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ABSTRACT 

Two significant, interrelated water resources problems are: (1) efficiently 
salvaging and reusing effluent water in order to augment limited water supplies; and 
(2) economically managing and treating wastewater to meet water quality standards. 
Using systems engineering and operations research techniques, the report focuses on 
the optimal management and use of water of imparied quality in a water resources 
system, including utilization or irrigation return flows and other poor quality water, 
water quantity and quality management systems, and wastewater reclamation 
opportunities. The study develops a mathematical programming transportation or 
transhipment model formulated for the Lower Jordan River Basin in Utah. The 
model incorporated all "possible" water resources (including sequential and recycled 
reuse of water) to supply spatially separated multi-sector water users considering 
non-linear costs with economies of scale for water supply and wastewater treatment, 
temporal aspects of seasonality and stochastic nature of water supply and demand, 
and the system effects of higher wastewater treatment levels. 

The results of the model runs give specific allocations of water from the available 
sources to meet use sector requirements over a planning horizon from 1975 to 2020. 
The total minimum cost of water supply and wastewater treatment allocation is 
reduced by considering seasonality of water requirements. Stochasticity of supply and 
water treatment requirements increase total allocation costs. The comparison of 
results from the model can be used to analyze the interdependence of water supply, 
water pollution control, options for water salvage and reuse in order to better plan 
public investment in water and wastewater management facilities. 

Bishop. A. B., R. Narayanan, S. Pratishthananda, S. Klemetson, and W. J. 
Grenney, 1975. Optimization of water allocation, wastewater treatment, and reuse 
considering non-linear costs, seasonal variations, and stochastic supplies. Utah 
Water Research Laboratory Publication PRWG123-2, Utah State University, Logan, 
Utah. 

KEYWORDS: Water reuse, systems analysis, linear programming, separable 
programming, stochastic programming, water supply, wastewater 
treatment, water costs, optimization. 
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CHAPTER I 

WATER REUSE-SYSTEMATIC APPROACHES 

Water Reuse in Water Resources Planning 

Two significant, interrelated water resources 
problems are (1) efficiently salvaging and reusing 
effluent water in order to augment limited water 
supplies, and (2) economically managing and 
treating wastewater to meet water quality stan­
dards. In relation to these problems, this study is 
oriented toward representing the water resources 
system in a total context, i.e., integrated manage­
ment of water supply/use and wastewater treat­
ment systems linked by options for water reuse. 
Generally speaking, this departs from past 
research in optimization of water use which has 
focused on the allocation of supplies to maximize 
benefits from multiple water uses; on deriving 
operating rules for supply systems; or on the 
optimization of waste treatment facilities for the 
improvement of water quality. Through the 
application of systems engineer and operations 
research techniques, this report focuses on the 
optimal management and use of water of impaired 
quality in a water resources system. As such, the 
study intersects several areas of concern, including 
utilization of irrigation return flows and other poor 
quality water, water quantity and quality manage­
ment systems, and wastewater reclamation oppor­
tunities. 

The report presents a systems modeling 
approach using mathematical programming for 
examing the interdependence of water supply, 
water pollution control, and options for water 
salvage and reuse in order to optimally allocate 
water as well as public investment in water and 
wastewater treatment facilities. 

Analyzing and evaluating alternatives for 
water reuse requires modeling the way in which 
water from various sources or origins could be used 
to supply the water requirements at various points 
for various users. The structure of the problem 
c10sely parallels the "transportation or transship­
ment" problem of linear programming. In previous 
work, simple forms of the model were developed 
and tested by Bishop and Hendricks (1971). Fur­
ther development, application and evaluation of 
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the transshipment model (Bishop et aI., 1974) indi­
cated its capability as a planning tool. This model 
considered a full range of "possible" water sources 
(including sequential and recycled reuse of water) 
to supply spatially separated multisector water 
users. It considered water salvage and reuse as a 
means of augmenting water supplies to satisfy 
requirements and identifies alternatives of waste­
water treatment by introducing treatment options 
as transshipment nodes. A case study was used to 
illustrate how such a model might be used to 
develop comprehensive regional water management 
policies. A summary of the initial model and its 
solutions are reported in the following section 
together with the simplifying assumptions. This 
discussion will set the background for a theoretical 
discussion of the revised model, relaxing various 
assumptions, which follows. The balance of the 
report documents model input data for the case 
study and describes the results of the analysis. 

Previous Work-Model Formulation 
and Results 

The transportation or transshipment model 
(Bishop et aI., 1974) was adapted as an approach to 
evaluate the water supply and wastewater manage­
ment alternatives. This large-scale model was 
solved to obtain water allocation patterns at a 
minimum total cost for Salt Lake County, Utah, 
for selected planning periods over a 50 year 
planning horizon. An outline of the model is 
described as follows. 

IfXij is the water in acre-feet transported from 
the ith source to the jth destination or use and the 
cost per acre-foot to do so is Cij' then the total 
system cost is given by: 

TC ~ ~ c .. x.. (1) j IJ IJ ••.••••••••••••••••••• 

With M sources (surface water, groundwater, 
municipal and industrial effluents available for 
reuse, and import water), N destinations (munici­
pal, industrial, and agricultural sectors and bird 
refuges) and L intermediate points (water and 



wastewater treatment plants), the following con­
straints have to be imposed on the system. 

N+L 

L x .. ~ ai 
j=l 

IJ 

M+L 

L x ij ~ bij 
i=l 

M+L 

L \N+v ~ dv 
i=l 

N+L M+L 

i = 1,2, ... ,M ...... (2) 

j = 1,2, ... ,N ...... (3) 

v = 1,2, ... ,L ...... (4) 

L xM+v,j - L xi,N+v = 0 V = 1,2, ... ,L ...... (5) 
j=l i=l 

The first set of constraints states that the 
quantity of water shipped to all destinations and 
intermediate points from the ith origin should be 
less than or equal to ai, the quantity of water 
available at this source. By the second set 
constraints, the total quantity shipped from all 
origins and intennediate points satisfies the 
requirement bj at the jth destination. The third set 
represents capacity constraints on the intennediate 
points, dv' denoting the capacity of the vth point. 
The fourth type of constraints sets the quantity of 
inflow into an intetmediate node to be equal to the 
outflow. The objective is to obtain Xij such that the 
total cost is a minimum within the glVen constraint 
system. The model was solved as a general linear 
programming problem in the IBM/ 360 using the 
Mathematical Programming System (MPS/360). 
The model was applied in a complex setting of 
water supply, water reuse, and wastewater treat­
ment systems. Salt Lake City, Utah, was selected as 
a case study region to provide a realistic setting for 
model application. 

The study region, Salt Lake County, covers an 
area of about 780 square miles in north-central 
Utah which lies mainly in the lower portion (about 
SOO square miles) of the Jordan River Basin. The 
major urban center (Salt Lake City) and contiguous 
land areas have a wide diversity of water demands 
including municipal, industrial, agricultural, wild­
life, and recreation. The popUlation of the county 
increased from 383,000 in 1960 to 462,000 in 1968, 
and is expected to reach 794,000 by 1985. Water 
demands have increased concomitantly. Mining 
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and manufacturing are the principal industries, 
but agriculture is still important in the valley. The 
trend is toward continued industrial development. 
There is no one central authority to manage water 
resources in the basin. Instead, there exists a large 
number of organizationally independent public 
and private agencies which have evolved over the 
past half century. Efforts are currently being made 
at the county, state, and federal levels to develop 
region-wide water resource and water quality 
management (208) plans. 

The primary river in the water resources 
system is the Jordan River, roughly bisecting Salt 
Lake County into two portions. A number of 
smaller streams flow into the Jordan River from the 
Wasatch Range to the east. Groundwater is also 
used extensively with over 300 wells or groups of 
wells representing the major groundwater 
demands. 

Water use sectors for the model are categor­
ized as (1) irrigation, (2) industrial and commer­
cial, (3) municipal, and (4) environmental uses. 
Existing levels of water withdrawals, flow require­
ments, and influent qualities for each sector are 
identified by subregions depending on the water 
supply systems serving the localities. There are 15 
independent water conservancy districts served by 
four major water treatment plants. However, 
pipeline networks interconnect many of the 
districts so there is exchange of water among them. 
Projections of future withdrawals for the sectors 
and subregions were developed from relevant land 
use, technologic, and economic factors. Land use 
maps have been generated from a report developed 
by the Salt Lake Area Transportation Study 
(SLATS). The maps show industrial, commercial, 
agricultural, and residential land usage as surveyed 
in 1970 and as projected to 1995. These data, along 
with other pertinent infonnation, were used to 
forecast trends in water usage and demands. 
Information on consumptive use and effluent 
quality was also developed from the data. This 
infonnation, used to develop the quantity-quality 
budget, served as the basis for fonnulating the 
transportation model. 

Since an important element of including water 
reuse as a potential source of water supply is the 
level of wastewater treatment and reuse technolo­
gies, treatment methods and costs to achieve a 
given quality level and the amount of flow to be 
treated were developed for various treatment 
processes. Water quality standards for domestic, 
industrial, agriculture, and recreational purposes, 
and on the quality level of the effluent from each 
user, establish the range of treatment necessary to 
match effluent sources with user requirements. The 
quality of wastewater and the quality to which it 



must be upgraded to meet specified uses, are 
analyzed in selecting unit treatment costs to be 
used in the transportation model. The costs include 
the costs of the various stages of treatment 
processes taking into account the capital, operating 
and maintenance costs for each stage with respect 
to the plant capacity. 

The modeling effort was directed toward devel­
oping an operating model and applying it to a 
water resources system. All basic components of 
the system were incorporated into the model 
including water supply sources, use sectors 
(municipal, industrial, agriculture, etc.) effluents 
for reuse, and wastewater treatment operations. 

The results of the optimal system configura­
tion pertained to the resource use patterns over 
time. In the study area, the water treatment plants 
appeared to have ample excess capacity and can be 
expected to meet peak flows even in year 2020. 
Central Utah Project water, an import source for 
the county, was not needed until year 2000. 
Groundwater withdrawal seemed to be lower than 
the safe yield and the minimum cost solutions 
showed a shift to more usage of groundwater in the 
municipal sector and sequential reuse in the 
agricultural sector under high demand conditions. 

Also, the solution gave insight into the 
wastewater management aspects. With the appli­
cation of class C standards all over the basin, the 
existing treatment plants in four of the seven 
subregions in the county needed expansion 
according to the model results. 

Besides the optimal system configuration, 
proposals relating to regionalization of waste 
treatment facilities were examined using the 
model. Four alternatives of wastewater handling 
schemes for the case study area were evaluated and 
the results indicated that a decentralized three­
regional plant system was the minimum cost 
solution. 

Further Analyses of Water 
Reuse--~odel~o~cadoDS 

The initial model developments and results 
just described were based on three types of 
simplifying assumptions about the system: 

1. Average annual water availabilities. 

2. Average annual rather than seasonal 
demands for water supplies. 

3. Linearity of unit costs of water treatment 
and distribution. 
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In the current study the basic transportation 
model is modified and some simplifying assump­
tions are relaxed in evaluating water supply and 
reuse, treatment and pollution control alternatives 
in a region. An important question is whether or 
not solutions obtained are significantly different 
than and an improvement over the simpler model. 
If so, does the additional information appear to be 
worth the additional effort in terms of data 
collection, computational time, and costs? 

The approach in carrying out these analyses is 
summarized as follows: 

1. Develop and refine the systems model 
through disaggregation of the initial 
model and through expansion of the 
model to inc1ude seasonal variations and 
stochasticity in supply, and nonlinearities 
in cost functions. 

The seasonal fluctuation in water supply and 
use, along with the trend in water requirements 
from land use change and popUlation growth, is 
incorporated on a discrete time basis through 
manipulation of the right-hand sides of the model 
constraints. The analysis to be derived from the 
model likewise covers a wider range of questions 
such as the timing and location of investments on 
treatment facilities, distribution systems, ground­
water withdrawal, and the timing and sequencing 
in allocation of supplies to satisfy future demands. 

The introduction of stochasticity under the 
dynamic conditions is a further important area of 
inquiry. Generally, the water available from 
various supply sources is stochastic as are the 
requirement levels of various water using sectors. 
By assigning a proper probability distribution for 
these values, an optimal pattern of water allocation 
can be arrived at using stochastic programming 
techniques in conjunction with the transportation 
model. Chance constrained programming is 
applied to deal with situations where extremes are 
considered significant. 

Recognizing that cost functions are usually 
nonlinear functions of the quantity of water treated 
or transported, techniques to account for non­
linearities are employed within the transportation 
model in order to yield more accurate results. 
Separable programming is used to deal with 
nonlinearities in costs while maintaining the 
relative simplicity of a linear programming 
analysis. 

2. Examine various alternatives for water re­
use by estimating the least cost method for 
satisfying projected levels of water use 
while meeting water quality standards. 



With the expanded and disaggregated model 
for the study area, various alternatives for meeting 
water demands through wastewater reuse are 
analyzed. Least cost allocation patterns under 
various assumptions and constraints for operating 
the system are derived and compared. A number of 
important questions are analyzed in evaluating 
alternatives to identify least cost optimal allocation 
patterns for both spatial and temporal considera­
tions. Some of these include: Is it more efficient to 
reuse water directly from effluent source to 
subsequent user or to treat wastewater at a central 
treatment plant and then redistribute it? How does 
water salvage and reuse compare with other 
alternative water sources such as importation or 
increased pumpage of groundwater reservoirs? 
What is the impact of water salvage and reuse on 
the overall costs in meeting federal and state water 
quality standards? 

By analyzing such questions the model's 
capability for testing water supply and wastewater 
management strategies can be examined. The 
modeling methodology is illustrated through its 
application to an actual study area in order to 
assess its usefulness as a planning tool. This 
involves three areas of concern: 

a. Institutional restrictions on resource allo­
cation, in particular, pollution standards. 

Water supply, as well as pollution control, 
operates in a mileau of institutional restrictions, 
often spelled out as legal requirements. Pollution 
standards are one such restriction. The cost of 
these restrictions can be evaluated by obtaining 
optimal solutions with and without the higher levels 
of treatment required by water quality standards. 

b. The optimal scale as well as the timing 
and sequence of investment in the various 
facilities. 

Cost functions for storage, transportation, and 
treatment are generally nonlinear because of scale 
economies and initial operation of plants below 
design capacities. Nonlinear relationships are 
incorporated into the model as linear approxima­
tions to get a more accurate solution for economic 
size and scale of operation of water supply and 
treatment facilities. 

To investigate the timing of investments and 
the phasing-in of facilities in various locations to 
meet user needs, the transportation model is set in 
a dynamic framework simulating time by using 
parametric programming techniques to simulate 
changes in water use over time. In this way, a 
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multi-year analysis is carried out to determine the 
need to build new facilities in the future. 

c. The usefulness of the model for general­
ized application to the optimization of 
water supply, water reuse, and wastewater 
treatment systems. 

The studies and analyses performed in the 
research are directed toward current questions of 
water planning and development agencies. The 
adequacy of the system model is assessed and 
conclusions drawn with regard to future water 
planning in a region. Present or projected demands 
exceed the available supply of groundwater and 
existing surface water sources in many parts of the 
country. In these water short areas water reuse 
should be an important consideration in extending 
available water supplies. The study area, the 
integrated urban and agricultural complex along 
the Wasatch Front of Utah, provides an opportune 
setting for systems evaluation of water reuse 
because it is a relatively closed system in which data 
can be obtained and in which exists a wide range of 
water management problems and alternatives. 

Relation of Study to Current Literature 

The use of mathematical programming models 
in the field of water management has been quite 
extensive. Various optimization techniques have 
found application in wastewater management, 
specifically, in the design of treatment plants, 
achieving a stipulated regional water quality goal, 
staging an expansion of treatment facilities, and in 
analyzing the problem of investment timing for the 
region as a whole. The application of programming 
models in water supply planning has been generally 
restricted to minimum cost allocation of municipal 
water. Attempts to incorporate an exhaustive set of 
alternatives in a multi-source, multi-sector frame­
work, described for this study, have been made 
only by a few. 

Linear programming appUcations 

Linear programming (LP) is one of the most 
widely used optimization techniques. The popular­
ity of LP formulation is not only in the conceptual 
simplicity but also the readily available software 
packages on computers that can efficiently handle 
large numbers of variables and constraints in the 
problem. Lynn et al. (1962) used linear program­
ming techniques to derive the combination of 
treatment processes that minimize cost in removing 
given amounts of BOD, and also (Lynn, 1964) to 
solve the capacity expansion problem of waste 



treatment facilities subject to the availability of 
funds, level of treatment required, and quantity of 
waste. 

Loucks et al. (1967) presented two LP models 
to determine the amount of wastewater treatment 
required to achieve, at minimum cost, any 
particular set of stream dissolved oxygen standards 
for a river by using the Streeter-Phelps equation for 
DO profile. Using the input-output framework for 
statewide water resources modeling, Lofting and 
McGauhey (1968) applied the linear programming 
technique to optimize allocation of water over time. 
Clyde et al. (1971) developed a geographical 
subregion LP approach to statewide water 
resources planning. Keith et al. (1973) used supply­
demand analysis and linear programming to obtain 
optima] aJIocations in the State of Utah. 

LP algorithms can also be used to solve certain 
classes of quadratic programming. Lynn (1966) set 
up a programming model to supply weJI water at 
minimum cost using a quadratic cost function. 

LP technique is also used with simulation, 
another system analysis approach, to obtain 
optimal allocation. For example, Harl et al. (1971) 
used a river quality model in conjunction with the 
LP model such that the results of LP are 
transmitted to the Fortran river quality simulation 
model, which in turn alters the parameter of the LP 
model. The LP problem is resolved using the new 
parameters, and the solution is fed back to the 
Fortran subroutine. This process is repeated until 
changes in the parameters and changes in the LP 
solution cease. 

Dynamic programming 

Dynamic programming (DP) has also received 
wide interest in application to water resources 
allocation problems. The formulation of a dynamic 
program need not be linear, continuous, or 
deterministic. The technique is especially suitable 
for sequential decision problems. In early applica­
tions of DP, Liebman and Lynn (1966) minimized 
the cost of providing waste treatment to meet a 
specified DO standard along a stream. 

Dynamic programming was employed by 
Evenson et a). (1969) to solve the two-dimensional 
multi-stage allocation problem to minimize design 
costs to remove a desired amount of BOD and to 
treat and dispose of the solids generated. An 
optimal investment scheme for water supply 
projects in response to growing demand conditions 
was proposed by Butcher et al. (1969) using a 
dynamic programming approach. 
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Dynamic programming was used to optimize 
the conjunctive use of ground and surface waters 
(Aron and Scott, 1971) involving several surface 
reservoirs, streams, recharge facilities, distribution 
pipelines, and aquifers. The system was decom­
posed into several smaller and simpler subsystems. 
An optimal water allocation policy for 8 years 
operation in 3-month intervals was obtained. 

Hinomoto (1972) makes use of the dynamic 
programming in planning capacity expansion of 
water treatment systems. The concave cost function 
reflecting economies of scale was minimized over 
the solution space to yield the optimal time and size 
of plants' capacities. Morin (1973) applied 
dynamic programming to find the optimum 
sequencing capacity expansion of water supplies in 
the Ohio River Basin and the Texas River Basin. 

Even though the DP technique is quite flexible 
and relatively simple in concept, the technique does 
have disadvantages. The major drawback is its 
inability to handle, efficiently, more than two 
decision varables at each stage. Other disadvan­
tages of the technique is the requirement that the 
objective function and the constraints be formed by 
sums or pruducts of functions of one decision 
variable each; solution algorithm is problem 
dependent, therefore, no general algorithm is 
available to solve dynamic programming as against 
linear programming. Sensitivity of the system 
cannot be analyzed without rerunning the problem. 

