Utah State University DigitalCommons@USU

Reports

Utah Water Research Laboratory

January 1982

Hydraulics and Numerical Solutions of Steady-State but Spatially Varied Debris Flow

Alfredo A. DeLeon

Roland W. Jeppson

Follow this and additional works at: https://digitalcommons.usu.edu/water_rep

Part of the Civil and Environmental Engineering Commons, and the Water Resource Management Commons

Recommended Citation

DeLeon, Alfredo A. and Jeppson, Roland W., "Hydraulics and Numerical Solutions of Steady-State but Spatially Varied Debris Flow" (1982). *Reports.* Paper 515. https://digitalcommons.usu.edu/water_rep/515

This Report is brought to you for free and open access by the Utah Water Research Laboratory at DigitalCommons@USU. It has been accepted for inclusion in Reports by an authorized administrator of DigitalCommons@USU. For more information, please contact digitalcommons@usu.edu.

HYDRAULICS AND NUMERICAL SOLUTIONS OF STEADY-STATE

. .

•••

.

1 -

x - 2

. ·

÷ · ·

1 5

ς.,

. -

F 0

· · ·

÷ ~

· ...

h.

. .

۳.

د ...

F. ...

• •

BUT SPATIALLY VARIED DEBRIS FLOW

by

Alfredo A. DeLeon and Roland W. Jeppson

The research on which this publication is based was supported in part by funds provided by the Office of Water Research and Technology, U. S. Department of the Interior, through the Annual Cooperative Program of that agency, as authorized under the Water Resources Act of 1978. Contract No. 14-34-0001-1147, A-052-UTAH.

HYDRAULICS AND HYDROLOGY SERIES UWRL/H-82/03

Utah Water Research Laboratory Utah State University Logan, Utah <u>84322</u>

July 1982

Contents of this publication do not necessarily reflect the views and policies of the Office of Water Research and Technology, U.S. Department of the Interior, nor does mention of trade names or commercial products constitute their endorsement or recommendation for use by the U.S. Government.

ABSTRACT

- ,

. .

. .

L _

. .

ί.

k ...

. .

٤.

. ..

Debris flow is a natural phenomenon triggered by special conditions that combine: high intensity rainfall, material available for transport, slopes steep enough to induce flowage, and insufficient protection of the ground by vegetation and/or other erosion control means. These conditions are very common in semiarid and arid regions in Utah, other Western states and many other parts of the globe. Previously, the two models proposed to solve debris flow are the Bingham plastic model and the dilatant model. Both these models depend upon coefficients that are not easy to obtain. Therefore, they are not very useful in practice.

According to the field observations and data reported, most debris flows that occur in nature are laminar. The viscosity of these flows has been as large as 600,000 times that of water. Reynolds numbers are less or equal to 500 for these debris flows. Laminar debris flows are the subject of this report.

A theoretical model based on the Saint-Venant equations of continuity and motion, together with a modified Chezy equation for defining the energy loss, were found to be suitable to describe debris flow in the laminar range. These equations were solved by numerical methods implemented in a computer program. This report covers only steady but gradually varied debris flow solutions.

A formula defining the Chezy coefficient as a function of Reynolds number is proposed. A relationship between the debris flow density and its viscosity is also proposed. These relationships are of necessity based on the limited data available for debris flows.

Solutions to four examples are given. The results show that this open channel debris flow model reproduces well debris flows observed in nature. These solutions show that debris flows develop depths greater than water flows. The bed slope is the most important variable that affects the ratio of the depth of debris flow to depth of an equivalent volumetric water flow. For milder slopes this depth ratio exceeds ten. The substantially larger depth of debris flow than of equivalent water flow explains in part why debris flows have been observed to stop flowing, leaving an abrupt wave-shaped form on the landscape.

ACKNOWLEDGMENTS

The research on which this publication is based was supported in part by funds provided by the Office of Water Research and Technology, U.S. Department of the Interior, through the allotment program of that agency with Utah State University, as authorized under the Water Resources Act of 1964, as amended. Contract No. 14-34-0001-1147.

The material of the report is similar to the dissertation submitted by the first author in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Engineering from Utah State University under the title of "Hydraulics of Debris Flow." The second author is Dr. DeLeon's major professor. The title of this report has been changed in anticipation of a follow-on report covering additional work dealing with unsteady debris flows.

TABLE OF CONTENTS

× .

ę ~~

- - -

r ...

÷ .

ъ., р. т.

н ш н п -

r -

۱.... ۱... ۱...

r ~

ي علي ج --د مد

1. !

· .

Chapter		Page
I	INTRODUCTION	1
II	REVIEW OF LITERATURE	3
	Types of Fluids	3
	Newtonian Fluid, Curve D	3
	Bingham Plastic Fluid $ au_{y}$ >0, Curve A	3
	Pseudoplastic and Dilatant Fluids,	,
	Hydraulic Characteristics of Debris	4
	Flows	4
	Analytical Approaches to Debris Flows	6
	Takahashi's Dilatant Model	6
	Johnson's Bingham Model	7
	Summary \ldots	8
ттт	DIFFERENTIAL FOUATION DESCRIBING OPEN CHANNEL	
111	DEBRIS FLOW	11
	Flow Regimes	11
	Applicability of Saint-Venant Equations	
	to Laminar Flow in Open Channel	11
	Saint-Venant Equations	12
	Equation of Motion	13
	Friction Slope Approach for Deriving	
	the Equation of Motion for Open	
	Channel Debris Flow	14
	Type Classification of the Saint-Venant	
	Equation	17
IV	MODEL FORMULATION	19
	Background	19
	The Chezy Equation	19
	Relationshin Between Takahashi Resistance	17
	Coefficient (k) and Chezy Coefficient	
	$(C) \qquad \qquad$	19
	Steady Laminar Flow of Viscous Liquid	
	with a Free Surface	20
	Evaluation of Chezy Coefficient	22
	Babbit and Caldwell	24
	Least Square Fit to Obtain the Best	
	Relationship for the Chezy Ceofficients	
	C	24

v

TABLE OF CONTENTS (Continued)

-

	age
Friction Factor f	26
(ρ) and Its Viscosity (μ)	28 29
V THE DEBRIS FLOW COMPUTER MODEL	31
Generalities	31 33 33 34 34
(F) Given by Equation 72 $\cdot \cdot \cdot \cdot \cdot \cdot \cdot$	36
VI APPLICATION OF THE COMPUTER MODEL	39
Relationship between Debris Flow Depth and Water Flow Depth	39 40
Example 1Example 2Example 3Example 4	41 45 46 47
General Discussion	53
VII SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS	55
REFERENCES	57
APPENDICES	59
Appendix A.Computer Program Lists	61 69 75 79 91

. –

- ..

,

LIST OF FIGURES

; .

r •

e -

• •

· -

• ---

r.

د ... ب ...

4 ... e ~ - ...

н н н н н н н н н н н н н н н н

. .

ь *ш*

۰ -

-

Figure		Page
1.	Typical shear stress strain rate relationships for non-Newtonian fluids	3
2.	Log-log plot of power law fluids	3
3a.	Typical longitudinal section	8
3b.	Typical cross-section	8
4.	Definition sketch for the equation of continuity	12
5.	Definition sketch for the equation of motion	15
6.	Definition sketch for laminar fluid flow on an inclinal surface	21
7.	Chezy coefficients vs. Reynold's number	26
8.	Friction factor vs. Reynold's number	27
9a.	Trapezoidal channel section	32
9Ъ.	Arbitrary channel section	32
10.	Flow chart for the critical slope computation	34
11.	Flow chart for the normal depth computations	35
12.	Flow chart for solving Equation 72	36
13.	Debris flow depth/water flow depth vs. bed slope for n = .035 and variable unit flow rate	41
14.	Profile and top view for problem 3	42
15.	Debris flow depth/water flow depth vs. bed slope	42
16.	M ₁ profiles for debris and water flow of Example 2	47

vii

LIST OF FIGURES (Continued)

Figure		Page
17.	Q^2P and SET vs. y for $Q = 500 \text{ ft}^3/\text{sec}$ and $B = 70 \text{ ft} \cdot \cdot$	48
18.	Profile view for problem 3	49
19.	Plane view for problem 3	49
20.	Debris flow depth/water flow depth vs. slope	50
21.	Profiles view for problem 4	51
22.	Debris flow depth/water flow depth vs. bed slope	52

viii

. ..

• •

LIST OF TABLES

. -

• • •

- --

e ...

.

- - - -

. .

* · · *

۹. __

r r

۴ ـ ـ ـ

· .

۰. ۲

,

. . .

Table		Page
1.	Summary of debris flow characteristics	5
2.	Chezy ceofficient calculated from Sharp, Pierson and Takahashi data (open channel debris flow)	25
3.	Chezy coefficients computed from Babbit and Caldwell data (pipe sludge flow)	25
4.	Some friction factors and Chezy coefficients calculations, selected from Tables 2 and 3	27
5.	Variation of debris flow depth/water flow depth vs. slopes for different Manning coefficients for Example 1	43
6.	Typical output values. Example 1	44
7.	Debris flow and water flow results of Example 2	46
8.	Variation of debris flow depth/water flow depth vs. slopes for different Manning coefficients for Example 3	50
9.	Variation of debris flow depth/water flow depth vs. slopes for a given Manning coefficient and large lateral spreading for Example 4	51
10.	Variation of debris flow depth/water flow depth vs. slopes for a given Manning coefficient, large lateral spreading and a short adverse	
	stope for Example 4	52

-_____ - ---

LIST OF SYMBOLS

, -

. .

- r -

Ł

: . .

ي يا	Symbols	Definition	Symbols	Definition
p 4m	ai	= numerical coefficient	Fq	= inflow parameter
÷ -	α	= friction angle in moving	g	= acceleration due to gravity
r -	~	grains	Ŷ	= shear strain rate
• -	a	stress is a maximum or	Υ	= unit weight
			r	= sheer stress function
r -	a	that expresses the relation-	h	= depth of debris flow
i		density and its viscosity	h	= height k water surface above
£ ~~	A	= cross-sectional area		Galum
- 1			H	= total energy
	Am	= constant	h	= distance between water
r k -	b,B	= width	"с	surface and centroid of cross-sectional area
r -	B _m	= constant		
и – г –	c _d	= grain concentration by volume in debris flow	ĸ	<pre>= constant in the equation that expresses the relation- ship between the debris flow density and its viscosity</pre>
· · ·	C*	= grain concentration by volume in stationary bed	k	<pre>= proportionality constant for a power law fluid</pre>
	C	= Chezy coefficient		
L_ ~-	d	= grain diameter	k	= Takahashi's resistance coefficient
۲ ال م	δ	= slope angle	k	= sheer strength or the
÷ ~	D	= pipe diameter		maximum magnitude of sheer stress
t	^п ъ	= Bingham viscosity	m	= integer constant
	η	= coefficient of rigidity	m	= slope of channel side
A =	f	= Darcy resistance coefficient	μ	= viscosity
L .	Fr	= Froude number	$^{\mu}\mathbf{p}$	= plastic viscosity

LIST OF SYMBOLS (Continued)

۲

- --

**

Symbols [Variable]	Definition	Symbols	Definition
μ a	= apparent viscosity	σ	= stress
n	<pre>= exponent for a power law fluid</pre>	σ	= grain density
n	= Manning's resistance coeffi- cient	t	= time
		Т	= top width
ν	= kinematic viscosity	τ	= shear stress
р	= fluid pressure	-	- cheen strees at solid
P	= wetted perimeter	o	- shear stress at solid boundary
φ	= debris flow bed slope	τy	= yield stress
TT	= A constant (3.14159)	Θ	= slope angle of debris bed
q	= unit flow rate	u	<pre>= velocity in the x-direction</pre>
q *	= lateral inflow rate	U	<pre>= cross-sectional mean velo- city</pre>
Q	= flow rate		
R	= hydraulics radius	us	= velocity at surface
Re	= Reynolds number	V .	<pre>= mean velocity of flow in pipe or channel</pre>
ρ	= density of water		
ρ _m	= density of slurry	ŵ	<pre>= component of the velocity in the z-direction</pre>
Sa	<pre>= acceleration slope</pre>	x,y,z	= cartesian coordinate systems
Se	= energy slope	у	= depth of the flow
s _f	= friction slope		
So	= slope of the channel bottom	Уc	= critical depth
c	- showing strong in a flowing	Уd	= debris flow depth
°P	material at pipe wall	Уо	= normal depth
sy	= shearing stress at the yield point of a plastic material	Z	<pre>= elevation of the channel bottom</pre>

....

CHAPTER I

INTRODUCTION

Open channel flow theory provides the necessary tools for solving problems related to free surface flows of Newtonian fluids such as water. In this theory the differential Saint-Venant equations of continuity and motion are solved jointly with an algebraic equation such as Chezy's or Manning's equation, for defining the friction slope. Debris flows, however, are generally accepted as non-Newtonian, and little has been accomplished in extending open channel flow principles to these flows. Yet developing the means to do so would represent a fundamental step toward being able to deal with problems associated with flow that annually cause large property losses.

• •

- -

ę –

- -

× -

. .

. -

. .

= ~·

٤...

r --

r -

- -

i. ...

r - -

L ...

· --

1 -

2. ...

. ..

. .

- ----

Debris flows historically have been associated with cloudburst runoff from steep mountain catchments located in arid and semiarid regions. Conditions that trigger debris flows develop in watersheds upstream from where the debris flows generally cause damage. Common conditions are: 1) insufficient protection of the ground by vegetation and/or stone rubble to hold the ground in place; 2) loose material available for transport; 3) slopes steep enough to induce gravity flowage; and 4) sufficient water to lubricate the material.

Methods are needed so that 1) depths and magnitudes of debris flow can be predicted and used to map areas subject to damage, and 2) hydraulic structures across and along channels and rivers can be designed to control and withstand this type of flow without damage. With such information planning agencies will be in a position to set up guidelines for regulating the development and protection of areas subjected to debris flood flow. Also flood insurance programs would have a much improved base from which to charge actuarial rates and evaluate debris flood insurance claims. Since debris flows likely exhibit some chracteristics similar to flows consisting of a mixture of water and ash, the solution of debris flow would also be important for streams located near active volcanos.

Presently, two models have been proposed for solving steady state debris flows: 1) the Bingham plastic model supported by American investigators (Johnson 1965, 1970, Leopold et al. 1964, and Hooke 1967) and 2) the dilatant model proposed by Takahashi (1978, 1980) in Japan. Both models have been tested on a small scale in laboratories. Both depend upon coefficients (yield stress at zero shear rate (τ_{n}) for the Bingham model and the resistant coefficient (k) for the dilatant model) that are specific for each debris flow and, furthermore, difficult to estimate even under controlled laboratory conditions. The solution is strongly effected by the magnitude of these parameters. Applications of these models to unsteady flows is further complicated since these coefficients vary with time.

