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ABSTRACT 

The general hydrodynamic equations for a spatially varied 

unsteady flow in a prismatic open channel having an arbitrary eros s

sectional shape can be derived from the equations of continuity and 

momentum. The assumptions based on the general concept of 

hydrodynamic s and the theory of shallow water are intr oduced. The 

mathematical models in the surface irrigation can be formulated by 

these equations of motion with the appropriate initial and boundary 

conditions prescribed at the singularity point (the origin in the x, t-plane) 

and at x = 0. Therefore, the flow in the surface irrigation must be 

described by solving the boundary-value problem for the velocity and 

the depth of flow. 

In the two-dimensional flow, the discontinuity at the origin in the 

x, t-plane is overcome by imposing a critical velocity and correspondingly, 

a critical depth at the initial state. Without considering all the channel 

slope, friction, and infiltration terms, the mathematical model 

becomes the model for a "centered simple wave, " in which an exact 

solution, the Ritter solution, in the darn-breaking problem is already 

well-known. The Ritter solution satisfies the boundary condition at 

x = 0, where the discharge is always constant. However, even though 

an additional term, the channel slope, is considered, the modified 

Ritter solution no longer satisfies the same boundary condition. No 

exact solution seems possible with the present knowledge of mathematical 

techniques. 
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The theory of characteristics is presented and the method of 

finite-difference based on this basic theory with the fixed-time interval 

is introduced for the basic equations of motion in the surface irrigation. 

The trajectory of the wavefront is usually defined as a locus of zero 

celerity (c = 0) and forming an envelope of two different families of 

characteristics. Such an extremely complicated situation at the wave

front results in the possible failure of the present technique by simply 

using the finite-difference method unless some additional judicious 

as sumptions at the wavefront, some type of the boundary-layer 

technique must be developed. This is the present status of the finite

difference method in the surface ir rigation. 

The more s irnplified approximation by the kinematic -wa ve method 

is presented, based on an additional as sumption analogous to the 

Dupit-Forchheimer theory in the groundwater flow. The method 

possesses a potential applicability in the surface irrigation. 

Inasmuch as no results are yet available, this study will be 

limited to a description of what is hoped to be accomplished and how 

it will bed 0 n e . 
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CHAPTER 1 

INTRODUCTION 

An increasing interest in the studies of flow characteristics in 

the area of surface irrigation in the recent decade has led to the 

establishment of a new Hydraulics of Surface Irrigation Committee in 

the American Society of Agricultural Engineers. Dr. Vaughn E. Hans en 

is its first chairman. Many researches>:< have been conducted allover 

the United States as well as here at Utah State University. 

The flow phenomenon manifesting itself in surface irrigation, 

either furrow or border, is considered as an unsteady open-channel 

flow over a porous bed having a variable infiltration rate. An 

idealized mathematical model for this type of flow can be obtained through 

utilizing the customary concept of hydrodynamics and the theory of 

shallow water. The equations of continuity and momentum, derived for 

a spatially varied unsteady flow in a prismatic open channel having an 

arbitrary cross-sectional shape, form the basic equations of motion. 

With the help of the appropriate initial and boundary conditions 

prescribed, the formulated boundary-value problem for the flow in the 

surface irrigation must be solved for the values of velocity and depth 

at any location at any time. The exact solutions for this nonlinear-wave 

>:< Proceedings of the ARS-SCS Workshop on Hydraulics of Surface 
Irrigation, ARS 41-43, 1960. 



problell1 seell1 ill1possible with the present knowledge of ll1athell1atical 

techniques except that the well-known Ritter solution is obtainable for 

the ll10st s ill1plified ver sion of the problell1 which is analogous to the 

clas s ical dall1-breaking p roblell1. 

The finite-difference ll1ethod based on the theory of characteristics 

ll1ust be explored. Because of the discontinuity (singularity) at the 

origin in the x, t-plane and the cOll1plexity at the wavefront, the 

nUll1erical solutions, even by using this ll1ethod, seell1S hopeless unless 

SOll1e other judicious assull1ptions at the wavefront can be established 

first. The whole argull1ent regarding this will be presented in the 

report and the present status of the studies in this direction will be 

discussed in detail. 

Another approxill1ate ll1ethod such as the kinell1atic-wave ll1ethod 

looks very proll1ising. However, the reliable result froll1 this ll1ethod 

cannot be expected because of the unrealistic assull1ptions used. The 

ll1ethod will be briefly dell10nstrated and the result will be schell1atically 

shown. 

Sill1ply using the equation of continuity to deterll1ine the trajectory 

of the wavefront is not included in this report. Most of the studies 

during the past year s in this field falls in this category. The m.ethod 

appears adequate if one is only interested in obtaining the trajectories 

of the wavefront and the watertaiL 

This report is intended to give the present status of the theoretical 

studies in the hydraulic s of surface irrigation and to shed light on the 

direction of the further studies in this area. 
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CHAPTER 2 

DIFFERENTIAL EQUA TIONS OF FLOW 

IN THE SURFACE IRRIGATION 

In the surface irrigation, either furrow or border, when an inflow 

Q, is introduced from the upstream end and maintained at a constant 
o 

rate, the water front of the flow starts to advance in the confined 

boundary of a given channel having an arbitrary cross-sectional shape. 

As shown in Fig. 1, the direction of the flow taken as the x-axis and 

the depth of flow, y, measured from the lowest bottom of the cross-

section to the level of free surface is considered positive in the 

direction of increasing y. 

At any instant time 1 t, the flow profile of the free surface 

describes a certain shape which can be formulated by a differential 

equation. At any point x in the longitudinal direction of the flow at 

this instant has a flow depth, y, velocity, V, discharge, Qp and 

cross-sectional area, A, which are all functions of the independent 

variables$ x and t. The top width of the cross-section, L e., the 

width of the free surface at the section is denoted by T and the 

infiltration rate, i, is evidently nonuniform on the perimeter of the 

cross -section considered. In order to simplify the formulation of the 

problem, a uniform infiltration rate 9 i (x, t), is assumed across the 

top width. Thus, the relation betw een i and i must be 

3 



(a) General view of channel flow 

m.a in i nfl ow 
/ 

Q 
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i (x, t) 

(b) Channel eros s- section (c) Channel profile 

Fig. 1. Definition sketch of channel flow. 
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dx 

dx 

x 
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The channel is assumed to be straight enough so that its course can be 

thought of as a straight line (prismatic) without causing serious errors 

in the flow; hence~ the bed slope, S, and the roughness coefficient, 
o 

C, of the channel can be readily defined. 

The differential equations of motion gove rning the flow are 

expressions of the laws of conservation of mass and momentum. In 

deriving them the following assumptions, in addition to those mentioned 

above, a re made: 

(1) Customary assumptions of hydrodynamics 

a. The fluid is incompressible (density p = constant). 

b. The fluid is frictionless (kinematic viscosity v = 0). 

c. The flow is irrotational. 

(2) Assumptions of shallow water theory 

a. The depth of water is sufficiently small compared with 

some other characteristic length. 

b. y-component of the acceleration of the water particles 

has a negligible effect on the pressure (i. e., assume a 

hydrostatic pressure distribution). Consequently, the 

vertical velocity component is zero and the horizontal 

velocity component is independent of y. 

(3) Other as sumptions 

5 



a. The channel is considered prisITlatic in the sense of 

infinitesiITlal distance, dx, 

b. On the periITleter of the cross-section considered is a 

uniforITl shearing stress, T c 

o 

c. Across the top width of the cross-section considered is 

the uniforITl infiltration rate~ i. 

Equation of Continuity. The quantity of fluid flowing into the 

eleITlent considered in Fig. 1 in the infinitesiITlal tiITle dt is 

1 dQ 
(Q - 2 d x dx) d t 

and the aITlount flowing out the eleITlent is 

1 dQ 
(Q + 2 d x dx) d t + T cos e dx dt 

in which e is the angle of inclination of the bed with respect to the 

horizontal surfac e. The aITlount of storage during dt is 

dA 
dt cos e dt dx 

Hence, equating that the aITlount of fluid flowing into the eleITlent equals 

the SUITl of the aITlount of fluid flow ing out, and the aITlount of storage, 

one readily has 

1 dQ 
(Q - - - dx) dt 

2 dx 
1 dQ dA 

= (Q + "2 d x dx) d t + i T cos e dx d t + d t cos edt dx 

which can be s iITlplified to yield 

6 
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dA dQ 
dt cos e + dX = i T cos 8 (l) 

This is the equation of continuity. Since 

A = DT 

in which D is defined as a hydraulic depth in the open-channel hydraulics~ 

Q = VA cos e 

and 

dA = T dy A = A(y), T = T(y) 

Eq. 1 can be rearranged':< to give 

~ ~ dV 
dt + V dX + Dd~ = i . (2) 

Equation of Momentum. In addition to the assumptions mentioned 

above~ the following assumptions are necessary to derive the equation 

of momentumo 

(1) The momentum efflux of lateral outflow (infiltration) is so 

small that it is ignored without causing serious errors. 

(2) The shear is equal to that of uniform flow of the same 

depth and velocity on a surface having the frictional slope, Sf" 

(3) The angle of inclination of the bed with respect to the 

horizontal surface l 8, is so small that it is considered as 

,I, 
'I' 

dA dA~ dV dA dA ~ T~ 
dt 

= = T--!-
dX 

= = dy dt dt; dy dX dx 

dQ d 
(VA) 

dA 
A

dV VT~ DT
dV 

dX 
= 

dx 
= V- + = + Ox dX dX dX 



sin e ~ S 
o 

and cos e ~ 1 

The flow of the fluid element considered in Fig, 2 is subject to 

forces such as gravity, pressure~ boundary shear. The resultant of 

these forces in the x-direction must equal the time rate of the increase 

of momentum flux within the element plus the net flux of momentum out 

of the element in unit time, dt; namely 

~dF = dM 
dt 

in which F = force on the element in the x-direction 

M = momentum flux of the element in the x-direction 

Since V = 

= 13 p A cos e V dx (where 13 = momentum coefficient). 

dM eM dx 
dt =~;- dt 

dx 
dt ' 

Eq. 4 becomes 

dM eM eM 
= V- + ~ dt ex 

(3 ) 

(4) 

(5 ) 

in which 
eM 

exces s of momentum flux leaving the element over that 
ex 

= 

entering the element, and 

eM 
time rate of increase of momentum within the element. ~ = 

Hence, if 13 is as sumed constant, >:< 

>!< S' dx ex et 
ince ill = v, dx = V dt. (Note that 

~ = 0 and 
ex 

= 0) 

~x (A dx) 
e 

(A v dt) 
e eA 

= 
ex 

= Aex (Vdt) + ex 
dx 

A,ev dt + eA dx -
ex dx 

since 
e(dt) 

0 ~ = 

8 



y 

y 

W sin e dx 

x 
Wdx 

t + dt --- --- ---

-- - ---

. -..... .. 
e/~-\ h' -T;t .. 
~;..,:, .. 

