277	, 75 7	.259	. 246	. 2 31
	ENGY	.714	316	.312	293	203	.281	.268
	DIFE	- 003	.012	. n nr		104	000	105
	FPGY	.722	.714	• 3 0 f	. 297	.239	.281	.273
1210	0 P T H	427	428	. 4 2 9	. 49,2	4 96	.425	4 95
	ENGY	5.20	519	519	514	517	507	5.05
	DIFE	001	.010	. 101	.010	100	001	.100
	ERCY	522	.519	.516	. 51 3	•5.11	508	.505
1211	DP TH	510	.515	. 5.16	. 516	.515	. 511	-515
	FNCV	. 542	• · · · ·	.543	540	.5.77		-5 72
	DIFF	- 0.03	0.01	.002	012	. 0.00		- 100
	EPGY	.545	.543	.541	533	.536	. 534	.5 32
1212	DP TH	. 46.7	.458	.468	. 46.8	.466	.464	.4.65
	ENGY	502	.501	498	. 496	.492	487	4 86
	DIFF	001	.000	.000	• nn i	000	001	.000
	EPGY	.503	.500	.497	.495	.492	.489	.486
1213	DP ТН	.473	.429	.429	. 42 3	• 4 2 5	• 42 1	• 4 22
	ENGY	.467	.4F.6	.463	. 46 1	.455	. 44 9	. 4 4 7

.000 DIFF -.002 .001 • ng 3 .000 -.002 -.000 .469 .465 .45 9 .455 .447 .462 .451 ERGY .470 .473 1214 .476 .470 .472 DPTH .474 .475 .508 .506 .50€ • 50 2 no 2 .493 .492 ENGY •4 95 -.002 -.000 •002 DIFF .002 -.002 -.002 .000 .515 .503 .500 .497 .509 .494 .491 ERGY •4°2 . 4 9 4 .484 . 4 9 5 .480 .481 1215 DP TH .479 . 15 .513 .511 .501 .516 .504 .502 ENGY • nnn .003 -.002 -.000 -.002 • 201 • D 00 DIFF .500 ERGY .518 .515 .512 .509 .506 .503 .652 .657 1216 DP TH .655 •658 •653 •655 .658 .678 . 577 .577 .676 .F68 .668 •668 ENGY • 17 1 .002 . 102 -. 103 -. 001 .301 -.002 DIFE . 6.79 . . 77 EPGY .675 . 473 .571 .669 .667 .803 . 314 .815 .810 .812 1217 .811 .816 DPTH • ¢ 2 9 .830 .822 .821 .823 .830 .830 ENGY014 -.003 -.002 -.002 DIFF • 0 02 .001 .931 .830 . 82 6 .825 .823 . 8 22 EDGY .828 . 271 .136 .951 .951 .948 .945 .000 .012 -.000 -.002 .950 .949 .040 .939 .938 .937 1218 OP TH .941 .951 . 051 .945 ENGY .953 .946 • 000 • 950 •012 DIFF -.002 .000 . 05 7 .95.2 . 946 FRGY . 4 30 .423 .424 1219 DP TH . 447 .441 .439 .417 . "017 . 4 95 .469 . 493 ENGY .479 .477 -.000 -.001 .000 .005 -.004 .000 -.000 DIFE . 507 .501 .470 . 48.9 .482 .476 FRGY .495 1220 .732 .737 DPTH . 779 .739 •739 .737 .739 .79] .77 . .774 .757 .774 .771 .765 ENGY .000 .000 .000 -.001 .000 -.001 DIFE . 7 9 1 .770 .776 .773 .766 ERGY .771 .768 .694 .692 .730 .726 •698 •697 •741 •737 •000 .698 1221 Do IH 6 94 .740 .726 .736 .725 ENGY .000 .012 -.000 -.002 -.002 DIFF .740 .743 .731 .725 •737 .734 .728 · FPCY .773 .774 1222 .774 .778 .809 .810 .775 .775 DP TH .776 .813 .805 ENGY .813 .800 .800 •Cuu -.001 .003 .000 DIFF -. 101 -.002 .000 .815 .810 .807 • 80 2 .800 ERGY . 912 .805 •720 •723 •725 •720 •719 •761 •761 •754 •750 1223 DPTH .720 .722 .749 .763 .763 ENGY -. 002 •**n**nn .003 -.000 -.002 -.000 DIFF .001 Sec. 1 ERGY .765 .763 .760 .757 .755 .752 .749 .816 .817 .815 .817 1224 .816 .819 DP TH .818 . 9 4 4 .840 ENGY .853 .851 850 .849 .839 -.000 -.000 .000 -.002 .001 .000 DIFF .002 . 849 .944 .842 .839 ERGY .854 .851 .847 1225 .729 .727 DP TH .770 .731 .731 .729 .730

Table 1. Continued.

.768

.758

.000

.757

.766 .762 .758

-.000 -.002

.762 .760

.001

.765

•770 •769

.000 .001

.770

.772

.773

DIFF -.001

ENGY

ERGY

1226	DP TH	•756 707	.758	.760	• 75 1	.758	.756	• 7 5 9
	FNGT	• /9 /	• / 06	. / 96	. 794	. / 59	./85	./85
	DIFF	-•045	000	•002	•00.3	000	002	• 0 00
	ERGY	•798	•796	.794	.792	.789	.787	• 7 85
1227	0P TH	. 992	.994	.996	. 997	•995	. 994	.996
	ENGY	1.022	1.021	1.021	1.019	1.015	1.012	1.011
	DIFF	005	- • • • • •	.001	• <u>00 2</u>	000	072	000
	ERGY	1.023	1.071	1.019	1.017	1.015	1.013	1.011
1228	DP TH	1.1°5	1.189	1.188	1.193	1.190	1.190	1.193
	ENGY	1.210	1.211	1.208	1.211	1.205	1.203	1.204
	DIFE	001	.000	000	. 00.3		002	. 0 00
	ERGY	1.711	1.210	1.209	1.207	1.206	1.205	. 1.203
1229	DP TH	.601	.589	.574	.578	.559	• 55 2	.534
-	ENGY	. 720	710	. 6 9 8	- 698	. 5.84	. 678	. 5.66
	DIFE	000	- 000	- 0.00	005	- 000		002
	ERGY	•719	.710	.702	.693	.685	.677	.668
1230	пртн	. 828	. 831	. 8 26	. 825	. 8 1 7	- 81.8	. 8 1 7
1250	ENGY	0.05	905	0.00	996	9.95	. 884	. 9.91
	5401	• 30 5	• • • • • •	• • • • •	• • • • •	• 0 C 0	. 000	• • • • • •
	DIFF	002	• 017	•940	• 1012	005	000	• 0 00
	EQUA	• 91)7	• 40 5	•838	. 894	• * 8 9	• 48 5	• 8 80
1231	DP TH	. 895	.893	• 8 9 0	.896	.893	.892	. 8 93
	ENGY	• 96.4	• 95 3	•962	. 95 7	.952	.948	• 9 4 7
	DIFF	002	• 6 00	•002	• 00 0	-•001	-•001	• 0 0 0
	ERGY	• 96 F	.96?	• 959	• 95 6	•953	•949	• 9 46
1232	DP TH	• 96.8	.959	.968	. 96 7	.953	• 9F ()	.960
	ENGY	1.028	1.027	1.023	1.020	1.014	1.009	1.007
	DIFF	002	•nub	.001	• nn ?	010	001	• ว ถก
	ERGY	1.030	1.0?6	1.022	1.018	1.014	1.010	1.006
1233	DP TH	. 948	.946	.947	. 94 6	.942	.939	.943
	ENGY	1.010	1.00 F	1.004	1.001	.995	.990	.991
	DIFE	000	000	.001	.001	001	003	.002
	ERGY	1.010	1.007	1.003	1.000	.996	.993	•989
1234	DP TH	. 882	.897	. 8 80	. 830	.875	.875	. 8 76
-	ENGY	. 95.2	949	.945	04 3	. 9 76	. 93 3	. 9 32
	DIFF	- 000	010	0.00	้ กก เ	- 002	000	. 101
	ERGY	• 95 2	.94 8	•94°	• 94 1	.938	• 934	• 9 31
1235		1.002	1.003	1.003	1.003	1.001	. 998	. 9 4 9
	5-18	1.01.72	1.000	1.000	1.002		• 5 5 0	• , , , ,
	ENGY	1.059	1.053	1.055	1.053	1.049	1.043	1.042
	DIFF	001	•070	•000	• 00 2	•000	002	000
	ERGY	1.001	1.057	1.054	1.051	1.048	1.045	1.042
1236	DP TH	1.020	1.022	1.021	1.021	1.017	1.015	1.017
	FNGY	1.076	1.075	1.072	1.069	1.063	1.059	1.058
	DIFF	002	. 010	.000	.032	000	002	.000
	ERGY	1.077	1.074	1.071	1.057	1.084	1.061	1.058
1237	DP TH	1.193	1.184	1.185	1.185	1.186	1.181	1.185
•	ENGY	1.228	1.227	1.225	1.223	1.221	1.214	1.216
	DIFE	000	000	.000		.002		
	ERGY	1.229	1.227	1.224	1.222	1.220	1.217	1.215
1238		1.360	1.767	1.366	1.769	1.364	1.364	1.769
	ENGV	1.799	1.700	1.200	1.700	1.707	1.700	1.701
	DTFF	- 002	000 1 • 0 20	1003	1 • 270 7 • 770	7 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	- 003	1.221
	DILL	1 400	1 700	1 7 9 7	1 705		1 702	1 7 00
	E401	1.400	1.0338	1.221	1. 222	1.232	1 • 225	1.230

CODE	ST AT	F	8	10	12	14	16	18
1301	DP TH	.169	•153	.151	. 16 2	.161	• 15 4	.155
	ENGY	204	.195	.190	.186	-1.82	.172	.169
	DIFE	0.02	- 002	0.02		.002	002	
	FDCV	207	107	191	195	190	174	168
	CROT	• 205	•1 • /	• 1 91	•145	•100	•1/4	• 1 0 0
1302	DP TH	.223	•272	• 225	• 22 7	• 7 26	• 226	.229
	ENGY	•252	• 250	.248	.246	.241	•237	• 2 36
	DIFF	001	- <u>.</u> 010	.001	• ቦግ 2	000	001	.000
	ERGY	.253	•250	.247	• 24 4	.742	•239	• 2 36
1303	DP TH	.258	.259	.263	. 26 5	.266	.266	.270
	ENGY	- 28.8	.285	.284	.282	.279	.275	.275
	DIFF		001	. 0.00	. 021		002	.000
	FDGV	298	286	283	- 281	.279	. 277	. 275
	LNUT	• 2 * 0	• 2 0 0	•205	•201	•213	• 2 / 1	• 2 • 3
1304	DP TH	.198	•199	.201	201	•200	•198	•200
	ENGY	.232	.229	.226	• 22 2	.?17	•212	.209
	DIFF	001	-•000	.001	• CO 1	.000	002	.000
	ERGY	•233	• 55 9	.225	• 22 1	•717	• 21 3	•209
1305	DP TH	:315	.318	.323	. 327	.327	• 32 9	.334
	ENGY	. 343	. 342	.343	. 34 3	.339	. 336	.337
	DIFE	000	010	.001	.002	000	002	.000
	FRGY	. 744	. 34 3	. 341	- 34 0	. 3 7 9	. 338	. 3 37
	2	• 5 • •	• • • •	••••	• . • .	•••••		
1306	DP TH	.473	.478	• 4 82	.485	.487	.488	•493
	ENGY	.499	•500	.500	.499	•497	.494	• 4 95
	DIFF	002	•000	.001	1 ניח	.000	002	• D NN
	ERGY	.500	•499	.498	• 497	• 4 95	. 495	.494
1307	OP TH	.390	. 394	.399	. 40.3	.403	.404	.410
	ENGY	.416	.416	.417	.417	.413	.410	.412
	DIFE	001	000	.002	.00.3	000	002	.000
	ERGY	.418	•417	.416	.415	•414	•413	.412
1308		253	26.5	263	25.5	251	. 239	. 2 31
1900	ENCY.	• 2 5 3	• 2 6 3	• 2 5 3	• 2 3 3	•2.51	•233	2 2 2
	DIEC	• 315	• 3 1 1	• 3 3 7	• () (• 2 50	• 2 / /	- 007
	DIFF	005	•000	• 0 04	-002	• 0 0 3	002	003
	ERGY	• 320	• 51 2	• 304	• 2 9 5	•281	•219	• 2 7 0
1309	DP TH	. 342	.345	. 345	. 349	.349	.348	.351
	ENGY	. 387	.385	. 381	. 381	.377	.372	.371
	DIFE	000	.000	000	- 00.2	.000	001	-0.00
	ERGY	.388	.395	.382	. 37 9	• 3 76	. 374	.371
1310		. 757	. 770	. 371	. 775	. 775	. 375	. 3.80
	CNCV			• 571	• 37 5		796	797
	DICC	• 40 3	• 4110	• • 02	• • 11 •	• • 00	• 3 5 6	000
	DIFF	000	•0-00		• 110 2	000	002	.000
	ERGY	• 4 (0	• 411 /	•405	• 40 3	• 4 9 1	• 398	• 3 96
1311	DP TH	.300	.302	.303	. 30 6	.309	• 30 4	•303
-	ENGY	.351	.349	•346	• 34 4	•343	• 334	• 3 30
	DIFF	002	000	000	.002	•004	001	002
	ERGY	.353	. 34 9	• 3 4 6	• 34 2	• 3 39	• 33 5	• 3 32
1312	DP TH	. 4 2 2	.425	.428	. 433	.433	.434	.439
	ENGY		459	457	45.8	.454	.451	.452
	DIFF	000	000	.000	.002	000	012	.000
	ERGY	460	.459	.457	.456	.454	.453	.451

1313	0P ŤH	.579	.583	.580	. 592	.593	.594	.600
	ENGY	. 510	.610	.609	.611	.6.03	.605	.607
	DIFE	000		300	- 00.2		00 2	.000
	EPGY	F11	.617	.609	. 60.9	.608	.607	• 6 0 6
1314	DP TH	.300	.305	.303	• <u>3</u> 0 9	.306	• 30 4	• 3 04
	ENGY	.351	. 35 2	. 346	. 34 7	.340	.334	• 3 30
	DIFE	003	. 0.0.2	000	.004	.000	001	001
	ERGY	.354	.350	.347	. 34 3	.339	.336	• 3 32
1315	DP TH	• 007	.912	.916	. 92 2	.923	• 92 3	•929
	ENGY	. 934	.935	.935	.937	• 9 34	•93N	• 9 32
	DIFF	002	0^^	.000	. 00.3	.000	003	000
	ERGY	.975	.975	. 9 34	. 974	• 9 33	• 932	• 9 32
1316	ОР ТН	.427	.479	.423	. 427	.422	.419	•417
	FNGY	•201	.498	. 4 30	. 499	.481	.475	•469
	DIFF	001	• 0 <u>0 1</u>	002	• 00 3	•0.00	000	000
	ERGY	• 205	.497	.491	.486	.481	.475	. 4 70
1317	DP TH	.552	• 55 3	.554	• 55 K	•555	.555	• 5 5 7
	ENGY	.F07	•604	.601	.599	• 5 94	•590	• 5 88
	DIFF	- . nno	000	.000	•001	000	000	•0.00
	EDGA	• 6.6.3	• 6 7 4	•601	• 597	•5 94	.591	•587
1318	אז יינ	• 541	.543	• 5 4 4	.545	.543	. 54 3	• 5 4 8
	ENGY	.597		. 5 92	.589	• 5 83	.579	• 5 80
	DIFF	020	<u>. nh</u> n	.000	<u>1 מס.</u>	001	002	•002
	FRGY	• = 0 8	• Ç Q F	.591	• 5 A B	.585	• 58 1	• 5 78
1319	DP TH	.532	.574	• 5 34	. 537	.537	.536	• 5 4 1
	ENGY	.590	.587	.583	• 58 2	.578	• 57 3	• 5 7 3
	DIFF	-•••	. 010	000	• 00 0	000	-•002	• 3 0 1
	ERGY	.590	.587	• 5 84	• 58 1	•578	.575	• 5 72
1320	ΩΡ TH	.685	.688	.689	.694	• 6 93	.693	.699
	ENGY	.729	.723	.725	•726	.7?1	•717	.718
	DIFF	000	•0n0	000	• 00 2	000	002	.001
	ERGY	•730	•72 *	.726	.723	•721	.719	.717
1321	DP TH	.856	• 8 F]	.863	.858	.869	.869	. 876
	ENGY	• 6° 3	• ² 9 4	. 8 92	.893	• 9 90	.886	.888
	DIFF	0^1	• 67 3	non	• "1 2	•000	003	• 0 0 1
	ERGY	.894	.897	• 8 92	• 891	.889	.888	.887
1322	OP TH	.560	•56 n	.581	.571	.561	.555	• 5 40
	FNGY	.704	.700	.709	• 699	• 5 8 9	• 68 1	•669
	DIFF	006	- • CP 4	.010	• 00 6	.002	000	306
	ERGY	.710	.705	.699	.693	.687	•681	.676
1323	DP TH	.864	.865	.865	.869	.869	.867	.869
	ENGY	. 944	.941	.938	. 937	.933	• 92 7	.925
	DIFF	000	010	000	• 10 2	.001	-•001	000
	ERGY	.945	.947	• 9 38	.935	• 9 32	.928	•925
1324	DP TH	. 950	.953	. 240	.851	.854	.853	. 8 56
	ENGY	. 932	.931	.923	. 921	.920	.915	•913
	DIFF	• 100	• N1 2	002	- • 00 1	.000	000	•0.01
	ERGY	. 932	.929	. 924	. 92 2	.919	•°16	.912

.

1325	DP TH	.882	.884	.883	. 284	.884	. 88 3	• 8 8F
	ENGY	• 960	.959	.953	.950	.946	• 94 1	•940
	DIFF	000	•000	000	.000	000	001	.000
	ERGY	• 981	.957	.953	• 95 0	.946	• 94 2	• 9 39
1326	OP TH	1.017	1.015	1.018	1.022	1.023	1.022	1.027
	ENGY	1.082	1.076	1.075	1.074	1.971	1.066	1.367
	DIFF	.002	012	000	•001	000.	002	.001
	FPGY	1.080	1.078	1.075	1.073	1.071	1.0F 8	1.066
1327	DP TH	1.185	1.191	1.192	1.194	1.194	1.194	1.201
	ENGY	1.279	1.741	1.239	1.236	1.232	1.278	1.230
	DIFF	002	.072	.002	• 00 0	001	003	.002
	ERGY	1.241	1.239	1.237	1.235	1.233	1.230	1.228

CODE	STAT	۴,	8	10	12	14	16	18
1401	DPTH	.151	.157	.150	•150	•152	.148	•147
	ENGY	.204	.20?	.190	.184	.179	• 16 9	.162
	DIFF	002	.004	001	000	.002	000	000
	ERGY	.206	•199	.191	.184	•177	.170	.163
1402	DP TH	. 1 9 4	.185	•1.90	.193	.195	.197	.201
	ENGY	. 234	. ? ? 9	.2.26	• ?2 3	.218	• 21 3	.211
	DIFF	• 000	- . 011	.001	• • ว ถ	000	000	.000
	ERGY	. 2 34	•239	• 2 26	• 22 2	•218	. 214	• 2 10
1403	∩¤тн	.195	.199	.201	.210	•210	.211	.218
	ENGY	. 244	.241	• 2 3F	.238	•7 32	. 276	.225
	DIFF	000	000	002	.003	.000	002	.000
	ERGY	.244	.241	• 2 38	• 23 5	•? 32	• 22 9	• 2 25
1404	DP TH	.207	•212	• 2 1 4	.219	.??3	. 274	. 2 31
	ENGY	.255	.253	.248	. 24 6	.244	.238	.238
	DIFF	000			. 00 0	.1.00	002	.001
	FRGY	.255	.252	•249	. 24 6	.243	• 240	.237
1405	ОРТН	- 135	. 195	. 1 94	. 195	. 199	. 199	. 2 0 4
	ENGY	. 235	. 277	.230	. 22 4	.222	. 215	. 213
	DIFE	- 003	.004	0.00	00 0	.000	002	0.00
	ERGY	.238	.234	•229	. 22 5	.221	.217	.213
1406	DO TU	1197	500	5.05	517	517	621	5 70
- 100	ENCY	677	• J 2 4	• UO	• .51)	571	• J? I	5 71
		• • • • •	• 5.5 4	- 700	• 53 4	- 000	• 52 5	101
	ERGY	0-0	•533	•533	•532	•531	•531	.530
1407	5 5 7 //	716	70.0	7.20	777	7 // 1	74.4	754
1407	UP IH	• /16	•724	. 129	• / 3 /	• / 41	• /4 4	• / 54
	F.N.G.Y	. / 5 5	• / 5 /	• 75%	• 757	• / 55	• 75 1	• / 55
	01++	001	•020	000	• 101 2	.000	003	.001
	EQGA	• / 5 6	•755	• 755	• /55	• / 54	• 754	• 7 5 3
1408	DP TH	.248	.243	• 2 3 P	. 242	•246	•232	.229
	ENGY	.318	• 3 [] 9	•29 ^e	. 294	.291	.275	• 2 66
	DIFF		011	003	.002	•0.06	022	002
	ERGY	.318	• 30 9	.301	• 293	.285	• 277	.268
1409	DP TH	. 306	•714	• 319	. 724	•328	• 32 5	. 3 31
	ENGY	.368	.36.8	.366	.364	•761	• 35 2	.351
	DIFF	013	•000	• 0 02	.003	.003		'001
	ERGY	. 771	• 36 8	.354	• 36 1	•358	• 35 5	• 3 52
1410	DPTH	. 3 2 3	. 330	.327	. 332	.340	• 34 3	.348
	ENGY	79.2	. 38 2	.373	. 371	.372	. 36.8	.366
	DIFE	.000	-00.3	003	002	.0.01	.000	. 0.00
	ERGY	. 382	.379	.376	. 373	.371	.368	.365
1411	ΠΡ ΤΗ	. 292	. 296	. 295	. 29.9	. 299	. 299	. 3.00
	ENGV		. 75 7		. 7/1 2	. 7 7 5	. 770	
	DIFF	- 000 - 000	• 33 3 . 00 1	000	• JH 2 . 00 0		000	000
	ERGY	011 -357	• 09 1 • 35 ?	000 .346	• 34 1	unu .335	- • 000 • 330	• 3 24
1412	DP TH	.281	• 285	• 2 91	.292	.293	•291	• 2 93
	ENGY	. 747	. 344	. 342	• 33 7	•331	. 32 3	.318
•	DIFF	002	- •000	.003	• 11 2	.001	002	001
	ERGY	.349	• 34 4	•340	• 37 5	•330	• 32 5	• 3 20

.

1413	DP TH	. 577		.590	. 50 2	.602	•E04	.614
	ENGY	- 622	. 673	.627	. 623	- 5 21	.616	.620
	DIFF	001	.000	. 0.00		.000	003	.001
	FDCV	. 673	673	6 2 2	621	6000	620	6 1 9
	CROT	• • • • • •	• 12 - 2	• 0 2 2	• • • • 1	• • 20	•620	.019
1414	DP.TH	.854	.961	.866	.874	.878	. 881	.889
	ENGY	. 195	. 805	. 8 94	. 896	. 2 94	. 890	. 8 92
	DTEE	- 001	.000	000		0.00	002	.0.00
	EDICY	000	• C 0 C	000	001	907	007	9 01
	LKOF	• • •	• • • •	• 0	• • • • •	• • • • •	• 0 9 2	•0 51
1415	DP TH	. 388	. 384	.383	.376	• 3 76	• 368	• 3 6N
	ENGY	.492	.483	.476	.465	.458	.447	.436
	DIFF	000	- . 0h0	.001	000	.002	.000	002
	ERGY	.403	•483	.474	.455	•456	• 44 7	•4 38
1416		1.95	461	1.95	1,000	1 99	501	5.07
1410	CHCY	• • • • •	• • • 1 5 C F	• • • • •			- 501	.507
	ENGT	• ~ ~ ~	+ 3h 3	• 5 67	• 55 9	• 5 5 5	• 34 8	• 5 4 /
	0166	001	•010	.001	• 100 2	000	002	.000
	ERGY	• • • • 9	• 56 5	• 5 6 1	• 55 /	•554	• 550	• 5 46
1417	DPTH	.478	.480	.479	.484	.487	.488	• 4 92
	ENGY	.561	. 55F	.549	. 547	.543	.537	• 5 34
	DIFF	.000	.011	002	000	.0.00	000	.000
	ERGY	.560	.556	.551	. 547	.542	.538	.533
1 4 1 0								
1418	OP TH	•502	• 24 3	•510	.517	•518	• 52 1	• 5 26
	ENGY	• 581	•580	• 5 7 5	• 574	•263	• 56 5	• 5 63
	DIFF	- . 0n0	•000	000	• 00 2	000	000	•000
	ERGY	.582	• 579	•570	• 57 2	•569	• 56 6	• 5 6 3
1419	no tu	. 472	. 473	. 474	. 476	. 4 8 7	. 481	. 4.86
/	ENGY	556	551	545	540	5405	677	5 79
		• • 58	- 010	- 001	- 00 2	• 3 40	- 001	• 5 2 5
	DIFF FDCY	•001 555		001	002	• 0 0 2	-+001	•000
	ERGI	• 555	• 221	• 5 41	• 34 2	•231	• 2 2 2	• 5 2 8
1420	DP TH	.760	.767	.774	.779	.785	.78.6	.794
	ENGY	.816	.816	.817	.815	.814	• 80 9	.810
	DIFF	002	010	.001	.091	.002	003	000
	ERGY	.813	.816	.815	. 814	.813	.811	.810
1421	20.7.1	077	000	0.04	00.7	0.07		1 0 0 7
1421	DPTH		• 250	• 984	. 993	. 9 96	• 97 9	1.007
	ENGY	1.072	1.0/3	1.020	1.023	1.019	1.016	1.01/
	01 FF	000	•000	000	• 1911 3	•900	- • 00 Z	.000
	ERGY	1.073	1.0?2	1.021	1.020	1.019	1.018	1.01/
1422	DP TH	.562	.558	• 5 4 3	• 536	•532	• 52 4	.522
	ENGY	.720	.711	.696	.686	.678	.668	.660
	OTEE	- 100	.072	002	00.2	000	000	.0.02
	ERGY	.719	.70 9	.699	.689	.678	.668	.658
	-							
1423	OP TH	•66.9	•679	•673	• 67 8	•679	• 68 4	• 6 8 9
	ENGY	.790	•782	.771	•768	•763	•760	.758
	DIFF	001	• DD 5	002	000	002	000	.002
-	ERGY	• 7 % 2	•777	•773	• 76 9	•765	•760	•756
1424	Ub In	.677	-691	.670	. 690		. 697	. 5 93
-	ENGY	. 707	.787	. 775	. 779	.767	.750	.760
	htt	- UDO	• 10 0	- 002	• 1 1 0	- 0.00		• 1 0Ľ
	DILL	000	• UCFG	002	• (11) 3	7000	767	- 0 02
	6401	• 1 7 1	• [7] 3	• / / 6	. 113	• r 0 d	• / • 3	.136
1425	DP TH	. 685	•69N	.681	.693	.701	.697	.701
	ENGY	.794	•791	.781	.780	.780	.771	.767

	DIFF	.000	• 00 1	004	000	•9.04	-+001	000
	ERGY	.793	.789	•785	• 78 1	.776	• 77 2	.768
1426	ПР ТН	.708	.708	.708	.715	.714	•720	.726
	ENGY	. 812	.895	.799	.798	.791	.789	.788
	DIFF	.002	000	003	.000	003	000	.002
	ERGY	.809	.805	.801	.797	.793	•79 ¹ 0	• 7 86
1427	DP TH	. 902	.909	.915	• 92 1	.924	. 92 5	. 9 30
	ENGY	. 981	.981	.980	.979	.975	.970	.968
	DIFF	002	010	.001	.00.3	.001	002	001
	ERGY	. 983	•991	.978	.976	.974	• 97 1	• 969
1428	DP TH	1.124	1.132	1.134	1.137	1.144	1.150	1.156
	ENGY	1.188	1.199	1.185	1.191	1.182	1.181	1.180
	DIFF	000	.002	000	032	000	.000	.001
	ERGY	1.189	1.187	1.185	1.194	1.192	1.181	1.179