Nonlinear programming 

Nonlinear programming (NP) techniques have 
been applied to find the least-cost alternative to 
satisfy water demand within a region (Young and 
Pisano, 1970). Surface water, groundwater, desa­
lination, and reuse of wastewater were considered 
as supply sources to satisfy municipal and 
industrial demands. Nonlinearity was introduced 
in processes cost and transportation cost. Examin­
ation of response surface was used as the technique 
to find the optimal solution. Walker and 
Skogerboe (1973) used the Jacobian technique to 
transform the constrained nonlinear problem into 
an unconstrained nonlinear problem in the 
allocation of water resources subjected quality 
requirements. Bajer (1974) used the differential 
algorithm to solve nonlinear problems of managing 
water quality in a river basin. 

Application of nonlinear programming has 
been limited to systems that do not have substantial 
number of variables. Lack of standard algorithms 
and available software package is one of the 
drawbacks of NP techniques. 



Multilevel optimization 

Windsor and Chow (1972) used multilevel 
optimization approaches to obtain optimal design 
of a river basin water resource development. Non­
linear cost of each subsystem is approximated by 
piecewise linear function. Haimes et al. (1972) 
applied multilevel approaches to optimize water 
treatment costs of the region. The lyRem .11 
decomposed into 27 subsystems. The system was of 
linear inequality constraints and quadratic objec­
tive functions. Yu and Haimes (1974) obtained 
optimal policy to manage conjunctive use of 
groundwater and surface water using multilevel 
optimization approaches. Haimes and Naiuis 
(1974) used multilevel approaches to obtain coordi­
nation strategy for regional water resources supply 
and demand. 

The concept of multilevel optimization is not 
new; however, application of this technique to 
water resources planning and management is 
relatively recent. The ability to handle any types of 
optimization and simulation models at lower levels 
is one of the most attractive features of this 
approach. 

Integer and mixed-integer 
programming 

Another notable optimization technique used 
in water resources planning and management is 
integer programming (IP). IP algorithms are used 
by Liebman and David (1968) to evaluate 
effectiveness of the three approaches suggested in 
the literature to achieve water quality goals, viz. the 
cost minimization approach, uniform treatment 
approach, and zoned uniform treatment approach. 
Regev and Schwartz (1973) take up the problem of 
simultaneous optimization of investment and 
allocation of water. A discrete time control theory 
is applied in which interaction of regional and 
seasonal considerations plays a crucial role. The 
cost functions reflecting increasing returns to scale 
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were treated as integer variables, so that theoretic­
ally a global optimum will be guaranteed. 

Cost of development of various components in 
a water resources system exhibit "economy of 
scale" characteristics, i.e., as the components 
increase in size, costs per unit size decrease. The 
cost function can then be better approximated by a 
nonlinear function (Koenig, 1967; Linaweaver and 
Clark, 1964). 

There are, strictly speaking, two approaches 
of handling nonlinearity in the cost function. The 
first is by using NP technique. The second is by the 
approximation of the cost function by a number of 
linear segments then applying a variation of LP 
algorithm to solve for the optimal.solution. 

Mixed integer programming is a combination 
of integer and linear programming. The technique 
allows discrete variables to be included in linear 
programming considerations. Hughes and Clyde 
(1973) applied the formulation in designing a 
municipal water supply system utilizing surface 
and groundwater sources as well as physical aspects 
of the system. Constraints considered were supply, 
blending, reservoir, developed facilities, and 
stochastic constraints. DeVries and Clyde (1971) 
considered a municipal water supply system 
utilizing singly or in combination a conventional 
water supply, a desalted water supply and a supply 
from a recharged aquifer. The system is also 
operated in conjunction with an artificially 
recharged aquifer reservoir. Logarithmic transfor­
mation is used to change the nonlinear cost func­
tion into ordinary LP formulation. Mulvihill and 
Dracup (1974) used the concept of inner lineariza­
tion to approximate the nonlinear cost function. 
The optimal allocation, sizing, and timing is 
obtained through iterative procedure. 

A standard software package is now available 
from many computer manufacturers that is 
capable of solving standard variations of LP 
formulation such as separable programming and 
stochastic programming (Burroughs, 1973). 



CHAPTER II 

MODEL REVISION FOR ANALYSIS OF WATER 
REUSE IN WATER RESOURCES SYSTEMS 

Modifications In the Basic Transportation 
Model of Water Reuse 

The previous chapter outlined the work of an 
earlier study in which certain simplifying assump­
tions were made. This chapter describes several 
model revision, relaxing these simplifying assump­
tions, and presents their theoretical basis. 

Nonllnear cost formulation 

The assumption of constant linear costs is 
unrealistic in that it does not reflect the "fixed 
charge" nature of the capital stock in the system 
facilities or the decreasing nature of the total 
average cost of the system facilities due to 
economics of scale. 

In general, if the cost cii' of supplying the 
water from the ith source to the Jth user depends on 
the quantity supplied Xi} then the total cost can be 
given by 

TC = 7 1 Cij (xij ) .................. (6) 

Now, the problem is one of minimizing expression 
(6) subject to constraint sets (2), (3), (4), and (5) 
indicated in Chapter I. In contrast to the objective 
function in expression (1), the total cost in (6) is 
now nonlinear and is estimated as a log-linear 
relationship of the form, 

a .. 
Cii (x .. ) = A.. x .. IJ Vi, J. 

IJ 1] IJ IJ 

in which 

0< a ij < 1 an d Aij > 0 

Therefore, the total cost can be given by 
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a·· 
TC = L L c.· (x .. ) = L LA .. X .. IJ •• : •• (7) 

i j IJ IJ i j IJ IJ 

Minimization of (7) subject to the linear constraints 
(2), (3), (4), and (5) requires a nonlinear 
programming method. 

Before going into the selection of the 
algorithm to solve such a problem, the qualitative 
analysis of this problem should be understood. 
Since the constraint equations are all linear , the set 
of feasible solutions (if they exist) is a closed convex 
set bounded from below (due to the non-negativity 
restrictions). The total cost for any i and j is given 
by 

a·· 
Cii (xi]·) = Ai]· xji IJ 0 < a·· < 1 (8) 

~ ~ IJ ••••••••• 

Aij > 0 

This function is strictly concave in the range 0 < xij 
< a due to the fact, 1 

a.. a·· a.. 
AI]· A IJ X .. IJ > A.. A x .. IJ for any 

IJ IJ IJ 

A, 0 < A < 1 ........................ (9) 

The sum of the strictly concave functions is also 
strictly concave and, therefore, the objective 
function (7) is strictly concave. The model in a 
two-variable case can be shown in Figure 1. 

ABCDEF represents the convex set of feasible 
region and the curves Teo, TC lt and TCz represent 
the strictly concave objective function for various 
total costs. The global minimum is shown to be at 
point E for a total cost of TCo with the optimal 
solution being (xu* and X 12·) . In general, if the 
feasible region is convex and the objective func­
tion is concave, it can be proven that the global 
minimum will be taken on at one or more extreme 

1 A function f(xli) is concave between any two points 0 and 

any point Xij if for alrl. 0 ~ l ~ 1. f[A Xij] ~ A f (x
ij

). 
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Figure 1. Model illustration for linear constraints and concave objective function for two-variable case. 

points of the convex set, indicating the possibility 
of the existence of multiple optima (Figure 2). 
Although the fact remains that the global 
minimum occurs at an extreme point, it is difficult 
to make use of this property in practice to 
determine th~ global extremum. If there happens 

to be a relative minimum at an extreme point 
different from the global, such that the function 
value at adjacent extreme points to this relative 
minimum is greater, then the procedure like 
simplex method will terminate. Such a situation is 
shown in Figure 3. 
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Figure 2. Illustration of global minimum and multiple optima for linear constraint concave objective func­
tion example. 
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Figure 3. Illustration of the problem of a relative optimum solution for the Unear constraint-concave 
objective function problem. 

ABCDEF is the convex set of feasible region. 
Suppose the initial basic feasible solution is found 
at A. The greatest decrease in the value of the total 
cost will be obtained by a movement to point F 
where the cost is Tel. Further decrease in cost is 
not possible by moving to the adjacent points A or 
E. Therefore, the simplex methods which moves 
the solution from one extreme point to the other 
(where the greatest possible decrease in the objec­
tive functiion is attainable) will terminate at this 
relative optimum. The absolute minimum is taken 
on at D for a total cost of TCo. 

Although many nonlinear programming 
methods are available to minimize (7) subject to 
(2), (3), (4), and (5) the question of which method 
to employ has to be settled mostly by past 
experience. Two difficulties arise, (1) generally, 
nonlinear programming algorithms are capable 
of handling only small-scale problems and thereby 
tend to be more specialized in their application. 
Most of these methods do not make use of the 
particular properties of this problem, viz., the 
convex set of feasible region is formed by a set of 
linear constraints and since the objective function 
is concave, the optimal solution will be taken on at 
one or more extreme points. (2) There is a tradeoff 
between the size of the model (and the amount of 
information derivable from the results) and the 
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resources expended in solving the problem. 
Considering all these factors, the separable 
programming method was chosen. 

Separable Programming Model 

The concave nonlinear objective function is 
separable since the total cost can be expressed as 

TC(x) = ~ ~ cij (xij ) ................ (10) 
t J 

Therefore, a piecewise linear approximation to the 
above function can be found as follows. Consider a 
single continuous function cij (Xij) in Figure 4. The 
nonlinear function Cij (xij) IS snown in thick line 
and the polygonal approximating function is shown 
in the dotted line. Any Xij between the arbitrary 
interval xb and x~ + 1 can be expressed as 

A x~+ 1 + (1 - A) x:',c for all A, 0 ~ A ~ 1 ... (11) 
IJ IJ 

Therefore the true function value 

c.. A x.. + (1 - A) x .. [ k+l kJ 
IJ IJ IJ ••••••••••••••• (12) 



Tell 

XIJ~ 

Figure 4. Piecewise linearization of a nonUnear 
cost funtlon. 

can be approximated by the function value on the 
linear segment given by 

AC .. (X.~+l) + (1 - A) COO (x~) for all A, ° 2: A ~ 1. 
IJ IJ IJ IJ 

In fact, between the range 0 and xij, the maxi­
mum possible value ,that the variable Xij could 
assume, can be broken down into r subintervals 
(not necessarily uniform) and any Xij in this range 
can be expressed as 

r k k 
xij = L Aij xij ................... (13) 

k=O 

in which Alj + .>,;+1 = 1 for any k between 0 and r. 
It follows that no more than two ~j could be 
positive and they should be adjacent. Similarly, 
c··(x··) in the range 0 ~ x·, ~ x'- can be approxi-lj lj 1J lj 
mated by 

C .. (x .. ) = ~ A~C .. (x~) (14) 
IJ IJ IJ IJ IJ············· 

k=O 

in which again Af. + Alj+l = 1 for any k, O~ k ~ r. 
Since no more t~an two .>,j could be positive and 
those .>,j'S which assume positive values should be 
adjacent. in general, the function can be expressed 
as 

Coo (x .. ) = L A~Coo (x~) 
IJ IJ k=O 1J IJ IJ 

r 
L A~ = 1 

k=O 

A k ~ ° k = 0, 1 ... r ............. (15) 
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and no more than two ~j are allowed to be positive 
and they should be adjacent. The new total cost 
function to be minimized becomes 

TC(x) = L L L A~ COO (x.~ (16) 
i j k IJ IJ 1) ..••••.• . 

and the constraint set becomes 

i= 1,2, ... ,M .... (17) 

r M+L 

L .L ~~Xi~ ~~ bj 
k=O Fl 

j = 1 ,2, ... ,N ..... (18) 

r M+L 
L L A~N+ x~N+ :::; dy v = 1,2, ... ,L .... (19) 

1, y 1, y-

k=O i=l 

r N+L 
L L 

k=O j=l 
X.'N+ = ° 1, Y 

v = 1 ,2, ... ,L .... (20) 

r 
L A~. = 1 

k=O IJ 
i = 1 ,2, ... ,M ;j= 1,2, ... ,N ... (21) 

A~ 2: 0, k = 0, 1, ... , r; for Vi, j ......... (22) 

and that no more than two \i can be positive for 
any given i and j and they must be adjacent. 

With all the above constraints imposed on the 
system, the simplex method can now be used to 
obtain the optimal solution. The only special 
constraint required is that the basis entry should be 
restricted. Since \~ is the new variable replacing 
the Xij' the basis can contain, for any given i, j, at 
the maximum two '>'j' say, .>,~ and ~j such that s = 
k + 1 or k - 1. 

Using this formulation known as the 
"Lambda" method, the transshipment model can 
be set up for the case study area. The specific 
model development is explained in greater detail in 
a later section. The solution was obtained using the 
Mathematical Programming System called 
TEMPO available with the Burroughs 6700 
computer. 



Seasonal variations In the 
model parameters 

In the initial model, the solutions were 
obtained for the case study area with annual flows. 
It was assumed that the flow rate was constant at 
all points in time throughout the year. In reality, 
extensive variations in the flow rates of surface 
water and in the quantity of water required for 
various purposes vary with seasons, time of year, 
even to the time of day. Particularly for this 
analysis, seasonal changes affect the system results 
considerably and, therefore, the water budgeting 
procedure was carried out for each season and the 
water availabilities and quantities required were 
estimated. With these values, the transshipment 
model was solved to appraise the system operation 
over seasons of a year and over future years. 

Stochastic Considerations 

In a general programming model of the form, 

Min Z = f(x) _ ............ (23) 
Subject to g (x) ~ b 

x ;:: 0 ............ (24) 

(1) The parameters of the objective function f (X), 
(2) the parameters of the constraint equations g(f) 
and (3) the right-hand-side elements of b can be 
random. For the transportation model under! 
consideration, all the coefficients ofg(X) are 0, 1, or : 
-1, and they are fixed. Therefore, randomness can i 

be found only in the_cost function parameters] (x) 
and the elements of b . It will be assumed that the 
cost coefficients are determin~tic and only the , 
randomness in the elements of b will be treated. 

Suppose the kth constraint 

(-) < b gk x - k.··· ................... (25) 

is desired to hold with at least a probability of 95 
percent, when bk is assumed to be a normal 
random variate. This can be written as 

Pr [gk (x) :s bk ] 2: ~k ........... (26) 

in which ~k = 0.95 

Subtracting E(bk) where E denotes expectation 
operator, from both sides of the inequality within 
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the square brackets and dividing by Obk' the 
standard deviation ofbk, we have 

[

g k (x) - E (bk ) bk - E(bk)] 
Pr :s 2: f\ 

ab
k 

a bk ..• (27) 

b
k 

- E(b
k

) 
The quantity Z = is a standard normal a

bk 
-

variate rv N (0, O. If the probability density 
function of Z is 'I'(Z) , then 

1./;-1 (~ ) = kf./ ..................•.. (28) 
k "'k 

which can be obtained from a table of distribution 
of standard, normal, random variables. Equation 
(27) can be true if and only if 

gk (x) - E(bk ) 

or 

gk (x):S E(b k) + kt\ ab
k 

............ (29) 

Equation 29 is a deterministic linear constraint if 
gk (x) is linear and assures that the kth constraint 
will hold with 95 percent probability. This 
approach is known as the chance-constrained 
programming and was originally developed by 
Charnes and Cooper (1963). Using this method, 
the stochasticity in the random right-hand-side 
elements will be accounted for. 

Summary of Model Runs for 
the Case Study Area 

The various structural changes in the basic 
transportation model described above were used in 
a number of different combinations as shown in 
Table 1. For each of these combinations, optimal 
solutions were obtained for the target years of 1975, 
1980, 1985, 2000, and 2020 in order to determine 
the effects of each set of modifications. The results 
of this analysis are presented in Chapter IV. 



Table 1. Summary of model runs under various model structures. 

Cost Function Spatial Time Period Treatment Demand/Supply 
Resolution Level Ch~rac teristics 
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CHAPTER III 

WATER RESOURCES AVAILABILITY, WATER 
REQUIREMENTS, AND WATER REUSE COSTS 

Water supply in the study area can be drawn 
from various available sources. Surface water is 
drawn from the Jordan River and the Wasatch 
Front streams and their associated storages; 
imported water through various canals and 
aqueducts; and groundwater through a system of 
wells and springs. Municipal and industrial 
effluents are included as alternative water supply 
sources through water reuse. 

In addition to annual study, the water 
availability and water requirements were arbi­
trarilly divided into two seasons, namely, the winter 
season, lasting between the month of October till 
the month of March, and the summer season, 
commencing in April and ending in September. 
The summer season approximately corresponds to 
the irrigation period in the area. 

Surface Streams Water 

There exists two major sources of surface 
stream water sources: The Jordan River and the 
Wasatch Front streams. The Oquirrh Mountains 
streams are generally ephemeral streams with 
insufficient flow to be developed economically into 
reliable supply sources. Table 2 shows the 
long-term annual and seasonal means of the Jordan 
River at the stations near the Narrows, and the 
Wasatch Front str(~ams-the Big Cottonwood 
Creek, the Little Cottonwood Creek, Mill Creek, 
Parley Creek, Emigration Creek, City Creek, and 
Red Butte Creek. The 9S percent supply avail­
ability by norma] deviation assumption and by I 

rank for seasonal flow is also included in Table 2. 
Zero flow was substituted where the computation of 
flow was negative, since negative flow is physically 
impossible. 

Jordan River 

The Jordan River is the single largest surface 
water source in the study area. The long-term 
average annual flow, over a S8 year period, of the 
river entering the Salt Lake County at the Narrows 

is almost 260,000 acre-feet which is more than the 
total combined flow of the Wasatch Front streams. 
The Jordan River water has been largely diverted 
for irrigation purposes while a small amount has 
been diverted for industrial consumption. 

The Wasatcb Front streams 

The Wasatch Front streams which are the 
major tributaries of the Jordan River in the study 
area, are the Big Cottonwood Creek, Little 
Cottonwood ~reek in subarea F2, Mill Creek in 
subarea G, Parley Creek, City Creek, Emigration 
Creek, and Red Butte Creek in subarea E. The 
total combined flow available from these creeks is 
approximately 142,000 acre-feet annually. Most 
streams were well developed as sources of supply in 
the study area, including the construction of a 
number of reservoirs and diversion canals. 

Groundwater 

Groundwater in the study area is obtained 
through well pumping and free flowing springs. 
The amount of groundwater utilization in the area 
has been increasing. In the past decade, the 
average groundwater utilization was well over 
100,000 acre-feet per year (Figure 5). Since the safe 
yield of groundwater in the area is approximately 
150,000 acre-feet per year (Table 3), the ground­
water use is reaching its maximum potential with­
out possible groundwater mining. Groundwater is 
used for various purposes but mainly in agricultural 
sectors. 

Imported Water 

The 3' u:iy area imports a relatively small 
amount of water from nearby sources. The existing 
imports are throll.gh the Salt Lake aqueduct for 
municipal supply, Hlc Provo Reservoir Canal, the 
Utah Lake Distributing Co. Canal mainly for 
irrigation, and Kennocott Copper Pipeline mainly 
for industrial uses. In the future, an additional 
imported source will be available through the 
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Table 2. Surface water availabllity in Salt Lake County. 

Average Flow 95% Flow Volume 

Stream Name Length of Volumea 
Normal Dev. Rank 

Record 
(Year) Oct-Mar Apr-Sep Annual Oct-Mar Apr-Sep Oct-Mar Apr-Sep 

Jordan River @ Narrow 1914-1972 55,200 204,500 259,700 Ob 120,200 5,600 137,600 
tittle Cottonwood Ck. 1923-1968 5,700 37,500 43,200 3,600 23,500 4,400 21,600 
Big Cottonwood Ck. 1905-1968 10,400 42,400 52,800 5,400 21,600 6,600 20,500 
Mill Ck. 1900-1968 3,200 7,500 10,800 1,600 2,900 1,900 3,700 
Parley Ck. 1911-1968 3,900 13,200 17,100 1,700 1,300 2,000 2,800 
Emigration Ck. 1911-1968 800 3,300 4,200 100 Ob 200 600 
Red Butte Ck. 1943-1972 700 1,700 2,500 300 300 300 300 
City Ck. 1912-1968 2,900 8,500 11,400 2,100 3,600 2,000 3,700 

aVolume in ac-ft. 

bZero is substituted in lieu of negative flow. 