d)( 

Fig. 2. Schematic diagram of a fluid element under external 
forces and momentum flux. 
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e 
= ex (!3pA cos e v dx) = 

e 
!3p ex (A cos e v dx) 

eV e 
= !3p A cos e ex dx + !3p v ex (A cos e dx) 

ev ev eA 
= !3p A cos 8 ex dx + !3p V (A cos e ex dt + ex cos e dx) 

eV eA 
= 2!3 pAc 0 s e ex dx + !3 p v ex cos 8 dx 

eM e 
(!3p A cos 8 V dx) 

e 
~ = ~ = !3 p ~ (A cos e v dx) 

ev e 
= !3pAcose

et 
dx + !3p Vdt (A cos e dx) 

ev eA 
= !3p A cos e et dx + !3p Vdt cos e dx 

Therefore, from Eq" 5, 

Since 

dM 
dt 

eV eA = V (2 !3 pAc 0 s e ex dx + !3 p V ex cos e dx) 

ev eA 
+ (!3pA CosSet dx + !3pV et cose dx) 

ev 2eA eV 
= 2!3 pAc 0 s e V ex dx + !3 p V ex c o·s e dx + !3 pAc 0 s edt dx 

eA 
+ !3pV

et 
cose dx 

cA ~ 
~ = T~t ox a 

eA ev 
and - = T.::.........L 

e t et 

dM 
dt 

ev 2 ~ Aev + ey = !3p (2 A V ex + V T ex + e t V T ~t ) cos 8 dx 

(6) 



Also, using the equation of continuity, Eq. 2, to express the second 

term in the right side of Eq. 6, one has 

2 £y 
V T (- i ~ V T dx = -

dt 

= VTi 
d VT~ 
dt 

substitutes into Eq. 6, whenc e 

dM 
dt 

R. ( dV + D T dV = t--'p DTV dx dt 

DdV) 
dx 

VTD
dV 
dx 

V T i) cos e dx 

(7) 

Forc es on the element are: (l) the component of the weight of the 

fluid in the direction of motion (x-axisL W sin e dx, (2) the pressure 

dP 
force in the direction of flow 9 - dx dx, and(3) the boundary shearing 

resistance force in the direction of movement, - T dx. Therefore~ 
a 

the resultant force on the element is 

2:;d F 
dP 

= W sin e dx - dx dx T dx 
a 

in which W = weight of the element per unit length 

= p g A cos e (where g = gravitational acceleration) 

P = static pressure force on a normal section of the 

element = p g SY Y cos e d(A cos e) 
a 

T = boundary shear on the element per unit length 
a 

= 

(8 ) 

11 



d SY = pgdX Y cos8 d(A cose) = 
o 

2 ~ 
= p g cos 8 A dX 

Eq. 8 thus bec omes 

2 d (VA) 
P g cos 8 ~ 

ox 

2~ 
:0d F = P g A cos 8 S 0 dx '- p g A cos e d x dx - p g Sf A cos 8 dx 

d 
= p g D T cos 8 (So - cos 8 & - Sf) dx · (9) 

Substituting Eqs. 7 and 9 into Eq. 3 y one has, for small 8 

dV VdV + .& ~ V 
d t + dX [3 dx - D i · (10) 

Since the flow is as sumed to be turbulent, the value of the momentum 

coefficient 2 [3, for fully developed, steady uniform open-channel 

flow usually stays within the range of 1. 03 and 1. 07; however, in the 

present study, [3 is considered as unity for mathematical simplicity. 

Thus Eq. 10 becomes 

dV + V'oV ~ 
d t dx + g 'Ox 

V 
D 

· (11 ) 

This is the equation of momentum. The two differential equations, 

Eqs. 2 and 11, which serve to determine two unknown functions; the 

depth y (x, t) and the velocity V (Xi t)~ are generally the basic equations 

for the study of flows in the surface irrigation? The inspection of 

* SY Y d A = Y A, where y is the depth of the centroid of the 
o 

cross-sectional area, A, from the free surface. d(yA) = [A (y+ dy) 

+ T (dy)2 /2J - y A = A dy, by assuming (dy)2 = 0 

12 



Eqs~ 2 and 11 will reveal that they essentially confirm the forms of 

the equations appearing in Stoker (l957). 

Solving for 

= 

1 

~ dX from Eqs. 2 and 119 one obtains 

1 
2 

V 
gD 

S 
2V +

f gD 

(12 ) 

which expresses the slope of free surface at any location, x, in the 

direction of flow at any instant time, t. This is the dynamic equation 

for unsteady spatially varied flow in the surface irrigation. 

The dynamic equation, Eq. 12, can be organized into a meaningful 

form by introducing the following notations used by Chow (1959). The 

discharge, Q, of uniform flow in a prismatic channel of small slope 

is 

Q = VA = CA R m S n. 
n n 0 

(13 ) 

R is the hydraulic radius of the channel section and in which 
n 

the conveyance of the channel section, 

is defined such that 

K =CAR
m 

n n n 

K , at a normal depth, 
n 

y, 
n 

( 14) 

in which A is the cross-sectional area under consideration 
n 

corresponding to a normal depth, y, 
n 

and K expresses a measure 
n 

of the carrying capacity of the channel section for a uniform flow. 

Thus Eq. 13 becomes 

13 



Q = K S n 
n 0 

(15 ) 

Similarly, the conveyance of the channel section, K, at an actual flow 

depth, y, corresponding to the frictional slope, Sf' can be defined 

such that 

(16 ) 

in which K = CARm (R = hydraulic radius of the channel section 

corresponding to the actual depth, y). From Eqs. 15 and 16, one may 

write 

So = (K~) lin 

Sf = (~ r In 

(17) 

(18 ) 

The exponents, m and n, in Eq. 13 which hold in the following 

cases are: 

(i) Laminar flow : m = 2 and n = 1 

(ii) Turbulent flow : If the Chezy formula is us ed; m = 1 /2 and 

n = 1/2; however, if the Manning formula is used, m = 2/3 

and n = 1/2. 

Another parameter introduced is the section factor for critical 

flow computation, Z, in which one defines 

(19) 

14 



When the discharge 9 Q) is given; the critical section factor, 

at a critical depth; y:, is defined such that 
c 

Z 
c 

= 
Q 

~g 

z, 
c 

(20) 

in which Z = A .In, where A and D are the cross - sectional 
c c c c c 

area and the hydraulic depth respectively corresponding to a critical 

depth under consideration. 

With these definitions it can readily be shown that, using the 

Chezy formula, 

v
2 

= (Zc)2 
gD Z 

Consequently, Eq .. 12 can be arranged to yield 

s 
o 

(21 ) 

(22 ) 

(Kzn ( V 

(23) 

This is the general dynamic equation for unsteady spatially varied flow, 

in which K, K, Z, and Z are all functions of y(x, t). For a wide 
n c 

open channel flow, simply A = y, R = y~ and D = y, if the Chezy 

equation is used, 

15 



K CA R 1/2 3/2 
= = Cy 

n n n n 

K CAR
I

/
2 3/2 

= = Cy 

Z A~ 3/2 
= = y 

and Z A W 3/2 
= = Yc c c c 

Hence, Eq. 23 can be reduced to 

= 

1 

+ ~~) ] (24) 

which become s identical with the dynamic equation for overland flow 

developed by Chen and Hansen (1966). This is the dynamic equation 

for open channel flows in the border irrigation. 

The dynamic equations for other geometrically simple cross-

sectional shapes such as a rectangle and trapezoid, for example, can 

readily be derived from Eq. 23 if all the magnitudes of K, 

and Z can be expres sed by their own definitions. 
c 

K, 
n 

z, 

16 



Example 1: Rectangular cross-sectional shape 

I- -\ 
A = by 

T 

R 
by 

T = b+2y 

Y 
T b -L = 

I- b -I D = y 

Z = by3/2 

Fig. 3. Rectangular shape. C(by)3/2 
K = 

(b + 2y) 1/2 

Hence, Eq. 23, after substitution of these quantities, yields 

~= 
dx 

s 
o 

[
1 _ (b + 2 Y ~ ( y n ) 

3 
+ ~ ( b ) (Y n)3 i 

b + 2y Y g b + 2y Y V 
n n 

(25 ) 

This is the dynamic equation for open channel flows in the furrow 

irrigation with a rectangular cross-sectional shape. However, for 

b being infinite, Eq. 25 becomes identical with Eq. 24, because 

b + 2y 
b + 2y 

n 

b 
b + 2y 

n 

1 

1 

17 



Another interesting feature of Eq. 25 can be obtained by setting 

b = O. In this case, Eq. 25 simply becomes>:< 

~ = 
dX 

1 

in which all y, y n' 

s 
o 

and yare still functions of x and t. In the 
c 

(26) 

case of steady flow, Eq. 26 remains the same form so that it becomes 

comparible with Eq. 27. 

and for y > Y 
n 

For y < Y 
n 

hence the distinct difference of characteristics of flow profiles between 

b = 00 and b = 0 for steady flow can be depicted as shown in Fig. 4. 

The inspection of Fig. 4 reveals that either positive or negative value 

of dy / dx for b = 0 is greater than that for b = 00. This shows the 

apparent effect of side wall on the flow profiles. 

>:< For a two-dimensional steady flow, the gr~dually-varied-flow 
equation for a negligible infiltration rate (i = 0) is deduced from 
Eq. 24 as 

~ 
dx 

= 

s 
o 

(27) 

18 



19 

y 
b = 0' 

---------- '\ '-------r' 
dy/dx=+ "o:=:) cP7----!c 

___ ~ "0-:::-../ ----
-----~~ 

Fig. 4. Characteristics of flow profiles. 

Example 2: Trapezoidal cross-sectional shape. 

\- T -I 

T 

r-- b ---1 
Fig. S. Trapezoidal shape. 

A = (b + sy) y 

R = 
(b + sy}y 

b+2y"1+ s2 

T = b + 2 sy 

D 
(b + sy}y 

= 
b+ 2sy 



1/2 
Z = 

[ (b + sy)y] 

-.[b + 2 sy 

3/2 3/2 
K = 

C(b+sy) y 

'l./b+2y -J 1 + s2 

in which s is the side slope of the cross-section. Hence one obtains 

( Z)2 (b + s )3 ( ) ( )3 ~ _ Yc b+2sy Yc 
Z - b+ sy b+Zsyc y 

(
K;)2 = (:: :Y n)3 (b + 2 y 'l./ 1 + S2) (Y n)3 

y b+2y'l./1+s2 y 
n 

= c
z
(::::n)3( b+Zsy )(Y;f 

b+Zy -J 1 + s2 
n 

which can be substituted into Eq. 23 to yield the dynamic equation for 

open channel flows in furrow irrigation with a trapezoidal cross-: 

sectional shape. From these values, the same reasoning for b = 00 

will also give the dynamic equation for a wide open channel flow, 

because b = 00 

(Z;t - (y;r 

(K;t (Y;f 

20 



However, for b = 0, 

which can be substituted into Eq. 23 to yield the dynamic equation 

for open channel flows in furrow irrigation with a triangular cross-

sectional shape; that is 

_S_C;)5 ~ 
~ 

2 
C s 

+ 
(

y n)5 (1-~ ..L dV)] 
y V dt V 2 d t 

(28 ) 

An identical dynamic equation (Eq. 25) can also be obtained by setting 

s = ° to all the e?Cpre s s ions of K, K, 
n 

Z, and Z in a trapezoidal 
c 

cross-sectional shape. Similarly, the dynamic equations for other 

cross -sectional shapes can be attained by finding K, 

Z which, in turn, are substituted into Eq. 23. 
c 

K, 
n 

Z, and 
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CHAPTER 3 

MA THEMA TICAL MODELS IN THE 

SURFACE IRRIGA TION 

The hydrodynamic equations of motion in the surface irrigation 

were already formulated by the equation of momentum (Eq. 11) and 

the equation of continuity (Eq. 2) that will be reproduced here for 

clarity. 

dV 
+ 

dV ~ V-; 
g (So - Sf) . ~ 

V- + gdX - 1 = 
dX D 

. (11) 

~ + ~ + 
dV 

i V
dX 

D- = 
dt dx 

(2 ) 

These two equations must be solved simultaneously for y and V with 

the prescribed boundary condition at the upstream end (x = 0) and the 

initial condition at t = 0. The customary boundary condition at the 

upstream end is Q (0, t) = V (0, t) A (y) = V (0, t) A [y (0, t)l = Q 
o 

being constant and the initial condition when t = ° is y (x, 0) = ° 
and V (x, 0) = 0. Knowing these boundary and initial values for V 

and y, Eqs. 11 and 2 for V and y can be solved. However, the 

inspection of Eqs. 11 and 2 reveals that obtaining the exact solution 

may not be so easy because these two equations are composed of 

nonlinear nonhomogeneous partial differential equations of the first 

order. 
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In two-dimensional flows, without the lateral outflow terms, 

V-:-
1 in Eq. 11 and - i in Eq. 2, and the frictional los s te rm, 

D 

g Sf' in Eq. 11, the exact solution is obtainable in terms of the 

complete elliptic integral of the second kind by means of a 

non-Newtonian reference frame as exhibited by Dressler (1958). As 

the moving forward wave front comprises always the same particle 

having velocity V with y = 0, the trajectory of this particle forms a 

characteristic curve there, provided these two terms are ignored. 

