
Utah State University Utah State University 

DigitalCommons@USU DigitalCommons@USU 

Reports Utah Water Research Laboratory 

January 1975 

Process Studies and Modeling of Self-Cleaning Capacity of Process Studies and Modeling of Self-Cleaning Capacity of 

Mountain Creeks for Recreation Planning and Management Mountain Creeks for Recreation Planning and Management 

Cheng-Lung Chen 

Keith D. Davis 

Follow this and additional works at: https://digitalcommons.usu.edu/water_rep 

 Part of the Civil and Environmental Engineering Commons, and the Water Resource Management 

Commons 

Recommended Citation Recommended Citation 
Chen, Cheng-Lung and Davis, Keith D., "Process Studies and Modeling of Self-Cleaning Capacity of 
Mountain Creeks for Recreation Planning and Management" (1975). Reports. Paper 557. 
https://digitalcommons.usu.edu/water_rep/557 

This Report is brought to you for free and open access by 
the Utah Water Research Laboratory at 
DigitalCommons@USU. It has been accepted for 
inclusion in Reports by an authorized administrator of 
DigitalCommons@USU. For more information, please 
contact digitalcommons@usu.edu. 

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/water_rep
https://digitalcommons.usu.edu/water
https://digitalcommons.usu.edu/water_rep?utm_source=digitalcommons.usu.edu%2Fwater_rep%2F557&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/251?utm_source=digitalcommons.usu.edu%2Fwater_rep%2F557&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1057?utm_source=digitalcommons.usu.edu%2Fwater_rep%2F557&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1057?utm_source=digitalcommons.usu.edu%2Fwater_rep%2F557&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/water_rep/557?utm_source=digitalcommons.usu.edu%2Fwater_rep%2F557&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/


PROCESS STUDIES AND MODELING OF SELF
CLEANING CAPACITY OF MOUNTAIN 

CREEKS FOR RECREATION 
PLANNING AND 
MANAGElv.lENT 

Prepared by 

Cheng.lung Chen 
Keith D. Davis 

The work upon which this report Is based W88 

supported In part by funds provided by the United 
States Department of the Interior, Omce of Water 
Research and Technology, 88 authorized by the 
Water Resources Research Act of 1964, and 
pursuant to Grant Agreement No. 14·01·0001·1435 

Final Report 
OWRT Project No. B·095·UTAH 

.,'. -ilJtalfWater:Re.earch·Laboratoryr ,. . 
I CoUege of Engineering 

Utah State Unlvenlt, 
Logan, Utah 84322 

June 1975 

\ i. A 

PRWGI35·1 





ABSTRACT 

Reaeration process studies were conducted on a mountain creek and a large 
laboratory flume. The method of evaluating the dispersion coefficient, mean velocity, and 
reaeration coefficient for both creek and flume consisted of finding these values for a 
deoxygenated portion of the flow containing a conservative tracer (dye). The 
deoxygenated slug is measured as it moves downstream and the three values are best fit in 
the analytical solution of the longitudinal dispersion equation which dynamically 
describes the flow of the dispersing slug in the stream. The best fit was accomplished by 
using the method of least squares in which the sum of squares of the differences between 
the dissolved oxygen and dye concentrations calculated from the dispersion equation and 
those obtained from the actual measurements is minimized. 

A reaeration coefficient prediction model of general form was developed. The model 
is com posed of two dimensionless parameters which were identified from the normalized 
dissolved-oxygen balance equation. A simplified model which has two model parameters 
was also developed. Both model parameters were evaluated specifically for the mountain 
creek and laboratory flume. A comparison' of this simplified model with existing models 
revealed that most existing models are incomplete in form. It was found that inclusion of 
the dispersion coefficient in the reaeration" coefficient model improved' the prediction 
accuracy. 

The information obtained from this study would aid in determining the oxygen 
balance of mountain creeks which is essential to the resource management of mountain 
watersheds. 

Chen, Cheng-lung and Keith D. Davis, "Process Studies and Modeling of Self
Cleaning Capacity of Mountain Creeks for Recreation Planning and Management, " Utah 
Water Research Laboratory Report PRWG135-1, Utah State University, Logan, Utah, 
June 1975. ' 

KEYWORDS-dispersion, dissolved-oxygen deficit, mathematical models, mixing, 
mountain creeks, reaeration, reoxygenation, self-cleaning, turbulence. 
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PREFACE 

The present research aimed at the determination of the self-cleaning or reaeration 
capacity of mountain creeks, a knowledge of which is essential to the planning and 
management of recreation and land development in mountain watersheds. It was planned 
that the proposed research would be carried over a period of two years. The first year was 
devoted largely to the review of literature, selection of sites for field measurements of the 
reaeration coefficient, and the development of the sampling procedure and technique for 
dissolved oxygen and dye concentrations measurement. A method for measuring the 
longitudinal dispersion coefficient of a stream which is essential to the reaeration 
coefficient modeling was also studied. Although two sites for field measurements were 
selected from Summit Creek, only one site was thoroughly investigated. Instead, tests on a 
big laboratory flume were performed so that a good control of flow conditions 'and 
hydraulic parameters was secured. 

During the first year, the proposed methods for collecting and/or measuring samples 
by using an oxygen analyzer, a Vacutainer, and/or a spectrophotometer proved somewhat 
of a problem. A unique sampling and measuring procedure was thus developed in the 
second year and proved to be valid for creeks studied. During the second year, a general 
mathematical model of the self-cleaning capacity for a stream and, in particular, for a 
mountain creek was developed and validated using data collected in this study as well as 
that obtained from previous investigators' studies. 

The research was conducted under the general supervision of Dr. Cheng-lung Chen, 
Professor of Civil and Environmental Engineering at Utah State University. Dr. Chen, the 
senior author of this report, primarily developed the theoretical foundation for the 
computations of the dispersion coefficient, mean velocity, and reaeration coefficient as 
well as the method for identifying the significant dimensionless parameters involved in the 
reaeration process. The junior author, Keith D. Davis, Graduate Research Assistant of 
the Utah Water Research Laboratory, performed most of the experimental work, analysis 
of data, and computer programming. 

Gratitude is due many students who assisted in the field and laboratory reaeration 
tests for this project. The writers wish to thank Mr. Gilbert Peterson for his assistance in 
the design and construction of sampling devices used in the measurements. Appreciation 
is also due Ms. Donna Falkenborg for her editorial assistance and Ms. Annette Brunson 
for typing this manuscript. 
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Symbol 

a 

A 

b 

BOD 

C 

C' 1 

D 

D(x,t) 

D' 

NOMENCLATURE 

Definition 

Coefficient representing the slope in 
general linear equation, Y = aX + b. 

Cross-sectional area of the stream, in 
square feet. 

Y -axis intercept in the general linear 
equation, Y = aX + b. 

Chemical oxygen demand of the car
bonaceous material, in milligrams 
per liter. 

Dissolved-oxygen concentration, in 
"lilligrams per liter. 

is solved -oxygen concentrations at 
Ie upstream and downstream ends 
~ the reach, respectively, at the first 
vel of dissolved-oxygen concentra
m in the disturbed-equilibrium 

__ chnique, in milligrams per liter. 

Dissolved-oxygen concentrations at 
the upstream and downstream ends 
of reach, respectively, at the second 
level of dissolved-oxygen concentra
tion in the disturbed-equilibrium 
technique, in milligrams per liter. 

Conservative tracer concentration, in 
parts per billion. 

Conservative tracer concentration at 
distance, x, and time, t, from the 
reference point, in parts per billion. 

Dissolved-oxygen concentration at 
saturation, in milligrams per liter. 

Dissolved-oxygen deficit, or the dif
ference between the saturation con
centration and the concentration of 
dissolved-oxygen, in milligrams per 
liter. 

Dissolved -oxygen deficit at distance, 
x, and time, t, from the reference 
point, in milligrams per liter. 

Transformed dissolved-oxygen defi
cit being equal to D exp(Kz(t-T», in 
milligrams per liter. 

Dissolved-oxygen deficit at upstream 
end of reach, in milligrams per liter. 

vB 

DO 

E 

Ep 

ES 

F 

g 

G 

H 

Definition 

Molecular-diffusion coefficient. 

Initial dissolved-oxygen deficit of the 
stream, in milligrams per liter. 

Longitudinal dispersion coefficient, 
in square feet per second. 

Parameter that includes the effect of 
photosynthesis, plant respiration, 
and removal of dissolved-oxygen by 
benthallayer; in milligrams per liter 
per second. 

Dimensionless depth being equal to 
DIDo' 

Dissolved -oxygen. 

Rate of energy dissipation per unit 
mass of liquid, equal to USg for 
open-channel flow, in square feet 
per cubic seconds. 

Percent standard error of estimate 
for the reaeration coefficient, Kz, in 
percent. 

Standard error of estimate for the 
reaeration coefficient, kz, in recipro
cal days. 

Standard error of estimate for the 
reaeration coefficient, kz, based on 
common logarithms. 

Function of the dimensionless para
meter Dx/LoU, 

Froude number, equal to Uh/ gR. 

Acceleration of gravity, in feet per 
second per second. 

Constant rate of sustained injection, 
in mass per unit time. 

Hydraulic depth, equal to the cross
sectional area divided by the surface 
width of flow. 

Reaeration coefficient or rate con
stant for oxygen absorption from the 
atmosphere, common logarithm 
base, in reciprocal days, or in recip
rocal seconds. 



(k~e 

(k~m 

L 

M 

n 

Q 

R 

S 

t 

t' 

Reaeration coefficient estimated 
from a linear regression analysis 
equation, common logarithm base, 
in reciprocal days. 

Reaeration coefficient calculated 
from the results of an experimental 
test, common logarithm base, in 
reciprocal days. 

Reaeration coefficient, common 
logarithm base, in reciprocal days at 
20 degrees centigrade. 

Deoxygenation coefficient or rate 
constant for biochemical oxidation of 
carbonaceous material, naturalloga
rithm base, in reciprocal seconds. 

Reaeration coefficient or rate con
stant for oxygen absorption from the 
atmosphere, natural logarithm base, 
in reciprocal seconds. 

Biochemical oxygen demand of car
bonaceous material, in milligrams 
per liter. 

Hydraulic parameter describing a 
reference length such as hydraulic 
radius or hydraulic depth, in feet. 

Mass of matter injected into stream. 

An integer. 

Discharge in cubic feet per second. 

Hydraulic radius, equal to the cross
sectional area of flow divided by the 
wetted perimeter, in feet. 

Water-surface or channel slope, in 
feet per foot. 

Time, in seconds. 

Flow time, or the time that must 
elapse between dissolved-oxygen 
measurements at the two sampling 
points in a recirculating flume, in 
seconds. 

vUl 

T 

U 

W 

x 

x' 

y 

a 

(J 

d(x) 

Ey 

1t 

e 
T 

Temperature in degrees ,~entigrade. 

Dimensionless time equai to tU/Lo' 

Mean flow velocity in the longitudi
nal direction, in feet per second. 

Shear velocity, equal to v' gHS, in 
feet per second. 

Width, in feet. 

Longitudinal coordinate, in feet. 

Longitudinal coordinate in a coordi
nate system moving with the mean 
flow velocity, equal to x-Ute 

Initial longitudinal coordinate. 

Independent variable in the general 
linear equation, Y = aX +b. 
Dimensionless coordinate equal to 
x/Lo' 
Dependent variable in the general 
linear equation, Y = aX + b. 

Coefficient or parameter in reaera
tion coefficient prediction equation. 

Exponent in reaeration coefficient 
prediction equation. 

Dirac-delta function. 

Eddy-diffusion coefficient for mass 
(y subscript indicates vertical direc
tion.) 

Temperature coefficient. 

Dynamic viscosity of the liquid. 

The constant 3.1416 ... 

Mass density of the liquid. 

Second time coordinate having the 
same reference point as t, in seconds. 

Distribution function describing a 
tracer concentration or dissolved
oxygen deficit versus time curve. 



INTRODUCTION 

The natural purification capacity of a stream 
or river in terms of assimilating biodegradable 
wastes is directly related to its ability to replenish 
the dissolved oxygen in its flow. The oxygen is 
required for the decomposition of organic material 
by bacteria. The rate at which this oxygen is 
replenished from the atmosphere is known as the 
reaeration rate. With increasing recreation and 
land-development in mountain and forest areas, 
the estimation of the self-cleaning capacity of 
mountain creeks becomes increasingly important 
because this information would greatly aid in 
taking protective measures against future pollution 
of mountain creeks. It would also aid in 
determining the oxygen balance of mountain 
creeks by optimizing the need, degree, and costs of 
waste treatment that may be essential to the long
range planning and management of mountain 
watersheds. 

The primary objective of this study was the 
determination and modeling of the reaeration rate 
of mountain creeks. The specific objectives were: 

1. To review literature dealing with the 
reaeration process and methods and techniques 
used to measure and calculate the reaeration rate. 

2. To determine the reaeration rate of a 
mountain creek at various temperatures and stages 
of flow by measuring the movement of a slug of 
artifically deoxygenated water in the creek. 

3. To formulate a mathematical model for 
predicting the reaeration capacity of a mountain 
creek using parameters such as the longitudinal 
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dispersion coefficient, stream geometry, and flow 
characteristics. 

4. To evaluate the range of error associated 
with the use of various reaeration coefficient 
prediction models, including the relationship 
formulated in this study, on the data collected for 
this study and available data from previous 
investigations. A measurement of the reaeration 
rate in a large laboratory flume at the Utah Water 
Research Laboratory (UWRL) was also attempted 
to substantiate the findings. 

The uniqueness of this study lies in two major 
areas. The first area deals with -the method of 
experimentally determining the reaeration rate. In 
this study the dispersion coefficient, mean velocity, 
and reaeration coefficient were determined from a 
deoxygenated slug containing a dye. The three 
values were optimized in the analytical solution of 
the longitudinal dispersion equation which dynam
ically describes the flow of a dispersing slug in the 
stream. The optimization was achieved by best
fitting calculated dye and dissolved oxygen 
concentrations to the corresponding measured 
data. The second area of uniqueness deals with the 
approach to formulate a reaeration coefficient 
prediction model. Significant dimensionless para
meters involved in the reaeration process were 
identified from the dissolved-oxygen balance 
equation in which the reaeration coefficient was 
used to describe the rate for the absorption of 
oxygen from the atmosphere. The mathematical 
model formulated appears to be an improvement 
over existing models in predicting the reaeration 
coefficients of mountain creeks under various flow 
conditions. 





REVIEW OF LITERATURE 

The reaeration process in a stream is the 
physical absorption of oxygen from the atmosphere 
by the flowing stream to replenish oxygen 
consumed in the biodegradation of organic 
materials. Adeney and Becker (1919, 1920) showed 
that the amount of reaeration by water is a first 
order process directly proportional to the satura
tion deficit, D, which is defined as the difference 
between the saturated dissolved oxygen (DO) 
concentration of the water and the actual DO 
concentration. Mathematical1y the reaeration pro
cess at any point on the water surface may be 
described by 

dD 
Cit = -K2D = -K2(Cs - C) ........... (1) 

where K2 is the rate coefficient for the absorption of 
oxygen from the atmosphere commonly referred to 
as the reaeration coefficient. Many investigators 
have used common logarithms (base 10) to 
calculate and model the reaeration coefficient. In 
this case the coefficient is conventionally desig
nated by k2 with the conversion equation: 

K2 = 2.303 k2 ...................... (2) 

The two primary contributions of this study 
were the method used to measure the reaeration 
coefficient and the approach used to formulate a 
prediction model for the reaeration. coefficient. 
Thus the review of earlier investigations was 
focused on these two aspects, the measuring 
technique and model formulation. An extensive 
review of literature for other aspects such as 
methods of determining DO concentration and 
reaeration coefficients, formulations of existing 
theoretical oxygen-absorption models and empiri
cal and semiempirical reaeration coefficient predic
tion models, a compilation of the available 
experimental data, and analyses of errors associ
ated with the use of various models on these 
experimental data was conducted by Bennett and 
Rathbun (1972). For simplicity in presentation, 
however, most of these aspects, except for the two 
as indicated above, will not be recapitulated 
herein. Literature reviews of less detail were also 
provided by Lau (1972a) and Wilson and Macleod 
(1974). 
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Reaeratlon Coefficient MeasUl'ements 

There are three basic techniques for determin
ing the reaeration coefficient of open-channel flow: 
the dissolved-oxygen balance technique, the 
disturbed-equilibrium technique, and the tracer 
technique. 

Dissolved-oxygen balance 
technique 

The starting point for measuring reaeration 
coefficients by using the dissolved-oxygen balance 
method is the dissolved oxygen balance equation 
developed by Streeter and Phelps (1925) and later 
used by Camp (1963) and Dobbins (1964). It can be 
written in the form: 

ac ac azc at + U a-x= Dxaif + Kz(Cs - C) 

-KIL-DB ......................... (3) 

where C is the DO concentration; Cs is the satura
tion DO concentration; x is the longitudinal 
coordinate along the reach; U is the mean stream 
velocity; Dx is the longitudinal-dispersion coeffi
cient; Kl is the rate constant for the oxidation of 
carbonaceous wastes that is assumed to be a first
order process proportional to L; L is the 
biochemical oxygen demand (BOD) of the carbon
aceous material; and DB is the amount of the 
removal or addition of DO by diffusion into the 
benthal layer and the effect of photosynthesis and 
respiration by plants. The value of DB can be 
positive or negative. It is positive by convention 
(Dobbins, 1964) when the rate of removal of DO 
exceeds the rate of addition and vice versa. 
Equation 3 has two basic assumptions among many 
others: (1) the DO and BOD are uniformly 
distributed over each cross section and (2) the 
processes described by KI and K2 are first-order 
processes. 

Reaeration studies involving natural streams 
or non-recirculating flumes usually assume steady 
state and nondispersive conditions, thereby letting 
ac/a~ and Dx of Equation 3 be equal to zero. This 
leaves Equation 3 in a form which can readily be 



solved with two of the K t , K2 and DB values 
considered as unknowns. For instance, the 
reaeration coefficient K2 is found by evaluating the 
other two values. The value ofK t is calculated from 
a standardized 5-day, 20°C BOD test. The parts 
making up DB, namely sedimentation, photosyn
thesis, and respiration, can be measured or 
estimated by different methods, many of which 
have been described in detail by Bennett and 
Rathbun (1972). . 

Reaeration studies using recirculating flumes 
usually assume nonsteady-state, nondispersive 
conditions. Nondispersive conditions assume that 
the dispersion term is small compared with the 
convection term, U a C/ax. The sources and sinks 
of DO can be controlled in such a way that K t and 
DB of Equation 3 become zero. Thus, Equation 3 
reduces to 

aC ac 
-+U-=K2(C -C) at a x s 

which can be alternatively written in terms of the 
deficit, D, as 

aD aD ar-+U ax = -K2D ................ (4) 

By making the transformation of the coordinate 
systems from (x, t) to (x', t) using the relations x' 
= x - Ut and t' = t, Equation 4 has the solution 

or 

k2 = lit' (log Da - log D) ............. (6) 

where Da is the deficit at the upstream point and D 
is the deficit at a downstream point. If a deficit is 
artificially created in the water to be recirculated by 
the addition of sodium sulfite and a cobalt catalyst, 
k2 can easily be calculated by using Equation 6. 
Equation 6 has been used by Krenkel and Orlob 
(1962), Negulescu and Rojanski (1969), and 
Thackston and Krenkel (1969). The DO at two 
points along the flume are measured at a lapse time 
oft ' apart which is equal to (x' - x)/U, where x' - x 
is the distance between measuring points. Usually a 
series of measurements are taken at each point so 
that when plotting log D versus time, two straight 
parellel lines are formed from the two sets of data. 

Under some special conditions natural streams 
can be measured with the assumption that K t and 
DB are negligible such as those reaches chosen by 
Churchill, Elmore, and Buckingham (1962). Since 
streams are considered to be uniform within the 
test reach, Equation 4 can be written as 
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dD 
Cit = -K2D ......................... (7) 

with the solution 

D = Dae -K2t = Da10-k2t ............ (8) 

or 

. k2 = lit (log Da -log D) .............. (9) 

which is identical to Equation 6 except for t ' used 
in Equation 6. In Equation 9, t is the mean time of 
flow between sampling stations, but the actual DO 
measurements do not have to be taken at t time 
apart as it is necessary with Equation 6 since in 
Equation 9 conditions are steady state and the DO 
concentrations at the two stations should remain 
constant and may be measured at any time. 

Disturbed-equllibrium technique 

The disturbed-equilibrium technique devel
oped by Gameson and Truesdale (1959) consists of 
measur,ing the DO concentration at two points 
along the stream at two different levels of DO con
centration. The downstream sample is taken at a 
time, t, following the sampling at the upstream 
point. The time, t, is the mean time of flow between 
the two points of interest. The second DO concen
tration level is usually obtained by adding sodium 
sulfite and a cobalt catalyst, although diurnal vari
ations in DO concentrations due to photosynthesis 
can also be used. The reaeration coefficient can 
then be calculated by use.!>f the equation 

K -11 Ca - Ca' 2 - n, t Cb - Cb ................. (10) 

where Ca and Ca' are the two levels of DO 
measured at the upstream point and Cb and Cb I 
are corresponding values at the downstream point. 
Equation 10 is actually an elaboration of Equations 
6 and 9 which can be used when the special 
conditions required for Equations 6 and 9 do not 
apply. As long as the rates of all the secondary 
processes affecting the DO concentration, such as 
photosynthesis, respiration, sedimentation, etc., 
are constant during the measurement of both levels 
of DO concentration, they are more or less can
celled out by use of Equation 10. 

For Equation 10 to be valid, values of K2, U, 
Cs' photosynthesis and respiration must be either 
constant during the testing period or in the cases of 
photosynthesis and respiration negligible. Artificial 
DO deficits can be created quickly for a second 
level measurement by use of sodium sulfite and a 
cobalt catalyst which provide better chances for 
keeping K2, Cs' and U values constant. Also, the 



relatively large deficit created by use of sulfite 
justifies the assumption of having the negligible 
photosynthesis and respiration rates. Hence the 
disturbed-equilibrium technique is particularly 
well suited for use in small streams where dosing 
with sodium sulfite is practical. A modification of 
Equation 10 is a formula developed by Zogorski 
and Faust (1973) to use the areas under DO deficit 
versus time curves at two points on a stream (i.e., 
the curves formed by measuring 00 deficit values 
of a deoxygenated slug at two points along the 
stream as it passed by). 

Tracer technique 

The tracer technique first described by 
Tsivoglou et al. (1965) is discussed in detail by 
Tsivoglou (1967). Basically the technique consists 
of injecting tritiated water along with an inert 
radioactive tracer gas into a stream and measuring 
the radioactive gas at two points downstream. The 
tritiated water acts as a conservative dispersion 
tracer indicating how much of the radioactive gas 
has been lost to the atmosphere along the reach or 
actually the desorption rate of the gas. The most 
important point of this technique is that the ratio of 
this desorption rate to the reaeration rate is 
constant and that it can be measured in the 
laboratory . 

The advantages of the tracer technique are 
that no assumptions are made as to channel or 
mixing characteristics and the method can be 
applied in polluted as well as clean rivers since the 
ratio of the desorption rate to the reaeration rate is 
not significantly affected by pollutants, tempera
ture, or turbulence. The major disadvantages are 
the costs and equipment involved in injecting and 
monitoring the tracers and the fact that the method 
is limited to small streams because of the increased 
injection difficulties of radiation hazards in larger 
streams. 

Prediction Equations and Their Formulations 

There have been numerous models developed 
for the prediction of reaeration coefficients. 
Theoretical models of the oxygen-absorption 
process are generally not suited for prediction of 
the reaeration coefficient in streams because the 
model parameters have not been adequately related 
to bulk-flow hydraulic variables., Theref.ore this 
literature review will not include such theoretical 
models. The models extensively reviewed, which 
seem to be most often cited in literature, belong to 
semi-empirical and empirical types of equations. 
These types of equations also most easily lend 
themselves to the prediction of reaeration rates by 
using the data collected in this study. 
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The study by Churchill, Elmore, and Bucking
ham (1962) is considered by many to have the best 
and most reliable set of field data on reaeration 
rate of any investigations into the subject. Their 
measurements were made on stretches of rivers 
below dams where the water released from 
reservoirs was low in 00 and BOO because .of 
prolonged storage under thermally stratified 
conditions. Five hundred and nine values covering 
16 different reaches in five rivers were determined 
using the dissolved-oxygen balance technique. The 
flow depths varied from about 2 to 11 feet, the 
mean velocity from 1.8 to 5 fps, and the discharge 
from 950 to 17,270 cfs. 

Churchill, Elmore, and Buckingham (1962) 
ran many multiple-regression analyses in an 
attempt to relate their observed reaeration rates 
with gas and liquid parameters and various stream 
characteristics such as slope, friction factor, and 
Reynolds number. Because none of the prediction 
equations thus obtained pr.oved to be statistically 
better than any of the others, the authors suggested 
the simplest one for general usage-. This equation 
was 

k2 = 5.026 UO.969 H-l.673 (1.0241) T -20~ .. (11) 

where k2 is in reciprocal days, U, the velocity, is in 
feet per sec., H, the depth, is in feet, and T, the 
temperature, is in degrees Celsius. 

Krenkel and Orlob (1962) conducted labora
tory measurements of k2 for flow with depths 
ranging from 0.08 to 0.20 feet in a I-foot wide, 
60-foot long tilting flume. The water was artificially 
deoxygenated with sodium sulfite and a cobalt 
catalyst and the dissolved-oxygen balance tech
nique was used to calculate k2 values. The 
longitudinal dispersion coefficient, Ox' was 
measured by injecting dye into the flow and 
measuring its change in concentration with time at 
a point downstream. A regression analysis was run 
for correlating the measured k2 values with Ox and 
the depth of flow, H. The equation obtained was 

(k2) 200 = 3.659 Ox 1.321 H-2.32 ......... (12) 

where k2 is in reciprocal days, Ox is in ft2/sec., H is 
in feet, and (kz}200 represents the reaeration coeffi
cient value as it would be measured at 20 degrees 
centigrade. When measurements are not taken at 
20°C, a correction factor of the form eT-2o is added 
to the equation. (A value of e = 1.0241 has 
generally been used in previous investigations and 
has been used throughout this study.) 