Almost all the references listed agree that debris flows are laminar. Values of reported viscosities are as large as a hundred to several hundred times the viscosity of water. Densities range between 1.7 to 2.4 gr/cm³, grain sizes from a few millimeters to meters, and velocities from several tens of centimeters per second to several tens of meters per second. A useful description of debris flow is (Takahashi 1980, p. 381): "Debris flow is a flowage of a mixture of all sizes of sediment. Boulders accumulate and tumble at the front of the debris wave and form a lobe, behind which follows the finer-grained more fluidic debris."

For laminar open channel debris flows, the concern of this research, a theoretical model is proposed and calibrated based on the few data available. This model is implemented in a computer solution to handle steady state but gradually varied open channel debris flow. The essential principles and equations upon which the model is based are: 1) The Saint-Venant equations of continuity and motion in simplified form for steady spatially varied flow. The Euler method is employed to solve the resulting first order ordinary differential equation The Chezy equation, numerically. 2) but with a modified coefficient, is used to define energy losses. Based on available data, a relationship for

Chezy's C is defined, which eliminates the need to use the Takahashi resistance coefficient and represents an improvement in the practical solution of debris flows. 3) The critical slope and the normal depth are computed by Chezy's modified equation by means of the Newton iterative method. 4) The ratio of the debris flow density to its viscosity (ρ/μ) is proposed to be a linear function of the hydraulics radius as evidenced by limited available data and thus Reynolds number becomes a function of ρ/μ . 5) The critical depth is computed by means of known theory of open channel flow.

Chapter II presents a literature survey of work related to the problem. Differential equations describing open channel debris flow are derived in Chapter III. Chapter IV describes the model formation, Chapter V explains the computer model, Chapter VI shows the application of the computer model to some open channel debris flows, and Chapter VII presents conclusions and recommendations.

CHAPTER II

REVIEW OF LITERATURE

Types of Fluids

The relationship between fluid shear stress and the rate of strain (velocity gradient) as one moves away from a laminar flow boundary determines the theoretical development of a flow equation. Fluids can be classified by their characteristic relationship. An excellent description of different types of fluids is given by Hughes and Brighton (1967). The main characteristics of these fluids are summarized in Figures 1 and 2, and Equations 1, 2, 3, 4, and 5.

Newtonian Fluid, Curve D

Water and other Newtonian fluids show a linearly relation of the shearing stress τ to the shear strain or velocity gradient. The slope of the straight line relationship in Figure 1 is the viscosity μ

r -

ι.

where τ is the shear stress, and $\tilde{\gamma}$ is the rate of shear strain.

$\frac{\text{Bingham Plastic Fluid}}{\tau_v > 0, \text{ Curve A}}$

The definitional characteristic of a Bingham plastic fluid is that the shear stress exceeds some minimal amount (yield stress τ_y) before exhibiting a shear rate, followed by a straight line relationship between shear stress and shear rate.

 Υ , shear strain rate

Figure 1. Typical shear stress strain rate relationships for non-Newtonian fluids.

Figure 2. Log-log plot of power law fluids.

where τ_y is the yield stress and μ_p is the plastic viscosity.

Pseudoplastic and Dilatant Fluids, Curves B and C

Pseudoplastic fluids and dilatant fluids do not have a yield stress at which shear strain begins. A pseudoplastic fluid is characterized by a progressively decreasing slope of shear stress versus shear rate. A dilatant fluid exhibits an increasing slope of this relationship with increasing shear rate. The varying slope of the shear stress versus shear rate is defined in both cases as the apparent viscosity, μ_a , of the fluid or

A number of empirical relations have been used to describe pseudoplastic and dilatant fluids. The simplest is the power law proposed by Ostwald, cited by Hughes and Brighton (1967). This law is:

 $\tau = k \dot{\gamma}^{n} \qquad \dots \qquad \dots \qquad \dots \qquad \dots \qquad \dots \qquad \dots \qquad (4)$

where

n < 1 for pseudoplastic fluids

n > 1 for dilatant fluids

Substituting in Equation 3 gives

where k and n are constants for a particular fluid; k is a measure of the consistency of the fluid and n, the exponent, is a measure of how the fluid deviates from a Newtonian fluid. A graphical representation of Equation 5 for different values of n is given in Figure 2.

Hydraulic Characteristics of Debris Flows

A concensus scientific definition of debris flow has not been reached. This hydraulic-geologic phenomenon, however, has been described by several One of the earliest descripauthors. tions (McGee 1897) called it a "sheetflood." Perhaps the best definition is that quoted previously from Takahashi (1980, p. 381). Other relevant descriptions have been given by Pack (1923), Paul and Baker (1925), Blackwelder (1928), Cannon (1931), Chawner (1935), Sharp and Nobles (1953), Hooke (1967), Johnson (1965, 1970), and Takahashi (1978).Mudflow is a term used to describe debris flow that consists mainly of sand-size and finer sediments (Sharp and Nobles 1953, Leopold et al. 1964, and Bull 1968). Table 1 gives a summary of the main parameters that characterize debris flow as recorded by various authors.

Recently, debris flow has been classified in regimes. Starting from the assumption that it behaves like Bingham's fluid, based on data obtained from the literature, and defining appropriately such parameters as Reynolds, Froude, and Bingham numbers, Enos (1977) classified debris flows as laminar, turbulent, subcritical, and super critical. The behavior that debris flows show in nature, including such intrinsic characteristics as ability to climb walls, to suddenly stop, and exhibit large values of viscosity, has caused some researchers to categorize these mixtures as non-Newtonian fluids. Leopold et al. (1964), Johnson (1965, 1970) and Hooke (1967) proposed to treat debris flows as plastic or Bingham fluids. Takahashi (1978, 1980), based on experiments conducted by Bagnold (1954), claims that some debris flows, if not all of them, can be modeled as dilatant fluids. Johnson (1970) pointed out that most of the early investigators assumed that debris flows behave as viscous or Newtonian substances.

Table	1.	Summary	of	debris	flow	characteristics.

~ •

. .

• •

. .

• • • •

• •

. . .

е. Г. – Г. –

- -

k .

r ~

k -(~

. . .

. ~

د _

÷ 1

- <u>k</u>...

Source	Reynolds number	Froude number	Velocity	Density N	Viscosity	Slope	Water content	Consistency - Description
Cannon (1931)	-		-	-	-	-	~	The advance portion of at least the first flow in each canyon was a thick mixture barely fluid enough to flow, with no free water going before it.
Pierson (1981)	-	0.3	1.0 m/s measured at_surface	1.73 gr/cm ² (bulk den- sity)	like motor oil	5 - 7°	40% (by weight)	Turbulent muddy streamflow (between surges), having the apparent viscosity of motor oil
Pierson (1981)	30	0.01	0.2 m/s measured at surface	1.73 gr/cm ³ (bulk den- sity)	3 slurry	17	**	Viscous, laminar debris flow, slurry
Pierson (1981)	500 - 3000	2.3	5.0 m/s measured at surface	2.08 gr/cm ² (bulk den- sity)	3	32	22%	Higher velocity viscous debris flow with renewed turbulence
Takahash (1980)	ni -	-	Several ter of meters/ second to several ter of cms/seco	ns – ns ond	apparent Newtonia viscosit 10 ³ to 1	- n y 0 ⁴ pois	- e	Flowage of a mixture of all sizes of sediment. Boulders accumulate and tumble at the front of the debris wave and form a lobe, behind which follows the finer-grained more fluidic debris
Pack (1923)	-	-	These gigar masses of h geneous mat were shot i the narrow into the op valleys wit suddenness almost chal belief.	ntic - netero- cerial from canyons ben ch a that llenges	-	4–8°	near abs of wates the pred time of greatest position debris	<pre>sence Slightly following this r at first impulse were tre- cise menous quantities of roch the waste ranging in size t de- from impalpable material n of to boulders of very large dimensions.</pre>
Segerstr	oem-		0.6 m/s	-	16 0	25%	_	-
Leopold (1964)	et al.	-	0.2 m/s			12-15%		-
Blackwel (1928)	.der -		_	-		4–6°		The flood sweeps large quantities of washed gra- vel, sand, clay, and even small boulders.
Sharp an Nobles (1953)	ad –	-	1.20- 3.00 m/sec (average velocity)	2.4 (specific gravity) 2x1 6x1 poi	0 ³ - 0 ³ - se	6° average	25-30% (by weight)	Highly fluidic slimy cement-like mud contain- ing abundant stones.

5

Sharp and Nobles (1953) inserted data coming from a specific debris flood flow into a simplified one dimensional Navier-Stokes equation and obtained values for the viscosity varying between 2000 and 6000 poise. This means that the debris flow viscosity is 200,000 to 600,000 times larger than the viscosity of water (0.01 poise).

Several investigators have suggested explanations why large particles remain suspended in debris flows. Pierson (1981) attributes the ability of debris flow to transport large boulders to the mechanisms of buoyancy, due to the large density of the mixture. Johnson (1965) also says that the density and strength of debris retards or prevents coarse particles from sinking. Pack (1923) in describing the 1923 devastating debris floods along the Wasatch Front in Utah, in which boulders weighing up to 95 ton were transported long distances, provides a number of indicators that very little mixing of the flow occurs between different depths. He notes ample visible evidence along the courses traversed by the "sliding mass of rock" of "striations and flutings impressed upon the clays and other compact soils." Also he notes "similar striations present on several large iron pipes over which the flood passed," and the "cement is scratched by a series of parallel marks" where the flow crossed highways and trees and undergrowth "were cut off at the ground almost as if a great knife had passed through them" rather than being pressed down as they would by rolling boulders. Pack's excellent description of these 1923 Utah debris flows, which occurred nearly simultaneously from several canyons, provides a mental image of a conglomerate flowing mass moving across the flatter valley floors almost as if it were an earthen slide. The lack of usual water flow characteristics, however, fits well laminar flows of all fluids. Rather than mixing between adjacent layers of depths, the movement occurs by means of a shear strain between layers, with the largest stress occurring at its bottom.

Closed form solutions for the velocity distribution under steady state uniform flow conditions with specific boundaries condition have been obtained by Johnson (1965, 1970) through a Bingham model and by Takahashi (1980) through a dilatant model. No unsteady flow solution has yet been obtained. Neither have solutions been obtained for the gradually varied flow state. These two models, based on different stress-strain rate relationships are outlined below.

Takahashi's Dilatant Model

In his derivation of the velocity distribution and its application to estimate debris flow in a rectangular section, Takahashi (1980) used the continuity equation:

and the equation of motion:

$$\frac{\partial U}{\partial t} + U \frac{\partial U}{\partial x} = gsin\Theta - gcos\Theta \frac{\partial h}{\partial x} - k \frac{U^2}{h}$$
 (7)

in which

- x = distance along the channel
- t = time
- U = cross-sectional mean velocity
- h = depth of debris flow
- k = coefficient of resistance
- Θ = slope angle of debris bed

Equation 7 is the well known Saint-Venant equation applied so that the x-axis is in the flow direction and the y-axis is normal thereto. He defined a resistance coefficient as:

where

. .

2 3

r 9

i. ...

1.

e 7

ı. با

. .

2 3

~ -

- ai = numerical but flow dependent
 value
- α = friction angle of the moving grains
- C_d = grain concentration by volume in debris flow
- ρ = density of water
- σ = grain density
- C* = grain concentration by volume in the stationary bed

d = grain diameter

 h_{∞} = steady state depth of debris flow

Later in this report the writers provide a much simplier alternate for defining Takahashi's resistance coefficient as:

$$k = \frac{g}{c^2} \dots (9)$$

where

g = gravity force (L/T²)
C = Chezy coefficient
$$\left(\frac{L^{1/2}}{T}\right)$$

The coefficient k is dimensionless.

Takahashi also solved Equations 6 and 7 by considering the phenomenon in a system of coordinates moving with a velocity (U) with the result,

$$h_{\infty} = \frac{kU^2}{gsin\Theta} \quad . \quad . \quad . \quad . \quad . \quad (10)$$

This same procedure for solution of particular cases of unsteady flow is suggested by Strelkoff (1969).

Johnson's Bingham Model

By starting from the Navier-Stokes equations and by supposing that the debris flow behaves like a Bingham substance, Johnson (1965, 1970) obtained a form of the Poisson equation that describes the fluid movement in channels, as follows:

$$\frac{\partial^2 \dot{w}}{\partial x^2} + \frac{\partial^2 \dot{w}}{\partial y^2} = \frac{1}{n_b}$$

$$[-\gamma \sin\delta + k \ (\sin\alpha \frac{\partial\alpha}{\partial x} + \cos\alpha \frac{\partial\alpha}{\partial y}) \]$$

where

- w = velocity in the z direction (flow direction)
- $\eta_{L} = Bingham viscosity$
- γ = fluid unit weight
- δ = slope angle of the surface of the fluid and also the slope angle of the channel
- k = shear strength or the maximum magnitude of shear stress that a Bingham substance can withstand without flowing
- α = angle for which the shear stress is a maximum or minimum

These quantities and the coordinate axes are defined in Figures 3a and 3b.

Figure 3a. Typical longitudinal section.