CODE	STAT	б	8	10	12	14	16	18
1501	DPTH	•137	•141	•138	•137	•136	.137	•142
	FNGY	. 214	-207	- 1·9 ^r	- 184	.174	.164	-158
	DIFE	- 000	00.2	- 0.00	- 00 0	- 0.02	00 1	0.02
	50.67		-002		00 μ		1001	• • • • • •
	2461	• 215	• 29.5	,195	• 185	•175	• 166	•1 56
1502	DP TH	•152	•157	.162	• 16 5	.171	.170	.177
	ENGY	•229	•273	.2.17	• 20 9	•204	•194	.189
	DIFF	000	010	.000	•000	.002	002	• 0 00
	ERGY	•230	•223	.216	• 20 9	.203	•196	.189
1503	DP TH	.185	198	.205	. 214	.221	.226	.237
	ENGY	- 256	-25.8	.254	. 25 3	.249	. 744	-244
	DIFF	- 0.02	00.2	0.00	001	0.00	002	0.00
	DIFF	002	• ()() /	• 0 00	- 101	-000		• 0 00
	6863	•253	• 5,0,	• 2 54	• 25 1	• < 49	• 24 6	• 2 4 3
1504	DP TH	.207	•215	.226	• 23 6	.742	•247	•258
	ENGY	.276	•273	•274	• 27.3	•269	• 26 3	•264
	DIFF	000	001	.001	.003	.000	002	.000
	FRGY	.277	• 275	.273	.270	•268	• 256	• 2 64
1505	DP TH	. 383	. 397	.403	.415	.423	. 479	. 4 4 1
1909	ENEY	. 446	. 449	. 4 4 5	. 44.8	.445	. 44 1	. 4 4 3
	DIEE	- 002	00.2	- 000	5 00	0.00	- 003	0.00
	CT CY		• U · · Z	-•000	• (*) 5	• • • • •	- • 00 5	• 0 00
	ERGI	• 4 4 8	•447	• 4 4 5	• 44 5	• 4 4 3	• 4 4 4	• 4 4 3
1506	DPTH	• 548	•558	•569	•580	• 5 8 8	• 59 6	.605
	ENGY	•609	•609	.610	.611	•609	•607	•606
	DIFF	001	- •001	.೧೮೦	• 00 2	.000	000	001
	ERGY	• 5 1 1	•610	.609	.609	.608	•608	.607
1507	DP TH	.706	.717	.728	.739	.745	• 75 3	.764
	ENGY	. 76 7	-769	. 769	- 77 0	.766	.764	. 765
	DIEE	- 007	- 000	0.01	00.7	- 000	- 002	- 000
	ERGY	.769	•768	.767	.767	.766	•765	.765
1500	00 TU	100	174	1 00	100	1.00	20.1	210
1508	UPTH	• 1r 8	•1/4	.180	• 190	•1 94	• 201	• 2 10
	ENGY	.242	•237	• 2 52	• 23 1	• 2 24	• 27 1	.219
	DIFF	•000	- •010	001	• 99 1	-•001	0r0	•001
	ERGY	. 241	•237	.233	• 22 9	•225	• 222	•218
1509	DP TH	.224	.232	.226	. 22 9	.228	• 22.0	.215
	ENGY	.323	• 318	.304	.296	.285	.270	.257
	DIFF	004	- 03 2	000	.013	.003	000	003
	ERGY	.327	.315	.305	. 293	•282	.271	.260
1510		242	25.2	250	26 4	272	271	284
1510		• / •)	• 2 3 2	• 2 3 3	- 20 -	• 2 1 2	• 2 / 1	• 2 04
	ENGT	• 3 5 ()	• 321	• 3 2 3	• 31 /	• 3 1 3	• 30 3	• 3 114
	0165	-•00I	•0.0.0	.001	•00.0	•002	004	•002
	ERGY	• 331	• 325	• 3 2 1	. 31 7	•312	• 30 7	• 3 0 2
1511	DPTH	.454	.465	.474	. 486	• 4 9 4	• 50 1	•514
	ENGY	.522	.522	.521	.523	• 5 20	.517	• 5 20
	DIFF	000	.070	000	. 00.2	.000	002	.000
	ERGY	. 572	.52?	.521	. 521	•520	• 52 0	.519
1512	OP TH	.Fr2	• 614	.623	.634	.544	•650	.564
	ENGY	.666	. 668	.667	.658	.668	. 66.4	.668
	DIFF	001	• 00 0	000	.000	.001	003	.001
	ERGY	. 667	.66.7	. 6.67	66.7	.667	667	
		- • •						

1513	DP TH	.760	.771	.780	.793	.802	.808	.821
	ENGY	. 823	.874	.823	. 826	.824	.820	.823
	DIFF	000	.000	000	.012	.001	013	.000
	FREY	- 824	-823	-823	. 82 3	.823	.823	.823
		• 97 -	1023	.025	•			
1514	DP TH	. 247	.252	.258	. 26 9	.273	.275	.286
	ENGY		. 327	- 3.22	. 321	.314	. 30.6	.305
	DIFE	. 000	000	001	.00.3	.000	003	.001
	EDCY	772	270	2 2 2	31.8	314	- 30.9	. 3 04
	6461	• 2 • 2	• 210	• 2 2 3	• 110	• 5 1 4	• 50.7	• 5 0 4
1515	DP TH	.264	.270	.283	.287	.294	• 30 1	.310
	ENGY	. 347	. 342	. 343	. 336	.332	. 328	.326
	DIFE	- 002	072	.003	00 0	000	000	.000
	FRGY	.347	.343	.340	.336	.333	. 32 9	.326
1516	DP TH	.351	•36 J	.360	. 348	•355	• 35 3	.344
	ENGY	. 496	.486	.47€	.459	•453	• 44 2	• 4 2 7
	DIFF	nno	•0n0	.002	004	.002	.002	002
	ERGY	.497	.486	.474	• 46 3	.451	.440	• 4 2 9
1517	DP TH	•665	.674	•683	.683	.7.02	•710	• 7 22
	ENGY	•749	.747	.745	.735	.743	.741	• 7 4 2
	DIFF	.002	.001	.000	008	•001	000	.003
	ERGY	.747	.746	.744	.743	.742	• 741	.740
1518	DP TH	• 511	•517	• 5 28	• 53 9	•546	.551	• 5 6 3
	ENGY	•611	•60 F	•606	•605	•601	•595	• 5 96
	DIFF	•noo	002	.000	• 00 2	•0.00	002	• 0 0 0
	ERGY	•F11	•608	.605	• 60 3	•600	• 598	• 5 95
1510							1 000	
1519	DPTH	• 9P 7	.992	1.002	1.013	1.020	1.026	1.0.58
	ENGY	1.058	1.053	1.052	1.053	1.050	1.046	1.048
	DIFF	•001	- •075	000	• 09 2	•000	-•02	.001
	ERGY	1.056	1.055	1.053	1.051	1.050	1.048	1.046
1						1 045	1 05 0	
1520	OP TH	1.017	1.019	1.027	1.038	1.045	1.052	1.065
	ENGY	1.077	1.079	1.077	1.075	1.075	1.071	1.074
	DIFF	001	•0*0	• 0 00	• 00 2	000	003	.001
	ERGY	1.078	1.07 °	1.077	1.076	1.075	1.074	1.073
1521	DO 711			4.27	473		443	
1521	UP IH	• 417	•41×	.423	.432	• 4 4 0	• 44 2	• 4 40
	ENGY	- 5 5 7	•578	• 5 22	• 51 8	•514	• 506	• 5 00
	DIFF	• 002	- • 09 2	002	• 1710	•002	000	
	ERGY	• 5 3 5	•529	• 5 24	• 51 8	•512	• 506	• 5 00
1522		409	409	11 1 5	473	. 4 25	. 428	. 4 37
1522	50 CM	.409		• 4 1 · ·	• • • · · ·	• 7 2 J	+420 //0E	497
	ENGY	• 5 3 4	• 52 /	• 5 14	• 212	• 5 0 5	• 4 7 5	• • • • • •
	DIFF	• 002	007	000	• 1991	000	002	• 0 0 2
	ERGY	•530	• 5 2 3	• 517	•519	•5.03	• 497	• 4 9 1
1523	00.70	E 20	540	6.20	512	5.08	. 494	- 5 00
	ENCY	• 179 710	- 240	• J Z J		. 670		2500
	ENGT	•/19	•/19	. / 04	• • • • • •	•0/4	.007	0.02
	DIFF		•076	•004		000		.002
	ERGY	•775	•713	.700	.637	•F 75	• 65 2	•649
1524	ля ти	575	594	5.01	592	5.94	60.4	۲ ח ۲
	ENGY	• 7 7 7 7 5 H	• 3 n 4 7 ti a	• つ つ ' 7 ル ቦ	• 372 77 /i	.724	. 72 2	.714
		- 000	· · · ·	- 000	- 000	- 000	• 7 2 2	- 000
	DIFF		•L 1 7/10	000			• UU I 70 1	-•000 71A
	CRUT	• / - 4	• / 4 3	• / 41	• (34	• 1 2 1	• 121	• / 14
1525	DP TH	.609	.610	.614	.624	.6 32	.637	.641
	ENGY	.775	.755	.758	.755	.750	. 744	.737

·

	DIFF	.002	001	003	000	•001	.000	000
	ERGY	.773	•767	.761	• 75 5	.749	.743	.737
1526	ПР ТН	.643	.642	.647	• 66 1	.677	.680	. 5 81
	ENGY	.798	.797	.781	.781	.783	.775	.765
	DIFF	.004	003	005	000	.0.05	• 00 2	003
	ERGY	.794	•790	.786	.781	.777	•773	.769
1527	DP TH	.815	.872	.830	. 83 7	.845	•86 D	.861
	ENGY	. 974	.930	.927	. 92 3	.920	. 92 3	.914
	DIFF	.000	010	000	001	092	• 07 4	002
	ERGY	• 933	.930	.927	. 924	•922	•919	•916
1528	DPTH	. 959	.975	.981	. 991	.999	1.073	1.018
	ENGY	1.0F2	1.055	1.062	1.061	1.058	1:052	1.055
	DIFF	003	• 00 3		• 00 1	.000	- • 00 4	.002
	ERGY	1.045	1.063	1.061	1.060	1.058	1.056	1.054

-

NOMENCLATURE

Symbol

Definition

0	discharge.	cfs
Y	anoonian go,	Q+ 0

- 6.0 station or point of measurement (in feet) in a downstream direction, includes 8.0, 10.0 cfs
- YN normal flow depth, y_n
- Y1 flow depth at station 6.0 corrected by 0.03 ', y
- Y4 flow depth at station 18.0 corrected by 0.03', y_4
- Y1-YN $y_1 y_n$
- $Y1/YN y_1 / y_n$
- EN energy for normal flow depth, $y_n + v_n^2/2g$
- E1 energy at station 6.0, E_1 , $(y_1 + v_1^2/2g)$
- E4 energy at station 18.0, E_4 , $(y_4 + v_4^2/2g)$
- E1-E4 head (energy) loss, $E_1 E_4$
- E4/E1 E_4/E_1 , E_r , ratio of energys
- 1-E15 computation of, $(1 E_r^{1.5})$
- FN Froude number computed at normal flow depth, F
- F1 Froude number computed at station 6.0
- FB Froude number computed at the minimum flow depth

١

ヽ.

Figure 44. Definition sketch for vertical board constriction.

Table 2. Hydraulic data for tilting flume with vertical board constriction and with slope varying from 0.0000 to 0.0050.

4

CODE	0	6.0	8.0	10.0	12.0	12.5	13.0	13.5	14.0	14.5	15.0	15.5	16.0	18.0
21 1	. 4 80	-403	. 4 0 3	-40.2	. 3 86	. 327	-175	.246	-182	.177	- 185	-176	-191	-199
21 2	. 4 80	-404	- 404	.401	- 3 86	.325	.181	-260	-202	-192	-206	-182	-212	-218
21 3	. 4 80	-407	. 407	-46 5	.388	- 32 9	.179	.279	.207	-210	.237	-207	-2'38	.237
21 4	- 4 80	-411	-411	.41 ft	- 3 91	. 331	-217	-288	.271	.267	-269	-263	-281	288
21 5	. 4 80	.720	.720	.719	.707	-68.8	-681	-684	-689	-685	-688	-687	-6 94	-696
21 6	480	1.018	1-019	1.017	1.008	1.000	.993	.996	1.000	-996	.996	.996	1.002	1-0.04
21 7	1.160	-716	-718	.71 5	- 6 94	-623	-360	-256	-258	-222	-165	-160	.204	-252
21 8	1.160	-717	-718	.718	-6 93	-621	-352	-255	-266	-230	-182	-192	-217	-272
21 9	1.160	.717	-718	.717	-6 93	-623	-355	-255	.270	-251	.195	-219	.237	-286
2110	1.160	.719	-720	.719	- 5 98	-632	-357	.313	-350	-331	. 324	.275	-319	-345
2111	1.160	-959	.961	-95.9	. 943	-893	-847	-863	.862	-863	- 867	- 870	.879	-881
2112	1.160	1-266	1.268	1.266	1-253	1.219	1.197	1.222	1.214	1.213	1.217	1.217	1.223	1.225
2113	1.670	.898	. 898	-897	. 8 72	-800	487	- 318	-268	.240	. 196	-146	-268	-306
2114	1.670	-897	.899	-896	. 8 72	.797	.4.83	. 315	.270	- 24 3	207	-152	.264	-296
2115	1.670	.898	- 902	.897	.872	. 80.0	. 4 84	. 32 3	.274	- 26 1	. 229	.240	.294	.319
2116	1 6 70	901	9.01		9.75	90.7	5.00	. 777	. 711	. 754	372	. 78.4	397	. 381
2110	1.670	1,186	1-186	1.185	1.165	. 1.103	1.017	1.068	1.069	1.062	1.065	1.064	1.073	1.078
2118	1.670	1.389	1.792	1.391	1.378	1.316	1.265	1.293	1.304	1.306	1.300	1.300	1.310	1.315
2119	2.390	1.126	1.127	1.122	1.101	1.023	-676	. 127	.304	.247	- 208	-182	. 4 5 4	. 45 9
2113	2.390	1.125	1.120	1.124	1.095	1.029	.679		- 309	-257	. 210	- 252	. 867	- 457
2120	2.330	1 1 25	1 1 27	1 12 7	1 1 1 00	1 020		*713	• 305	155	-210	•232	• • • • • •	
2121	2.330	1 1 1 7 7	1.120	1 17 2	1.100	1.028	•007	+421 hEC	- 300	•155	• 213	+221	• 4 52	• • • • • •
2122	2.370	1 262	1.133	1 - 13 2	1 . 1 0 3	1 177	•003	• 430	• 3 1 4	. 300	• 403	• 436	- 4 60	• 511
2123	2.390	1.202	1-264	1.201	1.238	1.1/3	- 380	• 35 3	1.044	1-018	1-015	1-027	1.021	1.029
2124	2.390	1.283	1-230	1.388	1.362	1.20.2	1+103	1.200	1 • 2 2 8	1.219	1.213	1.212	1.212	1.4661

Ĵ

CODE	Q	ΥN	۷1	¥ 4	¥ 1 - Y N	Y 1 / Y N	EN	E1	E 4	E1-E4	E4/E1	1-E15	FN	F1	FB
21 3	.480	.000	• 3 7 3	.169	.000	.000	.000	.376	.183	.193	• 4 8 5	.661	.000	.123	2.046
21 2	.480	.000	• 374	.188	.000	.000	.000	.377	.199	.178	.528	.616	.000	.122	1.945
21 3	.480	.000	.377	.237	• 0 00	•00n	.000	-380	.216	.164	•569	.571	.000	.121	1.985
21 4	.480	.000	.381	.258	.000	.000	.000	.384	.264	.120	•688	•430	.000	.119	1.412
?1 5	.480	.000	.690	.666	.000	.000	.000	.691	.667	.024	•965	•052	.000	.049	.217
21 6	.480	.000	.988	.974	.000	.000	.000	.988	.974	•014	•985	•021	.000	.029	.121
21 7	1.160	.000	.686	.22 2	.000	.000	.000	.691	.268	.422	.389	.758	.000	.119	5.886
21 8	1.160	.000	.687	.24 2	-0.00	.000	.000	.692	.281	-411	- 406	• 74 1	.000	.119	4.655
21 9	1.160	.000	.687	.256	.000	.000	.000	.692	.291	•401	• 4 2 1	.727	.000	.119	4.116
2110	1.160	.000	.689	. 31 5	.000	•00 0	• 3 00	.694	.338	• 356	.487	.660	.000	.118	2.275
2111	1.160	.000	•929	.851	•0:00	.000	.000	•932	.854	.077	.917	•122	.000	.076	• 37 4
2112	1.160	.00n	1.236	1.196	•000	.000	.000	1.237	1.198	•040	.968	.048	.000	.049	.219
2113	1.670	.000	.868	.276	.000	.000	.000	.874	.338	.576	. 387	.759	.000	.121	10.053
2114	1.670	.000	.867	.266	.000	.000	.000	.873	.333	-540	.381	.764	.000	.121	9.320
2115	1.670	.000	.868	.289	• 0 00	•00 n	.000	.874	-346	• 52 9	.396	.751	.000	.121	4.474
2116	1.670	.000	.871	. 35 1	•0.00	•00n	•000	.877	.390	.488	. 4 4 4	•704	.000	.120	2.666
2117	1.670	.000	1.156	1.048	• 0 00	-000	-000	1.160	1.052	.107	•908	.135	.000	.078	.405
2118	1.670	.000	1.359	1.285	•0.00	.000	.000	1.362	1.288	• 07 4	•946	.080	.000	•062	.289
2119	2.390	.000	1.096	.429	•0.00	-000	.000	1.104	.482	•622	• 4 36	.712	.000	.122	9.591
2120	2.390	.000	1.095	.437	.000	.000	.000	1.103	.488	•615	.442	.706	.000	.122	7.443
2121	2.390	.000	1.095	.456	.000	.000	.000	1.103	.503	.600	.456	•692	.000	.122	12.861
2122	2.390	.000	1.103	.481	.0 00	.000	•0.00	1.111	.523	.588	.471	•677	.000	.120	3.756
2123	2.390	.000	1 • 2 32	.999	- 0 OD	.010	.000	1.238	1.009	.230	.815	• 26 5	.000	.102	•725
2124	2.390	.000	1.359	1.197	•0.00	.000	.000	1.364	1.204	•160	.882	.171	.000	.088	.507

CODE	0	6.0	8.0	10.0	12.0	12.5	13.0	13.5	14.0	14.5	15.0	15.5	16.0	18.0
22 l	.500	.401	• 4 04	.435	.388	. 32 8	.179	.129	•171	-144	.165	.173	.179	.197
22 2	.500	.403	.405	.406	.389	. 32 9	.187	-280	•216	•224	- 2 38	.219	.240	.450
22 3	.500	.415	.419	•42 0	• 4 04	• 34 6	.279	.306	•309	• 30.9	.305	• 30 9	.314	.324
22 4	. 5 00	.465	.469	.469	• 4 55	•407	•393	• 38 9	• 3 9 1	• 39 1	.096	.400	.405	.412
22 5	• 5 00	.744	.748	.749	.742	.722	.720	.722	.725	.723	.724	.724	.731	.737
22 6	• 5 00	1.012	1.015	1.017	1.010	1.000	.997	1.000	1.000	1.001	1.000	1.000	1.008	1.012
22 7	1.150	.705	.706	.707	•687	.619	•350	• 25 2	•256	•208	-146	.137	.208	.264
22 8	1.150	.705	.786	.708	.688	.619	•350	.259	.282	• 26 2	.233	•240	.259	.297
22 9	1.150	.707	.710	.711	.688	•626	•353	.276	•397	.359	.340	.289	.336	.366
2210	1.150	.717	.720	.721	.702	•635	.379	.489	•826	.469	.474	.511	.490	.517
2211	1.150	.969	.973	.975	.960	.911	.864	.882	.895	.888	.897	.898	•903	•908
2212	1.150	1.236	1.240	1.240	1.231	1.201	1.176	1.203	1.194	1.194	1.197	1.195	1.204	1.208
2213	2.350	1.101	1.106	1.106	1.081	1.011	.655	.414	-289	.098	.106	.172	.419	.448
2214	2.350	1.102	1.106	1.107	1.083	1.002	.661	.290	.307	.167	-173	• 336	.445	• 46 3
2215	2.350	1.107	1.110	1.110	1.083	1.011	.667	•431	• 315	• 30 9	.307	.313	.450	•465
2216	2.350	1.114	1.118	1.117	1.092	1.025	•680	•452	•403	.445	• 5 6 5	•555	.510	• 55 3
2217	2.350	1.221	1.224	1.225	1.200	1.138	•843	.896	1.009	•979	.965	.977	.973	.985
2218	2,350	1.379	1.385	1.383	1.366	1.302	1.123	1.209	1.238	1.225	1 • 2 31	1.229	1.236	1.247

-

Table 2.	Continued.	

C OD E	Q	Y N	۲1	¥ 4	¥ 1 - Y N	¥1/YN	EN	Ε1	E 4	E1-E4	E4/E1	1-E 1 5	FN	F 1	FB
22 1	.500	.181	.371	.167	.190	2.050	.216	.388	.182	•206	.469	.679	.379	.129	3.817
22 2	.500	-181	.373	•42 0	.192	2.061	•191	.390	.422	032	1.082	125	.379	.128	1.912
22 3	• 5 00	.181	.385	.294	.204	2.127	.188	.402	.299	-103	.743	.359	.379	.122	.957
22 4	.500	.181	.435	. 38 2	.254	2.403	.329	•452	.385	.067	.852	.213	.379	.102	7.013
22 5	.500	.181	.714	.737	• 5 33	3.945	.207	•729	.708	.021	.971	.044	.379	.048	- 207
22 6	.500	.181	.982	.982	.801	5.425	•2 30	• 99 7	.982	.014	.986	•022	.379	.030	.125
22 7	1.150	• 323	.675	.234	.352	2.090	.509	.694	.275	.419	.396	.751	.366	.121	7.814
22 8	1.150	.323	.675	.267	. 3 52	2.090	•343	.694	.299	• 396	• 4 30	.718	.366	.121	2.990
22 9	1.150	• 323	.677	• 33 6	.354	2.096	.335	.696	.356	.340	.511	•635	.366	.120	2.242
2210	1,150	.323	.687	.487	.364	2.127	•330	.706	.496	.210	.703	.410	.366	.118	1.327
2211	1.150	• 323	.939	.878	.616	2.907	• 3 36	• 95 6	.881	.075	• 922	.115	.366	.074	.359
2212	1.150	• 323	1.206	1.178	.883	3.734	•346	1.222	1.180	• 04 2	•965	.052	.366	.051	• 22 3
2213	2.350	.540	1.071	.418	.531	1.983	7.227	1.094	.472	•622	.431	.717	.346	.124	31.518
2214	2.350	•540	1.072	.433	.532	1.985	•958	1.095	• 4 83	.611	441	.707	.346	.124	11.022
2215	2.350	•540	1.077	.435	.537	1.994	.571	1.100	.485	.615	.441	.707	.346	.123	3.834
2216	2.350	.540	1.084	.52 3	.544	2.007	.553	1.106	.557	• 54 9	.504	.642	.346	.122	2.453
2217	2.350	.540	1.191	.955	.651	2.206	•54F	1.212	.965	• 24 7	.795	.289	.346	.106	.762
2218	2.350	•540	1.349	1.217	.809	2.498	•549	1 • 36 9	1.223	•145	.894	•155	• 346	.088	• 489

,

CODE	0	6.0	8.0	10.0	12.0	12.5	13.0	13.5	14.0	14.5	15.0	15.5	16.0	18.0
23 F	• 5 30	.418	.422	•42 4	• 4 11	•24 8	•189	•119	.173	•126	.157	.175	•172	.190
232	• 5 30 ⁻	.418	.424	•426	• 4 09	. 34 9	·1 92	.275	.231	-212	-249	•213	+240	•257
23 3	• 5 30	.424	.429	• 43 1·	• 4 1 5	• 35 7	.257	• 30 3	.305	• 30 1	.307	.302	.315	.329
23 4	• 5 30	.474	.479	.482	• 4 6 9	.416	.390	.414	.404	•406	.412	.410	•419	.423
23 5	. 5 30	.724	.730	.733	.726	.704	.693	.702	.708	.707	.706	.708	.717	•722
236	. 5 30	.996	1.001	1.005	1.001	.990	.984	. 98 8	.991	.990	• 991	• 99 3	1.000	i.005
237	1.120	•683	.690	•692	.673	.603	. 3 36	.244	.283	•204	.137	.119	.209	.240
238	1.120	.684	• 6 9 0	•694	.676	•604	.343	.255	.271	.252	.186	•223	•254	.200
23 9	1.120	.687	.691	•694	.676	-607	.348	.272	.382	.347	.309	• 31 1	.321	• 35 2
2310	1.120	.694	.697	.70 0	. 6 84	.611	•363	.406	• 5 34	.428	•415	.479	•454	•472
2311	1.120	•955	.961	•96 2	• 9 54	• 90 2	.849	.876	.882	.890	.894	.894	.903	.908
2312	1.120	1.237	1.243	1.246	1.238	1.207	1.189	1.211	1.207	1.204	1.206	1.200	1.218	1.224
2313	2.340	1.097	1.104	1.103	1.082	1.006	.661	.414	.302	-240	.201	.161	.387	•446
2314	2.340	1.099	1.104	1.105	1.084	1.012	•651	.416	.307	.247	•203	• 32 9	• 4 52	.475
2315	2.340	1.101	1.106	1.108	1.085	1.014	•663	.430	.333	.284	.265	.288	.463	•471
2316	2.340	1.108	1.113	1.117	1.099	1.027	.681	.462	•409	.400	.573	• 54 4	•535	•588
2317	2.340	1.258	1.264	1.267	1.268	1.183	•910	1.007	1.093	1.062	1.063	1.064	1.067	1.078
2318	2.340	1.397	1.404	1.406	1.390	1.324	1.169	1.232	1.263	1.266	1.264	1.270	1.274	1.278

C OD E	0	ΥN	¥ 1	¥ 4	¥ 1 - Y N	Y 1 / Y N	EN	Ε1	E 4	E1-E4	E4/E1	1-E15	FN	F 1	FB
23 1	• 5 30	.158	.388	.160	• 2 30	2.456	.239	.415	.179	.236	.430	.718	•4 92	.128	4.747
232	• 5 30	.158	.388	.227	-230	2.456	•173	.415	•236	.179	•569	• 57 1	• 4 92	.128	1.933
233	• 5 30	.158	.394	.299	• 2 35	2.494	.168	-421	.304	.117	.723	• 386	. 4 92	.125	1.165
234	.530	.158	.444	• 39 3	.286	2.810	.170	.470	.396	.074	- 842	.227	. 4 92	.105	.584
23 5	• 5 30	.158	•694	.692	• 5 36	4.392	.190	.719	.693	.026	.964	• 05 4	. 4 92	.053	.233
236	.530	.158	.966	.975	.808	6.114	.221	• 99 1	.976	.015	•985	• 112 3	.492	.033	•135
237	1.120	.265	.653	•21 Q	.388	2.464	.771	.682	.258	.474	.379	•767	.479	•124	10.032
238	1.120	.265	.654	.170	.389	2.468	• 3 28	.683	•244	.439	• 357	•787	.479	.124	4.323
23 9	1.120	.265	.657	• 32 2	.392	2.479	.282	.686	.343	.343	.499	.647	.479	.123	2.237
2310	1.120	.265	.664	.442	.399	2.506	•275	.693	.453	.240	•654	.471	.479	•121	1.386
2311	1.120	.265	.925	.878	. 660	3.491	.283	. 951	.881	.071	• 926	.109	.479	.073	.359
2312	1.120	.265	1.207	1.194	.942	4.555	.299	1.232	1.195	.037	.970	.045	.479	.049	.213
2313	2.340	.447	1.067	.416	- 6 2 0	2.387	1.161	1.099	.470	.629	.427	•721	•457	.124	11.737
2314	2.340	.447	1.069	.445	.622	2.391	•6 91	1.101	.492	.609	.447	.701	.457	•124	7.734
2315	2.340	.447	1.071	-441	.624	2.396	•525	1.103	.489	.614	.443	.705	.457	.123	4.854
2316	2.340	.447	1.078	•558	.631	2.412	.466	1.110	.588	• 52 2	•530	•615	.457	.122	2.473
2317	2.340	.447	1.228	1.048	.781	2.747	.457	1.258	1.056	.202	.840	.231	.457	.100	.674
2318	2.340	.447	1.367	1.248	. 9 20	3.058	.460	1.396	1.254	.142	.898	.149	.457	•0°5	.458

1

.
CODE	•	6.0	8.0	10.0	12.0	12.5	13.0	13.5	14.0	14.5	15.0	15.5	16.0	18.0
24 1	•540	•415	• 4 22	.427	-414	• 35 2	•192	.207	.165	.113	•136	.156	.164	.187
24 2	•540	.415	.421	.426	.414	.355	•192	.234	.208	.180	.193	.203	.201	.226
24 3	•540	.416	.423	.42 9	•416	• 35 7	•197	.301	.250	.247	.269	.250	.267	•285
24 4	.540	•436	. 4 4 4	.44 9	.438	• 38 4	•303	• 34 5	.349	• 35 3	.349	• 35 3	.361	.369
24 5	•540	.720	.726	•73 2·	.727	•733	•6 96	.711	.709	.710	.710	.714	.771	•730
24 6	.540	•992	1.000	1.005	1.002	.993	.988	• 99 1	• 9 9 4	.994	.997	1.000	1.007	1.015
24 7	1.120	.697	.685	.690	.672	.608	.341	• 24 3	.232	.195	•179	.092	.779	.244
24 8	1.120	.681	.687	.691	.673	•60 9	•337	• 25 7	.263	.234	.171	.189	.223	.280
24 9	1.120	•680	.687	.691	.696	•612	• 342	• 26 7	.309	• 29 3	.285	.264	.289	•321
2410	1.120	•683	• 6 92	.696	.681	.614	.357	.378	.472	•408	.379	.384	.397	•432
2411	1.120	•927	• 9 31	• 93 6	.928	. 87 5	•826	.851	.864	• 86 2	.870	. 86 7	.881	. 88 7
2412	1.120	1.193	1.201	1.236	1.202	1.166	1.146	1.166	1.170	1.170	1.173	1.178	1.182	1.191
2413	2.350	1.088	1.099	1.100	1.083	1.019	•659	•415	.300	• 24 1	.200	.159	.143	.385
2414	2.350	1.089	1.098	1.100	1.080	1.009	•659	•415	.300	.239	.208	.188	• 4 4 6	• 46 5
2415	2.350	1-092	1.101	1.104	1.086	1.014	.659	.424	.223	.271	.249	.247	.441	•473
2416	2.350	1.097	1.109	1.110	1.090	1.018	.667	.450	.393	.419	.513	.507	.490	• 55 0
2417	2.350	1.238	1.249	1.251	1.232	1.169	. 8 92	.981	1.072	1.045	1.037	1.049	1.051	1.061
2418	2.350	1.396	1.407	1.411	1.396	1.354	1.169	1.246	1.278	1.277	1.278	1.280	1.282	1.299

•

.