Krenkel and Orlob (1961) reasoned that the 
reaeration rate was related to E, the energy 
dissipated per unit mass of flowing fluid, which is 
equal to USg (U = velocity, S = slope, and g = 



acceleration due to gravity). Another regression 
analysis was performed but this time relating the k2 
values with the parameters E and H. The new 
equation formulated was 

(k~200 = 24.66 EO.408 H-0.66 ........... (13) 

where k2 is in reciprocal days, E is in ft2/sec3 and H 
is in feet. 

Adding on to earlier work, Dobbins (1964) 
developed expressions relating parameters in the 
film-penetration theory (see, e.g., Bennett and 
Rathbun, 1972) to ordinary hydraulic variables. In 
its most convenient form, Dobbins (1965) gave his 
experimentally derived equation as 

O.12C A F EO.'" roth r~. EO.12~ 
LC41.5H J 

kz = .. (14) 
C41.5 H 

The parameters shown in Equation 14 were related 
to stream characteristics by the following relation
ships, which also described the variation of k2 with 
temperature, T. 

CA = 1.0 + F2 

C" 0.9 + F 

F = 9.68 +0.054 (T-20) 

B = 0.976 +0.0137 (30 - T)1·5 

E = 30.0SU 

F = Uh/gH 

In the above equation k2 is in reciprocal days, U is 
in feet per second, H is in feet, and S is in feet per 
1000 feet. 

In the formulation of Equation 14, Dobbins 
(1965) used data gathered by Krenkel and Orlob 
(1962), the measurements of Churchill, Elmore, 
and Buckingham (1962), and data from the Ohio 
and other rivers previously assembled by O'Connor 
and Dobbins (1956). 

Owens, Edwards, and Gibbs (1964) used the 
disturbed-equilibrium technique for measuring 
reaeration coefficients with deoxygenation being 
achieved by adding sodium sulfite and a cobalt 
catalyst. They measured 21 different reaches in six 
English streams and then calculated 32 separate k2 
values. Discharges ranged from 1.50 to 36.2 cfs, 
depths from 0.34 to 2.44 feet, and mean velocities 
from 0.13 to 1.83 fps. 

Multiple-regression analysis of their data led 
to the correlation of the kz values to the parameters 
Uand H: 
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However, after Owens, Edwards, and Gibbs (1964) 
. incorporated the data obtained by Gameson, 

Truesdale, and Downing (1955) and Churchill, 
Elmore, and Buckingham (1962) with their own 
data and performed the same analysis, the 
resulting equation became 

In both Equations 15 and 16 k2 is in reciprocal 
days, U is in feet per second, H is in feet, and T is 
in degrees Celsius. 

Langbein and Durum (1967), after combining 
the river data of O'Connor and Dobbins (1956) and 
Churchill, Elmore, and Buckingham (1962) with 
the laboratory flume data of Krenkel and Orlob 
(1962) and Streeter, Wright, and Kehr (1936), 
performed a regression analysis to relate k2 to U 
and H, and obtained the equation 

(kz) 20° = 3.3 U H-I.33 .......•....•... (17) 

where k2 is in reciprocal days, U is in feet per 
second, and H is in feet. 

Isaacs and Gaudy (1968) measured reaeration 
in a circular flume with moving walls intended to 
simulate streamflow conditions. However, their 
laboratory flow conditions have been criticized as 
not being similar to natural flows. Fifty-two k2 
values were obtained under 20 different simulated 
streamflow conditions with. depths ranging from 
0.50 to 1.50 feet and simulated mean velocity from 
0.55 to 1.63 fps. When a regression analysis was 
run of their data relating k2 to U and H, exponent 
values of 1.0027 and -1.4859 were found for U and 
H, respectively. The regression analysis was then 
repeated by holding the exponent values of U and 
H at 1 and -1.50, respectively. The equation 
obtained was 

k2 = 3.053 U H-I.50 (1.0241)T-20
o 

••••• (18) 

Isaacs and Gaudy (1968) applied the same 
approach to the data of Churchill, Elmore and 
Buckingham (1962) and got the equation 

k2 = 3.739 U H-I.50 (1.0241)T-20o ..... (19) 

They then used the data of Krenkel and Orlob 
(1962) to obtain 

kz = 2.44 UH-I.50 (1.0241)T-20o ....... (20) 

In Equations 18, 19 and 20, k2 is in reciprocal days, 
U is in feet per second, H is in feet, and T is in 
degrees Celsius. 



Cadwallader and McDonnel (1969), after 
applying a multivariate analysis to the reaeration 
data of Churchill, Elmore and Buckingham (1962), 
Owens, EdwarQs, and Gibbs (1964), and the Water 
Pollution Research Laboratory channel data 
(Edwards and Owens, 1962, 1965; Edwards, 1962; 
and Owens, 1965), found that the rate of energy 
expenditure waS the most significant variable in the 
reaeration process. Based on this fmding, Cadwall
ader and McDonnell (1969) proposed the equation 

k2 = 25.7 EO.5 H-I.O ................. (21) 

where k2 is in reciprocal days, H is in feet, and E 
(= VSg) is in ft2/sec3. Despite the multivariate 
analysis, it was found that the average error of 
estimate by using Equation 21 exceeded 50 
percent. 

Negulescu and Rojanski (1969) used the 
dissolved-oxygen balance technique to obtain 18 k2 
and Dx measurements from a 66-foot long, 
0.66-foot wide recirculating flume. In their experi
ments, depths ranged from 0.164 to 0.492 feet and 
velocities from 0.656 to 1.903 fps. Regression 
analysis relating k2 to V and H gave 

k2 = 4.74 (VIH)0.S5 . ................ (22) 

while regression analysis relating k2 to V, H, and 
Dx gave 

k2 = 14.21 Dx (VIH)1·63 ............. (23) 

In Equations 22 and 23 k2 is in reciprocal days, V is 
in feet per second, H is in feet and Dx is in ft2/sec. 
Negulescu and Rojanski (1969) compared the 
measured k2 values obtained from a river study 
(name unknown) with those calculated by using 
Equations 22 and 23 and found that use of 
Equation 23 was more accurate than that of 
Equation 22. 

Thackston and Krenkel (1969) assumed that 
k2 was proportional to the water surface renewal 
rate which was in turn proportional to the eddy 
diffusion coefficient of mass at the surface, E.y and 
the depth, H. Therefore they proposed the K:2 '\., 
E.y/H2, assuming Reynolds analogy E.y '\., V. H, 

where V * is the shear velocity: A combination of 
both resulted in k2 '\., V */H. They then performed 
a regression analysis on reaeration and dispersion 
experimental data accomplished in a 2-foot wide, 
60-foot long tilting flume. Relating k2 to V./H 
yielded 

k2 = 18.58 V./H . .................. (24) 
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The experimental data on k2 were also correlated to 
Dx/H by , 

k2 = 1.296 Dx/H2 ................. (25) 

Thackston and Krenkel (1969) found that Equa
tion 24 described quite well the data of O'Connor 
and Dobbins (1956) and that of Churchill, Elmore, 
and Buckingham (1962), but found that the fit 
could be improved by adding a Froude number 
relation to the regression analysis. The equation 
obtained was 

k2 = 10.8 (1.0 + FO'5) V./H ......... (26) 

In Equations 24, 25 and 26, k2 is in reciprocal days, 
U*is in ftlsec and F = Vh/ gH. 

Bennett and Rathbun (1972), after making a 
detailed statistical analysis of the data of Churchill, 
Elmore and Buckingham (1962) and Owens, 
Edwards and Gibbs (1964), concluded that the best 
prediction equation for reaeration of natural 
streams was 

VO.413 SO.273 

k2 = 46.05 HI.40S .............. (27) 

Performing an analysis on more data, some of 
which only contained depth and velocity records, 
they found that the best-fit equation was 

VO.607 
k2 = 8.76 HI.6S9 .................... (28) 

In Equations 27 and 28, k2 is in reciprocal days, 
U is in feet per second, H is in feet, and S is the 
channel slope in feet per foot. The data sources 
used to obtain Equation 28 were O'Connor and 
Dobbins (1956), Churchill, Elmore, and Bucking
ham (1962), Krenkel and Orlob (1962), Owens, 
Edwards, and Gibbs (1964), Gameson, Truesdale, 
and Downing (1955), Tsivoglou et al. (1965), 
Negulescu and Rojanski (1969), and Thackston 
and Krenkel (1969). 

Lau (1972b) used techniques of dimensional 
analysis to find the functional relationship: 

k2R _ f2J (VRe V. Dme W, 
U-- \:-IJ-'U'-IJ-''Rj ..... (29) 

where R is the hydraulic radius, f2J represents a 
functional relationship, e is the density, IJ is the 
absolute viscosity, Dm is the coefficient of 
molecular diffusion in the liqud, W is the stream 
width, and other parameters are as defined 
previously. He then examined the data of 



Churchill, Elmore, and Buckingham (1962), 
Krenkel and Orlob (1962), and Thackston and 
Krenkel (1969) in an attempt to identify the relative 
importance of each dimensionless parameter on the 
right side of Equation 29. He concluded that 
Equation 29 could be fitted by the foregoing data 
by reducing it to: 

k2H/U = 1089.0 (U./U)3 .......... (30a) 

or 

k2 = 1089.0 U.3/U2H .............. (30b) 

where k2 is in reciprocal days, U is in feet per 
second, H is in feet, and U* is in feet per second. 
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Parkhurst and Pomeroy (1972) performed an 
experimental investigation of the reaeration rates 
observed in sewers. An important aspect of the 
study was the fact that the flow velocities tended to 
be greater than those observed in other studies with 
the exception of Churchill, Elmore, and Bucking
ham (1962). A predictive equation for the 
reaeration coefficient was proposed with the 
coefficients and exponents being determined by a 
regression analysis of the experimental data. The 
best-fit equation was: 

(k2)200 = 48.0 (1 +0.17 F2.0) (SU)O.375 

H-l.O ............................. (31) 

where k2 is in reciprocal days, S is in feet per foot, 
U is in feet per second, H is in feet, and F is equal 
to U/y'gH. 



THEORETICAL CONSIDERATIONS 

A reaeration coefficient measurement 
technique different from those described in the 
review of literature must be shown to be 
theoretically sound before its usage. The method 
developed in this study is an improvement over the 
disturbed-equilibrium technique, and is especiaJ1y 
useful for k2 measurements in mountain creeks. 
The basic equation used in this study is the 
longitudinal dispersion equation for DO deficit or 
concentration. It is similar to the dissolved-oxygen 
balance equation (Equation 3) except for the last 
two terms describing the oxidation process of the 
BOD and the DO diffusion process into the benthal 
layer and the effect of photosynthesis and 
respiration by plants. Relatively less polluted 
streams such as mountain creeks were selected so 
that the last two terms in Equation 3 could be 
ignored. The remaining portion of Equation 3 with 
appropriately prescribed initial and boundary 
conditions was solved analytically through a 
transformation technique and its closed-form 
analytical solution applied to determine the k2 
value by means of an optimization technique. Field 
data collected for a mountain creek under various 
flowing conditions in different seasons was thus 
used to compute the k2 value. The k2 value was 
then related to the significant hydraulic parameters 
of a creek. 

A few methods are available for identifying the 
significant hydraulic parameters of a creek during 
the reaeration process. One method is dimensional 
analysis, as conducted by Lau (1972b), and the 
other method is to normalize the longitudinal 
dispersion equation for DO deficit or concentra
tion. The latter method was used to define two 
significant dimensionless parameters which govern 
the reaeration process of the stream. A prediction 
model for k2 was formulated based on these two 
parameters. 

Reaeratlon Coemclent Measurements 

This investigation dealt specifically with the 
reaeration process in mountain creeks, the flow 
characteristics of which make the measurement of 
k2 extremely difficult by the previously described 
methods. Generally speaking, mountain creeks are 
small streams with high gradient and large-scale 
roughness and water in them flows at small depth 
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and high velocity. The DO concentration in a 
creek, if not polluted, is maintained at or near 
saturation. To measure k2 in such a highly
turbulent, DO-saturated stream is extremely 
difficult because the water must be first artificially 
deoxygenated by the addition of sodium sulfite and 
a cobalt catalyst. However, the construction of an 
elaborate injection system for the sulfite was 
reasoned to be impractical. Instead a slug of water 
was deoxygenated and measured as it traveled 
downstream. The DO concentration of the slug of 
deoxygenated water varies with time and space. 
Hence, neither the k2 measurement by using the 
dissolved-oxygen balance technique as represented 
by Equation 6 or 9 nor that by using the disturbed
equilibrium technique as represented by Equation 
10 is valid for the time- and space-varying slug. The 
following method was primarily developed for 
measuring k2 in a mountain creek, but is believed 
to be generally applicable to any stream where a 
funy-mixed condition at any cross-section can be 
readily established. 

The reaeration coefficient can be calculated by 
using the dissolved-oxygen balance equation 
(Equation 3) by assuming that Kl and DB are 
negligible because the creek is relatively unpolluted 
and the large artificial DO deficit created by the 
addition of sulfite makes the two terms, KIL and 
DB, very small in comparison with the reaeration 
term, K2(Cs - C). Thus Equation 3 without these 
two terms is 

or by substituting C = Cs - D, where Cs is a 
constant, into Equation 32 the equation in terms of 
the DO deficit, D, becomes 

aD + uaD = D a
2
D -k2D 

a t a x x a x2 ......... (33) 

Equations 32 and 33 are longitudinal dispersion 
equations for DO concentration and deficit, 
respectively. The propagation of the slug of 
deoxygenated water in the stream, if fully mixed 
over the cross-section, can thus be described by 
using one of these equations subject to the 



following initial and boundary conditions. If only 
Equation 33 is considered, 

D(x,O) = Do(x) .................... (34) 

D(xo' t) = <I> (t) ..................... (35) 

in which Do(x) is the initial DO deficit distribution 
expressed in a known function only of the 
longitudinal coordinate, x, and <I>(t) is the injected 
DO deficit time-distribution at x = xo' Even 
though Do(x) may be assumed constant (i.e., 
especially true for a non polluted mountain creek 
where Do(x) = 0), there seems to be no analytical 
solution available for Equation 33 subject to 
Equations 34 and 35. However, a rather limited, 
particular analytical solution which is applicable to 
the present problem can be obtained by integrating 
the well-known instantaneous injection solution of 
Equation 33 through a transformation technique 
which is demonstrated as follows. 

Consider the general longitudinal dispersion 
equation governing the flow of a conservative tracer 
of concentration Ci in a stream: 

aCi + U aCi - D a2Ci - -- x:::r at ax ax ............. (36) 

When an instantaneous injection of a mass, M, 
with the same density as the flowing water 
is applied, Equation 36 is subject to the initial and 
boundary conditions: 

Ci(x,O) = MIA d (x - 0) .............. (37) 

Ci(±oo, t) = 0 ...................... (38) 

where A is the cross-sectional area of the stream 
and d (x - 0) is the Dirac-delta Function at x = O. 
The solution of Equation 36 through 38 is 

Ci (x, t) = exp ---M (X- Ut)2) 
Ay 4n Dxt 4 Dxt .. (39) 

Next if the tracer is put into the stream by a 
sustained injection with a constant rate, G, which 
is equivalent to an increment of injected mass, dM, 
per unit time, dT, or 

G = dM/dT ....................... (40) 

where both time coordinates, t and T, have the 
same reference point. Since Equation 36 is a linear, 
partial differential equation of second order, the 
sustained injection of a tracer in the stream may be 
conceived of as the summation of the concentration 
distributions for a series of an instantaneous 
injection at t = T, T varying from the beginning to 
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the time of interest, t. Therefore, the instantaneous 
injection solution, Equation 39, can be utilized to 
formulate the following instantaneous injection 
solution for t at any T in the sustained injection. 

G 
- dCi (x, t - T) = A\j 4nDx (t _ T) exp 

[
_ (x - U (t - T»2JdT 

4 Dx (t - T) •.•................. (41) 

Integrating both sides of Equation 41 from 0 to t 
yields 

1, t G 
Ci (x, t) = 0 A \j 4n Dx (t _ T) exp 

[~x -U (t - T»~ 
[ 4 Dx (t - T) J dT 

. .................... (42) 

for Ci (x, 0) is zero everywhere except at the point 
of injection which satisfies the initial condition, 
Equation 37. 

The actual condition at the point of injection 
(x = 0) in practice is not a constant rate of injected 
mass, but rather a function varying with time, 
0(T)Q, in which Q is the discharge of flow in the 
stream. The function, 0(T), describes the concen
tration of the tracer, and, if multiplied by the 
discharge, Q, will result in the same units as used 
by the rate G. Hence, substituting G = 0(T)Q into 
Equation 42, after letting QI A be equal to the 
mean velocity, U, yields 

. r t U0(T) 
Ci (x,t) = J 0 " 4n Dx (t _ T) exp 

[ (x - U (t - T»2] d 

L- 4 Dx (t - T) T •..•.•.•.•.•..•....•. (43) 

Equation 43 is the solution of the tracer concentra
tion at any time, t, and distance, x, downstream 
from the point of injection where an injected 
concentration versus time curve, 0(T) , was 
measured. 

Though Equation 33 has an additional term, 
-K2D, more than Equation 36, it can be reduced to 
the same form as Equation 36 by using a 
transformation technique. Let 

o = D'e-K2(t - T) ..•................ (44) 

where D = D (x, t - T) and 0' = D' (x, t - T) which 
is the transformed DO deficit defined by Equation 



44. Substituting Equation 44 into Equation 33, and 
manipulating, yields 

aD' aD' a 2D' 
-+U-=D --
a t ax x ax2 ............ (45) 

which should have the following solution similar to 
Equation 41 for an instantaneous injection of 
deoxygenated water of a known DO deficit 
distribution, 0(t), at t = T. 

, U0 (T) 
-dD (x,t - T) = exp 

v' 4n Dx (t - T) 

[ (x - U (t - T»2J d L 4 Dx (t - T) T ..................... (46) 

Transforming D' into D using Equation 44 and 
then integrating both sides of the results from 0 to t 
yields 

D (x t) =rt U 0 (T) exp 
, Jov'4nDx (t - T) 

t (x - U (t - T»2 K ( ~ - - 2t-T) 
4 Dx (t - T) 

dT 
............ (47) 

Equation 47 can be used to fit the actual test 
conditions in which 0 (T) is a function describing 
the DO deficit versus time curve measured at a 
point on the stream. Therefore, the DO deficit at 
any distance, x, below that point at any time, t, can 
be calculated by means of Equation 47. 

The method of measuring the reaeration 
coefficient developed in this study makes use of 
both Equations 43 and 47. A slug of deoxygenated 
water added with a conservative tracer (or dye) is 
injected into the stream. Both DO and tracer 
concentrations are measured from a series of 
samples taken at two points downstream. From 
this data a DO deficit versus time curve and a 
tracer concentration versus time curve are con
structed for each of the sampling sites. Equation 43 
with measured 0 (t) at the upstream sampling 
station is used to calculate tracer concentration 
values at the downstream sampling station. The 
mean velocity, U, and the dispersion coefficient, 
Dx' are then calculated by using an optimization 
technique to best fit the calculated and measured 
values of the tracer concentration at the second 
sampling station. The values of U and Dx so 
obtained are believed to be the average values at 
which the deoxygenated slug of water moves from 
the first to second sampling station. Thus, the 
same values of U and Dx are next substituted into 
Equation 47 with measured 0(T) which is now a 
function describing the DO deficit versus time 
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curve at the upstream station. The K2 value is then 
calculated by using again an optimization tech
nique to best fit the measured and calculated 
values of the DO deficit distribution at the second 
sampJing station. The value ofK2 so obtained is the 
average rate at which a slug of deoxygenated water 
absorbs oxygen from the atmosphere as it travels 
downstream. 

Reaeration Coefficient Model 

To develop a model for evaluating the 
reaeration coefficient for a stream requires a 
knowledge of relevant parameters involved in the 
reaeration process. There are many factors which 
may affect the absorption of oxygen in the flowing 
water (Bennett and Rathbun, 1972). Some of them 
are significant and others are not. To find 
significant parameters involved in the reaeration 
process is a formidable task. In the past, most 
semi-empirical or empirical models were developed 
on the basis of the regression analysis that does not 
truly account for the importance and significance 
of the parameters involved in the reaeration 
process. Since the longitudinal dispersion equation 
for DO deficit, Equation 33, adequately describes 
the reaeration process in a stream, it can be used to 
identify the significant dimensionless parameters 
involved in the process. 

Equation 33 is normalized by introducing the 
following dimensionless variables. 

D 
D* =Do ......................... (48) 

x 
x =--* Lo' ......................... (49) 

T =tU 
* Lo .......................... (SO) 

where the reference magnitudes, Do, may be either 
the initial DO deficit of the stream or Cs (the DO 
concentration at saturation), and Lo is some 
hydraulic parameter describing a length. Substi
tuting Equations 48, 49 and SO into Equation 33, 
after few manipulations, yields the following: 

aD* + aD. '= ( Dx_' a 2D1_ (K2LO\ D. 
aT; aX. ~-LoU) ax. r U "j 

.... (51) 

Equation 51 is the normalized longitudinal 
dispersion equation that is independent of the 
system of units selected since both the Dx/Lo U and 
the K2Lo/U parameters are dimensionless. If two 
flow systems under consideration are dynamically 
similar, both parameters must be identical for both 



systems according to the Reynolds analogy. 
Consequently both parameters are identified as 
significant ones in the reaeration process with a 
functional relationship: 

~=f(~\ 
U "LoU) .............. (52) 

It is noted that the functional relationship, 
Equation 29, of several parameters derived by Lau 
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(1972b) through dimensional analysis is similar to 
Equation 52 except that the dispersiOI1 coefficient, 
Dx' is generally considered as a function of Dm 
and possibly of other parameters listed on the right 
hand side of Equation 29 (Chen, 1971). A 
comparison of Equation 52 with other semi
empirical or empirical models developed by 
previous investigators also reveals that Equation 52 
is the most general of all types in a sense that the 
other models can be regarded or interpreted as a 
particular type of Equation 52. 



EXPERIMENTAL PROCEDURES 

The basic experimental procedure consisted of 
injecting a slug of deoxygenated water with a 
conservative tracer into the test stream and 
measuring the slug of dissolved oxygen and tracer 
concentrations as it passed two or more points 
downstream. Initially it had been planned to use 
oxygen meters to measure the DO of the stream as 
the slug passed by, but it was later found that the 
time rate for the oxygen meter to respond to the 
DO variation was too slow in comparison to the 
speed at which the deoxygenated slug passed by the 
sampling station. The alternative used was a time 
series of individual samples taken from each 
sampling station of the stream and then analyzed 
for dissolved oxygen and tracer content. 

The means of taking samples also proved to 
be somewhat of a problem. It was felt that the 
samples should be taken without having any overly 
bulky equipment or operator standing in the 
stream so that the natural flow conditions of the 
stream would not be altered. The fact that the 
samples needed to be taken at a pre-set time also 
required that the samplers would have to be set and 
loaded in the stream and triggered from outside the 
stream. Since both time distributions and lateral 
distributions of the slug were to be measured, the 
samplers would have to be capable of being fired 
either individually or simultaneously and of being 
set up at desired points in the stream. Finally the 
sample size would have to be large enough to be 
analyzed for both dissolved oxygen and tracer 
content. The Winkler method with azide modifica
tion as described in "Standard Methods" (1971) 
was chosen as the means to measure the DO 
content of the samples because it had been 
standardized and proven reliable and accurate. 
Rhodamine B, a fluorescent dye, was selected as 
the tracer because of its conservative properties, 
ease of handling, availability, and ease of 
measuring with a Turner fluorometer which was 
available at the Utah Water Research Laboratory 
(UWRL). A preliminary test indicated that a 
sample of about 400 ml would be sufficient. This is 
equivalent to 300 ml plus a small amount for 
overflow for the Winkler test and 10 to 20 ml for 
the fluorometer reading. 

The sampling device finally developed was 
based on a modification of the Van Dorn sampler. 
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The samplers and supporting frame are shown in 
Figure 1. The sample container itself consisted of a 
section of aluminum pipe, approximately 12 1/2 

inches in length and 1 v.. inches in diameter. The 
container is closed by rubber balls seated against 
both ends of the pipe. The rubber balls on each end 
are attached to each other by a piece of latex 
rubber running through the center of the section of 
pipe. During assembly the tubing is stretched so 
that when the sampler is in the closed position, the 
balls are held against both ends of the pipe tightly 
enough for it to be watertight. As seen in Figure 1, 
the section of pipe with rubber balls is attached to a 
plate which holds the firing mechanism. When 
loaded, wire loops attached to each ball by a short 
section of chain (opposite the side to which the 
latex tubing is attached) are looped over the prongs 
of a two-pronged pin so that the balls are held out 
of and behind the pipe ends. When the 
two-pronged pin is pulled up, the wire loops slide 
off the prongs and the balls clamp shut over the 
ends of the pipes trapping inside any water flowing 
through at that time. The sample container can 
then be removed from the firing mechanism plate 
without disturbing the rest of the frame and the 
sample withdrawn. The frame consists of vertical 
pipes on which the firing mechanism plates can 
slide up and dawn which in turn are connected to a 
horizontal pipe on which they can be slid back and 
forth. If the samplers are to be fired individually 
for a time distribution, the vertical pipes are slid 
close together, as shown in Figure 1, so that all 
samples are taken from the central portion of the 
stream cross-section. If the sam pIers are to be fired 
simultaneously for a latteral distribution, the 
vertical pipes are slid further apart to cover the 
width of the stream. The pins are pulled, triggering 
the samplers, by chains and wires strung up to and 
across the horizontal pipe to an end where they can 
be pulled by the operator standing on the bank. 
The horizontal pipe is long enough to run across 
the stream from one bank to the opposite. 

After careful consideration, it was decided to 
take samples at three stations downstream from the 
point where the slug is dumped because this gives 
more flexibility in the analysis. The reaeration 
coefficient can be evaluated from the first section to 
the second, from the second to the third, and from 
the first to the third. Also, if something goes wrong 



Figure 1. SampUng mechanism In loaded position. 

with the data collected at one station, an analysis 
can still be performed on the remaining two. 
However, there were only enough samplers built to 
adequately cover two stations. It was decided to 
take the third set of samples at the station furthest 
downstream by hand with large-mouthed, one liter 
jugs. It has been shown by Gameson, Truesdale 
and Downing (1955) that a correction of minus 5 
percent of the deficit should be included to allow 
for additional reaeration occurring when sampling 
is achieved in this manner (water being allowed to 
flow into a totally immersed bottle). Zogorski and 
Faust (1973), using this sampling technique, 
incorporated the correction factor into their 
calculations and found that the sampling error was 
within the accuracy of their experiment. It will thus 
be assumed that the error involved in this type of 
sampling is also within the accuracy in this 
investigation. It was decided to sample by hand at 
the station furthest downstream because a person 
at this station could sample facing upstream 
without affecting the stream flow along the test 
reach. 
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The foregoing experimental procedure was 
performed both on a natural stream and on a 
laboratory flume. In the following these two 
sample sites and the different sampling procedures 
used on each are described. 