In order to solve Equation 11, Johnson defined a shear stress function, Γ , such that:

$$\sigma_{xy} = \frac{\partial \Gamma}{\partial x} + k\cos\alpha + \eta_b \frac{\partial \dot{w}}{\partial x} . \quad (12)$$

and

$$\sigma_{yz} = \frac{\partial \Gamma}{\partial y} - k \sin \alpha + \eta_b \frac{\partial \dot{w}}{\partial y} . \quad (13)$$

where σ_{xy} and σ_{yz} are shear stresses acting on faces xy and yz respectively. He concluded that the velocity distribution can be given by,

$$\dot{\mathbf{w}} = \frac{1}{\eta_{b}} \left\{ \left(\frac{\gamma \sin \delta}{2} \left(y^{2} - yb \right) \right. \\ \left. - ky + \tilde{\Sigma} \sin \left(m\pi y/b \right) \right]_{m=1} \\ \left. \left[A_{m} \cosh \left(m\pi a/2b \right) \right]_{m=1} \right\} \\ \left. \left. \left[A_{m} \sinh \left(m\pi a/2b \right) \right]_{m=1} \right\} \\ \left. \left(14 \right) \right]_{m=1} \\ \left. \left[A_{m} \cosh \left(m\pi a/2b \right) \right]_{m=1} \right\} \\ \left. \left[A_{m} \cosh \left(m\pi a/2b \right) \right]_{m=1} \right\} \\ \left. \left[A_{m} \cosh \left(m\pi a/2b \right) \right]_{m=1} \right\} \\ \left. \left[A_{m} \cosh \left(m\pi a/2b \right) \right]_{m=1} \right]_{m=1} \\ \left. \left[A_{m} \cosh \left(m\pi a/2b \right) \right]_{m=1} \right\} \\ \left. \left[A_{m} \cosh \left(m\pi a/2b \right) \right]_{m=1} \right]_{m=1} \\ \left. \left[A_{m} \cosh \left(m\pi a/2b \right) \right]_{m=1} \right]_{m=1} \\ \left. \left[A_{m} \cosh \left(m\pi a/2b \right) \right]_{m=1} \right]_{m=1} \\ \left. \left[A_{m} \cosh \left(m\pi a/2b \right) \right]_{m=1} \\ \left. \left[A_{m} \cosh \left(m\pi a/2b \right) \right]_{m=1} \right]_{m=1} \\ \left. \left[A_{m} \cosh \left(m\pi a/2b \right) \right]_{m=1} \\ \left. \left[A_{m} \cosh \left(m\pi a/2b \right) \right]_{m=1} \\ \left. \left[A_{m} \cosh \left(m\pi a/2b \right) \right]_{m=1} \\ \left. \left[A_{m} \cosh \left(m\pi a/2b \right) \right]_{m=1} \\ \left. \left[A_{m} \cosh \left(m\pi a/2b \right) \right]_{m=1} \\ \left. \left[A_{m} \cosh \left(m\pi a/2b \right) \right]_{m=1} \\ \left. \left[A_{m} \cosh \left(m\pi a/2b \right) \right]_{m=1} \\ \left. \left[A_{m} \cosh \left(m\pi a/2b \right) \right]_{m=1} \\ \left. \left[A_{m} \cosh \left(m\pi a/2b \right) \right]_{m=1} \\ \left. \left[A_{m} \cosh \left(m\pi a/2b \right) \right]_{m=1} \\ \left. \left[A_{m} \cosh \left(m\pi a/2b \right) \right]_{m=1} \\ \left. \left[A_{m} \cosh \left(m\pi a/2b \right) \right]_{m=1} \\ \left. \left[A_{m} \cosh \left(m\pi a/2b \right) \right]_{m=1} \\ \left. \left[A_{m} \cosh \left(m\pi a/2b \right) \right]_{m=1} \\ \left. \left[A_{m} \cosh \left(m\pi a/2b \right) \right]_{m=1} \\ \left. \left[A_{m} \cosh \left(m\pi a/2b \right) \right]_{m=1} \\ \left. \left[A_{m} \cosh \left(m\pi a/2b \right) \right]_{m=1} \\ \left. \left[A_{m} \cosh \left(m\pi a/2b \right) \right]_{m=1} \\ \left. \left[A_{m} \cosh \left(m\pi a/2b \right) \right]_{m=1} \\ \left. \left[A_{m} \cosh \left(m\pi a/2b \right) \right]_{m=1} \\ \left. \left[A_{m} \cosh \left(m\pi a/2b \right) \right]_{m=1} \\ \left. \left[A_{m} \cosh \left(m\pi a/2b \right) \right]_{m=1} \\ \left. \left[A_{m} \cosh \left(m\pi a/2b \right) \right]_{m=1} \\ \left. \left[A_{m} \cosh \left(m\pi a/2b \right) \right]_{m=1} \\ \left. \left[A_{m} \cosh \left(m\pi a/2b \right) \right]_{m=1} \\ \left. \left[A_{m} \cosh \left(m\pi a/2b \right) \right]_{m=1} \\ \left. \left[A_{m} \cosh \left(m\pi a/2b \right) \right]_{m=1} \\ \left. \left[A_{m} \cosh \left(m\pi a/2b \right) \right]_{m=1} \\ \left. \left[A_{m} \cosh \left(m\pi a/2b \right) \right]_{m=1} \\ \left. \left[A_{m} \cosh \left(m\pi a/2b \right) \right]_{m=1} \\ \left. \left[A_{m} \cosh \left(m\pi a/2b \right) \right]_{m=1} \\ \left. \left[A_{m} \cosh \left(m\pi a/2b \right) \right]_{m=1} \\ \left. \left[A_{m} \cosh \left(m\pi a/2b \right) \right]_{m=1} \\ \left. \left[A_{m} \cosh \left(m\pi a/2b \right) \right]_{m=1} \\ \left[A_{m} \cosh \left(m\pi a/2b \right) \right]_{m=1} \\ \left[A_{m} \cosh \left(m\pi a/2b$$

where

$$A_{m} = \frac{-2 \gamma \sin \delta b^{2}}{m^{3} \pi^{3}} [\cos(m\pi) - 1] . (15)$$

and

$$B_{m} = \frac{\frac{A_{m} \left[1 - \cosh\left(\frac{am\pi}{b}\right)\right]}{\sinh\left(\frac{am\pi}{b}\right)}$$

Babbit and Caldwell (1939), working with sludges in pipes in the laminar flow condition found that the sludges follow the "true plastic fluid" behavior and the velocity and viscosity of that fluid are given by:

$$w = \frac{4D}{\eta} (S_p - \frac{4}{3}S_y) \dots (16)$$

$$\mu = \frac{16 \text{ D S} + \eta}{3V} \qquad . . . (17)$$

where

D = diameter of pipe (feet)

- n = coefficient of rigidity (lbs sec/ft²)
- Sp = shearing stress in a flowing material at the boundary or pipe wall (lbs/ft²)
- Sy = shearing stress at the yield point of a plastic material, called yield value (lbs/ft²)
- µ = coefficient of viscosity (lbs - sec/ft²)

C

Summary

By applying Takahashi's model for his given volumetric debris flow rate and Manning's equation to an equal volumetric flow of water in the same cross-section and slope shows the depth of debris flow is four times greater than the depth of water flow. No comparison with the Johnson model was made due to the lack of data for his model. In summary, two models have been proposed to solve debris flow problems. One is the Bingham plastic model supported by American investigators. The

. .

- -

. .

- -

e -

, →

e -

• •

. .

•,-

د....

7 5

۰. ... ۲. ..

× ...

5 -5 -

r -

2 .

.

other is the dilatant model supported by Takahashi in Japan. Both provide solutions only for steady state conditions and have been verified in the laboratory in small models. Furthermore, both solutions depend upon empirical coefficients that have to be determined for each specific application.

. - • -. . --- - - -

**

CHAPTER III

DIFFERENTIAL EQUATION DESCRIBING

OPEN CHANNEL DEBRIS FLOW

Flow Regimes

For Newtonian, isotrophic and incompressible fluids like water, the Saint-Venant equations of motion and continuity, when combined with an equation defining friction losses, allow solution of unsteady open channel turbulent flows. Either the Chezy or the Manning equation may be used to estimate friction losses, but the latter is generally preferred in practice. If the flow is laminar, the Chezy equation is superior.

The kinds of debris flows of interest herein have Reynolds numbers up to 500. While quantitative data are not available for natural debris flows, description of them imply they "behave like a plastic or muddy substance," indicating that they are in the laminar range. The open channel flow equations and assumed laminar conditions will be the basis for the theory of debris flow that will be developed herein.

t t

ι.

÷ ...

ĩ.,

٤ _

Applicability of Saint-Venant Equations to Laminar Flow in Open Channel

To the present time, researchers have only applied the Saint-Venant equation to flows in open channels for which the Reynolds number is large and consequently the viscous forces are not as important as gravity forces. Such examles are given by Cunge and Wegner (1964), Strelkoff (1969, 1970), Amein and Fang (1970), Yevjevich (1975a), and Jeppson (1974). In open-channel flow, four kinds of regimes have been recognized by Rouse and Robertson (1941):

1. Tranquil-Laminar, Reynolds number < 500, Froude number < 1.

2. Rapid-Laminar, Reynolds number < 500, Froude number > 1.

3. Tranquil-Turbulent, Reynolds number > 500, Froude number < 1.

4. Rapid-Turbulent, Reynolds number > 500, Froude number > 1.

Rouse and Robertson (1941) state that laminar open channel flows can be found when rain water flows down a roof or sidewalk and also in hydraulic model testing and in the control of so-called sheet-flow erosion. We can add to this list the case of debris flow with high viscosity. Researchers who have applied the Saint-Venant equation to laminar flows include Chen (1975), Amisial (1969), Morgali (1970), Takahashi (1980).

From the original title of the Saint-Venant formulation, "theory of unsteady water flow, with application to river floods and to propagation of tides in river channels," Yevjevich (1975a) gives the impression that its applicability is more in the field of turbulent flow for relatively large Reynolds number rather than for laminar conditions. It is worthwhile to consider the commentaries of Yevjevich (1975a) in which he states that for an infinitely long wave, when the ratio of wave height h to the wave length L approaches zero, the flow is almost completely governed by channel friction. The equations of Saint-Venant can be used to describe the wave in this case.

The friction slope, S_f , in the Saint-Venant equations is expressed by the following in terms of the Chezy coefficient:

The Chezy coefficient C is a function of Reynolds number Re for the laminar and the transition flow cases. Only in the fully rough zone, C is independent of Reynolds number. Possibly, when Saint-Venant derived his formulas, he was thinking only of turbulent flow. However, the equations describe laminar flow as well. Rouse and Robertson (1941) say that Saint-Venant derived the Navier-Stokes equations in 1843, which is two years ahead of Stokes (1845), and these formulas are valid for either laminar or turbulent flow. But in 1871, 28 years later, he derived the equation that describes the gradually varied unsteady flow. In conclusion, there is no evidence to prevent applying the Saint-Venant equations to open channel laminar flows.

Saint-Venant Equations

The two Saint-Venant equations are based on conservation of mass (continuity) and Newton's second law (motion), respectively. In presenting these equations the following notation will be used:

 $q^* = \frac{dQ}{dx}$ (steady) is the lateral inflow rate (positive) in the direction of motion

Q, V, y are the dependent variables and x, t, the independent variables, so:

$$Q = f(x,t)$$

$$V = f(x,t)$$
$$u = f(x,t)$$

Applying mass conservation as shown in Figure 4,

$$[Q + q^{*} dx - (Q + \frac{\partial Q}{\partial x} dx)] dt = (\frac{\partial A}{\partial t} dt) dx$$

change in volume

change in area

 $[Q + q^* dx - Q - \frac{\partial Q}{\partial x} dx] dt = (\frac{\partial A}{\partial t} dt) dx$ dividing through by dtdx, and rearranging the terms gives,

Figure 4. Definition sketch for the equation of continuity.

An alternative form of the continuity Equation 19 replaces Q by V. Since Q = VA; A = f(x,y,t); Equation 19 becomes,

$$\frac{\partial (VA)}{\partial x} + \frac{\partial A}{\partial t} - q^* = 0$$

or

$$V\frac{\partial A}{\partial x} + A\frac{\partial V}{\partial x} + \frac{\partial A}{\partial t} - q^* = 0$$
. (20)

The term $\partial A / \partial x$ can be expanded as follows:

$$\frac{\partial A}{\partial x} = \frac{\partial A}{\partial y} \left. \frac{\partial y}{\partial x} \right|_{t} + \frac{\partial A}{\partial x} \right|_{y,t}$$
$$\frac{\partial A}{\partial t} = T \frac{\partial y}{\partial t} \text{ and } \frac{\partial A}{\partial y} = T;$$

so making replacement into Equation 20 gives,

. .

. .

, ···

i. ..

÷ -

50

r -

د ۲

i. .

ê ...

$$A\frac{\partial V}{\partial x} + VT \frac{\partial y}{\partial x} + V \frac{\partial A}{\partial x} \Big|_{y,t} - q^* = -T \frac{\partial y}{\partial t}$$

The continuity equation forms 19 and 21 are good for a channel with any crosssectional shape, including lateral inflow or outflow.

These equations can be simplified for the case when the section is rectangular by noting that Q = qB. Taking B =1, then Q = q, A = Y, $R \simeq y$, so Equation 19 becomes:

$$\frac{\partial q}{\partial x} + \frac{\partial y}{\partial t} - q^* = 0 \quad \dots \quad (22)$$

Now if we make the substitution in Equation 22, q = Vy; then:

$$v \frac{\partial y}{\partial x} + y \frac{\partial v}{\partial x} + \frac{\partial y}{\partial t} - q^* = 0$$
. (23)

Equation of Motion

Strelkoff (1969), gives a complete derivation of this equation and so does Jeppson (1980). Two alternate forms of this equation are used. The first considers the velocity and depth as the primary dependent variables. In this form, the equation of motion is

$$\frac{\nabla}{g}\frac{\partial \nabla}{\partial x} + \frac{\partial y}{\partial x} - S_{o} + S_{f} + F_{q} = -\frac{1}{g}\frac{\partial \nabla}{\partial t}$$

In the previous equations, F_q accounts for the momentum flux per unit mass for lateral inflow or outflow. Values of F_{q} , are:

$$F_q = 0$$
 (for bulk lat-
eral outflow)

$$F_{q} = \frac{Vq}{2gA}$$

Fq

(for seepage outflow since outflow is from bottom with zero velocity)

centroid of the

area)

е

$$= \frac{V-U}{gA}q^{*} + \frac{h_{c}}{A}\frac{\partial A}{\partial x} |$$
(for lateral
y,t inflow in which
 U_{q} is the velo-
city component
of the inflow
in the direc-
tion of the
flow, and h_c
is the depth
from the water
surface to the

t

1

The second form considers the depth y and the flow rate Q, instead of velocity V, as the primary dependent variables. The result is,

$$\frac{2Q}{gA^2}\frac{\partial Q}{\partial x} + (1 - F^2_r)\frac{\partial y}{\partial x} - \frac{Q^2}{gA^3}\frac{\partial A}{\partial x}\Big|_{y,t} +$$

$$S_f - S_o + F_q - \frac{Qq^*}{gA^2} + \frac{1}{gA} \frac{\partial Q}{\partial t} = 0$$
 (25)

For the case of a rectangular section of unit width, the equation becomes:

$$\frac{2q}{gy^2} \frac{\partial q}{\partial x} + (1 - F_r^2) \frac{\partial y}{\partial x} - \frac{q^2}{gy^3} \frac{\partial y}{\partial x} \Big|_{y,t}$$
$$+ S_f - S_o + F_q - \frac{Qq^*}{gy^2}$$
$$+ \frac{1}{gy} \frac{\partial Q}{\partial t} = 0$$

constant. Finally, the equation for rectangular channel becomes

$$\frac{2q}{gy^2} \frac{\partial q}{\partial x} + (1 - F_r^2) \frac{\partial y}{\partial x} + S_f - S_o$$
$$+ F_q - \frac{Qq}{gy^2} + \frac{1}{gy} \frac{\partial Q}{\partial t} = 0 ... (26)$$

The Saint-Venant equations (19 and 25) or (21 and 24) describe unsteady spatially varied flow in channels whose hydraulic and geometric properties vary with x, and these equations, with some modifications that will be introduced later, describe well the hydraulic characteristics of debris flow.

If the flow is steady, the continuity equation simplifies to an algebraic equation and the equation of motion to an ordinary differential equation since the derivatives with respect to t become equal to zero. Specifically Equation 19 becomes dQ = q*dx. Integrating

therefore $Q-Q_0 = q^* x$ so:

 $Q = Q_0 + q^* x \dots (27)$

The equation of motion for steady state simplifies by noting that Q and y are now only functions of x. Consequently the partial derivatives become total derivatives, and Equation 25 reduces to:

$$\frac{dy}{dx} = \frac{S_o - S_f + \frac{Q^2}{gA^3} \frac{\partial A}{\partial x}}{1 - F_r^2} \frac{Qq^*}{gA^2} - F_q}$$
(28)

The term $\frac{q^2}{gy^3} \xrightarrow{\partial y}{\partial x}$ becomes zero In Equation 28 $F_r^2 = \frac{Q^2 T}{gA^3}$. Also, because we evaluate $\frac{\partial y}{\partial x}$ holding y,t Equation 28 can be rearranged as:

$$S_{f} = S_{o} - (1 - F_{r}^{2}) \frac{dy}{dx} + \frac{Q^{2}}{gA^{3}} \frac{\partial A}{\partial x} \Big|_{y}$$
$$- \frac{Qq^{*}}{gA^{2}} - F_{q} \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots (29)$$

úniform

flow

gradually varied flow in non-prismatic

channels.