~

CODE	Q	YN	۲1	¥ 4	¥ 1 - ¥ N	¥1/YN	EN	Ε1	E 4	E1-E4	E4/E1	1 <i>-</i> E15	FN	F 1	FB
24 1	.540	.136	.385	.157	.249	2.831	.287	.427	.177	•250	•415	•733	.628	.132	5.371
24 2	• 5 40	•136	.385	.196	.249	2.831	.161	.427	.209	.218	.490	.657	• 6 2 8	.132	2.211
24 3	.540	.136	.386	.255	.250	2.838	.156	.428	.263	•165	•614	.519	.628	.131	1.882
24 4	•540	.136	-406	• 33 9	.270	2.985	.150	.447	.343	•104	.767	• 328	.628	.122	.900
24 5	.540	.136	• 6 90	.700	. 5 54	5.074	.179	.729	.701	.028	•961	•058	.628	.055	.236
24 6	•540	.136	•962	. 98 5	.826	7.074	.222	1.001	.986	.015	.985	•023	.628	.033	.137
24 7	1.120	.225	•667	• 21 4.	.442	2.964	3.128	.710	.261	•450	.367	.778	.612	.120	17.254
24 8	1.120	.225	•651	.250	.426	2.893	•35D	.694	.284	.410	.409	•738	.612	.124	5.031
24 9	1.120	.225	-650	.291	• 4 25	2.889	•251	.693	.316	• 377	• 4 5 5	•692	.512	.125	2.353
2410	1.120	.225	.653	.432	.428	2.902	.240	.696	.415	.281	• 5 96	• 54 0	.612	•124	1.424
2411	1.120	.225	.897	.857	•672	3.987	.249	.938	.860	.078	.917	•122	.612	.077	.375
2412	1.120	.225	1.163	1.161	.938	5.169	.269	1.203	1.163	• 04 0	.966	.050	.512	.052	.226
2413	2.350	.379	1.058	. 35 5	.679	2.792	2.185	1.105	.430	.675	.389	.758	.588	·1'26	14.713
2414	2.350	.379	1.059	.435	• 6 80	2.794	.867	1.106	.485	.621	.438	.710	.588	.126	8.899
2415	2.350	.379	1.062	.443	•683	2.802	•607	1.109	.491	.618	.443	.705	.588	.125	6.592
2416	2.350	.379	1.067	• 52 0	.688	2.815	.407	1-114	.555	.559	.498	.648	.588	.124	2.555
2417	2.350	.379	1.208	1.031	.829	3.187	.393	1-253	1.040	.213	.830	.244	.588	.103	•698
2418	2.350	.379	1.366	1.269	.987	3.604	.398	1.409	1.275	.135	.905	•140	.588	.086	.460

.

CODE	Q	6.0	8.0	10.0	12.0	12.5	13.0	13.5	14.0	14.5	15.0	15.5	16,.0	18.0
25 I	.490	.377	.388	.399	.386	. 33 2	.181	•198	•145	.085	.091	•133	•150	.172
25 2	.490	.377	.389	. 39 9	.388	• 33 0	.180	.237	•190	.173	-188	.190	.204	.227
25 3	.490	.378	.390	.402	. 3 90	• 33 2	.193	.278	•255	.274	•252	259	.279	.299
25 4	.490	.429	• 4 4 2	•450	.442	.396	.376	.387	.390	• 387	.393	•400	•405	.419
25 5	.490	.690	.702	.71 0	.709	.696	.582	.696	.700	.700	.707	.707	.714	.728
25 6	.490	.988	1.000	1.008	1.010	1.004	1.000	1.006	1.008	1.009	1.013	1.015	1.023	1.036
25 7	1.130	•668	.680	.689	.676	.608	• 3 34	•237	.225	.188	.122	.074	.256	.279
25 8	1.130	.670	.681	.690	.675	.611	.343	-247	.245	•212	.145	.139	•2.22	.269
25 9	1.130	.670	•682	.690	.678	•613	.349	.260	•296	.283	.278	•259	• 2 86	.321
2510	1.130	.673	.685	.692	.683	•614	•353	.406	•403	.447	• 3 56	•403	•222	•433
2511	1.130	.941	•954	.691	.956	.909	.859	.877	.893	.900	•905	•915	.918	.930
2512	1.130	1.226	1.238	1.248	1.246	1.216	1.201	1.216	1.224	• 221	1.2.24	1.727	1.238	1.257
2513	2.450	1.107	1.115	1.124	1.111	1.036	.686	-451	.304	• 22 4	.201	• 16 3	-138	.340
2514	2.450	1.105	1.118	1.126	1.112	1.045	.683	.435	• 307	• 24 5	•205	.187	-465	.480
2515	2.450	1.106	1.119	1.127	1.110	1.036	.687	• 433	.314	.250	•205	•196	•488	•508
2516	2.450	1.115	1.126	1.136	1.122	1.049	•702	.469	• 389	.382	.512	.529	•516	• 55 9
2517	2.450	1.238	1.249	1.258	1.244	1.176	•882	• 95 5	1.064	1.027	1.023	1.040	1.032	1.058
2518	2.450	1.390	1.403	1.408	1.400	1.342	1.165	1.245	1.275	1.266	1.269	1.256	1.286	1.298

,

C OD E	Q	YN	¥ 1	¥ 4	Y 1 - Y N	Y 1 / Y N	EN	E 1	E 4	E1-E4	E4/E1	1-E15	FN	F 1	FB
25 1	.490	.110	.347	•142	.237	3.155	.854	-410	.162	.248	.395	•751	•784	.140	9.035
25 2	.490	.11 0	• 347	•197	.237	3.155	.142	.410	-208	.203	•506	.640	.784	.140	2.155
25 3	.490	.110	.348	.269	• 2 3 8	3.164	.1 35	•411	.275	.137	.668	.454	.784	.139	1.771
25 4	.490	.110	.399	. 38 9	.289	3.627	.133	.462	.392	.070	. 849	•218	.784	.113	.573
25 5	.490	.110	.660	.698	• 5 50	6.000	.173	.721	•6.99	.022	.969	.046	.784	.053	.221
25 6	.490	.110	•958	1.006	.848	8.709	•241	1.018	1.006	.012	•988	.018	.784	.030	• 124
25 7	1.130	-194	.638	.24 9	.444	3.289	16.007	.703	.284	.419	. 404	•743	.772	.129	29.117
258	1.130	.194	.640	.239	.446	3.299	•642	.705	.277	.428	.393	•754	.772	.129	7.468
25 °	1.130	.194	.640	.291	.446	3.299	•2 32	.705	.317	. 389	.449	•699	.772	.129	2.452
2510	1.130	.194	•643	.433	•449	3.314	.256	.708	.415	.292	.588	.549	.772	.128	3.194
2511	1.130	.194	.911	• 93 0	.717	4.696	•219	.974	.903	.071	.927	107	.772	.076	.500
2512	1.130	.194	1.196	1.227	1.002	5.165	•257	1.258	1.228	.029	•977	• 034	.772	.050	3.219
2513	2.450	• 333	1.077	• 31 0	.744	3.234	3.633	1.146	.416	.729	.363	.781	.744	.128	16.417
2514	2.450	• 333	1.075	•45 D	.742	3.228	1.095	1.144	.500	.643	.438	.711	.744	.128	9.366
2515	2.450	•333	1.076	.478	.743	3.231	.947	1.145	.523	•622	.457	.691	.744	.128	8.615
2516	2.450	•333	1.085	.52 9	.752	3.25 ª	.379	1.154	.566	.588	.490	.657	.744	.126	2.790
2517	2.450	• 373	1.208	1.028	. 8 75	3.628	.351	1.275	1.038	.237	.814	• 266	.744	.108	.741
2518	2.450	.333	1.360	1.268	1.027	4.084	•358	1.426	1.274	.151	. 894	.155	.744	.090	.482

CODE	G	6.0	8.0	10.0	12.0	12.5	13.0	13.5	14.0	14.5	15.0	15.5	16.0	18.0
31 1	.510	•285	.280	.278	• 2 62	•239	•215	•216	•220	•222	•217	•213	•219	.225
31 2	.510	.289	.287	.286	• 2 68	.24 9	•2 32	.235	•231	•231	• 2 3 3	.236	•233	.242
31 3	.510	.310	.309	.307	.303	•276	•262	.279	.262	.267	.268	.266	• 2 66	.273
31 4	.510	.285	.284	.281	.265	-244	• 2 26	•219	•225	•227	• 224	•223	•229	.235
31 5	.510	.490	.489	.490	.482	.478	.472	.473	.472	.470	.469	.472	•473	•476
31 6	.510	.700	.701	.70 0	.694	.694	•6 90	. 68 9	.689	.687	. 688	.689	.689	•692
317	.510	.860	.861	.859	.854	.854	•851	.851	•85D	• 849	.849	.849	•850	• 85 3
31 8	1.306	.496	.469	.467	-438	. 39 3	• 2 94	•233	.310	•282	.246	.289	•298	.322
31 9	1.306	.472	.472	.468	.440	• 39 7	.307	• 25 5	.382	.284	.300	• 333	.309	.332
3110	1.306	.471	.471	.468	.439	• 39 2	• 2 98	•243	.383	•284	.267	• 314	.307	.325
3111	1.306	•520	• 5 20	.518	.494	.459	•399	.441	.393	.454	•409	•452	.431	.448
3112	1.306	.707	.707	.796	• 6 93	.673	•6 57	• 66 1	.665	•659	.665	.662	.664	.669
3113	1.306	.896	.896	.895	. 8 86	.878	.869	.867	.867	. 86 5	.867	.866	-868	.871
3114	1.306	1.092	1.094	1.092	1.084	1.077	1.072	1.073	1.073	1.072	1.075	1.072	1.075	1.077
3115	2.595	.738	.736	•73 4	.691	.637	•4 93	•346	.265	•245	.279	.383	•435	•432
3116	2.595	•739	.737	.736	.691	•641	.499	. 35 1	.270	. 26 5	.319	.377	• 3 92	.421
3117	2.595	.742	.742	.738	.698	.64 9	•514	• 37 1	•358	.559	-506	•430	•438	•494
3118	2.595	.772	.770	.768	.738	•681	• 5 72	• 55 7	.615	.589	.604	.607	.613	•638
3119	2.595	•980	.983	. 98 3	• 9 55	• 82 2	.859	.894	.873	•882	.881	.886	• 8 92	•903
3120-	2.595	1.178	1.181	1.179	1.162	1.129	1.113	1.119	1.121	1.113	1.117	1.119	1.125	1.129
3121	2.595	1.376	1.380	1.377	1.364	1.351	1.331	1.327	1.330	1.329	1.334	1.331	1.334	1.339
3122	4.450	1.027	1.030	1.023	.976	•919	•762	• 53 4	.370	•295	.281	.409	• 5 94	-615
3123	4.450	1.024	1.021	1.023	.973	•929	.741	.526	.378	.305	•326	.521	•613	•628
3124	4.450	1.028	1.028	1.024	.983	• 92 6	•752	• 53 6	•390	• 331	.392	• 569	•662	•654
3125	4.450	1.066	1.069	1.067	1.025	•959	-813	•624	•676	•835	.794	.743	•747	.785
3126	4.450	1.199	1.201	1.204	1.163	1.117	•992	• 993	1.030	1.019	1.034	1.039	1.041	1.079
3127	4.450	1.352	1.356	1.350	1.328	1.272	1.175	1.219	1.221	1.209	1.215	1.221	1.230	1.248
3128	4.450	1.410	1.414	1.413	1.390	1.366	1.250	1.283	1.304	1.262	1.289	1.282	1.292	1.313

CODE	Q	ΥN	¥ 1	¥ 4	¥ 1 - Y N	Y 1 / Y N	EN	£1	E 4	E1-E4	E4/E1	1-E15	FN	F 1	FB
31 1	.510	.000	•255	.195	•0.00	.000	.000	• 26 2	•207	.055	.789	.299	.000	.231	.765
31 2	.510	.000	.259	•21 2	• 0 00	.000	.000	•266	•222	.044	.835	.237	.000	.226	.665
31 3	.510	.000	.280	.24 3	.000	.000	.000	•286	•250	.035	.877	.179	.000	.201	.536
31 4	•510	•000	.255	• 20 5	• 0 00	.000	.000	•262	.216	•046	• 823	• 25 3	.000	.231	.729
31 5	.510	•000	• 4 60	.446	.000	•000	.000	.462	.448	•014	.970	.045	.000	.095	.206
31 6	•510	.000	.670	.662	.000	•00 n	.000	.671	•663	.008	.988	.018	.000	.054	.113
31 7	•510	•000	.830	.82 3	.0.00	.000	.000	.831	.824	.007	• 992	.013	.000	.039	.081
31 8	1.306	.000	• 466	•292	• 0 00	•000	•0.00	.479	• 3 2 6	.153	.680	.439	.000	.240	1.678
31 9	1.306	•000	.442	. 30 2	• 0 00	•000	.000	.457	.334	•123	.731	. 375	.000	.259	1.438
3110	1.306	.000	.441	.295	• 0 00	.000	.000	.456	• 3 2 8	.128	.720	• 389	.000	.260	1.561
3111	1.306	.000	.490	.418	•0.00	•000	.000	• 50 2	•4 35	.067	.865	•195	.000	.222	.702
3112	1.306	.000	.677	•63 9	•0.00	•000	.000	.683	.646	.037	.946	.081	.000	.137	.309
3113	1.306	.000	.866	.841	•0.00	•000	.000	. 870	-845	.025	.972	• 042	.000	.095	.201
3114	1.306	.000	1.062	1.047	•0.00	.000	•000	1.065	1.050	.015	.986	.021	.000	.070	. 144
3115	2.595	.ono	.708	.402	• 0 00	.000	•00r	•731	.473	.258	.647	•479	.000	.254	3.058
3116	2.595	.000	.709	.391	.0.00	.000	•000	.732	.466	.266	• 6 37	• 492	.000	.254	2.676
3117	2.595	•000	.712	.464	•0.00	.000	• D D D	•735	.517	.217	•704	.409	.000	•252	1.623
3118	2.595	.000	•742	.608	•0.00	.000	•000	.763	•639	.124	.838	.233	.000	.237	.797
3119	2.595	•000	•950	.873	•0.00	.000	.000	• 96 3	.888	.075	•922	-114	.000	.164	•433
3120	2.595	•000	1.148	1.099	•0.00	.000	•000	1.157	1.108	•048	•958	.062	.000	.123	.271
3121	2.595	•000	1.346	1.309	•0.00	.000	.000	1.352	1.316	•037	•973	•040	.000	.097	.206
3122	4.450	•000	•997	•585	•000	•000	•0.00	1.031	• 6 8 4	.347	•663	.460	.000	.261	4.157
3123	4.450	•000	•994	• 598	•0 00	•000	•000	1.028	•692	• 336	.673	.447	.000	• 26 2	3.625
3124	4.450	•000	•998	•62 4	• 0 00	.000	•000	1.032	•711	• 321	•689	• 42 9	.000	.260	3.166
3125	4.450	.000	1.036	.755	•0.00	.000	•000	1.067	.814	.253	.763	• 334	.000	.246	1.142
3126	4.450	.000	1.169	1.049	• 0 00	.000	•000	1.194	1.080	-114	.904	.140	.000	.205	.554
3127	4.450	•000	1.322	1.218	• 0 00	•00 h	.000	1.341	1.241	.101	.925	.110	.000	.171	.427
3128	4.450	.000	1.380	1.283	• 0 00	.000	.000	1.398	1.303	.094	• 9 3 3	.099	.000	.160	.388

CODE	Q	6.0	8.0	10.0	12.0	12.5	13.0	13.5	14.0	14.5	15.0	15.5	16.0	18.0
32 1	• 5 06	.266	.268	.269	• 2 52	• 29 9	.201	• 206	.202	.186	•194	• 20 3	.209	•221
32 Z	• 5 06	.270	.270	.270	• 2 55	•231	•2.06	•210	•215	•203	•197	.209	.214	.231
32 3	.506	.266	.268	.269	•2 53	•227	.205	•207	.207	.189	•196	• 204	.210	.223
32 4	• 5 06	•340	.343	. 34 1	• 3 33	• 32 2	.314	.314	.315	.319	-319	.319	• 320	•328
32 5	.506	•522	.524	• 52 5	• 5 21	•517	.514	•513	.515	.514	.516	•517	.518	•523
32 6	.506	•709	.713	.71 5	.712	.710	•708	.709	.709	.709	•709	•711	.705	.716
32 7	.506	•907	.910	• 91 2	.910	•90 9	.909	• 90 8	.907	•906	.909	• 90 9	.915	•911
32 8	1.254	.450	.452	.452	. 4 27	•279	•2 91	•222	•263	.269	• 2 3F	.272	.291	.296
32 9	1.254	•450	.453	.452	•4 28	• 52 3	•4 32	• 37 3	•319	•412	.406	•435	.295	-314
321D	1.254	.463	.465	.464	.4 40	.396	•319	.317	• 368	• 31 1	• 374	• 32 9	• 3 6 8	.377
3211	1.254	.492	.494	.495	.473	•436	.379	•413	-383	.413	.394	• 42 3	.402	•428
3212	1.254	.710	.710	.71 2	•702	•68 9	.674	•677	•674	.675	.679	•682	.684	•688
3213	1.254	•897	.899	. 90 1	. 8 94	.886	.880	.880	.879	.879	.879	• 880	•885	• 88 9
3214	1.254	1.106	1.113	1.110	1.110	1.104	1.100	1.096	1.100	1.098	1.009	1.102	1.103	1.110
3215	2.510	.712	.711	.70 9	.678	• 62 1	•482	• 33 7	.261	• 24 7	.284	• 364	.451	•425
3216	2.510	.706	.708	.738	.677	.612	-491	.438	.276	.309	.387	.407	•405	•431
3217	2.510	.718	.719	.72 2	.731	•621	• 4 93	• 377	•450	• 54 4	.471	•436	.488	• 55 4
3218	2.510	.783	.778	.787	.761	.709	•609	.651	.660	•649	.664	• 65 4	•673	•685
3219	2.510	.967	•967	• 96 8	.948	•914	•870	.895	.876	.890	.879	.884	• 8 93	•902
3220	2.510	1.114	1.149	1.148	1.132	1.113	1.089	1.095	1.096	1.088	1.093	1.095	1.099	1.112
3221	2.510	1.335	1.337	1.339	1.330	1.315	1.299	1.301	1.303	1.299	1.301	1.303	1.307	1.314
3222	4.258	•998	.997	•996	• 9 50	.88 9	•736	• 50 9	•360	•284	•249	•280	• 5 36	•550
3223	4.258	.995	.990	•989	.961	.891	.734	•516	.362	.292	•299	•434	.569	.602
3224	4.258	.990	1.000	.996	1.049	.88 9	.739	.518	.382	• 32 8	• 341	•491	.605	.603
3225	4.258	1.011	1.014	1.015	1.080	•916	•746	• 55 6	•475	• 54 3	.646	.751	• 6 7 6	•753
3226	4.258	1.187	1.185	1.188	1.156	1.104	•992	1.015	1.037	1.024	1.039	1.033	1.048	1.081
3227	4.258	1.333	1.330	1.333	1.311	1.267	1.179	1.214	1.200	1.004	1.219	1.212	1.231	1.250
3228	4.258	1.395	1.394	1.394	1.373	1.333	1.247	1.287	1.285	1.269	1.279	1.294	1.296	1.320

CODE	Ģ	Y N	¥ 1	¥ 4	¥ 1 - ¥ N	Y 1 / Y N	EN	E 1	E 4	E1-E4	E4/E1	1-E15	FN	F1	FB
32 1	• 5 06	•182	• 2 36	.191	.054	1.297	•185	• 25 8	.203	.055	.785	• 30 3	.380	.258	.965
32 2	• 5 06	.182	• 2 40	•201	.058	1.319	.185	• 26 2	.212	.050	. 808	• 27 3	.380	.251	.871
32 3	. 5 06	.182	• 2 36	.193	.054	1.297	.185	.258	.205	.054	.793	.294	.380	.258	.938
32 4	.506	.182	•310	.298	.128	1.703	.187	• 32 9	.303	• 02 6	.921	.115	.380	.171	.393
32 5	.506	.182	. 4 92	.493	.310	2.703	.194	.508	.495	.013	.974	.039	.380	.086	.177
32 6	.506	.182	.679	.686	.497	3.731	.206	•694	.687	.007	•989	•016	.380	.053	.107
32 7	• 5 06	.182	.877	.881	.695	4.819	•222	• 892	•882	.010	•988	.017	•380	.036	.073
32 8	1.254	• 344	• 4 20	• 26 6	.076	1.221	•347	•450	.304	•146	.676	. 444	.363	•269	1.751
32 9	1.254	.344	• 4 20	.284	.076	1.221	.347	- 450	•317	•132	.706	.407	.363	.269	1.080
3210	1.254	• 344	.433	. 34 7	.089	1.259	•347	.462	.369	.092	.800	- 285	.363	.257	•989
3211	1.254	• 344	.462	.398	.118	1.343	•347	.489	•415	.074	.849	•218	• 363	.233	.715
3212	1.254	• 344	.680	.658	.336	1.977	•350	.700	.664	.036	.949	.076	.363	.130	.285
3213	1.254	.344	.867	.85 9	• 5 23	2.520	•355	.885	•863	.022	.975	.038	.363	.091	.188
3214	1.254	.344	1.076	1.080	.732	3.128	•358	1.093	1.082	.010	.990	.014	.363	.066	.152
3215	2.510	.567	•682	. 39 5	.115	1.203	• 5 7 4	.719	.464	.256	•645	• 482	• 343	.260	2.917
3216	2.510	•567	•676	.431	.109	1.192	• 5 7 2	.714	.468	•246	•655	.470	.343	•264	2.417
3217	2.510	.567	•688	• 52 4	• 1 21	1.213	•570	.725	• 563	•162	.777	.316	• 343	.257	1.443
3218	2.510	.567	.753	•655	.185	1.328	•570	•786	. 680	·10F	.865	•196	-343	•224	.669
3219	2.510	.567	• 937	.872	.370	1.653	.571	- 96 4	.886	.078	•920	.118	• 343	.161	• 383
3220	2.510	•567	1.084	1.082	.517	1.912	• 5 7 3	1.108	1.091	•016	•985	•022	.343	.130	• 27 1
3221	2.510	•567	1.305	1.284	• 7 38	2.302	•5.76	1.326	1.291	.035	.973	.040	• 343	.098	- 206
3222	4.258	•840	•968	• 52 0	.128	1.152	•859	1.015	• 6 3 4	. 381	•625	• 506	• 323	•261	4.881
3223	4.258	.940	•965	•572	•1 25	1.149	• 8 5C	1.013	.666	.346	•658	.466	• 3 2 3	•262	3.730
3224	4.258	-840	•960	• 57 3	•1 20	1.143	-847	1.00.8	.667	• 34 1	•662	.462	• 3 2 3	•264	3.075
3225	4.258	-940	.981	.72 3	-141	1.168	•843	1.027	.782	.245	.761	.336	• 323	•256	1.685
3226	4.258	•840	1.157	1.051	.317	1.377	.843	1.194	1.079	•116	•903	-141	• 3 2 3	•200	• 5 3 0
3227	4.258	.840	1.303	1.220	• 4 63	1.551	•843	1.336	1.241	.095	•929	.105	• 3 2 3	.167	.520
3228	4.258	.840	1.365	1.290	• 5 25	1.625	.844	1.396	1.309	.087	• 9 3 7	.092	• 3 2 3	.156	. 37 3

CODE	Q	6.0	8.0	10.0	12.3	12.5	13.0	13.5	14.0	14.5	15.0	15.5	16.U	18.0
33 1	.468	.248	• 2 50	. 25 1	.240	• 21 4	.189	.195	.194	.179	.179	.185	•198	.207
33 2	.468	•261	.263	.266	• 2 56	• 23 4	.219	•217	.218	•217	•225	.227	•229	•239
333	.468	•250	.254	•256	•243	•222	•196	.197	.202	.194	.191	.191	.202	.221
33 4	.468	-289	•293	• 29 5	.288	•273	•263	• 26 5	-263	• 26 3	.262	.259	.267	.279
33 5	.468	•492	.496	.499	.496	.494	.491	•492	•492	•491	.494	.496	.496	•504
336	•468	.688	.691	.694	. 6 95	.695	.693	•693	•692	•693	.694	.695	.698	.704
337	.468	.934	.940	•942	.943	• 94 3	.941	• 94 1	.942	•942	.942	.944	.947	• 95 5
338	1.219	.660	.667	.66 9	.663	•645	.624	.626	•630	•000	.000	.000	• 6 36	.645
33 9	1.219	•633	.637	.640	•633	.613	• 5 92	.595	•598	.000	.000	.000	.600	-609
3310	1.219	.546	.549	• 55 2	• 5 40	• 51 1	•467	•500	.470	.000	.000	.000	.484	.499
3311	1.219	•458	•462	.464	.464	. 397	.299	• 22 1	•229	•000	.000	-000	.265	.299
3312	1.219	.825	.828	.831	.829	.819	.811	• 8D 4	.808	•000	•000	.000	.813	• 823
3313	1.219	1.029	1.033	1.037	1.036	1.029	1.027	1.024	1.024	•000	•000	.000	1.027	1.034
3314	1.308	.468	•473	•474	• 4 51	•40 9	.428	• 32 5	.380	• 32 2	• 3 3 3	• 34 1	.375	.390
3315	1.308	.459	•462	.463	•438	.294	.297	• 25 1	-365	•291	•279	• 31 9	• 318	.337
3316	2.431	.690	.696	•698	• 6 68	.608	.478	• 32 2	•245	.000	.000	.000	.448	.409
3317	2.431	.690	.696	•699	• 6 62	.608	• 4 76	• 32 3	•250	.000	.000	.000	.450	.414
3318	2.431	.691	.697	.699	.668	•607	•483	.434	.284	.000	.000	• nn a	. 3 92	.426
3319	2.431	.701	.703	.705	.676	•62.5	• 5 92	.474	.472	.000	.000	.000	.502	• 55 4
3320	2.431	.749	•753	.755	.735	.684	.586	.608	.641	.000	•000	-000	• 6 32	•654
3321	2.431	.878	.883	.886	.868	• 82 9	•764	.797	.800	•000	.000	.000	.808	•823
3322	2.431	1.059	1.064	1.066	1.058	1.032	1.007	1.013	1.012	•000	.000	.000	1.015	1.021
3323	4.218	•982	.986	•984	• 9 48	•892	.744	• 50 4	• 3 5 8	.279	•245	.250	•425	.497
3324	4.218	.980	.986	•986	.952	. 89 2	.738	- 50 6	.361	•294	-302	.495	.617	.605
3325	4.218	.982	.985	.986	. 9 54	-891	.733	.509	• 371	- 30.4	.354	.546	.670	.625
3326	4.218	1.026	1.037	1.034	1.003	• 94 6	.797	•642	.776	.832	.793	.779	.793	• 85 5
3327	4.218	1.004	1.010	1.007	.973	• 90 6	.764	• 56 7	.494	.644	.794	•739	.646	•751
3328	4.218	1.154	1.161	1.160	1.125	1.076	.949	. 984	.985	.999	.999	• 996	1.019	1.056
3329	4.218	1.345	1.345	1.348	1.325	1.279	1.194	1.234	1.238	1.217	1.239	1.243	1.241	1.259

CODE	Q	Y N	¥ 1	¥ 4	¥1-¥N	¥1/YN	EN	E 1	E 4	E1-E4	E4/E1	1-E15	FN	F1	FB
33 1	.468	.145	.218	.177	.073	1.503	.149	.250	.189	.061	.756	.343	• 4 95	.268	.956
332	.468	.145	• 2 31	.20 9	.086	1.593	.149	• 26 2	.218	• 04 4	.830	• 24 3	• 4 95	.246	.680
33 3	.468	.145	• 2 20	.191	.075	1.517	.149	.252	.201	.050	•799	•285	.495	.265	.851
33 a	•468	•145	.259	•24 9	-114	1.786	.150	•289	•255	.034	.884	-169	• 4 95	.207	.502
33 5	.468	•145	•462	.474	•317	3.186	.163	.488	.476	.012	•975	•037	•4 95	.087	.176
336	.468	•145	•658	.674	•513	4.538	1 8D	• 68 3	.675	.008	•988	.018	•4 95	.051	.103
337	.468	•145	.904	• 92 5	.759	6.234	.211	• 92 8	•925	• 00 3	.997	.005	• 4 95	.032	.064
338	1.219	.281	• 6 30	.61 5	.349	2.242	.289	•660	•622	.039	.941	.087	- 4 78	.142	. 31 3
33 9	1.219	.281	.603	.579	• 3 22	2.146	.289	•634	.587	• 04 7	.925	•110	• 4 78	.152	.340
3310	1.219	.281	-516	.469	• 2 35	1.836	• 2 86	.550	.481	.069	.874	.182	.478	.192	.496
3311	1.219	•281	•428	. 26 9	•147	1.523	.2 36	.466	•304	•162	•653	•473	•478	•254	1.716
3312	1.219	• 281	.795	.793	.514	2.829	• 2 94	• 82 3	.797	.026	•968	•047	• 4 78	•100	• 21 0
3313	1.219	• 28 1	•999	1 • 00 4	.718	3.555	.303	1.026	1.007	•019	•981	•028	•478	.071	.145
3314	1.308	•296	•438	• 36 0	-142	1.480	•300	.477	•382	.095	• 802	•282	.474	•263	•974
3315	1.308	•296	.429	. 30 7	.133	1.449	•300	.469	.338	.131	.721	.388	-474	•272	1.479
3316	2.431	•460	•660	. 37 9	• 2 00	1.435	.470	.707	.449	.258	•635	.494	• 4 55	•265	2.865
3317	2.431	.460	. 660	- 38 4	-200	1.435	•469	.707	.452	.255	.640	.489	• 4 5 5	•265	2.768
3318	2.431	.460	•661	• 39 6	•201	1.437	•466	.708	.460	• 24 8	•650	.476	• 4 55	.264	2.231
3319	2.431	•460	.671	• 52 4	.211	1.459	•463	.717	.561	.157	.782	.309	.455	•258	•972
3320	2.431	•460	•719	•62.4	• 2 59	1.563	•464	• 76 2	•650	•113	• 8 5 2	•213	• 4 55	•233	•689
3321	2.431	•460	•848	.793	.388	1.843	•4.65	.886	•809	.077	•913	•127	•455	•182	• 4 5 4
3322	2.431	.460	1.029	• 99 1	• 5 69	2.237	•4 68	1.063	1.001	.061	.942	.085	•455	•136	•296
3323	4.218	•689	•952	.467	•263	1.382	•719	1.009	.606	•404	•600	•535	•430	•265	4.971
3324	4.218	•689	•950	•575	•261	1.379	.704	1.008	.667	.341	• 6 6 2	• 46 2	•430	•266	3.653
3325	4.218	•689	•952	• 59 5	• 2 63	1.382	.702	1.009	.681	• 32 9	•674	.446	•430	•265	3.455
3326	4.218	•689	• 9 96	. 82 5	• 3 07	1.446	•692	1.051	.870	.181	.828	• 24 7	• 4 30	.248	1.035
3327	4.218	•689	•974	•721	•2 85	1.414	• 6 93	1.030	.779	•251	•757	• 34 2	•430	•256	1.568
3328	4.218	•689	1.124	1.026	• 4 35	1.631	•6 93	1.172	1.055	•117	•900	•146	•430	.207	• 56 2
3329	4.218	.689	1.315	1.229	• 6 26	1.909	•6 95	1.357	1.249	•107·	-921	.116	.430	•163	.395

Table	2.	Continued
I UUIÇ	<i>.</i>	commucu.