With initial conditions known at the origin (x = 0), the trajectory 

of this wave front can be obtained from the integration of the relation 

along the characteristic curve. This characteristic curve in the 

surface irrigation is named an "advance curve." However, the 

integration is quite difficult if two additional terms, which have been 

omitted in Dre ssler I s analysis, are considered. 

In the two-dimensional horizontal flow (S = 0), if the 
o 

aforementioned two terms are again ignored, the well-known Ritter 

solution is obtained with the forward (positive) wave advancing at 

uniform velocity, V , which is equal to 3Jgy. 
w cO 

Thus y is a 
co 

constant, 
2 

V /9 g, for this par ticular cas e. 
w 

The depth and the 

velocity at the site of a sudden release of the impounding water are a 

critical depth, y 
co' 

and a critical velocity, v , 
co 

respectively. 

Therefore, a singularity exists at the origin where x = 0 and t = O. 

The dis c ha r g e q, at the section is always a constant, q = v y = 
o co co 

However, this is not the case when the channel bed has 
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the slope, 8 . 
o 

In other words, the traj ectory of the forward wave 

front for this special case of the two-dimensional flow can generally 

be shown to yield the relation 

which simply becomes, 

x = V t 
w 

for 8 = 0 
o 

as a particular solution mentioned previously. 

(29) 

(30) 

In the two-dimensional flow, Eqs. 11 and 2 can be simplified by 

expressing two-dimensional velocity and discharge by v = V and 

q = Q respectively. 

dV dv dv - + v- + g--'
dt dx dx 

~ + ~ 
dV 

dt vdx + Ydx = 

v-;-
1 

y 

i 

from which Eq. 24 can be derived. Without the lateral outflow 

Eqs. 31 and 32 thus become 

dV + 
dv ~ (8 - 8 ) 

~ 
v- + gdx = g 

dx 0 f 

~ + ~ + 
dv o . 

dt 
v

dx Ydx = 

. (31) 

(32) 

(i = 0), 

(33) 

(34) 
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These equations form the basic dynamic equations for uniformly 

progressive wave flow in a prismatic channel. Dressler (1949) and 

Chow -(1959) have used different approaches to develop the same 

profile equation for this wave flow. Let U be this uniform velocity. 

Then introducing a new coordinate variable, ~, 

~ = x - U t 

one thus has>:~ 

£y (v - U) dV 
d~ + g d~ = So 

£y dV 
(v .. U) d~ + Yd~ = o . 

Solving this set of equations yields 

S - S 
o f 

2 
1 _ (v - U) 

gy 

- S 
f 

Furthermore, Eq. 37 indicates that 

d 
d~ (v - U) y = 0 

Hence (v - U) Y = constant. 

Let us define again, us ing the Chezy formula 

(35) 

(36) 

(37) 

(38) 

(39) 

( 40) 

>:~. d~ d~ 
SInce Ox = 1 and ~ = - U, two dependent variables, v (x, t) and 

y (x, t), can be transformed to two new dependent variables, v(~) 

. ~ £y d~ £y ~ ~ d~ ~ 
and y(~), by lettIng dx = d~ dX = d~' dt = d~ ~ = - U d~ , 

dV dV dG dV 
and ~ = d~ ~ = - U d~ . 
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q (s) = v (s) y (s) 

Sf = 9
2 

{s) 
2 

y3 (s) c 

2 
S = 9. {s) 

0 2 3 
C y n (S) 

Sf tn (~) r - = S y (S) 
0 

q~:~ = [ v (S) - u] y (S) ( q>:~ = constant) (41 ) 

,I, >:~ 2 '1' 

(S) gyc = [v (s)-u] 
c 

Since 

[ v (S) - ul y (S) = [v >:~ (S) - u J 
c 

Hence 

>!:: 
in which y c (S) can be shown constant because 

= g y >:~ (S) 
c 

= (q>g:~2)1 /3 
Therefore, y >:~ (S) = 

c 
constant because q>:~ = constant. 

Denote y >:~ (S) = y >:~ U sing all of thes e definitions and r elat ions yields 
c c 

the profile equation froIn Eq. 38. 



= 

As the relation, Eq. 41, 

S 
o 

(v(S)-U)y(S) 

_[Yn(S)]3 
1 y(S) (42 ) 

-'-holds for any value of y (s), the constant q'" must be a zero because 

y (S) has a zero value for this type of flow advancing on the dry bed. 

Hence 

v (S) y (S) = U y (S) 

Cons eq uentl y, 

q (S) = U y (S) 

or v (S) = U 

Knowing the foregoing relation, one can easily derive 

= S - S 
o f 

(43 ) 

from Eq. 36; however, one may alternatively obtain Eq. 43 from Eq. 42 by 

using the following relations. Since q':< = 0, 

and 

3 
Y n (S) 

Thus 
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Substituting all those relations into Eq. 42, it becoITles 

(44) 

which is equivalent to Eq. 43. Therefore, the integration of Eq. 44 

yields 

= .:'.L + 
S 

o 
2 2 

S C 
o 

2 

1 ( U) A n y - 2 + I 
S C 

o 

in which Al is an integration constant. Choose the tip of the wave 

(45 ) 

front, where S = ° and y = 0, as the origin, the value of A 1 can be 

evaluated 

= 

substituted into Eq. 45, thus 

(46 ) 

This is the equation of the free surface profile for a uniforITlly 

progressive wave flow on the dry surface with the uniforITl advancing 

velocity, U. Since S = x - U t, Eq. 46 can alternatively be written as 

x = L + 
S 

o 
+ Ut (47) 

Equations 46 and 47 are scheITlatically plotted in Fig. 6. FurtherITlore, 

when U = v Eq. 47 can be siITlplified as n' 
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_ 00 

o 
~ = 0 

u2 

Y=--2 
S C 

a 

-00 

y 

=_00 

o 

y 

Eq. 47 

o x 

Fig. 6. Uniformly progressive wave flows on the dry surface. 
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+ In (1 _ ..:L )] 
Yn 

+ v t 
n 

__ (c 9zZs
0

)1 /
3
, in which y 

n 
the normal depth of the channel located 

(48) 

at the negative infinite S or x. The flow with the free surface-profile 

equation (Eq. 48) having the tip of the waterfront at the origin (x = 0) 

starts to advance uniformly in the direction of the positive x-axis with 

the uniform velocity equal to the normal velocity, v = C ~S y . 
nOn 

Although Eq. 47 or Eq. 48 satisfies the set of the equations of motion 

(Eqs. 33 and 34), it obviously does not satisfy the boundary conditions 

for the case of flow in the surface irrigation. The boundary condition 

at the upstream end (x = 0) in the border irrigation must be q (0, t) = qo' 

in which qo is a constant flow rate. Since we already showed that 

knowing the relation 

q(x - Ut) = Uy(x - Ut) 

yields at x = 0 

q(O - Ut) = Uy (0 - Ut) (49) 

The inspection of Fig. 6 reveals that y (0 Ut) is changing with 

respect to t while the wave front is progressing with a uniform 

velocity U in the direction of the positive x-axis. Correspondingly, 

from Eq. 49, one can readily see that q (0 - U t) is changing with t 

also. Therefore, the solution (Eq. 47 or Eq. 48) for the uniformly 
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progressive flow that satisfies the set of the equations of ITlotions 

(Eqs. 33 and 34) but not the boundary condition, q(O,t) = q, 
o 

cannot 

be used as the solution applicable to the case of flow in the border 

irrigation. The experiITlental result froITl Tinney and Bassett (1961) 

already verified this vital point. However, in the past, approaches 

using the siITlple voluITle-balance relationship by ITlost of the researchers 

in the surface irrigation result in the distance of advance being linearly 

related with the tiITle of advance provided there is no lateral outflow 

(i = 0). This iITlproper result ITlay be caused by the injudicious 

assuITlption (such as flow depth y (x, t) = constant) used to ITlake the 

equation of continuity (Eq. 34) integrable, as indicated by the writer 

(1966). Since the ITlatheITlatical ITlodel of the surface irrigation 

including frictional-slope and lateral-outflow terITlS is extreITlely 

difficult to solve, thus far the exact solution to this type of boundary-

value probleITl is not available. In what follows, the ITlethod of 

characteristics will be studied, whence the possible solution on the 

wave front trajectory can be nUITlerically obtained and qualitatively 

analyzed. 



CHAPTER 4 

THEORY OF CHARACTERISTICS 

Continuing to confine to the cases of two-dimensional overland 

flow and introducing for convenience celerity, c = ~ at once the 

momentum and continuity equations (Eqs. 31 and 32) can be expressed as 

dv 
+ 

dv 
+ 2 c dc ~ g(So - Sf) ~ 

v- = 
dX dx 2 

(50) 

c 

2 dc + 2 dC + 
dv Kl. v

dx 
c- = 

dt dx c 
(51 ) 

in which S = -.K. (~12 is not a constant. These equations are next 
f 2 c 

c 
added, then subtracted, to obtain the following equivalent pair of 

differential equations: 

2 [(C+V):x + :t] C + [(C+V):x + :t] v 

- 2 [( - C + v) :x d 
c + v) dx 

gi (1 + ~ ) - g S + g Sf = 0 
c c a 

+ ~J v dt 

(52 ) 

(53) 

The inspection of Eqs. 52 and 53 reveals that the functions c and v 

in Eq. 52 ar e both subject to the differentiation operator [(C +V):x + :t] 
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dx 
along curves satisfying the differential equation cit = c + v and 

similarly, the functions c and v in Eq. 53 are both subject to the 

differentiation operator [< - c + v) Cl: + ~] et 
along curves satisfying 

h d 'ff ' 1 ,dx tel erentIa equatIon cit = - c + v, Eqs. 52 and 53 can be written 

~v + 
e :tJ (v+2c) + Ei v 

)-gSo+gSf c) - + (l = 0 
ex c c 

(54) 

[v -
d :t] <v -2c) Ki.. (1 +~ )-gS +gS c) - + = 0 
ex c c o f 

(55) 

There are two sets of curves, c+ and C, called characteristics, 

which are the solution curves of the ordinary differenttal equations 

c 

dx 
dt 

dx 
dt 

= v + c . · (56) 

= v - c . · (57) 

Therefore, there exist the relations from Eq. 54, along a characteristic 

+ curve C 

:t (v+2c)+~ (1 -~) -gSo+gSf = O. 

and similarly, from Eq. 55, along a characteristics curve C 

d 
dt (v - 2c) Ei (1 + ~) - g S + g S = 0, 

c c 0 f 

• (58) 

· (59) 
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The characteristics for this solution in the region of motion are still 

unknown. The characteristics pattern in the x, t-plane for these 

relations is rather complicated" Two families of characteristics 

determined by Eqs. 56 and 57 are no longer distinct at the tip of the 

wave front because c = ..J'gy = 0, As defined, the trajectory of the 

wave front is the locus where c = 0, Hence Eqsc 56 and 57 are both 

satisifed by the wave front curve, both characteristic s directions 

c+ and C coincide with the direction of the wave front curve. 