Spatially varied flow

Friction Slope Approach for Deriving the Equation of Motion for Open Channel Debris Flow

We intend here to derive the equation of motion for open channel debris flow and then compare the result with the equation obtained by Takahashi (1980) Equation 7.

Using Figure 5, assume, 1) no lateral inflow or outflow, and 2) the pressure distribution along OP is hydrostatic. (The latter equates the cosine of the angle of the channel slope to unity.¹)

¹Since debris flows often begin on relatively steep slopes, the validity of assumption 2 might be questioned. In consideration of the uncertainty of other flow parameters, as well as the desire to arrive at a simple practical means for solving debris flow, the authors justify this assumption.

Figure 5. Definition sketch for the equation of motion.

 $S_0 = -\frac{dz}{dx} = -\tan\phi$ = bed slope and $S_f = -\frac{dH}{dx} = energy slope.$

The slopes have been defined as positive when the surfaces are dropping in the downstream direction. From Figure 5, note that

$$-\gamma A\Delta h - \tau_0 P\Delta x$$
 = net force acting in
the flow direction, and

$$H = h + \frac{v^2}{2g}$$
 therefore

$$\frac{\partial H}{\partial x} = \frac{\partial h}{\partial x} + \frac{V}{g} \frac{\partial V}{\partial x} \dots (30)$$

C 2

Ŀ__

٤.J

h = z + ycos
$$\phi$$
 therefore
 $\frac{\partial H}{\partial x} = \frac{\partial}{\partial x} (z + y \cos \phi) + \frac{V}{g} \frac{\partial V}{\partial x}$

or

$$\frac{\partial H}{\partial x} = \frac{\partial z}{\partial x} + \cos\phi \frac{\partial y}{\partial x} + \frac{V}{g} \frac{\partial V}{\partial x} \quad \text{since}$$

$$\frac{\partial H}{\partial x} = -\sin\phi + \cos\phi \frac{\partial y}{\partial x} + \frac{V}{g} \frac{\partial V}{\partial x} . \quad (31)$$

since

$$a_{x} = \frac{dV}{dt} = V\frac{\partial V}{\partial x} + \frac{\partial V}{\partial t}$$

= total acceleration
on the x - direction

Applying Newton's second law,

$$\gamma A \Delta h - \tau_{o} P \Delta x = \rho A \Delta x \quad (V \frac{\partial V}{\partial x} + \frac{\partial V}{\partial t})$$

Rearranging with $R = \frac{A}{P}$ gives,

$$r_{o} = -\gamma R \left[\frac{\partial h}{\partial x} + \frac{V}{g} \frac{\partial V}{\partial x} + \frac{1}{g} \frac{\partial V}{\partial t} \right] \quad (32)$$

Substituting Equation 30 into Equation 32 results in,

$$\frac{\tau_{o}}{\gamma R} = -\left(\frac{\partial H}{\partial x} + \frac{1}{g}\frac{\partial V}{\partial t}\right)$$

 $z = z' \cos \phi$ therefore $\frac{\partial z}{\partial x} = \frac{\partial z'}{\partial x} \cos \phi =$ It is well known that: $S_f = \frac{\tau_o}{\gamma R} = \frac{V^2}{C^{2_p}}$, $-\tan \phi \cos \phi = \sin \phi$

15

so:

$$-\frac{v^2}{c^2v} = \frac{\partial H}{\partial x} + \frac{1}{g} \frac{\partial V}{\partial t}; \text{ therefore}$$

$$\frac{\partial H}{\partial x} + \frac{1}{g} \frac{\partial V}{\partial t} + \frac{V^2}{c^2 R} = 0 \cdot \cdot \cdot (33)$$

and this equation may be rewritten:

$$S_e + S_a + S_f = 0 \dots (34)$$

by naming the three terms of Equation 33, the energy slope, the acceleration slope, and the friction slope respectively. From Equation 33, we get:

$$\frac{\partial H}{\partial x} = -\frac{V^2}{c^2 R} - \frac{1}{g} \frac{\partial V}{\partial t} \dots (35)$$

Now equating Equations 31 and 35 gives:

$$-\frac{V^{2}}{C^{2}_{R}} - \frac{1}{g} \frac{\partial V}{\partial t}$$
$$= -\sin\phi + \cos\phi \frac{\partial y}{\partial x} + \frac{V}{g} \frac{\partial V}{\partial x}$$

or rearranging

$$\frac{1}{g}\frac{\partial V}{\partial t} + \frac{V}{g}\frac{\partial V}{\partial x} = \sin\phi - \cos\phi \quad \frac{\partial y}{\partial x} - \frac{V^2}{C^2 R}$$

For small bed angle $\sin\phi \simeq \tan\phi \simeq S_0$ and $\cos\phi \simeq 1$ and Equation 36 becomes

$$\frac{1}{g}\frac{\partial V}{\partial t} + \frac{V}{g}\frac{\partial V}{\partial x} = S_{o} - \frac{\partial y}{\partial x} - \frac{V^{2}}{C_{B}^{2}}.$$
 (37)

If we rearrange the previous equation and replace $\frac{V^2}{c^2 R} = S_f$, we get:

$$\frac{V}{g}\frac{\partial V}{\partial x} + \frac{\partial y}{\partial x} - S_{o} + S_{f} = -\frac{1}{g}\frac{\partial V}{\partial t} . \quad (38)$$

This equation is the same as Equation 24 obtained by Strelkoff except that the term F_q that accounts

for the momentum flux per unit mass for lateral inflow or outflow is not included.

It is very interesting to compare Equation 36 with that obtained by Takahashi (1980) for the debris flow motion. For this purpose multiply Equation 36 by the gravity term (g), $\frac{\partial V}{\partial t} + V \frac{\partial V}{\partial X} = gsin\phi - gcos\phi \quad \frac{\partial y}{\partial x} - \frac{g}{c^2} \quad \frac{V^2}{R}$

Then simplifying for a very wide rectangular section (R = y) gives

$$\frac{\partial V}{\partial t} + V \frac{\partial V}{\partial x} = gsin\phi - gcos\phi \frac{\partial y}{\partial x} - \frac{g}{c^2} \frac{V^2}{v}$$

Finally we get the Takahashi formula 7

$$if \frac{g}{C^2} = k$$

$$\frac{\partial V}{\partial t} + V \frac{\partial V}{\partial x} = gsin\phi - gcos\phi \frac{\partial y}{\partial x} - k \frac{V^2}{y}$$

The only difference is the notation V in place of U for velocity and ϕ in place of Θ for the slope angle.

: :

Some conclusions that can be deduced from the formulas derived above are:

1. The Saint-Venant equations of continuity and motion can be applied to describe the open channel debris flow if the Chezy coefficient C is properly defined.

2. The Takahashi resistance coefficient (k) is the same as g/C^2 with no dimension where (C) is the Chezy coefficient which is a function of Reynolds number, boundary roughness, and possibly also the shape of the cross section.

3. It is not known at this point how Chezy's coefficient behaves for debris flow.

Type Classification of the Saint-Venant Equation

The methods used to solve partial differential equations depend directly upon whether the equations are parabolic, elliptic, or hyperbolic. For determining the type of Saint-Venant equations, Equations 39 and 23 are rewritten below using a subscript to denote partial derivatives.

r -

. .

r ~

• •

. .

.

e ...

1 1

L ~

÷ .

r ~

L -

E -

ι.

For any pair first order partial differential equations of the form

$$a_1 f_x + b_1 f_y + c_1 g_x + d_1 g_y = e_1$$
. (42)

$$a_2 f_x + b_2 f_y + c_2 g_x + d_2 g_y = e_2$$
. (43)

where a₁, b₁, c₁, d₁, e₁, a₂, b₂, c₂, d₂, e₂ may be functions of x,y,f and g, the discriminant $(a_{1}d_{2} - a_{2}d_{1} + b_{1}c_{2} - b_{2}c_{1})^{2} - 4(a_{1}c_{2}-a_{2}c_{1})$ $(b_{1}d_{2}-b_{2}d_{1})$ allows us to classify what type of equations they are as follows:

<u>Sign of</u>	Type of equation			
discriminant				
Positive	hyperbolic equations			
Zero	parabolic equations			
Negative	elliptic equations			

For Equations 40 and 41,

$$a_{1} = V; b_{1} = 1; c_{1} = g\cos\phi;$$

$$d_{1} = 0; e_{1} = g\sin\phi - \frac{g}{c^{2}} \frac{V^{2}}{R}$$

$$a_{2} = y; b_{2} = 0; c_{2} = V;$$

$$d_{2} = 1; e_{2} = q^{*}$$

and therefore the discriminant becomes

$$(a_{1}d_{2} - a_{2}d_{1} + b_{1}c_{2} - b_{2}c_{1})^{2}$$

- 4(a_{1}c_{2} - a_{2}c_{1}) (b_{1}d_{2} - b_{2}d_{1}) =
(V x 1 - y x 0 + 1 x V - 0 x gcos \phi)^{2}
- 4(V x V - y x gcos \phi).

$$(1 x 1 - 0 x 0) = (V + V)^{2}$$
$$- 4(V^{2} - y g \cos \phi) x 1$$
$$= 4V^{2} - 4(V^{2} - y g \cos \phi)$$

For ϕ small, $\cos\phi \approx 1$ and the discriminant = 4 V² - 4 V² + 4 yg; so 4yg > 0. This positive value indicates the Saint-Venant equations are of the hyperbolic type. Other forms of the Saint-Venant equations have been classified by many researchers and their conclusions are that the equations are of the hyperbolic type.

22 -- ---

CHAPTER IV

MODEL FORMULATION

Background

Previous chapters justified application of the Saint-Venant equations to debris flows. The well known Chezy equation will be used to calculate the friction slope, S_f , in these equations.

While debris flows in nature are known to almost always be laminar, available data in the literature for quantifying depth and velocity is very limited. The few data available are given by Sharp and Nobles (1953), Pierson (1981), Babbit and Caldwell (1939), and Takahashi (1980). Those data from Sharp and Nobles seem most reasonable. We assume that the Chezy theory when modified slightly applies for open channel debris flow in the laminar regime. In order to justify this hypothesis, the available data will be fit by the Chezy equation below.

The Chezy Equation

The Chezy equation is:

$$V = C \sqrt{RS} \quad \dots \quad \dots \quad \dots \quad (44)$$

in which

. .

. .

h. ...

L. ..

- -

î.

~ ~

à. .

Γ.

÷ _

- V = average velocity in flow direction
- R = hydraulic radius
- S = bed slope, if we deal with
 steady nonuniform flow, then
 S is the friction slope (S_f)
- C = Chezy coefficient with dimensions of $L^{1/2}/T$

It is well known that Darcy's equation for pipe flow is equivalent to a special case of the Chezy equation, provided that:

in which

g = acceleration of gravity

f = friction factor

and for laminar flow in pipes,

$$f = \frac{64}{R_e}$$
 (46)

in which

 $R_e = Reynolds$ number

Combining Equations 45 and 46, gives:

$$C = \sqrt{g/8} R_e^{1/2} \dots \dots \dots (47)$$

For SI units with $g = 9.81 \text{ m/sec}^2$

and for ES units with

$$g = 32.2 \text{ ft/sec}^2$$
; $C = 2.006 \text{ R}_0^{1/2}$. (49)

In Chapters II and III, we found the resistance coefficient k can be written as $k = \frac{g}{c^2}$ Combining with Equation 8, and rearranging gives

$$C = \frac{2}{5} \frac{h_{\infty}}{d} \sqrt{\frac{g[C_d + (1-C_d) \frac{\rho}{\sigma}] [(\frac{C_*}{C_d})^{-1}]^2}{a_i \sin\alpha}}}_{(50)}$$

where

$$C_{d} = \frac{\rho_{m} \tan \Theta}{(\sigma - \rho_{m}) (\tan \alpha - \tan \Theta)}$$

provided its value is less than C*, the grain concentration in the stationary bed. Otherwise

in which

 $\rho_{m} = \text{density of the debris flow}$ mixture

 = bottom slope angle of debris flow as defined earlier

Takahashi (1980) gives the velocity distribution for two-dimensional debris flow in the fully inertial range as:

$$u = \frac{2}{3d} \left\{ \frac{g \sin \theta}{a_{i} \sin \alpha} \left[C_{d} + (1 - C_{d}) \frac{\rho_{m}}{\sigma} \right] \right\}$$

$$\left[\left(\frac{C_{\star}}{C_{d}} \right)^{1/3} - 1 \right] \left[h^{3/2} - (h - y)^{3/2} \right]$$

$$\left[\left(\frac{C_{\star}}{C_{d}} \right)^{1/3} - 1 \right] \left[h^{3/2} - (h - y)^{3/2} \right]$$

$$\left[\left(\frac{C_{\star}}{C_{d}} \right)^{1/3} - 1 \right] \left[h^{3/2} - (h - y)^{3/2} \right]$$

in which

u = velocity in x direction

h = depth of debris flow

At the surface, where y = h, Equation 52 becomes:

$$u = \frac{2}{3d} \left\{ \frac{g \sin}{a_{i}} \left[C_{d} + (1 - C_{d}) \frac{\rho_{m}}{\sigma} \right] \right\}^{1/2} \left[\left(\frac{C_{\star}}{c_{d}} \right)^{-1} - 1 \right] \cdot h^{3/2} \cdot \dots \cdot (53)$$

Steady Laminar Flow of Viscous Liquid with a Free Surface

Since debris flows are assumed to obey laws for laminar flow, it is well to review some of these principles and the associated equations. We start with a simplified form of the Navier-Stokes equations. Assume: 1) the fluid is isotrophic and Newtonian, 2) the fluid is incompressible (ρ = density = constant), 3) viscosity is constant (this condition is more nearly satisfied in gases than in liquids), 4) the flow is only in the x-direction, constant depth and steady, then

$$\frac{Du}{Dt} = -\frac{1}{\rho} \frac{\partial}{\partial x} (p + \gamma h') + \nu \nabla^2 u \quad (54)$$

or expanding

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} =$$

$$- \frac{1}{\rho} \left(\frac{\partial p}{\partial x} + \gamma \frac{\partial h}{\partial x} + h \frac{\partial \gamma}{\partial x} \right) + \nu \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right)$$

However, based on the above assumptions and Figure 6,

$$0 = -\frac{1}{\rho} \quad \gamma \frac{\partial h}{\partial x} + \nu \frac{\partial^2 u}{\partial y^2}$$

Therefore,

$$\gamma \frac{\partial \mathbf{h}}{\partial \mathbf{x}} = \rho v \frac{\partial^2 \mathbf{u}}{\partial \mathbf{y}^2} = \mu \frac{\partial^2 \mathbf{u}}{\partial \mathbf{y}^2}$$

but $\frac{\partial h'}{\partial x} = -\sin \theta$, making the previous

equation:

- 10

 $u = \frac{\gamma}{\mu} y(h - \frac{y}{2}) \sin \theta \cdot \cdot \cdot \cdot (55)$

If y = h we get the velocity at the surface.

$$u_{s} = \frac{\gamma}{2\mu} h^{2} \sin \theta \quad . \quad . \quad . \quad (56)$$

The rate of flow per unit width is obtained by integrating the velocity over the area or,

$$Q = \int_0^A u dA = \int_0^A u B dy = B \int_0^A u dy$$

or

$$q = \frac{Q}{B} = \int_0^A u dy$$

or

 $q = \int_0^h u dy = \int_0^h \left[\frac{\gamma}{\mu} y (h - \frac{y}{2}) \sin \theta \right] dy$

or

The average velocity and the depth below the free surface at which the point velocity is equal to the average velocity of the flow are obtained as follows:

$$A V = f_A u dA$$

h V =
$$\int_0^h u dy = \frac{1}{3} \frac{\gamma h^2}{\mu} \sin \theta$$

therefore

$$V = \frac{1}{3} \frac{\gamma h^2}{\mu} \sin \Theta \quad . \quad . \quad . \quad (58)$$

Now equating the average velocity to the point velocity, gives:

Figure 6. Definition sketch for laminar

 $-\gamma \sin \Theta = \mu \frac{\partial^2 u}{\partial v^2}$

 $\frac{\partial \mathbf{u}}{\partial \mathbf{y}} = -\frac{\gamma}{\mathbf{u}} \sin \Theta \mathbf{y} + \mathbf{C}_{1}$

By integration,

and

2.1

٢ ٦

÷ -

ι.