Field Measurements 

The field test site was chosen on the basis of its 
general flow characteristics and its accessibility. 
The creek tested is called Summit Creek, which has 
its origin in the mountains east of Smithfield, 
Utah, flows west down Smithfield Canyon through 
the town of Smithfield and on into the Bear River. 
The test section is located on the east side of 
Smithfield as the creek comes out of the foothills. It 
consists of a fairly straight stretch of creek 
approximately 225 feet long with steep banks and 
relatively uniform flow conditions, as shown in 
Figure 2. Prior to any testing, the site was surveyed 
and cross-sections of the stream channel taken 
every 25 feet along the stretch of interest. This was 
done in order to make possible the calculation of 



Figure 2. A dOWIIStream view of the Summit Creek test reach. 

important hydraulic parameters for each test. The 
reference point for the survey was a bridge at the 
downstream end of the test section as shown in 
Figure 2. Therefore, the 25-foot lengths were 
measured and labeled from this point. The first 
cross-section, being at the bridge, was labeled 
0+00, the next, 25 feet upstream, 0+25 and so on 
upstream to 2+25. The sampling stations were 
either at these 25-foot stations or measured from 
them. The station furthest downstream was always 
at 0+00. The other two upstream stations were 
either located at 1 +50 and 0+75 or at 1 +10 
(sometimes 1 + 15) and 0+50. The slug of 
deoxygenated water was dumped into the stream at 
station 2+25 or further upstream. 

The slug of deoxygenated water was prepared 
by essentially the same procedure for each test. A 
large fiberglass drum was partially filled with 
approximately 100 liters of stream water. A small 
amount of cobalt chloride was added to act as a 
catalyst and followed by mixing the sodium sulfite. 
Both were added while the water was being stirred. 
The Rhodamine B dye was then added and stirred 
until the color was uniform throughout. The 
sodium sulfite and the rhodamine dye were added 
in premeasured quantities. The quantities chosen 
were arrived at by trial and error until reasonable 
dissolved-oxygen and dye concentration curves 
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were obtained at the measuring stations. Depend
ing upon the stage of the creek, SOO to 900 grams of 
sodium sulfite and 100 to 200 milligrams of 
Rhodamine B dye were added to the slug. The 
amount of sodium sulfite used was many times 
more than enough to remove the DO in the 100 liter 
slug, but when dumped into the stream, the 
quantities cited were required to react in the stream 
to achieve good DO deficits downstream. As long 
as no samples taken at the first sampling station 
were completely void of oxygen, it was assumed 
that the sulfite was entirely converted to sulfate by 
the time the slug reached there. This is essential in 
order to measure the'reaeration coefficient between 
the first and second sampling stations by the 
method described above. The slug was injected into 
the stream by simply tipping over the drum and 
dumping it in. ' 

During the first series of field tests, the 
samplers at the first two stations were bunched in 
the center of the stream and fired individually at 
pre-set times which were again determined, mostly, 
by trial and error. The third station, located at 
0+00, was sampled by hand as usual. In the 
second series of field tests attempt was made to 
measure a lateral DO distribution which, if 
valuable at all, required an accompanying time 
distribution measurement of the same slug. 



Because there were not enough samplers built to 
achieve both objectives, it was decided to 
hand-sample the DO time distribution at the two 
stations where lateral distributions were also taken. 
The sampling mechanism was set up so that at a 
predetermined time when a hand sample was not 
taken, the mechanism was fired. There was some 
fear that a person sampling in the middle of the 
stream might disturb the flow, but in view of the 
highly turbulent nature of the creek, such fear was 
superfluous. 

Once all the samples were taken, a 300 ml 
BOD bottle, being especially designed for DO 
tests, was filled by siphoning from the sampling 
tube or jugs into the bottle. Each sample was 
siphoned into a bottle in order to eliminate as much 
as possible any additional aeration of the sample. A 
remaining portion of each sample was poured into 
a small vial for the fluorescence test. Then, while 
still in the field, the samples were fixed by the 
addition of chemicals as prescribed in "Standard 
Methods" (1971). The remaining part of the DO 
test, consisting of the titration of a 203 ml portion 
of the fixed sample, was performed at the chemical 
laboratory of the UWRL. The fluorometer readings 
of the small samples were also taken in the 
laboratory . 

Additional information required for each fieldl 
test includes stream temperatures, barometeric 
pressure, and stream discharge. The stream 
temperature was taken at each field test with a 
thermometer. The barometric pressure was read 
on the day of the test from a barometer located at 
the UWRL. Usually at the end of each test the 
stream 'fas gaged at station 0+00, by the bridge, 
with a current meter enabling the discharge to be 
calculated. The stream was divided into 2-foot 
sections across the top width plus one odd size 
section, if required. The stream depth and velocity 
were measured at the center of each of these 
sections and assumed to be the average value 
therein. The velocity was obtained by using a 
stream gage to take a reading at a distance of 
approximately six tenths of the total depth from the 
bottom. The discharge was then calculated for each 
of these sections and their sum was the total 
discharge of the stream. Along with the stream. 
gaging, the distance from the bottom of the bridge 
to the water surface was measured so that stage 
versus discharge graphs could be prepared. When 
stream gaging was not accomplished because of 
accidents, the distance from the bridge bottom to 
the water surface was still measured so that the 
discharge could be estimated from the state versus 
discharge graph. 

16 

Laboratory Flume Measurements 

A big fixed flume used for the laboratory tests 
is located in the UWRL. The horizontal concrete 
flume, recessed in the floor, is SOO feet long, 8 feet 
wide and 6 feet deep. The sampling stations were 
labeled with numbers corresponding to the scheme 
used in the field. The third sampling station, 
located furthest downstream was labeled 0+00. 
The second station 90 feet upstream from 0+00, 
was labeled 0+90 and the first sampling station, 
105 feet closer to the point where the slug was 
discharged, was labeled 1 +95. The slug of 
deoxygenated water was injected into the throat of 
a <;utthroat flume located at the upstream end of 
the laboratory flume at 3 +45, 150 feet above the 
first sampling station. 

The slug was prepared by using the same 
procedure as in the field test. However, because of 
the greatly reduced turbulence in the flume as 
compared to the creek, only 400 to 600 grams of the 
sodium sulfite and 100 to 150 milligrams of 
Rhodamine B dye were added to the slug, of 
course, depending upon the discharge set. 

The basic procedure for sample collection and 
analysis was the same as described for the field 
tests. However, lateral distributions were taken 
with the sampling mechanism at the first two 
stations during each test while time distributions by 
hand sampling were carried out at all three 
stations. Samples were collected at the second 
station from a platform set just above the water 
surface, but sampling at the first station was 
performed with the sampler standing in the water. 
It is felt that this did not affect flow conditions to 
any great extent. As usual, the person at the third 
sampling station, 0+00, stands in the water while 
sampling, but facing upstream to the test reach. 

Stream temperature and barometric pressure 
were measured and recorded in the same way as for 
the field tests.' The discharge for each test was 
obtained by simply measuring the water depth in 
the stilling wells of the cutthroat flume. The 
cutthroat flume was already calibrated by Skoger
boe, et al. (1967). Depth was also measured at each 
sampling station so that the mean velocity could be 
calculated and checked with that obtained from a 
computer program which will be described in the 
next section. 

The water used in the laboratory flume was 
withdrawn from a reservoir located just above the 
UWRL. The reservoir is small and shallow with 
little or no thermal 'stratification and the water 
entering the flume was high in dissolved oxygen. 
The discharge was controlled by adjusting a 
48-inch valve at the head of the flume. 



EXPERIMENTAL DATA ANALYSES 

The data for each test was analyzed to 
determine the dispersion coefficient, mean velocity, 
reaeration coefficient and some important hydrau
lic parameters such as geometric elements of the 
stream (i.e., top width, cross-section area, hydrau
lic depth, and hydraulic radius). These values were 
used in the formulation of a prediction model for 
the reaeration coefficient and then- substituted into 
previous hlVestigators' models for comparison. The 
dispersion coefficient, mean velocity, and reaera
tion coefficient were calculated by using an 
optimization technique which fits calculated values 
to the corresponding measured data. Top width, 
cross-sectional area, hydraulic depth, hydraulic 
radius and other related geometric elements were 
calculated simply by using the measured depth and 
channel geometry. Because of the difficulty in 
measuring the flow depth accurately at each 
sampling station due to the tumbling water 
surface, the cross-sectional area was first computed 
by the measured discharge and the calculated 
mean velocity. Formulation of a reaeration 
coefficient model by using the significant para
meters, as identified in Equation 52, was 
accomplished using a regression analysis. 

All the analyses and computations were 
programmed and executed first on an EAI 590 
hybrid computer located at the UWRL and later on 
the University of Utah UNIVAC 1108 which has a 
remote terminal at USU. The specific calculations 
and computer programs in the data analysis are 
described in detail in the following sections. 

Evaluation of the Mean Velocity and 
Dispersion and Reaeratlon Coemclents 

Each set of calculations, including the 
determination of the U, Dx' and· K2 values, were 
obtained from data at two sampling stations. Both 
a dye concentration versus time curve and a DO 
deficit versus time curve at an upstream station and 
a downstream station were necessary. A lateral 
distribution of the deoxygenated slug was also 
taken for each test and its cross-sectional average 
computed so that the time-varying values obtained 
from samples taken at one point in the stream 
could be corrected by an averaging factor, thereby, 
giving the samples the corresponding average 
cross-sectional values. Despite this correction, 
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however, "when the dye concentration versus time 
curves were inspected, it was found that the areas 
under the curves (Le., total dye mass) at the differ
ent stations where the same slug was measured 
were still not equal for a case in which theoretically 
they should have been. It was thus necessary to 
multiply the dye concentrations at each station by a 
correction factor to make the areas under the 
curves equal for each run of the dye tests. The mea
sured DO deficit values were then adjusted by 
multiplying by the same correction factor. The 
second correction is justified because the reaeration 
coefficient was calculated from the DO deficit 
versus time curves at two stations and was solely 
dependent upon the ratio of the areas under the 
two curves. The areas under the DO deficit curves 
were not the same because the reaeration takes 
place between the two stations, but it is assumed 
that any loss of dye or change in the areas under the 
dye concentration versus time curves will manifest 
itself with the same ratio of loss, or change, in the 
areas under the DO deficit versus time curves. This 
correction procedure will enable us to account for 
the true amount of reaeration. In practice, the dye 
and DO data at a station having the smallest area 
were arbitrarily given a correction factor of unity 
and those at the other two stations given the 
corresponding correction factors to· equalize their 
areas. 

The arbitrary choice of a station having the 
smallest area under the dye concentration versus 
time curve to have a correction factor of unity needs 
to be justified. Theoretically there is no reason why 
one of the other two stations cannot be selected. 
Analysis of two complete sets of data were made by 
varying the correction factors from ten times to one 
tenth their values obtained as described above. 
Despite the correction factors ranging in value 
from 10 to 0.1 times those for the three stations on 
the same test run, the ratios of their areas under 
dye concentrations versus time curves were kept the 
same as originally specified. For each computer 
analysis, it was found that the values of Dx' U, and 
K2 were exactly the same within the specified 
accuracy for any set of correction factors tried. This 
can be explained by looking at what happens 
physically to the curves when the data values 
making the areas are all multiplied by the 
correction factors. The dye curves are changed in 



magnitude, but the relative spreading and centroid 
of the curves which determine Ox and U are not 
changed. Furthermore, because the reaeration 
process was shown to be a first-order reaction, as 
described by Equation 1, and the DO deficit values 
are multiplied by equal-ratio correction factors, the 
areas under the curves change as if dD / dt and D 
change at the same rate leaving K2 as the same 
value. As a result of this finding, the cross-section
averaging factors derived from the lateral distribu
tion became superfluous as fat as the determina
tion of Dx' U, and K2 by use of Equations 43 and 
47 was concerned. Unless an extremely sophisti
cated instrumentation system can be built to 
measure the lateral dye and DO concentration 
distributions continuously, it appears that the 
present method does not require the correction 
factors for the lateral distributions, which are 
already merged in the process of area adjustments 
under the dye concentration curves. For uniformity 
in analysis, however, all calculations, regardless of 
whether or not a lateral distribution was measured, 
were made for each test run with correction factors 
included for adjusting areas under the concentra
tion curves to be equal to the smallest of them. 

A computer program (see Appendix A) was 
written to calculate Dx and U from the dye 
concentration versus time data at two stations. 
Equation 43 with measured 0(t) at the upstream 
sampling station, say station A, was used to 
calculate the dye concentration at the downstream 
station, say station B. In Equation 43, 0(t) is a 
function describing the dye concentration versus 
time curve. By adjusting the values of Dx and U in 
Equation 43 according to the criteria used in the 
method of least squares, the integral in Equation 
43 was numerically solved by using Simpson's rule 
and the dye concentrations at station B at specified 
times were computed to best fit the measured dye 
concentrations at station B. The time increment 
taken in the numerical computation was 5 seconds, 
but can be changed if desired. Simpson's rule is 
applied to Equation 43 for T changing from zero to 
t. For each T the value of 0(T) in Equation 43 is a 
number fed into the program on data cards. In 
order to have the dye concentration values every 5 
seconds for station A and enough -data to 
adequately describe the dye concentration curve at 
station B, the measured values at each station are 
plotted, curves drawn through them, and values 
picked off the curves. This entailed some 
estimating since the number of samples taken at 
each station was limited. However, if the measured 
values did not describe a curve relatively well, the 
data were not used. The present computer program 
has the capability to calculate desired points 
forming a dye concentration versus time curve 
constructed from the measured data points. The 
measured and computed dye concentrations at 
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station B were then com pared by taking the sum of 
their difference squared at each point. Next, either 
Dx or U, one at a time, was varied while the other 
was held constant until a minimum sum or least 
squares value was obtained. The roles of Dx and U 
were then reversed and the least squares value was 
again found. This procedure was repeated until the 
final step change for Dx of U did not produce a 
smaller least squares value and a best fit between 
the measured and calculated values at station B 
was attained. It was found from experience that 
varying the mean velocity, U, first increased the 
speed of this optimization technique. Figure 3 
shows typical dye concentration versus time curves 
which were calculated from the measured curves 
using the computer program as described, with the 
final best fit values of Dx and U. Figure 3 is an 
example which shows curves drawn from only one 
complete set of data taken on December 6, 1974. 
Similar graphs could be drawn from each set of 
data calculated. There are other complete data 
sets, summaries of which are listed in Appendix B. 

The same computer program (see Appendix 
A) was used to calculate the reaeration coefficient, 
K2, by using Equation 47 in much the same way as 
Dx and U were calculated. Actually the program 
was written to use Equation 47 to compute Dx and 
U by putting K2 equal to zero. For calculating K2, 
0( T) represent the DO deficit versus time curve at 
station A and the Dx and U calculated from the dye 
measurements were substituted into Equation 47. 
The DO deficits at station B were calculated using 
the same approach as described before and again 
were calculated for each time, t, at which the 
measured DO deficit curve was read in. Since Dx 
and U, which are the terms contr01ling the shape 
and overall location of the curve at station B, are 
held constant, it was found that to equalize the 
areas under the measured and calculated curves 
was a better means of best fitting the calculated 
DO deficit curve to the measured deficit curve. 
Therefore, the K2 value was varied until the final 
step size change for K2 did not make the areas 
under both curves closer in value. Figure 4 is 
similar to Figure 3 except that it shows the 
measured and calculated DO deficit curves rather 
than dye concentration. The calculated curves 
shown were calculated by using the best fit value 
for K2, evaluated as previously described, and Dx 
and U values found in the dye study for the same 
test run. 

The values for Dx' U and K2 so obtained 
should be the values which best fit Equations 43 
and 47 to the measured dye and DO deficit values. 
Computer experiments were performed by varying 
the starting values of all three terms in the 
optimization computation. The present method 
seemed to converge to the same values. The final 
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values did change a little, depending upon the 
starting value and step by which they were changed 
until the best fitting was achieved. During the 
optimization, of course, the same values could not 
always coincide with the new step sizes. It was 
judged, however, that these differences were within 
the specified accuracy of the computation. Values 
for Ox' U, and K2, so evaluated, along with 
associated flow conditions are listed in Appendix 
B. 

Evaluation of Hydraulic Parameten 

Hydraulic parameters were calculated from 
the measured discharge, the computed mean 
velocity, and the stream cross-sectional geometry 
measured every 25 feet along the stretch of 
concern. At each 25 foot station within the test 
reach, the cross-sectional area was found by 
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dividing the discharge by the mean velocity. With 
the cross-sectional area and configuration known, 
the maximum flow depth, wetted perimeter, top 
width, hydraulic depth, and hydraulic radius were 
easily calculated at each 25 foot station. The mean 
values of the hydraulic parameters for each test 
were then the average values of those calculated at 
the 25 foot stations located within the test reach. A 
computer program (see Appendix A) was written to 
perform these calculations. Other values pertaining 
to each test such as bed slope, stream temperature, 
and kinematic viscosity were read into the program 
so that values for shear velocity, Froude number, 
Reynolds number and energy dissipation could be 
calculated. Included in the same computer 
program are those calculated and input data for 
each test to evaluate the reaeration coefficient, k2' 
as predicted by previous investigators' models 
mentioned in the review of literature. Output from 
this computer program is listed in Appendix B. 





FORMULATION OF THE REAERATION 
COEFFICIENT MODEL 

The general form of the semi-empirical model 
for the reaeration coefficient is a functional 
relationship between the two dimensionless para
meters, K2LO/U and Dx/Lo U, as expressed by 
Equation 52. An inspection of the existing 
semi-empirical models reveals that these two 
parameters can be related to each other in such a 
simple form as 

K2LO = a ( Dx )f3 
U \-LoU ............. (53) 

in which a is the coefficient and {J is the exponent. 
If the values of a and (J can be determined by using 
field or laboratory data for a stream or flume under 
study through the regression analysis, Equation 53 
is the reaeration coefficient model that comprises a 
convenient form for use in engineering practice. 

The reference length, Lo' in Equation 53 must 
be the one characterizing the overall hydraulic flow 
system under investigation. The quantity such as 
hydraulic radius or hydraulic depth may be used as 
the reference length, but most of the previous 
investigators based their analyses on the flow depth 
that is unfortunately never uniform across the 
width in a natural stream. Therefore, for modeling 
the reaeration coefficient, the hydraulic depth, H, 
is used herein. The definition of the hydraulic 
depth in the natural stream modeling is in 
conformity with that of the flow depth in a 
rectangular channel, thereby eliminating the 
problem of inconsistency when both are compared. 
Furthermore, for convenience in comparison, the 
reaeration coefficient K2, in Equation 53 is 
converted to k2 for this will only make a difference 
in the a coefficient of Equation 53 since K2 and k2 
are directly related through Equation 2. With these 
specific magnitudes assigned, Equation 53 
becomes: 

k2H =' (Dx) {J 
U a HU ............... (54) 

To evaluate the a and (J values in Equation 54, it 
will be more convenient to express Equation 54 in 
logarithmic form as 
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(
k2H) (Dx) Jog -U- = f3log Hu 

+ log ci ........................... (55) 

where k2 is in sec-I, H is in feet, U is in ftlsec, and 
Dx is in feet2/sec. Equation 55 is now in linear 
form with log (k 2H/U) and 10g(Dx/HU) being the 
Y and X terms, respectively, in general linear 
equation, Y = aX + b. The slope of the linear 
equation is represented by {J and the Y-axis 
intercept by log a. 

The least-squares regression analysis of the log 
(k2H/U) versus log (Dx/HU) data from each test 
result was conducted to evaluate the slope, {J, and 
the intercept, log a. A computer program (Program 
III of Appendix A) was written to perform the 
computations of the a and {J values. Also included 
in the program is the calculation of the standard 
error of estimate of the present model (Equation 
54) and of all the previous investigators' prediction 
models by using the same standard error of 
estimate equations as in Bennett and Rathbun's 
report (1972). The equation used for the standard 
error of estimate, ES in units of k2' is 

ES= 
n .... (56) 

where (k2)e is the estimated k2 value obtained from 
each of the prediction models using the data 
corresponding to the measured k2 value, (k~m' 
and n are the number of k2 values used. Another 
standard error of estimate equation used is 

i~ l[log (k~e -log (k~m]i 2 

n ... (57) 

which can be expressed as a percent error, Ep, by 
the definition 



_ -ESL Ep - 100 [1 - 10 ] .............. (58) 

Ep is the percent standard error of estimate in 
terms of (k2)e and will always be between 0 and 100 
percent. 

All sources of existing data were reviewed to 
find those which could be used in the formulation 
of the reaeration coefficient model (Equation 54). 
The parameter which limited the data sets 
available for use was the dispersion coefficient, Dx' 
The only sets of data found in available 
pUblications containing values for k2' V, H, and 
Dx were those of Negulescu and Rojanski (1969) 
and Thackston and Krenkel (1969). The data from 
these two investigations are listed in Appendix B. 
The data of Negulescu and Rojanski (1969), 
obtained from a 20-cm wide laboratory flume, 
contained only 8 points, but each was a composite 
or average of a number of tests. The computer 
program was written so as to take into considera
tion the weighted values of points, whenever 
necessary. The data of Thackston and Krenkel 
(1969), obtained from a 2-foot wide laboratory 
flume, consists of 52 separate points or k2 values. 
As listed in Appendix B, as well as in the 
publication by Thackston and Krenkel (1969), the 
reaeration coefficient values all have been adjusted 
to 20 degrees centigrade. 

The two sets of data in this study, one for a 
natural stream and the other for a laboratory 
flume, are also listed in Appendix B. The data 
points from all four data sets are depicted in Figure 
5 by plotting k2H/V versus Dx/HV for each 
measured k2 value on log-log paper. 

A least-squares regression analysis was per
formed on the natural stream data points as shown 
in Figure 5 by means of Equation 55. An a value of 
10.53 x 10-5 and a (J value of 0.455 were obtained. 
Substituting the a and (J values into Equation 54 
yields the reaeration coefficient prediction model 
specifically for Summit Creek as follows: 

where k2 is in sec-I. With k2 in days-l Equation 59 
becomes 

(k~ 200 = 9.098 Dx 0·455 V 0.545 H -1.455 .... (60) 

where Dx is in ft2/sec, V is in ft/sec and H is in feet 
for both Equations 59 and 60. Equation 59 is 
plotted in Figurl! 5 amongst the data it represents. 
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The same type least-squares regression analy
sis was run on the data points obtained from 
measurements taken in the laboratory flume for 
this study. The a and (J values obtained were 8.782 
x 10-5 and 0.964, respectively. Substituting these 
values into Equation 54 yields the prediction model 
for the laboratory flume data: 

(k2hoo = 8.782 X 10-5 Dx 0.964 V 0.036 H -1·964 

.............. (61) 

where k2 is in sec-I. With k2 in days-l the equation 
becomes 

(k2hoo = 7.588 Dx 0.964 V 0.036 H -1.964 ... (62) 

where Dx' V, and H are in the same units as for 
Equations 59 and 60. Equation 61 is plotted in 
Figure 5 amongst the data it represents. 

The least-squares regression analysis of the 
data of Negulescu and Rojanski (1969) yielded a 
and (J values of 6. 713 x 10-5 and 0.285, respectively. 
Vsing Equation 54 the prediction model formu
lated for their data can be written as 

(k2hoo = 6.713 X 10-5 D
X

O.285 VO.715 H-l.285 
.............. (63) 

where k2 is in sec-I. With k2 in days-l Equation 63 
becomes 

(k2hoo = 5.80 D
X

O.285 VO. 715 H-l.285 .... (64) 

where Dx' V and H are in the same units as for 
Equations 59 and 60. Equation 63 is plotted in 
Figure 5 amongst the data it represents. 

The least-squares regression analysis of the 
data of Thackston and Krenkel (1969) yielded a 
and (Jvalues of2.313 x 10-5 and 0.407, respectively. 
Vsing Equation 54 the prediction model formu
lated for their set of data can be written as 

(k2hoo = 2.313 x 10-5 Dx 0.407 V 0.593 H-l.407 
............. (65) 

where k2 is in sec-I. With k2 in days-l Equation 65 
becomes 

where Dx' V and H are in the same units as for 
Equations 59 and 60. Equation 65 is plotted in 
Figure 5 amongst the data it represents. Also 
plotted amongst this set of data is Equation 25 
which was formulated by Thackston and Krenkel 
(1969). Equation 25 can easily be put into the form 
of Equation 54 with a and (J being 1.296 and 1.0, 
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respectively, where k2 is in days-I, and hence can be 
plotted in Figure 5 for comparison. 

Significance levels were calculated for the 
slopes of the lines in Figure 5 representing 
Equations 59, 61, 63, and 65. It was found that the 
slopes or f3 values of Equations 59, 63, and 65 had 
confidence levels greater than 99.9 percent of their 
being different from zero. A slope of zero is a 
horizontal line at the mean value. The f3 value of 
Equation 61 was found to be different from zero 
with a confidence level of approximately 83 
percent. 

Table 1 lists the standard error of estimate, as 
calculated from Equations 56, 57, and -58, involved 
in using the various reaeration coefficient predic
tion equations on each data set, including the 
equation newly formulated from the particular 
data set. In data set three of Table 1, there are 
blanks opposite many of the prediction equations 
(excluding Equations 60,62 and 66). These are the 
equations which require either a bed slope or 
energy grade line in their calculation and 
Negulescu and Rojanski (1969) gave neither slope 
values among their data. Table 1 will be discussed 
further in the following section. 

Table 1. Performance of k2 prediction equations, evaluated by the standard error of estimate. 