Therefore, the wave front curve cannot be a characteristic curve itself 

because neither Eq. 58 nor Eq, 59 can hold on this curve. Evidently? 

:tnust be an envelope for + 
C and C curves. Without considering 

t'NO terms: the lateral outflow, i,. and the slope of channel, 

the foregoing fact has been discussed by Dressler (1952), 

s , 
o 

If the frictional slope, Sf' and the lateral outflow, i, are not 

consider 

Hence 

dx 
dt 

d 

v 

dx -
dt 

"r -'""-

it can be readily seen from Eqs, 56, 57, 58? and 59 that 

can be integrated for the wave front tipe 

d.t 

-- gS + Al 0 

gS t + Al = 
0 

1 
gS 

2 
= Al t + -- t 

2 0 

3 



in which Al = V = 3 ~gy 
w co 

prescribed previously as an initial 

condition of the boundary-value problem because of the implication that 

particles at the tip of the wave front always remain at the tipo Further-

more, if the channel slope~ S , 
o 

is ignored in addition to Sf and i, 

the trajectory equation of the wave_front simply becomes 

x=3~-t 
co 

For this relation, the Ritter solution is 

2 
(~ + 

3 
~) v = 3 2 co 

(60) 

1 
(3~ 

x 
c = - --) 

3 co t 
(61 ) 

in which y = (q 2/ g)l /3 and q is a given flow rate at x = 0, The 
co 0 0 

Ritter solution in an exact solution which is obtainable from the simplified 

forms of Eqs. 50 and 51 such as 

dv dv de o. 
dt + v- + 2c-- = Ox ex (62 ) 

2 de ~r- dv 
+ 2,,::"':::' + cd; = o. at dX (63) 

In another type of unsteady nonlinear wave-problem c Dressler 

(1958) has successfully obtained the exact solution for the water wave 

in a sloping channel produced by sudden release of the triangular 

wedge of water initially at re st behind a vertical wall. The corresponding 

equations of motion for this type of problem are 
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2 ac 
at 

av + v
ax 

+ 2c ac 
ax 

= g S 
o 

+ 2v ac + 
ax 

av 
c- = 0 

ax 

(64) 

(65 ) 

By means of a noh-Newtonian reference frame, every such wave problem 

for a sloping channel can be replaced by an associated problem for a 

horizontal channel. Introducing a new c oordinate variable, S, moving 

with a prescribed acceleration, 

1 2 S = x - - gS t 
2 0 

1 2 
- gS t ; namely 
2 0 

and differentiating with respect to t 

with the 

dS = dx 
dt dt 

- g S t 
o 

given notations that w 

from Eqo 67 that 

w = v - gS t 
o 

= dS 
dt 

and v = 
dx 
dt ~ 

(66) 

(67) 

thus one define s 

(68 ) 

Then, transforming Eqs. 64 and 65 with t and c remaining unchanged 

yields~:< 

~:< as 
= 1, 

as 
- g S t 

ax ~ = 
0 

av a(w+gSot) d (w + g So t) dS a (w + g So t) 

~ = at = as ~ + 
at 

aw aw 
= g So t as + ~ + gS (cont. ) 

0 
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37 

Ow dW dC 
0 

~ + W
dS 

+ 2c dS = (69) 

2 dc Oc dw 
0 

ot 
+ 2w

dS 
+ c dS = (70) 

Eqs. 69 and 70 have exactly the same forms as Eqs. 62 and 63, for 

which the Ritter solutions are still applicable; therefore 

w = ~(~ +l.-Jgy). 
3 t 2 co 

(71) 

c = l (3 ~ _ ~ 
3 co t 

(72 ) 

Consequently, substituting Eqs. 66 and 68 for Eqs. 71 and 72 yield the 

exact solution of Eqs. 64 and 65: 

(73 ) 

1 .r-- x 1 
c = 3 (3 \j g Y CO - t + 2 g So t) (74) 

in w h i c h y iss t ill de fin e d s u c hac 0 n s ta n t a s (q 2 / g) 1 / 3 . Th e 
co 0 

trajectory equation of the wave front can be obtained by putting c = 0 

in Eq. 74, which is exactly the form of Eq. 29. 

,I, oV 'I' 
o (w + g S t) 

0 dW OS Ow 
Ox 

= 
Ox 

= 
dS Ox 

= 
Os 

dc oc Os 
+ 

dC 
- g S t 

oc 
+ 

oc 

~ = 
dS ~ ~ = 

Os ~ 0 

oc oc Os oc 
Ox 

= 
dS Ox 

= 
dS 



3 ·r- 1 S 2 
x = \J g Y cot + 2 got · (29) 

The characteristic curves, C+ and C-, can thus be obtained from. 

Eqs. 73 and 74. 

C 
dx 
dt 

= 

= 

1 
3 (~ +5gSt+6~1 2 0 co 

· (75) 

· (76) 

At the tip of wave front where Eq. 29 is satisfied~ the characteristic 

curves for this trajectory can be obtained by substituting Eq. 29 into 

Eqs. 75 and 76. 

C + for c = 0 
dx 
dt 

= 3 ~ + gS t 
CO 0 

C 
dx ,--

for c = 0: = 3 \I g Y + g S t 
dt co 0 

Eqs. 77 and 78 are exactly the sam.e form. a s the one obtained by 

· (77) 

· (78) 

differentiating Eq. 29 with respect to t. Consequently, it has been 

shown that the trajectory of the wave front is always the characteristics 

+ 
curves, C and C . 

Integrating':< Eqs. 75 and 76 yields the characteristic equations 

+ -
for C and C respectivel y 

+ 
C 

1 2 1/3 
x = 3 ~ t + -2 g S t + Al t co 0 

(79) 

* Since Eqs. 75 and 76 are all the form.s of the linear differential 
equation of first order, one can easily find out the integrating factors 
for Eqso 75 and 76 respectively. For Eq. 75, the integrating factor 

-1/3 -1 
is t and~ for Eq. 76, t . 
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C 

in which A 1 and Bl are all paraITleter s characterizing the faITlilies 

of the characteristic curves + 
C and C . 

and 80 siITlply becoITle respectively 

x = 3 ~gy t + A 1/3 
cO 1 t 

C . x = B t . 1 

If S is abs ent, 
o 

Eqs. 79 

(80) 

(81 ) 

(82 ) 

These characteristics C+ and C in the x, t-plane representing 

the paths of "water waves" have a basic property (Courant and 

Friedricks, 1948) of "centered siITlple wave": the characteristics of 

one kind, C, are straight line s in an x) t-plane and pas s through the 

origin ° : x = 0, t = 0, see Fig. 7. At the origin 0, the quantities 

v and c as functions of x and t are discontinuous, however this 

discontinuity is iITlITlediately sITloothed out and resolved into continuous 

flow in the subsequent ITlotion. 

The cross-characteristics 

the aSYITlptotic representation 

+ C, Eq~ 81, for large t, ITlay have 

X rv 3 ~ t (83) 
co 

When Al = ° and Bl = 3-J gyco ' the two characteristics directions 

C+ and C- coincide along the trajectory of the wave front that thus 

possesses the double characteristics. Differentiating Eq. 81 with 

respect to t twice yields, for + 
C, 
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x=_'i,;-gy t 
2 co 

x=3~t 
co 

o x 

y 

--r-______ ......r.---_I~~ = -~~g Yc 

surface (Eq. 85) 

dx I 
- = 3 ~gy 
dt co 

'---
9 
'4 Yco 

Yco 

o x 

Fig. 7. Pattern of characteristics in a centered siITlple wave 
ITloving down the dry bed of a streaITl. 
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1 
= 

9t 
2x 

(- t + 6~). 
co 

which is always positive for x < 3 ~ t, therefore the cross
co 

characteristics C + in the centered simple wave can be depicted as 

(84 ) 

shown in Fig. 7. At a certain time t after the wave front forwarding 

a distance x = 3 ~ t, the Ritter solutions, Eqs. 60 and 61, give 
co 

the v and c distributions that are linear along the x-axis up to the 

tip of the wave front. The free surface profile becomes a parabolic 

curve, as indicated in Eq. 61. 

y = _1 (3.~ 
9g co 

x 2 
t ) . (85 ) 

Those v, c, and y-distributions are plotted respectively in Figs. 7 

and 8. 

At x = 0, one observes from Eqs. 60 and 61 that v and care 

both ind:ependent of t~ and hence that the volume of water crossing 

this location (x = 0) per unit time, 

fact, at this point for all time t 

v = ~ 
co 

and 

y = y co 

whence 

q , 
o 

is independent of time. In 
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t 

x=3"jgy t 
co 

o 
x 

v 
3fgy 

co 

'Jgy co 
v= ~ (~+ l --J g y ) 

3 t 2 co 

o ~--------------------~--------------------~-----------
x 

c 

I x 
c = - (3 Vg Y 3 co t 

~ g Yeo 

0 xl x
2 

x 

Fig. 8. The v and c distributions in a centered simple wave. 



satisfying the boundary condition of the mathematical model forrn.ulated 

previously for the surface irrigation. This may be the only case in 

which the method of characteristic s can yield the exact solutions 

satisfying both the equations of motion and the boundary condition. 

However, the foregoing re suIts, representing only the simplified ver sion 

of the general problem, is actually not complete in describing the whole 

physical picture of flow conditions because the channel slope, 

frictional slope, Sf' and the infiltration rate, i, are all not 

considered. 

S, the 
o 

In addition to those factors considered in constructing the simplest 

model, if the channel slope, S , 
o 

enters the equations of motion such 

as Eqs. 64 and 65 with the same boundary condition prescribed at 

x = 0, the method of characteristics for a transformed simple wave 

results in the solutions (Eqs. 73 and 74) that satisfy the equations of 

motion but not the boundary condition. Sinc e v and c are no longer 

independent of t at x = ° for all time t, (as indicated in Eqs. 73 

and 74) 

v = 23 (g S t + -2
3 ~) 

o co 

y = lIS + 3 r-- )2 ( -g t "gvy 
9g 2 0 co 

at x = ° and the volume of water crossing this point per unit time, q, 

is also dependent of time. That is 

2 3 1 r-2 
q = 27 g ( g So t + "2 --J g y co) ("2 g Sot + 3 \J g Y co) i- con st. 
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for all t > 0 and q 
3 1/2 

= (g y ) 
co 

= qo for t = O. 

Although the solutions obtained for another type of problem (i. e. , 

a darn-breaking problem) in this particular case (S f= 0) cannot be 
o 

used to represent the solutions in the problem of surface irrigation 

where the different boundary condition is imposed at x = 0, it is still 

interesting and useful to make a schematic diagram of the characteristics 

pattern for this problem (see Fig. 9) and study the possible way to 

obtain the approximate solutions by the method of finite difference. 