Table 3. Estimated safe yield of groundwater in each subarea of the study. 

Area 

Safe Yield 
(ac-ft/year) 

HI 

17,800 

H2 G 

3,500 28,000 

Central Utah Project which will import water from 
the Colorado River Basin. The Central Utah 
Project will supply water for various purposes west 
of the Jordan River. 

Emuent Sources 

There exists large amounts of effluent 
discharge in the Lower Jordan River Basin. The 
effluent is directly or indirectly discharged into the 
Jordan River or conveyed to be discharged into the 
Great Salt Lake. The municipal effluent discharge 
was about 80,000 acre-feet in 1971, while the 
industrial effluent total was around 100,000 
acre-feet. Therefore, if the effluent water is 
reclaimed, it could represent a significant source of 
supply. With consideration of future standards to 
be imposed on the effluent before discharge into 
receiving water, reuse of effluent as alternative 
source is becoming more attractive. 

Water QuaUty 

The quality of water in the study area and 
standard requirements for various uses are well 
summarized elsewhere (Bishop et al., 1974). In this 
study, the effect of raising effluent discharge 
standard in 1980 and 1985 and thereafter to 
secondary and tertiary levels respectively is 
included in the system allocation. 
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6,500 20,000 28,000 46,200 

Water Requirements 

Water requirements in the study area are 
municipal, industrial, and agricultural and, in 
addition, the requirements for management of 
waterfowl area at the mouth of the Jordan River. 

Municipal requirements 

Municipal uses in the area are domestic uses, 
commercial and small industrial uses. Domestic 
uses included household uses and lawn and garden 
watering. During summer season, water used for 
lawn sprinkling and gardening accounted for about 
half of the total municipal use. Approximately 70 
percent of the lawn water is consumed with 
estimated 30 percent percolated to groundwater 
system. During winter season watering lawn and 
garden is assumed to be nil. All the water used is 
assigned to other uses, with approximately 4S 
percent assumed to return to the sewer system. 

Figure 6 shows the pattern of municipal uses 
over 21 years between October 1952 and September 
1973. Data was obtained from the Salt Lake Water 
Department which supplies most of water services 
in Sale Lake area. The municipal uses average 
about 142 gallons per capita per day (gcd) and 300 
gcd for winter and summer season respectively, 
with an annual consumption of 221 gcd average 
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Figure 5. Groundwater withdraw for aU purposes in Salt Lake County (1960-1968). 

(compared with 224 gcd used in a previous report 
(Bishop et al., 1974». Analysis of data did not 
indicate any significant trend in water uses, 
therefore it is assumed that uses are constant 
throughout the study. Table 4 shows the mean and 
9S percent normal deviation water requirements in 
the study area for the winter and summer seasons 
and the annual. 

Table 4. Municipal water .... In Salt Lake City 
serviced by Salt Lake City Water D.,art­
ment during the period October 1952-
September 1973. 

Periods 
Winter 
Summer 
Annual 

Mean (gcd) 
142 
300 
221 

95% Normal Deviate 
115 
248 

Variation of uses during summertime could 
well be explained in terms of precipitation 
availability. The major municipal use during 
summer is lawn and garden watering, and in wet 

15 

summers water use was relatively low while in dry 
summers water use was relatively high. 

Industrial uses 

The industrial uses in the area are assumed to 
be approximately constant throughout the year. 
The industrial uses are also assumed to be 
relatively constant throughout the period of study 
with the exception of subarea E, containing Salt 
Lake City, in which small amounts of increases 
industrial uses are expected. 

Agricultural uses 

The main agricultural use is irrigation. 
Domestic stock is the second major use. Irrigation 
in the study area occurs largely between April and 
October. The amount of irrigation water used in 
October is relatively small; therefore, it is assumed 
that all the requirement for irrigation occurs 
between April and October. It is further assumed 
that irrigation use reflects total use in the 
agriculture sector. Losses due to seepage in canals 
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and delivery systems are assumed to be 15 percent 
of diversion. Of the total field delivery, about 10 
percent is assumed to return to surface water 
sources, about 30 percent goes to groundwater, and 
the rest is consumed (Hely et aI., 1970). 

To compute the 95 percent level of agricultural 
use, certain assumptions about crops and climatic 
conditions have to be made. In light of reducing 
acreage of crop land, it is expected that in the 
future cash crops will be more attractive. However, 
it is safe to assume that certain crops which require 
larger amounts of irrigated water are goint to be 
planted. Alfalfa and sugar beets are assumed to be 
the selected crops. Both crops require approxi­
mately the same amount of irrigation water over 
the season. The 95 percent requirement is then 
computed from monthly moisture requirement of 
the crop given that the natural available precipita­
tion and temperature are 95 percent of average. 
Irrigation practices are assumed to have varied effi­
ciency. The diversion requirement for each level of 
irrigation efficiency is shown in Table 5. 

Table 5. Irrigation diversion requirement at 95 per­
cent level. 

Consumptive 
in/acre 
35.03 

30 
116.8 

Efficiency 
50 
70.1 

HISTORICAL 

en 
0:: 

2000 

I~ ·I~ 

70 
50.0 

Water Reuse Costs 

The cost matrix forms the basis for decision­
making in the linear programming transportation 
model. The literature was reviewed to determine 
the appropriate cost functions for each method of 
waste treatment and water reuse, and for water and 
wastewater transportation. The construction costs 
were then ajusted to June 1974 by the use of the 
ENR Building Cost Index. The operation and 
maintenance (O&M) costs are adjusted by the use 
ofthe labor rates for sanitation workers, published 
by the Bureau of Labor Statistics. The water 
transportation costs were adjusted by the use of the 
EPA sewer construction cost index (Figure 7 and 
Table 6). The annual cost of the capital investment 
was based on 5112 percent for 30 years with a capital 
recovery factor (CRF) of 0.069. 

A summary of the cost equations for the total 
cost of water treatment and reuse is presented in 
Table 7. The breakdown of each equation into its 
component cost equations is presented in Table 8, 
and is discussed in detai1 in Appendix A. The costs 
were represented by the equation, y = KXa, where 
y is the total dollars ($) to supply a given quantity of 
water, K is th,e cost coefficient, X is the quantity of 
water in acre-ft (AF), and a is the economy of scale 
factor. The values represent the costs of collecting 
the water from a source or from the effluent of a 
treatment process, and transporting the water to a 
destination for use or for treatment to the quality 

. PROJECTED 

~I 
20 

. L&J 
al 
~ 
:J 
Z 

1600 ENR BUILDING COST INDEX 
1949= 100 

16 0:: 
:c 
"'­
.q)o 

X 
L&J 
o 
Z 

CD 
I 

0:: 
Z 
L&J 

d5 
en 

I 

U 
a.. 
~ 

1200 

800 

400 

o 
1960 1970 1980 

Figure 7. Comparison of cost indices. 

1990 2000 2010 2020 

YEAR 

17 

12 

8 

4 

o 
2030 

en 
L&J 
I­« 
a::: 
a::: 
o 
CD 
« 
...J 



Table 6. Cost indi~. 

WPC Construction Cost Indexb Engineering New Record Cost lnqexC 

Lab ora 
~llilding CQP.stru~tion Year Rates WTP Sewers 

$/hr 1957-59d 1957-59 1913 1949 1913 1949 

1958 2.00 101.50 100.42 521.09 148.13 757.31 158.77 
1959 2.07 103.65 104.78 548.35 155.87 795.16 166.70 
1960 2.17 104.96 106.22 561.Q2 159.48 826.64 173.29 
1961 2.27 105.83 108.19 570.17 162.07 850.38 178.28 
1962 2.33 106.99 109.72 579.57 164.75 872.90 182.99 
1963 2.38 108.52 113.07 589.90 167.69 897.48 188.44 
1964 2.44 110.54 115.10 612.22 174.03 935.42 i96.09 
1965 2.54 112.57 117.31 625.84 177.90 971.14 203.58 
1966 2.68 116.92 121.18 656.31 186.56 1028.65 215.64 
19,67 2.82 120.28 125.36 675.l7 19l.92 1072.02 224.73 
1968 3.00 n.a.e 130.50 700.67 199.17 1154.18 241.96 
1969 3.24 n.a. 139.78 798.26 226.91 1284.96 269.37 
1970 3.52 n.a. 150.93 830.14 235.98 1368.66 286.72 
1971 3.74 n.a. 168.36 944.31 268.43 1575.05 330.19 
1972 3.97 n.a. 186.91 1048.37 297.83 1760.78 368.35 
1973 4.18 n.a. 201.07 1137.76 323.23 1896.13 396~69 
1974 4.36 n.a. 211.66 1199.20 340.66 1993.47 417.05 

aU.S. Labor Statistics Bure~~ (1974). 

bpederal Water Pollution Control AdIIli!,listratjOl1 (1967) and U.S. Dep~rtIIl~nt of CommerCe (1974). 

CEngineering New Record (1974). 

dYear in which cost index equal to 10Q. 

eNot available. 

indicated. In Table 7 the costs repre~e~ted by '+' 
indicate that the path is undesirap~e, a~d the costs 
represented by '0' indicate that the water is of 
suitable quality to be used directly or discpargt;d 
directly. The costs shown ar~ for USt; in one 
planning area, and it is necessary t9 add a w3:ter 
transportation cost to use or send the 'Yater to 
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ano~her planning area. The detailed discussion of 
4:0&ts, Appendix A, is keyed to the matrix of Table 
7. Thus the descripti()D is orgallized to pre~eI,lt the 
costs for e~ch ':Vat~r use section or destination 
(denoteci by the letters A,B, etc.) which can be 
served ft()J:ll a particular water source or origi,n (as 
specified by t,he number 1, 2, et~.). 
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Table 7. Total water treatment and reuse cost equationa, y = KXa. 

- -- -- -- --- -- - ----- ----- -- --- -- -

Destinations A B C D E F G H I J K 

Water Municipal 
Industrial Agricultural 

Existing Wastewater Wastewater Wastewater Wastewater Water 
System Treatment Culinary Secondary Treatment Treatment Treatment Treatment Fowl 

Origins Plants Water Water Water Treatment Levell Level 2 Level 3 For Reuse Outflow Outflow 

1 Surface Water Better 243 XO.773 829 XO. 779 725 XO.S9S 4747 XO. 31 + + + + + 0 0 Than Class C 

2 Water Treatment 
+ 81.0 XO.9O 81.0 XO.9O 81.0 XO.9O 

Plant + + + + + + + 

3 Wells 496 XO. 714 245 XO.842 206 XO. 768 199 XO.7S + + + + + + + 

4 Municipal Effluent + + + + 430 ~.8S3 556 XO.847 807 XO.821 1387 XO. 79O 1620~·802 + + 

5 Industrial Effluent + + + + 459 ~.848 583 xO·844 836 X°.819 1419 ~.789 1662~·800 + + 

6 
Existing Secondary 

4747 XO.31 481 1'.644 1254 XO.674 1199 ~.7S4 0 0 Treatment + + + + + 

7 
Wastewater Treat-

4747 ~.31 505 XO.644 1317~·674 1259 XO. 7S4 0 0 ment Levell + + + + + 

8 
Wastewater Treat-

1124 XO.S1 4747 XO.31 834 XO.686 891 XO. 774 0 0 ment Level 2 + + + + + 

9 
Wastewater Treat-

873 XO. 706 1124Xo.S1 4747 XO.31 275 ~.841 0 0 ment Level 3 + + + + + 

10 
Wastewater Treat-

81.0 XO.9O 1124 XO.S1 4747 XO.31 0 0 ment for Reuse + + + + + + 

11 
Surface Water Worse 

216 XO.839 782 XO.S03 322 XO.767 4747 ~.31 0 0 Than Class C + + + + + 

12 
CUP Jordan 

124 XO.962 289 XO.866 289 XO.866 
Narrows WTP + + + + + + + + 

- - '-----

aCost equations represent total cost in June, 1974, dollars ($) with X in AF/YR. The + symbol indicates an undesirable use, and was given the value y = 9999 X
1

.
O

. The 0 
symbol indicates a zero (0) cost. Costs are given to go from effluent of origin to effluent of destination. 

J 

J 

I 

I 

I 



Table 8. Summary of cost equationa• 

~ b c 
Destination Eq Unit Processes Capital O&M Total 

ORIGIN 1: Surface Water Better Than Class C 

Water handling 10.3 Xo. 90. 24.1 Xo.·90. 34.5 XO.9O 

Water 
Water collection from river 

A Treatment 2 Water treatment plant 81.0 XO. 67 245 XO.67 326 XO.67 

Plants Existing 

3 Composite cost equation 243 XO.773 

5 Water handling 44.6 XO.9 0. 70.8 XO.9.O 115 XO.90. 
Water collection from river 

Municipal Water distribution 
B Culinary 6 Water treatment plant 256 XO.69.2 770 Xo.·692 1026 XO.692 

Water New 

7 Composite cost equation 829 )f.779 

10 Water handling 282 XO.S36 475 XO.613 725 Xo.·S9S 

C 
Industrial Pumpage from river 

Water Chlorination 

11 CompOSite cost equation 725 Xo.·S9S 

14 Water handling 2768 X 0..32 1972 Xo.·29S 4747 Xo.·31 

Agricul tural Diversion struc tures 
D Water Canal costs 

15 Composite cost equation 4747 XO,31 

ORIGIN 2: Water Treatment Plants 

Municipal 4 Water handling 34.3 XO•90. 46.7 XO.90. 81.0 Xo.·90. 

B Culinary Water distribution 

Water 16 Composite cost equation 81.0 Xo.·9O 

Industrial 4 Water handling 34.3 XO.90. 46.7 Xo.·90. 81.0 XO.90. 
C Water Water distribution 

17 Composite cost equation 81.0 Xo.·9O 

Agricultural 
4 Water handling 34.3 XO.9O 46.7 XO.9O 81.0 XO·9O 

D Water 
Water distribution 

18 Composite cost equation 81.0 XO.9O 

ORIGIN 3: Wells 

19 Water handling 818X°.4S3 33.2 XO.90. 199 XO. 7S 

Water Well water 
A Treatment 2 Water treatment plant 81.0 XO.67 245 XO.67 326 Xo.·67 

Plants Existing 

20 Composite cost equation 496 Xo.·714 

21 Water handling 206 XO.753 89.1 Xo.·9O 245 Xo.·842 

Municipal Well water 

B Culinary Chlorination 

Water Water distribution 

22 Composite cost equation 245 )f.842 
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Table 8. (Contlnaecl). 

!. b c 
Destination Eq Unit Processes -

Capital O&M Total 

23 Water handling 755 X°.476 42.4 XO.8O 206 XO.768 

C 
Industrial Well water 
Water Chlorination 

24 Composite cost equation 206 XO.768 

19 Water handling 818 X°.453 33.2 XO.9O 199 XO. 75 

D 
Agricul tural Well water 
Water 

25 Composite cost equation 199 XO.7S 

ORIGIN 4: Municipal Effluents 

26 Sewage handling 151 XO.91 23.0 XO.91 174 XO.91 

Existing Sewage collection 
Secondary 27 Wastewater treatment 137 XO. 784 311 XO.668 396 XO.732 

E Wastewater Existing - Trickling filter 
Treatment 
Plant 28 Composite cost equation 430 XO.853 

26 Sewage handling 151 XO.91 23.0 XO.91 174 XO.91 

Wastewater Sewage collection 

F Treatment 
29 Wastewater treatment 25? XO. 78O 240 XO. 756 489 XO. 77O 

Plant -
Levell New - Activated sludge 

30 Composite cost equation 556 XO.847 

26 Sewage handling 151 XO. 91 23.0 XO.91 174 XO.91 

Wastewater Sewage collection 

G 
Treatment 32 Wastewater treatment 325 XO. 766 555 XO.713 855 XO.739 

Plant - New - Activated sludge 
Level 2 Rapid sand filtration 

33 Composite cost equation 807 XO.821 

26 Sewage handling 151 XO.91 23.0 XO.91 174 -X>.91 

Wastewater 
Sewage collection 

Treatment 35 Wastewater treatment 706 XO. 722 900 XO. 718 1603 XO.72O 

H Plant - New - Activated sludge 

Level 3 Rapid sand filtration 
Carbon adsorption 

36 Composite cost equation 1387 XO.79O 

26 Sewage handling 151 XO.91 23.0 XO.91 174 XO.91 

Sewage collection 
Wastewater 

38 Wastewater treatment 709 XO.74O 993 XO. 769 1686 XO.759 

Treatment 
Plant For 

New - Activated sludge 

Water Reuse 
Rapid sand filtration 
Carbon Adsorption 
Ion exchange (33% blend) 

39 Composite cost equation 1620 XO.802 
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Table 8. (Continued). 

a b c 
Destination Eq. Unit Processes Capital O&M Total 

ORIGIN 5: Industrial Effluent 

41 Sewage handling 157 XO;907 36.9 XO.876 194 XO.902 

Existing Pretreatment of sewage 
Secondary Sewage collection 

E Wastewater 
27 Wastewater treatment 137 XO.784 311 XO.668 396 XO.732 

Treatment 
Plant 

Existing - Trickling ftl ter 

42 Composite cost equation 459 XO.848 

41 Sewage handling 157 XO.907 36.9 XO. 876 194 XO.902 

Wastewater Pretreatment of sewage 

F Treatment Sewage collection 

Plant - 29 Wastewater treatment 253 XO. 78O 240 XO.756 489 XO. 77 

Levell New - Activated sludge 

43 Composite cost equation 583 XO.844 

41 Sewage handling 157 XO.907 36.9 XO.876 194 XO.902 

Pretreatment of sewage 
Wastewater Sewage collection 

G Treatment 32 Wastewater treatment 325 XO. 766 555 XO. 713 855 XO.739 

Plant -
Level 2 

New - Activated sludge 
Rapid sand ftltration 

44 Composite cost equation 836 XO.819 

41 Sewage handling 157 XO.907 36.9 XO.876 194 XO.902 

Pretreatment of sewage 

Wastewater 
Sewage collection 

Treatment 35 Wastewater treatment 706 XO. 722 900 XO.718 1603 Xo.no 
H Plant - New - Activated sludge 

Level 3 Rapid sand filtration 
Carbon adsorption 

45 Composite cost equation 1419 XO.789 

41 Sewage handling 157 XO.907 36.9 XO.876 194 XO.902 

Pretreatment of sewage 

Wastewater 
Sewage collection 

Treatment 38 Wastewater treatment 709 X O• 740 993 XO.769 1686 XO.759 

Plant For New - Activated sludge 

Water Reuse Rapid sand ftltration 
Carbon adsorption 
Ion exchange (33% blend) 

46 Composite cost equation 1662 XO.8OO 

ORIGIN 6: Existing Secondary Wastewater Treatment Plants 

14 Water handling 2768 XO.32 1972 XO.295 4747 XO.31 

D 
Agricultural Diversion structures 
Water Canal costs 

47 Composite cost equation 4747 XO.31 

Wastewater 48 Tertiary treatment 95.0 XO.662 390 XO.638 481 XO.644 

G Treatment New - Rapid sand fIltration 

Level 2 49 Composite cost equation 481 XO.644 
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Table 8. (ContIDaed). 