Data Set 

Equation One Two Three Four 

Number ES E ES Ep ES Ep ES Ep P 

(days -1) (%) 
-1 (days ) (%) 

-1 (days ) (%) 
-1 

(days ) (%) 

11 89.1 85.9 57.4 85.1 23.2 57.4 296.7 90.2 
12 1154.5 77.8 36.4 81.2 9.0 75.6 92.9 73.6 
13 75.3 66.3 59.0 87.3 34.4 54.2 
14 97.8 98.3 63.5 98.9 25.9 82.6 
15 81.9 76.1 52.4 82.7 96.1 80.5 851. 7 96.3 
16 84.3 79.3 53.7 83.0 99.2 79.8 975.1 96.6 
17 90.6 87.8 58.4 86.3 6.7 33.1 54.3 65.0 
18 92.9 91.2 59.9 88.6 10.0 36.3 98.8 76.3 
19 91.6 89.3 59.1 87.3 13.8 39.6 127.0 80.5 
20 94.1 92.8 60.7 90.1 7.2 38.9 73.7 70.7 
21 78.6 70.5 60.9 90.6 117.8 78.2 
22 92.0 89.3 59.1 87.4 2.9 25.7 14.7 37.5 
23 5470.9 92.4 94.8 84.8 3.2 24.7 208.7 81.5 
24 89.6 8.4.9 62.3 94.5 6.9 21. 3 
25 86.8 73.5 59.2 92.6 11.0 88.0 14.6 33.2 
26 89.9 85.5 62.4 94.9 7.2 21.7 
27 82.0 75.3 58.5 86.6 356.5 91.9 
28 86.4 81.6 54.9 83.4 67.7 74.5 583.8 94.7 
30 83.9 68.4 63.4 98.2 68.5 53.8 
31 84.3 77.9 60.6 90.0 57.1 65.1 
60 72.2 53.4 
62 34.4 79.3 
64 3.3 18.7 
66 10.6 28.7 

Key: Data set one: The present investigation - natural stream 
Data set two: The preseOnt investigation - laboratory flume 
Data set three: Negulescu and Rojanski (1969) - laboratory flwne 
Data set four: Thackston and Krenkel \196 9) - laboratory flume 
ES: standard error of estiInate (days - ) as 'calculated from Equation .56 

Ep: standard error of estimate (percent) as calculated from Equations 57 and 58 
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DISCUSSIONS 

The method of finding the dispersion coeffi
cient, mean velocity, and reaeration coefficient 
proposed and used in this study should provide 
good average values of Dx' U, and k2 for flow in a 
creek or flume within the test reach. The curves 
formed by the calculated dye concentrations fit 
quite well to those curves formed by the correspond
ing measured dye concentrations as shown in the 
sample data plotted in Figure 3. This indicates 
Equation 47 and the method used to evaluate them 
are working properly. Originally a routing equation 
proposed by Fischer (1966) similar to Equation 47 
(no reaeration term was involved) was used in 
computing the dye concentrations and best-fitting 
the dispersion coefficient and velocity values. 
Fischer's equation which only approximates the 
actual flow and dispersing situation was aban
doned when it was found that completely different, 
best-fit values of Dx and U produced almost 
identical calculated concentration curves. By using 
Fischer's routing equation, the best-fit values for 
Dx and U, if any, were dependent on the starting 
val ues used in the numerical iteration of the 
optimization process and the final values thus 
obtained could be entirely different. No such 
problem has been experienced by use of Equation 
47. A few computer experimental runs by varying 
the starting values of Dx and U showed that 
Equation 47 and its associated computer program 
always approached the same best-fit values of Dx 
and U within the specified computation accuracy. 

There are, however, several perplexities among 
the Dx' U, and k2 values obtained in this study. An 
inspection of Table 2 in Appendix B indicates that 
there are several instances where a value for Dx' U 
or k2 obtained from data at the two stations 
furthest apart, say stations 1 and 3, does not fit 
within the range of the values obtained from 
stations 1 and 2 and from stations 2 and 3 (station 2 
lying between stations 1 and 3) on the same test. 
This discrepency could possibly be due to the errors 
in the measurements or the accuracy of the 
com putation by which calculated and measured 
values are compared in the best-fitting process, or 
both. Minimizing the sum of the squares of the 
differences between measured and calculated 
values may not be the best way to fit limited 
num ber of data points describing a nonlinear 
function of the concentration distribution. Other 
questionable results are the data obtained from the 
test on the laboratory flume. The values, listed in 
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Table 3 of Appendix B, do not show al1 of the flume 
test results. Several runs which resulted in a zero 
reaeration coefficient are not listed. Bad results 
might be caused by the overdose of the sodium 
sulfite which continued to react within the test 
reach. However, it was observed in some instances 
that the k2 did have a value in the first section, but 
went to zero in the second section, immediately 
downstream from the first. In other instances this 
trend was reversed. These inconsistencies in the 
results may be attributed to the poor mixing of the 
deoxygenated slug in the flume. During several 
tests the slug was seen to be moving from side to 
side as it traveled downstream. The problems 
associated with the flume could also be due to 
sampling errors, but the flume tests should not be 
subjected to more sampling errors than the natural 
stream tests in which such problems did not occur 
noticeably. At any rate, the data obtained from the 
flume tests are highly scattered and somewhat 
questionable. On the other hand, data from the 
stream test show a better grouping when they are 
compared in terms of Equation 54, despite some 
irregularities. Although there is a fair amount of 
scatter in stream data points as shown in Figure 5, 
this is generally expected from any experimental 
measurement and a majority of the points seem to 
be grouped in a general area. Of course, more data 
points than those shown in Figure 5 are needed in 
order to draw a more conclusive relationship 
between the parameters considered. 

The functional relationship proposed by 
Equation 52 is theoretical1y sound and is believed 
to be the general form of the semi-empirical model 
for the reaeration coefficient. The form of the 
relationship proposed in Equation 54 is a 
simplified version of Equation 52. Equation 54 was 
assumed simply because a majority of those 
prediction models discussed in the Review of 
Literature are of a similar form. The a and (J values 
in Equation 54 may themselves be functions of 
various hydraulic parameters which should be 
investigated further. 

A comparison of the other reaeration coeffi
cient prediction models with Equation 54 may 
verify the validity of its proposed relationship. For 
comparison, Equation 54 is rewritten as 



The prediction model formulated by Churchill, 
Elmore and Buckingham (1962), Equation 11, has 
only U and H terms with exponents of less than one 
and less than minus one, respectively. These 
exponents in Equation 11 related the U and H 
terms in a similar fashion to those shown in 
Equation 67. The fact that the exponents of U and 
H in Equation 11 are not close to 1 - {J and -(1 + (J), 
respectively, in Equation 67 could be the 
consequence of the exclusion of the dispersion 
coefficient, Dx from Equation 11. From Table 1 it 
can readily be seen that Equation 11 fits average 
the measured data points for data sets one, two and 
three, but it fits poorly for data set four. When this 
result is coupled with the fact that, according to 
Bennett and Rathbun (1972), Equation 11 fit the 
published data of Churchill, Elmore and Bucking
ham (1962) with an ES of 0.52 days-l and an Ep of 
28 percent, it can easily be assumed that Equation 
11 lacks some factor or factors which would make it 
more applicable to a wider range of flow 
conditions. 

Krenkel and Orlob (1962) ran a regression 
analysis to correlate their measured k2 values with 
the dispersion coefficient, Dx' and the depth of 
flow, H and obtained Equation 12. The Dx and H 
exponents in Equation 12 are related exactly to 
each other as proposed by Equation 67 with {J being 
1.32. However, there is no velocity term in 
Equation 12, which by Equation 67 should be 
present with an exponent of -0.32. If the difference 
in the test velocities were small, the velocity term 
with this exponent would remain reasonably 
constant which could easily be absorbed in the a 
coefficient. Krenkel and Orlob (1962) also ran a 
regression analysis to correlate their measured k2 
values with the energy dissipated per unit mass of 
flowing fluid, E (=USg), and H. Equation 13 was 
obtained from their analysis. If USg is substituted ' 
into Equation 13 for the E term it can be seen that 
U and H have the exponents 0.408 and -0.66, 
respectively, which are not related to each other as 
proposed in Equation 67. However, for turbulent 
flow, for instance, the slope, S, is proportional to 
U2/R from the Darcy-Weisbach or Chezy formula. 
If the hydraulic radius, R, is assumed to be 
approximately equal to the hydraulic depth, H, the 
exponents of U and H become 1.224 and -1.068, 
respectively. These exponents, though still not in 
the relationship as proposed in Equation 67, 
become a little closer to the theoretical values. 
Considering other flow regimes in which S is not 
proportional to U2/R, but rather Um/Rn where 
m and n are the exponents of U and R, 
respectively, with the values ranging from 1 to 2, 
one may justify the relationships among the 
exponents in Equation 67. Neither Equations 12 or 
13 showed significant correlation with the data sets 
of Table 1, except that Equation 13 with the data 
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set one did show a lower than average, although 
still quite high, standard error of estimate. Bennett 
and Rathbun (1972) reported Equation 13 fitted 
the data from which it was derived with an ES of 
7.51 days-l and an Ep of 15 percent. Again, the 
indication is that Equations 12 and 13 are not 
suitable for a wide range of flow conditions and 
some factor or factors may have been missing from 
their formulations. 

Equation 14, developed by Dobbins (1965), 
cannot readily be arranged into a form of Equation 
67. Despite its very complicated form, use of 
Equation 14 to fit the data sets involved in this 
study is below average in comparison with the other 
prediction equations as shown in Table 1. 

Owens, Edwards, and Gibbs (1964) formu
lated Equations 15 and 16 by means of multiple 
regression analyses. Both equations consist only of 
U and H as variables. Their exponents are in a 
range suggested by Equation 67 but still not very 
close. Again, the difference could be due to the fact 
that Dx was left out of the regression analyses. 
Table 1 shows that both Equations 15 and 16 fit the 
data sets one and two with average standard error 
of estimates, but fit the data sets three and four 
with higher than average standard error of 
estimates. Equation 17 developed by Langbein and 
Durum (1967) is of the same form as Equations 15 
and 16, having U and H as the only variables. 
Equation 17 has an average fit to the data sets one, 
two, and four, but has a better-than-average tit to 
the data set three. 

Isaacs and Gaudy (1968) formulated Equa
tions 18, 19, 20 from regression analyses of 
separate groups of data, holding the exponents on 
U and H (the only variables in the equations) at 1.0 
and -1.5, respectively. Equations 18, 19, and 20 do 
not fit any of the data sets one, two, and four of 
Table 1 better than average, indicating they are not 
general enough and lack some factor or factors. 
Equation 21 developed by Cadwallader and 
McDonnell (1969) has E and H as the only 
variables with exponents of 0.5 and -1.0, 
respectively. If USg is substituted for E and S is 
assumed to be proportional to U2/H as done 
before, the variables become U and H with 
exponents 1.5 and -1.5, respectively. This leaves 
Equation 21 in a form similar to Equations 18, 19, 
and 20 (except for exponent of U being 1.0 instead) 
with about the same results as to fitting the data 
sets of Table 1. 

Negulescu and Rojanski (1969) formulated 
two equations, Equations 22 and 23, from their 
data which is represented by data set three in Table 
1. The value U IH was held as a single variable in 
the regression analysis for each equation, thereby 



giving H the negative exponent of U. This 
restriction partially prevented either Equation 22 
or 23 from being in the form of Equation 67, 
despite that the dispersion coefficient, Dx' was 
added as a variable in the regression analysis for 
Equation 23. As shown in Table 1, Equation 22 fits 
data sets one and two in an average fashion and 
data set four better than average, while Equation 
23 fits data sets one and four poorly and data set 
two with an average standard error of estimate. Of 
course, both equations fit data set three, from 
which they were derived, quite well with Equation 
23 having the lower Ep. However, Equation 64 
which was also derived from data set three but has 
the form of Equation 67, has the same number of 
variables as Equation 23 with an even lower Ep. 

Equations 24, 25, and 26 were obtained 
through regression analyses by Thackston and 
Krenkel (1969) of their experimental data repre
senting the data set four in Table 1. Equations 24 
and 26 have the term U */H as the major variable 
with an exponent of 1.0 in both equations. 
Equation 25, formulated by using the dispersion 
coefficient, Dx' and H as variables, is indeed 
identical to the form of Equation 67 with a being 
1.296 and f3 being 1.0. Although Equations 24 and 
26 have a little better fit to the data from which 
they were derived than Equation 25, as can be seen 
in Table 1, Equation 25 is a better fit to both data 
sets one and two than Equations 24 and 26. This 
may imply that Equation 25 is a more general 
prediction model than the other two and is 
applicable to a wider range of flow conditions. 
Equation 66, formulated from the same data set as 
was Equation 25, has a slightly lower standard 
error of estimate than Equation 25. The reasons for 
this result may be two-fold: (1) The velocity term 
was intentional1y left out of the regression analysis 
for Eq uation 25 and (2) the exponents of Dx and H 
in Equation 25 were probably either held constant 
at 1.0 and -2.0, respectively, or rounded off to these 
values. For comparison, both Equations 25 and 66 
(an alternative form thereof, Equation 65) are 
plotted in Figure 5. Although the two equations 
have comparable standard error of estimates, the 
slopes of the lines representing both equations are 
different. 

The equations of Bennett and Rathbun 
(1972), Equations 27 and 28, were both developed 
from regression analyses of more than one set of 
data. Both equations have U and H exponents 
similar in relationship to those proposed in 
Equation 67. The dispersion coefficient was not 
included in their analysis because Dx values were 
not measured in the investigations from which the 
pertinent data sets were obtained. It is felt, 
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however, that if Dx values had been available in 
the data, a fit of Equation 67 to that data would 
have been a better fit than provided by either 
Equations 27 or 28. 

Lau (1972b) applied a dimensional-analysis 
approach and derived a reaeration coefficient 
prediction model which is very similar to the one 
used in this study. The model he arrived at has the 
same form as Equation 54 except that in his model 
(Equation 30) the role the Dx/UH term is playing 
in Equation 54 is characterized by U*/U. Lau 
(1972b) fit his model to several sets of data 
inc1uding that of Thackston and Krenkel (1969) 
and found a and f3 values (assuming Equation 30 is 
equivalent to the form of Equation 54) of 1089 and 
3, respectively, with k2 in days-l in Equation 30. 
This equation has a reasonably good fit to both 
data sets one and four of Table 1 in comparison to 
other prediction equations. 

Table 1 shows that Equation 31 devloped by 
Parkhurst and Pomeroy (1972) fit all the data sets 
with an average standard error of estimate, but it 
cannot be arranged into a form similar to that of 
Equation 67. It may be due to the fact that 
Equation 31, along with Equations 14 and 26, 
which have a term of the order of A + f(F) , is 
approximating the relationship of Equation 52 
better than as a power function. Note that the term 
A is a coefficient, usually 1.0, and f (F) represents a 
function of the Froude number. 

It is seen that most reaeration coefficient 
prediction models thus developed are incomplete in 
form, if compared with the relationship described 
in Equation 52, especially Equation 54 or 67. A few 
of the prediction models such as Equations 24 and 
30, despite no dispersion coefficient, Dx' appear
ing in their formulations, do contain a shear 
velocity, U*, term as a variable. It is understood 
that since the shear velocity plays a significant role 
in the evaluation of the dispersion coefficient, as 
demonstrated by Taylor (1954) and Elder (1959) in 
their formulations of the dispersion coefficient, the 
shear velocity may be judged as a good alternative 
of Dx in the formulation of the k2 model. 

Equations 60, 62, 64, and 66 were formed 
from the regression analysis of individual data sets 
one, two, three, and four of Table 1, respectively, 
and are not expected to fit other sets of data with 
low error. The same reasoning also applies to the 
other models in view of their poor standard errors 
of estimate as shown in Table 1. All the previous 
models have been developed for particular streams 
or flumes of their own interest. None of them 
including Equations 60, 62, 64, and 66, is general 



enough to be applicable to all streams or flumes. 
However, a general model, such as Equation 54 or 
67, has its wide applicability if the a and {J 
parameters in Equation 54 or 67 can be expressed 
in terms of the relevant hydraulic parameters which 
can readily be measured. It is noticed that the {J 
values in the models (Equations 59, 63, and 65) 
formulated from three of the data sets as depicted 
in Figure 5 show an interesting trend of being 
similar in value. This can be seen by comparing the 
slopes of the lines of Equations 59, 63, and 65 in 
Figure 5. The slopes appear much the same. The 
model (Equation 61) formulated from data set two, 
the UWRL flume data, shows a completely 
different slope, but this data set is the most 
questionable of those analyzed. Whether the 
similar values of {J in the three models mentioned 
indicate an actual trend or are just a coincidence 
with the very limited number of data sets can only 
be verified by formulating similar models for 
different streams or flumes under a wide range of 
flow conditions. 
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There is no question about the validity of 
Equation 54 or 67. It has been derived 'theoretically 
and estimates the value of the reaeration coefficient 
as well as, if not better than, the equations of 
different forms which were developed by the 
previous investigators using the same set of data. 
Although some of the existing models were 
obtained from more rigorous regression analyses 
involving the evaluation of more than one 
coefficient and one exponent as is only required for 
Equation 54 or 67, use of Equation 54 or 67 with 
experimentally determined a and {J values yields a 
comparable estimate of the k2 value. The 
independent variables in Equation 54 or 67 are 
restricted to having specific relationships to each 
other. Prediction models formulated with no such 
restrictions do not fit actual data better than 
Equation 54 or 67. This means the relationship 
proposed by Equation 54 or 67 is not only 
theoretically valid but models the reaeration 
coefficient better than other equations even though 
they may be more complicated. 



SUMMARY AND CONCLUSIONS 

For evaluating the dispersion coefficient, 
mean velocity, and 'reaeration coefficient of a 
mountain creek, the dissolved oxygen and dye 
concentrations of an artificially deoxygenated 
portion of the flow containing a tracer dye were 

. measured at two stations downstream from the 
point of a slug injection. At each station samples 
were taken with regular time intervals, one at a 
time, and then measured for dissolved oxygen 
content and dye concentration. Because Equations 
43 and 47, when evaluated by using Simpson's rule 
of numerical integration, describe very well the 
movement of the slug as it travels downstream in 
terms of dye concentration and dissolved oxygen 
deficit, respectively, the dispersion coefficient and 
mean velocity in Equation 43 can be evaluated by 
best-fitting dye concentration values computed 
from that equation to correspcnding measured 
values while the reaeration coeffi,?ient in Equation 
47 can be eval uated in a similar fashion by using 
the dissolved oxygen deficit values. The present 
optimization technique used in the evaluation of 
the dispersion coefficient, mean velocity, and 
reaeration coefficient is believed to be most suitable 
for a stream, especially a mountain creek, which 
can readily be mixed fully over the entire 
cross-section upon the injection of a deoxygenated 
slug. 

The general reaeration coefficient prediction 
model developed in the present study (Equation 52) 
is a functional relationship of the two dimenionless 
parameters, k2Lo/U and Dx/LoU, in which the 
reference length Lo can be either hydraulic radius, 
R, or hydraulic depth, H. A particular form of 
Equa~ion 52 may be expressed in terms of a power 
functIon of a type as shown in Equation 54. In 
order for Equation 54 to be universally applicable 
as a prediction model of the reaeration coefficient 
for a stream, it is essential that the model 
parameters, a and (J be accurately evaluated for the 
stream under investigation. The general determin
ation of the a and (Jvalues is a formidable task. The 
a and (J values that appear to vary with some 
hydraulic parameters cannot readily be deter
mined for universal use in k2 prediction for any 
stream unless relationships of factors interacting 
between them can be established. No attempt was 
made to find such relationships. Instead, the a and 
(J values for any streams and flumes with available 
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or existing data on k2' H, U, and Dx have heen 
determined. Those determined include the two sets 
of data collected for this study, namely the 
Summit Creek data and the UWRL flume data, 
along with two additional data sets obtained from 
publications involving previous investigations. 

Inclusion of Dx in the reaeration coefficient 
prediction model is justified from both theoretical 
and practical points of view. It is well known that 
the value of the dispersion coefficient for a stream 
is a quantitative measure of the dispersivity of any 
tracing fluid or substance including DO and dye in 
the flowing body of the stream. The Dx is also an 
indicator of the combined effects of many hydraulic 
parameters which affect the flow characteristics. 
Unfortunately, not too many previous prediction 
models include the Dx variable in their model 
formulations, partly because of its difficulty in the 
measurement and partly because of the empirical 
manner in which their models have been devel
oped. A comparison of the results obtained from 
the various existing models by using available data 
i~di~ates that the inclusion of the Dx' or a 
slgmficant part thereof, such as the shear velocity, 
U*, in the prediction model tends to yield the 
better estimate of the k2. This conclusion, however, 
does not eliminate the possibility that there are 
some instances in which existing models predict the 
k2 v~lue better than those which contain the Dx' or 
sp~clfically U*. The fact that most existing models, 
whIch were developed separately for particular 
streams or flumes, could not be arranged into the 
form of Equation 54 or 67, as well as not having 
values of Dx' has prevented further investigation of 
the role which Dx plays in the accuracy of the k2 
measurement or computation. Such an investiga
tion, though very difficult, can be undertaken in 
the future when more data on Dx for various 
streams become available. 

The establishment of a functional relationship 
(Equation 52) between the two dimensionless 
parameters, k2Lo/U and Dx/Lo U, or a simplified 
form thereof (Equation 54 or 67), may lead to the 
conclusion that the k2 measurement for a given 
stream or flume is not much more difficult than the 
Dx measurement. Given a stream, the Dx value 
may only vary with the depth of flow because other 
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Variable Definition 

ITESTB 
Integer code having any value greater or equal to 
one indicating the coefficient at station B is to be 
optimized. 

ITESTD 
Integer code having any value greater or equal to 
one indicating the dispersion coefficient is to be 
optimized. 

ITESTV 
Integer code having any value greater or equal to 
one indicating the velocity is to be optimized. 

ITESTK 
Integer code having any value greater or equal to 
one indicating the reaeration coefficient is to be 
optimized. 

JAIR 
The subscript on the variable AIRCOF which 
increments by one each time the reaeration coeffi
cient completes an optimization cycle. 

JCOA 
The subscript on the variable ACOEF which 
increments by one each time the coefficient at 
station A completes an optimization cycle. 

JCOB 
The subscript on the variable BCOEF which 
increments by one each time the coefficient at 
station B completes an optimization cycle. 

JDIS 
The subscript on the variable DISCOF which 
increments by one each time the dispersion coeffi
completes an optimization cycle. 

JVEL 
The subscript on the variable VELCTY which 
increments by one each time the velocity com
pletes an optimization cycle. 

KAYJAY 
If equal to two the program will proceed to the 
optimization of the coefficients at stations A and 
B before that of velocity and dispersion coeffi
cient. 

KBCVAL(L) 
The final calculated DO deficit . value (mg/l - real 
value) at time level L after the reaeration coeffi
cient has been optimized. 

KEY 
Term used in subroutines BSTFIT and SUBADD 
to indicate the end of an optimization cycle when 
equal to two. 
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Variable Definition 

KLSD 
The least-squares deviation value (real) arrived 
at after optimizing the reaeration coefficient. 

KORDER 
If value input is two then velocity is optimized 
initially before the dispersion coefficient. 

KSIZE 
Value (real) read into the program indicating by 
what size step the reaeration coefficient is 
changed during its optimization. 

LSDV AL (lor 2) 
Specific least-squares deviation values (real) in 
subroutine SUBADD for comparison purposes in 
finding a best fit value during the last steps of an 
optimization cycle. 

MAREA 
Area under the measured DO deficit versus time 
curve at station B between two successive mea
sured points. 

MUMBLE 
Variable indicating the path of the optimization 
procedure, if equal to one velocity and dispersion 
are optimized then the coefficients at stations A 
and B are optimized; if equal to two the steps at 
one are completed then an additional velocity and 
dispersion optimization is carried out with the 
new values of A and B coefficients; if equal to 
three, steps of two are completed with an addi
tional optimization Of coefficients at stations A 
and B, and so on. 

NAIR 
Subscript on the variable RAIR which increments 
by one for each successive reaeration coefficient 
evaluated during its optimization cycle. 

NCOA 
Subscript on the variable RACOEF which incre
ments by one for each successive value for the 
coefficient at station A during its optimization 
cycle. 

NCOB 
Subscript on the variable RBCOEF which incre
ments by one for each successive value for the 
coefficient at station B during its optimization 
cycle. 

NCOR 
Subscript on the variable SUMDEV which incre-
ments for each least-squares deviation value 
during an optimization cycle and is given values 
in the subroutine SUBADD which trigger opera
tions in the optimization procedure. 



Variable Definition 

NDIS 
Subscript on the variable RDSCOF which incre
ments by one for each successive value for the dis
persion coefficient during its optimization cycle. 

NOPT 
Subscript on the variable OPTION which incre
ments by one in the subroutIne SUBADD for each 
successive· value of the term being optimized as 
transferred from subroutine BSTFIT. 

NSTEPS 
The number of three-point intervals involved in 
numerically integrating over the concentration 
versus time curve at station A. 

NUMA 
The number of time and corresponding concentra
tion values describing the measured data at sta
tion A as transferred to the subroutine BSTFIT. 

NUMAD 
The number of time and corresponding dye con
ceIitration values read in to describe the mea
sured dye data at station A. 

NUMAO 
The number of time and corresponding DO con
centration values read in to describe the mea
sured DO data at station A. 

NUMB 
The number of time and corresponding concentra
tion values describing the measured data at sta
tion B as transferred to the subroutine BSTFIT. 

NUMBD 
The number of time and corresponding dye con
centration values read in to describe the mea
sured dye data at station A. 

NUMBLE 
Value incremented by one after velocity and dis
persion optimization and again after A and B 
coefficients optimization in order to reach the 
read in value of MUMBLE. 

NUMBO 
The number of time and corresponding DO con
centration values read in to describe the mea
sured DO data at station B. 

NVEL 
Subscript on the variable RVLCTY which incre
ments by one for each successive value for the 
velocity during its optimization cycle. 
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Variable Definition 

OPTION (NOPT) 
The value of the variable being optimized as speci
fied in the transfer to subroutine SUBADD at 
NOPT. NOPT increments as the value is changed 
and tested during optimization. 

RACOEF (NCOA) 
Value number NCOA in the successive values of 
the coefficient at station A during its optimization 
cycle. 

RAIR(NAIR) 
Value number of NAIR in the successive values of 
the reaeration coefficient during its optimization 
cycle (sec-1 x 105). 