CODE	Q	6.0	8.0	10.0	12.0	12.5	13.0	13.5	14.0	14.5	15.0	15.5	16.0	18.0
34 1	.606	-250	.254	. 25 9	• 2 48	•222	.175	•194	.157	•193	-184	•164	.186	.204
34 2	.606	.253	•257	.261	.250	• 22 5	•186	.203	.176	•191	• 209	•186	•197	.223
34 3	.606	.259	•264	.268	• 2 58	• 23 2	•203	.214	.205	•194	•211	• 22 3	•223	.240
34 4	.606	-308	.317	. 31 9	•312	• 29 9	•289	.294	.292	•295	• 295	• 297	.303	.314
34 5	.606	.503	.509	•515	• 5 16	-50 9	.509	.512	•513	•513	•515	•519	•522	•531
34 6	.606	695	.704	.70 9	.712	.709	.709	.713	.714	.712	•715	.717	.719	.729
34 7	.606	.871	•880	.885	.888	. 88 7	.886	.887	.889	•890	.891	• 893	.8 96	•905
34 8	1.143	.409	.416	.420	• 4 00	. 35 5	.264	•202	•232	•233	•196	•233	-247	.272
34 9	1.143	.408	•416	•41 9	.4 00	.359	•269	.219	.291	•245	.238	•272	.278	.300
3410	1.143	.415	•420	.425	.4 08	. 36 7	•2 92	.278	.347	•297	• 3 3 9	. 300	.305	• 35 2
3411	1.143	.448	.456	.45 9	. 4 44	.410	•357	.400	.359	.413	• 372	.406	.391	-414
3412	1.143	•620	•629	•63 3	• 6 24	.613	•600	.600	-612	.605	-604	.612	.616	•626
3413	1.143	.810	.818	• 82 2	.819	• 81 2	•805	• 80 9	.807	.809	-813	.813	.819	•829
3414	1.143	.989	• 9 96	1.007	1.004	1.000	•995	.995	•997	.995	1.000	1.002	1.006	1.018
3415	2.450	•689	.694	.700	.669	.613	•477	. 32 4	.245	.213	•247	• 394	•431	.388
3416	2.450	.687	.695	.699	. 6 96	.607	•4 70	• 32 4	.247	•230	.390	•415	• 4 82	•424
3417	2.450	.689	•695	.699	•667	.611	.479	.339	.286	.425	•412	.421	.405	.467
3418	2.450	•699	.706	.70 9	• 6 8 3	.613	•4 93	• 392	.537	• 526	.491	.519	• 5 5 2	• 56 9
3419	2.450	.855	.867	.880	.860	.816	.754	.794	•780	.796	.785	.797	.803	.822
3420	2.450	1.043	1.051	1.058	1.042	1.015	.987	• 996	•992	1.000	1.002	1.008	1.016	1.030
3421	2.450	1.200	1.211	1.214	1.201	1.187	1.170	1.169	1.178	1.173	1.176	1.181	1.190	1.200
3422	4.180	.970	.983	. 98 3	.953	.877	.723	• 50 0	.358	•284	• 229	•212	.262	•425
3423	4.180	.974	.978	.974	.949	.900	•735	• 50 2	•360	• 28 3	• 281	• 395	.577	.612
3424	4.180	.977	• 9 80	.978	• 951	.887	•737	• 50 4	.373	. 30 9	.349	• 55 3	.647	.626
3425	4.180	•981	.980	• 98 3	• 9 56	.894	.745	•515	• 395	• 35 9	.374	• 54 4	•61D	•598
3426	4.180	1.130	1.136	1.140	1.112	1.052	.939	. 94 4	.986	.982	.984	.994	1.009	1.048
3427	4.180	1.265	1.272	1.274	1.250	1.212	1.114	1.159	1.160	1.149	1.169	1.159	1.176	1.206
3428	4.180	1.368	1.372	1.378	1.363	1.309	1.242	1.274	1.270	1.273	1.289	1.287	1.301	1.318

CODE	Q	Y N	¥ 1	¥ 4	¥ 1 - Y N	Y 1 / Y N	EN	Ε1	E 4	E1-E4	E4/E1	1-E15	FN	F1	FB
34 1	.606	.147	• 2 20	.174	.073	1.497	•153	•271	•195	.077	.717	• 392	•627	.343	1.573
34 2	.606	.147	•223	.193	.076	1.517	.153	.274	.210	• 06 4	.765	• 330	•627	.336	1.276
34 3	.606	.147	.229	-210	.082	1.558	•1 52	.279	-224	•055	.803	.281	•627	.323	1.072
34 4	• 6 06	.147	.278	•284	.131	1.891	•154	• 32 4	.292	.033	.899	-147	.627	.241	•540
34 5	.606	.147	.473	• 50 1	.326	3.218	165	.514	.503	.011	.979	.031	.627	.109	.219
34 6	.606	.147	-665	•699	.518	4.524	.182	.705	.700	•005	.994	.010	•627	.065	.131
347	.606	•147	.841	.875	.694	5.721	•203	.880	.876	.004	.995	•008	.627	.046	.092
34 8	1.143	.228	.379	.242	.151	1.662	•236	•433	•280	•153	.647	.480	.613	.286	1.985
34 9	1.143	.228	.378	.270	.150	1.658	• 2 34	.432	.301	.131	.696	.420	.613	.287	1.634
3410	1.143	.228	.385	• 32 2	•1 57	1.689	•233	.438	• 343	-095	.783	.307	.613	.279	1.087
3411	1.143	.228	.418	. 38 4	.190	1.833	• 2 34	.469	.399	.070	.851	.215	.613	.247	.718
3412	1.143	.228	• 5 90	•596	• 3 62	2.588	•24D	.635	.602	• 03 3	.949	.076	.613	.147	.312
3413	1.143	.228	.780	.799	.5 52	3.421	.248	.822	.802	•020	.975	.035	.613	.097	.197
3414	1.143	.228	•959	.988	.731	4.205	.259	1.000	.990	•017	.990	.014	.613	.071	.143
3415	2.450	.391	.659	.358	.268	1.685	•413	.721	.438	.283	.607	.527	•585	•267	3.677
3416	2.450	• 391	.657	.394	.265	1.680	.408	.719	.460	.259	.639	.489	.585	.268	3.218
3417	2.450	.391	.659	.437	.268	1.685	.400	.721	.491	.230	.680	.439	• 5 85	.267	2.222
3418	2.450	.391	.669	• 53 9	.278	1.711	• 3 9F	.730	.574	.156	.786	.303	.585	.261	1.322
3419	2.450	.391	.825	.792	.434	2.110	.398	.878	.808	•070	.920	.117	• 5 85	.191	.467
3420	2.450	.391	1.013	1.000	• 6 22	2.591	.402	1.061	1.010	.051	.952	.071	.585	.140	.307
3421	2.450	• 391	1.170	1.170	.779	2.992	•406	1.216	1.177	.038	•968	.047	•585	.113	.237
3422	4.180	.575	.940	.395	.365	1.635	.6 50	1.012	.586	.426	.579	• 56 0	.559	.268	6.325
3423	4.180	.575	.944	• 58 2	.369	1.642	.599	1.016	.670	.346	.659	. 46 5	.559	.266	3.905
3424	4.180	.575	.947	.596	.372	1.647	.592	1.019	.680	.339	.667	.455	.559	.265	3.332
3425	4.180	.575	.951	.568	.376	1.654	.586	1.022	.660	. 36 2	.646	.481	•559	.263	2.602
3426	4.180	.575	1.100	1.018	• 5 25	1.913	•581	1.163	1.047	.116	.900	•146	.559	.211	.567
3427	4.180	.575	1.235	1.176	.660	2.148	.582	1.293	1.198	.095	.926	.109	•559	.173	.435
3428	4.180	•575	1.338	1.288	.763	2 • 32 7	.584	1.393	1.306	.087	•937	• 092	•559	.158	.368

CODE	Q	6.0	8.0	10.0	12.0	12.5	13.0	13.5	14.0	14.5	15.0	15.5	16.0	18.0
35 1	.460	•214	•223	• 23 1·	•2 22	.197	•1 54	.167	•132	• 16 4	•157	• 142	•16D	.185
35 Z	.460	.219	•228	•23 5	.231	• 20 3	•169	•183	.166	.158	.184	•134	.187	.209
35 3	.460	.214	.224	.230	.224	•200	•156	.167	.135	•160	.167	•149	•164	.195
35 4	.460	.238	.248	.256	.252	•236	•224	•230	•225	• 22 3	.233	.236	• 2 38	•252
35 5	.460	.460	.471	.482	. 4 85	•482	•483	•485	.489	•488	•493	•495	•498	•511
35 6	.460	.605	.616	. 626	.630	•63 N	•6 30	•630	.635	•636	.639	. 542	.647	.652
35 7	.460	.813	.825	.835	.839	. 84 3	•840	• 84 3	.844	•847	.849	•852	.858	• 86 9
35 8	1.237	.414	.426	.434	.415	. 37 4	•286	.203	.188	.209	.169	.220	•1 98	.270
35 9	1.237	.415	.427	.434	.418	.376	•282	•214	•245	•274	.238	•276	•285	.311
3510	1.237	•428	• 4 36	.445	•429	.418	•312	• 30 9	•365	• 314	.374	• 331	• 372	.381
3511	1.237	•422	•431	.439	• 4 25	• 38 1	.299	•269	•368	.279	• 362	• 32 7	.323	.351
3512	1.237	•650	.657	.669	• 6 68	.653	•6 39	•649	.652	.647	.654	•662	.662	.677
3513	1.237	•832	.844	.85 2	.818	.844	•83A	• 84 2	.844	.844	.849	•854	.857	.873
3514	1.237	1.044	1.053	1.064	1.066	1.064	1.060	1.061	1.065	1.065	1.069	1.070	1.075	1.089
3515	2.607	.698	.713	.717.	.693	.630	.489	• 33 9	.252	.217	.211	• 291	• 4 3 4	•403
3516	2.607	.701	.709	.718	.688	•628	•491	• 337	•253	•216	.244	• 38 3	.447	•404
3517	2.607	.701	.711	.718	.690	.64 2	• 5 0 4	• 35 3	• 3 95	.323	•417	•439	•423	• 46 3
3518	2.607	.700	.735	.742	.716	.668	•6 52	• 511	•593	•578	•586	.600	.611	•650
3519	2.607	.900	.913	• 92 O	. 9 08	.872	. 806	.851	.841	.834	.850	.836	-858	.880
3520	2.607	1.095	1.107	1.117.	1.105	1.073	1.059	1.066	1.060	1.069	1.076	1.069	1.081	1.096
3521	2.607	1.261	1.270	1.282	1.275	1.259	1.241	1.251	1.255	1.251	1.256	1.261	1.266	1.277
3522	4.520	1.005	1.016	1.022	.996	•926	•757	• 5 3 3	•380	•293	.245	•219	.249	.396
3523	4.520	1.005	1.016	1.001	.993	.919	.774	• 53 3	.374	.393	- 254	•224	•254	.470
3524	4.520	1.009	1.017	1.022	.989	• 82 3	.787	• 55 2	-410	.386	•419	• 50 9	.606	.630
3525	4.520	1.014	1.031	1.039	1.006	.930	•759	• 55 9	• 4 4 0	•414	.473	.629	•670	•650
3526	4.520	1.153	1.170	1.172	1.149	1.099	•971	1.037	1.010	1.011	1.024	1.024	1.037	1.077
3527	4.520	1.299	1.312	1.322	1.298	1.259	1.162	1.219	1.202	1.191	1.204	1.212	1.220	1.254
3528	4.520	1.353	1.365	1.373	1.353	1.314	1.217	1.254	1.270	1.259	1.259	1.259	1.281	1.319

~

CODE	Q	YN	۲1	Y 4	¥ 1 - Y N	Y 1 / Y N	EN	E 1	E 4	E1-E4	E4/E1	1-E15	FN	F1	FB
35 l	.460	.105	.184	.155	.079	1.752	•114	•255	.170	.085	.668	.455	.789	.340	1.659
352	.460	.105	.189	.179	.084	1.800	•114	.259	.190	.069	.734	. 371	.789	.327	1.611
35 3	.460	.105	.184	.165	.079	1.75?	•114	.255	.178	.076	.700	-414	.789	.340	1.588
35 4	.460	.105	.208	•22.2	.103	1.981	.113	.276	.229	•047	.830	.244	.789	.283	.637
35 5	.460	.105	.430	.481	.325	4.095	.135	.492	.483	.009	.981	•028	.789	.095	.192
356	.460	.105	.575	•62.2	. 4 70	5.476	.157	.636	.623	.013	.979	.031	.789	.062	.124
35 7	.460	.105	.783	.839	.678	7.457	.200	. 84 4	-840	.004	.995	.007	.789	.039	.078
35 8	1.237	.207	.384	•24 0	.177	1.855	.226	.462	.285	.176	.618	.514	.766	.303	2.804
35 9	1.237	.207	.385	.281	.178	1.860	•217	.453	.314	.149	.679	• 44 1	.766	.302	1.841
3510	1.237	•207	.398	.351	• 1 91	1.923	.214	.474	• 372	•102	•784	.305	•766	.287	•986
3511	1.237	.207	• 3 92	. 32 1	.185	1.894	.214	.469	.346	• 12 3	.738	• 36 5	.766	.294	1.244
351Z	1.237	.207	• 6 20	.647	•413	2.995	•2 23	.687	.653	•034	.951	.072	.766	.148	.306
3513	1.237	.207	.802	.843	.5 95	3.874	.233	• 86 6	.847	.019	.978	• 0 3 3	.766	.101	.208
3514	1.237	.207	1.014	1.059	.807	4.899	.249	1.077	1.061	•015	•986	• 02 1	.766	.071	.142
3515	2.607	.348	.668	• 37 3	.320	1.920	.385	•754	.456	.298	.605	.529	.741	.279	3.977
3516	2.607	.348	.671	.374	.323	1.92.9	.381	.757	.457	.300	•604	• 531	.741	.277	3.818
3517	2.607	.348	.671	.433	.323	1.928	.358	•757	.495	• 26 2	•654	.471	.741	•277	1.931
3518	2.607	. 348	•670	• 62 D	• 3 2 2	1.925	.355	.756	.650	.106	.860	.202	.741	•277	.918
3519	2.607	.348	.870	.850	.5 22	2.500	.358	• 94 5	.866	.079	•915	.123	.741	.187	.448
3520	2.607	.348	1.065	1.066	.717	3.060	• 3 64	1.135	1.076	.059	.948	.077	.741	.138	•293
352¥	2.607	.348	1.231	1.247	.883	3.537	.370	1.299	1.254	• 04 4	.966	.051	.741	.111	.230
3522	4.520	•517	•975	• 36 6	.4 58	1.886	•626	1.072	•626	.446	• 5 8 4	• 55 4	.710	•274	6.463
3523	4.520	.517	.975	• 44 0	•4 58	1.886	.616	1.072	.620	.452	.578	.560	.710	.274	6.215
3524	4.520	.517	.979	•CD 0	.462	1.894	.531	1.075	.697	.379	.648	.479	.710	•272	2.500
3525	4.520	•517	.984	• 62 0	.467	1.903	.528	1.080	.710	• 36 9	.658	.466	.710	.270	2.232
3526	4.520	.517	1.123	1.047	.606	2.172	•5 25	1.211	1.079	•132	.891	.159	.710	•222	• 582
3527	4.520	.517	1.269	1.224	.752	2.455	.527	1.351	1.247	•103	.973	.113	.710	.185	.441
3528	4.520	.517	1.323	1.289	.806	2.559	.528	1.403	1.310	.093	.934	•098	.710	.173	.411

-

C 00 E	Q	6.0	8.0	10.0	12.0	12.5	13.0	13.5	14.0	14.5	15.0	15.5	16.0	18.0
41 1	• 5 20	.257	.255	. 25 1	• 2 41	•235	•2 30	• 22 5	•228	.000	•227	.000	.230	.230
41 2	• 5 20	.266	.265	.262	• 2 53	• 25 1	.244	• 24 1	.242	•000	.241	.000	•243	.243
41 3	• 5 20,	-258	.258	• 25 4	•243	• 29 3	•2 33	•231	• 2 30	.000	.229	.000	• 2 32	.234
414	.520	.300	.299	•296	.285	.287	.283	.280	.282	•000	.281	.000	•284	•284
41 5	• 5 20	•585	.586	• 58 5	• 5 82	• 58 3	.579	.579	.578	.000	.578	.000	.580	• 582
416	• 5 20	•834	.836	.834	.831	.832	.829	829	.829	.000	.8?7	.000	• 8 2 9	.831
41 7	1.140	.361	.360	• 35 4	.338	• 32 8	•312	• 30 8	.305	.000	•323	.000	.321	•323
418	1.140	• 367	.366	. 36 1	• 3 46	- 33 1	• 3 2 1	•316	• 320	•000	•319	-000	• 3 2 9	.329
41 9	1.140	• 377	.376	• 37 2	• 3 56	• 34 4	• 3 34	• 34 2	• 3 3 4	.000	• 3 36	.000	• 3 38	.342
4110	1.140	.419	.419	•416.	- 4 05	• 39 5	•389	.386	.386	.000	.387	.000	.394	.396
4111	1.140	•666	.667	•666	.660	•660	•6 55	•654	.655	.000	.655	•000	•658	.660
4112	1.140	.950	.951	•950	• 945	.94 3	•942	• 94 1	•941	•000	.939	.000	•912	.944
4113	2.590	•545	.544	• 53 9	• 5 03	.470	•429	• 392	•434	.467	•388	• 50 3	.448	.476
4114	2.590	• 5 5 3	• 5 4 8	• 53 9	• 5 14	.480	•4 33	.409	•450	•460	-417	•513	.461	•495
4115	2.590	•556	.557	• 55 1	•518	-483	.439	•432	.470	.448	.505	.507	.472	•496
4116	2.590	.602	.598	• 59 4	• 5 62	.548	.519	•520	•5F7	.507	• 564	•515	.547	.549
4117	2.590	.848	.847	.844	.830	80 4	.814	•816	.812	.812	.820	• 815	.820	.829
4118	2.590	1.100	1.101	1.100	1.091	1.084	1.084	1.079	1.083	1.079	1.082	1.081	1.084	1.089
4119	4.280	•730	.728	.722	.580	•653	.566	• 46 9	.397	•400	•531	• 558	• 4 82	• 501
4120	4.280	•731	.728	.724	.686	.639	• 5 4 2	.476	.473	.514	•641	• 597	.469	•538
4121	4.280	.728	.730	•725	.706	.644	• 5 73	•483	.535	.493	•653	.544	.545	.570
4122	4.280	.756	.754	.747	.711	.673	•610	•549	.555	.666	.600	.602	•669	.651
4123	4.280	.980	.980	.976	• 9 53	•941	•914	• 912	.921	.907	•935	•929	.931	•937
4124	4.280	1.252	1.252	1.250	1.232	1.227	1.213	•212	1.210	1.213	1.210	1.212	1.214	1.232

CODE	Ģ	ΥN	۷1	¥ 4	¥ 1 - Y N	Y 1 / Y N	EN	E 1	E 4	F1-E4	E4/E1	1 –E 1 5	FN	F 1	FB
41 1	• 5 20	.000	.227	.200	.000	.000	.000	•236	.212	.024	.895	-151	.000	.281	.481
41 2	• 5 20	.000	• 2 36	• 21 3	• 0 00	•000	.000	• 24 4	.223	.021	.914	.127	.000	.265	•427
41 3	• 5 20	•000	.228	• 23 4	• 0 00	.000	.000	•237	.215	• 02 2	.908	.135	.000	.279	•466
414	• 5 20	.000	• 2 70	• 25 4	.000	.000	.000	• 276	.261	.015	.945	.381	.000	.216	.331
415	.520	.000	.555	• 55 2	• 0 00	.000	•000	• 556	• 5 5 4	• 00 3	.995	.008	.000	.073	.102
416	• 5 20	.000	.804	.831	.000	.000	.000	-805	.802	• 00 3	.996	.006	.000	.042	.058
417	1.140	.000	• 3 31	•293	• 0 00	.000	.000	. 35 1	•319	•032	.908	.135	.000	.349	.630
418	1.140	.000	• 3 37	.299	.000	.000	.000	• 35 6	-324	•033	.908	.135	.000	.340	.594
419	1.140	.000	•347	. 31 2	.000	•000	.000	. 36 5	.335	.031	•916	.123	.000	.325	.542
4110	1.140	•000	.389	. 36 6	• 0 00	•000	•000	.404	.383	•021	.948	.077	.000	.274	•427
4111	1.140	•000	•636	•63 D	-0.00	.000	•000	.641	.636	.006	.991	.014	.000	-131	.184
4112	1.140	.000	• 9 20	• 91 4	• 0 00	.000	•000	• 92 3	.917	.006	.994	.010	.000	.075	.110
4113	2.590	.000	•515	.446	•0.00	.000	•0.00	• 55 8	• 5 0 3	.055	•902	.143	.000	.409	•963
4114	2.590	•000	.523	•465	.000	.000	•0.00	• 56 5	.518	.047	.917	.122	.000	.400	•884
4115	2.590	.000	.526	.466	• 0 00	.000	.000	.567	.519	.049	.914	.126	.000	.396	.809
4116	2.590	.000	.572	• 51 9	•0.00	-000	.000	•607	.561	.046	.925	.110	.000	.349	.626
4117	2.590	.000	.818	.799	• 0 00	•000	•000	.835	.817	•018	.978	.032	.000	.204	.303
4118	2.590	•000	1.070	1.059	•0.00	.00n	.000	1.080	1.069	•011	•990	.015	.000	•137	.192
4119	4.280	.000	•700	•471	•0.00	•000	•0 ON	.764	.612	.152	. 801	.283	.000	.426	1.533
4120	4.280	.000	.701	• 53 8	.000	.000	•0.00	.764	.629	.136	.823	.254	.000	.426	1.172
4121	4.280	.000	.698	.54 0	.0.00	.000	.000	.762	.647	.115	.849	.218	.000	.428	1.118
4122	4.280	.000	.726	•62 1	. 0 ೧೦	.010	.000	.785	.702	.083	.894	.155	.000	.404	.912
4123	4.280	.000	.950	.937	.000	.000	.000	.985	.945	.040	.960	.060	.000	.270	.415
4124	4.280	.000	1.222	1.202	•0.00	•000	.000	1.243	1.224	.019	.984	• 02 3	.000	.185	4.390

CODE	9	6.0	8.0	10.0	12.0	12.5	13.0	13.5	14.0	14.5	15.0	15.5	16.0	18.0
42 P	.510	.231	• 2 32	. 22 9	. 2 21	• 21 6	.207	.207	.208	•000	.209	.000	.213	-216
422	.510	•237	• 2 38	•237	.218	• 22 4	.219	•216	.217	.000	•217	.000	•222	.226
42 3	.510	-245	.245	• 24 4	• 2 38	•232	•228	• 224	.226	.000	•229	.000	•233	•236
42 4	.510	•293	•296	.296	• 2 94	.291	•289	.287	.228	.000	.287	·•000	.282	.297
42 5	.510	.579	.582	.583	• 5 82	• 58 3	.580	.581	.581	.000	.581	-000	.584	•589
426	•510	.811	.815	.816	-815	.817	.815	.819	.815	•000	.816	.000	.818	.822
42 7	1.130	.342	• 3 4 2	. 33 9	• 3 25	• 31 2	•2 95	.291	.287	.000	.300	.000	.300	.307
428	1.130	• 346	•347	• 34 4	.330	• 30 6	•303	.303	•298	.000	.307	.000	.312	.317
42 9	1.130	• 352	.351	• 35 0	• 3 37	• 32 3	.311	• 30 4	.310	•000	.309	•000	.321	.325
4210	1.130	.404	•403	.405	. 3 94	. 38 7	.381	.379	•380	.000	•383	•000	• 3 9 1	.395
4211	1.130	.679	.680	.681	.678	.676	.674	.675	.675	•000	.675	•000	.680	.684
4212	1.130	.914	.914	. 91 6.	•913	• 91 4	•912	. 91 1	.910	.000	.913	.000	•915	.919
4213	2.610	•525	.529	• 52 8	.4 94	.464	.310	• 36 5	.389	.481	.370	.447	.455	.435
4214	2.610	•532	• 5 34	.530	• 5 09	.460	• 4 21	.374	• 4 06	.431	.377	•486	.460	.450
4215	2.610	.543	• 5 3 9	• 53 5	.507	.474	• 3 32	• 39 3	.435	.486	.399	• 504	.461	•474
4216	2.610	•605	.607	.606	• 5 8 1	•565	•533	.539	.551	.519	• 5 6 4	.541	• 5 66	• 57 9
4217	2.610	•814	.820	• 82 2	.808	.799	.785	.794	.797	.798	.802	.800	.804	.810
4218	2.610	1.013	1.017	1.019	1.006	1.003	.998	. 998	1.000	.996	1.000	1.002	1.007	1.013
4219	4.130	.708	.707	.735	.567	•629	•564	.459	.435	• 36 1	.493	.622	• 5 2 5	•537
4220	4.130	.713	.709	.705	.664	.631	.564	.461	-380	.378	.504	.636	- 5 36	.544
4221	4.130	.714	.719	.708	.673	•641	.559	.472	•368	.451	•662	.570	•564	•541
4222	4.130	.742	.745	.733	.716	.639	• 5 9 8	• 54 3	.567	•673	.600	.612	.671	•647
4223	4.130	1.020	1.023	1.024	1.002	.984	.965	.976	.970	•982	.961	.993	.990	. 998
4224	4.130	1.246	1.243	1.250	1.237	1.226	1.209	1.216	1.219	1.221	1.726	1.224	1.226	1.239

CODE	Q	YN	¥ 1	Y 4	¥ 1 - ¥ N	Y 1 / Y N	EN	E 1	E 4	E1-E4	E4/E1	1 -E 1 5	FN	F 1	FB
42 1	• 5 10	.183	.201	.186	.018	1.098	.185	• 22 6	•199	.028	.878	.177	.380	.330	.545
422	-510	.183	.207	•196	.024	1.131	-185	.232	•208	.024	.895	•153	.380	.316	.506
42 3	.510	.183	.215	• 20 6	.032	1.175	.185	.239	.216	.023	.906	.138	.380	.299	.475
42 4	.510	.183	.263	.267	.080	1.437	.185	•284	•273	.011	•963	.055	.380	.221	.461
42 5	• 5 10	.183	.549	• 55 9	• 3 66	3.000	.198	• 56 5	•560	• 00 4	•992	.012	•380	.073	.100
42 6	• 5 10	.183	.781	.792	• 5 98	4.268	.214	.796	•793	• 00 3	•996	.006	.380	.043	.059
427	1.130	.319	.312	•277	007	.978	.321	• 34 9	.305	• 04 3	. 876	•181	•366	.378	.691
428	1.130	.319	•316	.287	003	• 99 1	•321	. 35 2	•313	•039	.890	•161	.366	.371	.649
42 9	1.130	.319	• 3 2 2	•295	.003	1.009	.321	• 35 7	• 3 20	•037	.895	•153	.366	.361	.627
4210	1.130	•319	• 374	. 36 5	• 0 55	1.172	•321	.404	• 381	•023	.944	•083	• 3 66	.288	•436
4211	1.130	.319	.649	•654	.330	2.034	.326	•669	•659	• 00 9	.986	•021	•366	.126	.174
4212	1.130	.319	.884	.88 9	• 5 65	2.771	• 3 32	• 90 1	.892	•009	.990	.016	.366	.079	.109
4213	2.610	• 58 3	.495	•435	088	. 84 9	.585	. 55 7	.476	.081	• 854	.210	.342	•437	1.403
4214	2.610	.583	• 5 0 2	.420	081	.861	.584	.562	.486	.077	.864	.197	• 3 4 2	.428	1.030
4215	2.610	•583	.513	.444	070	.880	.584	• 57 1	•503	.069	- 880	.175	.342	.415	1.252
4216	2.610	•583	.575	. 54 9	008	.986	•585	.624	.587	.037	•941	.088	• 3 42	.349	•608
4217	2.610	• 5 8 3	.784	.780	•201	1.345	.586	.817	.799	.018	.978	.033	.342	.219	.317
4218	2.610	.583	•983	. 98 3	• 4 00	1.686	.588	1.009	•995	.014	• 986	.021	• 3 4 2	.156	.219
4219	4.130	•821	.678	. 53 7	143	•826	•823	.756	.620	.136	.821	• 25 7	•324	•432	1.727
4220	4.130	.821	•683	•51 4.	138	.832	• 8 2 3	.760	• 6 24	.136	.821	• 25 6	• 3 2 4	.427	1.602
4221	4.130	•821	.684	.511	137	.833	.823	.760	•622	.138	.818	• 260	• 324	•426	1.674
4222	4.130	.821	.712	.617	109	.867	• 8 22	784	•693	.090	• 885	.168	• 324	.401	•895
4223	4.130	.821	• 9 90	.968	.169	1.206	.823	1.034	.999	•035	•966	•050	• 324	.245	• 366
4224	4.130	.821	1.216	1.209	• 3 95	1.481	•825	1.250	1.229	.021	•983	•025	.324	.180	.257

.