~ b .£ 
Destination Eq Unit Processes Capital O&M Total 

Wastewater 50 Tertiary treatment 607 XO.633 694 XO.694 1254 XO.674 

H Treatment New - Rapid sand filtration 

Level 3 Carbon adsorption 

51 Composite cost equation 1254 XO.674 

52 Tertiary treatment 502 XO.698 753 XO.733 1199 XO.7S4 

Wastewater New - Rapid sand fIltration 
Treatment Carbon adsorption 
For Water Ion exchange (33% blend) 
Reuse 

53 Composite cost equation 1199 XO.7S4 

ORIGIN 7: Wastewater Treatment - Levell 

14 Water handling 2768 XO.32 1972 XO.29S 4747 XO.31 

Agricultural Diversion structures 
D Water Canal costs 

54 Composite cost equation 4747 XO.31 

Wastewater 
55 Tertiary treatment addition 99.8 XO.662 410 XO.638 505 XO.644 

G Treatment 
New - Rapid sand filtration 

Level 2 56 Composite cost equation 505 XO.644 

Wastewater 
58 Tertiary treatment addition 637 XO.633 729 XO.694 1317 XO.674 

H Treatment 
New - Rapid sand fIltration 

Level 3 
Carbon adsorption 

59 Composite cost equation 1317 X 0.674 

61 Tertiary treatment addition 527 XO.698 791 XO. 773 1259 XO.7S4 

Wastewater New - Rapid sand filtration 
Treatment Carbon adsorption 
For Water Ion exchange 
Reuse 

62 Composite cost equation 1259 XO. 7S4 

ORIGIN 8: Wastewater Treatment - Level 2 

Industrial 
8 Water handling 292 XO.S1 832 XO.S1 1124 XO.S1 

C Water 
Water pumping 

63 Composite cost equation 1124 XO.S1 

14 Water handling 2768 XO.32 1972 XO.29S 4747 XO.31 

D 
Agricultural Diversion structures 
Water Canal costs 

64 Composite cost equation 4747 XO.31 

Wastewater 57 Tertiary treatment addition 541 XO.626 366 XO.724 834 XO.686 

H Treatment New - Carbon adsorption 

Level 3 65 Composite cost equation 834 XO.686 

Wastewater 66 Tertiary treatment addition 434 :X<>.703 526 XO.799 891 XO. 774 

Treatment New - Carbon adsorption 

For Water Ion exchange (33% blend) 

Reuse 67 Composite cost equation 891 XO.774 
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Table 8. (Continued). 

Destination Eq Unit Processes .! b .£ 
Capital O&M Total 

ORIGIN 9: Wastewater Treatment - Level 3 

Water 
70 Wa ter handling 1544 XO.535 179 XO.822 873 XO.706 

A Treatment Water transmission 

Plants 71 Composite cost equation 873 XO.706 

8 Water handling 292 XO.51 832 XO.51 1124 XO.51 

C 
Industrial Water pumping 
Water 

72 Composite cost equation 1124 XO.51 

14 Water handling 2768 XO.32 1972 XO.295 4747 XO.31 

D 
Agricultural Diversion structures 
Water Canal costs 

73 Composite cost equation 4747 XO.31 

74 Tertiary treatment addition 44.8 XO. 841 230 XO. 841 275 XO. 841 

Wastewater New - Ion exchange 
Treatment (33% blend) 
For Water 
Reuse 75 'Composite cost equation 275 XO.841 

ORIGIN 10: Wastewater Treatment - For Water Reuse 

4 Water handling 34.3 XO.9O 46.7 XO.9O 81.0 XO·9O 

Municipal Water distribution 
B Culinary 

Water 76 Composite cost equation 81.0 XO.9O 

Industrial 8 Water handling 292 XO.51 832 XO.51 1124 XO.51 

C 
Water Water pumping 

77 Composite cost equation 1124 XO.51 

14 Water handling 2768 XO.32 1972 XO.295 4747 XO.31 

Agricul tural Diversion structure 
D 

Water Canal costs 

78 Composite cost equation 4747 XO.31 

ORIGIN 11: Surface Water Worse Than Class C 

80 Water handling 2004 XO.9O 41.0 XO.941 60.9 XO.93O 

Water collection from river 
Water Water pretreatment 

A Treatment 2 Water treatment plant 81.0 XO.67 245 XO.67 326 XO.67 

Plant Existing 

81 Composite cost equation 216 XO.839 

82 Water handling 54.8 XO.9O 86.3 XO.923 141 XO.915 

Water collection from river 

Municipal 
Water pretreatment 
Water distribution 

B Culinary 
256 XO.692 770 XO.692 1026 XO.692 

Water 6 Water treatment plant 
New 

83 Composite cost equation 782 XO.803 
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Table 8. (Continued). 

Destination Eq Unit Processes 
a b c -

Capital O&M Total 

85 Water handling 124 XO. 708 212 XO.785 322 XO.767 

Industrial 
Pumpage from river 

C Water pretreatment 
Water Chlorination 

86 Composite cost equation 322 XO. 767 

14 Water handling 2768 XO.32 1972 XO.295 4747 XO.31 

Agricultural Diversion structure 
D Water Canal costs 

87 Composite cost equation 4747 XO.31 

ORIGIN 12: Central Utah Project - Jordan Narrows Water Treatment Plant 

89 Water handling 56.5 XO.966 67.6 XO.959 124 XO.962 

Municipal Purchase price 
B Culinary Water distribution 

Water 90 Composite cost equation 124 XO.962 

92 Water handling 95.8 XO.9O 203 XO.838 289 XO.866 

C 
Industrial Purchase price 
Water Pumping 

93 CompOSite cost equation 289 XO.866 

92 Water handling 95.8 XO.9O 203 XO.838 289 XO.866 

D 
Agricultural Purchase price 

Water Pumping 

94 Composite cost equation 289 XO.866 

aCost equations represent component costs in June 1974, dollars ($) with X in AF/YR. 
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CHAPTER IV 

MODEL OPERATION AND COMPARISON OF RESULTS 

Comparative Analysis of Model Runs 

The basic model employed for the study can be 
structured with varying complexity from a simple 
model consisting of a grouped sectoral division of 
users and aggregated sources to a highly complex 
model incorporating finely divided users, based on 
spatial, temporal, and water quality aspects, and 
segregated sources. The larger and more complex 
the model, the higher the cost of solution in terms 
of computer time, disk storage, and the labor 
involved in data analysis and model structuring. 
But the information that can be gained may also 
increase because a complex model involves less of 
abstraction from the real world. 

In this chapter a number of optimal solutions 
for different model structures are analyzed in order 
to compare the costs and the amount of relevant 
information each yields. The results of various 
model structures are discussed under the following 
headings: 

4. Linear versus nonlinear costs 

S. Deterministic versus stochastic supplies 

Table 9 is constructed to indicate model runs 
referred to in Table 1 from which the comparisons 
of results are derived. The x's linked by the dotted 
lines in the table indicate the pairs of runs from 
which the comparisons are drawn. 

The cOl1\parisons of results in the following 
sections are meant to be only illustrative examples 
of the types of information that can be derived from 
the various model structures rather than complete 
detailed comparisons and analyses. The discussion, 
however, does indicate generally what information 
can be gained through higher levels of detail or 
resolution in the models. 

Analysis of Results for Model Structures 

Spatial aggregation versus 
1. Spatial aggregation versus disaggregation disaggregation 

2. Imposition of higher wastewater treat­
ment levels 

3. Annual versus seasonal variations 

The aggregated model was constructed for two 
purposes. The first was to reduce the computer 
time cost for nonlinear study; and the second was 
to study the feasibility of a regional wastewater 

Table 9. Runs used for comparison of results for various model structures. 

Comparisons 

1. Spatial 

2. Treatment 

3. Annual/Seasonal 

4. Linear/Nonlinear 

S. Deter. /Stochastic 

Runs (Table 1) 

2 3 4 5 6 7 8 

x ---------------- x 

x -----------------x x -----------------x x -----------------x 
X ----------------------------------i{ 

X -----------------------------------x 
x -----------------x 

x ----------------------------------------------------------------------x 
x -----------------------------------------------------------------------x 
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treatment pI-ant in the area and the implementation 
of higher effluent standards. In ~ggregating frpm 
the spatial resolution existing in the ~even. 
subregions model, the wastew~ter treatment phlnt5i 
were combined into a single f~cility fpr e~ch 
aggregated subregion. Further, the transportation 
distance from municipal and industrial centers to 
any combined facility was averaged. Hence, the 
operational capacity of any individu~l plapt ",as 
not specified, and only combined plant capacity for 
subregions was used. 

The capacity allocation for wastewater treat­
ment facilities in 2020 is used as an example for 
comparison. The seven subregions model shows 
how each wastewater treatment plant in each 
subregion is operated (Figure 8). Wastewater 

HI FI 0 
9.3 

7.8~ 
3.9 ~:] 
~l ~i5 "~ft 

[0] riIj [DO III 1%1 III CD 
~f\ ~ 1l1\ t) 

2.3 34.8/r. 7.2 17.9 42.~ 

H 14.2 G F E 2 2 

o Existing wastewater treatment p!~nts 
-.. L.J New WWT plants 

D:jE~pansion of existing plant 

H F 
----------, 

I 
I 
I 
I 
I 
I 

-I.R.: 

[:J [] [:J:J [I] 0 

{!.9 ! !.l1.4 ft 
42.~ 

E 

Figure 8. WWTP utUization in 2()2(j under exist-
ing water quality standard. 

treatment plant 3 in subregion F2 is idle; a new 
wastewater treatment plant is preferred in sub­
region G, and additional capacity is needed for 
wastewater treatment plants in H2 and Fl. The only 
subregion with adequate capacity is E. In the 
aggregated model, the combined existing waste­
water treatment plant capacity in subregion F is 
exhausted and expansion of capacity is required. 
However, the expansion capacity requirement for 
aggregated subregion F is less than the individual 
subregions composite by the amount equaJ to the 
idle WWT 3 in subregion F 2. In subregion H a new 
treatment plant is preferred, instead of expanding 
the existing facility. 
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Effect Qf hlglt,r discharge 
q~aUty ~1J4'eQ,l~Qq " 

The transportation structure for modelit}g a 
regional water resollr~es system yields an inte­
grated 3;pproach to water and wastewater manage­
ment (Bishop et aI., 1974). The imposition of water 
quality standards indicates that poor effluent 
quality i~ an e~ternality in that the discparger p~ys 
only his private costs while the downstream user 
has to pay both his private cost and the cost of 
reduced quality. This divergence between the social 
~pd private costs clearly leads to market failure and 
a loss of economic efficiepcy. On the other hand, 
the effluent is a water resource and therefore a 
positive resource value may be attributed if ~osts 
a:re less than revenues generated. Until r.euse is 
economically feasible, the effluent is a cost. 
Therefore, the effect of imposition of water quality 
requirements is analyzed in the following w~ys: 

(1) By either changing the costs (in a model 
where higher treatment levels are not e~plicitly 
introduced as in the seven-region model), or (2) by 
changing the right hand elements for treatment 
plants (in a model where higher treatment levels 
are explicitly introduced as in the aggreg~te 
model). " 

A higher quality efflllent stal1dar.d qleans 
additional treatment is required before the efflue~t 
can be discharged into a receiving water body, 
implying that the existing treatment plant bas to be 
upgraded to meet the quality stapdard. 'However, 
higher effluent quality offers higher potential for 
reuse. In general, higher qllality effluent for reqse 
replaces groundwater use in industrial sectors. 
Reuse in agricultural sectors increases if alternative 
sources pecopte less dependable and importeq 
water. is insufticient. Seasonal variation ha~ l~ttle 
im pact on reuse. 

The effect of higher stanQards which require 
secondary treatment (Level II) before 1980 and 
tertiary treatment (Level III) before 1985 is 
illustrated in Figures 9 through 12. The 1980 
requirement is met by adding Level II treatment in 
the regions. For the 1985 Level III the optimal 
solution indicates a large regional plant serving 
areas E and F and further expansion of facilities to 
Level III in H. This pattern continues through 
2020. 

Imposing higher standards on effluent dis­
charge results in higher cost for an optimal 
allocation (see Table 10 and Figure 13). The 
additional cost is due mainly to additional 
treatment requirement. Reuse activities in the 
system do not increase even though higher quality 
effluent is available (compare Figure 10 and 12). 
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Figure 9. Wastewater and water reuse flows resulting from higher level treatment requirements, 1980. 
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Figure 10. Wastewater and water reuse flows resulting from higher level treatment requirements, 1985. 
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Figure 11. Wastewater and water reuse flows resulting from higher level treatment requirements, 2000. 
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Figure 12. Wastewater and water reuse flows resulting from higher level treatment requirements, 2020. 
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Table 10. Annual cost comparison of optimal allocations. 

Allocation 1975 

(a) III deterministic 13.42a 

IV deterministic 

(b) VII stochastic 13.57 
VIII stochastic 

(c) V 13.17 
VI 

aCost of allocation in million dollars. 
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Figure 13. Comparison of total minimum. cost of optimal aUocation under various model assumptions. 
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It is recognized that the use of average annual 
values in the model yields estimates of capacity 
expansion schemes for treatment facilities in the 
region that may not be adequate to meet peak 
demand situations. The water availabilities and 
usage patterns fluctuate considerably over time and 
unless the fluctuations are taken into account, 
required capacities of the treatment facilities could 
be understated by the model. While peak demand 
problems were not explicitly considered in this 
analyses, peak factors could be applied to effluent 
flows to further study this aspect. 

Seasonalvarlatlons 

It is entirely possible that seasonal changes in 
supply and water requirements could substantially 
change allocation patterns and the total system 
cost. Seasonality was analyzed by solving the model 
for summer and winter months separately. A 
biseasonal year was used in order to reduce the cost 
of computer runs, since a finer subdivision (a 
monthly or a four-season model) involves consider­
ably more computational effort. The water flow 
and usage in the study are~ generally were found to 
sharply deviate only with respect to summer and 
winter months, and appeared to be relatively stable 
over the two seasons, although no statistical 
analysis was undertaken. 

The seasonal variation or supply and require­
ments in the study area has two pronounced effects 
on allocation: First, the capacity requirements for 
water treatment plants and wastewater treatment 
plant changes; and second, the overall reuse 
pattern in agricultural sectors changes where the 
seasonal variation in the system restricts irrigation 
reuse during winter months but not during summer 
months. 

The municipal requirements are higher during 
summer months and the existing water treatment 
plant capacity may need to be expanded to satisfy 
the municipal requirements by the 2020 if the 
existing use patterns persist. On the other hand, 
wastewater treatment plant capacity requirements 
are general1y less than the corresponding annual 
capacity requirement. During summer months 
when large volumes of effluent occur, reuse 
opportunity, especially in agricultural sectors, is 
also at maximum, and a large volume of effluent is 
diverted for reuse. Thus, the capacity requirements 
for a wastewater treatment plant during summer 
months is less than the corresponding winter 
months. 

The seasonal total allocation cost indicates 
savings in the system over annual allocation (Figure 
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14). The apparent savings come from higher reuse 
activities, especially in irrigation, and the concomi­
tant reduced waste treatment capacity require­
ments. 

Linear vs. nonlinear cost 
functlon 

The use of nonlinear cost functions introduces 
economies of scale. The nonlinearity has a 
pronounced effect on imported water volume. 
Small amounts of imported water are compara­
tively expensive but large volumes become com­
petitive due to large economies of scale in the 
conveying system. The economies of scale for 
treatment plants as compared to the interregional 
transportation cost will have considerable effect on 
decisions about expanding the wastewater treat­
ment facilities or transporting effluent to nearby 
treatment plants. The nonlinear. cost formulation 
forces trade-off decisions at all times, depending on 
the excess volume of the effluent. The allocation 
cost obtained from nonlinear solution should 
reflect a more realistic estimated cost than the 
average cost solution. 

Comparison of wastewater treatment plant 
utilization in the case of linear and nonlinear 
models is interesting. Data used in the following 
analysis pertain to seven-region model results. In 
subregions where the wastewater treatment plant 
capacity is not exceeded, allocations for the linear 
and nonlinear cost model are identical. However, 
where the subregion wastewater treatment plant's 
capacity is exceeded, there is significant difference 
in allocation. The linear solution generally 
indicates transportation of the excess waste to the 
nearby subregional treatment plants until their 
capacity is also exceeded; then a new plant in the 
subregion is preferred (Table 11, subregion G). 
The nonlinear solution generally indicates a new 
plant to handle the excess wastewater load. The 
difference in allocation can be explained in terms 
of trading off the transportation cost and the 
new treatment plant cost. In the linear solution 
where transportation cost and treatment cost per 
unit are constant throughout, once transportation 
is preferred over new treatment plant, this decision 
will hold through a range of allocations. However, 
the nonlinear solution has to compare transporta­
tion versus a new plant throughout the range. For 
example, small excess over capacity in area Fl is 
treated by a new treatment plant (allocation-1980). 
As the excess volume significantly increases, the 
excess is transported to nearby subregional (E) 
treatment plants instead. For the same reason, TP3 
in area F2 is not utilized in nonlinear solution, and 
the excess waste volume in subarea G is treated by 
the new treatment plant in that subregion. 
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Figure 14. Comparison of total minimum cost of optimal allocation for annual versus seasonal model runs. 

Detenninistlc vs. stochastic 
models 

The aggregate deterministic model assumes 
that the surface water sources provide an annual 
flow equal to the average value of their longterm 
records so that randomness of inflows is not taken 
into account. However, the stochastic nature of 
these flows can be characterized by a normal 

density function and considered by use of the 
chance-constrained programming approach, which 
prescribes that the total allocation be less than the 
availability 95 percent of the time. 

The basic model is quite adaptable to both 
deterministic and stochastic formulations and 

. lends itself to easy solution procedures. The 
allocation pattern under the latter scheme differs in 
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Table 11. Wastewater treatment plants utruz.tion. 

Areas H2 G F2 F1 E D Model 
Year TP1 TP2 TP1 TP1 TP2 TP3 TP1 TP1 TP1 

Linear 4.5 2.3 5.6 6.0 12.7 0 7.1 33.0 1.5 
1975 (81.7) 

NLR 4.5 2.3 5.6 9.0 4.0 0 7.1 33.0 1.4 
(5.7) (81.8) 

LR 4.5 3.9 5.6 8.0 14.2 0 7.8 34.8 1.5 
1980 (81.8) 

NLR 4.5 3.4 5.6 9.0 5.5 0 7.8 34.3 1.5 
(7.7) (.5) (81.8) 

1985 
LR 4.5 3.9 5.6 9.0 16.2 0 7.8 37.8 1.5 

(82.1 ) 
NLR 4.5 3.9 9.0 6.7 0 7.8 36.4 1.5 

(15.1) (82.1 ) 

LR 4.5 3.9 5.6 9.0 17.9 5.1 7.8 44.3 1.5 
2000 (82.6) 

NLR 4.5 3.9 9.0 10.8 0 7.8 39.6 1.5 
(22.5) (82.6) 

LR 4.5, 3.9 5.6 9.0 17.9 5.1 7.8 50.4 (5 
2020 (83.3) 

NLR 2.3 3.9 7.2 17.9 0 7.8 42.5 1.5 
(34.8) (83.3) 

The quantities in parentheses indicate additional treatment capacity necessary in the respective subregions. 

that the more dependable sources are substituted 
in place of the variable surface water. In the 
optimal solutions, surface water is replaced by 
imported water, which is assumed to be a more 
reliable source than surface water over time (Table 
12). 

The system effects on wastewater treatment 
and reuse are displayed by Figures 15 through 19. 
As the diagrams shows reuse is required in area H 
for industrial purposes over the entire planning 
horizon. Areas E and F show reuse for 1980 at 

Level II treatment, but with the Level III regional 
plant in 1985 reuse is curtailed. 

Introduction of stochastic elements into the 
allocation scheme results in a slight increase of the 
total allocation cost (lines III and VII, and IV and 
VIII in Table 10). The increased additional cost 
comes from additional high cost imported water 
required by the system. Reuse acitivites increase in 
the stochastic model only if imported water is 
insufficient (Figures 15 through 19). 

~able 12. Replacement of surface water by import water In optimal solutions for stochastic model. 

Year 

1975 
1980 
1985 
2000 
2020 

Surface Water for 
M&I 

Water 
for M&I 

31 /20.2 
42.2/20.9 
52.5/21.7 
72 /48.7 
87.7/84.5 

Sw forM&I 

Iw 
for M&l 

25.8/25.4 
40.4/22.7 
40.4/35.5 
36.2/84.5 
40.4/84.5 
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Sw for Ag 

Iw for Ag 

71.3/ 2.9 
63.1/ 2.2 
60 / 2.2 
40.5/ 1.7 
24.8/ 1.2 

Iw for Ag 

14.6/59.6 
o /65.6 
o /63.2 
o /43.2 
o /27 
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Figure 15. Waste treatment utiIization and reuse pattem for 1975 with quality level I. 
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Figure 16. Waste treatment utilization and reuse pattem for 1980 with quality level ll. 
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Figure 17 • Waste treatment utiUzation and reuse pattem for 1985 with quaDty level ill. 
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Figure 18. Waste treatment utiHzation and reuse pattem In 2000 with quaDty level m. 
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Figure 19. W ute treatment utlHzation and reue pattem for lOlO with quaDty level m. 