RBCOEF (NCOB) 
Value number NCOB in the successive values of 
the coefficient at station B during its optimization 
cycle. 

RDSCOF (NDIS) 
Value number NDIS in the successive values of 
the dispersion coefficient during its optimization 
cycle (ft2 / sec). 

RNUMA 
Real value of the integer NUMA. 

RNUMAD 
Real val.ue of the integer NUMAD. 

RNUMAO 
Real value of the integer NUMAO. 

RNUMB 
Real value of the integer NUMB. 

RNUMBD 
Real value of the integer NUMBD. 

RNUMBO 
Real value of the integer NUMBO. 

RVLCTY (N VEL) 
Value number NVEL in the successive values of 
the velocity during its optimization cycle (ft/sec). 

S(15) 
Dimensional heading with 15 spaces for the test
ing stations. 



Variable Definition 

SIZE 
The step size used for optimizing a value as trans
ferred to the subroutine SUBADD. 

SSIZE 
Either positive or negative SIZE depending upon 
the direction required to optimize the value, 
OPTION. 

STEPS 
Real value of the integer NSTEPS. 

SUMDEV (NCOR) 
Value number NCOR in the successive least
squares deviation values for the term being opti
mized as specified in the transfer to the subrou
tine SUBADD. 

SUMEVE 
Sum of the values obtained from using Equation 
47 on each of the even numbered points of the 
numerical integration over the measured concen
tration versus time curve at station A. 

SUMODD 
Sum of the values obtained from using Equation 
47 on each of the odd numbered points (excluding 
the first and the last) of the numerical integration 
over the measured concentration versus time 
curve at station A. 
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Variable Definition 

TCAREA 
Total area under the calculated DO deficit versus 
time curve at station B (sum of the CAREA 
terms). 

TMAREA 
Total area under the measured DO deficit versus 
time curve at station B (sum of the MAREA 
terms,. 

VALUE (lor 2) 
Specific values of the term being optimized for 

. use in calculating the size and direction of the 
final steps in the optimization cycle. 

VBCVAL(L) 
The final calculated dye concentration value (ppb) 
at time level L at station B after the velocity has 
completed an optimization cycle. 

VELCTY (JVEL) 
The velocity (ft/sec) after optimization cycle num
ber JVEL-l. JVEL = 1 is the initial velocity read 
into the computer program. 

VLSD 
The least-squares deviation value arrived at after 
the velocity has been put through an optimization 
cycle. 

VSIZE 
Value read into the program indicating by what 
size step the velocity is changed during its optimi
zation. 



Program I listing 

C PROGRAM I - VARIABL E 0 PTIHIZ ATION 
C FORTRAN 

REAL KSIZE 
REAL KLSD 
REAL KBCVAL 
DIHENSION AOTIHE(99), ACONC( 99 J. AOTIHE( 99), ADO(99), BDTIME (4·5). 

2 B C 0 NC ( "5 ), BOT I H E (45 h BOO r 4 5), 0 I 20 h S 11 5) 
CO MH ON IB LK 1/ JOTS, JV El ,J COAt JCOB .J AIR, nL SO .VLS 0, ALSO ,BLS 0, K L'SO ,DIS 

2T, AMTIME ,BHTIM E. DO SA T, DS IZ E, VSIZE. AS IZ [, BS rz E, KSIZE, DELTA 
COHHON/SLK21 DISCOFf 15 J •• VElCTY (15) .ACOff (1 5J ,BCOEF(15) ,AIRCOF"I 5).0 

2BCVAL(4S Jt VBCVAL (45) ,ABCVAL (45), BBN All4 5) ,KBCVAL(45JtBHSAL (.1415) 
CO M"'fON IBLK 31 NCOR, ~M{)EV (4 S) ,KEY ,VALUE (2).LS DVAL(2) 

C IREP IS THE NUMBF.:R OF SEPERATE TESTS IN DATA DECK 
READ(S ,70JIREP 

70 F"OP.,.,AT( IS) 
DO 411 IJ=I.IREP 

C OtT) IS 20 SPACES FOR THE DATE OF TESTlt~G AND SCI) IS 15 SPACES FOR 
C THE STATIONS INVOLVED 

READ(5,30)(O(I)·, 1=1,20) 
80 FORMAT(20Al) 

READ( 5 ,qO) (S( I), 1=1. ,15) 
90 rORH~T'15Al) 

C READ IN VALUES TO BE ~EST FIT - A VALUE" OF O~ OR HORE FOR EACH VARIARLE 
C BELOW WILL CAUSE DISPERSION, VELOCITY, A AND e COEF., OR RE.~E~ATION TO 
C 8E OPTIHI?ED 

REA Of 5,92) ITESTO, ITEST V, ITESTA ,I TEST B, ITES 11( 

~ 2 F' 0 R MAT f S II ) 
C READ IN THE INITIAL VALUES FOR DISPERSION, VELOCITY, A COEF., BCOEF •• 
C AND nEAERATIO~ COEF. 

REA 0 ( 5 ,9 4) DIS C 0 F (1 ") , VE l C TY (1 " A CO E F ( 1 J ,p CO EF U J • AI R C OF ( 1 J 
94 FOR~ATrSFI0.S) 

C READ IN STEP SIZE FOR BEST FITTING DISPERSION COfF., VELOCITY, A COEF'. , 
C B COEF •• AND ~EAERATION COEF. 

REA D « 5 ,'3 6 'OS I Z [ , V S IZ [. AS IZ E , BS rz E, KS IZ E 
~6 FORMATrSF10.S) 

C READ IN NUMBER OF PO IN TS ON DY E AND DO D EFIC IT CURVES AND THE DIST ANCE 
C BETWEEN STATIONS AND THE 00 SATIJPATION VALUE 

REAO(5.98)AMTIHE,BMTIHE,NUMAD,RNUMAO,NUMBO ~NUMBD,NUHAO,RNUMAO,NUH 
2BO.RNUHBO,DIST,OOSAT 

98 fO RM AT ( FlO. 4., FlO. 4 ,I S. F5 .1 ,IS, FS .1 ,IS. rs .1 ,I S, F5 .1 ,F 10.4 ,F 10 ell J 
C READ IN CONTROL VARIABLES C~NTROLING THE OROFR or OPTIMIZATION 

PEAO(S .100 'MUMBLE,KO·RDER ,KAYJAY 
100 FORMAT(I5.IS.IS) 
C DELTA Is THE TIME" INTERVAL FOR WHICH DATA IS qEAD IN AT STATION A 

REA 0 « 5 'l 01 ) DEL T A 
101 rORMAT(FlO.~) 

C READ IN TIMES AND CONCENTRATIONS OF DYE AND 00 AT STATIONS A AND B 
REA 0 ( :> ,1 05 ) ( AD TIM E ( J J , ft CON C ( J" J= 1, NU HAD ) 

105 FOPMAT((3(~5.1,F5.1))) 

RfAO(S.1f.J5){BOTIMErI),BCONCfI), I=l,NUMSD) 
READ(5 ,115) (AOTIME(J), AOO(J), J=I,NUMAO) 

115 FO~MAT( (S(rS.l,F"5.2) J) 

READ(S ,115) (BOTIMEIT).BOO(Il, I=l,NIJHBOJ 
JDIS=l . 
JVEl=l 
JCOA=l 
JCOB=l 
JAIR=l 
DLSD=O.O 
VlSD=O.O 
ALSD=O.O 
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BlSO=O.O· 
KLSO=O.O 
NUHBlE=tl 
IF (ITESTD.LT.1.AND.ITESTV.LT.1J GO TO 219 
IF (KAYJAY.EO.2J GO TO 197 

120 WRITE(6.121J (OCI" 1=1.20) 
121 FORMATC17Hl TEST DATE =, 20Al , 

WRITE (6,122) (SI I). 1=1,15) 
122 FOR~ AT 11 7H TEST STA TIONS =,15 At J 

WRITE 16.12 3J 
123 FORHATC30H SUSTAINED INJECTION EQUATION' 

WRITE (6.124J 
124 FORHAT(38HO BEST FITTING DISPERSION AND VELOCITY' 

WRITE(6.12SJACOfF(JCOA).BCOEFfJCOBJ 
125 FORMATIZ8H CONCENTRATION COEF.' AT A =,F8. 51 6)(,27H CONCENTRATION C 

20EF. AT B =.F8.5) 
IFf IT E c:; TO • LT. 1 ) GO TO 1 IJO 
IF (KORDER.EO.2J GO TO lIfO 

C CALL 8STfTT TO OPTIMIZE DISPERSION CCEFFICIE~'f (INDEX:l) 
13 a CALL BSTFIT' 1, AOTIME ,A CONC .BDT IHE, BC 0 NC. NU M\ D. R NUMAD ,NUHBO .RNU HBO. 

ZO.OJ 
IF (OISCOFfJOISJ.lf.O.I:!J GO TO 401 
IF (ITESTV.L T .1) GO TO 180 
IF (.1 VEL. E Q • 1) GO TO 1 40 
IF (OlSD.GE.VLSOJ GO TO 180 

C CALL 8STfIT TO OPTIMIZE VELOCITY I INDEX= 21 
14 a CALL BSTFIT (2. AOTlf1E ,A CONC .8DTIME. BCONC. NUMA 0, R NUMAO ,NUHBO ,RNUHBD, 

20.0) 
IF (ITESTO.l T .1) GO TO 180 
IF (.10IS.EI1.1) GO TO 130 
IF (VLSD.GE .OLSO J GO TO 180 

C AS A PRECAUTION THE NUMBER OF" VELOCITY OPTIMI7. ATION CYCLES IS LIMITED IN 
C THE DISPERSION-VELOCTIV BEST FITTING PROCEDURE 

IF (.1VEl.GT.14J GO TO 180 
GO TO 130 

180 CONTINUE 
WRITE (6,1821 

182 FORMATt65HO TIME CALC. 2ND SECTION CONe. HEASURED 2ND SECT 
2ION CONC.) 
IFf IT f S TO .L T • 1 J G 0 TO 1 85 
IF (I T EST V .L T .1 J GO TO 1 84 
IF COlSO.L[.VLSOJ GO TO 184 
If (V LSD. LT. 0 LSD) (!O TO 18 5 

184 WRITE(6,186)CADTIMECLJ ,OBCVALCLI ,BHSAlCLJ. L=1.NUHBOJ 
WRIT[C6,1S7)OLSD 
GO TO 189 

185 WRITE(6.186J CBOTIHfCL) ,VBCVAl(lJ ,BHSALClJ. L=1 ,NUMBD) 
WRITE(S.187)VLSD 

1 86 fOR MAT I 1 X, r- 5 • 1 , 8 X, FlO. 3. 21 X. FlO. 3) 

le7 fORMATI26HOLEAST SQUARES DEVIATION -=.FI3.4J 
lR9 WRTTEC6,190JDISCOFfJDIS) 
190 FORMAT(Z8H08EST FIT DISPERSION COEF. : .FS. 31 

WRITE(6,192JVELCTYIJVElJ 
192 FORMAT(Z8H BEST rIT VELOCITY =.F6.3J 

WRITE(6.194'OSI?[ 
194 FORMAT(30HOINCREMENT FOR DISPERSION FIT:',F6.3) 

WRIT[(6,196JVSIlf 
196 FORp4AT(30H INCREMENT FOR VELOCITY FIT = .Ff. 3) 
197 NUHRLE=NUHOlE+l 

If rrNUMBL[-l).EO.MUHBlEJ GO TO 319 
219 IF (ITESTA.LT.1.AND.ITfSTB.LT.1J GO TO 319 
220 WRIT[CG,121)rOCI),I=I,20) 

WR I TE (6, 122 J « S « I J. 1-=1 ,1 5) 
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WRITE 16.123. 
WRTTr'6.224) 

224 rORM AT (6 2HO BEST FIT TING CONCENTRA TION C OE F. A AND C ONCENTRA lION C 
20EF. 8J 

WRIT[(6. 22S'DISCOFIJDIS) .V~LCTY(JVELJ 
225 rORMATf20H DISPERSION COEF. =.F6.3.6X.l1H V ELOeTTY =.F6.3J 

IF fITESTA.LT.1) GO TO 240 
C CALL BSTFIT TO OPTIHI7.E STATION A COEFFICI£N T CINO£X=3 J 
230 CAll BSTFIT (3. AOTIM£.A CONC .80TIME. BCO NC. NU~.A O. R NUHAD .HUMBO .RNUME"O. 

20.0J 
IF «I TES 18.l T .1 , GO TO 2 84 
IF (JC 0 B • E Q .1 J GO TO 2 '10 
IF (AlSO.GE.8lS0) GO TO 280 

C CAll BSTFIT TO OPTIMIZE STATION B COEFFICIENT fINDEX=lfJ 
240 CAll BSTFIT (4. AOT IHE.A CONC .BOT THE. BCO NC. NUMA O. R NUMAD .NUHBD. RNUHSD. 

20.0) 
IF (ITESTA.lT.1) GO TO 285 
IF (J C 0 A • E Q .1 J GO TO 2 30 
IF (BLSO.GE.ALSO) GO TO 280 
IF (J C 0 8 • G T • 4 ) GO TO 2 80 
GO TO 230 

280 CONTINUE 
WRITE(6.182) 
IF (ALSO.LE.BlSO) GO TO 28" 
IF (BlSO.l T .ALSO) GO TO 285 

284 WRITE(6.182) 
WRITE(6.186)(BOTIMfCL) .ABCVAl(LJ .'3HSALILJ. L=1 ,NUMBOJ 
WRITE(6.181JALSO 
GO TO 289 

285 WRITE(6.182J 
WRITE(6,186)(BOTIH[fL) ,BBCVAL(L) ,BMSALrL), L=1 ,NUMBO) 
WRITEf6.181JBLSD 

289 WRITEr6,29U)ACOEFrJCOAJ 
290 FOR~AT(31HO eEST FIT CONCENTRATION COEF. AT A =,F8.5J 

WRITE(6,292JBCOEF(JCOBJ 
292 FOR~ATC31H BEST FIT CONCENTRATION COEF. AT B =,F8.5J 

WRITE(6.294JASIZE 
294 FORMATf29HO INCREMENT FOR COEF. A FIT =.F6.3J 

WRITE(6.296JBSIZE 
296 FO~""AT(29H INCREMENT FOR COEF. B FIT ::'F6.3J 

NUHBLE=NUHBLE+1 
IF ffNUHBLE-1).f.'O.MUHBLE) GO TO 319 
GO TO 120 

319 IF fITESTK.LT.1J GO TO 400 
WRITE(6.121) (Of I)' 1=1,20) 
W R I T E ( 6, 12 2 1 ( S f I J. 1=1,1 5) 
WRITE (6,123) 
WRITE f6. 32q J 

324 FORMAT(60HO BEST FITTING REAERATION COEF. ~[TH OTHER VARIBLES CONS 
2 TANT) 

C CALL BSTFIT TO OPTIMIZE REAERATION COEFFICIEr.:r (INDrX"=5J 
CALL BSTFIT(S.AOTIME,ADO,BOTIME.BOO,NUHAO,RNUMAO,NUMBO,RNUHBO,AIRC 

2 OF (1) » 
WRITE (6.3821 

382 FORMAT(74HO TIl'1f CALCULATE'O 0.0. OEFICn (MG/LJ MEASUREO 0 
2.0. DEFICIT (HG/L») 

l-JRITEf6.384) (BOTIMEtL) ,KBCVAlfL) ~BMSAL(L). L=1 .NUMAO) 
38 4 FOR MAT ( 1 X, r S .1 ,1 2 X • F 10 .3 .2 5X • F 10 .3 J 

WRITE(6,39~'KSIZE 

~86 FORMAT(31HO INCREMENT SIZE FOR BEST FIT =,F"6.3) 
'JOD IF (ITfS TO.L T .1. AND. IT ES TV.L T .1. ANfl .. IT ES TA.L T. 1. AND. ITESTB.L T.1. AN 

2D.ITESTK .. L T .1) GO TO 900 
GO TO 401 

48 



900 W RITE ( 6. 121' r DC I ). 1=1.2 0 J 
WRITE (G.122) (S (I). 1=1.1 S) 
WRITE(6.123' 
WRITE(6.902J 

902 FOR~AT(40HO CALCULATIONS USING ONLY INITIAL VALUES) 
C CALL BSTFIT TO CALCULATE DYE CONCENTRATIONS AT STATION 8 LEAVING ALL 
C VARIAtllES CONSTAtlT fINOEX=6) 

CAll BSTFIT (6. ADTIHE .ACONC .BDTIHE. RCONC. NUMA D. RNUMAD .NUMBO. RNUHBD 
2.0.0) 

WRITE (6.182' 
WRITEf6.186J (BDTIMEfL),.OBCVAL(LJ .BHSAL(LJ. L::.t .NUMBD) 

401 WRITE (G. 402JOISCOFrJOISJ 
402 FOQMAT(38H- FINAL DISPERSION COEF. (FT>f'T/5(C) =.F6.3J 

WPTTEf6.404JVElCTYfJVElJ 
404 FORHATf38H FINAL VELOCITY (FTlSfC) =,F6.3J 

WRITEfG.406'ACOEFfJCOAJ 
406 FOPMAT(34HO FINAL CONCENlRATION COEF. AT A = .F8.'S) 

WRITE(6.40etaCOEFfJCOB) 
408 FOR'''AT(34H FINAL CONCENTRATION COEF. AT B = ,FS.5J 

WRITE(6.409JOELTA 
409 FOP.~AT(49HO INTERVAL SIZE FOR NUMERICAL INTGRATION (SEC) =,F7.4) 

WRITE(6.4l0JAIRCOFrJAIR) 
410 FORMAT(47HO FINAL REAERATION COEF. - K2X10 •• 5 (PER SEC) =.F8.4J 
411 CONTINUE 

STOP 
END 
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SUBROUTINE BSTFITIINDEX. ATIME. AHVAl, BIIME. BMVAl,NUMA ,RNUHA,NUHB,RN 
2 UM 0 • A I RV AL J 

REAL KSIZE 
PEAL KlSO 
REAL KBCVAL 
REAL HAREA 
OIMENSION ROSCOF(45). RVlCTY (45), RACOrF(~ 5) , RBCOEF(4S). RAIRfllSI 

2. FUNC(99). BCVAlI45J. ATIP1E(99). AMVAlf99J. 8TIM£(45), BHVAl(4S), 
3 AHSAlC 99) 

COMMON/BLK11 "'DIS. JV EL ,JCOA. ",C08 .JAIR. nL so ,VlS 0, ALSO ,8LSO,KLSO .OIS 
'2 T , Ar~ TIM E .8 MT 1M E • 00 SA T, OS 1Z E. lIS 12' E. AS' 1Z E, as lZ E. K S TZ E, DEL T A 

CO HMO NIB LK 21 0 I ~ CO F f 15 J ~ V£ L C TY f 1 5. ,A CO EF (1 5) • 8 CO Efo- f 1 5) ,A I RC 0 F ( 5 J ,0 
2 8 C V A L ( 45 ) , V B C V Ale ~ 51 • ABC VA l ( 45 ), R 8 CV A L (4 5 J ,K BC V A l ( 45 » • B H SAL (: 45 J 

C 0 ~1 M 0 N / B LK 31 NCO R , SU MOE V (4 5 J ,K f. Y ,V A l UE (2 ) , lS OV A l (2 , 
NCOR=l 
NOIS=l 
NVEl=l 
NCOA=l 
NCOB=l 
NAIR=l 
KEY=l 

C SET INITIAL VALUES FOR OPTIMIZATION TO THE LATEST VALUES IN MAIN PROGRJH 
RDSCOFC1J=OISCOFI"'OIS) 
RVLCTY(lJ=VELCTYfJVELJ 
RACOEF(lJ=ACOEFfJCOAJ 
RACOEF'! J=BCOEFfJCOBJ 
RAIRflJ=AIRVAL 
IF {O E L T A • L E .2. 5 J GO TO 42 5 
NSTEPS=(NUMA-IJ/2 
STEPS=(RNUMA-l.OJ/2.0 
100D=NSTEPS-l 
TEVEN=NSTEPS*2-1 

42 5 CO~TINUE 
"40 IF (NnIS.GT.l.0R.NVE'L.GT.l.0R.NAIR.GT. U GO TO 542 
C MULTIPLY MEASURED DYE" VALUES AT STATION A BY COEFFICIENT A 
C CALCULATE DO DEFICITS FROM M[ASUREO 00 VALUE S AT STATION A A~JO HUL TIPLY 
C BY COEFFICIENT A 

DO 441 L=:t,NUMA 
IF CINDEX.NE.5J AHSAL('LJ:;RACOEF(NCOAJ.AHVAU L) 
IF (INDEX.EQ.5) AM~AL'L)=(OOSAT-AHVAL(l)J.RACOEF'NCOAJ 

IF (AMSAl(L).LT100.0) AMSALCl)=O.O 
4n l CONTINUE 
C MULTIPLY MEASURED DYE VALUES AT STATION B BY rOEfF'ICIENT B 
C CALCULATE 00 DEFICITS FROM MEASURED DO VALUE $ AT STATTON 0 AND HUL TIPLY 
C BY COEfFICIENT B 

DO 442 L=1,NUMe 
IF (INDEX.NE.5J BMSAL(1-)=RBCOEfCNCOB).BMVAU lJ 
IF (I N 0 EX. E Q • 5 J 8 H SAL ( l) =1 00 SA T - 0 H VA L ( L J J • qe CO EF f N COB) 
IF (BMSAL(L).lT.O.CJ eMSAL(l)~O.O 

"'i 2 CONTINUE 
C CALCULATE AREA UNDER MEASURED CONCENTRATION VERSUS TTME CURVE AT STATTON B 

TMAREA::Q.O 
NEB=NUMB-l 
DO 541 l =1 ,N E B 
MAR £" A = 0 • S. ( B M SAL ( l +1 ) + A M SA L f L) h (B TI HE ( l +1 J- Sf I HE (L )') 
TMAREA=TMAREA+MAREA 

5"1 CONTINUE 
54 2 IFf R A I R ( N A I R ) • L T ~ O. 0) NCO R= 2'3 

IF fROSCOF(NDIS).lE.O.O) GO TO 490 
C CALCULATE A CONCENTRATION VALUE AT STATION B FOR EACH TIME FOR WHICH.A 
C VALUE WAS READ IN FOP STATION B 

DO 466 M=l, NUHB 
C EVALUATE EQUATION 47 (INSIDE INTEt,RAl SIGNJ If EACH TIME A CONOCNTRATION 
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C VALUE IS READ IN FOR STATION A 
00 450 K=t ,NUMA 
IF fATI~EfK).GE.BTIHECH'J GO TO 448 
[XFUNC=- (oIST-RVl eTY C NVEl' * r BTIME (HI -A TIHE fK )) ) .*2.1 r 4. a. RDSCOF I NOI 

2 S J * ( B T I H E ( H) - A TIM E f K J) ) - f R AIR f N A I R ).f (1 O. 0 *.s ) ) * r BTl HE I H ) -A T IHE: I K J I 
IF IEXF"tJNC.LT.-~S.O' GO TO 448 
FUNC (K J=« AHSAL (K)/SQ RT 14 .0 *3 .14*ROSCOF (NoI S' .( BTIHE IH) -A TIHE (K J J JJ 

i*EXP«EXFUNC)*RVLCTY(NVElJ 
GO TO 450 

4~8 FUNCIKJ=O.O 
EXFUNC::O.O 

450 CONTINUE 
5UMOoO=0.0 
00 455 I=1,100D 
NODO=1 + I * (NUMA-l 1.1 NS TE PS 
5U~ODO=SUMOOD+rUNCINODOJ 

"55 CONTINUE 
SUMEVE=O.O 
DO 460 I=1,IEVEN.2 
NEVEN=1+I*INUMA-1'/(2*NSl£PSJ 
SUPi£VE=SUHEVE+FUNC IN EV EN J 

"60 CONTINUE 
C OBTAIN A CALCULATED VALUE AT STATION B BY USING SIHPSONS NUMERICAL 
C INTEGRATION 

BCVAL (H) =( 1 A TIHE( NUMA) -A TIME II JJ .If 6.0* STEP SJ ). (FUNC f IJ+FUNC (NUH A J+ 
22.0*SUMOoD+4.0*SUMEVEJ 

466 CONTINUE 
IF f INOEX.NE.5 J GO TO 469 

C OBTAIN AREA UNDER CALCULATED DO DEFICIT VfRSUS TIHE CURVE AT STATION B 
TCAREA=O.O 
DO 467 L=t.NEB 
CAR E A = 0 • 5. 1 B CV AL C L +1 J + Be VA L ( L) J * (B IT M E f l +1 J - BT I HE (l J I 
TCAREA=TCAREA+CAREA 

467 CONTINUE 
SUHOEVf NCORI =CTHAREA-TCA REA ••• 2 
GO TO 570 

469 SUMDEVINCOR)=O.O 
C COMPARE CALCULATED TO MEAStRED CURVE RY HAGNITUOE OF THE SUH OF THE 
C DIFFERENCES SQUARED AT EACH POINT 

DO 410 N=l,NUHB 
DEV=fBCVALfNJ-BMSALfN) "*2 
SUMDEV(NCORJ=SUHDEVINCOR)+oEV 

470 CONTINUE 
570 IF (N COR. G T .1 t GO TO .. 14 

IF (INDEX.EO.l) GO TO 411 
IF (INDEX.EQ.2) GO TO 571 
IF (INDEX.Ea.3) GO TO 671 
IF IINDEX.fa.4) SO TO n1 
IF (INOEX.EQ.5J GO TO 871 
IF fINOEX.[Q.6J GO TO 502 

471 WRITEf6,412)VElCTY(JVEL) 
412 rORMAT(SOHO BEST FITTING DISPERSION wrrn vaOCITY fF"T.lSEC' = .F8.4) 

WRITE(6,473) 
"13 FORMAT(69HO DISPERSION COEF. NUH~ER l.EAST SQUARES DEVIAT 

ZION NUMBER) 
GO TO 41,. 