A rather complicated pattern of characteristics is expected when 

additional terms, Sf and i, are considered. The trajectory of the 

+ forward wave front can no longer belong to both the C and C 

families. Instead, it must be an envelope of C + and C 

characteristic s because the reflected C curves caused by the effects 

of these two additional factors cannot intersect each other. This 

argument was given by Dressler (1952) for a different application. 

Through the perturbation method he obtained the approximate solutions 

for a dam- breaking problem and study the effect of the frictional 

resistance term on the flow characteristics on a dry horizontal bed 

havlnK no lateral outflow. 

The boundary condition in our problem which is different from 

that used by Dressler may lead to a complicated form of boundary 

condition at x = 0 for another system of partial differential equations 

in terms of correction functions through the perturbation procedure. 



t 

o 

y 

~~- Free-surface 

at t = t. 
J 

Fig. 9. Pattern of characteristics for Sf = 0 and i = O. 
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(The solutions obtained satisfy the equations of m.otion 
but not the boundary condition at x = O. ) 



However, the siITlilar initial conditions for these correction functions 

ITlust be derived for the singularity at the origin. In general, as 

can easily be seen froITl the proceeding arguITlents, the slope, 

resistance, and infiltration effects on the ITlain solution can be 

ignored at the initial instant. The neces sary initial conditions for 

v (x, t) and c (x, t) 

v (x, 0) = 

c (x, 0) = 

v 
o 

c 
o 

at x = 0 (86) 

in which v = c = ~ ITlust be prescribed for the singularity 
o 0 co 

at the origin (x = 0) in order that one can successfully obtain 

nUITlerical solutions through the finite -difference ITlethod. 

In what follows, the ITlethod of finite differences based on the 

theory of characteristics that can be applied to all the cases possibly 

encountered in the probleITls of surface irrigation will be studied. 

Moreover, it can readily be verified froITl the finite-difference 

ITlethod that the solutions obtained froITl the pre sc ribed initial 

condition at the singularity are cOITlpatible with the exact solutions 

obtained froITl the ITlethod of characteristic s along the traj ectory of 

the wave front for the siITlplest case of "reducible" hyperbolic flow 

equations discussed previously. 
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CHAPTER 5 

FINITE-DIFFERENCE METHOD 

As already understood from the previous discussions, a solution 

of the original dynamic equations, Eqs. 50 and 51, could be shown to 

be uniquely determined when appropriate initial conditions for t = 0 

are prescribed. It follows that a solution of the new system of 

relations, Eqs. 56, 57, 58, and 59, is also uniquely determined when 

initial conditions are prescribed since the two systems of equations 

are equivalent. 

The formulation of our problems in terms of the characteristics 

form is quite useful in studying properties of the solutions and also in 

studying the appropriateness of various boundary and initial conditionso 

In the problem of surface irrigation, the two families of characteristics 

determined by Eqs. 56 and 57 are not distinct along the trajectory of 

the wave front because of the fact that the water surface touches the 

bottom and hence c = ~ = 0 over there. The boundary condition 

prescribed at x = 0 (along the t-axis) is particularly unusual because 

neither v nor c is imposed on the boundary except that one can only 

formulate the relation 

2 
vc = gq 

o 

at the fixed points along the t-axis. In the case of subcritical flow, 

one boundary condition, either v or c, along the t-axis will in 

(87) 
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general suffice to lead to a unique determination of the other. This is 

not true for the case of supercritical flow, in which both v and c 

along the t-axis must be prescribed so that the values of v and c 

at any point within the flow region for x > 0 can be determined. The 

physical interpretation of the latter case is that the value of v is 

always greater than c =.vgy and this in turn implies that v + c 

and v - c, 
+ 

which fix the slopes of the characteristic s C and C , 

are all positive in sign. Therefore, both v and c must be 

prescribed along the t-axis with the help of Eq. 87. This is the most 

difficult part of the technique of utilizing the finite -difference method 

to obtain the numerical solution for this typical problem. 

In addition to those difficulties encountered in the formulation 

of finite-difference scheme in the problem of surface irrigation, it is 

already clear that the inherent property of a "centered simple wave" 

has a singularity at the origin (x = 0), where the quantities of v and 

c as functions of x and t are discontinuous, but this discontinuity 

is immediately smoothed out in the subsequent motion. To overcome 

this inappropriate singularity at the initial state, the proper ones 

such as Eq. 86 at t = 0 should be imposed at x = O. These initial 

values (Eq. 86) are in fact the necessary ones for this typical finite-

difference scheme being able to start with and compute the subsequent 

values of v and c at the proper grid-points in the x, t-plane. 

Probably, in this typical problem, the finite-difference scheme with 
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the fixed-ti:me intervals see:ms the only way to get rid of these 

difficulties. In the following$ the pertinent :method and technique are 

discussed very :much in detail with the case of si:mple wave. 

Let us begin by describing briefly a :method of deter:mining the 

characteristic s and thus the solution of a s i:mple-wave proble:m by a 

:method of successive approxi:mation. The characteristics and 

characteristic equations for this particular case (So = 0, Sf = 0, i = 0) 

are: 

dx 
v+ - = c 

dt 
(56 ) 

dx 
= v - c 

dt 
C (57) 

and 

along C + d 
dt (v + z c) = ° . (88 ) 

along C 
d 
dt (v - Z c) = ° . (89 ) 

and fro:m Eqs 0 88 and 89, one has the relations 

along C 
+ 

v + Zc = kl = canst. (90) 

along C v - Zc = k
Z 

= canst. (91 ) 

in which the constants kl and k
Z 

will be different on different curves 

in generaL 

Consider a series of points 0, 1, 3, 6, 10, , ... on the t-axis 

(see Fig. 10) a s:mall ti:me, 5t, apart. A sudden release of water at 

x = ° require the necessary initial conditions (Eq. 86) 
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Fig. 10. Net points used in the finite-difference scheme. 
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v 
o 

c (x~ 0) =: C 
o 

which satisfy the boundary condition (Eq .. 87) to yield 

v c 
o 0 

2 

in which Vo =: Co =: ~gyco and qo =: ~gyco3 are all constants, 

At all of these points on the t-axis the values of v and care 

unknown except that they satisfy Eqc 87. Consequently these values 

at points numbered as 1) 3, 6, 10, etc" are determined with the 

help of Eq. 87 in the course of calculation starting from the 

singularity (origin 0) and thus proceeding with the sequential increment 

of small time; Bt. The value of cat thos e point s on the tr aj e c tory 

of the wave front is zero since it touches the bottom of the channel 
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bed, Thus the traj ectory of the wave front belongs to both characteristic s 

C+ and C because Eqs. 56 and 57 both give the same slope on the 

curve ; namely 

dx 
dt 

=: v (92 ) 

in which v is the velocity of the forward wave front that must also be 

determined by the characteristics equations, Eqso 90 and 91. 

The integration by finite differences can be proceeded as follows: 

+ -the slopes of the characteristic s curves C and C at the 

singularity (origin 0) is 



C 

dx 
dt 

dx 
dt 

=v +c =2c 
o 0 0 

= v 
o 

c = 0 
o 

because one already imposed v 
o 

= c 
o 

= ,-rgy 
co 

at the singularity. 

From this point, straight line segments with these slopes are drawn 

until they intersect with a line distant at along the t-axis from the 

x-axis, respectively, at points 1 and 20 Since the slope of the 

characteristics C is zero! the straight line segment 01 coincides 

with the t-axis. Along this segment, the characteristic equation, 

Eqs. 87 and 91, must be satisfied. Consequently, one has the relations 

vI - 2 c
1 = v - 2 c = k2 0 0 

(93 ) 

2 c 2 vI c
1 = v = g qo 

0 0 
(94) 

for the velocity vI and celerity c 1 to be determined at the point 1. 

Since v = c, Eqs. 93 and 94 can be written as 
o 0 

= - c 
o 

Substituting vI = c
o

3 /c
l

2 from Eq. 96 into Eq. 95 yields 

2 c 3 
1 

c 
o 

c 2 
1 

c 3 = 0 o 

(95 ) 

(96 ) 

(97) 
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Solving Eq. 97, one can easily obtain a possible solution (real root>:<) 

for c 1; that is exactly 

whence 

= c 
o 

= c 
o 

The values of v and c at the point 2, specifically, w ill be 

calculated along a straight line segITlent issuing froITl the point O. 

The line segITlent 02 is considered as the short tangent segITlent of 

+ the characteristic curve C at the point. Therefore, the value of 

x at the point 2 for a given 5t can be deterITlined graphically, or 

by the relation (Eq. 56) 

2 c 5t 
o 

in which 5x
2 

is the distance of the segITlent between the point 1 and 

the point 2. Along the segITlent 02, the characteristic equation, 

Eq. 90, ITlust be satisfied. Hence 

= v + 2 c = kl o 0 

c = 0 
2 

froITl which one can readily see that 

= 3 c 
o 

>:< Equation 97 can be expressed as 

2[::)3 - (::r 1 = 0 
That is [ ( ::)- 1] [2 ( : : r + (: ~ ) + 1] = 0 

The only pos itive root is c 1/ Co = 1 

(98 ) 

(99 ) 

53 



54 

The values of v and c at points 1 and 2 agree with the Ritter 

solution (Eqs. 60 and 61) obtained from the method of characteristics. 

Once v and c are known at points 1 and 2, the slopes of the 

characteristics issuing from these points can be determined once 

more from Eqs. 56 and 57 and the entire process can be carried out 

again to yield the locations of the additional points 3, 4, and 5 in the 

x, t-plane for another time increment 5t and hence the approximate 

values of v and c at these points. 

The process to determine the values of v and c at the point 3 

is exactly the same as that at the point 1. Nevertheles s, special 

attentions must be focused on the techniques of determining the 

values of v and c at points 4 and 5 respectively. In what follows, 

these techniques will be discussed in detail since this is the vital 

point of the present method and that may be the only way accessible 

to numerical solutions in the problem of this typical flow condition. 

The analytical solutions obtained from the method of characteristics 

certainly confirm the validity of the following technique for the 

problem of simple wave. 

Let us determine the value s of v and c at the point 5 fir st 

because the technique being used will almost follow the similar 

process in determining the values of v and c at the point 2 except 

that the straight line segment issuing from the point 2 to the point 5 

is now becoming both the characteristics 
+ -

C and C . Cons equently, 

the value of x at the point 5 for a given 5t can be determined by Eq. 92. 



5 x5 = v 5 t = 3 c 5 t 2 0 

in which 5x5 is the difference of x-coordinate between the point 5 

and the point 2 in the x, t-plane. Furthermore, along the segment 25., 

both characteristics equations, Eqs. 90 and 91, are satisfied with 

the value of c being zero at these points; i. e. t c
2 

= c
5 

= O. 

Therefore, the relations 

=v +2c =k 
551 

= v 5 .~ 2 c 5 = k2 

can be reduced to have a single result that 

= 3 c 
o 

which agree again with the Ritter solution. Likewise, all the points 9, 

14, .... , along the trajectory of the wave front have the same values 

of v and c: 

=v =v -v -5 9 - 14-

and 

= 3 c 
o 

= 0 

This argument proves the validity of the finite-difference method 

used for the case of simple wave. 

The difficulty of determining the values of v and c at the 

point 4 is obvious froITl Fig. 10. The value of x at the point 4 is 
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determined from the characteristic C + issuing from the point 1. 

= v 5t = 2 c 5t 
1 a 

in which 5x
4 

is similarly the difference of x-coordinate between 

point 4 and point 1. Nevertheless, there is only one characteristic 

relation available along the straight line segment 14 which is the C+ 

characteristic. From Eq. 90, the relation 

v 4 + 2 c 4 = v 1 + 2 c 1 = k1 

can only be obtained to solve two unknowns, V and c s inc e it is 
4 4 

already known that v 1 = = c . 
a 

The solutions of two unknowns 

from one equation is of course impossible unless another relation 

for these unknowns can be found. This can be done by the following 

way: 

Since the segment 14 represents the short segment of the 

tangent of the characteristics 
+ . 