1.0

i. .

$$u = -\frac{\gamma}{2\mu} \sin \Theta y^2 + C_1 y + C_2$$

Applying the first boundary condition: y = h, $\frac{\partial u}{\partial y}$ = 0 gives

$$C_1 = \frac{\gamma}{\mu} \sin \Theta h$$

and then

$$u = -\frac{\gamma}{2\mu} \sin \theta y^2 + \frac{\gamma}{\mu} \sin \theta h y + C_2$$

Now applying the second boundary conditions, y = 0, u = 0, (this conditions means no slip) gives $C_2 = 0$; so:

$$\frac{1}{3} \frac{\gamma h^2}{\mu} \sin \theta = \frac{\gamma}{\mu} y (h - \frac{y}{2}) \sin \theta$$

Therefore, when y = 0.42 h or the depth below the surface = h - 0.42, h = 0.58h, the point velocity equals the average velocity.

The Reynolds number represents the ratio of inertia to viscous forces acting within the fluid. The Reynolds number is:

in which

- P is the wetted perimeter, and
- ν is the kinematic viscosity of the fluid.

Another expression for Equation 59, is the following

in which

 ρ = fluid density

 μ = fluid viscosity

If the channel is wide the term A/P can be replaced by the fluid depth. For debris flows R_e is almost always less than 500, indicating the flow is laminar.

The Froude number is the ratio of inertial to gravity forces acting on the fluid.

$$F_{r} = \frac{V}{\sqrt{gA/T}} = \frac{\sqrt{Q^{2}T}}{gA^{3}} \dots (61)$$

Evaluation of Chezy Coefficient

The best data available in the literature for debris flows is from Sharp and Nobles (1953). The following values are reported by them:

density = 2.4 gr/cm³
flow depth = 76.2 cms
average velocity = 120 to 300
cm/sec
bed slope = 6 degrees, therefore

$$S_0 = 0.105$$

viscosity = 2 to 6 x 10^3 poise = 2 to 6 x 10^2 Newton. sec/m²

Substituting this data into Equation 44 gives

$$C = \frac{1.20}{\sqrt{0.762 \times 0.105}} = 4.24$$

Using Equation 60,

$$R_{e} = \frac{1.20 \times 0.762 \times 2.4 \times 10^{3}}{2 \times 10^{2}} = 10.97$$

and from Equation 48,

$$C = 1.107 (10.97)^{1/2} = 3.67$$

The following data for debris flow are taken from Pierson (1981),

Froude number = 2.3 ; density = 2.08 gr/cm³

bed slope = 5 degrees, therefore $S_0 = 0.088$

Applying Equation 61,

. .

- -

۱. . .

- -

* -

نہ ک

- ---

٤.,

- -

k ...

r -

· 11

<u>6</u> -

$$2.3 = \frac{5}{\sqrt{9.81 \text{ n y}}}$$

therefore, y = 0.4817 m,

and from Equation 44,

$$C = \frac{5}{\sqrt{0.4817 \times 0.088}} = 24.35$$

From Equation 48,

$$C = 1.107 (500)^{1/2} = 24.75$$

and Equation 60 gives

$$\mu = \frac{5 \times 0.4817 \times 2.08 \times 10^3}{500}$$

= $10 \text{ N} \cdot \text{s/m}^2 = 10^2 \text{ poise.}$

From Takahashi (1980) Figure 3, we get the following information: For debris flow depth, h = 8 cm, velocity at surface $u_s = 100$ cm/sec. For debris flow depth, h = 7 cm, velocity at surface $u_s = 105$ cm/sec. Particles diameter, d = 5 mm, almost uniform.

 $a_i = 0.5$, run 1, $a_i = 0.35$, run 2. Slope bed, $\Theta = 18$ degrees, tan $18^\circ =$

0.32492, sin $18^{\circ} = 0.3090$.

Tan $\alpha = 0.6$, therefore $\alpha = 30.96^{\circ}$; sin $30.96^{\circ} = 0.5144$

Grain density, $\sigma = 2.65 \text{ gr/cm}^3$

Slurry density, $\rho_m = 1 \text{ gr/cm}^3$ (because the material contains essentially no clay component)

Grain concentration, $C_* = 0.7$

Substituting the above values into Equation 53 and solving for the grain concentration by volume in debris flow, C_d , gives the following values of C_d .

For: h = 0.08 m, u = 1.0 m/sec, $a_i = 0.50$ we get: $C_d = 0.494$.

For: h = 0.07 m, u = 1.05 m/sec, $a_i = 0.35$ we get: $C_d = 0.483$.

Now applying Equation 50, in order to obtain the Chezy coefficient for the two previous cases:

$$C = \frac{0.4 \times 0.08}{0.005} \left[\left(\frac{0.7}{0.494} \right)^{1/3} -1 \right]$$

$$\frac{9.81 \left[0.494 + (1-0.494) \frac{1.00}{2.65} \right]}{0.5 \times 0.5144} = 4.03$$

$$C = \frac{0.4 \times 0.07}{0.005} \left[\left(\frac{0.7}{0.483} \right)^{1/3} - 1 \right]$$

$$\sqrt{\frac{9.81 \left[0.483 + (1 - 0.493) \frac{1.00}{2.65} \right]}{0.35 \times 0.5144}} = 4.48$$

We can also obtain the Chezy coefficient from Equation 44, as follows:

First set of data:

$$R = \frac{A}{P} = \frac{8 \times 20}{20 + 16} = 4.44 \text{ cms} = 0.044 \text{ m}$$

by Equation 44,

$$C = \frac{1.00}{\sqrt{0.044 \times 0.32492}} = 8.36$$

Second set of data:

$$R = \frac{A}{P} = \frac{7 \times 20}{20 + 14} = 4.1176 \text{ cms} = 0.041176 \text{ m}$$

by Equation 44,

$$C = \frac{1.05}{\sqrt{0.041176 \times 0.32402}} = 9.08$$

There are many uncertainties involved in estimating the terms a_i and $tan \alpha$. Bagnold (1954) found values of $a_i = 0.042$ and $tan \alpha = 0.32$ for the inertia range, and $tan \alpha = 0.75$ for the viscous region without having found value of
ai for the viscous region. Takahashi (1978), assumed $a_i = 0.042$ for $C_d \leq 0.81 C_*$ and:

$$a_{i} = \left\{ \frac{1}{[C_{*}/C_{d}]^{1/3} - 1]} - 14 \right\} \times 0.066$$

+ 0.042 for $C_{d} \ge 0.81 C_{*}$

Takahashi (1980), in order to explain the velocities measured in the laboratory, adopted values of $a_i = 0.5$ and $a_i = 0.35$ without giving an explanation. He concluded that "to determine the exact value of a_i and α , however, stricter experiments are necessary." At this point in time it is very complicated to measure parameters like C* and Cd; therefore, a simpler alternative for estimating k is needed.

Suppose smaller values of ai are accepted as more correct in light of Bagnold's work, the fact that $a_i =$ 0.042 for the inertia range, and the other evidence just given, such as ai = 0.1 instead of Takahashi (1980) a; = 0.5 and $a_i = 0.07$ instead of $a_i =$ 0.35. Then the computed value of Chezy coefficients from Takahashi (1980) data become 9.0 and 10.0 instead of 4.03 and 4.48 as given above. In order to estimate the Chezy C from the Reynolds number using Equations 48, 56, and 60, the bulk density and viscosity are Takahashi (1978, 1980) didn't needed. give these values. For bulk density, $\rho_{m},$ Pierson (1981) gives 1.73 and 2.08 gr/cm³, Sharp and Nobles give 2.4 gr/cm³ respectively. An assumed bulk density equal to 2.0 gr/cm³ seems reasonable. Taking Takahashi (1980) first set of data ($\theta = 18^\circ$, u = 100cm/sec, h = 8 cm) and substituting into Equation 56 gives,

$$\mu = \frac{2 \times 10^3 \times 0.3090 \times (0.08)^2 \times 9.81}{2 \times 1.0} =$$
19.4 N.s/m² = 194 poise.

and Equation 60 gives

$$R_e = \frac{1.0 \times 0.08 \times 2 \times 10^3}{19.4} = 8.25$$

and Equation 48 gives

$$C = 1.107 (8.25)^{1/2} = 3.18$$

Based on Takahashi (1980) second set of data, Equation 56 gives

$$\mu = \frac{2 \times 10^3 \times 0.309017 \times (0.07)^2 \times 9.81}{2 \times 1.05} =$$
14.15 N.s/m² = 141.5 poise.

and Equation 60 gives

$$R_{e} = \frac{1.05 \times 0.07 \times 2 \times 10^{3}}{14.15} = 10.39$$

and finally Equation 48 gives,

$$C = 1.107 (10.39)^{1/2} = 3.57.$$

Table 2 summarizes the Chezy coefficients obtained.

Babbit and Caldwell

Babbit and Caldwell (1939) obtained data from sludge flows in pipes and showed that sludges exhibit some characteristics, such as yield shearing stress and coefficient of rigidity that are very similar to some debris flows. Table 3 contains a summary of Chezy coefficient computed using Equations 12, 48, and 60, as well as other important parameters obtained from Babbit and Caldwell's sludge flow data.

Least	: Square	Fit	to	Obt	ain
the	Best Re	latio	onsh	ip	for
the	Chezy C	oeffi	icie	ents	C

The Chezy coefficients from Tables 2 and 3 are plotted against the Reynolds numbers on log-log paper in Figure 7.

Set of data came from		Chezy Coefficier	Rey. No.	Ave. Val.	Slope of	Visc.	Hyd. Radius	
	$C = \frac{V}{\sqrt{RS}}$	C=1.107 R _e ^{1/2}	C from Equation 50	Re	V (m/s)	Bot. S degrees	μ (poise)	R (m)
Sharp and Nobles (1953)	4.24	3.65	-	10.97	1.20	6	2000	0.762
Pierson (1981)	24.35	24.75	-	500	5.00	5	100	0.4817
Takahashi (1980)	8.36	3.18 to 9.96	4.03 ^{to} 9.00 ¹	8.25 to 80.93 ²	1.00	18	194	0.044
Takahashi (1980	9.08	3.57 to 11.18	4.48 ^{to} 1 10.00 ¹	10.39 to 102.08 ²	1.05	18	141	0.041

Table 2.	Chezy	coefficient	calculated	from	Sharp,	Pierson	and	Takahashi	data
	(open	channel debr	is flow).						

1. Value resulting from a slight modification of a coefficients.

2. Values assumed by comparison with the data given by Babbit.

- v

. ..

. . _ , ~

. . r 5

ĩ. , -

r -

r -

L. ...

ر م ŭ ...

r -

*****----

e ...

έ.

- -

۱. .. e ~

د ۱۰

ر ---1 L

r -

٤., v ~

د. ما r ~

1. ..

£ =

. . .

Table 3. Chezy coefficients computed from Babbit and Caldwell data (pipe sludge flow).

.

			445			·	•	·
Sludge type	Specific gravity	S y lbs/ft ²	Velocity (ft/sec)	Pipe diameter (inches)	n 1b-sec/ft ²	µ 1bs-sec/ft ²	Re	С
Illinois yel-			1					······
low clay	1.49	0.72	16.5 ¹	1	0.028	0.047	84.56	10.17
#3 Indianapolis	5							
Ind.digested	1.032	0.405	27.00 ¹	3/8	0.032	0.0345	48.96	7.75
Exp.Sta.Plant								
Primary	0.991	0.090	21.00	3/8	0.019	0.01971	64.01	8,86
Illinois yel-								
low clay	1.49	0.72	1.20	1	0.028	0.255	1.228	1.226
Exp.Sta.Plant								
Primary	0.991	0.090	1.80	3/8	0.019	0.02689	4.24	2.28
#4 Indianapolis	5							
Ind.digested	1.023	0.243	5.00	3/8	0.029	0.0371	8.36	3.20
#8 Springfield	1 00/	0.015	10.00	a / a	0.000	0.001	~~	
111.digested	1.026	0.315	13.00	3/8	0.030	0.034	23.78	5.40
#8 Springfield	1 000	0.015	20.00	o / o	0.000	0.0000	20.14	6 00
#6 Decetur T11	1.020	0,315	20.00	3/0	0.030	0.0320	30.10	0.83
digostad	1 068	0 5 8 1	3 00	2/0	0.040	0.0648	61 11	0 4 5
Illinoic vol-	1.000	0,301			0.040	0,0040	01.11	0.05
low clay	1.49	0.72	2 30	1	0.028	0.167	3 317	2 02
Illipois vel-		~,,-						2.02
low clay	1.49	0.72	3,50	1	0.028	0.1194	7.06	2.94
#20 Decatur.Ill				-	- / 7 - 7			
Sewage.Imhoff	1.06	0.115	6.5 ¹	3	0.0163	0.03988	83.77	10.13
			·······					

1. This refers to the critical velocity, other velocities were obtained from Figure 1, Babbit (1939).

Figure 7. Chezy coefficients vs. Reynold's number.