Sector allocations under 
various assumptions 

As further illustrations of the types of 
information that might be derived from various 
model formulations and model runs, the following 
paragraphs analyze model results for the major 
water source, water use and treatment sectors in 
the model. 

Surface water and water 
treatment plants 

Model results based on annual average flows 
and requirements follows findings (Bishop et aI., 
1974) that water treatment plants in the basin 
presently have the capacity to meet the require­
ments for water over the projected study period. 
However, for high demand periods such as summer 
months (see Table 13), the existing maximum 
capacity cannot meet the requirements after 2000. 

Groundwater 

Groundwater is allocated largely to municipal 
req uirements and very little groundwater is used 
for other purposes (Table 14). The agricultural 
sector generally is not allocated any groundwater. 
Allocation of groundwater in industrial sectors 
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Table 13. Water treatment plants (maximum capa­
city 209,700 ac-ft/year). 

Year Annual Summer 
Requirementa Requirementb 

1975 30,600 82,800 
1980 41,800 101,600 
1985 54,200 117,400 
2000 98,300 179,400 
2020 147,600 266,000a 

a In ac-ft/year 

b Adjusted to ac-ftJyear. 

frequently has been replaced by reuse of higher 
quality effluent, when available. Use of ground­
water is increased if dependability of surface water 
sources is reduced. The utilization of groundwater 
is increased until the safe yield i~ reached (103,800 
ac-ft/year for aggregated model area of study). 
Seasonal requirements have very little effect upon 
allocation or use of goundwater. 

Reusable sources 

The sources available for direct reuse are 
municipal and industrial effluents. In this study, 
direct reuSe of effluent in the municipal sector is 



Table 14. Groundwater withdrawal pattern. 

Year 

1975 

1980 

1985 

2000 

2020 

Municipal Industrial 

WQ det 95,800a 

L1 sto 

WQ det 101,800 
L2 sto 101,800 200 

WQ det 103,800 
L3 sto 33,100 400 

WQ det 103,800 
L3 sto 77,200 400 

WQ det 103,800 
L3 sto 103,800 

aIn ac-ft/year. 
WQ - with secondary treatment 
Ll, L2, L3 - higher treatment levels 1,2, and 3 
det - deterministic 
sto - stochastic 

restricted so that the effluent, after first being 
treated to acceptable standards, can be recycled to 
water treatment plants. 

Figures 9 to 12 showed a comparison and 
amount of reuse under various assumptions. For 
existing water quality standards, most of the 
effluent is discharged to satisfy the bird refuge 
requirement. If water quality standards are higher, 
reuse activities are generally confined to industrial 
sectors. Only under severe shortage (e.g., stochas­
tic 1980) is reuse extended to agricultural sectors 
(Table 15). Industrial reuse is usually located in 
subregion H. 

Table 15. Reuse pattern: deterministic and sto­
chastic. 

Year Existing Higher 

A A 

1975 annual 0 0 0 0 
seasonal 0 0 0 0 

1980 annual 0 0 0.4a(21.1) -(22.7) 
seasonal 0 0 1.2 

1985 annual 0 0 10.4(10.0) 0 
seasonal 0 0 7.1 0 

2000 annual 0 0 10.0(10.0) 0 
seasonal 0 0 9.0 0 

2020 annual 0 0 10.0(10.0) 0 
seasonal 0 0 10.0 0 

aThe quantities are in thousand ac-ft/year. The quan-
tities in parentheses indicate solution under stochastic con-
ditions. 
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Imported water 

The aggregated model has been structured to 
allow for water import into the study area. Two 
import sources, the Salt Lake aqueduct and 
Central Utah Project, are of quality better than 
class C, and the Provo Reservoir Canal and Utah 
Lake Distribution Canal are of quality less than 
class C. Given the existing cost structure, imported 
water could be economically competitive to surface 
water. Usage of imported water better than class C 
alleviates the problem of shortage of supply in the 
study area (Table 16). The availability of such 
imported water will reduce the amount of reuse 
activities (Figures 9 and 12). Water quality of 
effluent has very little effect to amount of imported 
water under the existing cost structure. Water is 
initially imported for industrial purposes; percent­
ages of industrial uses decrease, even though the 
actual amount used does not decrease. With severe 
water shortage, water is shifted to satisfy municipal 
requirements. 

Table 16. Import water better than Class C(ac-ft/ 
year). 

Year De terministic 

1975 20,200 (20,200)a 
1980 20,900 (20,900) 
1985 23,400 (21,700) 
2000 48,700 (22,400) 
2020 84,500 (24,600) 

alndustrial use. 

Reuse patterns and Imported 
water 

Stochastic 

25,400 (20,600) 
22,700 (21,300) 
35,900 (21,700) 
84,500 (22,000) 
84,500 (0) 

Requirements in the study area can be 
satisfied by additional imported water or reuse of 
the treated effluent. Generally, where imported 
water is insufficient, reuse volume is increased. 
However, at sufficiently high volume, imported 
water has an advantage over reuse, due to 
economies of scale (see Tables 17 and 18). 

Reuse of reclaimed wastewater based on unit 
cost starts by the year 1985, in the linear model and 
later than 2000 in the nonlinear model. Reuse by 
agriculture is suggested correctly by the linear 
solution, and after 1985 by the nonlinear solution. 

Imported water, especially from CUP, is 
feasible by the available date in the nonlinear 
solution. The amount of increased import reduces 
reuse by approximately the same amount. 



Table 17. Reuse comparisons: Linear vs. nonlinear 
model, municipal and industrial emuent 
for M, I, and agricultural uses. 

M & I Uses Agricultural Uses 
Year 

Linear Nonlinear Linear Nonlinear 

1975 
1980 
1985 
2000 
2020 

oa 
o 

2,120 
15,320 
22,900 

a All figures in acre-feet. 

o 
o 
o 
o 

14,200 

7,000 
5,900 
5,180 
4,700 

14,800 

o 
o 

1,400 
4,700 
9,300 

Table 18. Import water comparisons between lIn­
ear and nonlinear models (municipal 
use). 

Year Linear Nonlinear 

1975 14.5a 14.5 
1980 14.5 14.5 
1985 14.5 34.0 
2000 14.5 66.7 
2020 70.6 84.5 

a Acre-feet in thousands. 

Economies of scale play a significant role in 
allocation. Depending on the degree of difference 
from the average unit cost, allocations can change 
significantly. 

Wastewater treatment plants 

Existing wastewater treatment facilities in 
subregion H need to be expanded by 1980 and 
probably replaced by 2020. The facilities in 
subregion F also need to be expanded by the year 
2000, particularly with higher standards for 
effluent discharge (Tables 19a, b). However, 
according to the seasonal model, the expansion of 
facilities in both regions could be postponed a few 
more years. Only in region E is present wastewater 
treatment capacity sufficient until 2020. 

To meet the required standard of effluent 
discharge in 1980, wastewater treatment plants 
capable of upgrading effluent to Level II are 
needed in all regions. In 1985, wastewater 
treatment plants to upgrade effluent to Level III 
are needed for effluents from region H and regions 
F and E. The treatment plant schedule also applies 
under seasona1 variations, but the required capaci­
ties are different. 

Table 198. Required wastewater treatment plant. capacity (100 ac-ft/year) (a) existing quality: annual vs. 
seasonal. 

Region 1975 1980 1985 2000 2020 

H annual 6.8 9.8a 11.2a 15.7a 22.9b 
seasonal 4.4 6.2 7.2 10.0 14.6 

F annual 31.4 36.1 40.0 54.8a 77.0; 
seasonal 20.2 23.0 25.6 35.0 48.0 

E annual 33.0 34.3 36.4 39.6 42.5 
seasonal 24.0 25.0 26.4 28.6 31.2 

aCapacity expansion needed. 

bNew treatment plants will have to be built. 

Table 19b. Required wastewater treatment plants capacity (100 ac-ft/year) (b) hlaher quality: annual VI. 

seasonal. 

Year 
Region 

F H 
exis L2 L3 ex is L2 L3 exis L2 

1975 annual 6.8 
seasonal 4.4 

1980 annual 9.8 
seasonal 6.2 

1985 annual 8.4 11.2 0.8 
seasonal 7.2 7.2 

2000 annual 8.4 15.7 5.7 
seasonal 8.4 10.0 

2020 annual 22.9 12.9 
seasonal 8.4 10.0 6.2 

31.4 
20.2 

36.1 36.1 
23.0 23.0 
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33.0 
24.0 

34.3 34.3 
25.0 25.0 

E Regional 
L3 Ll L2 L3 

76.4 
62.0 

94.4 
73.6 

119.5 
80.2 



Computer TliDe/Cost ComparISOns 

The model was solved using the Lambda 
fornlUlation of the separable progrartuhirig tech­
nique. A standard mathematical programming 
system (TEMPO), available with the Burrough's 
6700, was used. Some of the important statistics of 
the program are discussed as follows. 

In the separable formulation of the nonlinear 
cost function associated with the variable xii' the 
polygonal approximation of the functionS are 
arrived at as follows. Assuming all xii to l\~ betWeeh 
o and 250,000 acre-feet, five grid pofnts Xij, k = 1, 
2 ... S, were chosen in this range. 

o 1,000 10,000 50,000250,000 
x ij 

X~j = 0; xij = 1 ,000; X~j = 10,000; xiJ = 50,000; 

X~j = 250,000 

The dec~ion variables are no longer xi" s but they 
are the Aij. Once the As are determine op\imally, the 
xij, the optimal Xij can be calculated with 
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X~ = ~ At x ~ for all i and j 

In order to avoid hand computation of the optimal 
Xjj' the above equation was defined as a free row in 
ttfe problem. The restricted basis entry was 
implemented so that the A variables entering the 
basis will always be adjacent. 

In the seven-region model, there are 1010 
variables in xii and five grid points which result in 
5050 A variar>les. There are 100 constraints of 
which 40 were iIi equalities and 60 were fixed rows. 
in addition, there were 1010 fixed rows correspond­
ing to the constraints 

L A~ = 1 
k IJ 

for all i and j 

Corresponding to 1010 variables of Xij' 1010 
constraints were defined as free rows. In aH.dition, 
the objective function is a free row. Thus, there 
were 5050 variables and 2120 rows, or which 1110 
were constraints. The cost of obtaining an optimal 
solution was as high as $450. Using an old basis, 
solutions to moqified problems were obtained at an 
average cost of $90. The CPU time averaged 450 
seconds for these runs and the memory require­
ment was about 17,500 kw/sec. 

The three-region nonlinear model had 2079 
variables and 644 rows, of which 356 were 
constraints. Solutions took about 100 sec. of CPU 
time and the memory requirement was about 2000 
kw/sec. The cost of solutions obtained by starting 
from an old basis averaged about $20. 

The linear solution cost is roughly about one 
tenth of the nonlinear solution, given similar 
starting conditions. Linear solutions were obtained 
using MPS/360 (IBM package) while the nonlinear 
solutions were obtained using TEMPO (Burrough's 
package). 
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APPENDIX A 

Treatment and Reuse Costs 

ORIGIN 1: Surface water better than Class C 

Destination A: Water treatment plants 

The existing water treatment plants are located on mountain streams and draw no water from wells. 
The average cost of collecting water in nearby reservoirs and diverting it to water treatment plants was based 
on data for Salt Lake County. The cost of treating the water for culinary use was based on the existing treat­
ment plants in Salt Lake City. The costs of distribution of the treated water to the consumer is not included. 

(l) Water collection from river. 

Since the entire system already existed the average total cost per acre-ft was applied to the approx­
imate mean demand for water of 10,000 AF /YR, and a was set equ,al to 0.90 to develop the cost equation. 
The 0 & M costs were updated to 1974. 

a) Capital 
$~.12/ AF @ 10,000 AF /YR 
y = 10.3xo.9o 

b) 0 & M 
$9.23/AF (1973 prices) 
$9.63/AF @ 10,000 AF/YR 
y = 24.1 XO.90 

c) Total 
$13.35/AF (1973 prices, Bishop, et al., 1974, p. 34) 
$13.75/AF @ 10,000 AF/YR 
y = 34.5 XO.90 

(2) Water treatment - Existing plant 

(Cost 1) * 

The average quantity of water treated by the existing treatment plants is 14,000 AF /YR. a for 
water treatment plants is 0.67 (Berthouex, 1972). Annual cost of capital was placed at 25 percent of 
total annual cost, and adjusted by one half the value indicated by the index since most of the costs 
were in operation in 1970. 

a) Capital 
$2.83/AF (1970 prices) 
$3.47/AF @14,000 AF/YR 
y = 81.0 X O•6 7 

b) 0 & M 
$8.4 7 / AF (1970 prices) 
$10.49/AF @ 14,000 AF/YR 
y = 245 xO•6 7 

*Key costs are designated by number in order to facilitate referencing particular costs used later in developing composite 
total cost figures. 
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Cost 
No. 

1 
2 

3 

c) Total 
$11.30/AF (l970 prices, Bishop, et al., 1974, p.37) 
$13.96/AF @ 14,000 AF/YR 
y = 326 XO.67 

(3) Composite cost equation * 

1000 AF/YR 10,000 AF /YR 

Item $/AF Total $ $/AF Total $ 

Water collection 17.29 17,291 13.73 137,347 
Water treatment 33.36 33,359 15.60 156,033 

Total 50.65 50.650 29.33 293,380 

(Cost 2) 

50,000 AF/YR 

$/AF Total $ 

11.69 584,645 
9.17 458,699 

20.86 1,043,344 

Detennine the slope of cost equation 

a = 

LN 1,043,344 

50,650 = 0.773 
LN 50,000 

1,000 

Detennine cost coefficient, K, at 1,000 AF /YR 

K = _Y_ = 50,650 = 243 
XO. 773 (I 000)°·773 

Y = K xa = 243 )f.773 (Cost 3) 

Destination B: Municipal culinary water 

This alternative implies that a new plant would be built at current prices. Only small economies of scale 
are expected for the water distribution system because expansion is generally due to expansion of service area 
rather than service size. 

(l) Water collection from river 
(2) Water distribution 

(See Cost 1) 

The distribution costs are based on annual reports for Salt Lake City. The average total cost per 
acre-ft was applied to the approximate mean demand for water of 10,000 AF/YR, and an economy of 
scale, a, of 0.90 was used to develop the cost equation. The 0 & M costs were updated. 

a) Capital 
$13.66/AF @ 10,000 AF/YR 
y = 34.3 XO •90 

b) 0 & M 
$15.94/AF (l971 prices) 
$18.59/AF @ 10,000 AF/YR 
y = 46.7 X O •90 

*Tables are shown for total costs only but the same method was also used for the capital and 0 & M cost equations. 
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Cost 
No. 

1 
4 

5 

Cost 
No. 

5 
6 

7 

c) Total 
$29.60/AF (1971 prices, Bishop, et al., 1974, p. 34) 
$32.25/AF @ 10,000 AF/YR 
y = 81.0xO.90 (Cost 4) 

(3) Water handling 

1000 AF/YR 10,000 AF /YR 50,000 AF/YR 

Item $/AF Total $ $/AF Total $ $/AF Total $ 

Water collection 17.29 17,291 13.73 137,347 11.69 584,645 
Water distribution 40.60 40,596 32.25 322,467 27.45 1,372,644 

Totals 57.89 57,887 45.98 459,814 39.14 1,957,890 

y = 115xo.9o (Cost 5) 
(4) Water treatment - New plant 

The treatment plant cost is based on a 50 percent utilization of the plant capacity. Annual 
capital cost was placed at 25 percent of total annual cost. 

a) Capital 
y = 131 XO.692 (1964 prices) 
y = 256 XO.692 

b) 0 & M 
y = 430 XO.692 (1964 prices) 
y = 770 XO .692 

c) Total 
y = 561 XO. 692 (1964 prices, Koenig, 1967) 
y = 1026xo.692 

(5) Composite cost equation 

1000 AF/YR 10,000 AF/YR 

Item $/AF Total $ $/AF Total $ 

Water handling 57.89 57,887 45.98 459,814 
Water treatment 122.22 122,221 60.14 601,378 

Total 180.11 180,103 106.12 1,061,192 

y = 829 XO. 779 

(Cost 6) 

50,000 AF /YR 

$/AF Total $ 

39.14 "I ,957,890 
36.63 1,831,617 

75.77 3,789,507 

(Cost 7) 

Destination C: Industrial water 

It was assumed that no treatment was necessary other than chlorination. The industries in Salt Lake 
County are located at varying distances from mountain streams so the reported cost for pump age is considered 
to be approximate. 

(1) Pumpage from river 

The average economy of scale, a, for pump age is 0.51 (Berthouex, 1972). Anual cost of capital 
was placed at 25 percent of total annual cost. 
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a) Capital 
$1.96/AF (1971-72 prices) 
$2.32/AF @ 19,363 AF/YR 
y = 292xo.51 

b) 0 & M 
$5.86/AF (l971-72 prices) 
$6.60/AF @ 19,363 AF/YR 
y = 832 X O •5 1 

c) Total 
$7.82/AF (l971-72 prices, Boehm, 1973) 
$8.92/AF @ 19,363 AF/YR 
y = 1124xo.51 

(2) Chlorination 
a) Annual capital cost 

y = 9.18 XO.
658 (l967 prices, Smith, 1968, Figure 16) 

y = 16.3 X O•6 5 8 

b) Annual 0 & M costs 
y = 6.05 XO.

897 (l967 prices, Smith, 1968, Figure 16) 
y = 9.35 XO. 897 

c) Chlorination equation ' 

1000 AF/YR 10,000 AF /YR 
Cost 
No. Item 

Annual Capital 
O&M 

9 Total 

Cost 
No. 

8 
9 

10 

y = 16.7 XO.855 

(3) Water handling 

Item 

Water pump age 
Chlorination 

Total 

y = 725 XO. 595 

(4) Composite cost equation 
y = 725 xo. 5 9 5 

Destination D: Agricultural water 

(l) Diversion structures 

$/AF Total $ $/AF Total $ 

1.54 1,535 0.70 6,985 
4.59 4,590 3.62 36,208 

6.13 6,125 4.32 43,193 

1000 AF/YR 10,000 AF /YR 

$/AF Total $ $/AF Total $ 

38.09 38,086 12.32 123,244 
6.13 6,125 4.32 43,193 

44.22 44,211 16.64 166,437 

(Cost 8) 

50,000 AF /YR 

$/AF Total $ 

0.40 20,142 
3.07 153,381 

3.47 173,529 

(Cost 9) 

50,000 AF /YR 

$/AF Total $ 

5.60 280,054 
3.47 173,529 

9.07 453,5'83 

(Cost 10) 
(See Cost 10) 
(Cost 11) 

Large economies of scale are possible with diversion structures, but since the actual cost is very 
dependent upon the terrain, an average value of a = 0.90 has been used. Annual cost of capital was 
placed at 75 percent of total annual cost. 
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Cost 
No. 