~71 WRITE(6.572)DISCOF(JDISJ 
572 FORMATfS3HO BEST FITTING VELOCITY WITH DIS f1: RsION fFTXFT/SECJ =,Fa" 

2.4' 
WRITE (6.573) 

573 FORHAT(69HO VELOCITY NUMBER LEAST SQUARES DEVIAT 
2ION NUHBER. 

GO TO 474 
611 WRITEr6,672JBCOEFCJCOB. 
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672 FORHATr47HO BEST FITTING A COEFICIENT WI TH B COEFICIENT =.F8.4 J 
WRITE (6. 673) 

673 rORHAT(69HO A COEFICIENT NUMBER LEAST SQUARES DEVIAT 
ZION NUMBER) 

GO TO "74 
771 WRITE(6.172JACOEF(JCOAJ 
772 FORMATrQ7HO BEST FITTING 8 COEFICIENT ~rn A COEFICIENT =.F8.4J 

WRITE (6, 773) 
773 FORHAT(69HO a COEFICIENT NUMBER LEAST SQUARES DEVIAT 

2ION NUHBER) 
GO TO 474 

871 WRITE(6,a73) 
873 FOR~AT(69HOK2X10 •• 5 (PER SEC) NUMBER LEAST SQUARES DEVIAT 

ZION NUMBER) 
C CALL SUBAOD TO HAKE INCREMENT~ ON VARIABLE BEING OPTIMIZEO 
41,. IF (INDEX.EQ.1) CALL SUBADO(ROSCOF.,.,OIS, OS 1Z EJ 

IF f INOEX.EQ.2 J CALL SUS AOO fRVLC TV .NYrL, VS 17 EI 
IF (INOEX.EQ.3J CALL SUBAoorRACOEF.NCOA.AS1]EI 
IF (INDEX.E9.4) CALL SU8ADO(~ACOEF.NC08,BS 1ZEI 
IF' (INflEX.EQ.5 J CALL SUBADOfRAIR.NAIR, KSIZO 
IF (KEV.EQ.Z) GO TO 490 
GO TO 425 

4~O CONTINUE 
C EQUATE CALCULATED TERMS TO VARIOUS VARIBlES g) THAT MAIN PROGRAM WIll 
C KNOW WHAT VARIatE HAS BEEN OPTIMIZED 

IF (INDEx.rQ.1) GO TO ,.91 
IF' (INDEX.EQ.2) GO TO 493 
IF (INDEX.Ea.3) GO TO 495 
IF (INDEx.r~.4) GO TO 497 
IF (INDEX.fQ.57 GO TO '199 

491 JDIS=JOIS+1 
OISCOF (JOIS) =RDSCO FINDIS ) 
00 492 L=l. "NUMB 
OBCVAL(l )=BCVAlfLJ' 

492 CO~TINUE 

OlSO=SUHDEV(NCORJ 
RETURN 

~93 JVEl=JVEl+l 
VElCTY (JVEl) =RVL CTY (NV EL) 
00 q9q t=t ,NUMB 
VBCVAL(LJ=BCVAL(LJ' 

494 CONTINUE 
VLSO=SUHDEV(NCOR) 
RETURN 

495 JCOA=JCOA+1 
ACOEF (JCOA J=RACOEF (N CO AJ 
DO ~96 l=1 ,NUMB 
AB~VAl(L J=ElCVAL(l)' 

4c}6 CONTINUE 
ALSO=SUMDEVrNCCR) 
RETURN 

491 JCOB=JCOB+l 
seOEF f JCOB J=RBCOEF (N co BJ 
00 498 L=t,NUHB 
BBCVAlCLJ=SCVAL(LJ 

4q8 CO"fTINUE 
~lSO=SUHDEV(NCORJ 
RETURN 

q99 JAIR=JAIR+l 
AIRCOFrJAIRJ=RAIR(NAIR) 
DO 500 L=1.NUt-18 
KBCVAL(L J=eCVALfl)' 

500 CONTINUE 
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SOl 

601 

KlSO=SUHDEVrNCORJ 
WRITEI6.S01JTCAREA 
FORMAT(39HO ARfA UND[R 
WRIT[(S.601JTHAREA 
FORMAT(39H ARfA UNDER 
RETURN 

CALCULATED DEFIc[T <tJRVE =.FIO.4J 

MEA SUP-ED DEFICIT CURV E 

502 WRITE (6.50 3) SU~OE V (N CO RJ 
503 FO~MAT(27HO LEAST SQUARES DEVIATION =.F10.'I' 

DO 504 l=l.NUfiB 
OBCVAL(LJ=BCVAlfLJ' 

504 CONTINUE 
RETURN 
END 

SUBROUTINE SUBAOD (CP TION .NOPT. SIZE' 
REAL SIZE 
REAL LSDVAL 
D!MENSION OPTION(45J 
COMMON /BLK 3/ NCOR. SUMO EV 14 5) .KEY .V ALUE (7 ) .tS DV AL 12 J 
WRITEfG.475'OPTIONfNOPH .NOPT.SUHDEV(NCOR) -NCOR 

47 5 FOR HAT t f.J x. r- 9 • fJ .11 X , I l. 13 x. F 1 2. ". 14 X. 12 ) 
IF (NCOR .EG.I) GO TO 480 
IF (N~OR.EO.l) GO TO 481 
IF (N COR. E Q • 3 ) GO TO 4 82 
IF (NCOR.EG.2'3) GO TO 4A 8 
IF (NCm~.EQ.45J GO TO 488 
IF (NCOR.EO.33J GO TO 485 
IF (NCOR.EQ.34J GO TO 486 
IF (NCOQ.EG.3SJ GO TO 488 
IF fSUMOEVfNCOP. •• LT.SUMDEV(NCOR-U J GO TO It, 3 
IF (SUMDEV t NCOR t • GE. SUMO EV (NCOR-I) J GO TO LB" 

C mOM NCOR=2 AND NCOR=3 THE DIRECTION C'F INCREMENT IS OBTAINED (PLU'S 
C OR MINUS) 
'lao NCOR=Z 

NOPT=l 
OPTION (N OP TJ =OPTIO N (1) +0.01 
RETURN 

481 NCOR=3 
NOPT=3 
OPTION f N OP T J =OPTIO N (1) -0.01 
RETURN 

4q2 IF (SUMDEV(Z).t;T.SUMDEV(3)) SSIZE=-(SIZEJ 
IF (SUMDEVf2).LT.SUMOEV(3J J SSIZE=SIZE 
IF (SUMOEV(."D.GT.SUMDEV(I).AND.SUHO£V(lJ.GT. SUMOEV(lJJ GO 'TO 487 

483 NC01=NCOR+l • 
NOPT=NOPT+l 
OPTTON(NOPT)=OPTIONCNO PT-1 J+SSIZE 
IF (NCOR.GT.3S) OPTIONfNOPT)=OPTIOtHNOPT-l Y z.o 
IF (0 P T ION ( NO P T ) • U: • o. 0) GOT 0 I) 87 
RETURN 

C LEAST SQUA.RES HA·S P.~SSED MINIMUM VALUE - GO fA CK TO FINO 
IJSlf SUMOEV C J 0) =SUMrrv (NCOR -2 J 

SUH OEV f 31) ='S UMDEV« NCOR -1 J 
SUMOEVf3Z.=SUMOEV(NCORJ 
If (NCOR. EO. 4. AND. SUMDEV (3 J.L T.5 UMorv (21 J sur10 [V (30) =SUHOE VI 1) 

NCOR=33 
NOPT=NOPT+l 
IF (SUHOrV(30) .. LT.SUMOEV(32») GOlO 584 
IF (SUMO[V(30).Gf.sm~Drv(32» GO TO 6~" 

5Alf VALUE (1) =OP1ION (NOPT-3 J 
lSOVALfl)=SUHDEVC30J 
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684 

784 

485 

C 
486 

487 

c 
C 
587 

488 

IFf NOPT .EG. s. AND. SUHDEY fJ J.L T .$ UHDE VI 2) J VALU Ell) =OPT IONI·1 1 
GO TO 78,. 
VALUE (1) =OPTIONINOPT-l 1 
LSDVALflJ=SUHOEVf32' 
VALUE(Z) ::OPTIONfNOPT-2 J 
LSDVALC2J=SUMOrVf31' 
OPTION (NOPTI = IVALUE (1) +V ALUE (2 n IZ.O 
RETURN 
NCOR=NCOR+l 
NOPT=NOPT+1 
IF (L S 0 VAL 12 J .L E • S U HO E V I 33 U 0 P T 10 N I NO PT ,= 10 PT ION I NO PT -1 J + VA LU E f 21 

2J.l2.0 
. 

IF (LSOVAL (2 J. GT.S UHDE VI 33 JJ OPT IONI NOPT J= IOPT ION r N OPT -1 J +VALUE« 1) 

2J'2.0 
RETURN 

FIND OPTION VALUE WITH SMALLEST LEAST SGUARES OF THOSE CALCULATED 
NCOR=NCOR+l 
NOPT=NOPT+1 
IF (SUMDEvC3Cf) .LE.SUMO[V (33) .AND.SUMDEV( 34 J. LE.LSDVAL( 2)) OPTIONrN 

20PT) =OPTIONfNOPT-1) 
IF (SUMOrV(33) .L[.SUMOEV (34) .AND.SUMDEV( 33 ,. LE.LSOVAL(21' OPTTONrN 

ZOPT) =OPTION (NOPT-2 J 
IF (lSDy AL (2). LE .SU~DE V( 34 J. ANO. LSOV AL (2 J. L£ .S UHDEV« 33 ) 1 OPT ION (NO 

2PTJ=VALUEr21 
RETURN 
NCOR=29 
NOPT=NOPT+1 
OPTION(NOPTJ=OPTIONrlJ 
RETURN 

IF OPTION MINUS SIZE IS LESS THAN ZERO. TAKE NEW OPTION AS HALF OF OlO 
OPTION VAL UE 

SUMDEY( 31) =SUHOEV(NCOR-1) 
NCOR=38 
OPTION (NOPT. =OPTIO NINO PI -i J/2. 0 
RETURN 
KEY=KEY+l 
RETURN 
END 
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PROGRAM II: EVALUATION OF HYDRAULIC 
PARAMETERS 

The major purpose of this program is the 
calculation of hydraulic parameters and comparison of 
the measured reaeration coefficient to those predicted 
by use of other models described in the literature 
review. The ability to calculate the hydraulic 
parameters for the laboratory flume was also built into 
the program. If variable IX, (N, K) has K equal to 8, 
the parameters are calculated from the uniform cross
sectional geometry of the flume rather than the 
stream geometry. The predicted reaeration coeffi
cients as listed in the program printout along with the 
measured reaeration coefficient have all been cor-
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rected to 20 degrees centigrade and are in terms of per 
day with the base 10 logarithm form (k2). The 
measured reaeration coefficient read into the program 
is in terms of per second times 105 with the natural 
logarithm form (K2). The program with a data deck 
consisting of 3 tests (with data from all three to be 
printed on the same page) requires approximately 0.7 
seconds of execution time with 8 to 10 pages of print
out (excluding a program listing). 

Function oj subroutine CROSS. CROSS calcu
lated the cross-sectional area at each cross-sectioned 
statIon by dividing the measured discharge by the 
velocity calculated from Program I. It then calculates 
maximum depth, surface width, and wetted perimeter 
for each cross-sectioned station within the test reach. 



fA 
~ 

Program. n data deck -

Card 1 

Cards 2, 3, 
&4 

Cards 5, 6, 
& 7 

Cards 8, 9, 
& 10 

Variable 

BASE (I) 1=1,7 

STEP(l, J), LEFT (1, J) RIGHT(l, J) 
J=1,6 

STEP(2, J), LEFT(2, J) 
RIGHT(2, J) J=l, 6 

STEP(3, J), etc. 

Cards 11,12, STEP(4,J), etc. 
& 13 

Cards 14, 15, STEP(5, J), etc. 
& 16 

Cards 17, 18, STEP(6, J), etc. 
& 19 

Cards 20, 21, STEP (7,J), etc. 
& 22 

Card 23 

Card 24 

Card 25 

Card 26 

Card 27 

Card 28 

NUMRUN 

NUMTST 

DA(N,I), 1= 1, 15 & ST(N, J) 
J=1,15 

IX(N,K) K=1,8 

VEL(N, J) J= 1 ,8 

Q(N), T(N), DX(N), S(N) VIS(N), 
K2(N) 

ForInat 

7FI0.4 

6Fl O. 4 

6FIO.4 

15 

IS 

15AI, 15AI 

8Il 

8FI O. 4 

FIO.4, FIO.4, FI0.4 
·FI0.6, FIO.4, 
FI0.4 

Example 

0.0, 0.0, 3.67, 3.50, 
0.0, 0.0, 0.0 

Comments 

Any horizontal width at the bottom of the stream 
bed at the cross-section stations within any 
test reaches, that is 0+00 to 1+50, every 25 
feet. 

0.6, 0.432, 0.381, Channel geometry at first station, 0+00. The 
0.30, 0.432, 0.551, depth between levels (STEP) and the side 
etc. slopes between levels (LEFT and RIGHT) are 

read in. The levels being formed by a hori
zontal plane moving up from the bottom and 
stopping at each change of channel geometry. 

length, slope, slope, Channel geometry at second station, 0+25. 
length, slope, slope •• 

Channel geometry at third station. 0+50. 

" fourth station, 0+75. 

" fifth station, 1+00. 

" sixth station, 1+25. 

" seventh station, 1+50. 

- - - -I Number of times cards 24 through 28 are repeated 
for different tests. 

.. -- -I Number of tests to be listed on the same page 
(1 to 3). 

12/6/74 1 +1 0 to 0+50 First 15 spaces for test data and second IS spaces 
for stations involved, both for test N (I to3). 

--345--- Any value indicates the 25 foot cross-sectioned 
stations within the test reach, IX(N, I) is 0+00, 
IX(N, 2) is 0+25, etc. 