C at the pOlnt 4, another straight 

line segment for the characteristic C can be constructed. The 

inspection of Fig. 10 reveals that the slope of the characteristic C 

issuing from the point 4 stays right between those slopes at the 

point 2 and the point 5. The slope s of the characteristic C at 

these points are respectively those of the straight line segments 13 

and 25. Extending these segments (a dotted line in the figure), a 

point of intersection 0' on the t-axis is reached. Connecting two 

points 0 1 and 4 (a dotted line in the figure) yields the interpolation 
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slope of tw 0 C characteristics respectively at points 3 and 5. The 

segment 0'4 intersects with the segment 12 at the point II, The 

values of v and c at the point 1 f can be obtained by using linear 

interpolation formulas>:~ (Ralston and Wilf, 1964) 

+ 
v2 - VI 

(xl' - X ) v If = VI 5x
2 

1 
(IOO) 

c
l 

+ 
c

2 
- c

I 
(xl! - X ) c 1 f = 

5x
2 

1 
(I 01 ) 

where 5x2 = x 2 - Xl and xl' Xl i' and x 2 are x-coordinates 

respectively at points 1, l'~ and 2. The values of VI' c
l

' v
2

' and c
2 

are all known from the previous computations. The only one 

undetermined in Eqs. 100 and 101 is the value of XII at the point 1 r. 

However, Xl' can be obtained from the following relations: 

5x = X - X 
5 5 2 

are already known, 

5x2 + 5x5 = 

Moreover, since 

the following relation 

X 
o 

- X 
3 

>!< For the case of simple wave, the linear interpolation formulas 
may be sufficiently accurate; however, for other more complicated 
cases, in order to improve the accuracy, the quadratic interpolation 
formulas may be used. 
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or 

(5x
2

) (5x
4

) 

xl' = xl + 5x
2 

+ 5x5 

exists to determine the value of x- coordinate at the interpolation 

(l 02) 

point I'. Consequently, substituting xl' -value into Eqs. 100 and 101 

yields the values of v and c at this point, or simply 

and 5x5 = 3 c 5t are all substituted into the foregoing equations, 
o 

then vI' and c l' can be calculated; namely 

9 

By knowing the values of v and c at the point 1', the C 

characteristic relation, Eq. 91» can thus be formulated on the straight 

line segment l' 4. 

v 4 - 2 c 4 = vI' - 2 c l' = k2 
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The values of v 4 and c 4 can now be determined from the following 

two linear equations 

3 c 
o 

3 = -c 5 0 

which simply yield v 4 = ~ Co and 

(103 ) 

(104) 

The proceeding 

entire process of calculation can be similarly carried out to determine 

the values of v and c at the interior points such as points 7, 8, 11, 

12, 13, .... All the supplementary C characteristics segments 

drawn from those interior points are issuing from the point 0' as 

shown in Fig. 10. In the method of characteristics, as previously 

mentioned, the family of the C character istic s ar e the straight 

lines issued from the origin O. Thus, the finite-difference method 

apparently does not give a correct approximate solution around the 

origin because of the property of singularity at the point. However, 

if 6t is chosen sufficiently small, the position of the point 0' will 

be in good approximation to the position of the origin O. 

In order to improve the clumsy situation around the singularity, 

the starting point of the finite -difference scheme should be located so 

that the point 0' acting as a center of concurrent C characteristic 

curves in Fig. 10 will be the actual origin in the x, t-plane. If the 

initial point for x = 0 can be set at the point 0 r, (Fig. 11) t 6t down-

ward from the origin 0, then the origin 0 becomes an actual center 
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of the concurrent C characteristic curves. The reason to take 

I 
25t for the segITlent OOff ITlanifests itself in the previous arguITlents. 

The justifiable stateITlent is given here rather than to recapitulate the 

whole discussion. 

The initial conditions, V " = c ,n = C 
o 0 0' 

are still prescribed 

at the point Off so that the straight line segITlent OirZ ITlust be 

considered as the C + characteristic issued froITl the point 0". For 

this purpose, 

= 

= 3 c 5t 
o 

The preceding result autoITlatically proves that the origin 0 will be 

the center of the concurrent C characteristics. The rest of the 

procedures for cOITlputing the values of x, t, v, and c at every 

grid point in the finite-difference scheITle will follow the saITle 

procedures as given before, 

Thus far, we only confine ourselves to the ITlethod in solving 

the siITlplest version of nonlinear-waves probleITl, i. e., a "centered 

siITlple wave." The special technique for overcoITling the initial 

discontinuity was introduced and the ITlethods of constructing the 

finite-difference scheITle and of evaluating the values of independent 
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and dependent variables at every grid point with fixed-time intervals 

were presented. It is interesting to note that the technique and the 

method used can be extended in solving the more general form of the 

differential equations. In what follows, an additional term, the slope 

of channel, S, to those treated in the previous discussion will be 
o 

considered. 

With this additional term, the system of equations is no longer 

"reducible" but has the same characteristics C+ and C- (Eqs. 56 

and 57). N everthele s s, the characteristic equations have the forms 

along C+ d 
(v + 2 c) - g S 0 = 

dt 0 

along C 
d 

(v - 2 c) - g S 0 = 
dt 0 

Integrating Eqs. 105 and 106 yield 

along C+ v+2c-gS t = k1 = const. 
0 

along C v-2c-gS t = k2 = const. 
0 

Using the analogous modified s cherne of finite - differenc e method 

around the initial discontinuity, the initial conditions 

VO l ' 
= c 

o 

= c 
o 

(l05) 

(106 ) 

(l07) 

(108 ) 

are prescribed at the point 0" as shown in Fig. 12. The boundary 

condition at x = 0 is the same form as Eq. 87; hence 
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Following the same procedures as given in the previous example~ 

one can readily determine the values of v and c at every propagated 

grid point where its x-coordinate with a known finite-time interval 

at can be evaluated from Eqo 56 or 57. For instance, in the present 

case, 

= 3 c at 
o 

Evidently, a straight line segment 0,v2 is C+ characteristic issuing 

from the point or t and another segment 0" 1 is C characteristic. 

Hence: along these segments, Eqs. 107 and 108 are satisfied 

respectively. Instead of the segments 0"2 and Olil, the segments 

02 and 01 are taken as the characteristics 
+ -

C and C. Hence 

g S 5t = v + 2 c along 02 
o 0 0 

Remembering that c
2 

= 0 since it is the trajectory of the wave 

front and assuming that 

IS obtained; 

v 
o 

= c 
o 

= 3 c + g S at 
o 0 

= c 
o 

at the point 0 J the follow ing 

which is in agreement with the Ritter solution. Another relation: 

along 01, is 

v 1 - 2 c 1 - g So at = v 2c 
o 0 

= c (109) 
o 
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with the boundary condition at the point 1 

= c 3 
o 

(110) 

From Eq. 109 , vI = 2 c 1 + g So 5t - Co substituted into Eq. 110, one 

has 

2 c 3 + (g S 5 t - c ) c 2 - c 3 = 0 
1 0 0 1 0 

(l11 ) 

must be solved for c
1

0 Comparing Eq. III with Eq. 97 which has 

a solution c 
1 

= c , 
o 

Since 0 < c
1 

< c , 
o 

there exists a root for c
1 

between 0 and 

from Eq. 110, there must be vI > co' 

Consequently, the t-axis will be no longer a C characteristic 

because 

c 
o 

(112 ) 

which issues a C characteristic segment from the point 1 to the 

right hand side of the t-axis. This is an interesting result which is 

not obtainable from the Ritter solution since it cannot satisfy the 

bound ar y con di ti 0 nat x = o. 

Since the C characteristics are no longer treated as the 

straighted lines issued from the origin as those mentioned in the 

case of a c entered simple wave, the supplementary C characteristic 

(a dotted line in the figure) interpolated from two neighboring points 

at every interior grid point has a variable location of the point of 

inter section of the two C characteri stic s drawn at the se neighboring 

points9 For example, the point of intersection of the two C 

65 



characteristics drawn at the points 1 and 2 is the point 0', from 

which the interpolated C characteristic is drawn to the point 4. 

The straight line seglllent 1 '4 becollles a supplelllentary C 

characteristic at the point 4 and the values of v and c at this 

point lllUSt be deterlllined frolll the value s of v and c at the points 

1 and 1'. For this purpose, the values of v and c at the point I' 

is again interpolated frolll the values of v and c at the points 1 

and 2. The point of intersection of the two C characteristic 

seglllents is varying rather than fixed at the point 0' as in the 

previous case~ 

Attention lllUSt be paid cOlllputing values of v and c on the 

boundary at x = 0 by extrapolation frolll the values of v and c 

at those points to the right of the t-axis. The linear extrapolation 

forlllulas such as Eqs~ 100 and 101 lllay be used; however, in order 

to illlprove the accuracy of approxilllation s the quadratic extrapolation 

forlllulas lllUSt be elllployed. Since one boundary condition (Eq. 87) 

is already prescribed at x = 0, silllply one value of two dependent 

variables, either v or c, by extrapolation is enough to deterllline 

both values of v and c at x = O. The rest of the entire procedures 

of cOlllputation will follow that of the forlller case. 

In addition to the channel slope, S , 
o 

if the frictional Sf and 

the lateral outflow i are added in the differential equations, the 

characteristic equations (Eqs. 58 and 59) obtained generally are not 

possible for integration. When the Chezy forlllula is ased, 
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(_Vc )2, Sf = ~ 
c 

thus Eqs. 58 and 59 can be rewritten as 

d (v + 2 c) + gi (I - ~ ) 
dt c c (

22 
- g So + ~) (~l = 0 . (113 ) 

along a characteristic curve 
+ 

C, 
dx 
dt 

= v + c, and 

d cit (v - 2 c) 0' i v + (cal 2 
(_Vc ]2 = .c.-=. {l+-)-gS .b.. 

c c 0 

-
along a character istic curve C, 

dx 
dt 

= v-c. 

o . (114 ) 

At the wave front, where c = 0, the inspection of Eqs. 113 and 

114 reveals that the friction term and the infiltration term in the 

equations having c in the denominator are all becoming infinite 

values. Along the locus of the wave front, the velocity, v, 

evaluated must be equal to the reciprocal slope of the wave front 

curve, 
dx 
dt ' 

in the Xs t-plane< Each of the Eqs. 56 and 57 is satisfied 

along the traj ectory curve of the wave front because of c = 0 there 

and both characteristic directions C+ and C- coincide with the 

direction of the wave front curve. However, neither of relations, 

Eqs. 113 and 114, can hold along the wave front curvec Although 

the wave front cannot be a characteristic curve itself, it must be an 

+ envelope of C and C curves for C > 0 and i > O. 

We see from the experimental profiles obtained by Tinney and 

Bassett (1961) that the free-surface wave actually governed by 

resistance has a vertical slope at the tip of the wave front. To 
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handle the tip region accurately, some type of boundary-layer 

technique would be necessary, as suggested by Dressler (195Z). 

The tip region moves somewhat like a separate entity pushed along 

by the water behind it and in the tip, v should be changing rather 

slowly toward the front. The following approximate considerations 

to obtain some data about the wave front are necessary in order to 

overcome an inappropriate condition, c = 0, at the tip. 