Fitting a line through these data by the least square method gives the following results for SI units using Figure 7.

$$C = 1.02 R_e^{0.52} \dots (62)$$

In English units this relationship is,

$$C = 1.85 R_e^{0.52} \dots (63)$$

Friction Factor f

Having found the relationships between the Chezy coefficient and Reynolds number for debris flow, the friction factor can be solved by equating Equations 45 and 62, obtaining:

$$f = \frac{75.43}{R_0^{1.03}} \cdot (64)$$

The results are shown in Table 4 and Figure 8.

	TIOM TUDICO 2 UNO 3.		
Re	$f = \frac{75.43}{1.0332}$	$C = 1.02 R_e^{0.52}$	$C = 1.85 R_{e}^{0.52}$
	R	(SI)	(ES)
10.97	6.35	3.52	6.37
500	0 123	25 20	45.82
200	0.905	0.97	17 88
102 08	0.605	9.07	20.16
102.00	0.034	11.15	19 20
04.50	0.709	10.10	10.29
40.90	1.334	/.01	15 0/
04.01	1.026	8./4	10,04
1.228	61.008	1.13	2.00
4.24	16.957	2.15	5.90
8.36	8.408	3.06	5.54
23.78	2.855	5.24	9.50
38.16	1.751	6.69	12.13
61.11	1.077	8.54	15.47
3.317	21.850	1.90	3.43
7.06	10.013	2.80	5.07
83.77	0.771	9.99	18.10
	Eriction factor (f)	$f = \frac{75.43}{\text{Re}^{1.0332}}$	
	R	$e = \frac{v_1 a_1 v_1}{u}$, or $\frac{v_2 b_1}{u}$	
Figure 8.	Friction factor vs. Reyr	nold's number.	

Table 4. Some friction factors and Chezy coefficients calculations, selected from Tables 2 and 3.

. .

، م

× -× -

- --

· · · ·

ь – , –

. .

i. ...

- - -

r >

- -

ж...

i _

r -

ن ا

1.5

- ----

- - -

ъ. 2

- ----

Relatio	nsh:	ip Be	etwee	en	the	Flui	d
Density	(ρ)	and	Its	٧i	iscos	ity	(μ)

The relationship between the density and viscosity of the debris flow is important because it determines the Reynolds number and consequently the flow properties. We hypothesize that both vary as a function of such flow characteristics as depth and velocity. The density depends on how much material is picked up and how much is deposited by the flow. The viscosity varies with the relationship between the shear stress and the shear strain and particularly with the time and spatial patterns of particle collisions. For uniform flow of a Newtonian fluid with a free surface down an inclined plane, the fluid velocity is a direct function of ρ/μ , the square of the fluid depth, and the plane slope. For debris flow under the same circumstances, the ratio ρ/μ is At present, no solution not constant. for how ρ/μ varies has been verified or proposed. Two possibilities look attractive for deriving this needed relationship. One is through experimentation, and the other is through derivation of an empirical equation from the limited available data.

We propose for debris flows, in the laminar range, the following equation:

in which

- ρ = debris flow bulk density
- μ = fluid viscosity
- v =kinematic viscosity
- k = constant
- R = hydraulic radius
- a = an exponent greater than zero. If the value of a is taken as 1, Equation 65 becomes

and ρ/μ varies linearly and inversely with the hydraulic radius.

The following are rationalizations assuming ρ/μ varies only with the hydraulic radius R.

1. The wetted perimeter (the surface along which the boundary shear occurs) plays an important role in determining how the particles in a debris flow arrange themselves. The hydraulic radius is the ratio of the area of the flow to the wetted perimeter or R = A/P.

2. For a given flowrate, when the hydraulic radius increases, ρ/μ decreases. If ρ remains constant, then μ must increase. Evidence for these relationships is found in the description of debris flow. For example debris flow typically have a larger depth at the wave front than at upstream position, and have been observed to suddenly stop without water leaving the mixture. Based on the available data, there is little justification to assume a non-linear relationship.

Thus accepting Equation 66 only the constant k needs evaluation from available data. For open channel debris flow, the Sharp and Nobles (1953) data were taken as the most dependable. A computer program, described more in Chapter V, was run several times changing the k value until the computed values for fluid depth, velocity, etc., fit their data well.

A value of k = 3 results for ES units. Since the dimensions of k are T/L, $k = 3/0.3048 \approx 10$, for use with SI units. Consequently the relationship proposed is,

$$\rho/\mu = \frac{3}{R}$$
 (ES) (67)

$$\rho/\mu = \frac{10}{R}$$
 (SI) (68)

Equations Defining Debris Flow

In order to solve for the critical slope, and normal depth of debris flows in the laminar range, the Saint-Venant equations can be applied as Equations 63 and 67. Beginning from the Chezy equation,

. ..

r ~

¢ د

г **г**

h. -

6 -

۱. ...

2 ت

г-. Е.,

For estimating C^2 , use Equation 67 or 68 for obtaining the Reynolds number and then Equation 62 or 63 gives,

$$R_{e} = V(A/P)\rho/\mu = VR \times 3/R = 3V.$$
 (70)

$$c^{2} = [1.85 R_{e}^{0.52}]^{2} = 3.42 (3V)^{1.03}$$

= 10.65V^{1.03} = 10.65 ($\frac{Q}{A}$)^{1.03}. (71)

Substituting Equation 71 into 69 gives the following implicit equation for the depth of flow:

$$Q^{2}P - 10.65 A^{1.97} Q^{1.03} S = 0 = F(y)$$

The Newton method, $y^{(m+1)} = y^{(m)} - \frac{F(y^{(m)})}{\frac{dF(y^{(m)})}{dy}}$, will be used to solve Equation

72. The needed derivative is

If the cross section is trapezoidal, then:

$$\frac{dP}{dy} = 2 \sqrt{m^2 + 1} \dots (74)$$

$$\frac{\mathrm{d}x}{\mathrm{d}y} = \mathbf{B} + 2\mathbf{m}y \qquad \cdots \qquad (75)$$

in which

m = side slope channel

B = bed width of the trapezoidal
 channel

In conclusion, a pausible equation has been proposed for defining how the Chezy coefficient varies with the ratio ρ/μ . This relationship, together with the Chezy and Saint-Venant equations allows us to solve open channel debris flows. Equation 72 gives the steadystate depth for debris flows. When used in conjunction with Equation 28 (an ordinary differential equation) the gradually varied flow depths are computed. e . z 7 د...: ~ 5 -- -, . . . - ------- -~ ~ ~ - -

,

CHAPTER V

THE DEBRIS FLOW COMPUTER MODEL

Generalities

The theoretical and empirical relationships developed in Chapter IV have been implemented in a computer program that provides a solution to steady but varied debris flow. Much of the methodology used by Jeppson (1974) in his program for steady and unsteady water inflows in channels was used. The computer program is listed in Appendix A, and examples showing and explaining the input data and output are presented in Chapter VI and Appendices B, C, D, and E.

The original computer program is documented by Jeppson (1974). Therefore, the description provided here will include only the changes made to the original program to handle debris flows. An explanation of the input variables will go along with the program listing in Appendix A.

The computer program is applicable only for debris flows with Reynolds number less than 500. No attempt was made to provide for the turbulent condition because debris flows in nature are thought to be almost always laminar. The program uses FORTRAN-77 and has been run on a VAX 11/780 computer. The program has been designed for use primarily from a time shared terminal instead of batch.

<

L.

٤...

· ເ.

i.

ς....

The computer program was written and modified under the assumption that at selected sections along the channel or stream the geometric and hydraulic properties can be obtained. Consequently as input, the program requires the upstream or downstream flow rate,

as well as the following information at each of several designated sections: 1) the geometry, 2) the slope, S, of the channel bottom, and 3) flow accretions or losses between these sections. The variables at sections along the channel will be denoted by a subscript i = 1, 2,Two options are available to . . . n. specify the geometry at each section. The first assumes a trapezoidal shape (of which rectangular and triangular are special cases), and the second allows for any arbitrary section. Use of the trapezoidal shape is generally easier, requiring only that the following be given at each section (as defined in Figure 9a): 1) the bottom width b_i and 2) the slope of the channel side If the general option is to be m;. used, it is necessary to give the following at each section for a number of specified depths, denoted by a j subscript, at the section (Figure 9b): 1) the cross-sectional area A_{ii} , 2) the wetted perimeter Pij, and 3) the top width, T_{ij}.

Additional input specifies the total length of channel, and the number of sections into which this length is divided for flow computations. When the flow computations require data at sections where no input data are given, often the situation, then the data for three consecutive input sections are fit by a second degree polynominal by means of the Lagrange formula, and intermediate values are interpolated, or extrapolated to the ends if necessary.

The computer solution provides the following information at each section into which the channel length is divided. (Some of these 13 items are

Figure 9a. Trapezoidal channel section.

$$A_{i} = (b_{i} + m_{i}y) y_{i} \quad T_{i} = b_{i} + 2m_{i}y_{i}$$
$$P_{i} = b_{i} + 2y_{i} \sqrt{m_{i}^{2} + 1}$$

Figure 9b. Arbitrary channel section.

computed by interpolation from the input data, and some are computed by numerically solving the differential equations describing open channel debris flow.)

1. The distance or x-coordinate to each station.

2. The discharges at these stations.

3. The geometries of the channel. (If trapezoidal section is specified, these data include the bottom width and the slope of the channel side. If an arbitrary section is specified, these data include the area, wetted perimeter and the top width for several depth increments.)

4. The slopes of the channel bottom.

5. The critical depths.

6. The critical slopes.

7. The normal depths.

8. Velocities and areas corresponding to critical depths.

9. Reynolds numbers corresponding to critical and normal depths.

10. Chezy coefficients corresponding to critical and normal depths.

11. The varied flow depths from the specified boundary conditions.

12. The areas and velocities corresponding to the depths of #11.

13. The Reynolds numbers corresponding to the depths of #11.

Item #11 is the solution being sought; the other items are supporting data.

The original computer program was made up of a main program named MAIN, five subroutines name NAMELI, AREAP, VARIED, TRANST, and BAND and one subprogram FUNCTION. In this research we are concerned only with those related to the steady state, specifically: MAIN. NAMELI, AREAP, VARIED, and FUNCTION. The subroutine NAMELI was designed to replace the NAMELIST OF FORTRAN implemented by many vendors, but not by VAX or an extension of the 77 ANSI standards. The AREAP subroutine is used when quadratic interpolation is required. The VARIED subroutine and the subprogram FUNCTION calculate the steady gradually varied flow given by

the first order ordinary differential Equation 28.

- -

r -

τ. 5

- -

њ. ...

۳ ٦

е.

£ *

٤...

Ŀ.

<u>.</u> -

έ...

Modifications Made to Original Program

The changes that had to be made to the original program to handle debris flow are of two types: 1) general, and 2) particular, concerning each variable calculation.

The program had to be converted from using Manning's equation to Chezy's equation to handle the laminar debris flows. This required that in the COMMON block, the singles arrays FNI(10) and FN(40) refer to the Manning coefficients for each input and output station, were replaced by arrays REY(40) and CH(40) for Reynolds numbers and Chezy coefficients for each station. All the FORTRAN statements related to Manning equation were replaced by comparable statements based on Chezy's equation.

Particular Changes

Particular changes were needed to compute critical depth and critical slope. The computation of critical depth is determined from the implicit equation obtained by equating the Froude number, Equation 61 to unity which results in

$$F(y_c) = Q^2 T(y_c) - g A^3(y_c) = 0$$
 . (76)

in which y_c is the critical depth. Equation 76 is solved by the Newton iterative formula,

$$y_{c}^{(m+1)} = y_{c}^{(m)} - \frac{F^{(m)}(y_{c})}{\frac{dF^{(m)}}{dy_{c}}}$$
 (77)

in which the superscript (m) denotes the iteration number and the derivative is,

$$\frac{\mathrm{dF}}{\mathrm{dy}_{\mathrm{C}}} = \mathrm{Q}^2 \frac{\mathrm{dT}}{\mathrm{dy}_{\mathrm{C}}} - 3 \mathrm{g} \mathrm{A}^2 \frac{\mathrm{dA}}{\mathrm{dy}_{\mathrm{C}}} \quad . \quad (78)$$

for a trapezoidal cross section:

$$T_c = b + 2my_c$$
 therefore $\frac{dT_c}{dy_c} = 2m$

and

$$A = by_c + my_c^2$$

therefore
$$\frac{dA}{dy_c} = b + 2my_c$$

The computation of the critical slope utilizes Equation 69. The computational procedure is outlined in Figure 10.

For the calculation of normal depths, several changes were made to the original program as follows:

1. Equation 72 was solved by Newton method for the normal depth (y_0) . The function given by Equation 72 behaves erratically for some slopes so that unless the initial guess is very close to the solution, convergence will not occur. In order to overcome this difficulty, an equation was devised as follows: Starting from Equation 72, we have:

$$Q^2p - 10.65A^{1.97} Q^{1.03} S_0 = 0$$
 (for
uniform flow S = S₀)

Making the following approximations

$$A1.97 \simeq A2$$

 $A^{1.03} \simeq Q$

and making the constant 10.65 equal to 10, in order to work with even numbers, then we get:

$$\frac{A^2}{p} = \frac{Q}{10S_0}$$
, $\frac{A}{p}$. $A = \frac{Q}{10S_0}$

Figure 10. Flow chart for the critical slope computation.

therefore

$$R A = \frac{Q}{10S_{o}}$$

 $R \simeq y_0$ for a wide rectangular channel and the area A is given by By_0 where B is the bottom width, so that

$$y_0^2 B = \frac{Q}{10S_0}$$
, therefore $y_0 \approx \sqrt{\frac{Q}{10S_0B}}$

Equation 79 is used to provide the first guess for the normal depth computation by the Newton method. A simplified flow chart (see Figure 11) shows the way that this part of the program has been implemented.

Steady Gradually Varied Flow

This kind of flow is represented by the Saint-Venant equations of motion 28 and continuity 27. Since the area is a nonlinear function of y in general, and Q, q^* and S_0 may be arbitrary functions of x, no closed form solution for Equation 28 can be obtained. Its solution therefore must be achieved by numerical methods. The Euler method will be used here to solve for the gradually varied flow profile.

Euler Method

The Euler method is a self-starting predictor-corrector technique. The first prediction (the first approximation at step Δx beyond where the dependent variable y is known) to y_{i+1} is given by,

$$y_{i+1} = y_i + \Delta x \frac{dy}{dx} \dots \dots (80)$$

Subsequent predictions may be based on a second order difference equation,

$$y_{i+1} = y_{i-1} + 2\Delta x (\frac{dy}{dx})_i$$
 . (81)

After the prediction is completed, the value y_{i+1} is corrected by the trapezoidal formula:

$$y_{i+1} = y_i + \frac{\Delta x}{2} \left[\left(\frac{dy}{dx} \right)_{i+1} + \left(\frac{dy}{dx} \right)_i \right]$$
(82)

Equation 82 is iteratively applied until the change between consecutive iterations becomes less than a selected

Figure 11. Flow chart for the normal depth computations.

. .

5 -

. .