12 
13 

14 

a) Capital 
$0.53/AF (1973 prices) 
$0.57/ AF @ 1960 AF /YR 
y = 1.18 XO.90 

b) 0 & M 
$0.18/AF (1973 prices) 
$0.19/AF @ 1,460 AF/YR 
Y = 0.39 XO

•
90 

c) Total 
$0.71/AF (1973 prices, Bishop et aI., 1974, p. 36) 
$0.76/AF @ 1,460 AF/YR 
y = 1.57xo.90 

(2) Canal costs 

(Cost 12) 

Assuming that.a canal is used by several farms, or industries, the cost equation represents the total 
cost of building and operating one mile of canal. The annual cost of capital was placed at 75 percent of 
the total annual cost. An economy of scale, a, of 0.26 was used (Linaweaver and Clark, 1964, Table 7). 
Since most of the canal system is already in existence, the cost of capital was increased only one half of 
that indicated by the cost index. 

a) Capital 
$2.39/ AF /mi (1962 prices, Bishop et al., 1974, p. 36) 
$2.4 7/ AF /mi @ 22,393 AF /YR 
y = 4,091 XO •2 6 

b) 0 & M 
$0.80/ AF /mi (1962 prices) 
$1.50/ AF /mi @ 22,393 AF /YR 
y = 2,484 XO.26 

c) Total 
$3.19/ AF /mi (1962 prices) 
$3.97/AF/mi @ 22,393 AF/YR 
Y = 6,575 XO. 26 

(3) Water handling 

1000 AF/YR 10,000 AF/YR 

Item $/AF Total $ $/AF Total $ 

Diversion 0.79 787 0.63 6,250 
Canal 39.62 39,618 7.21 72,093 

Total 40.41 40,405 7.84 78,343 

y = 4,747 XO. 31 

(4) Composite cost equation 
Y = 4,747 XO. 31 

(Cost 13) 

50,000 AF /YR 

$/AF Total $ 

0.53 26,605 
2.19 109,554 

2.72 136,159 

(Cost 14) 
(See Cost 14) 
(Cost 15) 

ORIGIN 2: Water treatment plant 

Destination B: Municipal culinary water 

Since the water treatment plant is providing culinary water, only the cost of distributing the water is 
incurred 
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(1) 
(2) 

Water distribution 
Composite cost equation 
y = 81.0 XO.90 

Destination C: Industrial water 

(See Cost 4) 
(See Cost 4) 
(Cost 16) 

It was assumed that the industries using this supply will incur the same cost as municipal culinary water. 

(1) Water distribution 
(2) Compbsite cost equation 

y = 81.0xO. 90 

Destmation b: Agricultural water 

(See Cost 4) 
(See Cost 4) 
(Cost 11) 

It Was assumed that the farms or private citizens using this supply will incur the same costs as municipal 
culinary water. 

(1) Water distribution 
(2) Composite cost equation 

y = 81.0 XO.90 

ORIGIN 3: Wells 

Destination A: Water treatment plants 

(See Cost 4) 
(See Cost 4) 
(Cost 18) 

The cost equation includes the cbst of producing the well water and treating it in the eXisting water treat­
ment plants. 

(1) Well water 

Most of the wells needed during the planning horizon are existing in a light use or capped state. 
The costs are based on Salt Lake County data. 

a) Average well and pump characteristics (Bishop etal., 1974, p. 37) 
1) Casing size - 18" 
2) Casing depth - 805 ft 
3) Pump capacity - 1600 gpm, 2580 AF /YR 
4) Total lift - 507 ft 
5) Water pumped - 367 AF /YR/Pump 
6) 12 wells 
7) Total annual pumpage - 4,402 AF/YR 
8) Power cost - $13.92/AF 

b) Capital costs for well casings and pumps 

The pumps in Salt Lake County are operated at about 14 percent of capacity. 'Generally, 
there is a low limit to the production from an individual well, and therefore several wells are 
usually necessary to meet required water quantity demands. This would result in a low economy 
of scale, however, since these pumps are operated at a clow level currently, the normal economy 
of scale for pumps of about 0.453 was used (Dawes, 1970, Figure 9). 

1) Annual costs (Bishop et aI., 1974, p. 38) 
Well casings - $15,400 (Existing) 
Pumps - 20,100 (1973 prices) 
Pumps - 21,184 
Total - $36,584 @ 4,402 AF /YR 

2) y = 818 XO.453 
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Cost 
No. 

19 
2 

20 

c) 0 & M costs 
1) Annual costs (Bishop et al., 1974, p. 38) 

Power costs $13.92/AF @ 4,402 AF/YR 
Pump & casing $1,829/YR (0.05 of capital cost) 
Total $63,105 @ 4,402 AF/YR 

2) y = 33.2 X O•90 

d) Total 
y = 199 XO. 75 

(2) Composite cost equation 

1000 AF/YR 10,000 AF/YR 

Item $/AF Total $ $/AF Total $ 

Well water 35.39 35,388 19.90 199,000 
Water treatment 33.36 33,359 15.60 156,033 

Total 68.75 68,747 35.50 355,033 

y = 496 XO . 714 

Destination B: Municipal culinary water 

(Cost 19) 

50,000 AF/YR 

$/AF Total $ 

13.31 665,397 
9.17 458,699 

22,48 1,124,096 

(Cost 20) 

The cost equation includes the cost of producing the well water, chlOrinating it, and distributing it to the 
consumer. 

(l) Water handling 

Cost 
No. Item 

19 Well water 
9 Chlorination 
4 Distribution 

21 Total 

(2) 
y = 245 XO. S42 

Composite cost equation 
y = 245 XO. S42 

Destination C: Industrial water 

1000 AF/YR 

$/AF Total $ 

35.39 35,388 
6.13 6,125 

40.60 40,596 

82.12 82,109 

10,000 AF/YR 50,000 AF /YR 

$/AF Total $ $/AF Total $ 

19.90 199,000 13.31 655,397 
4.32 43,193 3.47 173,529 

32.25 322,467 27.45 1,372,644 

56.47 564,660 44.23 2,211,570 

(Cost 21) 
(See Cost 21) 
(Cost 22) 

The cost equation includes the cost of producing the well water and chlorinating it. It was assumed that 
the well pump produces sufficient pressure for direct use by the industry. 

(l) Water handling 

1000 AF/YR 10,000 AF /YR 50,000 AF /YR 
Cost 
No. Item $/AF Total $ $/AF Total $ $/AF Total $ 

19 Well water 35.39 35,388 19.90 199,000 13.33 665,397 
9 Chlorination 6.13 6,125 4.32 43,193 3.47 173,529 

23 Total 41.52 41,513 24.22 242,193 16.80 838,926 

y = 206 XO. 768 (Cost 23) 
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(2) Composite cost equation 
y = 206 xO. 768 

Destination D: Agricultural water 

It was assumed that the wells are located on the farms, and are used directly. 

(1) Well water 
(2) Composite cost equation 

y = 199 XO. 75 

ORIGIN 4: Municipal effluent 

Destination E: Existing secondary treatment plants 

(See Cost 23) 
(Cost 24) 

(See Cost 19) 
(See Cost 19) 
(Cost 25) 

The cost equation includes the costs of collecting the wastewater from the sources and treating it in the 
existing secondary treatment plants. 

(1) Sewage collection 

The cost of sewage collection is based on the Salt Lake City data using the national averages of cost 
for 1968. Since most of the system already exists, the values were not adjusted to higher current costs. 

a) National sewer collection data (Smith & Eilers, 1970) 
1) Capital 

House connection 
Municipal sewers 
Interceptors and outfa11s 

2) 0 & M 

$ 1.38 
8.64 
2.46 

$ 12,48/Capita/YR 

Municipal sewer maintenance $ 0.86 
Customer Service and Accounting 0.36 
General and Administration 0.69 

$ 1.91/Capita/YR 
b) Economy of scale (Smith & Eilers, 1970, Table III) 

a = 0.91 
c) Data for Salt Lake City (Bishop et aI., 1974, p. 39) 

Wastewater flow = 33.4 mgd = 37,300 AF /YR 
Population (1970) = 174,870 

d) Capital @ 37,300 AF /YR 
$12.48/Capita/YR x 174,870 = $2,182,378 
y = 151 XO•91 

e) 0 & M @ 37,300 AF/YR 
$1.91/Capita/YR x 174,870 = $334,002 
y = 23 XO. 91 

f) Total @ 37,300 AF/YR 
$14.39/Capita/YR x 174,870 = $2,516,379 
y = 174xo.91 

(2) Existing secondary treatment plant 
(Cost 26) 

These plants exist, therefore, the reported ca:pital costs for 1967 were used and the 0 & M costs 
were updated to 1974. 

a) Capital - Trickling fIlter plants 
y = 137 XO.

784 (1967 prices, Smith, 1968, Figure 7) 
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b) 0 & M 
Y = 201 XO.668 (1967 prices, Smith, 1968, Figure 7) 
y = 311 XO.668 (1974 prices) 

c) Total 
y = 396 XO. 732 

(3) Composite cost equation 

1000 AF/YR 10,000 AF/YR 
Cost 
No. Item $/AF Total $ $/AF Total $ 

26 Sewage collection 93.44 93,444 75.95 759,537 
27 Exist. Sec. Treat. 62.20 62,199 33.35 333,516 

28 Total 155.64 155,643 109.30 1,093,053 

y = 430 XO.8 53 

Destination F: Wastewater treatment plant - Levell 

(Cost 27) 

SQ,OOO AF /YR 

$/AF Total $ 

65.71 3,285,579 
21.80 1,090,004 

87.51 4,375,583 

(Cost 28) 

The cost equation includes the costs of collecting the wastewater from the source and treating it at a new 
secondary treatment plant with activated sludge. 

{l) Sewage collection 
(2) New wastewater treatment plant - Levell 

a) Capital - Activated sludge plants 
y = 138 XO. 780 (1967 prices, Smith, 1968, Figure 6) 
y = 253 XO. 780 

b) 0 & M 
Y = 155 XO. 756 (1967 prices, Smith, 1968, Figure 6) 
y=240xO. 756 

c) Total 
y = 489 XO. 770 

(3) Composite cost equation 

1000 AF/YR 10,000 AF /YR 
Cost 
No. Item $/AF Total $ $/AF Total $ 

26 Sewage Collection 93.44 93,444 75.95 759,537 
29 New WTP-Level1 99.83 99,834 58.7J 587,154 

30 Total 193.27 193,278 134.66 1,346,691 

y = 556 XO. 847 

Destination G: Wastewater treatment plant - Level 2 

(See Cost 26) 

(Cost 29) 

50,000 AF /YR 

$/AF Total $ 

65.71 3,285,579 
40.54 2,026,666 

106.25 5,312,245 

(Cost 30) 

The cost equation includes the costs of collecting the wastewater from the source and treating it in a new 
tertiary treatment plant with activated sludge followed by rapid sand filtration. 

(1) Sewage collection 
(2) Rapid sand filtration 
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a) Capital 
y = 51.8 XO.

662 (1967 prices, Smith, 1968, Figure 9) 
y = 95.0 XO. 662 

b) 0 & M 
y = 252 XO. 6 

3 8 (1967 prices, Smith, 1968, Figure 9) 
y = 390 XO .6 3 8 

c) Total 
y = 481 XO.644 

(3) New wastewater treatment plant - Level 2 

1000 AF/YR 10,000 AF /YR 
Cost 
No. Item $/AF Total $ $/AF Total $ 

29 New WTP-Levell 99.83 99,834 58.71 587,154 
31 Rapid sand filter 41.13 4.1,129 18.12 181,195 

32 Total 140.96 140,963 76.83 768,349 

y = 855 XO. 739 

(4) Composite cost equation 

1000 AF/YR 10,000 AF/YR 
Cost 
No. Item $/AF Total $ $/AF Total $ 

26 Sewage collection 93.44 93,444 75.95 759,537 
32 New WTP-LeveI2 140.96 140,963 76.83 768,349 

33 Total 234.40 234,407 152.78 1,527,886 

y = 807 XO. 821 

Destination H: Wastewater treatment plant - Level 3 

(Cost 31) 

50,000 AF /YR 

$/AF Total $ 

40.54 2,026,666 
10.22 510,836 

50.76 2,537,502 

(Cost 32) 

50,000 AF/YR 

$/AF Total $ 

65.71 3,28?,579 
50.76 2,537,502 

116.47 5,823,081 

(Cost 33) 

The cost equation includes the costs of collecting the wastewater from the source and treating it in a new 
tertiary treatment plant with activated sludge followed by rapid sand ftltration and carbon adsorption. 

(1 ) Sewage collection 
(2) Carbon adsorption 

a) Capital 
y = 281 XO.

626 (1967 prices, Smith, 1968, Figure 11) 
y = 515 XO.626 

b) 0 & M 
y = 226 XO .724 (1967 prices, Smith, 1968, Figure 11) 
y = 349 XO. 724 

c) Total 
y = 794 XO.686 

(3) New wastewater treatment plant - Level 3 
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Cost 
No. Item 

29 New WI'P-Level 1 
31 Rapid san~ fIlter 
34 Carbon adsorption 

35 Total 

y = 1,603 XO. 72O 

(4) Composite cost equation 

Cost 
No. Item 

26 Sewage collection 
35 New WTP-LeveI3 

36 Total 

y = 1,387 XO. 79 

l000AF/yR 

$/AF Total $ 

99.83 99,83,4 
41.1~ 41,129 
90.74 90,745 

231.70 231,708 

1000 AF/YR 

$/AF Total $ 

93.44 93,444 
231.70 231,708 

325.14 325,152 

Destination I: Wastewater treatment plant - Reuse 

10,000 AF/yR 50,000 AF /YR 

$/AF Total $ $/AF Total $ 

58.71 587,154 40.54 2,026~666 
18.12 181,19S 10.22 510,836 
44.04 440,373 26.57 1,328,354 

120.87 1,208~722 77.33 3,865,856 

(Cost 35) 

10,000 AF/YR 50,000 AF /YR 

$/AF Total $ $/AF Total $ 

75.95 759,537 65.71 3,285,579 
120.87 1,208,722 77.33 3,865,856 

196.82 1,968,259 143.04 7,151;435 

; 

(Cost 36) 

The cost equation includes the costs of collecting the wastewater from the source and treating it in a new 
tertiary treatment plant to a quality suitable for direct use as culinary water. The plant ~onsists of an activated 
sludge process followed by rapid sand fIltration, carbon adsorption, and ion exchange. 

(1 ) Sewage collection 
(2) Ion exchange; 

(See Cost 26) 

One third of the flow of the plant is processed through the ion exchange unit and then blended with 
the remaining flow. 

a) Capital 
y = 86 XO.841 (1970 prices, EPA, 1971) 
Y = 128 XO.841 , 

Y = 42.7 XO.841 (33% blend) 
b) 0 & M 

y = 531 XO .841 (1970 prices, EPA, 1971) 
y = 658xo.841 

Y = 219 xO.841 (33% blend) 
c) Total 

y = 617 XO.841 (1970 prices, EPA, 1971) 
y = 786 XO.841 

Y = 262 XO.841 

(3) New wastewater treatment plant - Reuse 
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1000 AF/yR 10,000 AF /YR 50,000 AF/YR 
Cost 
No. Item $/AF Total $ $/AF Total $ $/AF Total $ 

29 New WTP-Level 1 99.83 99,834 58.71 587,154 40.54 2,026,666 
31 Rapid sand filter 41.13 41,129 18.12 181,195 10.22 510,836 
34 Carbon adsorption 90.74 90,745 44.04 440,373 26.57 1,328,354 
37 Ion exchange 87.36 87,358 60.58 605,761 46.90 2,344,958 

38 Total 319.06 319,066 181.45 1,814,483 124.23 6,210,814 

y = 1,686 XO. 7S9 (Cost 38) 

(4) Composite cost equation. 

1000 AF/YR 10,000 AF/YR 50,000 AF /YR 
Cost 
No. Item $/AF Total $ $/AF Total $ $/AF. Total $ 

26 Sewage collection 93.44 93,444 75.95 759,537 65.71 3,285,579 
38 New WTP-Reuse 319.06 319,066 181.45 1,814,483 124.23 6,210,814 

39 Total 412.50 412,510 257.40 2,574,020 189.94 9,496,393 

y = 1,620 XO.802 (Cost 39) 

ORIGIN 5: Industrial effluents 

Destination E: Existing secondary wastewater treatment plants 

The cost equation includes the costs of collecting the wastewaters from the source, pretreating it, and 
then treating it in an existing trickling ftlter plant. 

(1) Sewage collection (See Cost 26) 
(2) Pretreatment (Eckenfelder and Adams, 1972) 

a) Capital 
y = 13.7 XO. 63 (1969 prices) 
y = 21.2 XO.63 

b) 0 & M 
y = 21.8 X O•

684 (1969 prices) 
y = 29.3 XO. 684 

c) Total 
y = 49.4 xO.667 (Cost 40) 

(3) Sewage handling 

1000 AF/YR 10,000 AF /YR 50,000 AF /YR 
Cost 
No. Item $/AF Total $ $/AF Total $ $/AF Total $ 

26 Sewage collection 93.44 93,444 75.95 759,537 65.71 3,285,579 
40 Pre trea tmen t 4.95 4,951 2.30 23,000 1.35 67,288 

41 Total 98.39 98,395 78.25 782,537 67.06 3,352,867 

y = 194 XO.902 (Cost 41) 
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(4) Composite cost equation 

1000 AF/YR 10,000 AF/YR 50,000 AF/YR 
Cost 
No. Item $/AF Total $ $/AF Total $ $/AF Total $ 

41 Sewage handling 98.39 98,395 78.25 782,537 67.06 3,352,867 
27 Exist. Sec. Treat. 62.20 62,199 33.35 333,516 21.80 1,090,004 

42 Total 160.59 160,594 111.60 1,116,053 88.86 4,442,871 

y = 459 XO.848 (Cost 42) 

Destination F: Wastewater treatment plant - Levell 

The cost equation includes the costs of collecting the wastewater from the source, pretreating it, and 
then treating it in a new activated sludge plant. 

Cost 
No. 

41 
29 

43 

(1) Sewage handling 
(2) New wastewater treatment plant - Levell 
(3) Composite cost equation 

1000 AF/YR 

Item $/AF Total $ 

Sewage handling 98.39 98,395 
New WTP-Level 1 99.83 99,834 

Total 198.22 198,229 

y = 583 XO.844 

Destination G: Wastewater treatment plant - Level 2 

10;000 AF /YR 

$/AF Total $ 

78.25 782,537 
58.71 587,154 

136.96 1,369,691 

(See Cost 41) 
(See Cost 29) 

50,000 AF/YR 

$/AF Total $ 

67.06 3,352,867 
40.54 2,026,666 

107.60 5,379,533 

(Cost 43) 

The cost equation includes the costs of collecting the wastewater from the source, pretreating it, and 
then treating it in a new activated sludge plant with a rapid sand filter for tertiary treatment. 

Cost 
No. 

41 
32 

44 

(1 ) Sewage handling 
(2) New wastewater treatment plant - Level 2 
(3) Composite cost equation 

1000 AF/YR 

Item $/AF Total $ 

Sewage handling 98.39 98,395 
New WTP-Level 2 140.96 140,963 

Total 239.35 239,358 

y = 836 X O•8 1 9 
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10,000 AF/YR 

$/AF Total $ 

78.25 782,537 
76.83 768,349 

155.08 1,550,886 

(See Cost 41 ) 
(See Cost 32) 

50,000 AF/YR 

$/AF Total $ 

67.06 3,352,867 
50.76 2,537,502 

117.82 5,890,369 

(Cost 44) 



Destination H: Wastewater treatment plant - Reuse 

The cost equation includes the costs of collecting the wastewater from the source, pretreating it, and 
then treating it in a new activated sludge plant with a rapid sand filter and carbon adsorption for tertiary 
treatment. 

Cost 
No. 

41 
35 

45 

(1) Sewage handling 
(2) New wastewater treatment plant - Level 3 
(3) Composite cost equation 

1000 AF/YR 

Item $/AF Total $ 

Sewage handling 98.39 98,395 
New WTP-Level 3 231.70 231,708 

Total 330.09 330,103 

y = 1,419 XO. 789 

Destination I: Wastewater treatment plant - Reuse 

10,000 AF/YR 

$/AF Total $ 

78.25 782,537 
120.87 1,208,722 

199.12 1,991,259 

(See Cost 41) 
(See Cost 35) 

50,000 AF/YR 

$/AF Total $ 

67.06 3,352,867 
77.33 3,865,856 

144.39 7,218,723 

(Cost 45) 

The cost equation includes the costs of collecting the wastewater (rom the source, pretreating it, and 
treating it to a quality for use as culinary water. The plant consists of activated sludge followed by rapid 
sand mters, carbon adsorption, and ion exchange for tertiary treatment. One third of the water is processed 
through the ion exchange unit and reblended with the main stream. 