-, -,2. OS, 2.05, 2. OS, Velocities at 25-foot stations within test reach. 

~~~;: 4.5, 8.90, 0.017, Discharge, temperature, dispersion coef., slope, 
1.661, 525.0 kinematic viscosity (xl 05), reaeration coef. 

(sec -I x 105) for test N. 



VARIABLE DEFINITIONS FOR PROGRAM D. 

Variable Definition 

A(J) 
Average cross-section area (ft2) of the test reach 

. for test J (J = I, NUMTSTL 

ADJ 
Temperature adjustment factor added to predic
tion equations. Has the form (l.0241)(T-20). 

AREA (INDEX 3, INDEX) 
Cross-sectional area (ft2) at 25-foot station 
INDEX for test INDEX 3. 

AVEMD(J) 
A verage maximum depth (ft) of the test reach for 
test J. 

BASE (I) 
Width (ft) of a horizontal section at the bottom of 
25-foot station I (if no horizontal width then equal 
to zero). 

D(K) 
Average hydraulic depth (ft) for the test reach for 
test K. 

DA (N,I5) 
Dimensional heading with 15 spaces for the date 
of test N. 

DX(N) 
Average dispersion coefficient (ft2/sec) for the 
test reach of test N. 

E(K) 2 
Average energy dissipated per unit mass (ft I 
sec3) for the test reach of test K. 

EQUA(N,K) 
Reaeration coefficient as predicted by equation N 
(not the same numbers as in literature review) 
with data from test K. 

F(K) 
Average Froude Number for the test reach of test 
K. 

H (INDEX 3, INDEX) 
Maximum depth (ft) at 25-foot station INDEX for 
test INDEX 3. 

INDEX 
Integer coding for 25-foot stations. 1 is 0+00,2 is 
0+25, 3 is 0+50, 4 is 0+75, 5 is 1 +00, 6 is 1 +25 
and 7 is 1 +50. 
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Variable Definition 

INDEX 3 
Integer coding for the test number. There can be 
1, 2 or 3 tests per program loop, number desig-
nated by NUMTST. . 

IX (N,K) 
Integer coding with any value above zero indicat
ing 25-foot station K (numbers related to station 
the same as described by INDEX) is within the 
reach of test N. Value for IX (N, 8) indicates test 
is from laboratory flume. 

K2(N) 
Measured reaeration coefficient (real) for test N 
in terms of the natural logarithm (sec-1 x 105). 

LEFT (K, L) 
Slope of north side of the stream at 25-foot station 
K between level L and the level below it. 

NUMRUN 
The number of sets, of 1 to 3 tests each, in the 
data deck. 

NUMTST 
The number of tests within the data set. 

P(J) 
A verage wetted perimeter (ft) of the test reach 
of test J. 

PERT(J) 
The number of 25-foot stations within the test 
reach for test J. 

Q(N) 
The measured discharge for test N. 

R(K) 
A verage hydraulic radius (ft) for the test reach of 

test K. 

RIGHT (K,L) 
Slope of the south side of the stream at 25-foot 
station K between level L and the level below it. 

RN(K) 
Average Reynolds Number for the test reach of 
test K. 

S(N) 
Measured slope (ft/ft) for test N. 

ST(N) 
Measured slope (ft/ft) for test N. 



Variable Definition 

ST(N,15) 
Dimensional heading with 15 spaces for the end 
stations of test n. 

STEP(K,L) 
Distance (ft) between level L and the level below 
it at 25-foot station K. 

SU(K) 
Average shear velocity (ft/sec) for the test reach 
oftestK. 

T(N) 
Measured temperature (OC) of stream for test N. 

TA(N) 
Cross-sectional area between level N and the level 
below it at 25-foot station INDEX as transferred 
to subroutine CROSS. 

TOP (INDEX 3, INDEX) 
Surface width of stream (ft) at 25-foot station 
INDEX during test INDEX 3. 

TT(N) 
Stream width (ft) at level N at 25-foot station 
INDEX as transferred to subroutine CROSS. 
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Variable Definition 

TWP(N) 
Wetted perimeter (ft) of stream below level N at 
25-foot station INDEX as transferred to subrou
tine CROSS. 

VEL (N,J) 
Velocity at 25-foot station J for test N. 

VIS(N) 
Kinematic viscosity (ft2/sec x 105) of stream 
during test N 

U(J) 

Average velocity (ft/sec) for the test reach of 
test J. 

W(J) 

A verage surface width (ft) for the test reach of 
test J. 

WP (INDEX 3, INDEX) 
Wetted perimeter (ft) at 25-foot station INDEX 
during test INDEX 3. 



Program. n listing. 

C PROGRAM II - EVALUATION OF' HYDRAULIC PARAMETERS 
C FORTRAN 

REAL LEFT 
REAL K2 
DIMENSION CAf3.1S1. ST(3 .151. IXI3.101. T( 3J. OX(3), S(3), VIS.]', 

21<2(3J, A(3), AV£MO(3" lH3h WI31t PI]J. PERT(3), RC!I. 0'-31. SU.3 
3), Ff3Jt RN(3). (13). Ef1UAt25.3J 

COM M ON B AS E I 10 ) • ST EP 11 0, 10 ) • L E F'T (t 0, 10 h R I Gt T I 10 .1 0 1 • A RE A. 3, 10 ) • Q ( 

23 J • VEL ( 3 .1 0) • H C 3 , 1 0) ,T OP C3 .1 0 J • W P I 3, 10 J 
C READ IN CHANNEL GEOMETRY 'A T STATIONS 1 THROUGt 7 

READ( 5.50) (BASE II), I=1.7, 
50 FORMATI7FI0.~J 

REAOIS.52) (STEP(l.Jl .LEFT(l.J) ,RIGHTrl.J), J=1 ,6) 
52 FOR~ATr6FI0.4) 

REAOf 5.52) f STEP C 2,K) .LEF T( '2. KJ ,RIGHT (2 ,KJ. K =t .6) 
PEA 0 ( S , S 2 J (S T E P f 3 • L) , L EF T ( 3. L) ,R I G H T f 3 , L ), l =1. .6 J 
READ(S,52) rSTEP(4,MJ .lEF'T(4,M) ,RIG4T14 ,HJ. M=t ,6J 
P.EAOf5,52J ISTEP«S,N) ,LEFT(5.N) .RIGHT'S ,N). N=t.6J 
REA 0 , 5 • 5 2) (S T E P « 6 , I, , L EF T ( 6, I) , 11 I G HT (6 ,r). I =1 ,6 , 
READ(5,S2JISTEP(7,J) .LEFT(7.JJ.RIGHT(7.J). J=1.6) 

eRE A 0 IN THE N U H B E R 0 F SE TS, 0 FIT 0 3 TE ST S E~ CH. I N 0 AT A DE C K 
REAOC5.59)NUMRUN 

59 FORMATCIS) 
DO 400 JACK=l,NUMRUN 

C SET INITIAL VALUES EQUAL TO ZERO 
DO 58 IJ =1.3 
DO 58 LM=t.8 
IX (IJ. LM )=0 
VElrIJ.LH)=O.O 
AREA( IJ, LM J=O.~· 
HfIJ.LM'=O.O 
TOPfIJ,LM)=O.O 
WPfIJ,lMJ=O.O 

58 CONTINUE 
C READ IN THE NUMBER Of TESTS IN THE SET '1. 2. OR 3 J 

READ(S,S9)NUHTST 
DO 10 N=l,NUHTST 

C READ IN TEST OATE AN 0 ST AT IONS INVOl VED FOR fA Qf TEST N 
READ'S .60) (DA(N.I). I-=1,15 Jt (STrN.J). J=1~ 15) 

60 FO~MAT(15Al,ISA1J 

C READ IN NUMBERS OF CROSS-5[CTIONS WITHIN TEST REACH FOR EACH TEST N 
REAO(S,62JfIX(N,K). K=I.8) 

£2 FORMAT' ~Il J 
C READ IN VELOCITIES AT CROSS-SECTIONS- WITHIN c:sr REACH FOR EACH TEST N 

REAO(S,64)(VELtN.JJt J=1.8J 
64 FOQHAT'8rlO.4J 

C ~EAD IN 01 SCHARGE, TEMPE RA TU RE. 01 SPER SION r. oc r-•• SLOPE. K INEHAT Ie 
C VISCOSITY, AND REAERATION COEF. FOR EACH TES T N 

PE AD ( 5 ,66) Q (N) ,T ( N " ox ( N h S HI) ,v IS ( N) , K2 (N J 
66 FORHAT(FIO.4.FIO.4,FIO.IJ .FIO.6 .FlO.4 ,FW.4 J 
70 CONrINUE 

C CALL CROSS FOR EACH CROSS-SECTION. LH. DURING EACH TEST, YJ 
00 75 IJ =1. NUMTST 
DO 7S lH=l, 8 
IF (IX(IJ.LH).GT.OJ CALL CROSSIIJ,lH' 

75 CONTINUE 
C SET INITIAL PARAHETER VALUES TO BE ZERO 

DO 76 N=1.3 
A(NJ=O.O 
AVEMD (NJ =0.0-
U( ~n =0.0 
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WINJ=O.O· 
PIN.=O.O 
PERTfN'=O.D 

76 CONTINUE 
C HAKE FIRST GROUP OF PARAMETERS THE SUM OF TH E SAHE PARAMETERS AT EACH 
C CROSS-SECTION WITHIN THE TEST REACH 

00 85 J= 1, NUHTST 
00 85 H=I.8 
IF (IXfJ.HJ.EG.O' 00 TO 85 
A(J)=AtJJ+AREAfJ.H' 
UfJ'=U'JI+VELfJ.MJ 
AVEMOfJ'=AVEHDfJJ+HfJ.H, 
W(J'=WfJI+TOPIJ.MJ 
P(JJ=P(J'+WPIJ.H) 
PERTeJI=PERTfJI+I.0 

85 CONTINUE 
C MAKE FIRST GROUP OF PARAMETERS THE AVERA OC 0 r- THE CROSS-SECTIONAL 
C VALUES BY DIVIDING 8Y THE NUMBER OF CPOS S- SE a IONS WITHIN THE TEST 
CREACH 

00 87 J=l.NUHTST 
AIJ'=AfJ'/PERTIJJ 
U(J'=UfJJ/PERTfJJ 
AVE~OfJ)=AVEHO(JI/PERTIJJ 

WIJ)=WfJI/PERTfJJ 
PfJJ=PfJ)/PERTfJ) 

87 CC'NTINUE 
C (V ~LUATE SECOND GROU P OF PAR AHETERS USING FI I!; T GROUP AND ADDITIONAL 
C 0 A TAR E A 0 IN 

00 90 K=I,NUHTST 
R(K)=AfK)/P(K) 
o PO = A (K II W (K) 
surK'=S~RTf32.2.R(KJ·S(K)1 
F ( K ) = U « K , I S Q RT ( 32 • 2. D (K) J 
RNfK)=urK •• RrK./VISIKJ 
((K)=UfKJ.S(K).3Z.2 

C LIST HYDRAULIC PARAMETER VALUES 
90 CONTINUE 

IF (NU H T ST • F.: Q • 2) GO TO 1 00 
IF' N U H T ST • E Q • 3. GO TO 1 05 
WRIT£f6.95JIDA(1.I), 1=1.151 

95 FORMATflH1.31X.15Al) 
tJRITE(6.97J(ST(1.1)' 1=1 ,15) 

97 FORMAT(~X.'PARAH[TER·.17X,lSAl) 

GO TO 110 
100 WRITE(6,101)(DAIl.1J. I=I.15hIOAI2.J) • ..1=1.151 
101 FORMATflHl.3IX,15Al. IX .ISAl) " 

W P. I T E ( 6, 10 3 J (S T I I, I J. 1= 1, 15 " (S T I 2, J J • J:: 1. 15 ) 
103 FORMATC~X. 'PARAHETER',17X. 15Al ,IX, 15 Al J 

GO TO 110 
10 5 W R I TEl 6, 10 6 J , 0 A ( 1 , I J. 1= 1, 15 ). (0 A I 2, J). J= 1. 15 » • • 0 A ( 3. K I. K = 1. 15 , 
106 FORMAT( IHI ,3IX.15Al, IX .15Al, IX .1SA!) 

WRITE(6.108JCST(1.IJ, I=l,lSh'ST(Z.J), J=I.15JtfST(3.K), K=1tlS) 
108 FORHATf '.x, 'PARAMETER '. 11 X, I5AI.l X. 15Al ,1 x. 1'5 At J 
110 WRITEf6,lI1) 
111 FORMAT(2X. ' ••• .,. •• * ................................................. . 

2·.·.· .. ·.··.·.· .••.•.• ', 
WRITE(G.114)(TfIJ. I=l,NUMTST) 

114 FORHAT(lHO.IX.'STREAH TEMPERATURE'.l1X,FIOe4 .6X.FI0.'hGX,FIO.4J 
WRITE(6.11S) 

115 FORMATe4x.'(T=OEGRFES CENTIGRADE)') 
WRITE (6, 1181 (VIS' J), J=1.NUMTSTJ 

lIB FORHATflHO,lX.'KINEHATIC VISCOSITY X 10 •• 5', ZX"Fl0.4 .I6X,FI0.lf,6X.F 
210.4·1 
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WRITE 16. ll9) 
119 FORHATfIfX.' (VIS=FTXFT/SECI') 

WRITEI6.122JCSIKJ, K=l,NUHTSTI 
122 FO RH AT ( 1 HO .1 x. 'SL 0 PE • • 24 X, FlO .... 6X .F 10 .If .6 " F1 0." 1 

WRITE (6.123. 
123 FORMAT(4X,'(S=FT/FT)') 

WRITE (6,126) I WIt J. L=1 .NUHTSTI 
126 FOR""AT 11 HO .IX. 'SUR F~ CE W 10TH'. 16 X. F1 O. 4t 6X F 10 ... ,6 X. F1 0.41 

WRITE 16.1271 
127 FORHATf4X,'(W=FTJ'1 

WRITE (6.128) (P IL J. L=t ~NUMTS TI 
128 FORHAT(lHQ,IX, 'WETTED PERIMETER' ,l3X .FlO.4 t6 X. FlO .... 6X ,FlO'" 1 

WR I TE 16 , 129 1 
129 FORMATI4X.'CP=FTI'1 

WRITE (6,130) (ArM J. H=1 ,NUMTSTJ 
130 FORHA T (1 HO ,IX. 'eRO SS -SEC TIO NAl ARE A' ,9 X, FI 0. 4.6)( ,FI0.4 .6 x. FIO."I 

WRITE (6,1311 
131 FORMATf4X.'IA=FTXFTJ') 

WP.ITE(6.131f)fD(NJ, N=l,NUMTSTJ '" 
134 FORMATflHO,lX, 'HYDRAULIC O£PTH', 14 X, FI 0. 4, EX ,F10.4.6 X, FIO.4) 

WR IT E I 6, 13 5 ) 
135 FORHATC4X,'(O=FTJ') 

WRITE(S,138)(RflJ, I=l,NUHTSTJ 
13e FOR"'AT'lHO,lX,'HYORAULrc RAOUIS',13X,FID.If t6X,F10.4,6X,FlO.IJI 

WRITE(S,lJ9) 
139 FOPHATf4X,"R=FTI'J 

WRITE (6,142) (OX (J), J=I,NUHTST J 
142 FORMAT (1 HO ,IX, 'DIS PERSION COEFFICIE"NT' ,7 X, F1 0.4, 6X ,F 10.4 ,6X,.r=1 0.4) 

WRITE(6,143) 
143 FORHATf4X,'COX=FTXFT/SECJ'J 

WRIT[(6,144)CQCH), "-=t,NUHTSTJ 
144 FORMATflHO,lX,'OISCHARGE',20X,F10.4.6X rFI0.4 ,6X,F10.41 

""RITE (6,145) 
145 FO~HAT(4X,' (a=FT •• 3/SEC) 'I 

WRITE (6.14£) (UI KJ. K=t ,NUHTST) 
146 FORM AT (1 HD, 1 X. 'YE LOCIT Y' ,21X .FI0.4 ,6 x. Fl o. 4, 6X ,FIO.4 1 

WRITE (6.147) 
147 FOR~ATf4X,'(U=FT'SEC)'J 

WRITE (6.150) (SU IL ), L= 1, NUHTST J 
150 FORHAT(lHO,lX. 'SHEAR VELOCITY' ,15X .FIp.4.6 x. Fl 0.4, 6X ,FlO.4 1 

WRITE (6.1511 
151 FCR~AT(4X,·(U.=FT/SECJ·J 

WRITE(6.154)fFCMJ, M=l.NUHTSTI 
154 FORMAT(IHO,lX,'FROUDE NUMBER ("{J/SQRT 132.2H)' .IX.F10.4.6X ,FlO'" ,6X, 

2FI0.4 ) 
WRITE (6.1551 

15 5 FOR~f AT (4 X, ' IF=D IMENS IONLES S) 9) 

lr.'RITE(6.158lfRNfN). N=l,NUHTSTJ 
15 8 FO R HAT « 1 HO ,1 X , • R E Y NO LOS N UM B E R /1 O •• 5 " ~X ,F D .,. .6 X it FlO. 4. 6 X ,F 10 .4 ) 

WRITE(6.159) 
159 FORMAT(4X,'(RN=DIHENSIONLESSJ') 

WRITE(6.162JfEfI), I=I,NUHTSTJ 
162 rOR~ATC1HO,lX. 'ENERGY DISSIPATEOJUNIT MA SS ., 2X ,FIO.4 ,6 X,FI0.4t6X ,F 

210.4 J 
WRITE (6. 16 3J 

163 FORMATf'lX.' (E=FTXFT/SEC •• J J' J 
C CALCULATE REAfRATION COEFFICIENT FROM VARIOU S PREDICTION MOOELS 

00 310 K=l,NUHTST 
AD J= 1.02 III •• ( T ( K ) - 20 ) 
EQUA( 1.K ,= f 5.02S.U (K J*.O .969/0 rK ' •• 1.6 73). NJoJ 
EQU A (2 ,K J= I 24.66. E C K» •• 0 .4 081D (K J. *0 .6 6) 
E"QUA(3.K,=f3.659.0XtK) •• 1.321/0IK) •• Z.32J 
E QUA ( ,. ,K »= flO. 90 • U C K J •• 0 .7 3/ D ( K) .. 1. 15 J • AD .J 
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EQ U A f 5 • K ) = f 9 .41. U I K) •• O. 67 10 I K J •• 1 .8 5 J • A D J 
[QUAr6,K,=r3.3.UrKJ/DIKI •• 1.33) 
EQUA(7,KJ=f!.739.U(KI/D'KJ.·1.50).~DJ 

EGUAI8,KJ='Z.44.U'Kl/D'K) •• 1.50'.AOJ 
EQUAf9.KJ=r4.74 .. rUIKJ/DIKJ ) •• 0.85J.A~J 
EGUAfl0,KJ=(14.21.0X(XhCUfKJ/DIKJ J •• l~3J.~D,J 
EQUAfl1.K)=(1.296.DX(KJ/D(KJ •• Z),.AQ~ 
[GU AI 12. K) = (18. 5,S. SU (K'JI 0'1 K') ,. AOJ 
EQUA (13, K'J =« 10. eo. fl.0+F C K) .'-0.5 h Sf) (K' JI Of K~ ).ADd', ' 
[Q U A C 1 4. K) = « Et • 7 Jj • U f K ) •• 0 .6 07 In f K J - -I .6 89 ) • AD ,J. 
(QUA f15, KJ =( 46,.OS.Uf K) •• O. 413.,S(K' .,.O~ ZT 31 or KJ •• 1. 408) .AO" 
EGUA 116. K) = f 1089.0 .SU (t<) •• 31 IU (K h .2*0'''0 J J'. AOJ ' 
[G U A C 1 7. K) = f 48 • 0 • ( 1 • 0 + O. 17 • F ( K J • • Z ) • IS f K J • Of K I J •• 0 .3 75 /0 I K J) 
[QUAI 18. KI =( fK21K J -60.0.60 .00:24.0) If 2. 3:13*10.0 •• 5)) .ADJ 
CA=1.0+FfKJ •• 2 
C4=0.9+FrK') 
FD=9.68 
B=O.97G+O.0137.(30-Z0J·~1.S 

[0=30.0.SCK).1000.0.UCKt 
x = ( B • EO- .0 .1 25 ) 1 f 0 I K J • e4 ,.. 1 • 5 ) 
fQ U A 11 9. K J =0.12. C A .F O. «E D- .0 .375 ). I C os H( X) ~ IN 4 ( X) ) I CD' K J • elf ."1. 51 
E QUA f Z O. K) = f 25 • 7 • f ( K .. *0 .5 /D ( K JJ .A 0 J 

310 CONTINUE 
C LIST VARIOUS PREDICTION ~OOELS AND VALUES 08 TAINEO USING THEM 

WRITE(G.320' 
320 FORMAT(IHl.30X.'RE:AERATION COfFFICIENT ... S - K2 (/DAY - BASE 10)') 

WRITE (G. 322' 
322 FOPMAT(41X,'ADJUSTEO TO 20 OEG. CENT.') 

WRITEf6,324' 
324 FORHATf30X.' •••••••••••••••••••••••••••••• 't ..... * •••••••••••• I 

IF (N U M r ST • E Q • 2 J GO TO 3 30 
IF fNUHTST.EQ.3) GO TO 335 
W R I T [ ( 6 , 32 I; ) ( 0 A ( 1. I,. 1= 1. 15 J 

326 FORHAT (4 x. 'REFERENCE AND', 15 x. 15 Al ) 
WR1TE(6,327)(ST(I.IJ. 1=1.15' 

321 F'ORMAT (6 x. • EGUATTO N9 .16X ,15A II 
GO TO 3"0 

330 WRITE (6,331) fDA (1. IJ, 1'= 1.15" fOAf 2. JJ , J:: 11 15 J 
331 FORMAT (4 x. 'REF£REN C[ AND', 15 x. 15 Al .1 x. 15 Al J 

WRI TE (G. 332' (ST (1, I), 1= 1, 15 J. (S T ( Z. J), J;: 1. 15 I 
332 FORHAT« 6 x. '[QUATIO N' ,16X .15A 1. IX .15A I' 

GO TO 340 
335 WR1TEf6.33GJ(OA(1.IJ. 1=1.15), (DA(2.J), J;:h 15',(DA(3.Kl. K='h151 
336 FOR"'ATf4X.'REF£RENCE ANO'.15X,lSAl,lX.lSAl ,lX.15Al) 

WRITE(6.337J(ST(1.IJ. I=I,15JtfSTf2.J), J=1.15J,(ST(3.KJ. K=,t.lSJ 
337 FORHAT(6X. '[QUATION' ,16X .15Al,IX,15Al.1X.I5\1) 
340 WRITE(G.3"1' 
341 FORHAT(IX.' .............. * ........... '.6X,' •••••••••••• ·.qx.'*.· •••• 

2 .. - •••• '. 4.X • • ............. '" " 
WRITE (6,345) 

34 5 FOR HAT ( 1 X. • CH U R C H IL LAN DOTH ER S «1!l6 2. • J 
WRITE(G.346J(EQUA(I.I', I=I,NUMTSTJ 

34 G F' 0 R MAT ( 3 )(, '5 .0 26 ( U •• o. 96 9) I (H* .1 .6 13 J ' ,1 X. Fl o. 2. 6 X , f' 10 .2 • G X, FI 0 • 2) 
WRITE(6,347' 

3" 1 f:' 0 R r1 AT ( 1 HO , ' DO B BIN S (1 96 3. 1 96 '+ , 1 96 5 J .) .! R I T [ ( 6, 34 8 ) r E QUA ( 19 • J" J =t , N U M TS T' 
311e FORHAT(2X.'S[E LIT. REVIEW F~R EGUATION- .FD.2.GX.FlO.2.6X,FlO.2J 

WRITE(6,3491 
349 rORHATf1HO,'KREf'IKEL AND ORlOB (1963)', 

WR1TE(6.350J(EQUA{2.J), J=l,NUHTSTJ 
3S0 rORMATI3X. '2".&'51£ •• 0.408) IfH •• 0.66) '. 2X,F D .2 ,6X. flO. 2. 6X.F D.2) 

WRITE(6.351)IEQUA(3,K). K~l.NUHTST) 
351 FOR HAT r l x. ' :5 .659 lOX •• 1 .3 21 »1 f H .v: 2. 32 J' .1 x, n o. 2, 6X • F 10 .2 .6 x. FI' 0 • 2 J 
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WRITE r 6,35 'l' 
354 FORHATflHO.·OllENS AND OTHERS (1964 J' J 

WRITE(6,35SJCEGUAC4,LJ. l=l,NUHTSTJ 
355 FORM AT (J X, '10.90 (U.* 0.73 )1 r H •• 1.75 J' ,3 X, Fl 0. 2, 6X .F 10.2 ,6 X. F"1 0.'2 J 

WRITE(6.3561(EaUA(5,HJ. M=1,NUHTSTJ 
356 FORHAT(3X,'9.41(U •• O.67J.I(H •• l.85) ',4XtFlOel. .6X.FIO.2.6X,FI0e2J 

WRITE (6.359 J 
359 FORMAT r IHO, 'lANGBEIN AND OURUH r 1967 .. ) 

WRITEr6.360JfEQU~r6,N). N=I,NUMTSTJ 
360 F"ORHAT( 3 x. '3 .3UI r H** 1.33 I' .13X .FIO.2 ,6 X. F10. 2. 6X ,F 10.2) 

WRITE (6.363) 
363 FORMAT(lHO,'ISAACS AND GAUDY (1968)') 

WRITE(6.364)(EGUA(7,IJ, I=I.NUHTSTJ 
364 FORMATC!X, '3.739U/(H •• l'.5) " 1?X.FIO.2. 6X.F D.2 .6X,FI0.2J 

WRITE(6,365J(EQUA(8.J). J=I,NUHTSTJ 
365 FCRHAT.3X. '2.440U/IH •• 1.5) ',12X.F"10.2. 6X.F n.2 ,6X.F"lO.2' 

WRITE (6.366 J 
366 FORHATf1HO.'CADWALLADER AND MCDONNEll 11969) 'I 

WRITEf6.367).EQUA(20 ,Kh K=1,NUHTsn . 
367 FORMAT(3X, '25.7'[.-0.5 )/H' .13X,FlO.2,6 )e.Fl 0. 2. 6X.FIO.2 J 

WRITE (6,368 J 
368 FOR'1AT'lHO.'NEGUlESCU AND ROJANSKI (1969 J' J 

WRITE(6.369)(EQUA(9,KJ, K=I,NUHTSTJ 
3 r; 9 FOR MAT' 3 X t ' 4 • 7 4 (U I H J •• o. 85 '. 12 x. FlO. 2, 6X ,F D .2 ,6 X. FlO. 2) 

WRITE'6.370)(EGUA(IO .lh L=l.NUHTsn 
370 FORHAT( 3X, 'I. 423DX (U IH h .1 .63' .9 x. Fl O. 2. 6X .£ lD.2 ,6 x. F1 0.2) 

WRITE (6,373) 
373 FORMAT(IHO.'THACKSTON AND KRENKEl (19691') 

WRITE (6.374) (EGUA (11 .M h H=1 ,NUHTS T) 
374 FORMATC!X, '1.2~6DX I( H •• 2 J' .13X .FIO.2.6 X, Fl 0. 2. 6X .FlO.2 J 

WRITE(6,375)'EGUA(12.Nh N=-1,NUHTSn 
3"75 FOR~fAT(3X, '18.58U.I'H',18X. FID.2. 6X ,FIO.2 ,6)', Fl 0.21 

WRITE (6, 376)' EGUA (13.1), 1=1 ,NUHTSTI 
376 FORMATr3X, ·10.8(1+F •• O.5 HU./HJ' .1X.FIO.2, EX .FI0.2 ,6X,F10.2J 

WRI TE (6, 37 9) 
379 FOfH~AT'lHO.'BENNETT AND RATHBUN (1972' 'J 

WRITE (6. 380) (EQUA (14 ,J It J=1.NUHTSTI 
380 FORHATf3X, '8.76(U*-O.607 J/(H**1.689) '. 2){.FD .2,6X,F10.2.6X,FID.21 

WRITE'6,3S1)IEGUAflS,K). K=1,NUHTSTJ 
381 FORHATI1 X, '46.05« U **.If 13 )( S ••• 27 3) /H •• 1. lfO 8' ,F 7.2, 6X .FIO.2.6 X. F1 O. 

22) 
WRITE (6, 38'l) 

~ 8 4 F" 0 R MAT r 1 HO • • l A U (1 97 2' .) 
WRITE (6. 385 J r £I.~UI' (If. t lit L=t ,NUHTS T) 

385 FORMAT(3X. '1089(U. J •• 3/{ (U •• 2) (HU ',4X.F1O tIZ .6X,FIO.2,6X ,FIOel) 
WRITE(6,388) 

388 FORt1AT(IHO,'PARKHURST AND POMEROY (1972) 'I 
W R I T E ( 6, 389 ) ( £ QUA ( 17 , M J, M =1 ,NU H TS T) 

389 FORMAT(3X. '48 (1+0.17F •• 2 If (SUJ ••• 375 )/H' ,F9. 2. 6X.FI0.2 ,6X,FI0.'21 
WRITE(6,392J 

392 FORMATflHO,'HETHOD FORMULATED IN') 
W R I T E ( 6 • 393 ) ( E QUA ( 1 g ,N J, N =1 , NU H TS T) 

3~3 FORMAT(3X.'THIS RESeARCH PROJECT',6X,FlO.2 t6X,F10.2.6x.FlO.2J 
400 CONTINUE 

STOP 
END 
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SUBROUTINE CROSSIINDEX3.INOEX) 
REAL LEFT 
DIMENSION TT(10). TWP(10 h TAClO» 
COMHON BASE (10 J. STEP (10.10" LEFT (10.10 .. RIGH TI 10.10 J .A REA r 3. 10 It QI 

23' .VEL 13.10' .Hf 3.10) .TOP 13 .10' .VP (3.10 J 
IF (INDEX.EO.S' GO TO 208 
AREA( INDEX3. INDEX' =0 (INDEX 3' /VEL(INDrX 3. INOC X) 

C CALCULATE WIDTH. WETTED PERIMETER. AND AREA AT EACH LEVEL CREAlEO 
C BY A HORIZONTAL PLANE MOVING UP FROH THE STREA H FLOOR AND STOPPING 
C AT EACH CHANGE OF CHANNEL GEOMETRY 

TT (1 J=BASE (INDEX) +ST EP (INDEX.1 ./LEFT (I Jo.I) EX .1 J+ST EP f INDEX .1 J IRIGHT' 
2INOEX.1) • 

TVP( 1) =BASE (INDEX J +S QR T( IS TEP (INDE X.l ,It. EF T{ INDEX. 1 J J •• 2+STEPI IHOE 
2 X.l' •• 2) +S QRT (( STEP( INDEX. 1 J IPIGHT (INO EX .1 J) •• 2+STEP( INDEX.1 J •• 2» 

TA(l)=O.S.STEP(INDEX.IJ·(BASr(INDEXJ+TT(lJJ 
DO 200 N=2.5 
TT (N J =n (N-1 J +STEP (INDEX .N )/LEFT (INDEX .N J + sr EP I INDEX ,N J /R~GH T( IHOE 

2X.Nl 
TWP( N) =T WP (N-1 J +SQRT r , ST EPIINDEX .N J/ LEFT (IND EX • NJ , •• 2+ST EPI INDEX.N 

2 J •• 2)+ SORT ( (STEP (INDEX ,N II RIGHT 'INOEX, N) J • *2 +S TEP (INDE X,~! ... 21 
T A (N J= T A (N-l »+0. S. ST EP (INDEX .N h (T TIN- I. +T TI N' J 

200 COttTINUE 
C PLACE ACTUAL AREA AT EACH CROSS-SECTION IN BETWEEN THE LEVELS ABOVE 
C AND BELOW ITS VALUE 

IF IAREA(INDEX3.INDEXJ.LE.TAI1J) GO TO 210 
IF (AREA(INOEX3.INDEX).LE.TAf~J) GO TO 212 
IF (AREA(INDEX3,INDEX).LE.TA(3J) GO TO 214 
IF (AREA(INDEX3.INDEX).LE.TA(4JJ 00 TO 216 
IF (AREAIINDEX3.INDrXJ.LE.TA(5JJ GO TO 218 
If (AREAfINDEX3.INDEX).GT.TAfSU GO TO 220 

C CALCULATE AREA. DEPTH. WroTH AND WETTED PERI~ TER IF TEST IS FROM 
C LABORATORY FLUHE WITH UNIFORM CHANNEL GEOMETRY 
208 ARE AC INOEX3. INDEX) =0 (INDEX:n /VEL( INDEX 3, INOE X) 

HI INDEX3 .INDEX J=AREA (INDEX 3. INDEX) /8.0 
TOP(INDEX3.INOEXJ=8.0 
WP(INOEX3.INDEX)=2.0.HfINDEX3.INDEX)+8.0 
RETURN 

C CALCULATE MAXIHUM DEPTH, WIDTH AND WETTED PERIMETER IF ACTUAL 'AREA 
C LIES LOWER THAN THE FIRST LEVEL AREA OF CROS S-SECTION INDEX 
210 AA=1.0/LEfT (INDEX .1) +1.0 IR IGHT (INDEX .1 ) 

B=2.0.SASEfINDrX) 
C=-2.0.AREA (INDEX3 ,INDEX J 
H( INDEX3 ,INDEX )=(-B+$Q RT (B •• 2-4. a. AA.CJ) .If 2. O. A.) 
TOP C INDEX3. INDEX )=8A SE (INDEX )+H (INDE X3 .INO EX). AA 
UP (INDEX 3. INDEX) =BAS E (INDEX) +SG RT( (H (INDEX 3t IN DEXJ ILEf T( IN DE X,1) ). 

2 *2+H( INDEX 3. INDEX J *.2) +S QR T ( (H (INDEX 3, INDE Xl /RIGHT (IND EX .1') J •• 2+ .. 1 
3INDEX3.INOEX) •• Z) 

RETURN 
C IF ACTUAL AREA IS ABOV E FIRST LEVEL AND BELO U SECOND GO TO 212 
212 NO=2 

SUH=STfPfINDEX,lJ 
GO TO 222 

C IF ACTUAL AREA IS ABOVE SECOND LEVEL AND BELOW THIRD GO TO 214 
214 NO=3 

SUH=STEPfINDEX.1J+STEPfINOEX,2J 
GO TO 222 

C IF ACTUAL AREA IS ABOVE THIRD LEVEL AND BELOW FOURTH GO TO 216 
216 NO=4 

SUH=STEP( INDEX.1 )+STEP (INDEX.2 )+STEP(INOr.X.3' 
GO TO 222 

C IF ACTUAL AREA IS ABOVE FOI~TH LEVEL AND BELOW FIFTH GO TO 218 
218 NO=5 

SUH=STEP(INDEX,l J+STEP (INDEX.2 )+STEPfINDEX Ii5 J+STEP(INOEX,4 J 