The simplest assumption to make would be considering the 

zone of quiet downstream which is terminated on the upstream side 

by a shockwave (or bote) and the zone of constant state in which the 

water is assumed to flow with uniform velocity, v. The latter 

zone may be called the transition region which connects the zone of 

quiet downstream and the zone of the actual wave behind. The question 

arises concerning the depth of water assumed in the zone of quiet 

downstream. In the absence of the Sf and i terms, there may 

exist a critical value of the ratio YZ/Y 0 = 0,1384, in which yz is 

the depth of water in the zone of quiet downstream and y is the 
o 

depth of water at x = 0. If YZ/Yo is less than the critical value, 

the discharge rate at x = ° will be independent of yz as well as 

independent of the time. This fact has been discussed briefly by 

Stoker (1957) on the dam- breaking problem. Furthermore, the 

height of the bore, Y1' caused by the assumed depth of water, yZ' 

in the zone of quiet downstream can be evaluated from the shock-wave 
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equation if Y2 /y 0 is known. The assuITled constant shock velocity 

can also be obtained froITl this equation. In this siITlple probleITl, it 

is iITlplicit that if one can find or aSSUITle a judicious depth of flow in 

the front of the tip without causing any significant change on the flow 

characteristics behind the tip, the proposed ITlethod seeITlS justifiable. 

However, even in this siITlplest case, since Yo' Y1' Y2' and the 

shock velocity are all interrelated to each other, there appears to 

be no feasible ITleans to forITlulate a theoretical basis on the 

as sUITlption of y 2 if the Sf and i te rITlS ar e added in the equations. 

The transition zone will be very narrow in the case of 

subcritical flow; contrarily, it will be cOITlparatively lengthy in the 

case of supercritical flow, as ITlay be expected froITl the characteristics 

of free-surface profiles. These two cases are scheITlatically shown 

In Fig. 13. The appropriate selection of the depth of water, Y2' 

in the stationary zone for different conditions of flow is es sentially 

a prerequisite of using this ITlethod. 

Another intere st in handling the tip probleITl is the as sUITlptions 

of the value s of v / c and i/ c at the tip rather than having c = 0 

there. FroITl the general hydrodynaITlic equation of free-surface 

profile, Eq. 24, developed with the prescribed initial conditions, 

Chen and Hansen (1966) reasoned that either subcritical or 

supercritical flow has a free-surface profile (y) staying right 

between the norITlal-depth (y ) 
n 

curve and the critical-depth (y ) 
c 

curve. At the initial state (t = 0), since v = v = c and c = c , 
o 0 0 
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it is justified from Eq. 24 that the slope of the free-surface profile 

at this stage is infinite. If there is no cutting-off of the inflow from 

the upstream end (x = 0), the velocity v of flow will approach the 

normal velocity v when the time becomes infinite. As a matter of 
n 

fact, this was already demonstrated in the derivation of Eq. 48 for 

the case of no infiltration. 

If the infiltration function, i, for the Kostiakov-Lewis 

(Philip and Farrel, 1964) type 

l
' b = at (- 1 < b < 0) (115 ) 

is considered for simplicity in the present analysis, i becomes 

infinite' at t = 0 because of - 1 < b < O. This is somewhat 

dc 
similar to the property of the wave front~ where c = 0, dX = - 00, 

dC 
and ~ = + 00. At the wave front, since i is maintained always 

at the initial state; the value of i / c is extremely large enough 

though c may be assumed as a constant at the tip. Thus the 

containment of the infiltration term in the equations is believed to 

be a major factor in the determination of the trajectory of the 

wave front. From this point of view, the " c l as sical" approximate 

approach, a simple volume-balance method (i. e., using only the 

equation of continuity) in the surface irrigation should be justified. 

Nevertheless, as it is experimentally known; or can be seen from 

these equations, that a vertical wave front is maintained at the tip:> 

one may logically assume a critical depth at the tip where the 
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corresponding velocity is the critical velocity as well as the normal 

velocity. Consequently, at the tip, the value of vic is assumed 

unity. This value is justified by the initial conditions prescribed at 

x = O. When vi c = 1> the infiltration term in Eq. 113 always 

vanishes because (1 -~) = O. Thus, with this assumption, the 

infiltration term is no longer a factor, 

With the assumptions that c = 0 and vic = 1 at the wave 

front, Eq. 113 yields 

whence 

v = 
dx 
dt 

The condition that ~: = 3c = 3-.rgy-
o co 

and x = 0 as t = 0 

gives Al = 3 Co and Bl = 0, therefore the trajectory of the 

wave front is 

1 
x = 3c t+-

2 
gS 

o 0 
(116 ) 

which is compatible with Eq. 29 except that an additional parameter, 

2 
glC S, which is an alternative expression of the Froude number 

o 

at the "normal!! state~ merges into the equation. The corresponding 
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solutions for v and c analogous to Eqs. 73 and 74 are possible 

from. Eq. 116. However, owing to the sam.e reasons that Eqs. 73 

and 74 do not staisfy the boundary conditions at x = 0, the finite-

difference method m.ust be em.ployed for obtaining the num.erical 

solutions. 

The param.eter, 
2 

g/C S, is a m.easure of the com.bined 
o 

effects of the channel slope and friction on the flow characteristics. 

From. the definition s of y and y given pr eviou sl y, the follow ing 
c n 

relation can be form.ulated: 

in which JF 
n = 

v 
n 

'Vgy n 

= 

JF 2/3 (117) 
n 

"norm.al" Froude num.ber having the 

value being less than, equal to, or greater than unity respectively, 

corresponding to whether the flow is on a m.ild, critical, or steep 

slope. From. Eq. 116, it can be readily seen that for a m.ild slope, 

the second term. in the right hand side of the equation becom.es a 

negative value, which has exactly a reverse trend of Eq. 29, where 

only the channel slope is considered. For a steep slope, the 

aforem.entioned term. has a pos itive value which has on the contrary 

the sam.e trend as Eq. 29 while for a critical slope, the term. is 

zero and the trajectory is a straight line. 

The characteristic patterns for flows over a m.ild slope and a 

steep slope are schem.atically shown in Fig. 14. For a flow over a 
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critical flow, it should look like the one for centered simpl"e wave 

as shown in Fig. 7. 

Looking into Fig. 14, one may question on the assumptions 

that c = 0 and v I c = 1 at the wave front. Because of the singularity 

at the origin (t = 0 and x = 0) where v = c = c is imposed, 
o 

evidently the assumption, c = 0, is not satisfied at that point. 

Furthermore, the characteristics 
+ -

C and C basing on these 

as sumptions are everywhere zero values along the wave front. This 

situation needs further investigation. As a matter of fact, at the 

initial state, vic = c Ic = 1 but not c = O. After that, 
o 0 

c = 0 

but not vi c = 1. If v I c i: 1 the infiltration term as well as the 

friction term in Eqs. 113 and 114 are important in determining the 

values of v and c along the traj ectory of the wave front where 

c = O. There seems no way to find out, with the present knowledge, 

what should be the values of vic and i/c. Unless these relations 

can be established, the finite-difference method seemingly fails for 

this typical problem. The former approach to assume a certain 

amount of depth at the wave front is also ambigious, because with 

this assumption, the wave front is no longer an envelope of the 

characteristic s, 
+ -

C and C . It readily can be seen from Eqs. 56 

and 57 that c must be zero in order to have 
+ -

C and C 

characteristics along the wave front, that is, Eqs. 56 and 57 both 

are now equivalent to Eq. 92. 
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Another feature of finite-difference technique used by Kruger 

and Bassett (1965) Inust be Inentioned here. Without considering 

the characteristics and forInulating the characteristic equations, 

they developed the finite-difference recurrence equations froIn the 

basic differential equations and obtained the nUInerical solutions by 

operating theIn on a fixed rectangular grid in the x, t-plane. 

Although the fact that they as SUIne the initial conditions at x = 0 a 

norInal depth and velocity seeInS against the usual way, the solutions 

surprisingly converged in the liInit to those obtained for a steady flow 

case. In addition, they also assuIned a certain aInount of depth at 

the wave front. Naturally, the question concerning the validity of 

the finite-difference Inethod arises. Is it possible to obtain correct 

solutions without considering the characteristic relations and the 

difficult situations at the wave front? An answer for this question 

Inay be obtained by conducting the saIne probleIn by two different 

Inethods. The result Inay give a clue to the probleIn encountered 

in us ing the finite -difference Inethod around the neighborhood of the 

wave front. 

RerneInber that Eq. 116 is not the solution of the probleIn 

because of the inappropriate conditions iInposed at the wave front, 

and that it is siInply intended to express qualitatively the iInportance 

of the additional paraIneter Inerged intrinsically in the basic equations. 

The only exact solution that can be obtained froIn the siInplest case of 
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the problem are the Ritter solutions (i. e., Eqs. 60 and 61) because 

Eqs. 73 and 74 are not the writer's solutions either. The Ritter 

solutions may be perturbed through the perturbation method to 

explore the effects of the aforementioned parameter due to the free 

surface and the infiltration variable. In another type of the problems 

(darn-breaking problem), Dressler (1952) has successfully obtained 

the solutions due to the hydraulic resistance effect by the perturbation 

procedure. 
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CHAPTER 6 

OTHER METHODS 

There are ITlany other ITlethods used in solving siITlultaneously 

the systeITl of equations, Eqs. 31 and 32, in the case of the two-

diITlensional·flow. For the convenience of presenting the following 

discussion, these equations are recapitulated herein. 

v 

y 

- 1 

As q = vy was previously defined, Eq. 32 can be written as 

+ ~ = ex - i 

(31 ) 

(32 ) 

. (118) 

If i = a in Eq. 118, one can in troduc e a function L(; (x, t) defined 

(R ouse, 1949) as 

eL(; 
= ex - y and 

which satisfy the equation 

= a . (119) 

FroITl these definitions, one ITlay have the following relations: 

~= 
ex 

e 2L(; 
2 ' ex 

~= et 
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~ = 
d

2
ljJ ~ d

2
ljJ 

dX dxdt' dt = 
dt

2 

£:1 
~ dt 

v = = dljJ y 
dX 

dV 1 I ~ ~l 1 (-
dljJ d 2ljJ Cl ljJ Cl 2ljJ ) 

dX = - Ydx - qdx 

= (~~r dx dxdt + 
dt dX2 2 

Y 

dV 1 (~ ~l 1 ( ClljJ Cl 2ljJ Cl ljJ Cl 2ljJ ) 
dt = - Ydt - qdt 

= [~~t + ~ dxdt 2 - dX dt2 
Y 

Substituting all of these into Eq. 31 for the case of i = ° yields 

(120) 

The initial and boundary conditions for ljJ (x, t) are: 

dljJ (x, 0) 
= 

dX 
y , 

co 
dljJ(X, co) 

dX = - Y no 

dljJ (0, t) 
dt 

= qo 

in which 

= (c::2 r /3 Yno 

0 



Solving Eq. 120 for L\J (x, t) is not an easy task; however, by this 

means, the possibility of applying an electrical analogy to the 

tracing of water waves in the surface irr igation was demonstrated. 

In the case that i f:. 0, the function defined above is no longer valid 

because it fails to satisfy Eq. 118. A function similar to L\J (x, t) 

must be redefined and used. 