•

CODE	Q	6.0	8.0	10.0	12.0	12.5	13.0	13.5	14.0	14.5	15.0	15.5	16.0	18.0
431	. 5 24	•223	• 2 26	• 22 5	•218	• 21 2	.205	.200	• 2 04	.000	.205	.000	•211	•215
43 Z	• 5 24	.226	• 2 28	. 23 1	• 2 28	.220	-214	•211	-214	.000	-213	•000	.220	•225
433	.524,	.236	•237	• 24 C	-2 37	•232	•2 22	.223	.224	.000	.227	.000	• 2 32	.237
434	.524	267	.270	.275	• 2 7 2	. 27 1	•2 64	• 26 6	.268	.000	.269	.000	.274	.280
435	• 5 24	•524	• 5 2 9	•53.2	• 5 31	•532	• 5 2 9	• 531	•532	•000	• 5 32	.000	•537	• 544
436	.524	.782	.786	.790	.790	.791	.789	.789	•790	.000	.792	.000	.796	.803
437	1.130	• 328	.331	• 33 D	•316	.303	•282	• 28 4	.278	.000	.279	.000	.301	.306
438	1.130	• 332	.335	.332	-320	.306	.289	.287	.285	-000	.289	-000	.301	.313
439	1.130	.340	• 342	.342	• 3 29	. 31 9	.302	.300	.300	.000	.318	.000	.316	.325
4310	1.130	.404	.407	•498	• 4 00	• 39 4	.388	. 38 7	.388	•000	.390	.000	.401	.407
4311	1.130	.687	•692	.694	• 6 92	.695	.692	•6,90	.691	.000	.693	.000	.697	.704
4312	1.130	.943	•949	.951	•951	.952	.950	.949	.950	.000	.951	.000	•951	• 96 2
4313	2.600	.516	.517	•51 5	• 4 90	.459	•400	. 34 1	.355	.486	.370	.402	.488	•426
4314	2.600	•520	•519	.51 9	• 4 88	•455	•4 09	. 35 4	.382	•486	•356	.437	• 4 4 8	.435
4315	2.600	- 523	• 5 30	• 52 3	• 5 01	.462	• 4 22	.376	.419	.471	.487	•490	.460	.474
4316	2.600	•591	.594	.592	.570	• 55 1	.527	• 52 0	•547	.509	•565	• 534	.560	•570
4317	2.600	.868	.873	.875	.867	.859	•889	.855	-858	.800	.861	.863	.866	• 877
4318	2.600	1.145	1.151	1.153	1.148	1.147	1.140	1.139	1.143	1.144	1.145	1.148	1.153	1.159
4319	4.240	.703	•711	.710	•667	•637	• 5 62	•457	.370	• 346	.459	•608	• 5 3 3	• 55 7
4320	4.240	.705	.706	•735	.678	•638	•576	.459	•377	• 356	.471	.606	•528	•545
4321	4.240	.710	.711	•714	.669	.639	• 5 6 9	.474	.412	.427	• 5 0 2	.616	• 5 2 8	•535
4322	4.240	.751	.757	.756	.721	.691	.631	.681	.618	.600	.616	•652	.702	•676
4323	4.240	1.052	1.053	1.056	1.044	1.019	1.009	1.016	1.001	1.029	1.014	1.031	1.039	1.042
4324	4.240	1.281	1.288	1.285	1.268	1.276	1.257	1.256	1.260	1.261	1.266	1.263	1.275	1.285

CODE	Q	ΥN	¥ 1	Y 4	¥ 1 - Y N	Y 1 / Y N	EN	E 1	E 4	F1-E4	E4/E1	1-E15	FN	F1	FB
431	.524	.157	.193	.185	.036	1.229	.160	.230	•199	•031	•865	•195	• 4 92	.361	.595
432	• 5 24	•157	. 196	.195	• 0 39	1.248	.160	•232	.207	.025	.893	.156	• 4 92	.352	.542
433	.524	.157	• 2 O 6	.207	.049	1.312	.160	• 24 1	.218	• 02 3	•904	•140	• 4 92	.327	.496
434	.524	.157	• 2 3 7	• 25 O	.080	1.510	.161	• 26 9	•257	.012	•956	.065	• 4 92	.265	.369
435	• 5 24	•157	.494	•514	.337	3.146	.174	.520	.516	• 00 4	.992	.012	. 4 92	.088	.120
436	.524	.157	.752	.773	• 5 95	4.790	.196	.777	.774	• 00 3	• 995	.006	• 4 92	.047	.064
437	1.130	•267	• 298	•276	.031	1.116	.269	.346	.305	.042	.879	.176	.478	.405	.729
438	1.130	.267	.302	.283	• D 35	1.131	•269	.350	.310	.040	.887	.165	.478	.397	.699
439	1.130	•267	•310	•295	•043	1,161	•270	. 35 7	• 3 20	.037	.897	.150	.478	.382	•641
4310	1.130	•267	.374	• 37 7	.107	1.401	.271	-414	.392	•021	.949	.076	.478	.288	.422
4311	1.130	.267	.657	•674	.390	2.461	.278	.686	.679	.007	•989	.016	.478	.124	.169
4312	1.130	•267	.913	• 93 2	.646	3.419	.287	. 94 0	•935	.005	.995	.008	.478	.076	.103
4313	2.600	.483	.486	.396	.003	1.006	.485	. 55 9	.469	•089	.840	.230	• 4 52	.448	1.194
4314	2.600	•483	• 4 90	•435	.007	1.014	.485	• 56 2	.475	.087	.846	•222	• 4 52	.442	1.123
4315	2.600	.483	•493	.444	.010	1.021	.485	• 56 4	.502	• 36 2	.890	.160	.452	.438	1.017
4316	2.600	•483	• 561	• 54 0	.078	1.161	.485	• 62 2	.579	.042	•932	.100	.452	.361	.625
4317	2.600	.483	- 8 38	.847	• 3 55	1.735	.488	.878	.863	.015	•983	.026	• 4 5 2	.198	.306
4318	2.600	•483	1.115	1.129	•632	2.308	. 4 92	1.148	1.138	+010	.991	.013	•452	.129	.177
4319	4.240	•691	•673	.527	018	.974	• 6 94	.765	.637	.127	.833	.239	.431	.448	1.901
4320	4.240	.691	•675	•515	016	.977	.694	.766	.630	.136	• 8 2 3	.254	.431	.446	1.814
4321	4.240	.691	•680	.505	011	.984	.693	.770	.625	•145	.812	• 26 9	.431	.441	1.430
4322	4.240	•691	.7.21	.646	.030	1.043	•693	•804	.719	.085	.895	• 154	.431	.404	.785
4323	4.240	.691	1.022	1.012	.331	1.479	.695	1.075	1.042	•033	•969	.046	.431	.239	.353
4324	4.240	•691	1.251	1.755	.563	1.810	.6 97	1.795	1.274	.020	.984	•023	•431	.177	.249

CODE	0	6.0	8.0	10.0	12.0	12.5	13.0	13.5	14.0	14.5	15.0	15.5	16.0	16.0
44 1	.480	•194	.199	.200	.192	.186	.181	.182	.181	.000	.177	•000	.194	.195
44 Z	.480	.199	.203	.203	.198	•194	.187	•184	.183	•000	-187	.000	.194	.204
44 3	.480	.205	.213	.21 3	.210	- 20 4	.197	•195	•200	+000	.201	•000	.208	.215
44 4	.480	•264	• 272	.275	.275	.275	.273	.274	.275	.000	.277	•000	•283	.292
44 5	.480	.573	.582	.587	• 5 89	• 59 1	.581	• 592	• 5 9 3	.000	.595	•000	.602	•611
44 6	.480	.877	.885	.887	.893	.896	• 9 DF.	.896	.898	•000	.900	.000	.906	.915
44 7	1.180	• 319	.324	• 32 6	.312	.290	.271	.257	.266	.000	.272	•000	.287	.294
44 8	1.180	.318	.325	• 32 6	.317	.295	.275	.276	.264	•000	.268	.000	.297	.302
44 9	1.180	• 322	.328	• 33 3	.321	.303	.285	.287	•283	•000	- 281	•000	.312	.314
4410	1.190	.367	• 371	.374	.368	• 35 9	•351	. 34 7	•353	.000	. 348	.000	.366	.378
4411	1.180	.665	.672	.679	. 5 81	• 68 D	•680	.680	.681	.000	.685	•000	•6.92	.700
4412	1.180	.966	•974	.979	.982	. 98 2	•980	.982	.988	.000	.985	.000	• 9 92	1.001
4413	2.560	.498	.501	.505	.475	•44 3	•388	• 32 3	.306	.400	.411	•434	.418	.419
4414	2.560	.498	• 5 0 2	.506	.478	.445	• 3 94	•330	.334	.446	.381	• 36 7	-431	.420
4415	2.560	-501	• 5 0 6	.539	.482	.459	• 4 00	. 34 9	• 374	.474	.361	•433	.449	.447
4416	2.560	•519	• 5 30	• 52 7	• 5 08	.484	• 4 36	.419	.473	_444	.449	.474	.474	.494
4417	2.560	-858	.868	.856	. 8 56	. 86 1	.854	.857	.853	.859	.862	• 86 9	.873	- 881
4418	2.560	1.124	1.134	1.138	1.133	1.136	1.131	1.131	1.135	1.136	1.136	1.143	1.144	1.155
4419	4.340	.708	.709	.713	.678	.647	.559	.468	.369	• 330	.418	•587	.542	•586
4420	4.340	.703	•707	•71 Q	.684	.639	• 5 64	.465	.376	.333	.429	.591	• 5 38	• 573
4421	4.340	.703	•710	. 71 1.	• 6 86	•644	•571	•466	.380	.428	.441	.600	.546	• 570
4422	4.340	•725	•729	.72 9	.703	.671	.598	•537	.507	.669	.621	.667	.644	• 68 7
4423	4.340	1.025	1.033	1.035	1.025	1.007	.987	.990	• 984	1.007	.991	1.020	1.016	1.035
4424	4.340	1.289	1.298	1.300	1.298	1.281	1.274	1.279	1.284	1.285	1.288	1.296	1.298	1.310

CODE	0	Y N	۷.1	¥4	¥1-YN	Y 1 / Y N	E'N	E 1	E 4	E1-E4	E 4 /E 1	1-E15	FN	F1	FB
44 1	.480	.126	.164	.165	.038	1.392	•1 30	.217	.179	.038	.827	.248	.626	.422	.678
44 2	.480	.126	.169	•17'4	.043	1.341	•1 30	•221	.187	•034	.845	•223	• 6 2 6	.403	.639
44 3	.480	.126	.175	.185	.049	1.389	-130	• 226	.196	•030	.868	-191	• 6 2 6	.383	.570
44 4	-480	.126	.234	•262	.108	1.857	.133	.280	.268	•012	.958	.063	.626	.247	.338
44 5	.480	. 126	• 5 4 3	.581	.417	4.310	.1 58	• 58 3	.582	.000	.999	.001	• 6 26	.070	.096
44 6	.480	.126	.847	.885	.721	6.72?	.203	.886	.886	.000	, 99 9	.000	.626	.036	.049
44 7	1.180	.233	.289	.264	. 0 56	1.240	•236	• 356	.298	.058	.838	• 233	• 6 1 2	•443	.869
44 8	1.180	.233	.288	.272	• 0 55	1.236	·2 36	.355	• 3 f14°	+051	.857	•207	• 6 12	.446	.830
44 9	1.180	.233	• 2 92	.284	.059	1.253	.2 36	• 35 8	•313	• 04 5	.875	-182	•612	•436	.747
4410	1.180	.233	• 3 37	. 34 8	 1 04 	1.446	•237	•396	•368	.029	.928	.107	.612	.352	• 526
4411	1.180	.233	•635	.670	-4 02	2.725	.246	.679	.675	.00'4	.994	•009	•612	.136	.186
4412	1.180	.233	•936	.971	.703	4.017	.261	.977	.974	• 00 4	.996	•006	•612	.076	.104
4413	2.560	.403	•468	. 38 9	• 0 65·	1.161	•406	• 55 7	.463	.095	.830	.243	• 5 84	.467	1.406
4414	2.560	•403	. 468	.390	.065	1.161	.406	• 55 7	.463	.094	.831	• 24 2	- 5 84	.467	1.241
4415	2.560	.403	.471	.417	•068	1.169	•4 06	•560	.481	.079	.860	• 20 3	• 5 84	•462	1.131
4416	2.560	.403	.489	.464	.086	1.213	.406	•574	.516	.058	. 899	.148	• 5 84	•437	-840
4417	2.560	•403	.828	.851	•4 25	2.055	.411	.883	.866	•016	.982	• 02 8	.584	.198	.273
4418	2.560	•403	1.094	1.125	• 6 91	2.715	•416	1.142	1.134	.008	.993	•010	• 5 84	.131	.178
4419	4.340	.591	.678	• 55 6	.087	-1 - 14 7	•5 96	.786	•660	.126	.839	•231	• 5 5 7	.454	2.103
4420	4.340	.591	.673	.54 3	.082	1.139	• 5 9 5	.782	•652	.130	.833	.239	• 5 5 7	•459	2.072
4421	4.340	.591	.673	•540	.082	1.139	.594	.782	•650	•132	.831	-243	.557	.459	1.669
4422	4.340	.591	.695	.657	-104	1.176	• 5 94	• 80 D	.731	.068	.914	•126	• 5 57	.437	1.049
4423	4.340	.591	.995	1.005	.404	1.684	.596	1.766	1.037	•029	.973	-041	•557	.255	.371
4424	4.340	.591	1.259	1.280	• 6 68	2.130	• 5 99 [.]	-1.318	1.300	.018	.986	.020	•557	.179	• 249

•

CODE	Q	6.0	8.0	10.0	12.0	12.5	13.0	13.5	14.0	14.5	.15.0	15.5	16.0	18.0
45 I	• 4 90	.173	.177	.183	.178	.168	.172	•174	.178	.000	.179	.000	.172	.180
452	.490	.176	.183	.189	.184	.177	.174	.178	.185	.000	.190	.000	.168	.195
45 3	• 4 90	.179	.189	-194	.195	-182	.178	.182	.185	.000	.178	.000	•1 93	-207
45 4	.490	• 212	•222	• 22 8	.2 28	• 22 6	.224	• 22 2	.225	.000	.229	.000	-2 38	•251
45 5	.490	.481	.492	• 50 2	• 5 06	.50 9	.510	.512	•515	.000	.519	.000	•527	.539
45 6	.490	•754	.766	.774	.780	. 78 3	.783	.785	.788	.000	.792	.000	.799	.812
457	1.150	.292	.299	.299	.295	.266	.242	.234	.245	.000	• 264	.000	.264	.281
458	1.150	•289	• 2 96	. 30 1	• 2 91	. 26 9	•244	•233	.250	.000	•269	•000	.260	.284
459	1.150	.290	-307	. 32 1	• 2 92	-283	• 2 52	.259	.258	.000	.268	•000	.278	.294
4510	1.150	• 312	• 324	. 33 1	.318	• 30 5	•294	.290	•2 96	•000	.309	.000	•314	.334
4511	1.150	•632	•643	•652	• 6 58	•65 9	•657	.658	.662	.000	.666	.000	•674	•688
4512	1.150	•966	.976	• 98 6	• 9 91	• 99 3	.994	• 99 4	.998	.000	1.001	.000	1.009	1.022
4513	2,480	.470	.478	.483	• 4 62	-431	• 3 74	• 30 5	.257	.305	-410	•333	• 3 38	.422
4514	2.480	•471	.479	.483	•4 57	+431	.371	. 30 9	.274	• 338	•437	• 314	.377	•421
4515	2.480	.474	. 481	.487	.468	.439	.385	• 32 7	.334	.456	• 361	.474	•435	•422
4516	2.480	.494	.505	• 51 C	.493	•470	.426	.414	.460	.439	.438	•510	.469	.494
4517	2.480	•789	.809	.816	.815	.806	.801	.804	-803	.800	-811	-821	•827	.840
4518	2.480	1.090	1.106	1.114.	1.115	1.113	1.115	1.114	1.118	1.121	1.124	1.127	1.132	1.148
4519	4.290	.685	.687	.70 2	• 6 65	.632	• 563	.459	•352	.297	• 3 5 2	• 520	• 5 33	.578
4520	4.290	.683	.691	.695	.660	.641	.561	•459	.346	.307	.367	• 538	•531	•575
4521	4.290	.685	.693	.699	.658	•638	• 5 52	.453	.358	• 314	• 387	• 56 4	• 5 26	•582
4522	4.290	•690	.692	.703	.678	•64 9	•569	.480	.424	.449	.675	•589	•580	.576
4523	4.290	.977	.981	.988	.972	. 96 0	.933	- 94 1	.942	• 94 3	.951	.974	.976	.993
4524	4.290	1.258	1.263	1.276	1.270	1.259	1.253	1.259	1.264	1.269	1.274	1.284	1.282	1.300

,

CODE	Q	YN	¥ 1	¥ 4	¥ 1 - Y N	Y 1 / Y N	EN	E 1	E 4	E1-E4	E4/E1	1-E15	FN	F 1	FB
45 1	.490	.110	.143	.150	•033	1.300	.114	• 22 3	.168	.055	.754	. 345	.784	•529	.761
45 2	.490	-110	.146	.165	.036	1.327	•114	.225	.180	.045	.799	.285	.784	.513	.761
45 3	.490	.110	.149	.177	.039	1.355	.115	.227	.190	.037	.836	.236	.784	.497	.685
45 4	.490	.110	.182	.221	.072	1.655	.116	• 25 4	.229	.025	• 902	.144	.784	.368	.503
45 5	• 4 90	.110	.451	• 50 9	.341	4.100	.139	.513	.511	.002	•995	.007	.784	.094	• 129
456	.490	.110	.724	.782	.614	6.582	.184	.785	.783	• 00 2	.997	.004	.784	.046	.063
45 7	1.150	.196	.262	. 251	• D 66	1.337	•200	• 35 5	•287	.068	.808	• 27 3	.773	.500	•994
458	1.150	.196	•259	.254	.063	1.321	•200	• 35 3	-289	• 06 4	.819	.258	.773	•509	1.001
45 9	1.150	•196	• 2 60	•264	• 3 64	1.327	•200	• 35 3	•296	.057	.839	•232	.773	•506	.876
4510	1.150	.196	• 282	. 30 4	• J 86	1.439	•201	.370	• 328	•042	.887	.165	.773	.448	.691
4511	1.150	.196	•602	.658	.406	3.071	.213	• 66 8	.663	.005	.992	.011	.773	.144	.196
4512	1.150	.196	• 936	.992	.743	4.776	•235	.999	.994	• 00 4	• 995	.006	•773	.074	.101
4513	2.480	• 336	.440	. 39 2	.104	1.310	.342	• 55 4	.460	.094	.830	• 24 3	.743	•496	1.826
4514	2.480	.336	.441	.391	.105	1.313	•341	• 55 5	.459	.095	.828	.246	•743	.494	1.639
4515	2.480	• 336	.444	• 39 2	.108	1.321	.340	• 55 7	•460	.097	.825	.249	.743	.489	1.220
4516	2.480	.336	.464	.464	-128	1.381	.340	• 57 3	• 5 1 3	.060	.895	.153	.743	.458	.830
4517	2.480	• 3 36	.759	.810	•4 23	2.259	.345	.837	.826	•011	.987	•020	.743	.219	.299
4518	2.480	• 3 36	1.060	1.118	.724	3.155	• 3 54	1.129	1.126	.003	•997	.004	•743	.133	.181
4519	4.290	.498	.655	• 54 8	.157	1.315	•506	.788	.652	.136	•828	• 24 7	.712	•472	2.476
4520	4.290	.498	.653	• 54 5	• 1 55	1.311	•505	.786	•650	.136	• 8 2 7	• 248	.712	•474	2.343
4521	4.290	.498	.655	• 55 2	.157	1.315	.505	.788	.655	.133	•831	• 24 3	•712	•472	2.257
4522	4.290	.498	.660	•546	.162	1.325	•5 02	•792	.651	•141	• 822	.255	•712	•467	1.381
4523	4.290	.498	•947	• 96 3	.449	1.902	•505	1.042	•997	•045	.957	• 06 4	.712	•272	.398
4524	4.290	.498	1.228	1.270	.730	2.466	.509	1.309	1.289	.019	.985	.022	.712	.184	.253

120

•

NOMENCLATURE

Symbol

Definition

Q	discharge, cfs
6.0	station or point of measurement (in feet) in a downstream direction, includes 8.0, 10.0 cfs
YN	normal flow depth, y _n
Y 1	flow depth at station 6.0 corrected by 0.03 ¹ , y
Y4	flow depth at station 18.0 corrected by $0.03'$, y_4
Y1-YN	y ₁ - y _n
Y1/YN	y ₁ /y _n
EN	energy for normal flow depth, $y_n + v_n^2/2g$
E1	energy at station 6.0, E_1 , $(y_1 + v_1^2/2g)$
E4	energy at station 18.0, E_4 , $(y_4 + v_4^2/2g)$
E1-E4	head (energy) loss, $E_1 - E_4$
E4/E1	$E_4/E_1, E_r$, ratio of energys
1-E15	computation of, $(1 - E_r^{1.5})$
FN	Froude number computed at normal flow depth, F _n
F1	Froude number computed at station 6.0
FB	Froude number computed at the minimum flow depth

Figure 45. Definition sketch for 60° wingwall constriction with bar roughness shown in tilting flume.

Figure 46. Definition sketch for 60° wingwall constriction.

Table 3. Hydraulic data for tilting flume with 60° wingwall constriction and with slope	varying from 0.0000 to 0.0050.
--	--------------------------------

~

CODE	0	6.0	8.0	10.0	12.0	12.5	13.0	13.5	14.0	14.5	15.0	15.5	16.0	18.0
51 1	.502	. 390	• 391	. 38 8	.360	• 30 4	•215	•722	.127	.128	•221	•145	•193	.201
51 2	.502	.389	. 392	. 38 9	.360	.306	.224	• 25 7	•200	.254	.727	•240	.240	.240
51 3	.5.02	.399	.401	•430	.373	• 326	.287	.278	• 372	.283	.313	- 311	.319	.316
51 4	.502	•550	.551	•550	• 5 36	.520	.522	.512	•515	.513	.511	.511	.517	.518
51 5	.502	.707	.708	.737	. 5 97	.68 9	.687	.685	.685	.682	.683	.684	.687	.688
516	.502	.926	. 3 28	.827	.829	.824	.811	.810	.810	.808	.809	.811	.810	.813
51 7	.937	.577	.583	.577	.5 32	.46 3	.324	.262	•215	.117	.109	.198	.200	.256
51 8	.937	.579	.581	.578	.538	.467	.371	.281	.244	.269	.297	.310	. 2 95	.304
51 9	.337	.583	.583	.582	.543	.472	.441	. 34 4	.372	.360	. 384	. 382	.383	.386
5110	.937	-685	. 585	.684	. 5 53	.607	.621	.599	.590	.607	.585	.601	.600	.607
5111	.937	.766	.767	.765	.753	.706	.693	.699	.707	.707	.704	. 704	.708	.710
5112	. 937	.873	.874	.873	.8 56	.834	.834	.832	• 8 32	.829	.827	.826	.831	.853
5113	1.445	.751	.751	.751	.700	.623	.362	.377	.263	.171	•114	.234	.353	.346
5114	1.445	.757	.753	.751	.700	.623	. 4 4 4	. 397	.280	.722	.418	.415	.364	.456
5115	1.445	.754	.754	.753	.704	.724	.442	. 36 4	.327	.452	.459	.425	.468	.507
5116	1.445	805	.806	.835	.765	.672	.588	.596	.644	.618	.6.82	.634	.642	.650
5117	1.445	.849	.850	. 35.0	.811	.725	.691	.747	.698	.759	.711	.727	.731	.736
5118	1.445	.897	. 8 94	.893	. 8 66	. 78 4	.812	.780	.800	.804	.794	.778	.795	.796

/

C OD E	ç	ΥN	۷ 1	¥ 4	¥ 1 - Y N	Y 1 / Y N	EN	E 1	Ε4	E1-E4	E47E1	1-E15	FN	F 1	FB
511	• 5 02	.000	• 3 60	.171	• 1 01	.onr	•00r	.363	.186	.178	.511	.635	.000	.136	3.853
51 7	• 5 02	•000	.359	•21 a	• 3 00	. <u>ann</u>	• n nn	. 36 2	.220	.143	. 6 06	. 528	.000	.136	1.661
513	•5.02	• ៣៣៣	.369	.28 6	• <u>ה ה</u>	.onc	• n nn	. 37 2	.291	.081	.783	. 30.8	.000	.131	.943
514	• 5 02	•000	• 5 20	.48.9	າມ ດະ	.010	• 7 B ^	.522	.497	.032	.939	.090	.000	.078	. 349
515	• 5 02	• ウ ำ ሶ	.677	. 5.8	• ว ๆ ๆ	.000	.100	.678	.659	.019	.972	.042	.000	.053	. 221
516	• 5 02	•00°	.736	.753	• a da	.070	•100	•797	.784	•C13	.984	. 024	.000	.041	. 170
517	•937	• an a	.547	.226	• 0 00	•071	• D 00	• 55 2	.255	.297	.45?	.686	.000	.135	9.785
518	.937	•070	•549	.274	• 0 1 0	•0 <u>7</u> 0	•0.00	• 55 4	.294	.760	.531	.614	.000	.134	2.195
51 9	.937	•000	.553	• 35 6	• n co	.unn	.000	.558	.368	.190	.659	.465	.000	.133	1.235
5110	.937	.000	.655	.577	• 1 • 1	.010	•0.00	.658	.581	.077	.883	.170	.000	.103	- 525
5111	• 9 3 7	•000	.736	.680	• <u>2 72</u>	.000	.00r	•739	.683	.056	.925	-111	.000	.087	. 40.2
5112	• 937	•000	.843	.823	.100	• 0 1 0	.000	.845	825	.020	975	-035	.000	.071	. 306
5113	1.445	.000	.721	.316	• 0 00	• 0n n	• n on	.728	.352	. 376	.483	- 564	.000	.138	13.763
5114	1.445	.000	.723	.420	• 1 0 0	•077	.101	.730	.446	. 284	-611	- 523	.000	.137	3.983
5115	1.445	.000	.724	.477	. 2 00	.000		.771	493	. 73.8	. 574	. 447	.000	.137	2.070
5116	1.445	•0nn	.775	• 62 N	- 1 01	.000	-100	.781	.629	.152	.805	. 277	.000	124	2.0070
5117	1.445	.000	.819	.736	.0.00	.00 0	-100	.824	.713	-111	.865	195		114	
5118	1.445	.010	.867	.76 6	.0.00	•ann	. n 0 n	.872	.772	•100	.885	.167	.000	.104	•518

.