(1) Sewage handIing 
(2) New wastewater treatment plant - Reuse 
(3) Composite cost equation 

1000 AF/YR 
Cost 
No. Item $/AF Total $ 

41 Sewage handling 98.39 98,395 
38 New WTP-Reuse 319.06 319,066 

46 Total 417.45 417,461 

y = 1,662 XO•8OO 

ORIGIN 6: Existing secondary wastewater treatment plants 

Destination D: Agricultural water 

10,000 AF/YR 

$/AF Total $ 

78.25 782,537 
181.45 1,814,483 

259.70 2,597,020 

(See Cost 41) 
(See Cost 38) 

50,000 AF /YR 

$/AF Total $ 

67.06 3,352,867 
124.23 6,210,814 

191.29 9,563,681 

(Cost 46) 

The cost equation includes the costs of transporting treated effluent in canals and distribution of water 
at diversion structures. 

(1) Water handling 
(2) Composite cost equation 

y = 4,747 X O •31 
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(See Cost 14) 
(See Cost 14) 
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Destination G: Water treatment plant - Level 2 

The cost equation includes the costs of adding a rapid sand ftlter as a tertiary process to an existing plant. 
There are no additional water handling costs. 

(1) 

(2) 

Tertiary - Level 1-2 
y = 481 XO. 644 

Composite cost equation 
y = 481 XO.644 

Destination H: Wastewater treatment plant - Level 3 

(See Cost 31) 
(Cost 48) 
(See Cost 48) 
(Cost 49) 

The cost equation includes the costs of adding a rapid sand ftlter and carbon adsorption units as tertiary 
processes to an existing plant. There are no additional water handling costs. 

Cost 
No. 

31 
34 

50 

(1) Tertiary - Level 1-3 

Item 

Rapid sand ftl ter 
Carbon adsorption 

Total 

(2) 
y = 1,254 XO. 674 

Composite cost equation 
y = 1,254 XO •6 74 

1000 AF/YR 

$/AF Total $ 

41.13 41,129 
90.74 90,745 

131.87 131,874 

Destination I: Wastewater treatment plant - Reuse 

10,000 AF/YR 50,000 AF/YR 

$/AF Total $ $/AF Total $ 

18.12 181,195 10.22 510,836 
44.04 440,373 26.57 1,328,354 

62.16, 621,568 36.79 1,839,190 

(Cost 50) 
(See Cost 50) 
(Cost 51) 

The cost equation includes the costs of adding tertiary treatment processes to an existing treatment plant 
to produce water suitable for culinary water. The tertiary plant consists of a rapid sand filter, carbon adsorp­
tion, and an ion exchange unit treating one third of the total flow. The flows are reblended. There are no 
additional water handling costs. 

(1) Tertiary - Level1-R 

Cost 
No. Item 

31 Rapid sand filter 
34 Carbon adsorption 
37 Ion exchange 

52 Total 

y = 1,199 XO. 754 

(2) Composite cost equation 
y = 1,199 XO. 754 

1000 AF/YR 

$/AF Total $ 

41.13 41,129 
90.74 90,745 
87.36 87,358 

219.23 219,232 
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10,000 AF/YR 50,000 AF/YR 

$/AF Total $ $/AF Total $ 

18.12 181,195 10.22 510,836 
44.04 440,373 26.57 1,328,354 
60.58 605,761 46.90 2,344,958 

122.74 1,227,329 83.69 4,184,148 

(Cost 52) 
(See Cost 52) 
(Cost 53) 



ORIGIN 7: Wastewater treatment - Levell 

Destination D: Agricultural water 

The cost equation includes the costs of transporting the treated effluent from a new activated plant and 
distributing the water at diversion structures. 

(1) Water handling 
(2) Composite cost equation 

y = 4,747 XO. 31 

Destination G: Wastewater treatment - Level 2 

(See Cost 14) 
(See Cost 14) 
(Cost 54) 

The cost equation includes the costs of adding a rapid sand filter as a tertiary treatment process to a new 
activated sludge treatment plant. The costs were increased 5 percent to force the use of the existing secondary 
treatment plants over the construction of new ones. There are no additional water handling costs. 

(1) Tertiary - Level N-2 
y = 481 XO. 644 

Y = 505 XO. 644 

(2) Composite cost equation 

y = 505 XO. 644 

Destination H: Wastewater treatment plant - Level 3 

(See Cost 31) 
(Cost 55) 
(See Cost 55) 

(Cost 56) 

The cost equation includes the costs of adding a rapid sand filter and carbon adsorption units as tertiary 
processes to a new activated sludge plant. The costs were increased 5 percent to force the use of the existing 
secondary treatment plants over the construction of new ones. There are no additional water handling costs. 

(1) Carbon adsorption 
y = 794 XO. 686 

Y = 834 XO. 686 

(2) Tertiary - Level N-3 
y = 1,254 XO. 674 

Y = 1,317 XO. 674 

(3) Composite cost equation 
y = 1,317 X O•6 74 

Destination I: Wastewater treatment plant - Reuse 

(See Cost 34) 
(Cost 57) 

(See Cost 50) 
(Cost 58) 
(See Cost 58) 
(Cost 59) 

the cost equation includes the costs of adding tertiary treatment processes to a new activated sludge 
plant to produce water suitable for culinary use. The tertiary treatment consists of rapid sand ftlter, carbon 
adsorption, and ion exchange units. The ion exchange units process one third of the total water flow and then 
blend with main stream. The costs were increased 5 percent to force the use of the existing treatment plants 
over the construction of new ones. There are no additional water handling costs. 

(1) 

(2) 

(3) 

Ion exchange (33% blend) 
y = 262 XO. 841 

Y = 275 XO. 841 

Tertiary - Level N-R 
y = 1,199 XO. 7S ·4 

Y = 1,259 xO • 7 54 

Composite cost equation 
y = 1,259 XO. 7S4 

60 

(See Cost 37) 
(Cost 60) 

(See Cost 52) 
(Cost 61) 
(See Cost 61) 
(Cost 62) 



ORIGIN 8: Wastewater treatment plant - Level 2 

Destination C: Industrial water 

Treatment level 2 produces a water of a quality suitable for direct reuse by industry. The cost equation 
contains only the approximate cost of pumping the water. 

(1) Pumping 
(2) Composite cost equation 

y = 1,124 XO. 51 

Destination D: Agricultural water 

(See Cost 8) 
(See Cost 8) 
(Cost 63) 

The cost equation includes the costs of transporting treated effluent in canals and distributing it at 
diversion structures. 

(1) Water handling 
(2) Composite cost equation 

y = 4,747 XO. 31 

Destination H: Wastewater treatment plant - Level 3 

(See Cost 14) 
(See Cost 14) 
(Cost 64) 

The cost equation includes the costs 0f adding a carbon adsorption unit to new level 2 treatment 
plant. The costs were increased 5 percent to force the use of existing treatment plants over the construction 
of new plants. There are no additional water handling costs. 

(1) 

(2) 

Tertiary - Level 2-3 
y = 794 XO. 686 

Y = 834 XO. 686 

Composite cost equation 
y = 834 XO. 686 

Destination I: Wastewater treatment plant - Reuse 

(See Cost 34) 
(See Cost 57) 
(See Cost 57) 
(Cost 65) 

The cost equation includes the costs of adding carbon adsorption and ion exchange units to produce 
water suitable for culinary use. The costs were increased 5 percent to force the use of existing treatment 
plants over the construction of new plants. There are no additional water handling costs. 

(1) 

(2) 

(3) 

Cost 

Carbon adsorption 
y = 794 xO.686 

Y = 834 XO. 686 

Ion exchange (33% blend) 
y = 262 XO. 841 

Y = 275 XO.841 

Tertiary - Level 2-R 

No. Item 

34 Carbon adsorption 
37 Ion exchange 

1000 AF/YR 

$/AF 

90.74 
87.36 

Total $ 

90,745 
87,358 

Total 178.10 178,103 

y = 849 XO. 774 

Y = 891 XO. 774 

(4) Composite cost equation 
y = 891 XO. 774 
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10,000 AF/YR 

$/AF Total $ 

44.04 440,373 
60.58 605,761 

104.62 1,046,134 

(See Cost 34) 
(See Cost 57) 

(See Cost 37) 
(See Cost 60) 

50,000 AF /YR 

$/AF Total $ 

26.57 1,328,354 
46.90 2,344,958 

73.47 3,673,312 

(Cost 66) 
(See Cost 66) 
(Cost 67) 



ORIGIN 9: Wastewater treatment plant - Level 3 

Destination A: Water treatment plants 

The cost equation includes the costs of a pipeline and pump for the transmis.sion of treated effluent to 
the water treatment plants. 

(1) Constraints 
a) Pipe line length - 8 miles 
b) Pump lift - 1000 feet 
c) Pump efficiency - 0.092 
d) Power cost - $0.02/kw-hr 

(2) Pipelines (1970 prices, Bishop et aI., 1974, p. 44) 

The cost equation for the pipeline includes the annual capital and 0 & M costs, and also the cost of 
pumping necessary to overcome headloss. It does not include the cost of pumping to change elevation. 
The equation is based on the following values: 

Slope = 2 ft/ 1 000 ft, down hill 
Power = $0.02/kw-hr 
Efficiency = 0.92 
C = 120 

It was assumed that capital repayment accounted for 75 percent of the total annual payment. 

a) Capital 
y = 134 XO.5 35 $/mi (1970 prices) 
y = 193 XO.5 35 ${mi 
y = 1,544 XO.5 35 $/8 mi 

b) 0 & M 
y = 45.0 xO.'535 $/mi (1970 prices) 
y = 56.0 XO. 5 3 5 $/mi 
y = 448 XO. 535 $/8 mi 

c) Total 
y = 179 XO. 535 $/mi (1970 prices) 
y = 249 XO. 5 35 $/mi 
y = 1,992 XO. 535 $/8mi 

(3) Pumping (Dawes, 1970, Figure 12) 
(Cost 68) 

It was assumed that the pumps included with the pipeline are adequate to pump to the required heads. 
Therefore, only the cost of power required to pump the required heads are included in this section. An 
economy of scale of 0.90 was used to account for power rate charts. 

a) 0 & M 

3.148 H XO. 90 P 
y = Eo 

where y = dollars 
H ~ feet of pump lift 
x = AF/YR 
P = Price of power, $0.02/kw-hr 
Eo = Pump efficiency, 0.92 

y = 0.0684 H XO.90 

for H = 1000 ft 
y = 68.4 XO. 90 

b) Total 
y = 68.4 XO. 90 

(4) Water transmission 
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1000 AF/YR 10,000 AF/YR 50,000 AF/YR 
Cost 
No. Item $/AF Total $ $/AF Total $ $/AF Total $ 

68 Pipeline 80.22 80,221 27.50 274,973 13.01 650,486 
69 Pumping 34.28 34,281 27.23 272,305 23.18 1,159,122 

70 Total 114.50 114,502 54.73 547,278 36.19 1,809,608 

y = 873 XO. 706 (Cost 70) 
(5) Composite cost equation (See Cost 70) 

y = 873 xO. 706 (Cost 71) 
Destination C: Industrial water 

The cost equation includes only the costs of pumpage of treated effluent to the local industries. 

(1) Pumpage 
(2) Composite cost equation 

y = 1,124 XO. S1 

Destination D: Agricultural water 

(See Cost 8) 
(See Cost 8) 
(Cost 72) 

The cost equation includes the costs of transporting the treated effluent in canals and distributing it at 
diversion structures. 

(1) 
(2) 

Water handling 
Composite cost equation 
y = 4,747 XO. 31 

Destination I: Wastewater treatment plant - Reuse 

(See Cost 14) 
(See Cost 14) 
(Cost 73) 

The cost equation includes the costs of adding an ion exchange .unit to a new level 2 treatment plant to 
produce water of quality suitable for use as culinary water. There are no additional water handling costs. Costs 
are increased 5 percent to force the use of existing plants rather than the construction of new plants. 

(1) 

(2) 

(3) 

Ion exchange (33% blend) 
y = 262 XO.8 41 

Y = 275 XO. 841 

Tertiary - Level 3-R 
y = 275 XO.841 

Composite cost equation 
y = 275 XO.841 

ORIGIN 10: Wastewater treatment plant - Reuse 

Destination B: Municipal culinary water 

(See Cost 37) 
(See Cost 60) 
(See Cost 60) 
(Cost 74) 
(See Cost 74) 
(Cost 75) 

The water produced by this treatment plant is suitable for direct reuse as culinary water, and can be 
connected directly to the water distribution system. The cost equation contains only the distribution 
costs. The treatment sequence used in this economic analysis is representative of the costs that will be 
incurred for water reuse as culinary water, but it does imply that this sequence is required or will be approved. 

(1) Water distribution 
(2) Composite cost equation 

y = 81.0 XO.90 
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(See Cost 4) 
(See Cost 4) 
(Cost 76) 



Destination C: Industrial water 

The cost equation includes the costs of pumping the treated effluent to the industrial users. This 
option assumes that the industrial users will be supplied with a separate pipeline rather than obtaining water 
from the city water distribution system. 

(1) Water pumpage 
(2) Composite cost equation 

y = 1,124 xo.s 1 

Destination D: Agricultural water 

(See Cost 8) 
(See Cost 8) 

(Cost 77) 

The cost equation includes the costs of transporting the treated effluent in canals and distributing it at 
diversion structures. 

(1) Water handling 
(2) Composite cost equation 

y = 4,747 X
O

.
31 

ORIGIN 11: Surface water worse than Class C 

Destination A: Water treatment plant 

(See Cost 14) 
(See Cost 14) 
(Cost 78) 

The cost equation includes the costs of pretreating the river water to bring it to the level of quality exist­
ing in the rivers that are classed as being better than Class C. The costs of collecting the water from the river 
and treating it in an existing water treatment plant is also included. 

Cost 
No. 

79 
1 

80 

(1) Water pretreatment 

A cost equivalent to that required for a separate coagulation and sedimentation unit is necessary for 
pre trea tmen t. 

a) Capital 
y = 5.56 XO.

899 (1967 prices, Smith, 1968, Figure 8) 
y = JO.2 XO. 899 

b) 0 & M 
y = 12.16 XO. 9 6 9 (1967 prices, Smith, 1968, Figure 8) 
y = 18.8 XO. 969 

c) Total 
y = 28.0 XO. 953 

(2) Water handling 

1000 AF/YR 10,000 AF /YR 

Item $/AF Total $ $/AF Total $ 

Water pretreatment 20.24 20,238 18.16 181,618 
Water collection 17.29 17,291 ]3.73 137,347 

Total 37.53 37,529 31.89 318,965 

Y = 60.9 XO. 93O 

(3) Composite cost equation 
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(Cost 79) 

50,000 AF/YR 

$/AF Total $ 

16.84 841,931 
11.69 584,645 

28.53 1,426,576 

(Cost 80) 



1000 AF/YR 10,000 AF /YR 50,000 AF /YR 
Cost 
No. Item $/AF Total $ $/AF Total $ $/AF Total $ 

80 Water handling 37.53 37,529 31.89 318,965 28.53 1,426,576 
2 Water treatment 33.36 33,359 15.60 156,033 9.17 458,699 

81 Total 70.89 70,888 47.49 474,998 37.70 1,885,275 

y = 216 XO. S39 (Cost 81) 

Destination B: Municipal culinary water 

The cost equation includes the costs of collecting the water from the river, pretreating it, treating it in a 
new water treatment plant, and then distributing it to the customers. 

(1) Water handling 

1000 AF/YR 10,000 AF/YR 50,000 AF/YR 
Cost 
No. Item $/AF Total $ $/AF Total $ $/AF Total $ 

1 Water collection 17.29 17,291 13.73 137,347 11.69 584,645 
79 Water pretreatment 20.24 20,238 18.16 181,618 16.84 841,931 
4 Water distribution 40.60 40,596 32.25 322,467 27.45· 1,372,644 

y = 141 XO. 915 (Cost 82) 
(2) Composite cost equation 

1000 AF/YR 10,000 AF/YR 50,000 AF /YR 
Cost 
No. Item $/AF Total $ $/AF Total $ $/AF Total $ 

82 Water handling 78.13 78,125 64.14 641,432 55.98 2,799,220 
6 Water treatment 122.22 122,221 60.14 601,378 36.63 1,831,617 

83 Total 200.35 200,346 124.28 1,242,810 92.61 4,630,837 

y = 782 XO. S03 (Cost 83) 

Destination C: Industrial water 

It was assumed that a pretreatment by coagulation and sedimentation, followed by chlorination, pro­
vided sufficient treatment for use by industries. The industries in Salt Lake County are located at varying 
distances from mountain streams so the reported cost for pUl,llpage is considered to be approximate. 

(1) Water treatment 
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1000,AF/YR 10,000 AF/YR 50,000 AF /YR 
Cost 
No. Item $/AF Total $ $/AF Total $ $/AF Total $ 

79 Water pretreatment 20.24 20,238 18.16 181,618 16.84 841,931 
9 Chlorination 6.13 6,125 4.32 43,193 3.47 173,529 

84 Total 26.37 26,363 22.48 224,811 20.31 1,015,460 

y = 41.9 XO. 933 (Cost 84) 
(2) Water handling 

1000 AF/YR 10,000 AF/YR 50,000 AF /YR 
Cost 
No. Item $/AF Total $ $/AF Total $ $/AF Total $ 

8 Water pumpage 38.09 38,086 12.32 123,244 5.60 280,054 
79 Water pretreatment 20.24 20,238 18.16 181,618 16.84 841,931 
9 Chl orina tion 6.13 6,125 4.32 43,193 3.47 173,529 

85 Total 64.46 64,449 34.80 348,055 25.91 1,295,514 

y = 322 XO. 767 (Cost 85) 
(3) Composite cost equation (See Cost 85) 

y = 322 xO. 7 6 7 (Cost 86) 

Destination D: Agricultural water 

The cost equation includes the costs of transporting the treated effluent in canals and distributing it at 
diversion structures. 

(1) Water handling 
(2) Composite cost equation 

y = 4,747 XO. 31 

ORIGIN 12: Central Utah Project - Jordan Narrows water treatment plant 

Destination B: Municipal culinary water 

(See Cost 14) 
(See Cost 14) 
(Cost 87) 

The cost equation includes a ftxed charge of 55 dollars per acre-foot for the water and a distribution cost. 

(1) Purchase price 

It was assumed that 50 percent of the price of the water was expended on capital repayment. 

a) Capital 
y = 27.5 x1.0 

b) O&M 
y = 27.5 x1.0 

c) Total 
y = 55.0 x

1
•
O (Cost 88) 

(2) Water handling 
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Cost 
No. Item 

88 Purchase price 
4 Distribution 

89 Total 

y = 124 XO. 962 

(3) Composite cost equation 
y = 124 X O. 9 6 2 

Destination C: Industrial water 

1000 AF/YR 

$/AF 

55.00 
40.60 

95.60 

Total $ 

55,000 
40,596 

95,596 

10,000 AF /YR 

$/AF 

55.00 
32.35 

87.25 

Total $ 

550,000 
322,467 

872,467 

50,000 AF /YR 

$/AF Total $ 

55.00 2,750,000 
27.45 1,372,644 

82.45 4,122,644 

(Cost 89) 
(See Cost 89) 
(Cost 90) 

The cost equation includes a purchase price of the water that ranges from 62 to 110 dollars per acre-foot, 
and the cost of pumping the water to industry. 

Cost 
No. 