× -

۹. .

small quantity. In Equations 80 through 82, the value of dy/dx is determined from Equation 28 with x and y evaluated at the section indicated by the subscripts.

The Euler method remains the same in both the original program and the implemented one. The changes introduced are:

1. In the subprogram FUNCTION, the calculation of dy/dx by Equation 28 was modified by 1) insertion of Equation 71 in order to compute the Chezy coefficient square and 2) the replacement of the equation that computes the friction slope (Sf) by Equation 69.

2. In the subroutine VARIED, a statement was inserted to calculate the Reynolds number at each station. Open channel debris flows are always subcritical (Pierson 1981 and Dawdy 1979); therefore the computer program has capability only to compute profiles type M1, M2 and M3.

Computer Program for Solving the Function (F) Given by Equation 72

This small computer program was written to solve for the terms Q^2P and 10.65Al.97 Ql.03 S. A program listing is shown in Appendix A, and a flow chart in Figure 12. This program allows: 1) a better understanding of the behavior of Equation 72, and 2) a way to obtain a solution for the steady state normal depth (Y₀). Examples will be shown in Chapter VI.

The input data for this program are the following:

- 1. The flow rate in ft^3/sec (Q)
- The channel bottom width in feet (B)
- 3. The channel slope (SO)
- 4. The channel side slope (FM)

Figure 12. Flow chart for solving Equation 72.

r٦

د م ب م

• --

L ...

Γ^β L

*(*r − -)

÷----

ų

ц.,

k. ...

1) 20

1. I 1. I

2.5

c 2

-

. ~

The output gives us:

1. Depth (YO)

2. Wetted perimeter (PM)

3. Area (AR)

- 4. The term Q^2P called in the FORTRAN program Q2TPM
- 5. The term 10.65A^{1.97} Q^{1.03} S, called in the FORTRAN program SET

_ _

-

CHAPTER VI

APPLICATION OF THE COMPUTER MODEL

The purpose of this chapter is to apply the equations and methods described in the previous three chapters to typical debris flows. The validity of a mathematical approach can be determined by comparing the results from the solution with available data. Unfortunately, available field data are fragmentary; and furthermore, the collection of new field data is not feasible for this project. Consequently, much of this comparison must be qualitative.

- -

r ¬

× ~

r -

1

1

- -

r ~

ι.

e -

1_____

× ~

ĩ. ...

r -

: -

~ ~

ت. 14

r ••

5. J

a 'r

<u>ب</u>

g ---

, 5

. -

The approach used in this chapter will be to obtain solutions for examples of possible debris flows. Utilization of the computer model requires data in the order listed below.

1. The number of sections for which channel geometry data will be given (NSI).

2. The number of sections for which solution results will be computed and printed (NSO).

3. Flow rate at the upstream end (00).

4. x distance for section 1 (XBEG).

5. x distance for the last section (XEND).

6. Depth of flow at section where the gradually varied profile solution begins (YSTART).

7. Output station number where gradually varied flow is to begin.

8. x distance for the NSI input sections.

9. Bottom slopes for the NSI input sections.

10. Lateral inflow, if there is any, for the NSI input sections.

11. Bottom width and side slopes for the NSI input sections.

12. The file name onto which the output should be written.

Relationship between Debris Flow Depth and Water Flow Depth

Damage by debris flows is related directly to the depths of such flows. Debris flows develop depths greater than Two reasons are: water flows. 1) debris flow contains both the water that must be transported from the area (which is usually considerably more than the volumetric flow rate that the stream transported before the debris flows occurred from high intensity rainfall and other flood conditions), and the debris it transports, and 2) the hydraulics of transporting debris flow requires depths in excess of those required to transport an equivalent volumetric flow rate of water. Flow rates can be computed from the hydrology of the event and debris movement by knowing the fraction of solids in the fluid mixture. The hydraulics of debris flow versus the hydraulics of water flow are presented in this section. For comparing debris flow depths versus water flow depths to transport the same volumetric flow rate, the debris flow

equations of Chapter IV will be assumed to represent the hydraulics of debris flows.

The Manning formula for water flowing in a wide rectangular channel in ES unit simplifies to:

$$\frac{Q}{B} = q = 1.49 \frac{y_o^{5/3} s_o^{1/2}}{n} \dots (83)$$

or

$$y_{0} = \left(\frac{nq}{1.49 \text{ s}}\right)^{3/5}$$
 . . . (84)

in which

 y_0 = normal depth in feet

 $s_0 = bed slope$

n = Manning coefficient

For an open channel debris flow, starting from Equation 72

$$Q^{2}P - 10.65 A^{1.97} Q^{1.03} S_{0} = 0$$

If the channel is rectangular and wide then the wetted perimeter, P, can be approximated by the bed width, B. Under these circumstances Equation 72 becomes:

 $Q^{2}B - 10.65 (By_{d})^{1.97} Q^{1.03} S_{0} = 0$

Therefore

$$y_{d}^{1.97} = \frac{Q^{0.97}}{10.65 B^{0.97} S_{o}}$$
$$y_{d} = \left(\frac{Q^{0.97}}{10.65 B^{0.97} S_{o}}\right)^{0.51}$$

but Q = qB. Therefore Equation 85
becomes:

$$y_{d} = \left(\frac{q^{0.97}}{10.65 \text{ s}}\right)^{0.51} \dots \dots (86)$$

in which

Combining Equations 84 and 86, we get:

$$\frac{y_d}{y_o} = \frac{0.38}{s_o^{0.2084} n^{0.6} q^{0.1085}} .$$
 (87)

In Figure 13, for a Manning coefficient of n = 0.035, the solution to Equation 87 is plotted against bed slope for several unit flow rates. Figure 13 shows the importance of the slope process. Figure 13 and Equation 87 represent an analytical approach to the depth ratio. Later this ratio will be given for specific cases for which gradually varied flows will be involved.

It is worthwhile to note some results from Figure 13. For a relatively small flow rate per unit width such as 2 cfs/ft the debris flow depth will be more than 16 times the water flow depth if the slope is as mild as 0.0001. As the slope becomes as large as 10 percent (0.1) this ratio decreases to about 4.0. As the flow rate per unit width increases the ratio decreases modestly, but not near as much as it decreases as the slope increases. The substantial increases of the ratio of debris flow depth to water flow depth for the same volumetric flow rate explains in part why debris flows have been observed to stop flowing, leaving an abrupt waveshaped form on the landscape. As the depths increase as the slope of the land decreases, the velocity of the flow decreases until the flow comes to rest.

- ---

Illustrative Examples

Four examples were chosen to demonstrate how the computer program

Figure 13. Debris flow depth/water flow depth vs. bed slope for n = .035 and variable unit flow rate.

The first example is based on performs. hypothetical data believed to represent a typical debris flow in Utah. The second is the typical debris flow described by Sharp and Nobles (1953), with a hypothetical downstream control. The third is a hypothetical example taken from the report by Jeppson (1974) for a water flow in a stream with rapidly varying cross sections. The fourth repeats the first example with a dramatic increase in the bed width which is likely to occur as the debris flow spreads laterally. This last example is also solved for the case of adverse slope. In all examples, comparison is made to equivalent water flows.

Example 1

i ...

÷ .

1

A debris flow of 100 cfs comes down a canyon of rectangular section with a bed width of 100 feet and a slope of 0.1. When the debris flow passes the mouth of the canyon, it spreads over areas with decreasing slopes of 0.1, 0.05, 0.005, 0.001 and 0.0005 in a total reach of 4000 feet. The rectangular section widens from 100 feet to 500 Flow onto this flood plain was feet. solved for debris flow and water flow with Manning coefficients of 0.035, 0.07, 0.1 and 0.2. To illustrate this problem the profile and top view are shown in Figure 14. In Table 5 and Figure 15, the ratios of debris flow depth to water flow depth for different slopes and Manning coefficients are shown. In Appendix B the input data and the output solutions are given. Data for computation in Table 5 were obtained from the computer solution, Appendix B. In Table 6, some values are shown in order to illustrate a typical output.

Going into detail in Figures 14 and 15, it is clear how the slope controls

Figure 15. Debris flow depth/water flow depth vs. bed slope.

the relationship between the debris and water flow depths. The smaller the slope the larger this difference is. Also, when the Manning coefficient increases, the difference between the debris flow depth and the water flow depth becomes smaller. It can be observed that as the channel slope becomes very large the debris and water flow depths become nearly equal. Furthermore, under some conditions, the debris flow depth becomes so large, or the sediment content and viscosity so large, that the debris flow will likely

. ...

r -

. .

m ~

. .

y ...

4. ..

æ ...

Ε.

k. _

[] • . .

£ ...

stop. The mathematical model does not accommodate such stoppage, but this phenomenon has been observed in many debris flows in nature. As the slope becomes small and the debris flow contains sufficient solid material, then the viscosity becomes large, as given by Equation 66, as the depth or hydraulic radius increases, the resulting decrease in velocity reduces Chezy's coefficient, as given by Equation 63 which starts the cycle over. In practice the large material accumulates at the wave front, and the entire mass stops.

Table 5. Variation of debris flow depth/water flow depth vs. slopes for different Manning coefficients for Example 1.

<u>.</u>					
Output Station	1	2	3	4	5
distance		·			
(feet)	0.	1200	2000	32000	4000
slope	0.1	0.041	0.005	0.0009	0.0005
Normal depth	~ • -	01011			0.0005
debris flow					
y _d (feet)	0.978	1.039	2.612	5.314	6.58
Normal depth water					
flow for n=.035					
y ₃₅ (feet)	0.211	0.171	0.267	0.365	0.392
Normal depth water		·			
flow for n=.07					
y ₇₀ (feet)	0.319	0.260	0.405	0.554	0.595
Normal depth water					
flow for n=.1					
y ₁₀₀ (feet)	0.396	0.322	0.502	0.686	0.737
Normal depth water		<u> </u>	<u>,,</u>		
flow for $n=.2$					
y ₂₀₀ (feet)	0.601	0.488	0.761	1.041	1.118
y _d /y ₃₅					
u 33	4.64	6.08	9.78	14.56	16.79
y _d /y ₇₀	3.07	3.99	6.45	9.59	11.06
y _d /y ₁₀₀	2.47	3.23	5.20	7.75	8.93
y _d /y ₂₀₀	1.63	2.13	3.43	5.10	5.89

Table	6.	Typical	output	values.	Example	1.	
-------	----	---------	--------	---------	---------	----	--

Sections along channel (feet)	Discharg along chạnnel ft /sec	e Bottom widths (feet)	Slope of channel bottom at sections	Critical depths at sections (feet)	Critical slopes at sections	Normal depths at sections (feet)	Velocities correspond- ing to normal depth(ft/sec)	Reynold's number correspond- ing to normal depth	Chezy's numbers correspond- ing to normal depth	Depth of flow at sections (feet)	Top width (feet)
0.0	100.00	100.000	0.10000	0.3143	0.92037	79 0.978	1.022	3.07	3.30	2.746	100.00
400.0	100.00	140.000	0.08000	0.2512	1.03067	79 0.926	0.772	2.31	2.85	35.033	140.00
800.0	100.00	180.000	0.06000	0.2124	1,12249	95 0.946	0.587	1.76	2.48	60.904	180.00
1200.0	100.00	220.000	0.04100	0.1858	1.20133	30 1.039	0.437	1.31	2.13	79.559	220.00
1600.0	100.00	260.000	0.02300	0.1662	1.27232	20 1.285	0.299	0.90*	1.75	91.358	260.00
2000.0	100.00	300.000	0.00500	0.1511	1.33640	02 2.612	0.128	0.38	1.13	96.483	300.00
2400.0	100.00	340.000	0.00340	0.1390	1.39509	91 2.988	0.098	0.30	0.99	98.032	340.00
2800.0	100.00	380.000	0.00180	0.1291	1.4494	16 3.915	0.067	0.20	0.81	98.989	380.00
3200,0	100.00	420.000	0.00090	0.1207	1.5001	19 5.314	0.045	0.13	0.66	99.485	420.00
3600.0	100.00	460.000	0.00070	0.1136	1.5477	56 5.774	0.038	0.11	0.60	99.779	460.00
4000.0	100.00	500.000	0.00050	0.1075	1.5927	56 6.580	0.030	0.09	0.54	100.000	500.00

* Reynold's numbers so low that it is physically impossible and the flow would stop.

en de la companya de la comp La companya de la comp

44

ł

Example 2

. .

. .

~ ~

- -

. .

r ----

5...

5.7

۲. ..

r •

ξ.

. .

. ...

r --

دغة

л

÷ ...

د با

r --

k ...

. . .

k ...

. .

1 .

The debris flow presented by Sharp and Nobles (1953) is described in Table In addition, they pointed out that 1. the flow "was largely confined by pre-existing channels to a path 20-150 feet wide." No information about the discharge has been reported, but if we assume an average channel width of 70 feet and a rate of debris flow of $500 \text{ ft}^3/\text{sec}$, the velocity and debris flow depth resulting from the computer program coincide remarkably well with those given by Sharp and Nobles (1953). With this background, we can describe Example 2 as a 500 ft^3/sec debris flow discharging into a rectangular channel with bottom width of 70 feet and a slope of 0.105. The channel is 1000 feet long starting at section 0 and ending at section 1000. The section is the same throughout the whole length. At the end a control backs up the debris flow initially to a depth of 10 feet. There is no lateral inflow. The steady state uniform and varied flow solution is desired to be obtained at 21 output nodes or stations.

In solving this problem the input data and the output are shown in Appendix C. In order to see how debris flow behaves in comparison with water flow, the same data were utilized for solving the water flow problem except one more item was added; the Manning coefficient was taken as 0.2 for this specific location. For solving the water flow problem, the original program was used. (See Jeppson 1974.) The output result is shown in Appendix C.

Based on Sharp and Nobles (1953) data, it is also possible to apply Takahashi (1980) dilatant model. In order to use his Equation 8, coefficients now needed, but not given by Sharp and Nobles, must be generated. Without any other means for getting the values for these coefficients, the values reported by Takahashi in his experiment were used. The values adopted for doing the computation are: $a_i = 0.5$, $tan\alpha = 0.6$ therefore $\alpha = 30.96$ (from Takahashi 1980)

 $sin\alpha = 0.5144$ (from Takahashi 1980)

C* = 0.7 (from Takahashi 1980)

$$C_d = 0.9 \times 0.7 = 0.63$$

(from Takahashi 1980)

$$\sigma = 2.7 \text{ gr/cm}^3$$
 (assumed)

$$\rho$$
 = 2.4 gr/cm³
(from Sharp and Nobles 1953)

$$h_{\infty} = 0.76 \text{ m} = 2.5 \text{ feet}$$
(from Sharp and Nobles 1953)

by Equation 8,

$$k = \frac{25 \times 0.5 \times 0.5144}{4[0.63 + (1 - 0.63) \times \frac{2.4}{2.7}] [(\frac{0.7}{0.9 \times 0.7})^{1/3} - 1]} \times \frac{0.001}{0.76}$$

by Equation 10,

$$U^2 = \frac{h_{\infty}g\sin\theta}{k}$$

Therefore

$$U^2 = \frac{2.5 \times 32.2 \times 0.1045}{1.73} = 4.86$$

Therefore

$$U = 2.2$$
 ft/sec

Results are summarized in Table 7.