-

CODE	Ģ	5.N	8.0	10.0	15.0	12.5	13.0	13.5	14.0	14.5	15.0	15.5	16.U	18.0
52 1	.460	.361	.368	. 36 4	.5.66	. 28 7	•203	.222	.114	.107	.197	•146	.175	.200
52 2	.460	.361	.368	. 36 4	.337	.286	.206	.217	.146	.263	.152	.222	.194	.233
52 3	.460	• 3F 3	.365	. 36 3	.341	.291	.230	.270	.254	.279	.268	.267	.273	:276
52 4	.460	• • 521	.524	.526	.515	.503	.469	.499	.497	.500	.497	.498	.502	.507
52 5	.460	.699	.702	.703	.6 97	.691	.6 90	. 689	.689	.689	.689	.690	.692	.697
52 6	.450	.345	. 844	.851	.846	.841	.842	.842	.842	.839	.841	•842	.844	.849
52 7	.747	.489	.496	.495	.4 58	. 394	.273	.217	.179	.097	.131	.229	.197	.238
52 8	.747	.489	.493	.492	.4 57	.393	.271	• ? 3 7	.178	.141	.291	•212	•232	•236
52 9	.747	.491	.494	.495	.461	.398	.287	.291	.272	.269	.324	.291	•312	.314
5210	.747	.619	.623	. 52 4	.607	.57 7	•5 SC	.562	.578	.577	.571	.571	•573	•585
5211	.747	.759	• 6 6 2	.7.3	•753	.772	•7 33	•731	•732	.729	.729	.729	•7 32	•742
5212	.747	.869	.872	.873	.863	. 85 4	.851	. 94 9	.846	.847	.851	.851	.852	• 85 7
5213	1.144	.646	.649	.651	.607	.532	.371	.297	.237	.141	.199	.229	2 35	.288
5214	1.144	.647	.651	.651	.608	•575	.375	.299	.247	•1F D	.245	.439	.284	• 35 6
5215	1.144	.654	.657	.66.8	• F 15	.54 3	.492	.467	.389	•411	.414	.414	•430	•420
5216	1.144	.711	.714	.714	.680	.621	• 5 52	.609	.577	•629	• 572	.627	.604	.619
5217	1.144	.810	.814	.814	.790	.739	• 5 7 5	.739	.735	.744	•737	.740	.742	•752
5218	1.144	.885	.888	.389	.358	• 82 2	.826	.829	•832	. 827	.829	•833	• 8 33	.842
5219	1.579	.787	.790	•790	.745	•62.8	• 4 98	. 35 9	.287	.174	.115	•112	.392	•362
5220	1.579	.787	.789	.794	.744	.629	.477	• 35 7	.788	.287	.367	•431	•342	.419
5221	1.579	.789	•791	.791	.742	.639	.496	. 371	.315	.391	.472	• 42 8	.394	.500
5222	1.579	.826	• 8 2 9	.330	.791	•6ª n	• 5 90	.629	.666	•600	.647	• 65 4	• 6 2 8	•642
5223	1.579	.853	.866	.36.6	•8 3	.732	•747	.796	•700	.710	.729	•702	.720	.738
5274	1.579	.891	.895	. 995	.865	.767	•754	.784	.757	.780	.767	.774	.767	.791

CODE	Q	YN	Y 1	Y 4	Y 1 - Y N	Y 1 / Y N	EN	E 1	F4	E1-E4	E 4 /F 1	1-E15	FΝ	F 1	FB
52 1	.4 F ()	.171	. 3 31	.170	.160	1.476	• 2 34	.349	•187	.166	.523	.621	.380	.141	4.992
52 2	.4 50	.171	.331	• 00 3	•150	1.976	.188	. 74 9	•212	.137	·F-07	.527	.380	.141	2.700
52 3	.453	.171	.333	. 24 6	•1.62	1.947	.178	• 35 1	.252	•uðð	.719	• 391	.380	.140	1.193
52 4	•46C	.171	• 4 91	•477	• 3 20	2.871	•184	• 50 7	.479	.028	.944	.083	.380	.078	. 36 7
525	.4∽ú	.171	• 6 6 9	• 56.7	.4 98	3.912	•197	•F84	.658	•016	.975	.036	. ₹80	.049	.199
52 6	.460	.171	.815	• 81 9	.544	4.766	•210	• ° 3 C	•820	.010	.987	.019	.380	.036	.147
527	.747	.239	.459	•23 8	• 2 20	1.921	•585	.478	•230	. 24.8	.481	.666	.373	.140	9.988
528	•747	•239	• 4 5 9	• 23 6	• 2 20	1.921	• 2 92	.478	•228	•250	.478	.670	.373	.140	4.684
52 9	•747	.239	.451	.284	• ? 22	1.929	• 2 4 F	.480	.295	.184	.616	.516	.373	.139	1.482
5210	.747	•233	• 5 8 9	•55.5	• 3 50	2.464	• 7 4 9	•606	•558	.048	• 921	.117	.373	.096	.449
5211	.747	•23°	.729	•712	•4.90	3.050	•252	.745	•714	•031	.959	• DF 2	.373	.070	.345
5212	.747	•239	•938	. 82 7	• 5 99	3.576	•260	• 85 4	.828	.025	.970	.044	.373	.057	.235
5213	1.144	• 322	.616	• 25 B	. 2 94	1.913	.467	•636	-291	. 34 5	.458	.690	.365	.138	7.173
5214	1.144	.322	.617	• 32 ь	• ? 95	1.916	•402	•F37	•347	.290	. 5 4 4	• 598	.365	.138	5.659
5215	1.144	.322	.624	.390	• 3 N2	1.978	• 3 2 9	.644	.405	.239	.628	.502	.365	.135	1.233
5216	1.144	• 327	.681	• 58 3	• 3 59	2.115	•329	.730	•59F	.105	. 257	.216	.365	.119	.703
5217	1.144	• 322	•78D	.722	•4 58	2.422	• 3 29	•798	.726	.072	.917	.132	.365	.097	.659
5218	1.144	• 377	.855	• 21 2	• 5 33	2.555	. 3 34	.872	•815	.057	.935	.096	.365	.084	.376
5219	1.579	• 4 6 5	.757	• 33 2	• 3 52	1.163	1.453	•779	.371	.409	.475	.672	.357	.140	15.593
5220	1.579	.405	.757	•38)	• 3 52	1.469	• 4 22	.779	.417	• 36 2	• 5 3 F	608	.357	.140	2.810
5221	1.579	.405	•758	•47 J	.353	1.372	.418	.78 C	.489	• 291	· F 27	• 5P 3	.357	.140	2.406
5222	1.579	.405	.796	.512	• 3 91	1.965	-411	.817	•623	.194	.763	. 334	.357	.130	.874
5223	1.579	.40%	.833	.73 9	.428	2.257	•412	.854	.716	.137	.839	•231	.357	.121	.668
5224	1.579	.405	.861	.761	•456	2.125	•413	.881	.768	•113	.872	.186	.357	.115	. 594

•

٠

•

/

CODE	Q	5.7	4 . 0	10.0	15.0	12.5	13.0	13.5	14.0	14.5	15.0	15.5	16.0	18.0
531	•410	• 3 3 2	. 37	. 73 8	. 319	. 26.4	.191	.20.6	.103	•104	.162	•158	•153	.187
532	.417	.334	. 5 38	.340	•316	.27 ∩	.202	.241	.202	.245	.222	.227	.238	.237
533	•410	.351	.359	• 36 D	. 3 39	. 30 5	. 311	.741	.282	.301	.291	.285	.296	.307
534	.410	.571	• 5.26	• 52 3	• 5 20	.517	•514	•579	•512	.510	•512	.511	.516	•522
535	.410	.700	.705	.714	•7 N²	.698	•700	.699	.700	.699	.F 99	.702	.704	.710
53 K	.410	• 3 6 9	.814	• 51 6	.816	.811	• 9 1 1	- HIO	.811	.810	.811	.812	.815	.820
537	.792	<u>.</u> 5ns	• 5 08	•51 1	.478	•412	. 2 8 8	.246	.187	.142	.182	• 25 4	.188	.250
53 R	.782	•506	• 5 13 8	•51.2	.476	.417	.315	.254	.197	.160	.297	•226	.253	.250
539	.782	.503	•51F	•51.4	.480	•416	• 2.92	.315	.316	.331	. 344	• 32 7	• 3 38	.347
5310	.782	• 6 5 4	66"	.662	.546	.611	• 5 0 2	•F03	.612	.620	.614	.614	.617	•627
5311	.782	.761	.767	.769	.757	•74 A	.74]	.735	.739	.738	.738	.740	.742	.750
5312	.782	.872	.876	•88U	.871	•859	.859	.851	•858	.855	.857	•85.7	.86D	.872
5313	1.140	•640	. 6 4 4	.547	• 5 OF	.574	.374	.297	.239	.139	.096	•159	.220	.280
5314	1.140	•64N	. 6,44	.646	• E DE	.533	• 7 70	.299	.240	.244	.149	• 330	.254	.340
5315	1.140	.579	. 0 47	•64 b	. 5 N8	• 57 4	• 3 74	.304	.255	.230	.414	. 32 2	.340	.345
5316	1.140	.733	•737	.741	.711	.65.8	•65°	•628	•663	.622	.552	.637	.658	.654
5317	1.140	.818	.823	.827	. 3 04	.760	•775	.764	•756	.762	.763	.759	.765	.774
5318	1.140	.895	.899	. 599	. 8 87	.874	•948	.841	.842	.851	.852	850	.854	.861
5319	1.580	.776	• 7 8 3	•7ø5	.741	.637	.499	.363	.283	.177	.117	-104	.367	.342
5320	1.590	.779	.784	.785	• 7.38	.627	.497	 35.8 	.279	.177	.147	. 399	• 3 34	.413
5321	1.580	.781	.785	.787	.741	.629	.502	. 36 5	.309	. 322	.459	.448	•40u	.471
5322	1.580	·872	•837	.840	• 8 ¹ 2	.696	.607	.697	.697	•636	.666	. 684	.667	.694
5 3 2 3	1.580	.855	8 6D	• 85 D	. 827	.7?5	•651	•789	•792	•720	•730	•714	.728	.729
5324	1.530	.886	•889	.933	.861	• 76 1	•744	.771	.739	.781	.761	.772	.768	.787

CODE	ç	YN	Y 1	Y 4	Y 1 - Y N	Y 1 / Y N	EN	E 1	E 4	E1-E4	E 4 /E 1	1-E15	FN	F 1	FB
531	.410	.133	.302	.157	.169	2.271	.215	• 32 9	.169	.161	• 512	.633	• 4 9 3	.144	4.820
532	•410	.133	.304	• 23 7	.171	2.286	•143	.331	•214	.117	. 645	•482	.493	.143	1.333
533	•410	.133	.321	• 27 7	.188	2.414	.143	.348	.281	.067	.807	.275	.493	•132	.752
534	.410	.133	• 4 91	•492	.358	3.692	.157	•516	.493	.023	.955	.066	.493	.070	.287
535	•410	.133	.670	.680	• 5 37	5.038	.177	.695	.681	.014	.980	.030	•493	.044	.174
536	•410	•133	.778	.790	.645	5.850	•1 92	.8L2	.790	.012	.985	•022	•493	.035	.139
537	.782	.207	.475	• 22 0	• 2 68	2.295	.287	• 50 4	.242	• 26 2	.480	•668	•485	.139	4.838
538	.782	•207	.476	• 22 0	•269	2.307	.255	•505	.242	.263	.479	.669	.485	.139	3.869
539	.782	.207	.478	.317	• 2 71	2.309	.217	.507	.327	.179	•646	•480	.485	.138	1.352
5310	.782	•207	.624	.597	.417	3.014	• 2 22	•651	.600	.051	.922	•115	.485	.093	.419
5311	.782	.207	•731	•720	.524	3.531	.229	•757	.722	.035	.954	.068	.485	.073	.306
5312	.782	.207	.842	.842	•635	4.068	•2 35	.867	.843	.024	.972	•041	.485	.059	.244
5313	1.140	.269	.610	.25 0	•341	2.26 9	1.808	.640	.285	.355	.445	.702	.477	.140	15.590
5314	1.140	•2F9	.610	.310	.341	2.268	.426	.640	• 3 3 3	.307	.520	.625	.477	.140	6.439
5315	1.140	.269	•609	. 31 5	•340	2.254	•296	.639	.337	30 2	.528	.616	.477	.140	2.955
5316	1.140	.269	.703	.634	• 4 34	2.513	•280	•731	.640	.092	.874	•183	.477	.113	.580
5317	1.140	.259	•788	.744	.519	2.929	.284	.816	.748	.06.8	.917	.122	.477	.095	.427
5318	1.140	.269	.865	.831	. 5 96	3.216	.287	.892	.834	.058	.935	.096	.477	.083	. 36 2
5319	1.580	.338	.746	.312	.4 (18	2.277	2.604	.778	.356	.422	.457	•691	.469	.143	18.200
5320	1.580	• 338	.749	.383	.411	2.216	.714	.781	.412	.369	.528	.617	.469	.142	9.155
5321	1.580	.338	.751	.441	.413	2.222	.357	.783	.463	. 32 0	.591	.545	.469	.142	2.486
5322	1.580	.338	.802	.6F4	.4 54	2.373	.347	.833	.674	.159	.809	.272	.469	.128	.836
5323	1.590	.338	.825	.699	.487	2.441	.347	.855	.708	.148	.827	.247	.469	.123	.749
5324	1.580	•338	.856	•757	•518	2.533	• 3 4 9	.886	.764	.171	.867	•198	.469	•116	.614

.

CODE	0	6.0	8 . D	10.0	12.0	12.5	13.0	13.5	14.0	14.5	15.0	15.5	16.0	18.0
54 1	.410	.321	.329	. 33 0	.313	. 26.4	•1 90	.200	.100	.071	.164	.148	•143	•177
54 2	.410	.320	.329	. 33 2	.313	.264	.195	.226	.168	•221	.188	.219	.218	•226
54 3	.410	.338	.346	. 35 1	. 3 32	.297	.309	.271	.274	.298	.277	• 28 2	.293	.303
54 4	.410	•535	.542	.548	.543	•577	.535	.535	• 5 3 5	.547	.540	• 54 1	.544	•555
54 5	.410	.703	.711	.717	.717	.713	.712	.712	.713	.714	.717	.720	.721	.730
54 6	.410	.803	.811	. 81 6.	.818	.814	.814	.815	.817	.817	.819	.821	.823	• 8 3 1
54 7	.782	.493	.501	.536	.476	.409	.379	.243	.189	.099	.077	.135	.171	.243
54 8	.792	.492	.502	• 50 7	.476	•411	385	.249	•195	.238	.796	• 24 1	•250	•255
54 9	.782	.495	.501	.508	. 4 78	.413	.290	.272	•290	.280	.327	• 31 1	.319	.327
5410	.782	.620	.629	.633	.617	.579	•575	.581	.594	÷1583	.587	.588	.589	.604
5411	.782	.765	.772	.777	.768	.749	.751	.749	.751	•753	•753	.756	.757	.768
5412	.782	.848	.856	.861	.856	.844	•841	.840	.843	.845	.845	.848	.879	.859
5413	1.135	.629	.637	.641	.603	.571	.367	.291	.238	.138	• 092	.190	• 272	.287
5414	1.135	.629	.635	.641	.603	.527	.368	.297	.238	-144	.237	• 32 9	.261	.338
5415	1.135	•631	•640	.544	.676	•630	•380	• 33 0	.322	.341	.357	• 35 9	• 373	•384
5416	1.135	.728	.735	.739	.513	.659	.684	•630	.673	.634	.667	.649	.660	• 66 9
5417	1.135	.803	.816	. 91 8.	.796	,74 8	.760	.761	.751	.754	.752	.735	.760	.772
5418	1.135	.847	.885	.885	.870	.827	.831	.828	.839	.839	.844	.847	.847	•855
5419	1.563	•7F5	.773	.777	.736	.625	•483	• 35 1	•275	.174	•117	.091	•346	•334
5420	1.563	.756	.772	.777	.733	•623	.492	.356	.278	.177	.130	.314	.359	.397
5421	1.563	.749	.773	.779	.736	• 520	.586	.356	.288	. 34 9	• 5 36	.622	.360	.469
5422	1.563	.814	.823	.826	.793	.687	.599	.670	.775	.624	.655	.672	.657	.681
5423	1.563	.848	.856	• 25 9	.830	.771	• 6 68	.788	•695	.728	•731	.710	•747	.761
5424	1.563	.886	.893	.898	.871	.777	•768	.787	.771	.801	.781	.787	.796	.722

CODE	Ģ	YN	¥ 1	¥ 4	¥ 1 - Y N	¥ 1 / Y N	EN	E 1	E 4	E1-E4	E 4 /F 1	1-E15	FN	F 1	FB
54 1	.410	.117	.291	•147	.175	2.575	1.105	• 333	.160	.173	.4821	.666	•63Ü	.152	11.452
54 2	.410	.113	• 2 9n	.196	.177	2.566	-1 32	.332	.203	.128	•613	•520	• 5 3 0	.153	1.854
54 3	• 4 10	.113	.308	.273	.195	2.725	.127	.349	.277	•073	.792	.295	•630	.140	.804
544	.410	•113	• 5 0 5	• 52 5	• 3 92	4.463	.149	.545	•52F	.019	.965	.050	• 5 3 U	.067	. 26 5
54 5	•410	.113	.673	.730	• 5 60	5.356	,175	.712	•701	•011	.984	.024	•630	.043	.172
54 K	•410	•113	.773	.801	•E 6D	4.341	.1 94	.817	.801	•C1 "	.987	.019	• 5 3 Ú	.035	.14J
547	.792	.176	.463	. 21 3.	.287	2.631	3.259	• 50 6	• 2 36	.270	.465	.682	.618	.145	17.796
54 R	.782	.176	.462	.225	.236	2.625	•2 N 8	•505	.246	.260	.486	.661	.618	.145	2.705
54 9	.782	.176	.465	.297	.289	2.64?	-191	.508	.309	•199	.608	• 52 F	.618	.144	1.523
5410	.782	.176	.590	.574	.414	3.352	•196	.631	.577	.054	•914	.126	.618	.101	.451
5411	.782	.176	.735	.738	• 5 5 9	4.176	.207	.775	.740	.035	.954	.068	.618	.072	.297
5412	.792	.176	.818	.82 9	.642	4.648	.214	.858	.831	.027	.968	• C4 8	.618	.062	.249
5413	1.135	.227	.599	.257	• 3 7 2	2.639	2.946	.644	.290	.353	•451	.697	.612	.143	17.048
5414	1.135	.227	.599	.338	. 3 72	2.639	.432	4 4	• 3 31	• 312	•515	•631	.612	.143	6.837
5415	1.135	.227	.601	. 35 4	.374	2.648	.247	. 45	• 372	.274	.575	• 5F 3	.612	.142	1.668
5416	1.135	.227	.693	.539	• 4 71	7.075	.242	.741	.644	.037	.873	.129	.512	.114	.591
5417	1.1 35	.227	.773	.742	- 5.45	7.475	.247	• •] -	.745	• Jr. o	• 015	.124	.512	.097	.445
5418	1.135	. 2 ? 7	. 917	• °2 S	• 5.90	3.500	• 2 5 1	• 15 14	20	• ' I X O	. 355	•r53	• 5 12	.090	.37U
5419	1.563	• 2 7 4	• 7 3 4	• 🗇 4	•451	2.529	6.90r	• 75.1	• < 1 o	.472	.447	.701	•503	.145	24.056
5470	1.552	• 2 9 4	.730	• 75 7	•4 52	2.50 7	1.2.72	.782	• 3 26	. 794	• 6 0 9	• 637	• 5 0 3	•144	11.461
5471	1.562	.294	.730	.4. 9	• 4 5.×	1.517	.717	.785	• 461	. 174	.527	.551	.603	.144	2.766
54??	1.583	• 2 8 4	.734	• • • 1	• 5 ° 5	7.7ſ!	.297	• 2 %	• 6 6 1	.16.8	•7°7	.22.9	•F03	•131	.844
5423	1.5.63	• 794	•C18	.731	. = 74	2.332	• ? 97	. 40.3	.779	.124	• °	• 2') 7	.603	.123	.711
5474	1.563	. 294	. 351	. 6 5 2	• 5, 72	3.314	.299	.90 n	•701	.199	•77¤	.313	. 603	.115	.630
CODE	0	۴.٦	8.0	10.0	12.0	12.5	13.0	13.5	14.0	14.5	15.0	15.5	16.1	18.0	
-------	-------	-------	------	--------------------------	--------	--------	--------	--------	--------	--------	--------	-------	---------	------	
Š5 1	.351	•277	.289	.331	• ? 81	.238	.172	.188	.085	.059	.143	•142	• 1 4 1	.160	
55 2	.351	.276	.289	.296	.279	.277	•174	•18E	.098	.171	.131	.162	.164	.189	
55 3	.351	.279	•289	.237	.2.81	.238	•186	.211	.148	.212	.202	.209	.261	.278	
55 4	.351	• 500	.511	•52 O	• 5 23	.513	.517	.517	.521	• 52 0	.5.23	.527	.531	.543	
55 5	.351	•688	.699	.739	.713	•713	.712	.714	•717	.717	.720	.724	.720	.740	
55 6	• 351	.807	.818	 32.6 	.831	.837	.8 34	.837	.835	.838	.841	.845	. 945	.859	
55 7	.765	.473	.483	.491	.463	.401	• 274	.236	.180	.094	.069	.189	.159	.226	
55 8	.765	.473	.484	.491	.463	.397	•275	.234	.188	.105	.191	.238	.205	.249	
55 9	.765	.476	.486	.492	•463	.404	.284	.276	.272	.266	. 294	.297	.305	.325	
5510	.765	.635	•645	.646	.643	.614	.612	.613	.618	.619	• € 24	.630	. 6 34	.647	
5511	.765	.766	.775	.733	.780	.767	.765	.767	.770	.771	. 771	.775	.778	.794	
5512	.765	.838	.861	.869	.873	.858	.854	•°59	.860	. 86 1	.862	.868	. 269	.885	
5513	1.135	•625	.635	•645	.610	.536	• 3 7r	.289	.234	.141	.091	.086	. 307	.274	
5514	1.135	.624	.635	.644	.610	.539	.371	.294	• 2 36	.245	.104	.771	·25U	.322	
5515	1.135	•623	.635	.644	• 6 05	• 53 3	.374	.299	.252	.251	.399	.357	.321	.381	
5516	1.135	•735	.746	.754	.733	.678	.698	.657	. 6 94	.657	.691	.685	.689	.697	
5517	1.135	.832	.843	.852	.838	.794	.799	.806	.798	.799	.809	.811	.813	.829	
551°P	1.135	.878	.887	.895	.889	•84 N	.846	.845	.859	. 96.4	.879	. 864	.866	.883	
5519	1.580	.753	.765	.773	.734	.624	.484	. 35 4	.279	.174	.119	.092	.308	.318	
5520	1.580	•753	.764	•773	.733	.625	.4.85	. 34 9	.277	.177	.115	.231	.403	.390	
5521	1.580	•755	.763	.773	• 7 33	.627	.486	. 35 7	.272	.199	.309	.486	.368	.469	
5522	1.580	• 210	.827	.841	• 8 09	.707	•731	•756	•693	.667	.739	• 698	.706	.729	
5523	1.580	.842	.855	. 96 1	.836	.740	. 676	.781	.718	.761	.741	.761	.766	.794	
5524	1.580	.8F6	.878	.887	.864	.768	.764	.784	.767	.787	.782	.791	.795	.818	

CODE	0	YN	۲ ۱	Y 4	Y 1 - Y N	Y 1 / Y N	EN	E1.	E 4	E1-E4	E 4 /E 1	1-E15	FN	F 1	FB
55 1	. 3 5 1	.087	.247	• 1 30	.160	2.879	3.627	• 31 C	.142	.168	.459	.689	.798	.167	16.480
55 2	.351	.087	.245	.159	.159	2.828	.2.25	.309	.167	.142	.541	.603	.798	.168	4.590
55 3	.351	.087	.248	.198	.161	2.851	.115	. 31 1	.203	.108	.653	.472	.798	.166	2.008
55 4	.351	.087	.470	•513	.383	5.402	•140	•531	.514	.017	•968	.048	.798	.054	. 25 3
55 5	.351	.087	.658	.710	• 5 71	7.5F 3	.187	.718	.710	.00A	.989	.017	.798	.038	.152
55 6	• 351	.087	.777	.629	•6 30	8.931	• 2 25	.837	.829	.008	.990	.014	.798	.030	.119
55 7	.765	.149	.443	·196	.2 95	2.993	8.527	.508	.222	.286	.437	.711	.784	•151	23.032
55 8	.765	•14 ^P	.443	.219	.2 95	2.993	.789	• 50 8	.240	.268	.472	.676	.784	.151	8.636
55 9	•765	·149	.446	.295	.298	3.014	.169	.511	.306	.205	.600	•536	.784	.150	1.547
5510	.765	.149	.605	•617	.457	4.08.8	.179	•668	.620	.048	.928	.106	.784	.095	.400
5511	.765	.148	.736	.764	.588	4.973	•193	.798	.756	.032	.960	.060	•784	.071	.282
5512	.765	.148	.808	. 85 5	• 5 60	5.459	•202	.870	.856	.013	.985	•023	.784	.051	.244
5513	1.135	.195	.595	.244	.400	3.051	5.711	• 66 1	.281	.380	.425	•723	.769	.144	19.860
5514	1.135	.195	. 594	.292	.399	3.046	2.728	•660	.318	. 34 2	.481	.666	.769	.145	13.074
5515	1.135	.195	.593	.351	.398	3.041	.234	• 65 9	.369	.290	.559	• 582	.769	.145	2.533
5516	1.135	.195	.705	.667	.510	3.615	.218	.769	.672	.097	.873	.184	.769	.112	.530
5517	1.135	.195	. 3 02	.799	.607	4.113	 2 25 	.865	.802	•063	.927	.107	.769	.092	• 394
5518	1.135	.195	.848	.853	• 6 53	4.349	.2.58	.911	.856	.055	.940	.089	.769	.085	. 36 1
5519	1.580	.245	.723	.288	.478	2.951	9.952	•791	.339	.452	.429	.719	.760	.150	23.732
5520	1.580	.245	.723	.350	.478	2.951	2.737	.791	.385	.406	. 4 9 5	.661	.760	.150	14.784
5521	1.583	.245	.725	.439	.480	2.95 9	.425	.793	.461	.332	.581	• 55 7	.760	.149	5.273
5572	1.580	.245	.789	•693	• 5 44	3.220	.263	856	.708	.148	.877	• 248	.76U	•132	•721
5523	1.580	.245	.812	.764	.567	3.314	.263	.878	.771	.107	.878	•177	.76U	.126	.706
5574	1.590	.245	.836	.788	• 5 91	3.412	.266	• °02	.795	.107	.881	.173	.760	.121	.583

•

.

CODE	о О	5.0	8 . N	10.0	12.0	12.5	13.0	13.5	14.0	14.5	15.0	15.5	16.0	18.0
61 1	.500	.258	.267	•265	•2 41	• 22 6	• 2.21	.216	.205	.192	.200	.206	•215	.223
61 2	• 5.00	.274	.274	.272	. ? 45	.237	•231	.231	.228	.234	.225	.218	.237	.236
61 3	• 5 00	.282	.281	.279	.257	.247	•239	.239	.240	.235	.240	.242	.240	.248
614	• 's on	.464	.455	.463	• 4 52	.450	.440	.447	.447	.444	.445	.445	.451	•455
615	• 5 00	.627	.625	.628	.517	.619	.617	.613	•615	.613	.612	.612	.620	.622
61 6	• 5 00	.910	.811	• 91 U	. 9 01	.872	•8 NN	.798	.800	.797	.797	.797	.803	.806
61 7	• 3 50	• 364	.364	• 36 O	.320	• 28 1	.246	.238	•253	.233	•247	.291	.266	.280
61.8	.920	.366	.367	.363	.323	.296	•257	.271	.238	•271	.242	.269	.268	.286
61 9	• 920	.372	.371	. 36 7	• 3 32	 30.4 	.275	.287	•258	.295	.271	.283	.2 92	.291
6110	• 3 30	.555	.556	.555	• 5 38	•535	.529	. 523	.537	•525	.524	.525	.532	.537
6111	• 920	.717	• 7 22	.717	.705	.700	•69°	.698	•6 97	.695	.695	•698	.703	.707
6112	• 3 20	.866	.968	.867	. 8 56	. 35 7	.852	•950	.849	.849	.849	.849	.854	.859
6113	1.440	.479	.476	.473	.425	.23 0	•309	• 25 0	.242	.298	.297	.297	- 327	.349
6114	1.440	•479	.478	.473	.4 25	- 38 2	•317	.256	.255	.319	.294	.319	.334	.351
6115	1.440	.497	•4 91	.478	• 4 32	• 39 0	•323	.304	.354	.300	.315	. 347	.339	.356
6116	1.440	.602	.6 02	•63 2	• 5 73	.556	• 5 57	.541	•541	• 54 2	.549	.544	•553	• 55 9
6117	1.440	.727	.726	• 72 6	•7.04	.697	.692	.687	.691	.687	.690	.689	•698	.702
6118	1.440	.855	.356	•°55	• S 37	.833	•8 31	.829	•835	.825	.825	.827	.834	.837
6119	2.083	.599	.602	•595	• 5 36	•485	• 4 00	.301	.254	.257	.340	• 391	.331	.429
6120	2.330	.599	• 5 02	.594	.5 39	.487	•400	.304	.258	.281	.378	.390	.348	.444
6121	2.030	•6P1	•601	.597	.543	<u>_491</u>	.409	.331	.329	.395	.381	.395	.387	.407
6122	2.780	.696	.699	,695	•5 54	•629	.612	.611	.618	.608	.604	.620	• 6 2 U	•632
6123	2.080	.794	.734	.791	.758	•741	.739	•729	.727	.737	•733	.733	.745	.751
6124	2.080	.960	.862	.858	• ⁹ 30	.815	.812	. 813	.804	.806	.812	.812	.818	.809

à

-

CODE	0	YN	Y 1	Yц	¥ 1 - Y N	Y 1 / Y N	FN	٤١	E 4	F1-E4	E 4 /E 1	1-E15	FN	F 1	FB
51 1	•5.00	•0nn	• 2 3 P	•143	• • • •	•0 ⁻¹	•co	.246	.204	.041	. 6 37	.240	.00u	.251	.892
61 7	.5 00	• <u>an</u> "	• 2 4 4	.216	• 0 no	• (1) •	. ו חחור	.751	.216	•035	.860	.202	.000	.242	.713
61 3	• 5 00	.000	.252	, 71 8	• n on	• 1 1 1	•000	.259	.727	•032	.877	.178	.COu	.231	.627
614	. 5 m	•007	• 4 3 4	• 42 5	<u>.</u> ว ดา	•111	- יוני נ	•436	.427	.769	•987	.070	.000	.102	.218
51 5	• 5 77	•000	• 5 97	.592	• n nn	•0 ^ ^	• D 00	.598	.593	.005	•065	.012	.000	.063	.131
61 E	•5.00	 actor 	.737	.776	• 0 nh	. <u>.</u>	• T 06	.791	.777	• 104	. 95	.008	.000	.042	.087
617	• 920	•000	.334	.25 0	• <u>כר כ</u> •	•00h	•0.00	. 34 7	.273	• 174	.787	.302	.000	.278	1.170
61 R	• 9 20	 010 	.336	. 25.6	. " 00	•nn-1	• 1 ጣጣ	. 74 9	.278	•671	.797	.288	.000	.276	1.128
61 9	. 320	•0 <u>0</u> 1	.342	.261	• 0 00	•ana	•0.00	5 4	.282	.072	.795	.289	.000	.258	.983
6110	• 920	•0nn	• 5 2 F	• 50 7	• 0 OD	•000	•non	• 531	.517	•019	.965	.052	.000	.141	.309
6111	.320	• 0 00	•637	•n77	• <u> </u>	• <u>15 0</u>	•0 n n	.690	•F-80	•010	. 986	.021	.000	.094	.197
6117	• 9 20	•00°	.336	. 27 3	 a no 	• 05 h	• 1 0 fr	.838	.831	.007	.997	.012	.000	.070	. 144
6117	1.440	• • • • •	.448	. 31 9	. 1 01	•070	•0 0 0	.46.6	.354	•112	.762	.378	.00u	.280	1.716
6114	1.440	•000	• 4 4 8	. 32 1	•n.cc	.000	•0.0h	.466	.355	.110	.763	.333	.00u	.280	1.559
6115	1.447	•000	.452	. 32 6		•030	•00h	.469	.359	.110	.765	.330	.00ü	.277	1.194
6116	1.440	• 7 . 0	• 5 72	.523	• 1 10	• J ^ J ^	•100	.583	.542	.041	. 929	.104	.004	.194	.459
6117	1.440	•00n	.637	.672	• 0 00	.011	•⊓an	.734	• 6 8 7	. 324	.965	.052	.000	.144	.315
6118	1.440	•00n	.825	.307	• ว ด ว	.020	• n nr	•93G	.812	.018	.979	.072	.000	.112	.236
6119	2.180	•000	.569	. 59.9	• n nn	•0"P	• 1 00	.592	.445	.146	.75?	.347	.000	.283	2.282
6120	2.780	 ano 	.569	•414	• <u>) na</u>	• UP 0	• J Ü Ü	.592	.457	.135	.77?	• 321	.000	.283	2.222
6171	2.080	• Pr C	.571	. 37 7	• J UJ	.070	100	.594	.429	.165	.722	. 396	.00ú	.281	1.480
6122	2.030	 and 	• b h b	•()2	• <u>1 CD</u>	•abn	.100	.583	. 6 ? 2	• 0 6 0	.917	.129	.00u	.223	.556
6123	2.080	 ace 	.764	.7?1	• J UU	•020	<u>, n no</u>	.777	•735	.041	. 947	.079	.000	.182	.416
6124	2.080	•000	• 5 31	.779	• 0 • • •	• 0° °	• <u>1 0 n</u>	. 9.4 1	.791	.051	.941	.087	.000	.151	.355

CODE	G	5.0	8.0	10.0	12.3	12.5	13.0	12.5	14.0	14.5	15.0	15.5	16.0	18.0
62 1	.5?0	• 2F 1	.251	.26.0	.2 36	. ?? 4	•?1r	.197	•197	.212	.213	.198	.718	•225
62 2	.5.20	.260	.270	•26 J	.245	.235	• 2 31	• 22 3	•211	.206	.215	.718	.228	•237
62 3	• 5 2 ⁿ	.280	.283	.201	.761	.247	.24F	.244	.250	. 245	.239	• 251	.752	.259
62 4	• 5 ?0	.4?3	.495	.496	.4.89	.429	•48E	.485	.4 83	. 4 4 3	.484	.485	.491	.497
62 5	.520	.684	.687	.683	.581	.68.2	.581	.679	.F.90	.679	.679	.682	.587	.691
62 F	•520	.855	.854	. 25 3	4	. 35 4	.853	• 852	•853	.852	. 253	.854	.863	.854
627	.879	•340	.342	• 33 8	.3 05	.276	•233	.237	.221	• 24 0	.242	.244	.246	.262
62 8	.870	• 34 0	.343	.340	.308	.279	.243	.256	.772	.253	• 2 35	.261	.257	.265
62 9	• A 70	.351	.354	. 35 5	.3 22	.299	.279	• ?7 7	.358	• 25 7	.289	• 251	.2 86	.290
6210	. 970	.522	.526	.523	•F (18	• 57 3	•5.01	•500	• 5 n n	.500	.500	.501	•511	•516
5711	.870	•707	.704	.735	•5 35	.695	• 5 91	.691	• 6 92	.589	•F92	.691	.698	.704
5212	.870	•8F2	.866	• BE 7	.960	• ንና ዓ	•857	• 45 5	.856	.863	.855	.853	.863	.867
6213	1.497	.477	.478	.477	• 4 31	• 3º 4	.314	. 74 7	•220	.254	.309	.295	.318	.320
6214	1.430	.477	.479	.478	.437	• 325	.314	.252	.250	• 31 2	.308	.299	.337	.352
6215	1.430	.477	.490	.482	.4 38	.392	•329	• 30 3	.358	. 377	.341	.356	.350	.369
6216	1.480	.618	.621	•62 Ú	.592	.582	• 5 81	• 57 4	.572	.569	• 5 7 3	.578	•585	•596
6217	1.430	.749	.755	.756	.738	•727	•727	.723	.727	.723	.725	.729	.736	.741
6218	1.480	.972	.876	.877	.962	.857	.857	.856	.853	•854	.854	.857	.863	.868
6219	1.990	.575	.578	.576	.523	.47?	•387	.290	.241	.234	.295	.373	.310	.421
6220	1.990	•576	.577	•577	.523	.471	.387	.299	.257	.289	.38n	.377	.347	.437
6221	1.990	.589	.588	•583	.530	.481	•409	.259	.413	.455	.354	.404	.421	.443
6227	1.990	.673	.676	•677	.638	.512	• F 00	.588	.607	.593	.602	.597	.618	.624
6223	1.930	.770	.772	•772	.740	•729	•727	.709	.714	.722	.722	.722	.729	.742
6224	1.990	. 984	. 3 3 3	.887	. 5 62	.855	.85%	. 245	.862	.851	.851	.854	.858	86.6

.