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GO TO 222 
C IF ACTUAL AREA IS ABOVE FIFTH LEVEL GO TO 220 
220 NO=S 

SUM=STEP (rNDEX.1 J+ST EP (rNO EX .2 J +STEP (INO EX .:3 J+ST EPI IND EX .4 J +STEP (I 
2NDEX.SJ 

222 AA=1.0/LEFTfINDEX.NOJ+l.OIRIGHTIINDEX.NOJ 
S=2.0-TTrNO-1) 
C=-2.0* fAREAI INOEX3.INDEX) -TA rNO-1 JI 
SH=( -B+S QRT fB. *2-4.0 *A A* C) J/ (2.0 *AAJ 
HfINOEX3.INOEXJ=SH+SUH 
TOPf INO EX3. IND[X J = TT ( NO-l' +SH* AA 
WP (INDEX 3. INDEX J =r wp r NO!..l. +SQ RT f fStULE.f'T rIm EX .NO) J **2+SH**2 J+SQRT 

2 If SH/R!GHT« INDEX ,N OJ J. *2 +$ H* *2 J 
RETURN 
END 
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PROGRAM m: MODEL FORMULATION 
AND EVALUATION 

The major function of this program is to estimate 
the a and {J values in Equation 54 by the least-squares 
regression analysis of the logarithm of Equation 54 
using measured k2 values and associated hydraulic 
parameters. The measured k2 values read in are in 
terms of per day and are already adjusted to 20°C 
using the adjustment factor. 

66 

Also included in the program is the evaluation of the 
standard error of estimate in terms of per day and in 
percent, by using Equations 56, 57 and 58. These 
standard errors are calculated using each of the 
prediction equations cited in the literature review and 
Equation 54. To run four sets of data consisting of 29, 
9, 8, and 52 k?, values, respectively, required about 1.8 
seconds of execution time with 12 pages of printout 
including a program listing. 



~ 

Program. m data deck 

Card 1 

Card 2 
Card 3 
Card 4 

Variable 

NUMSET 

HEADI (N) N=l, 70 
HEAD2(M} M=l, 70 
NUM, RNUM, IQUE, NOS LOP 

Cards 5 to MK2(J), DX(J), U(J), H(J), 
30 (26 cards) S (J), T(J}, WEIGHT(J}, 

J=l, NUM 

Format 

IS 

70Al 
70Al 
IS, F5. 1, 215 

4Fl 0.5, 
F 10.7, 2F 10.5 

Example 

- - --1 

AUTHORS DATA (1975) 
NA TURAL STREAM 
---26-26.0, -, -, 

281.5, 36.5, 2.345, 
1.04,0.0173,9.0, 

I, 

Comments 

The number of data sets included in the data deck. 
One model is formulated from each data set. 
(The remaining cards in this example deck con
sist of one data set). 

Seventy spaces for heading describing data set. 
Seventy additional spaces for heading. 
NUM is the number of data points in the set.RNUM 

in the real value of integer NUM. IQUE is an 
index number. If it has any value the points in 
the set have weighted values. If it does not 
have a value the weight of each point is one. 
NOSLOP is an index number. If it has any 
value greater than zero the data points have no 
slope value given. 

Measured reaeration coef., dispersion coef., 
velocity, depth, slope, temperature and weight 
of value are read in for each data point in set. 
If WEIGHT and IQUE values are left blank, 
weight of each point is assumed to be one. 



Variable Definition 

ADJ 
~emperat~re adjustment factor added to --'predic
tion equatIOns. It has the form of (1.0241)(T-20). 

ALPHA 
The Y -intercept in the linearized form (Y = fJ X + 
log a) of the logarithm of the k2 prediction model 
with k2 being in terms of per second. 

ALPHA 2 
The Y -intercept in the linearized form (Y = fJ X + 
log a) of the logarithm of the k2 prediction model 
with k2 being in terms of per day. 

BETA 
The slope in the linearized form (Y = fJ X + log a) 
of the logarithm of the k2 prediction model (same 
for per day or per second). 

CK2(J,K) 
Calculated reaeration coefficient, k2 (day-1), for 
data point K using equation J (not the same num
ber as described in review of literature). 

DIFK(J) 
The sum of the squares of the differences be
tween the measured reaeration coefficient and 
the corresponding reaeration coefficient calcu
lated from equation J. 

DIFLK(J) 
The sum of the squares of the differences between 
the log of the measured reaeration coefficient and 
the log of the corresponding reaeration coefficient 
calculated from equation J. 

DX(N) 
The dispersion coefficient (ft2/sec) of data point 
N. 

E(N) 
. The energy dissipation per unit mass (ft 2/sec3) 

calculated from data of point N. 

ESUBP(J) 
The standard error of estimate in terms of percent 
for the reaeration coefficients predicted using 
equation J. 

ESUBS(J) 
The standard error of estimate in terms of days-1 
for the reaeration coefficients predicted using 
equation J. 

ESUBSL(J) 
The standard error of estimate using reaeration 
coefficients predicted using equation J which is 
converted to ESUBP (M) by an equation. 
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Variable Definition 

FN(N) 
The Froude Number as calculated from data of 
point N. 

H(N) 
The depth (ft) measurement for data point N. 

HEAD 1 (70) 
Dimensional heading with 70 spaces to describe 
the data set. 

HEAD 2 (70) 
Dimensional heading allowing 70 additional spaces 
and a second line to describe the data set. 

IQUE 
Integer coding with any value above zero indicat
ing that the data points have weighted values 
other than one. 

MK2(K) 
The measured reaeration coefficient, k2' in terms 
of days-1 and adjusted to 20° centigrade, of data 
point K. 

NOSLOP 
Integer coding with any value above zero indicat
ing that the data points have no slope values 
given. 

NUM 
The number of data points contained in the data 
set. 

NUMSET 
The number of data sets in the data deck. 

PARAX(K) 
The value of Dx/HU using data of point K. 

PARAY(K) 
The value of k2H/U using data of point K. 

PARAY2(J) 
The PARA Y value at point J multiplied by 105 for 
printout purposes. 

RNUM 
Real value of the integer NUM. 

S(J) 
The slope (ft/ft) of data point J. 

SU(N) 
The shear velocity (ft/sec) calculated from data of 
point N. 

SUM X 
Sum ofthe X(N) values as N goes from 1 to NUM. 



Variables Definition 

SUMXX 
Sum of the X(N)2 values as N goes from 1 to 
NUM. 

SUMXY 
Sum ofthe X(N) times Y(N) values as N goes from 
1 to NUM. 

SUMY 
Sum of the Y(N) values as N goes from 1 to NUM. 

T(J) 
The temperature (degrees centigrade) of data 
point J. 

U(J) 
The velocity (ft/sec) of data point J. 
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Varlables Definition 

WEIGHT(J) 
The weighted value of data point J (Le. data point 
N is actually a composite of B tests). If IQUE has 
no value the WEIGHT (N) is assumed to be one, a 
value does not have to be read in. 

WNUM 
The sum of the the WEIGHT (N) values as N goes 
from 1 to NUM. 

X(K) 

The value of log (Dx/HU) using data of point K. 

Y(K) 

The value of log (k2H/U) using data of point K. 



Program III listing 

C PROGRAM III - MODEL :FORMULATION AND EVALUATrON 
C FORTRAN 

REAL MK2 
DIMENSION HEA01(70J, HEA02 (70). HK2(lOO), DX f1 DO), U(1ool. H'flOO), 

2S(100). T(100), PAJ?~Y(lOO). PARAX(IOO), Y( n 0). X(IOO). fNfl00J. 
3E(100). CK2(30,100), OIFK(30J, OIFLK(30), FSU8S(30)' E.SUBSLr31Je 
4ESUBP(30h WEIGHT(100), SUflODh PARAY2(lOOJ 

C READ IN THE NUHBEq OF DATA SETS TO BE SEPERA TELY EVAlU:ATED 
READ(S.90INUHSET 

90 FORHATe ISJ 
DO 400 I J=1. NUHSET 

C TWO CARDS. 70 SPACES EACH FOR HEADINGS 
READfS.l0S)fHEADICN',. N=1.70J 
REAOfS.l0SJ(HEA02Un. H=1.70) 

lOS fORHATf70AIJ 
C READ IN NUMBER Of POINTS IN DATA SET fINTFRGER AND REAL). A VALUE FOR 
C IQUE INDICATES SOME POINTS ARE WEIGHTED. A VALUE FOR NOSLOP INDICATES 
C THE DATA SET HAS NO SLOPE VALUES 

REA Of S ,100) NUH ,RNU,.,. 1Q UE .NOSL OP 
100 FOR~ATtI5.FS.l,215) 

C READ IN MEASURED REAERATION COEF., DISPERSION COfF •• VELOCITY, DEPTH. 
C SLOPE, TEMPERATU~E AND WEIGHTED VALUE OF POINT (IF IQU£=O THEN WEIGHT 
C ASSUMED TO BE ONE. NOT NECESSARY TO READ IN' 

READ(S.1101fHK2(J) ,0XfJ) ,UtJhHfJJ .SeJJ.TeJ) ,WEIGHTfJ), J::l.NUHJ 
110 FORHATr4FIO.5.FIO.7.2FI0.S' 

SUMX=O.O 
SUMY=O.O 
SUHXY=O.O 
SUMXX=O.O 

C EVALUATE KH/U AND OX/HU PARAMETERS AND FIND COMBINATION SUH VALUES 
00 150 K=1.NUH 
PA RAY (K' =( MK 2 eK' 1864 00.0 h H (K) /U C K J 
PARAXtK)=DXCKl/fUlK)*HfKJI 
Y(KJ=ALOGIO(PAPAYrK) J 
XtK)=ALOG10rPAp.AX(K) J 
SUMX=SUHX+XCKI 
SUMY=SUHy+yeK) 
SUMXY=SUMXY+XfKJ·YfKJ 
SUMXX=SUMXX+X(K)~.2 

150 CONTINUE 
C EVALUATE ALPHA AND BETA mOM LOGIKWUJ ::.ALPHA-tBETA*fLOGCOX/HUJ) 

BETA= f RNmh'SUHXY-SUMX* SUMY )1 (RNUH* SUHX x- SUHX •• 2) 
ALPHA=10.0 •• ' (SUMY/R:~UM) -BETA*SUMX/RNUMJ 
DO 200 N=l.NUH 

C CALCULATE ADDITIONAL REQUIRED PARAHETERS - SHt:AR VELOCITY. FRouor NUMB R 
C AND ENERGY 

SUfN)=SQRTf3202.HfN)~S(NJJ 

F'N (N) =U (N' /SQRT f 32.2 ~IH N JJ 
EfN)=UtN).S(NJ·32.2 

C C."LCULATE TEMPERATURE ItOJtJSTHENT FACTOR 
ADJ=1.0241·,dTfN)-20.0) 

C CALCULATE THE PREDICTED REAER~TION COEF. F"OR ~ ACH POINT USING ]HOSE 
~ EQUATIONS DISCUSSED TN LITERATURE REVIEW SECTION 

CK2(1,~)=(5.U2G.(U(N ) •• 0.969J/CHCNJ •• 1.673») *AOJ 
CK?(2,N)=(3.65~.(OXtN)·*1.321)/tH(NJ.¢2.32JJ 

CK 2 f 3, N) =f 24.66. ( E (N I. *0 .408 J/ C H 01 J •• 0 .G 6 t J 
IF (NOSLOP.GE.l) CK2(~,NJ=O.O 

IF (NOSLOP.GE.l) GO TO 160 
CA=1.0+FN(N).~2 

C4=0.9+FNfNJ 
F=9.68+0.054.(T(NJ-20~OJ 
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B=O.976+0.0137.(30.0-Tf~J) •• 1.5 
EO=JO.O*SCN)*UfN) 
PART='S.EO •• 0.12S' /'HCN) .C" •• 1.5 J 
CK2{ 4. N) =0 .12.CA-r -C ED'" O. 375) .( COSH (P ARTJ /5 INH( PART J ).If HIN) -Cf4 •• 1 

'Z.5 J 
160 CK 2( 5. N J =, 10.90.' U (N J - .0 .. 7 J) /( H (N) • *1. 15 J J .A OJ 

CK 2 ( 6. N J = ( 9 • 41* r U ( N J *. O. 67 J / f H « N h -1 .8 5 J J • flO .I 
CKZf7,N,=r3.3*UfNJ/'HfNJ**1.33') 
CKZ( 8.NJ =(3.053*U'NJ /'H'N) •• 1.5) '.ADJ 
C K 7.« 9" N J =, 3 • 739 • U ( N J / ( H { N) _. 1 • 5) J. A OJ 
CK2( 10.NJ=f2.44*UfNJ/(HfNJ •• 1.5' ).ADJ 
CK2 ( 11 .N J=, 25 .. 7* f E fN ). *0 .5 )1 (H r N , •• 1.0 JJ .A ru 
CK2(1Z.N)=4 .. 71f.UU(NJ/H(N) ) •• O.8SJ.AOJ 
CK Z( 13 .N )= 14.21* OX (N J. , ( Uf N J IH (N J) • -1.63" ) .10 J 
CK2(11f.NJ=f18.SS.SUfN)/HfNJ).ADJ 
CKZ(15.N'=1.296.(DXfN) IHfNJ •• ZJ*AOJ . 
CK2(16.NJ=10.8·(1.0+FNfNJ •• O.S)-(SU'N)~rNJ».ADJ 
C K 2 ( 1 7 • N J = ( 4 6. OS. ( U , N J *. O. 41 3) *, S ( N J •• o. 21 J) / ( H , N ) • * 1. l() 8» J • AD J 
C K 2 ( 18 • N ) = , 8 .. 76 .. rut N ) * .0 .6 07 J / r H ( N ) •• 1 .6 89 ) J • A 0 J 
C K 2« 19 , N ) = ( 1089 .0. f S U ( N J •• 3. OJ I ( (u un ".2 • 0 ) .. {H ( N) •• 1 .0 ) ) ) • A 0 J 
CK 2 ( 20, N J= r 48 .. C. '1.0+0.1 1. FN r N J •• 2 .0 ) • f f S( NJ .U (N) ) ... 0.37 5) / H (N J J 

C PREDICT REAERATION COEF. USING EQUATION DEVELOPED fROM FINDING AlP~A 
C AND BETA 

CK2f21,N)=86400.0*ALPHA.CDX(NJ •• SETAJ*(UfN, •• f1.D-DETAJ)/HfNJ •• Il. 
ZO-J.BETAJ 

200 CONTINUE 
DO 220 J=1.21 
DIF"KfJ'=O.O 
OtF"LKfJJ=O.O 
WNU!I1=O.O 

C EVALUATE THE SUM OF THE SQUARE OF THE DlrFERENCES AND THE SUH OF THE 
r SQUARE OF THE lOG DIFFERENCES. WITHOUT OR WI~ WEIGHTfO POINTS 

IF (IQUE.GT.l) GO TO 211 
00 210 K=t,NUH 
IF (C K 2 f J, K ) • L E .0 • 0 I GO TO 2 10 
o IF K « J ) = 0 IF K ( J J + ( CK 2 f J ,K )-H K 2 f K J J •• 2 
o IF l K ( J) =0 IF LK ( J J + I A l 0 Gl 0 ( C K 2 ( J, K) )- A lOG 10 (M K2 ( K , l ) *.2 

210 CONTINUE 
GO TO 213 

211 DO 212 K=1.NUH 
IF (CK2(J,K).lE.O.OJ GO TO 311 
D I FK f .J »= 0 I FK ( J) + WEI G H T f K J * ( C K2 ( J • K J- H K 2( K ) ) • ~ 
OIFlKfJ)=OIFlKfJJ+UEIGHTCKJ.(AlOGI0(CK2(J,K) J-AlOGIOfHK2(KJ) •• 2 

311 WNUM=WNUH+WEI6HTfKJ 
212 CONTINUE 

IF IIQUE.GT.l. PNUH=WNUH 
C CALCULATE THE STANDARD ERROR OF ESTIMATE PER DAY AND PER CENT 
213 ESUBSIJ)=SORT(OIFKfJJ/RNUHJ 

ESUBSL (J '=SQRT tor FL KIf J JI RNUH J ' 
E S U 9 P ( J) =1 00 .. 0 * (1. 0- 1. 0/10 .. 0 .* ES lIB S l ( J) J 

270 CONTINUE 
240 CONTINUE 
C lIST RESUl TS 

DO 285 J =1 .NUH 
PARAY2(JJ=PARAYfJ) *10 •• 5 

285 CONTINUE 
tJRITE(6,290) 

290 FORMAT(IHl.lOX,-NUMBER 9
, 5X."KH/U X 10 •• 5 '. 5C ,'OX/HU' J 

WRITE(E,29S)(I,PARAYZfI) ,PARAXfI), 1=1 .NUHJ 
295 FORMAT{lOX,I5,lOX.F602 ,1X,F6.2 J 

WRITE(6,300)fHEAOlflh 1=1,,70) 
300 FORMATflHl,9X.10Al) 

WRIT£(6,302JUI[A02fJ" J=1.10J 
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302 FORMAT r 1 OX .70A1J· 
WRITE (6. 30") 

304 FORH AT f 8 X. • ...................................................... . 

2.·.· ... ·· ....• ··) 
WRI TE ( 6. 30 G ) 

306 FORHAT(lOX.'[QUATI(H FROH REVIEW',5X,'STANOARO ERROR OF'.6X.esTAND 
lARD ERROR OF') 

W RITE 16, 308 , 
30S FORHATf13X,'OF LITERATlRE' .9X, 'ESTIMATE (pm DAY)' .5X. 'ESTIMATE CP 

2ERCENT)') 
WRI TE 16. 310) 

310 FORr-tATf lOX.' •••••••••••••••••••• ',5X ,' •••••••••••••••••• '. 5X,' ..... 
2·.·· ..•....• ·.·) 

DO 330 M=1,20 
IF (H.lE.IS) KEQ=H+10 
IF f M • G T .18) K E Q =H +11 
WRITEf6. 320IKEG,ESUBSIH) ,ESOBPI") 

320 FORHATI1HO,13X,'EQUATION·,lX,I2,14x,n.2.1 ac ,F7.21 
3:!O CONTINUE 

WRITE (6,335 )[SUBS( 21 It ES UBP f 21) 
3:!5 FOR'1ATfIHQ.13X,·EQUATION X' ,14X'F7.2. 16X. F1.2' 

W R IT E ( G. 340' 
340 FORHAT(lHO,19X,'EQUATION X CAN BE WRITTEN (KH/U)=AlPHA(OX!HU)· •• BE 

2TA ') 
WRITEI6,342) 

342 FOPHATf47X,'K AS PER SECOND') 
WRITE(6,345)ALPHA 

345 FOQMATrq7x,'WHERE ALPHA =',£10.'" 
WRITE(6,350JBETA 

350 FORMATr49x,'AND BETA =, .EI0.") 
C CONVERT Al PHA BAC K TOTE RHS OF X2 AS PER 0 AY 

AlPHA2=86400.0*ALPHA 
WRITE (6,352) 

352 FORMAT(lHQ,46X,'OR wITH K AS PER DAY') 
WRITE(6,354)AlPHA2 

354 FORMAT(S3X,'AlPHA =',ElO.4) 
400 CONTINUE 

STOP 
END 
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AppendixB 

Experimental Data 

This appendix contains the experimental data 
used to formulate reaeration coefficient prediction 
models and to evaluate existing models. The data 
include those obtained from the investigation of a 
natural stream (Table 2), a laboratory flume (Table 3), 
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and previous investigations (Tables 4 and 5) which 
have lent themselves to the model formulation in this 
study. The data from previous investigations, which 
had dispersion coefficient measurements, are only 
those of Negulescu and Rojanski (1969) and Thackston 
and Krenkel (1969). 



Table 2. Summary offield data from tests on Sum.m.lt Creek (k2 values adjusted to 200 C.) • . 
k2 D U H S T W Q 

x 

Test Date Stations 
- 1 

(day) 
2 

(it / sec) (it/ sec) (it) (It/ it) (oC) 
3 

(it) (it / sec) 

9/23/74 0+75 to 0+00 281. 5 36.50 2. 35 1.040 0.0173 9.0 12. 31 30.0 
9/26/74 0+75 to 0+00 118. 0 22.84 1. 79 0.886 0.0173 11. 5 11. 10 17. 6 

10/ 1/74 1+50 to 0+00 18.5 10.72 1. 62 0.787 0.0173 8.5 11. 20 14.3 

10/17/74 1+10 to 0+50 7.48 2.87 1. 37 o. 691 0.017 10.5 11. 51 10. 9 
ditto 0+50 to 0+00 52.4 12. 19 1. 30 0.824 0.018 10. 5 10.22 10. 9 
ditto 1+10 to 0+00 32.2 5.99 1. 24 0.777 0.0175 10.5 11. 32 10. 9 

~ 10/23/74 0+50 to 0+00 168.0 10. 73 1. 92 0.825 0.018 9. 5 10.23 16. 2 .. 
10/25/74 1+10 to 0+00 70.7 10.89 2. 18 0.773 O. 0175 9.0 11. 30 19.0. 

10/30/74 0+50 to 0+00 73.6 16.44 1. 93 0.868 0.018 7.0 10.45 17.5 

11/ 1/74 1+15 to 0+50 20.7 12.24 2.82 0.586 0.017 7.0 10.59 17. 5 

ditto 0+50 to 0+00 50.9 12.99 1. 90 0.879 0.018 7.0 10. 51 17. 5 

ditto 1+15 to 0+00 36. 5 15.28 2. 11 0.745 0.0175 7.0 11. 16 17. 5 

11/ 4/74 1+50 to 0+00 83.0 12.22 1. 92 0.807 0.0173 6.5 11. 30 17. 5 

11/ 5/74 0+75 to 0+00 37.2 15.49 1. 88 0.803 0.0173 7.0 10.60 16.0 

11/ 8/74 1+50 to 0+75 39.2 7.09 2.01 0.738 0.0173 5. 5 11. 80 17. 5 

ditto 0+75 to 0+00 134. 1 16.85 2.05 0.806 0.0173 5. 5 10.62 17. 5 

ditto 1+50 to 0+00 85.7 13.27 1. 87 0.824 0.0173 5. 5 11. 39 17.5 

I II 
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Table 2. Continued. 

k2 D U H S T W Q 
x 

Test Date Stations 
- 1 2 

(It/ sec) (It/ It) (oC) 
3 

(day ) (It / sec) (It) (ft) (It / sec) 

11/20/74 1+10 to 0+50 147.0 10. 50 2. 52 0.596 0.017 5. 0 10. 67 16.0 
ditto 0+50 to 0+00 58.4 13. 22 1. 95 0.810 0.018 5. 0 10. 15 16.0 
ditto 1+10 to 0+00 98.4 14.58 2.01 O. 721 0.0175 5.0 11.04 16.0 

12/ 6/74 1+10 to 0+50 136. 2 8.90 2. 05 0.573 0.017 4.5 10.47 12. 3 
ditto 0+50 to 0+00 9.7 10.46 1. 52 O. 801 0.018 4.5 10. 11 12. 3 

-...I ditto 1+10 to 0+00 66. 1 10. 88 1. 59 0.708 0.0175 4. 5 10. 96 12. 3 
til 

4/24/75 1+10 to 0+50 108. 5 11. 56 3. 05 0.708 0.017 8.0 11. 58 25.0 

ditto 0+50 to 0+00 108.5 128.12 4. 19 0.641 0.018 8.0 9. 32 25.0 

ditto 1+10 to 0+00 70.5 37.62 2. 83 0.781 0.0175 8. 0 11. 34 25.0 

4/30/75 1+10 to 0+50 98.7 14.03 2.34 1. 043 0.017 8.0 13.37 33.8 

ditto 0+50 to 0+00 70.5 34. 35 2. 18 1. 198 0.018 8.0 12. 98 33.8 

ditto 1+10 to 0+00 80. 3 25.44 1. 96 1. 222 O. 0175 8.0 14. 11 33.8 



Table 3. Summary of data from tests on UWRL flume. (k2 values adjusted to 20° C.). 

k2 D U H S T W Q 
x 

Test Date Stations - 1 (day ) 
2 

(ft / sec) (ft/ sec) (ft) (ft/ It) (oC) (ft) 
3 

(ft / se c) 

3/11/75 0+90 to 0+00 95.4 1. 48 1. 86 o. 911 0.00046 6.0 8. 0 13.52 
4/10/75 0+90 to 0+00 140.4 12.93 1. 83 0.934 0.00046 7.0 8. 0 13.68 

4/16/75 1+95 to 0+90 36.5 1. 03 1. 73 O. 773 0.00046 7.0 8. 0 10.70 
ditto 0+90 to 0+00 O. 3 1.67 1. 59 0.841 0.00046 7.0 8.0 10.70 
ditto 1 +95 to 0+00 18.6 1. 64 1. 64 0.815 0:00046 7.0 8. 0 10.70 

-...I 
01 

4/22/75 1 +95 to 0+90 62.8 0.74 1. 29 0.525 0.00059 8. 5 8. 0 5.42 

4/29/75 1 +95 to 0+90 3.4 0.46 1. 59 0.733 0.00059 6. 0 8. 0 9.29 
ditto 0+90 to 0+00 41.0 2.43 1. 68 o. 691 0.00069 6. 0 8. 0 9.29 
ditto 1 +95 to 0+00 21. 5 1. 25 1. 62 O. 717 0.00064 6.0 8. 0 9.29 



Table 4. Summary of laboratory data from Negulescu and RoJanskl (1969). 

Num.ber kZ D U H T>:~ 

of x 
-1 2 

(ftl sec) (oC) expe r im.ent s (day ) (ft I sec) (ft) 

5 15.90 O. 121 1. 90 0.49 20.0 

8 11. .sO O. 118 1. 64 0.49 20.0 

12 17.25 O. 071 0.95 o. 16 20.0 

16 18.70 0.045 0.85 o. 16 20.0 

27 8.64 O. 116 1. 05 0.49 20.0 

34 11.50 0.373 0.66 0.49 20.0 

40 8.64 0.247 0.89 0.49 20.0 

41 14.45 O. 180 1.08 0.36 20.0 

~:~ Tem.peratures were assum.ed to be 20° C 
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Table 5. Summary of laboratory data from Thackston and Krenkel (1969). 

k2 D U H S T 
x 

- 1 
Run (day ) 

2 
(it / sec) (it/sec) (ft) (it/ft) 

~ 

(oC) 

A-2 19.70 O. 300 1. 323 O. 125 0.00596 22. 1 
A.- 3 22. 12 0.273 1. 449 o. 109 0.00894 22.7 
A-4 27.22 O. 335 1. 878 O. 124 0.01161 22.8 
A-5 37.32 0.276 1. 707 0.092 0.01446 22.8 
A-7 43.46 O. 312 1. 858 0.098 0.01623 23.0 

A-8 47.78 0.396 2. 320 O. 122 0.01785 22.5 
A-9 55. 12 0.340 2.029 O. 117 0.01418 22.0 
A-10 24.97 0.388 2.079 o. 170 0.00843 21.0 
A-II 20.39 0.218 1.225 O. 112 0.00557 21.2 
A-12 19.44 O. 186 0.994 O. 104 0.00430 21. 8 

A-13 22.64 O. 182 0.921 o. 107 0.00380 22.3 
A-14 16.50 O. 148 0.802 0.094 0.00236 23.0 
A-15 17.88 O. 175 0.940 o. 107 0.00423 23.0 
A-16 11. 06 o. 154 0.773 O. 113 0.00245 24.3 
A-17 14.52 O. 141 0.776 0.099 0.00282 24.0 

A-18 28.77 O. 110 0.754 0.065 0.00571 23.9 
A-19 43.47 O. 161 1. 116 0.065 0.01124 23.8 
A.-20 44.41 O. 137 0.961 0.063 0.00894 23.8 
A-21 47.95 O. 164 1. 096 0.072 0.00897 23.7 
A-22 35.60 0.097 0.678 0.052 0.00674 24.6 

A-23 43.98 o. 139 0.848 0.078 0.00524 24.5 
A-24 18.23 O. 136 0.802 0.082 0.00438 23.6 
B-1 18. 75 0.075 O. 365 0.085 0.00315 25.8 
B-2 41.39 0.063 0.389 0.070 0.00600 25.3 
B-3 16.68 O. 144 0.645 O. 101 0.00659 25.5 

B-4 24.88 0.214 0.865 O. 119 0.00794 25.3 
B-5 29.20 0.338 1. 100 O. 146 0.00791 25. 1 
B-6 27.30 O. III 0.636 0.082 0.01076 25.0 
B-7 27.99 0.292 1. 110 O. 129 0.Oi074 25.2 
B-8 72.92 0.086 0.558 0.057 0.02012 25.4 
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Table 5. Continued. 

k2 D U H S T 
x 

-1 2 
(ft/ sec) (ft/ ft) (0 C) Run (day ) (ft /sec) (ft) 

B-9 12.44 0.156 0.476 O. 141 0.00144 25.6 
B-I0 13.13 0.328 0.955 O. 175 0.00426 26.0 
B-ll 6.65 0.217 0.484 0.232 0.00065 25.9 
B-12 51.41 0.413 1.471 0.154 0.01332 26.0 
B-13 36.37 0.482 1. 743 0.150 0.02038 26.0 

B-14 44.84 0.653 2.015 0.189 0.01688 25.5 
S-2 21.18 0.096 1.333 0.089 0.00241 24.0 
S-3 20.74 0.065 0.978 0.067 0.00174 24.9 
S-4 32.31 0.056 0.592 O. 037 0.00182 25.2 
S-5 16. 68 0.055 0.843 0.080 OnOOl03 25.7 

G-l 31.45 O. 158 0.762 0.078 0.00441 23.7 
G-2 21.00 0.235 0.900 o. III O. 00324 24.0 
G-3 24.36 0.159 0.764 0.096 0.00324 23.4 
G-4 26. 18 0.314 0.968 O. 121 0.00324 23.1 
G-5 24.97 0.208 0.738 0.088 0.00324 22.8 

G-6 17.88 0.210 0.688 0.083 0.00324 22.6 
G-7 24.02 0.274 0.595 0.073 0.00324 22.9 
G-8 34.39 0.330 0.666 0.082 0.00324 22.9 
G-9 20.74 0.234 0.855 0.085 0.00465 22.9 
G-I0 20.13 0.212 0.782 0.080 0.00406 22.8 
G-ll 27.91 0.185 O. 753 0.072 0 .. 00406 23.7 
G-12 20.39 0.263 0.741 0.148 0.00309 23.0 
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