Another approximate solution obtained by the kinematic -wave 

method is based on the assumption (Henderson and Wooding, 1964) 

that the slope of the water surface relative to the slope of the 

channel bed can be neglected if the depth of water is sufficiently 

small. The assumption used is somewhat like the Dupit-Forchheimer 

theory used in the groundwater flow. The approximate equation of 

motion used has the form 

(121 ) 

in which K and N are all coefficients depending on which flow is 

considered. The following values of K and N are taken respectively 

for: 

(l) 1 am ina r fl ow : K = g S /3 v , N = 3 
o 

(2) turbulent flow : K = C S 1 /2 , N = 3/2 
o 

in which v = kinematic viscosity of the fluid (water). Knowing these 

value s, one can obtain 

gS 
o 

q = 3v 
3 

y (122 ) 
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for the laminar flow, and 

= c S 1/2 3/2 
q a y (123 ) 

for the turbulent flow in the two-dimensional flow case. In fact the 

si.mplified equations of motion, Eqs. 122 and 123 (or in general, 

Eq. 121), are used to replace the equation of momentum (Eq. 31) 

for the convenience of manipulating equations. Therefore, Eqs. 118 

and 121 constitute a kinematic-wave problem which can be solved by 

the method characteristic s. This approach has been us ed extens ively 

by many investigators in the field of overland-flow research. The 

assumption used may fail at the wave front, where the slope of the 

free surface is observed to be vertical to the bed; however, the 

fact that it fairly describes the rest of the profiles is justified. 

The form of Eq. 121 means that Eq. 118 can be written as a 

total derivative; herein lies the essence of the method of 

characteristics. Differentiating 121 with respect to x yields 

(124) 

Substituting Eq. 124 into Eq. 118, one has 

~ N-l ~ 
et 

+ KNy 
ex 

= _. i (125) 

Let 

dx 
KNy 

N -1 - = 
dt 

(126) 



be a characteristic>:<, then Eq. 125 becom.es 

or 

~+dx~= 
ot dt Ox 

~= 
dt 

- i 

- i 

As the sam.e reasoning described in the general theory of 

characteristics, a system. of equations, Eqs. 126 and 127, is 

. (127) 

equivalent to another system. of equations, Eqs. 118 and 121. The 

solutions obtained from. Eqs. 126 and 127 are thus uniquely 

determ.ined. This m.eans that along the characteristic (Eq. 126), 

the relation (Eq. 127) always holds. An alternative system. of 

equations corresponding to Eqs. 118 and 121 can be obtained as 

follows: 

Since from. Eq. 121, 

~ KNy 
N-1 ~ 

ot = ot 

~ 
1-N 

~ = Y-
ot KN ot 

substituted into Eq. 118 and rearranged 

~ N-1 ~ 
ot + K Ny Ox = 

- N-1 
i KNy . (128) 

>!< 
In this s im.plified m.ethod, there is only one characteristic, i. e. , 
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~: = K NyN -1 However, in the general m.ethod, two characteristics 

are defined, i. e., C + characteristic ~: = v + c 

C characteristic dx = v - c crt 



If the saTIle characteristic (Eq. 126) is defined, then Eq. 128 can be 

reduced to 

i.9. = 
dt 

(129) 

Hence, Eqs. 126 and 129 are equivalent to Eqs. 118 and 121. 

Correspondingly, one can easily deduce the following relations: 

iY i 1-N 
= - KN Y dx 

(130) 

i9.. = - i 
dx 

(131 ) 

A sOTIlewhat different initial condition at x = 0 TIlust be iTIlposed 

for this approxiTIlate TIlethod. Since only one characteristic is available, 

it is logical to aSSUTIle that the flow starts iTIlTIlediately with the norTIlal 

depth, y 
no' 

and the norTIlal vel oc i ty, 

v = v = C-JS y 
no 0 no 

v ; that is 
no 

The boundary condition at x = 0 is essentially the saTIle as 

q = vy = q 
o 

The pattern of the characteristic (Eq. 126) with these initial and 

boundary conditions is scheTIlatically plotted in Fig. 15. The slope of 

the wave front characteristic at the origin is 
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dx 
dt 

= KNy N-l 
no 

(132 ) 

The first increm.ent of advance, ax
1

, is thus ~xl = K Ny n: -1 ~t 

for sm.all fixed tim.e interval, ~t. Along the traj ectory of the wave 

front, Eq. 127 is satisfied. If the infiltration function for the 

Kostiakov-Lewis type (Eq. 115) is considered, the finite-difference 

m.ethod for a sm.all increm.ent of tim.e, ~t, gives the recurrence 

relation between .the (j + 1) point and the j point along the wave front. 

or 

= y. _ a (~t) b+ 1 
J 

(133 ) 

Specially, for j = 0, y = y ,the next increm.ent of advance, ~x2' 
o no 

after Yl = Yo - a (~t)b+l is calculated from. Eq. 133, nam.ely 

~x = K NyN-l ~t 
2 1 

In general, 

~ = KNy~-l ~t 
j+l J 

(134) 

Thus, the sequential generation of the value s of y and ~x along the 

trajectory is attained by both Eqs. 133 and 134. 

The characteristic issued from. the boundary (x = 0) after elapsing 

~t next to the wave front is som.ewhat m.odified if the sam.e Kostiakov-

Lewis infiltration function is used. The recurrence form.ula for y 

becom.es 
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(135) 

while the recurrence form.ula for Ax is still the sam.e as Eq. 134. In 

general, for the k-th characteristic issued from. the boundary after 

(k - 1) ~ t tim.e has been elapsed, the recurrence form.ula for y is 

= y. _ k b a (~t) b+ 1 
J 

The calculation of the values of y and ~x for each characteristic 

(136) 

m.ust be stopped when they becom.e zeroes at the sam.e tim.e. This tim.e 

is called the tim.e of equilibrium.. For the Kostiakov-Lewis infiltration 

function~ each characteristic apparently has a different tim.e of 

equilibrium. as shown in Fig. 150 The corresponding free - surface 

profiles for this type of infiltration function with each increm.ent of the 

fixed-tim.e interval, ~ t, is schem.atically plotted in Fig. 16. Before 

~ t is reached, the depth of flow at the wave front is evidently not zero 

by this approxim.ate m.ethod. There is also no m.axim.um. length of 

advance when the Kostiakov-Lew is infiltration function is adopted. 

As a special case, however, if the infiltration function is constant 

(i.e., i 
b 

= at for b = 0), the direct integration over the characteristic 

equation (Eq. 127) along the characteristic curve (Eq. 126) is possible 

because i = a = const. In this case, all of the characteristics issued 

from. the boundary (x = 0) at different tim.es are all parallel to each 

other and have the sam.e tim.e of equilibrium., t . 
e 

Henc e, it can be 

readily seen that there m.ust exist a m.axim.um. length of advance for this 

case. The trajectory of the wave front and the free-surface profiles 

can be expressed as follows: 
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From Eqs. 127 and 131, since i = a, integrating with respect 

to t yields 

y = at+A
1 

q = ax + B1 

in which A 1 and B1 are the constants of integration that must be 

determined from the initial and boundary conditions. The initial 

condition that y = y no as t = 0 gives A 1 = Y nO and the boundary 

condition that q = qo as x = 0 yields B1 = qo. Consequently, one 

has the forms of the flow depth at the wave front and discharge-

distribution equations, respectively. 

y = - at + y 
no 

q = -ax+q 
o 

(137) 

(138 ) 

The maximum length of advance, L, can be obtained from Eq. 138 by 

setting q = 0, thus 

a 
(139) 

An alternative forill of Eq. 138 is 

- ax. (140) 

or 

(141 ) 

From Eq. 140, 
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1 

Y = (; - ~r 
Substituting this y value into Eq. 126 and integrating yields 

1 

N N 
(q - ax) = 

a 0 

in which A 1 is again a constant of integration. The condition that 

x = 0 as t = 0 gives 

1 -

Al 
N N 

= q 
a 0 

Consequently 

1 1 
N N 

qo - (qo - cx) (142 ) 

This is the equation of the trajectory of the wave front in the x, t-plane. 

Th e t iITl e 0 f e q u il i b r i UITl , t , 
e 

corresponding to the ITlaxiITluITl length of 

advance, L, attained can be obtained froITl Eq. 142 by letting t = t 
e 

for 
qo 

x --' - a ' 

t 
e 

naITlely 

= 

1 

= KN at 
e 

Yno 

a 
(143 ) 

which is also obtainable froITl Eq. 137. The pattern of characteristics 

and the free- surface profiles are plotted in Figs. 17 and 18 respectively 

for this special case. 
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The kinematic-wave method is the most simplified method so far 

as it can be deduced from the general equations without losing too 

much the generality of the fomation of the mathematical model for the 

flow of water-waves in the surface irrigation. The method still gives 

the equations of the free-surface profiles of forwarding waves. 

Further simplification of the method will result in the "classical" 

approach of the simple volume-balance concept, in which only the 

equation of continuity is considered. In the latter method, the writer's 

interest is only the solution of the trajectory of the wave front. Many 

investigations have been conducted in this area and among them, the 

studies of Chen (1965) and Philip and Farrell (1964) can be cited. 

Although the latter method is much simpler than the former method, no 

information about the free-surface profiles is obtainable from the 

latter method, so it is of no concern herein. 
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NOTATIOJ\TS 

The following symbols have been adopted for use in this study. 

A = cross-sectional area of flow; 

A = cross-sectional area corresponding to a critical depth; 
c 

A = cross-sectional area under consideration corresponding to a 
n 

normal depth; 

Al = integration constant; 

a = infiltration constant; 

Bl = integration constant; 

b = bottom width of the channel section; infiltration constant; 

C = Chez y r S roughne s s c oeffic ient; 

C+ = characteristic curve; 

C = characteristic curve; 

c = celerity = ~; 

D = hydraulic depth; 

D = hydraulic depth corresponding to a critical depth; 
c 

F = force on the element in the x-direction; 

g = gravitational acceleration; 

i = infiltration rate; 

i = uniform infiltration rate across the top width; 

K = conveyance of the channel section at an actual flow depth, 

coefficient; 

K = conveyance of the channel section corresponding to a normal 
n 

depth; 
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NOTA TraNS (Continued) 

kl = constant; 

k2 = constant; 

L = maximum length of advance for the wavefront; 

M = momentum flux of the element in the x-direction; 

m = exponent; 

N = coefficient; 

n = exponent; 

P = static pressure force on a normal section of the element; 

Q = discharge of flow; 

Q = constant discharge of inflow at the upstream end; 
o 

R = hydraulic radius of the channel section corresponding to a 
n 

normal depth; 

Sf = frictional slope of flow; 

S = bed slope; 
o 

T = top width of the free surface at the section considered; 

t = time; 

t = time of equilibrium when the wavefront reaches the maximum 
e 

length of advance; 

U = uniform velocity of uniformly progressive wave flow; 

v = uniform velocity of advancing wave 
w 

v = critical velocity at 
co 

x = 0; 

v = normal velocity; 
n 

v = normal velocity at x = O· 
no 

, 
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NOTATIONS (Continued) 

W = weight of the element per unit length; 

x = distance in the direction of flow; 

y = depth of flow; 

y = depth of the centroid of the c ros s - sectional area from the 

free surface; 

Yc = critical depth; 

Yco = critical depth at x = 0; 

Yn = normal depth; 

Y = depth of water at x = 0; 
o 

Y 2 = depth of water in the zone of quiet downstream; 

Z = Section factor for critical flow computation; 

Z = critical section factor at a critical depth; 
c 

13 = momentum coefficient; 

e = angle of inclination of the bed with respect to the horizontal 

surface; 

D = kinematic viscosity of the fluid; 

s = coordinate variable = x - Ut; 

p = density of the fluid; 

T = shearing stress on the boundary of the section considered; 
o 

4J = a function used to define a flow depth and discharge for the 

case of no infiltration. 
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