C OD E	0	۲ ۴'	۲1	¥ 4	Y 1 - Y N	Y 1 / Y N	ΕN	E 1	E 4	E1-E4	E 4 /E 1	1-E15	FN	F 1	FB
621	.520	.185	• 2 31	.195	• 0 45	1.242	.189	• 25 4	.207	.047	.815	.264	.378	.273	.886
622	.520	.186	.239	.237	•053	1.285	.189	.261	.218	.044	.833	•240	.378	.260	.819
62 3	.520	.185	.250	• 22 9	.064	1.344	.189	.272	.238	•034	.875	.182	.378	.243	•633
624	• 5 20	.186	.463	•467	.277	2.489	.197	•48C	.469	•010	.978	•032	.378	•096	.198
62 5	• 5 ?0	•19F	.654	.561	.468	3.516	.207	• 66 9	.662	.007	•989	.017	.378	.057	• 116
62 6	• 5 20	.185	.825	• 83 4	.639	4.435	.219	.840	.835	.005	.994	.010	.378	•040	.081
627	.870	.266	.310	•232	• 0 44	1.165	.269	.338	.256	.082	•758	. 341	.370	•294	1.212
62 8	.870	.266	.310	•235	.044	1.165	.269	.338	.258	.079	.765	• 331	.370	•294	1.203
629	.870	.266	.321	.260	• C 55	1.207	.269	. 34 8	.279	• 06 9	• 802	.282	.370	.279	•974
6210	.870	.265	• 4 92	.486	.225	1.850	.272	.512	.491	.020	.960	.059	.370	.147	.314
5211	.870	.266	.672	.674	.406	2.526	• 2 77	•689	.677	.012	.982	.027	.370	.092	.189
5212	.870	.266	.832	•837	• 5 66	3.128	.283	.948	.839	.009	•989	•017	.370	.067	.135
6213	1.480	.387	.447	.290	.060	1.155	• 3 9 1	.480	.334	.146	• 6 95	.419	.359	.289	2.079
6214	1.480	.387	.447	• 32 2	.060	1.155	.390	.480	.358	•122	.745	.356	.359	•289	1.668
6215	1.480	• 3°7	.447	. 33.9	.060	1.155	.390	•48D	.371	.109	.774	.319	•359	.289	1.207
6216	1.480	.387	.588	.566	.201	1.519	.391	.613	.578	.036	.942	.086	.359	.192	.435
6217	1.430	.387	.719	.711	• 3 32	1.858	•393	•741	.718	• N2 Z	.970	•045	.359	.142	.298
6218	1.480	• 3¤7	.842	.838	• 4 55	2.176	.395	.862	.843	.018	•97 9	.032	.359	.112	.231
6219	1.990	.479	.546	• 39 1	.067	1.140	.484	• 58 3	.435	•148	.745	.355	.350	•288	2.512
6220	1.990	.479	• 5 4 6	.437	.067	1.140	.483	.583	.448	.135	.758	• 32 7	.350	•288	2.140
6221	1.990	.479	.559	•41 3	•0.80	1.167	.483	.595	•453	•142	.761	• 337	.350	.278	2.112
6222	1.990	.479	.643	• 594	.164	1.342	.482	.674	.613	.061	.910	.132	.350	•225	.555
6223	1.990	.479	.740	.71 ?	.251	1.545	.483	.767	.725	• 04 1	.946	.080	.350	.182	.414
6274	1.990	.479	.854	• 83.6	• 3 75	1.783	.484	.878	.846	.032	.964	.054	.350	.147	.315

CODE	Q	6.0	8.0	10.0	12.0	12.5	13.0	13.5	14.0	14.5	15.0	15.5	16.0	18.0
631	.250	.233	• 236	. 23 6	•214	.201	•20n	•177	.165	.177	.187	.189	.1.94	.197
632	.250	•238	.240	• 24 C	·2 23	.207	.206	•200	.198	.177	.194	.191	.200	209
633	•250 ·	.243	.247	.248	.229	• 21 7	.214	.216	.223	• 222	.215	.218	.225	.222
634	.250	.478	.484	.486	• 4 81	•481	• 4 80	•48C	.480	.479	.480	.482	.489	•495
63.5	.250	.676	.679	.683	.678	.679	• 6 7 9	.679	.679	.579	.679	.680	.587	.693
636	.250	.930	.835	.838	.834	.835	.834	.834	.835	.834	• P 35	.836	. 843	.849
637	.950	.356	.359	. 35 9	• 3 23	.287	.236	.206	•227	•219	.255	• 21 3	.260	.270
638	.950	•357	.359	.35 9	• 3 23	. 28 9	.240	.217	.250	.224	.284	.246	.268	.287
639	.950	.362	• 365	. 36 7	• 3 30	.305	.269	.289	.248	.299	.265	.294	.287	.301
6310	.950	.510	.514	.517	• 5 00	.494	.491	.490	.487	.489	.493	.493	.500	.510
6311	•950	.680	.684	.687	.678	.674	.673	.671	.672	.672	.674	.673	.581	.688
6312	.950	.858	.870	.866	.859	.859	.857	.856	.858	.856	.859	.859	.864	.872
6313	1.440	.464	.468	.468	• 4 25	.379	.309	.239	.210	.229	.275	.285	.311	.306
6314	1.440	.463	.459	.46 8	. 4 24	. 37 3	.305	.244	.230	.282	.303	.289	.317	.342
6315	1.440	.468	.470	.473	. 4 28	. 39 5	.32?	.290	.347	.317	.330	- 35 0	.345	.360
6316	1.440	.608	.612	.61 3	.588	.576	.575	.574	.570	.567	.575	•575	.582	.593
6317	1.440	.742	.746	.750	• 7 32	.727	.723	.723	.722	.723	.725	.728	.733	.742
6318	1.440	.854	.860	.865	. 9 53	. 34 9	.846	.847	. 844	.844	.848	.848	.855	. 86 3
6319	2.000	.571	.575	.576	• 5 1 2	.471	.387	.292	.242	.226	.273	.366	.2 98	.422
6320	2.000	.570	.577	.576	.525	.472	.385	.293	.255	.279	.375	.376	•352	.429
6321	2.000	.575	• 5 80	.581	.530	•48 N	.398	.330	.350	.419	.387	.390	.408	.425
6322	2.000	.671	.675	.677	.640	.615	.6 02	.601	.613	.593	.609	.611	.621	.634
6323	2,000	.744	.747	.748	.720	.772	.698	.680	.698	.694	.687	.700	.707	.731
6324	2.000	.876	.880	.882	.860	.851	.846	.839	.845	.846	.848	.852	.860	.867

CODE	n	YN	¥ 1	¥ 4	Y 1 - Y N	Y 1 / Y N	EN	E 1	E 4	E1-E4	E 4 /E 1	1-E15	FN	F 1	FB
631	.257	.795	• 2 0 ×	.157	.1 68	2.177	.107	•230	.171	.059	.744	. 35.8	.4 98	.160	.586
63 7	. 251	.0°5	•2.18	.179	•113	2.189	•10r	•234	.182	• 05 2	.778	.314	.4 98	.154	.516
63 3	• 2 5 7	.095	.213	.192	.118	2.24?	.102	.239	.195	. 1144	. 814	.265	.498	.148	. 36 8
63 4	• 2 50	<u>.ប្រទ</u>	.448	.455	.353	4.716	•1 33	.473	.465	.007	.985	.022	. 4 98	.049	.097
F3 5	• 2 5 7	.795	. 540	.653	•551	ค.สาก	.174	•67 C	.663	.007	.990	.015	.498	.028	.056
63 F	.250	. 195	• 5 96	• 1 9	.7 05	P.421	.214	.824	.819	.005	.994	.009	.498	.020	.041
637	.950	.236	.326	•24.0	• n 90	1.391	.247	• 36 4	.267	.098	.732	• 374	. 484	.298	1.497
638	.957	.236	.327	.257	• 0.91	1.336	.240	.365	.280	• 185	.767	• 32 8	.484	.296	1.367
539	• • 53	•238	. 3 32	.271	• D 96	1.477	.240	.370	.292	•078	.789	.249	. 4 84	.290	1.086
F310	• d < U	.235	•4 ôC	•430	.244	2.074	•243	•511	.487	.024	•953	.070	. 4 84	.167	.358
6311	95 0	• 2 ° 6	.650	• 55 8	•414	2.754	.249	.678	.662	•016	•975	•035	.484	.106	.215
6312	.957	.275	.828	• • 4 2	• 5 92	7.508	.257	• 95 4	.344	•010	•9**	.018	.494	.074	.147
5313	1.440	.317	. 4 3 4	• 77 8	.117	1.359	.323	.477	.322	-154	.676	.444	.471	.294	2.193
6314	1.440	• 317	• 4 3 3	• 31 2	.115	1.356	• 3 2 2	.476	.348	.128	.732	.374	.471	.295	1.873
6315	1.440	• 317	•4 JP	• 33 🗅	•121	1.387	• 3 2 1	•480	.362	•118	•754	• 345	.471	.290	1.263
6316	1.440	• 317	.578	• 56-3	•261	1.823	. 7 2 3	•613	.574	•078	•937	.093	.471	.191	.426
6317	1.447	.317	.712	.712	.335	2.246	.326	.743	.719	.024	•968	• 04 8	.471	.140	.291
5318	1.447	• 317	.324	• 833	• 5 07	2.599	. 3 79	• 85 3	.838	.015	• 992	.026	.471	.112	.228
<u> 5319</u>	2.010	•4°G	.541	• 352	•141	1.353	• 4 🖸 역	• 588	•436	.152	.742	•361	.461	.293	2.681
532P	2.100	.470	.543	• * ५ ٩	•140	1.350	.406	.587	.442	•146	.752	.348	.461	.294	2.180
6321	2.100	.400	.545	• 39 5	1 45	1.363	.4(14	.592	.439	.153	.741	• 36 2	.461	.290	1.416
6322	2.000	•4∩D	• ti 4 1	•60.4	.241	1.603	.404	.682	.6.23	.059	.914	.127	.461	.227	.551
6373	2,000	.4nn	.714	.731	.314	1.735	.405	.751	.715	• 136	.951	.072	.461	.193	. 444
5374	2.100	.4ra	. 846	. 337	. 4 46	2.115	.408	• 88 D	.847	.033	.963	•055	.461	.150	. 32 0

,	C 00 E	0	6.0	S•O	10.0	12.0	12.5	11.0	13.5	14.0	14.5	15.0	15.5	16.0	18.0
	64 1	.500	•272	- 2 38	. 74 1	-227	• 20.1	.186	.170	.174	.157	.175	•195	•1 82	.087
	64 2	.500	• 274	.241	. 24 4	.223	.207	-1 9r	•17F	•1.95	.180	.167	•173	.198	.219
	643	.500	.239	.244	.24.8	. ? 28	.275	•212	.193	.193	.205	.711	.202	.710	.229
	64 4	<u>. 5 nn</u>	.449	.456	.462	.458	-46 G	.459	.459	.457	.460	.462	.462	.471	.491
	64 5	.500	.663	.673	.677	.675	.677	•6.77	.678	• 6 8D	.679	.680	.683	•69ü	.698
	64 6	• 5 00	.808	.837	.842	.841	.843	. 843	.844	.845	.844	.847	.849	• 9 56	. 354
	647	.910	.337	.344	. 34 6	.315	• 2º O	.2.29	.195	.193	.185	.222	.181	.246	.246
	648	.910	. 377	.343	. 34 6	.315	•21.8	•2 31	.232	.228	•213	.257	.226	.254	.274
	64 9	.910	• 34 1	.347	. 34 8	• 3 2 7	.291	•253	• 26 9	.240	.278	.244	.263	.777	.296
	6410	.910	.532	.539	•542	• 5 32	•528	• 5 2 7	.526	•530	•528	.529	• 534	.542	.551
	6411	.910	.699	•707	.712	.704	.706	.705	.703	.705	.707	.709	.709	.718	.727
	6412	.910	. 847	• 8 56	• 36 0	.856	. 85 7	.856	.856	.857	.858	.860	.862	.870	.878
	6413	1.450	.455	.460	.464	• 4 24	. 37 8	.307	.242	.204	.198	.235	.290	.273	.292
	5414	1.450	.454	.460	.463	• 4 24	.379	•309	• 24 1	.272	•260	.302	.285	.316	.328
	6415	1.450	.457	.464	.469	• 4 30	. 38.8	.327	.333	.362	• 31 1	.317	.360	.346	.377
	6416	1.450	.594	.601	•605	•585	.570	•572	• 56 4	.558	.565	.517	.570	.582	.594
	6417	1.450	.743	.751	•755	.744	.739	•734	.733	.734	.734	.738	.740	.748	.760
	6418	1.450	.851	.859	.86.4	•853	. 85 2	.849	.847	.850	•851	.852	.857	.863	.874
	6419	1.940	.551	.557	• 56 0	• 5 08	.461	.377	.785	• 2 30	.208	.224	• 333	.303	.407
	6420	1.940	.505	.555	.55.9	.5 09	.455	.378	.287	•239	.251	.339	.370	.328	.413
	6421	1.940	•558	• 562	•556	•516	.472	.403	.355	.410	.446	. 349	.409	.423	.437
	6422	1.940	.649	•655	•66 I	•629	.604	• 5 92	• 593	.611	•583	.602	•600	.616	.626
	6423	1.940	•773	.779	•784	.764	.748	.748	.745	.748	.749	.750	.757	.760	.778
	6424	1.940	.861	.868	.874	.857	.846	.839	. 84 4	.846	.847	.846	.851	.860	.872

CODE	Ô	ΥN	۷ 1	¥ 4	¥ 1 – Y N	Y 1 / Y N	EN	E 1	Ε4	F1-E4	E 4 /E 1	1-E15	FN	F 1	FB
64 1	• 5 00	.129	.202	.057	. 7 73	1.565	.163	.251	.188	• 76 3	•750	• 351	.630	.321	4.274
54 2	• 5 00	•129	.204	•189	.075	1.531	•1 34	• 25 3	.201	.052	•795	.291	•630	•317	1.147
643	•500	.129	.208	.199	• 7 7 9	1.612	•134	.256	.210	.046	.819	.259	• 6 3 J	•308	.884
644	• 5 0 0	.129	.419	•451	• 2 90	3.248	.148	.460	•453	•007	•985	.022	.630	.108	.214
64 5	• 5 00	.129	• 5 37	.66.8	• 5 04	4.907	.171	.672	.669	.004	•995	.008	.630	.05.8	.115
64 E	• 5 00	.129	.778	• 834	.649	6.031	.191	.817	•835	018	1.021	032	.630	.043	.085
64 7 [.]	.910	.195	.307	• 21 6	.112	1.574	.202	• 76 0	.246	•114	• 6 8 3	•435	.517	.312	1.804
648	•910	.195	.307	.244	•112	1.574	.201	•360	•268	.093	•743	.360	.617	.312	1.484
64 9	•910	·19c	-311	• ?6 6	.115	1.595	• 2 0 n	.364	.286	.078	.785	. 304	.617	.306	1.100
6410	• 910	.195	.5.02	• 52 1	.307	2.574	.207	• 54 6	•526	.020	•964	•054	.617	.149	. 30 3
6411	•910	.195	.669	•697	.474	3.431	•216	•711	.700	•011	•985	.022	.617	.097	.193
6412	.910	.195	.817	.848	.622	4.190	.226	.858	.850	.008	•991	•013	.617	.072	.143
6413	1.450	.270	.425	•262	•1 55	1.574	.281	.483	.314	.169	• 6 5 0	.476	.603	.305	2.449
5414	1.450	.270	.424	•298	•1 54	1.570	.278	•482	•338	• 1 4 4	•701	•413	.603	.306	2.005
6415	1.450	•27r	.427	• 34 7	•1 57	1.581	.275	.485	.377	.108	•777	.315	.603	.303	1.182
5416	1.450	•27n	.564	• 56 4	• 2 94	2.08.9	•277	•614	.575	.038	•937	.092	.603	.200	.496
F417	1.450	.270	.713	.730	.443	?.641	•283	.758	.737	.022	.971	•043	.603	.141	.286
6418	1.450	.270	.821	. 34 4	• 5 51	3 . 34 1	-286	.865	.849	.016	•982	•027	.603	•114	. 228
6419	1.943	.331	.521	.377	.190	1.574	•346	• 58 3	.422	.161	•724	. 384	• 5 94	.301	3.005
6420	1.940	•331	.475	•383	•144	1.435	• 3 4.1	• 54 2	.427	•115	.788	• 30 1	• 5 94	.346	2.362
6421	1.940	• 3 3 1	.528	•437	.197	1.595	• 3 36	• 58 9	• 4 4 6	•144	•756	.342	• 5 94	.295	1.252
5422	1.940	• 331	.619	•596	.288	1.870	•337	.674	.614	.060	• 911	•131	.594	.232	.549
6423	1.940	• 3 3 1	.743	.748	.412	2.245	•340	.793	.759	.034	•958	.063	.594	.177	. 37 3
6424	1.940	• 331	.831	•842	• 5 00	2.511	• 3 4 ?	.879	.851	.028	•969	.047	• 5 94	.149	.310

CODE	ο	6.0	8.0	10.0	12.0	12.5	13.0	13.5	14.0	14.5	15.0	15.5	16.0	18.0
65 1	.480	.209	.217	.223	• 2 02	.190	•159	• 15 2	.113	.161	.144	.129	.161	.186
65 ?	.480	.212	.219	.227	.208	.193	.173	.159	.162	.153	.165	.175	•1 82	.199
65 3	. 4 90	.216	.275	.234	.217	• 20 4	.202	.183	.187	.203	.207	.198	.203	227
654	.480	.427	.439	.447	.447	•450	.439	.449	.452	.453	.455	.459	•466	.480
65 5	.430	.642	.653	.661	.663	.666	.567	.666	.674	.672	.674	.677	.685	.698
656	.480	.840	.852	.861	.862	.866	.866	.869	.870	.871	.873	.877	.884	.897
65 7	.970	.336	.346	. 35 2	.324	.28.9	•234	.187	.176	.154	•163	•232	•222	.231
65 8	.970	.336	.346	• 35 4	• 3 23	.287	•235	.190	.182	.174	.212	• 223	•237	•246
65 9	.970	.336	.347	. 35 4	• 3 25	.289	• 2 36	.209	.240	.229	.259	.234	.274	.296
6510	.970	.530	.544	.549	.543	.539	• 5 3 7	•537	.538	.539	• 544	• 54 8	•555	.569
6511	.970	.696	.710	.716	.712	.712	•712	•713	.715	•715	.719	.721	.731	.744
6512	.970	•839	.849	.859	. 9 59	• 35 J	.859	• 35 9	.864	.863	.867	.870	.879	.891
6513	1.380	•427	.438	.44 5	• 4 D8	. 36 4	• 2 94	.218	.193	.179	.180	.271	•225	•281
6514	1.380	.427	.436	.445	• 4 08	. 36 5	.299	•231	•194	•192	•212	.279	.277	.293
6515	1.380	.427	.437	.445	•4 09	. 36 7	•297	•237	.224	.271	.293	.292	.312	.353
6516	1.380	.603	.614	.624	.608	.602	• 5 30	.596	.602	.597	•606	.611	.618	•633
6517	1.380	.731	.740	.74 9	•741	.739	• 7 38	•737	.740	.739	•744	.747	.750	.772
6518	1.390	•8×0	.843	.851	.347	.841	•840	.845	.847	•847	.851	.853	•863	.856
6519	1.973	.542	.553	.565	•516	.456	.368	.288	.235	.201	•199	.291	.351	•402
6520	1.973	.546	• 5 52	• 56 1	.518	.465	.483	.282	.238	• 27 1	•288	.377	_• 2 99	•425
6521	1.973	.530	• 5 5 7	.567	• 5 2 3	.472	.395	• 337	.402	.434	.389	.407	•440	•450
6522	1.973	.669	.685	.692	.668	.654	•651	•625	.662	.637	.664	.646	•665	.680
5523	1.973	.787	.795	.812	.789	.774	•774	.774	.782	.781	.787	•793	.864	.814
6524	1.973	.859	.869	.876	.864	- 85.2	.852	. 85.0	.857	.859	. 859	.867	.876	.890

CODE	0	YN	۲1	Y 4	¥ 1 - ¥ N	Y 1 / Y N	EN	Ε1	E 4	F1-E4	E 4 /E 1	1-E15	FN	F 1	FB
651	.480	.108	.179	•15 ó	.71	1.657	•1 22	.251	.172	.079	.685	.433	.789	.370	2.335
65 ?	. 4 90	.108	.182	•169	0.74	1.585	.115	.254	.183	.071	.720	• 38 9	.789	.361	1.294
55 3	.480	.108	.186	.197	.078	1.72?	•115	.257	.207	.050	.805	.278	.789	.349	•933
654	. 4 80	•1 ⁿ *	.397	.45U	.289	3.676	.1 32	.459	.452	.008	.984	• 02 5	.789	.112	. 22 3
65 5	.490	.108	.612	.668	.504	5.567	.163	. 673	.669	.004	.994	.009	.789	.059	.117
55 E	.480	.103	•810	.867	.702	7.501	.204	.871	.868	.003	.995	.005	.789	.038	.077
65 7	.970	.175	.306	.231	.131	1.749	.191	• 38 3	.241	•142	.628	• 50 2	.773	.334	2.584
65 8	. 970	.175	.306	•216	•1 31	1.749	.186	.383	•25n	.133	.653	.472	.773	.334	2.065
65 9	.970	.175	•30€	.266	•1 31	1.749	.183	.383	.289	.094	•753	• 346	.773	.334	1.490
6510	.970	•175	.500	.539	.325	2.857	•1 90	• 56 6	.545	.022	.961	.057	.773	.160	.319
6511	• 970	.175	. 666	.714	• 4 91	3.806	.201	.730	.717	.012	.983	.026	.773	.104	.208
6512	.970	.175	.809	.861	.6 34	4.523	.212	. 971	.863	.008	.990	.014	.773	.078	.155
0513	1.390	.223	.397	.251	.174	1.780	.241	.478	.302	.175	• 6 3 7	•496	.765	•322	2.791
6514	1.390	.223	. 3 97	.2F. 3	.174	1.780	.238	.478	.310	.169	.649	.477	.765	•322	2.462
6515	1.330	.727	.397	. 22 3	.174	1.780	.233	.478	.354	.123	•741	• 36 2	.765	.322	1.879
6516	1.390	.223	.573	.803	•350	2.570	• 2 3F	•F43	.612	.031	.952	.071	.765	.186	. 377
6517	1.380	.223	.701	.74 ?	.478	₹.143	.241	.753	.748	•820	.974	•038	.765	.137	.274
6518	1.380	.223	• 8 OT	.836	. 5 77	3.587	.24F	.865	.841	.024	.972	•042	.765	.113	.224
6519	1.973	.785	.512	• 37 2	.2.26	1.707	.311	.597	.420	.177	.703	•411	.753	•314	3.303
6520	1.973	• 2°r	•51e	.395	• 2 30	1.874	•303	.601	•437	.163	.728	• 37 9	.753	.311	2.749
8521	1.973	.296	.500	.420	.214	1.74 8	.293	.587	.458	•129	.780	.311	.753	.326	1.349
6522	1.073	.286	.630	.65.0	.353	2,234	.2 95	.715	.666	.050	.931	• 10 2	.753	.225	.500
5.523	1.973	.285	.757	.784	.47]	2.647	.239	. 32 9	.795	.034	•°59	. DF 1	.753	.175	.358
6524	1.973	.256	.828	. 86.0	.542	2.895	.301	.898	.869	.029	.968	.048	•753	.153	.309

_

C OD E	Q	6.0	8.0	10.0	12.0	12.5	13.0	13.5	14.0	14.5	15.0	15.5	16.0	18.0
	5 0 0	25.1	250	24.5	2.71	22.7	2.26	224	2.27	21.0			- 2.20	227
71 1	.509	•251	• 2 50	• 2 4 5	• 2 31	•271	•220	• 2 2 4	• 2 2 3	• 21 9	• 2 2 2	• 2 2 2	• 2 20	• 2 2 1
/1 Z	.509	.279	.278	.275	• 2 6 2	.260	•259	•256	•257	•25h	• 2 5 5	• 257	• 2 6 2	•262
71 3	• 5 0 9	• 319	• 3 20	• 31 6	• 3 08	- 30 7	• 3 02	• 30 Z	• 3 02	• 30 0	• 301	• 302	• 3 0 8	• 3 0 8
714	.509	•479	•480	•480	.471	•471	-468	.468	.468	.465	.465	•467	.472	.473
71 5	.509	.671	.672	•67 D	• 6 63	•66 3	•661	•660	.660	.658	.659	•660	.667	•667
716	.509	.843	.845	.84 3	.835	.835	.834	.832	•833	.831	.831	•833	.837	.839
717	.972	.332	.328	• 32 4	.305	.299	.296	•290	.284	.292	.296	-288	.298	.297
718	.972	.384	.383	.379	•363	. 34 ()	.357	. 35 4	.350	.353	.351	.355	.364	• 36 5
71 9	.972	.430	• 4 30	•427	•413	•414	.4 09	.409	.404	.407	.408	.409	•414	.417
7110	.972	.541	.545	.541	• 5 30	.529	.527	• 52 6	•575	•519	.524	.524	•53U	.533
7111	.972	.699	.700	.700	.690	.688	•687	•686	•685	.684	.684	.686	.691	•693
7112	.972	.837	.838	.833	.829	.829	.826	• 827	.823	.822	.821	. 824	.830	.832
7113	1.518	.407	.405	.400	• 3 76	. 36 4	• 3 52	.347	.341	.350	.340	.332	.366	.359
7114	1.518	•435	.434	.429	• 4 08	• 39 9	• 3 92	• 38 7	.385	• 376	. 374	.401	.404	.404
7115	1.518	.4F5	.463	.459	• 4 39	•431	.424	.421	.425	.421	•427	•424	• 4 33	.435
7116	1.518	•574	.577	.575	• 5 6 1	• 55 7	.549	• 55 1	•552	.557	.561	• 557	.561	• 56 4
7117	1.518	.716	.715	.71 3	.699	.701	.697	.694	.695	.694	.697	.697	.703	.705
7118	1.518	.846	.844	.845	.834	.829	.831	.831	.829	.828	.829	.831	.836	.839
7119	1.973	.464	.461	.453	• 4 25	.402	.396	394	.392	.376	.409	.397	.401	.411
7120	1.973	.484	.484	.476	.447	.434	.424	.421	.417	.427	.431	.447	• 4 36	.435
7121	1.973	•512	.510	.505	•483	.478	•459	.459	.454	.458	.473	.446	.475	.475
7122	1.973	.614	.613	•61 L	• 5 95	• 58 4	.581	• 58 1	.583	• 583	.581	•585	.593	•597
7123	1.973	.735	.736	.735	• 7 21	.716	.711	•722	.710	.712	.712	•713	.720	.720
7124	1.973	.846	.845	.846	.832	.826	.828	.826	.824	.825	.827	.829	• R 33	.834

Tabl	le 3.	Continued	ι.