8 
91 

92 

(1 ) Purchase price 

It was assumed that 50 percent of the price of the water was expended on capital repayment. The 
price was distributed at $110/AF at one AF/YR and $62/AF at 50,000 AF/YR. 

a) Capital 
y = 55 XO. 947 

b) O&M 
y = 55 XO. 947 

c) Total 
y = 110 XO. 947 (Cost 91) 

(2) Water handling 

1000 AF/YR 10,000 AF/YR 50,000 AF/YR 

Item $/AF Total $ $/AF Total $ $/AF Total $ 

Water pumpage 38.09 38,086 12.32 123,244 5.60 280,054 
Purchase price 76.28 76,276 67.51 675,138 62.00 3,099,683 

Total 114.37 114,362 79.83 798,382 67.60 3,379,737 

y = 289 XO. 866 (Cost 92) 
(3) Composite cost equation (See Cost 92) 

y = 289 XO. 866 (Cost 93) 

Destination D: Agricultural water 

The cost equation includes a purchase price of the water that ranges from 62 to 110 dollars per acre-foot, 
and the cost of pumping water to industry. 

(1) Purchase Price 
(2) Water handling 
(3) Composite cost equation 

y = 289 XO. 866 
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Water and Wastewater Transmission Costs 

Water Transmission Costs 

A. Base cost (See Cost 68) 

The cost equation for the pipeline includes the costs of the pipe, pump, and power required to overcome 
head loss. It does not include the cost of pumping to change elevation. 

(1) Capital 
y = 193 XO. 5 35 L 
where y = Dollars 

X = AFjYR 
L = Length in miles 

(2) 0 & M 
y = 56.0 XO. 535 L 

(3) Total 
y = 249 XO. 535 L 

B. Pumping costs (See Cost 69) 

(Cost 95) 

It was assumed that the pumps included with the pipeline are adequate to pump the water to the required 
head. Therefore only the cost of power was included in this section. 

(1) Capital 
y = 0 

(2) 0 & M 
y = 0.0684 XO. 90 H 
where y = Dollars 

X = AFjYR 
H = Feet of pump lift 

(3) Total 
y = 0.0684 XO. 90 H 

C. Total water transmission costs 

(1) y = 249 XO. 535 L + 0.0684 XO.90 H 
where y = Dollars 

X = AFjYR 
L = Length in miles 
H = Feet of pump lift 

D. Elevations 

Table A-I. Elevations of origins and destination. 

or 
Dist. Wells Municipal Industrial Agricultural SW>Ca 

District 

H2 4340 4340 4340 4390 
HI 4600 4500 5000 4425 
G 4365 4270 4270 5200 5200 
F2 4350 4350 4260 4800 5000 
FI 4280 4280 4255 4350 
E 4265 4265 4265 5000 5000 
D 4240 4265 4230 4235 

aSw >C - Surface water quality better than Class C. 
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(Cost 96) 

(Cost 97) 

Wastewater Water Central 
SW<C Treatment Treatment Utah 

Plant Plant Project 

4290 4300 
4290 
4255 4265 5000 4275 
4230 4260 5600 
4230 4240 4270 
4220 4240 6000 

4240 



E. Transportation distances 

The central of each source of water was determined for each district. The straight line path distance in 
miles was determined between each possible origin and destination. Where path must run the canyons, this 
path was used. A map of the origins and destinations is shown in Figure A-I and the distance matrix is shown 
in Figure A-2. Water classified as worse that Class C was taken from the nearest location on the Jordan River. 

o Water treatment plant 
o Municipal center 
• Industrial center 
b. AQricultural center 
• Surface water - Class C 
C Wells 

N 

~ 

e Central Utah Project water 

Figure A-I. Subregional division of Salt Lake County with activity centroids for water and wastewater reuse. 
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Raw sewage transmission costs 

The costs and methods of transporting wastewater are dependent upon the cost of the pipe, cost of lift 
stations or pump stations, transmission distance, slope of terrain, cost of right-of-way, and the required 
capacity. Three possible conditions exist: a) gravity sewers alone, b) gravity sewers plus lift station, and 
c) force main plus pump station. These conditions are designated by sewer slope limits, and are only approxi­
mate. 

A. Pump and lift stations 

(1) 

(2) 

(3) 

(4) 

Power costs (Bishop et aI., 1974, p. 45) 
Y = 28.8 QO.897 H (1970 prices) 
y = 31.7 QO.897 H (10%increase) 
y = 0.0584 XO.897 H 
where y = Dollars 

Q = mgd 
x = AF/YR 
H = Feet of pump lift 

Capital (Klemetson, 1974, p. 75) 
Y = 128,000 QO.615 (Total cost) 
y = 16,640 QO .615 (CRF-5 1/2-10) 
Y = 222 XO .6 1 5 
o & M (Klemetson, 1974, p. 75) 
Y = 1800 QO. 644 

Y = 19.6 XO. 644 

Summary pump station 
a) Power costs - y = 0.0584 xO.8 97 H 
b) 0 & M costs - Y = 19.6 XO.644 

c) Capital - y = 222 XO.6 1 5 
d) Equation 

y = 241 xO.61S N + 0.0584xo.897 H 
where y = Dollars 

N = Number of lift station (400 ft. max. lift) 
x = AF/YR 
H = Feet of pump lift 

B. Gravity trunk sewer 

(Cost 98) 

It was assumed that the 0 & M costs are equal to 10 percent of annual capital costs. 

(1) 

(2) 

(3) 

Capital (Klemetson, 1974, Table 14) 
y = 287,000 QO.359 L (Total cost) 
y = 17,220 QO.359 L (CRF-5 1/2-50) 
y = 1,385 XO. 359 L 
where y = Dollars 

Q = mgd 
L = Length in miles 
x = AF/YR 

O&M 
y = 138xo.359 L 
Total 
y = 1,523 XO. 359 L 
where y = Dollars 

x = AF/YR 
L = Length in miles 

c. Force mains 

It was assumed that 0 & M costs are equal to 10 percent of annual capital costs. 
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(1) Capital (Klemetson, 1974, Table 14) 
y = 103,000 QO.463 L (Engineering-Science, Inc., 1970) 
y = 6,180 QO.463 L (CRF-5 1/2-50) 

(2) 

(3) 

y = 239 XO.463 L 
where y ::: Dollars 

Q = mgd 
L = Length in miles 
x = AF/YR 

O&M 
y = 23.9 XO. 463 L 
Total 
y = 263 Xo.4 63 L 
where y = Dollars 

x = AF/YR 
L = Length in miles 

D. Summary 

(1) Pump and lift stations 
y = 241xo.618 N + 0.0584xo. 897 H 

(2) Gravity trunk sewers 
y = 1,523xo.359 L 

(3) Force mains 
y = 263 X°.463 L 

(4) where y = Dollars 
x = AF/YR 
N = Number of lift stations (max. 400 f1. lift per statioh) 
H = Feet of pump lift 
L = Length in miles 
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APPENDIXB 

Optimal Solutions for the Various Model Formulations 
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Figure B-2. Nonlinear costs, three subregion, annual model with deterministic water availabilities and secondary treatment levels. 
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Figure B-2. (Continued). 



YEAR : t985 

5 LO SEASON: Annual 15 20 l'l 

Destina Area H Area F Area E 
OF 

WTP WWTP H WWTP F WWTP E Reg. WV1TP 
tions / BR eUlSe 

Sources M I A M I A M I A C&E 1K:&lC HI H2 H3 Fl F2 F3 El E2 E3 RI n,2 R3 

SW (F) 60.0 52.t:; 

SW (E) 29.2 LO.O 

Jar. R:H L2.7.7 LtO.6 LO.O 

F LLL.8 

E· 24. 2 

'hllo Wl>C LO.C O~ LL. 3 l.7 

<c 2.2 

GW: H.2L.3 

F· 54.5 

E 28.0 

M&IEff H, 2.8 8.4 

F. .40.0 

E 36.4 

WTP:c&E 

?S OC&I.C 0.8 25.7 27.7 

WWIPHI 8.4 

2 

3 

WWIPFl 39.0 LO.O 

2 

3 

WWTPEl 

2 36.4 . 

3 

f{egimlRl' 

2' 

3; . 

Reuse 
I 

~ 

Z = $'16,469,237 

Figure B-2. (Continued). 
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Figure B-2. (Continued). 



5 

YEAR : 19fsO 
to SEASON: AnnuaL OL-2L5 25 20 --

Destina Area H Area F Area E 
OF 

WTP WWTP H WWTP F WWTP E Reg. WWTP 
tions / BR It>euse 

Sources M r A M I A M I A C&:E Er.-&:1.C Hl H2 H3 Fl F2 F3 El E2 E3 Rl R2 R3 

SW (F) 63. L 7.6 4L.8 

SW (E) 29.2 LO.O 

Jor. R:H l26.9 LL5.4 LO.O 

F Ll9.5 
t--

E 24.2 

h~Wl>C LO.O LO.9 

<C / 2.2 

GW: H 19.3 

F 54.5 

E 28~ 

M&IEff H 9.8 

F 36. L 

E 34.3 

W1P:c&:E 

OC&:LC l7.7 24.l 

~ WWIPHl 

2 9.8 

3 

WWIPFl 36.l 

2 0.4 35.7 

3 

WW1PEl 34.3 

2 34.3 

3 

HegrinlRl 

2 

3 

Reuse 

Z = $L6, 246, 516 

Figure B-3. Nonlinear costs, three subregion, annual model with deterministic water availabilities and tertiary treatment levels. 
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Figure 8-3. (Continued). 
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Figure B-3. (Continued). 
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Figure B-4. Nonlinear costs, three subregion, seasonal model with deterministic water availabilities and secondary treatment levels. 
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Figure 8-4. (Continued). 
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Figure 8-4. (Continued). 
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Figure B-4. (Continued). 
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WTP WWTP H WWTP F WWTP E Re~. WWTP 
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Figure B-4. (Continued). 
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WTP WWTP H WWTP F WWTP E Reg. WWTP 
tions / BR eUlle 

Sources M I A M I A M I A C&E loc.&LC Hl H2 H3 Fl F2 F3 El E2 E3 Rl R2 R3 

sw (Fl 19.3 

SW (El 8.3 
Jor. R:H SL.2 lO.O 

F 2l.2 

E 4.!l 
hV-Wl>C 5.0 5.5 3.6 

<C 
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Figure 8-5. Nonlinear costs, three subregion, seasonal model with deterministic water availabilities and tertiary treatment levels. 
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Figure B-5. (Continued). 
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Figure B-S. (Continued). 
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Figure B-5. (Continued). 
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Figure B-S. (Continued). 
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Figure B-S. (Continued). 
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Figure B-5. (Continued). 
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Figure B-5. (Continued). 
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Figure B-6. Nonlinear costs, three subregion,annual model with stochastic water availabilities and secondary treatment levels. 
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Figure B-6. (Continued). 
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Figure B-6. (Continued). 
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SW (F) 0.4 4.2 35.8 

SW (E) 2[.0 
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Figure B-6. (Continued). 
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Figure B-6. (Continued). 
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SW (E) 2l.0 

Jor. R:H t26.9 U5.4 to.O 

F ll9.5 

E 24.2 

h-p. WL>C 41.8 
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E 
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Figure B-7. Nonlinear costs, three subregion, annual model with stochastic water availabilities and tertiary treatment levels. 
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Figure B-7. (Continued). 



5 

YEAR : 2000 
LO SEASON: Annua l Z5 

QL-3 Stochastic 
20 l5 
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SW (F) 40.4 

SW (E) l2.0 9.0 

Jar. R:H l07.0 l24.8 lO.O 

F 9l.7 

E 2"4.2 

h-p. Wl>C 55.0 29.5 

<c 40.5 1.7 
GW: H --

F 49.2 0.4 

E 28.0 

t-.1&IEff H l5.7 
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1 
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Figure 8-7. (Continued). 
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Sources M I A M r A M I A C&E !ff'klC HI HZ H3 Fl FZ F3 EI E2 E3 Rl R2 R3 
SW (F) 0.4 40.0 

SW (E) 14.2 6 8 
Jor.R:H 83.0 l37.3 10.0 

F 6l.4 
E 24.2 

l~WI>C 48.2 36.3 

<c 24.8 1.2 29.2 

GW: H 2l.3 

F 54.5 

E 28.0 

M&IEff H 22.9 

F 77.0 

E 42.5 

WTP:Q.E 19.5 35.5 

- :OC&l.C 100.3 
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WWfPHl 
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Figure B-7. (Continued). 





APPENDIXC 

Program SEP is written with capability to 
prod uce data me with compatible format to be 
used with Burroughts TEMPO Separable Pro­
gramming package at the USU computer center. 

User Instruction 

SEP is written in FORTRAN IV for Burrough 
6700 at USU computing center. Some necessary 
modification may be required for any use with 
other computers. Data file is produced in logical 
unit to. which is the diskpack for this facility. Data file gnerated has TEMPO data name 

'REUSE', objective function name 'COST' and . 
right hand side name 'BVECT "I'" where I is the 
suffix that can be raised from I to N depending on 
number of RHS vectors considered. 

Input data sequence is the transportion matrix 
characters, number of RHS vector and output 
option. The number of segments and associated 
range values to be linearized. The cost functions for 
any particular use is then read. Exclusion of any 
undesirable allocation, i.e., al1ocation is to be zero 
at all times, is accomplished by assigned the value 
of BI equal to 9999. Type of constraint equations is 
read in. Total number of constraint equations is 
equal to NROW+NCOL+NCON. The RHS 
vector(s) is then read in set by set. Total number of 
elements of RHS vector must be equal to number of 
constraints. 

The undesirable allocation variables can be 
excluded by given certain cost function structure. 
(See user instruction part.) 

Input cost functions can be only of type axb , 
and up to 5 functions can be accepted' by the 
program for any particular use. 

Card 
Sequence 

2 

3(1) 

4(1) 

Field Width 

5(1 -5) 
5(6-10) 
5(11-15) 
5(16-20) 
5(21-25) 

1(1) 
10(6-15) 
10(16-25) 

Input Variables Sequence 

Variable Type 

etc. 

I 
R 
R 

8(1-8) R 
8(9-16) R 
8(17-24) R 
8(25-32) R 
8Q34~ R 
8(41-48) R 
8(49-56) R 
8(57-64) R 
8(65-72) R 
8(73-80) R 

Repeat COST cards of the above format NCOL *NROW cards 

1(5) A 
1(10) A 

etc. 

117 

Variable Name 

NROW 
NCOL 
NCON 
NDATBV 
IWRC 

NRNG 
RNG(1) 
RNG(2) 

Bl 
B2 
Cl 
C2 
DI 
D2 
El 
E2 
Fl 
F2 

ISIGN(I) 
ISIGN(2) 



NROW 
NCOL 
NCON 
NOATBV 
IWRC 

Bl, Cl, 01, El, Fl 
B2,C2,02,E2,F2 

NRNG 
RNG 
ISIGN 

ICR 
ICC 
IR 

number of rows of the transportation matrix 
number of columns 
number of auxillary constraints equations 
number of RHS (B vectors) 
option of printing costs at various range 

o no output 
1 output required 

coefficient of cost functions 
exponent of cost functions 

number of segments of cost function to be linearized 
range in which each segment is to be linearized 

Type of constraints equation 
E (=) equal to 
G(» greater than or equal.to 
L(~) lesser than or equal to 

row number of auxiliary equation 
column number of auxillary equation 

logical unit of data file output 
10 diskpack on Burroughs 6700 at USU 

(Line 3 of the program) 
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INROW. 

\NROW. 

Compute 

NCOL, NCON, NDATBV, 

~ 
NCOL, NCON, NDATBV, 

~ 
L~~LLCO~ 

• tota l number of constraint 

~ 
ISIGN (K) 

K=l, NSTOP 

I ISIGN (K) I 

+ 

IWRC I 

IWRCI 

equations 

~ _____ T __ __ 

+F 
----, 

ICR (L), ICC (L) 
L=l, NCON 

+4~~------------~ I Compute and write on disk row section I 

+ 
Cornpute and write on disk coLurnn section 

Compute and write on disk convexity section 

l 
Q) 
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r~ ----
RHS CA (I) 

VECTOR (S) SET 

~~ 
RHS- CA-(I) I 

VECTOR (8) SET' 

~ 

Repeated for 
Number of RHS 
Sets 

I Compute and write on disk RHS section' 

8 
La st Su broutine (A) 

Repeated for 
NCOL, and 
NROW 

r 
I i 

! ! Dl, 
! 

: 
i 
l 

I 
i 

Dl, 

NRNG, RNG (I) 
l=l, NRNG 

NRNG, RNG (I) 

• ~ 
Bl, B2, Ct, C2 
D2, El, E2, Fl, 

+ 
Bl, B2, C l, C2 

DZ, El, E2, Fl, 

~ 
1 C (l, I, 3) = 0 l 

.+ 

F2 

F2 

T .. [ C (l, I, J) = -l 

I\ll ""'--_--:---_---1 
. . Compute C (K, I, J) 

~,--__ ---1 

<0 
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Co st a t va rious ra nge s 

Su~rouhne :t-;-'ield 
( B) 

T 

·8 
T ·8 
T ·8 
T ·6 

8 (C) 

Figure C-l. A. Flow Chart of the Main Propun 
B. Flow Chart of the Subroutine Colt 
C. Flow Chart of the Subroutine Field 
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FILE 
FILE 

5=GRENNEY/IN 
1 O=IVII D F I LE,UNIT=DISKPAC,RECORQ=14,6 LQCK tNQ==l5,I'\JH~A=~O* lOOQ,S,A VE:;;l 
DIIVIENSION C(5,50,50),ISIGN(100),VARt~),lCR{5D ).ICC(SO ),IROW(!?'Q} 

* ,A(50) 
IR=10 
R EAD(5,50) N ROW ,NCO L,NCON,NDATSV, tWRC 

50 FORMAT(715) 
WRIT E (6,51 ) N ROW, NCO L,N CO N"NOA TBV, IW RC 

51 FORMAT(1 HO,6HNROW =,13,5X,6HNCOL =,IS.5X,6HNCON ::i:,13,~X 
* ,BHNDATBV =,13,5X,6HIWRC =,12) 

CALL COST(NROW,NCOL,NRNG,C,IWRC,VAR) 
XEND=NROW+NCQL+NCON 
NSTOP= X END/1 0.0+0.99 
I\JEND=XEND 
IADD=NEND-(NSTOP-1)* 10 
K 1::::1 
K2=10 
WR ITE(6,53) 

53FORMAT(1HOI11H,31HVALUES FOR ISIGN) 
DO 2 1=1 ,NSTOP 
IF(I.EO.NSTOP) K2=IADD+K1-1 
READ(5,52) (ISIGN(K),K=K1,K2) 

52 FORMAT( 1 0(4X .. .A.1}) 
WR ITE(6,54) 1,( ISIG N(K) ,K=K 1 ,K2) 

54 FORMAT(1 HO,14, 10(4X,A1)) 
K1=K2+1 
K2=K2+10 

2CONTINUE 
IF(NCON.EO.O) GO TO 4 
WRITE(6,55) 

55 FORMAT(1HO II 1HQ,22H CON S T R A I NT S 1/ 1H) 
DO 6 L=1,NCON 
READ(5,56) ICR(L),ICC(L) 

56 FORMAT(215) 
WR ITE(6,57) ICR( U ,leC(U 

57 FORMAT(1 H ,2112) 
6CONTINUE 
4CONTINUE 

WRITE(I R,61) 
61 FORMAT( 4HNAME,10X,5HREUSE) 

WR ITE(I R,63) 
63 FORMAT( 4HROWS) 

WR ITE( I R,65) 
65 FORMAT( 1 X,7HN COST) 

DO 1 1=1,NROW 
DO 1 J=1,NCOL 
IF(C(1,I,J).LT.0.0) GO TO 300 
CALL FIELO(I,IF I) 
CALL FIELO(J,IFJ) 
WRITE(IR,58) IFI,I,IFJ,J 

58 FORMAT(1 X,6HN VAR,I*,'A',I~) 

300 CONTINUE 
1 CONTINUE 

NENO=NROW+NCOL+NCON 
DO 3 1=1,I\IENO 
CALL FIELO(I,IF I) 
WRITE(IR,59) ISIGN(I),IFI,I 

59 FORMAT(1X,A1,2X,3HROW,I*) 
3 CONTINUE 
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