CODE	Q	ΥN	۲1	¥ 4	Y 1 - Y N	Y 1 / Y N	EN	E 1	E 4	E1-E4	E 4 /E 1	1-E15	FN	F 1	FB
71 1	.509	.000	• 2 2 1	•197	.0.00	.000	.000	•230	.208	.022	.906	.138	.000	.285	.490
712	.509	.000	.249	•23.2	.000	.000	.000	.256	•240	.016	• 9 3 8	.092	.000	•239	• 37 7
71 3	.509	.000	.289	.278	.0.00	.000	.000	.294	.284	.011	.964	• 05 3	.000	.191	.287
714	.509	.000	.449	.44 3	• 0 0 D	.000	.000	.451	.445	.006	.987	.020	.000	.099	.140
71 5	.509	.000	.641	.637	• 0 00	.000	.000	.642	•638	•004	.994	.009	.000	.058	.081
716	.509	.000	.813	.839	• 0 1 0 •	• aa n	.000	.814	.810	.004	.995	• 00 7	.000	.041	.056
71 7	.972	• 0 00	.302	.267	• 0 00	.000	•0.00	.320	.290	.030	.906	.138	.000	.342	.601
71 8	.972	•0n0	.354	• 33 5	• 0 99	.ann	•0.00	. 367	.349	.018	.952	.071	.000	.269	.445
71 9	.972	.000	.400	. 38 7	•0.00	.010	.300	.410	.398	.012	.975	.045	.000	.224	.336
7110	.972	.000	.511	•533	•0.00	•070	•000	.517	.509	.008	.985	•023	.000	.155	.225
7111	.972	.000	.669	•663	• n no	•00 n	•000	. 673	.667	.006	.991	.013	.000	.104	.145
7112	.972	.000	.807	.832	• 0 00	•00 n	•000	•809	.805	.005	•994	.009	.000	.078	.109
7113	1.518	.000	.377	. 32 9	00 د .	.000	.100	.405	.365	.039	•903	•142	.000	.383	•723
7114	1.518	.000	• 4 05	.374	• 9 07	.000	•0.00	.429	.402	.027	.937	.092	.000	.344	.590
7115	1.518	.000	.435	•435	• 0 00	.000	.000	.456	.429	.027	.941	.087	.000	.309	.491
7116	1.518	.000	.544	.534	• 0 00	.000	.000	.557	.548	.009	.983	• 02 5	.000	.221	• 32 1
7117	1.518	•0 <u>0</u> 0	.686	.675	• 0 00	•0 <u>0</u> 0	.000	.694	.684	.011	.985	.023	.000	.156	• 22 2
7118	1.518	•000	.816	.839	• <u>0 00</u>	•01N	•000	.822	.815	.007	.992	.013	.000	.120	. 168
7119	1.973	.000	.434	.381	• n on	.000	• 0 0 0	.469	.427	.043	.909	.133	.000	.403	.767
7120	1.973	•000	.454	•435	• 0 00	.010	. 100	.486	.445	.041	.915	.123	.000	.376	.661
7121	1.973	•000	.492	.445	• 3 00	•00 N	.000	.511	.478	.032	.937	.093	.000	.344	.582
7122	1.973	.000	.584	.567	• 0 00	.000	.000	•603	.588	.016	.974	.039	.000	.258	.382
7123	1.973	.000	.705	.590	• 0 • 0	.000	.000	.718	.704	.014	.980	.030	.000	.194	.278
7124	1.973	.010	.816	.834	• 0 00	•0 0 0	• • • • •	.826	.814	.012	.985	.021	.000	.156	• 22 1

.

٩

CODE	0	6.0	8.0	10.0	12.0	12.5	13.0	13.5	14.0	14.5	15.0	15.5	16.0	18.0
72 1	.513	.233	.233	•230	.718	.216	.211	.209	.210	•208	.211	• 21 1	.219	•220
722	•513	.258	.260	.259	.249	.244	•241	.243	.247	.244	.245	.247	•252	.254
72 3	•513	•295	.297	.297	.288	.28.8	.287	.287	•290	.286	.288	.288	.294	298
72 4	.513	.457	.462	.461	.457	•457	.455	•455	• 4 56	•455	•455	.457	• 4 62	.466
725	.513	.649	.652	•654	.648	.649	.647	.647	.648	.646	.648	.649	.655	•660
72 6	• 5 1 3	.826	.830	.830	.825	.826	.825	.825	.825	.823	.825	.826	.832	.836
727	1.510	• 385	.383	.373	.358	. 34 4	.329	• 32 7	.321	.331	.311	• 354	.344	.343
728	1.510	•410	•410	.408	• 3 90	. 38 9	.374	•369	.365	• 36 4	• 381	. 387	.381	.387
72 9	1.510	.452	.454	.45 3	.439	•432	.428	•421	•425	•424	.431	•431	. 4 4 0	.444
7210	1.510	.537	.540	• 53 7	.529	.524	• 5 22	.519	.518	•517	.521	• 524	•532	•537
7211	1.510	.695	.695	.696	. 6 88	.684	.585	.884	.685	•685	.687	.687	• 6 95	.701
7212	1.510	. 830	.832	.833	• 8 26	.821	.822	.821	.822	.822	•824	.827	.833	.839
7213	1.960	.438	.437	.432	.408	.384	•361	• 36 1	.378	.358	.410	. 34 8	.404	.401
7214	1.960	.458	.470	.46 9	• 4 50	.435	.423	.427	•410	.433	.421	.457	• 9 37	.447
7215	1.960	.519	.520	.518	.503	.493	.489	.484	• 4 90	.494	.498	• 51 2	. 4 99	•509
7216	1.960	.587	.590	.590	.580	.573	.581	• 56 9	.565	•570	.570	.574	•579	•584
7217	1.960	.705	.707	•711	.701	.700	•697	.694	• 700	•694	.697	.701	.704	.709
7218	1.960	.819	.819	. 81 9	.819	.817	.814	.813	.815	•812	.815	• 81 9	.819	.823
7219	.925	.302	.302	.299	.282	.282	.277	.267	•263	.262	.268	•270	.279	.283
7220	.925	.330	• 3 32	.330	.316	.311	.308	.306	-306	• 306	.309	• 306	.312	•321
7.221	• 925	• 373	.375	.374	•363	.360	.356	.356	.357	• 35 1	.357	• 36 1	• 3 62	.372
7222	.925	.500	.503	.50 3	• 4 95	.494	.494	.494	.493	.494	.494	.496	.503	.506
7223	. 925	.689	.686	.686	.681	•682	.679	.684	•68D	.679	.679	•681	•688	•696
7224	.925	.833	.836	.832	.831	.831	.831	.830	.830	.829	.829	•831	.837	.843

CODE	Q	Y N	Y 1	¥ 4	¥ 1 - Y N	Y 1 / Y N	EN	£1	E 4	E1-E4	E 4 /E 1	1-E15	FN	F 1	FB
72 1	•513	.184	.203	.190	.019	1.103	.186	.228	•202	•026	.887	.165	.379	.327	.540
72 2	.513	.184	.228	.224	.044	1.239	.187	• 25 1	•233	.018	.928	.106	.379	.275	.419
72 3	.513	.184	.265	.268	.081	1.440	.182	.286	.274	.012	.960	.060	.379	.219	• 31 3
72 4	.513	.184	.427	.436	.243	2.321	.193	.444	•438	.006	.988	.019	.379	.107	.146
72 5	•513	.184	.619	.630	• 4 35	3.364	.203	•635	•631	.003	•995	• 00 8	.379	.061	.084
726	•513	.184	.796	.836	•612	4.326	.216	.811	.807	.004	•995	•008	.379	.042	.057
727	1.510	.393	.355	.313	038	.903	.395	.400	•353	.048	.881	•173	• 3 58	.417	.802
728	1.510	.393	.380	•357	013	• 96 7	.395	•421	.387	.034	.920	•118	.358	.376	.619
72 9	1.510	.393	.422	.414	.029	1.074	.395	•458	•437	.022	.953	.070	.358	.321	.489
7210	1.510	.393	.507	.507	-114	1.290	•396	•537	• 5 2 2	.014	•973	.040	.358	.244	.351
7211	1.510	.393	.665	.671	• 2 72	1.692	.398	.688	.680	.009	•988	.019	.358	.162	.226
7212	1.510	.393	.800	• 83 9	.407	2.036	• 4 0 0	.820	.815	.006	.993	•010	.358	.123	.170
7213	1.960	.473	.408	.371	065	.863	.474	.462	.419	.043	•906	.137	.352	.439	.865
7214	1.960	.473	.438	.417	035	• 92 6	.475	.486	.455	.032	•934	.097	• 3 5 2	.395	.662
7215	1.960	.473	.489	.479	.016	1.034	.475	• 531	• 508	•023	•955	.065	.352	.334	.507
7216	1.960	.473	.557	• 55 4	• 0 84	1.178	.476	.592	.575	.017	.971	• 04 3	.352	.275	. 396
7217	1.960	.473	.675	•679	• 2 0 2	1.427	.477	.734	•693	.011	.985	.022	.352	•206	.287
7218	1.960	•473	.789	•793	•316	1.658	.478	.814	.803	.011	.987	•019	• 352	.163	. 22 4
7219	.925	.277	.272	•25 3	005	• 38 2	.279	.306	.276	.030	.901	.145	.378	.380	•655
7220	.925	.277	.300	•291	.023	1.083	.279	.331	.308	.022	• 932	.100	.370	.328	.505
7221	.925	.277	.343	.342	• 3 66	1.238	•287	.370	•354	.015	.959	.062	.370	.269	.402
7222	• 9 7 5	.277	.470	•476	•1 93	1.697	.282	•491	.492	.009	.983	•026	.370	.168	.232
7223	.925	.277	.659	.666	• 3 82	2.379	.287	.677	.669	.007	.989	.017	.370	.101	.140
7224	.925	.277	.803	.813	• 5 26	2.899	.291	.820	.815	.004	• 995	.008	.370	.075	.102

Table 3.	Continued.	

CODF	Q	6.0	9.0	10.0	12.0	12.5	13.0	13.5	14.0	14.5	15.0	15.5	16.0	18.0
731	.497	.217	.219	.216	.208	.207	•202	.200	.202	.204	• 204	.206	.208	.212
732	.497	.240	.233	.242	.238	.237	.237	.235	.235	.232	.237	.239	•237	.247
733	.497	.290	.295	.295	.2 97	.289	.288	.286	.288	.287	.290	.291	.287	.302
734	.497	.445	.449	.452	• 4 54	•45.4	•4 53	.452	.453	.452	.453	.457	.458	.464
735	.497	.660	.664	.671	.667	•66.9	.668	.669	.669	•669	.670	.671	.674	.681
736	.497	.801	.807	.83 9	.810	.811	.811	.811	.812	•810	.812	.813	.814	.822
737	r. n 20	.292	.292	.291	.280	.285	.271	.257	.262	.259	.259	.259	.266	.277
738	1.020	.320	.323	• 37 2	.308	• 30 6	.301	• 30 0	.298	.299	.302	.303	.311	.314
739	1.020	• 34 R	.353	.351	.345	.343	.341	. 32 9	.340	• 34 1	.339	.344	.349	.354
7310	1.020	.485	.489	.491	.491	.489	.489	.489	.488	.489	•490	.494	•4 95	.502
7311	1.020	.673	.678	.681	.681	.681	.679	.680	.680	.680	.681	.684	.586	.693
7312	1.020	.811	.817	.821	.815	.817	.815	.843	.815	.815	.818	.819	.825	.832
7313	1.520	.368	.372	.372	.346	.329	.318	• 31 4	.310	.320	.312	.344	.331	.341
7314	1.520	.395	.401	.40 2	.380	.370	.361	• 36 1	.360	.364	.377	.360	.374	.386
7315	1.520	.434	.438	.438	.423	.419	.411	.406	.414	.414	•410	.409	.426	•434
7316	1.520	.553	• 5 5 8	.560	• 5 50	.547	.544	.545	.545	• 54 2	•551	• 55 0	• 5 54	• 56 6
7317	1.520	.708	.710	.715	.706	.708	.794	.704	.705	.705	.702	.711	.716	.724
7318	1.520	.816	.820	.823	.815	.817	.817	.814	.815	.814	.817	.819	.828	.833
7319	1.970	.423	.422	.420	.399	. 377	.349	• 35 4	.370	• 35 1	.357	.352	.402	.389
7320	1.970	.457	.461	.460	.441	.427	.416	.417	.409	.419	.396	.458	.430	.438
7321	1.970	.498	.501	.501	.486	.477	.472	.471	.469	.469	.439	.471	.481	.500
7322	1.970	.588	. 5 91	.593	• 5 85	.579	.581	.575	.575	.580	.581	•586	.587	•598
7323	1.970	.706	.711	.711	.707	.704	.700	.702	.703	.705	.704	.709	•714	.719
7324	1.970	.823	. 8 2 9	.829	.827	.824	• 8 26	• 82 2	.825	.824	• 928	.830	.834	•837

Tab	le 3	3.	Continued.	
140		••		•

C OD E	3	ΥN	Y 1	Y 4	Y 1 - Y N	Y 1 / Y N	ΕN	E 1	Ε4	F1-E4	E 4 /E 1	1-E15	FN	F 1	FB
731	.497	•151	.187	.182	• 7 36	1.238	•154	• 22 3	.195	.028	.873	.184	. 4 94	.359	.561
73 2	.497	.151	.210	•217	• 7 59	1.391	1 55	.244	.226	.018	.928	.106	• 4 94	.301	.433
733	.497	.151	2 60	.272	.109	1.722	1 56	•29 n	.278	.013	.957	• 06 4	.494	.219	. 30 3
734	.497	.151	•415	.434	.264	2.748	.164	.441	.436	.005	.998	.018	. 4 94	.108	.147
735	.497	-151	 6 30 	• 85 1	.479	4.172	.181	.655	.652	.003	.995	.007	.494	.058	.079
736	.497	-151	.771	.792	• 6 20	5.105	•1.96	•796	.793	.003	.996	.006	. 4 94	.043	.058
737	1.020	.243	.262	.247	.014	1.056	• 2 5 P	.312	.276	.036	.885	.167	.482	. 444	.746
738	1.720	.248	• 2 9N	.284	• ¹ 42	1.169	•251	.335	.306	.029	.913	•127	. 4 82	.381	.582
739	1.020	.248	.318	• 32 4	• n 70	1.282	•251	.360	.341	.019	.948	.077	. 4 82	.332	.493
7310	1.720	•248	•455	.472	•207	1.835	•254	.488	.480	.008	.984	.023	. 4 82	.194	. 26 3
7311	1.020	.249	.643	•663	• 3 95	2.593	.267	.671	.667	.004	.994	.009	. 4 82	.115	.156
7312	1.020	.248	.781	.802	• 5 33	3.149	.265	.808	.805	.003	.995	.006	. 4 82	.086	.117
7313	1.520	. 329	• 3 38	.311	•0.09	1.027	• 3 3 1	.396	.352	.045	.887	.164	.470	.451	.811
7314	1.520	.329	.365	. 35 6	• 0 36	1.179	.331	.419	•387	,031	.925	.111	.470	.402	.634
7315	1.520	• 329	.494	.434	• 0.75	1.228	• 3 32	.452	.428	.□24	.947	.079	.470	.345	.521
7316	1.520	.329	.523	•536	•1 34	1.590	• 3 34	•561	.550	.012	.979	.031	.470	.235	. 328
7317	1.520	.329	.678	.694	•349	2.061	• 3 36	.711	.772	.008	.988	.018	.470	.159	.217
7318	1.520	• 329	.786	. 90 3	•4 57	2.389	• 3 3 9	.816	.809	.007	.991	.013	.470	.127	. 17 3
7319	1.970	. 395	.393	• 35 9	0.02	.995	.397	.460	.410	.050	.892	.157	.463	.467	.865
7320	1.970	• 395	.427	•438	• 0 32	1.081	.397	.487	.448	.040	.919	.119	.463	.412	.704
7321	1.970	.3°5	.468	.470	.073	1.195	.398	.522	• 5 OD	.022	.957	• DF 3	• 4 6 3	.359	.536
7322	1.970	.395	.558	.568	.163	1.413	.399	.603	.588	.015	.975	.036	.463	.276	. 387
7323	1.970	.395	.676	.689	.281	1.711	.400	.714	.703	.012	.984	.024	.463	.207	.284
7324	1.970	.395	.793	.837	. 3 98	2.008	.402	.828	.817	.010	.987	.019	.463	.163	. 221

C OD E	0	6.0	8.D	10.0	12.0	12.5	13.0	13.5	14.0	14.5	15.0	15.5	16.0	18.0	
74]	• 5 115	.188	.189	•192	.1 97	.180	.178	.179	.178	.179	.185	.183	.188	.194	
742	.505	.212	.215	. 21 9	.218	.217	.214	• 21 3	.215	.214	.217	.221	•223	.221	
74 3	.505	.247	.254	.25 9	.258	.25 8	•2 57	.259	.259	.259	.262	• 26 4	.265	·.277	
74 4	-505	.427	.435	.439	.443	.445	.444	.445	.446	.446	.449	.452	•4 54	•463	
74 5	.505	.650	.658	.66.2	. 5 66	.657	.567	.669	.670	.671	.672	.674	.678	•686	
74 6	.5 75	.785	.792	.797	.801	.874	.803	. 804	.806	.806	.807	.810	.813	+822	
74 7	.940	.258	.261	.264	.256	•251	.234	• 23 3	• 2 35	•234	.237	• 25 1	.249	.250	
748	• 940	.280	.285	.288	.277	.275	.274	.271	.282	.274	.274	•282	.280	.293	
74 9	.940	.320	.327	• 32 9	.326	. 32 5	• 3 22	• 32 1	•323	• 32 3	• 327	• 330	• 3 3 3	-341	
7410	.940	.491	.499	.505	.506	. 50 6	.507	.506	.510	.509	.511	.513	.517	•526	
7411	.940	.676	.683	.688	.690	.692	• 6 92	.692	•693	.694	.696	•699	.703	•712	
7412	.940	.791	. 9 01	.804	.808	.811	•8.09	.811	.811	.812	.814	.817	.820	.829	
7413	1.498	.340	.341	.34 0	.325	.310	.287	.292	.284	.294	.308	.312	.311	.320	
7414	1.498	.351	.361	.363	.346	. 34 4	.321	.315	.314	.327	.312	.331	.345	.352	
7415	1.498	.383	. 391	.394	. 384	• 37 7	• 3 71	.366	.368	.364	.375	.393	.388	.395	
7416	1.498	.526	.532	.536	.536	• 53 1	.529	.531	.533	.533	.535	.529	.545	• 55 5	
7417	1.498	.683	.690	.694	.695	.696	.694	.694	.698	.697	.699	.702	.707	.717	
7418	1.498	.800	.807	.81 2	.807	.813	.812	.812	.815	.815	.818	.820	.824	.833	
7419	1.950	.403	.407	.438	.383	. 36 1	.324	• 31 1	.340	• 346	.331	.379	.348	.373	
7420	1.950	.422	.427	.427	.4 08	. 387	.374	.382	.386	.371	.409	•402	.395	.408	
7421	1.950	.435	. 4 58	.462	. 4 48	.434	.429	.429	.422	.439	•414	.451	.450	.460	
7422	1.950	.540	.547	.551	.541	.542	.537	.532	.539	.544	.540	.546	.562	.569	
7423	1.950	.686	.632	.697	. 6 95	.691	.694	.692	.695	.694	•696	.701	.707	.7.16	
7424	1.950	.793	.801	.836	.806		.804	. 80 4	.807	.802	.807	.811	.817	.826	

CODE	0	Y N	۲1	Y 4	¥ 1 - Y N	Y 1 / Y N	EN	Ε1	E 4	F1-E4	E 4 /E 1	1-E15	FN	F 1	FB
74 1	• 5 05	.130	.159	•164	.028	1.215	.133	.214	.180	.034	.843	•227	.529	.469	.702
74 2	• 5 05	130	.182	.191	• n 52	1.470	•1 34	.234	.203	.031	.869	.190	.629	.380	.514
743	• 5 05	130	.217	.247	.087	1.669	.136	.265	.254	.011	.960	.059	.629	.292	• 395
744	.505	•13C	• 3 97	.433	.267	3.054	•14F	.438	•435	.003	. 994	.010	.629	.118	. 160
74 5	•505	•130	.620	•656	.490	4.769	.169	.660	.657	.003	.995	•006	.629	.060	.082
74 F	• 5 95	130	.755	.792	•625	5.808	.188	.794	.793	.001	•998	• 00 3	•629	.045	.061
747	.940	.199	.228	• 22 0	.029	1.146	.202	.295	.251	• 04 4	.850	•216	.618	.504	.813
748	.940	.199	• 2 5N	•263	.051	1.256	•203	. 312	.285	.028	.911	•130	.618	.439	.628
74 9	• 940	.199	• 2.90	• 31 1	• 0.91	1.457	•203	. 346	.327	•020	.943	.084	.618	.351	.476
7410	• 940	•109	.461	.496	.262	2.317	•2.09	.506	.502	.004	•991	.013	.618	.175	.238
7411	.940	•199	•646	.682	• 4 47	3.246	.217	.688	.685	.003	.996	•006	.618	.106	.143
7412	.947	.199	.761	.739	• 5 6 2	3.824	.2.24	. 80 2	.801	.000	.999	.001	.618	.083	.112
7413	1.499	.27F	.310	.290	• 0 34	1.123	.279	. 388	• 3 35	.053	. 264	.197	.603	•506	•926
7414	1.498	.276	. 3 21	• 32 2	• 0.45	1.163	.279	.396	.359	.038	•905	.139	.603	.481	.791
7415	1.498	·27F	.353	.365	• 3 77	1.279	•2.80	. 422	.394	.028	•933	•099	.603	.417	.614
7416	1.498	.275	.496	.525	.220	1.797	.282	 55 0 	• 5 3 9	.011	.980	•030	.603	.250	.339
7417	1.479	.275	• ö 53	.687	.377	2 • 3F 6	.286	.700	• 6 95	.005	.992	.011	.603	.156	.225
7418	1.499	.276	•770	• 8J 3	.494	2.790	.290	. 815	.809	.006	.993	•011	.603	.129	.175
7419	1.950	• 377	.373	.343	•741	1.123	•335	.458	•398	.060	.869	.190	•5 95	.500	1.035
7420	1.950	•335	• 3 32	• 37.8	. 7 60	1.191	• 3 35	.473	•423	.049	.895	•152	.595	.464	.775
7421	1.953	• 332	• 4 M5	.430	.073	1.220	.335	. 483	.465	.018	•963	•055	. 5 95	.441	.648
74??	1.950	• 3 ? ?	•510	.533	.178	1.535	.337	. 57 3	•561	.012	.979	.031	• 5 9 5	.312	.434
7423	1.950	• 332	•65F	• 6 8 6	.3.24	1.976	.339	.739	.700	.010	.986	•020	• 5 95	.214	.290
7424	1.950	.337	.763	.796	• 4 31	2.299	.341	.813	•806	.076	•992	•012	• 5 95	.171	.231

CCDF	r	۴.٩	8.0	10.9	12.0	12.5	13.0	13.5	14.0	14.5	15.0	15.5	16.0	18.0
75]	.452	•167	.165	.16.)	•166	.159	•157	•157	•154	.153	.161	.169	.168	.180
75 7	.452	.177	•1 98	.191	.197	.194	•191	.190	.194	.197	.198	• 3P 2	.208	.217
75 3	.452	.230	.249	. 25 6	.259	• 25 D	•261	.262	.265	.264	.267	.272	. 2 75	.279
754	.452	.417	.423	.431	.4 36	-440	.44]	.443	.443	.446	.448	. 449	.454	.466
75 5	.452	.54	• b 22	.670	.676	.678	.f 79	.681	.682	.682	.686	.689	.691	.705
75 6	•452	.774	.783	.794	.803	.89.2	<u>•</u> 803	.805	.807	.308	.811	.813	.816	.829
75 7	. 977	.257	.262	.259	.249	- 24 1	. ? 29	.224	.225	.234	.229	.224	.248	.250
7 9	.977	.210	.276	.294	. 282	.279	•268	• 26 1	.272	.267	.772	.275	.282	.302
75 Q	.977	. 306	. 314	. 32 1	• 3 27	.317	.316	• 31 5	•318	- 318	• 320	. 329	• 3 3U	.342
7510	• 777	.473	.493	.490	.4 95	.497	.494	.495	•500	•500	.501	.507	•51U	•522
7511	. 977	.665	.676	.683	.688	.691	.689	.691	•6 92	.693	.694	.701	.704	.718
7512	• 077	.784	.791	.823	• 8 06	.811	-810	.812	.813	.812	.818	.821	.824	.826
7517	1.497	. 323	. 3.31	. 33 5	.316	. 297	.269	.757	.381	.271	.295	.284	.319	.306
7514	1.487	.335	.347	. 34 3	.333	.318	• 3 04	. 312	.311	• 32 1	.314	. 354	.341	.345
7515	1.487	• 3F 3	. 374	.383	.368	.365	•357	. 35 7	.357	• 36 0	.377	. 36 7	.377	.389
751 F	1.437	.511	.521	.529	• 5 30	.527	.527	.529	•5 32	.533	.535	.539	•546	• 55 8
7517	1.487	.677	.686	.695	• 6 98	.791	• 6 98	.700	.702	.703	.705	.711	.706	.723
7518	1.487	.747	•803	· 91 6	•820	.821	•821	.824	-825	.827	.832	.834	.838	.846
7519	1.950	• 3R 4	. 789	. 394	.378	• 35 4	.309	.278	.291	• 337	.314	. 334	.353	.367
7520	1.950	. 392	•4.01	•40.3	• 3 86	. 36 1	• 3 3P	• 32 7	.355	 351 	.352	. 381	.373	.394
7521	1.950	.438	.448	.453	.443	.439	• 4 21	.424	.418	•432	•402	•451	.447	.468
7522	1.950	•578	.547	.554	• 5 5 1	.547	.549	.541	.545	.550	.554	• 559	•565	•576
7523	1.950	.790	.712	.717	. 717	.717	.714	.718	.718	.721	.724	.730	.734	•752
7524	1.950	.791	.731	.799	.801	. 87 2	.801	.800	.805	.806	.810	.812	.817	.731

Table 3.	Continued.		

C OD E	0	YN	Y 1	¥ 4	Y 1 - Y N	Y 1 / Y N	EN	E 1	E 4	E1-E4	E4/E1	1-E15	FN	F 1	FB
751	• 4 52	•104	• 1 3 3	.150	• 0 29	1.279	.108	•213	.165	.047	. 778	• 314	.786	.544	.829
75 2	.452	-104	.147	.187	• 0 4 3	1.413	.109	.723	.197	.026	.883	•171	.786	•468	.634
75 3	• 4 52	.104	.209	.24 9	•105	2.010	.112	.277	•255	.022	.919	•119	.786	.276	• 374
75 4	.452	-104	.382	.436	.278	3.673	.127	.444	.438	.007	.985	•022	.786	.112	.151
75 5	• 4 52	.104	.619	.675	• 5 15	5.952	.160	.680	.676	.004	.994	•009	•786	.054	.078
756	• 4 52	.194	.744	.799	.640	7.154	.191	.805	.800	.005	.994	.009	•786	.041	•056
757	.977	.176	.227	.220	.051	1.290	.180	• 31 9	.254	.065	•795	.290	.772	•527	•904
75 8	.977	.176	.239	.272	.063	1.358	.181	• 32 7	.294	.033	.898	.149	.772	.488	.696
75 9	.977	.176	.276	• 31 2.	.100	1.568	.181	• 35 7	.329	.029	•920	.118	.772	.393	• 5 3 3
7510	.977	.176	.443	.492	.267	2.517	.188	.511	.499	.013	.975	•037	.772	.193	. 26 2
7511	.977	.176	.635	.688	.459	3.608	.199	.699	.691	.008	.989	.016	.772	.113	.153
7512	.977	.176	.754	.796	• 5 78	4.284	.208	.817	.799	.018	.978	•033	.772	.087	.118
7513	1.487	.235	.293	.276	.058	1.247	• 2 39	.397	.325	.071	.820	.257	.762	.547	1.087
7514	1.487	.235	.305	. 31 5	• 0 70	1.298	.239	.405	.353	.053	.870	.188	.762	.515	.820
7515	1.487	.235	.333	.359	• 11 98	1.417	.240	.427	. 388	.039	.909	.133	.762	.452	.629
751E	1.487	.235	. 481	.52.8	.745	2.047	•243	.557	•542	.016	.972	•042	.762	.260	. 35 3
7517	1.487	.235	.547	.693	.412	2.753	.249	.716	.701	.015	.979	.032	.762	.167	.226
7518	1.497	.235	.767	.816	• 5 32	3.264	.254	.833	.822	.012	.986	.021	.762	.129	.175
7519	1.950	.294	.354	• 33 7	• 0 70	1.246	• 2 8 P	.466	.394	.072	.845	•222	.752	.540	1.249
7520	1.950	. 284	.362	. 36 4	• ⁿ 78	1.275	.2 88	.471	.413	.059	.875	.180	.752	.522	.953
7521	1.950	.284	.409	.438	.124	1.437	.288	.507	.472	.035	.931	.102	.752	.437	.680
7522	1.950	.284	.508	.546	.224	1.789	.290	.593	.568	.025	.957	06 3	.752	.314	.426
7523	1.350	.284	. 6 70	.722	.386	2.359	.294	.744	.734	.010	.987	.020	.752	.207	.281
7524	1.950	.284	.751	.731	.467	2.644	.295	.822	.714	.108	.868	.191	.752	.175	. 26 3

-