The normal depth of 2.575 in Table 7 obtained for the debris flow computer model matches well the value reported by Sharp and Nobles (1953) of 2.50 feet. Comparing the depth with that for the

45

Parameters	Data reported by Sharp and Nobles (1953) for debris flow	Results obtain- ed from debris flow compu- ter model	Takahashi (1980) di- latant model for debris flow	Water flow result using Jeppson model (1974)
Critical depth		1.166 ft	-	1.116 ft.
Critical slope	-	0.480	-	0.576
Normal depth	2.50 ft	2.575 ft.	2.50 ft.	1.959 ft.
Velocity corresponding to nor depth	s- mal 3.94 ft/sec ¹	2.774 ft/sec	2.20 ft/: . sec	3.645 ft/sec

Table 7. Debris flow and water flow results of Example 2.

1. If the discharge is 500 ft^3 /sec and the average width 70 feet, then the velocity should be 2.86 ft/sec instead of 3.94 ft/sec as reported.

water flow, only a modest increase (30%) is observed. The explanation for this modest increment is that for this large slope of 0.105 and the same flow rate, the depth ratio increase is not too different from unit as shown by the theoretical results of Figure 13. When the velocity increases, the fluid viscosity decreases, so this behavior tends toward a Newtonian fluid and then both depths, debris flow and water flow depth tend to be the same. In Examples 1 and 2 it is clear that smaller slopes result in a larger ratio of debris flow depth to water flow depth. A representative Reynolds number from Example 2 is 18.38 (see Appendix C). This value is between those ranges given in Tables 2, 3, and 4 in Chapter IV.

The gradually varied M₁ profile for both debris and water flow is shown in Figure 16. Figure 17 shows the solution of the function given by Equation 72 for three different slopes and a debris flow rate of 500 ft³/sec. Notice, for the slope equal to 0.105, a solution of normal depth equal to 2.57 feet is obtained. This solution corresponds to that of Example 2. Figure 17 is helpful in understanding how the implicit function given by Equation 72 behaves. When using the Newton method the first guess is very important for convergence to occur. The slope of the function (or its derivative) decreases as the solution is approached.

Example 3

In this hypothetical example, 80 ft^3 /sec is flowing into a channel where size and slope changes rapidly with position. The downstream depth is controlled. The downstream control backs up the water initially to a depth of 100 ft (30.48 m). The reach is 4180 feet long. The first portion of the reach has a steeply sloping bottom, with a maximum slope of 0.019. The next portion of the reach is flat with a slope of 0.00002; and before the end of

- - -

the reach the slope increases sharply, just upstream from the downstream but end the slope again diminishes to 0.00005. Over the flat center portion of the channel the bottom width increases substantially. Also over this central portion lateral inflow contributes 10 cfs of water to the channel. The profile view of the channel on Figure 18 shows its geometry and the specifications used to describe the The top width of the channel channel. shown on the plan view of Figure 19 represents the steady flow obtained from solving the gradually varied flow equation with the boundary condition at the downstream and specifying a depth of 100 feet.

6 -

h. ..

1

6 .

ن ب

- ..

6

5 -

The solution to the gradually varied profile was obtained using 39 nodes. Thus the space increment ΔX used in the solution equals 110 feet.

This same problem was solved assuming debris flow instead of water flow under the same conditions. Tn Appendix D the input data and output lists are shown for both cases. In Figures 18 and 19 the solutions are shown. In this example, the Manning coefficient varies at each section. Tn order to examine the influence of the Manning coefficient, it was decided to run this example several times for different Manning coefficients, but holding each of them constant through the reach. These results are shown in Appendix D and in Table 8 and Figure 20.

Example 4

In this example we have tried to simulate a debris flow of 100 cfs coming down a canyon of rectangular section with a bed width of 100 feet and a slope

Figure 17. Q^2P and SET vs. y for $Q = 500 \text{ ft}^3/\text{sec}$ and B = 70 ft.

of 0.1. When the debris flow passes the mouth of the canyon, it spreads over areas with decreasing and sometimes with short adverse slopes (Figure 21). The rectangular section widens from 100 feet to 5000 feet. This spreading takes place in nature. Flow onto this floodplain was solved for debris flow and water flow with Manning coefficient of 0.035. In Tables 9 and 10 and Figure 22, the ratios of debris flow depth to water flow depth for different slopes is shown. In Appendix E the input data and the output lists are shown.

Two basic debris flow characteristics are clearly illustrated. When the debris flow spreads out over a

2 4 5 7 8 9 10 Station 1 3 6 11 Distance 0 1100 1320 2090 3740 3960 4180 (feet) 2420 2640 3520 3630 0.00008 0.00006 0.0001 0.019 0.013 0.0007 0.00037 0.00005 0.015 0.01 0.0053 Slopes Normal depth debris flow y_d (feet) 6.762 7.338 51.765 48.648 8.018 10.363 25.069 29.937 61.276 45.655 6.426 Normal depth water flow for n=.035 y₃₅ (feet) 1.12 1.171 2,452 2.814 4.782 4.656 3.223 3.503 1.199 1.388 1.093 Normal depth water flow for n=.05y₅₀ (feet) 3.030 3.462 5.821 1.386 1.454 5.639 3.966 4.299 1.354 1.488 1.721 Normal depth water flow for n=.08y₈₀ (feet) 1.933 5.197 5,607 1.793 1.978 2.283 3,994 4.532 7.498 1.853 $y_{d}^{y_{35}}$ 15.09 6.08 6.27 13.033 5.88 6,69 7.47 10.22 10.64 12.81 11.12 ^yd^{/y}50 9.18 6.02 4.88 5.05 12.27 10.62 4.75 5.39 8.27 8.65 10.53 y_d/y₈₀ 3.65 4.05 4.54 6.28 6.61 8.17 3.80 9.36 8.14 3.58

Table 8. Variation of debris flow depth/water flow depth vs. slopes for different Manning coefficients for Example 3.

Figure 20. Debris flow depth/water flow depth vs. slope.

5 5

ũ.

ċ.

2.4

i. .

. . . Table 9. Variation of debris flow depth/water flow depth vs. slopes for a given Manning coefficient and large lateral spreading for Example 4.

Table 10. Variation of debris flow depth/water flow depth vs. slopes for a given Manning coefficient, large lateral spreading and a short adverse slope for Example 4.

······································	· · · · · · · · · · · · · · · · · · ·			and the second	
Output Station	1	2	3	4	5
Distance (feet)	0	1200	2000	3200	4000
Slope	0.1	0.00047	0.005	0.0009	0.0005
Normal depth debris flow Y _d (feet)	0.978	8.005	1.511	1.778	2.095
Normal depth water flow for n = 0.035 Y_{35} (feet)	0.211	0.483	0.138	0.097	0.099
Y _d /Y ₃₅	4.64	16.57	10.95	18.33	21.16

Figure 22. Debris flow depth/water flow depth vs. bed slope.

wider area as it moves downstream, as in this case, then the debris flow depth remains almost constant. Secondly, when a short adverse slope takes place, a sharp increase in the depth of debris flow occurs (Figure 21).

r ==

r 7

× ...

. ...

~ ~ ~

h. ...

. ...

÷ ...

r ~

4....

<u>r</u> -

ä _

6 -

4

r ~

k _

e --

6 ...

r ~

<u>نا</u>

ξ.,

General Discussion

The equation used to represent the relationship between the Chezy coefficient and Reynolds number for debris flow, Equation 62 or 63 has a significant impact on the solution results. This equation was based on the few data obtainable by searching the literature. Those data were fitted by the Chezy equation which was developed for Newtonian fluid, and the results were taken to indicate that the equation applies for debris flow in the laminar range. Collection of more data by experiments, or by quantitatively observing debris flow in the field, may assist in validating or improving this relationship, or showing that it is not acceptable for certain classes of debris flows.

Equation 65, that describes the relationship between open channel debris flow density, ρ , viscosity, μ , and the hydraulic radius of the resulting flow is also important. It was evaluated from limited data provided by Sharp and Nobles (1953). Also, additional

data would assist in validating this relationship.

Despite the very limited data available to, and the simplicity of the equations used in fitting the data, the solutions describe the phenomenon of debris flow well, both from the basis of qualitative observations as they can be gleaned from the literature as well as in duplicating the few quantitative data The Takahashi dilatant available. debris model result and the Sharp and Nobles (1953) data, for the uniform debris flow depth and velocity compare closely to our results as shown by Table Takahashi coefficients such as a;, 7. tan α , C_d, C_{*}, and d are not easily obtained. From this point of view the model proposed herein is far superior. It also appears to produce results as good as Takahashi does.

The greater debris flow depth than water flow depth is something to be expected, not only based on descriptions given by several authors but also because of its much larger viscosity in comparison with water. The friction slope, defined by Equations 69 and 63, constitutes the basis for future application of this debris flow model to the routing of any hydrograph in channels or streams and the nonsteady debris flow solution. The bed slope plays a very important role in the debris flow process.

~ . ~ <u>~...</u> 2 - -. . ~ --- -. .

CHAPTER VII

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

A theoretical model based on one dimensional Saint-Venant equations of continuity and motion, together with the modified Chezy equation for defining the friction slope, have been found suitable for describing open channel debris flow in the laminar range with Reynolds number less than or equal to 500. This research included only steady state flows.

× ...

L ...

. .

. ...

r -

ĩ. ...

س ۲

~ ~

<u>بر يا</u>

1 -

. ...

A computer program with the capability for solving steady state open channel debris flows by numerical methods has been developed.

Equations 63 and 65 constitute the foundation for the theoretical model. The former equation expresses the relationship between the Chezy coefficient and the Reynolds number for laminar debris flows. The latter equation provides the relationship between the debris flow density, viscosity, and the hydraulic radius of the flow. These relationships are of necessity based on the limited data available for debris flow. Solutions to four examples were obtained to verify the theoretical model and test the The result shows computer program. that this open channel debris flow model reproduces very well debris flows observed in nature like that described by Sharp and Nobles (1953). The advantage of this model over those proposed by Johnson (1965, 1970) and Takahashi (1980) is that it does not depend upon coefficients that are difficult to obtain and vary with flow conditions. Furthermore, the model is easily applied.

Debris flows develop depths greater The bed slope is than water flows do. the most important variable that affects the ratio of the depth of debris flow to depth of an equivalent volumetric water The substantial increase of the flow. ratio of debris flow depth to water flow depth for the same volumetric flow rate at low slopes, explain in part why debris flows have been observed to stop flowing, leaving a wave-shaped form on the landscape. As the depths increase as the slopes of the land decreases, the velocity of the flow decreases until the mixture can no longer flow.

The following are recommendations for future research related to debris flows:

1. Extend this theoretical model to the solution of unsteady debris flows. In order to do this, approximate boundaries conditions are required. A critical component of the unsteady model will be the methodologies used in handling the wave front.

2. Collection of more data by experiments or by quantitative observation of debris flow in the field are needed to provide greater assurance regarding the range of acceptability of Equation 63.

3. Equation 65, that describes the relationship between the debris flow density, viscosity, and hydraulic radius needs verification. Verification of Equations 65 and 63 means that field data, as well as possibly laboratory data need to provide values of ρ , μ , R_e , and R along the flow in the x-direction as the bed slope varies.

4. Application of this debris flow model to field situations that are likely candidates for future debris flow.

REFERENCES

Amein, M., and C. S. Fang. 1970. Implicit flood routing in natural channels. Journal of the Hydraulics Division, ASCE 96(HY12): 2489-2500.

- -

. .

. .

÷ ...

. .

ب

P ==

ñ. ...

_ الله _

- --

- -

r ---

L ...

۰. ...

ر یا

6 7

-

_ 11

· . .

- Amisial, R. A. 1969. Analog computer solution of the unsteady flow equations and its use in modeling the surface runoff process. PhD dissertation, Utah State University, Logan, Utah. 189 p.
- Babbit, H. E., and D. H. Caldwell. 1939. Laminar flow of sludges in pipes with special reference to sewage sludge. University of Illinois. Engineering Experiment Station, Bulletin Series No. 319, 59 p.
- Bagnold, R. A. 1954. Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear. Proc. Roy. Soc. London, Ser. A., 225:49-63.
- Blackwelder, E. 1928. Mudflow as a geologic agent in semi-arid mountains. Bulletin of the Geological Society of America, 39: 465-583.
- Bull, W. B. 1968. Alluvial fans. Journal of Geological Education, 16:101-106.
- Cannon, S. Q. 1931. Torrential floods in northern Utah, 1930. Agricultural Experiment Station, Utah State Agricultural College, Logan, Utah, Circular 92.
- Chawner, W. D. 1935. Alluvial fan flooding, the Montrose, California

flood of 1934. Georgr. Review 25:255-263.

- Chen, Cheng-lung. 1975. Urban storm runoff inlet hydrograph study. Volume 1, Computer analysis of runoff from urban highway watersheds under time- and space-varying rainstorms. Utah Water Research Laboratory, Utah State University, Logan, Utah.
- Cunge, J. A., and M. Wegner. 1964. Integration numerique des equations de ecoulement de Barre de Saint-Venant par un schema implicite de differences finies. La Houille Blanche, pp. 33-30.
- Dawdy, D. R. 1979. Flood frequency estimates on alluvial fans. Journal of the Hydraulics Division, ASCE 105(HY11):1407-1413.
- Enos, P. 1977. Flow regimes in debris flow. Sedimentology, 24:133-142.
- Henderson, F. M. 1966. Open channel flow. Macmillan Publishing Co., Inc. New York, 522 p.
- Hooke, R. Leb. 1967. Processes on arid-region alluvial fans. Journal of Geology, 75:438-460.
- Hughes, W. F., and J. A. Brighton. 1967. Fluid dynamics, Shaum's outline series. McGraw-Hill Book Co., New York.
- Jeppson, R. W. 1974. Simulation of steady and unsteady flows in channels and rivers. Utah Water Research Laboratory, Utah State University, Logan, Utah.

- Jeppson, R. W. 1980. Lecture notes from "open channel flow." Course No. CE 655, taught at Utah State University, Logan, Utah.
- Jeppson, R. W. 1981. Lecture notes from "numerical methods." Course No. CE 753, taught at Utah State University, Logan, Utah.
- Johnson, A. M. 1965. A model for debris flow. Thesis presented to Pennsylvania State University, University Park, Pennsylvania, in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Geology. 232 p.
- Johnson, A. M. 1970. Physical processes in geology. Freeman, Cooper and Company, San Francisco, 577 p.
- Leopold, L. B., M. G. Wolman, and J. P. Miller. 1964. Fluvial processes in geomorphology. Freeman, Cooper and Company, San Francisco.
- McGee, W. J. 1897. Sheetflood erosion. Bulletin of the Geological Society of America, 8:87-112.
- Morgali, J. R. 1970. Laminar and turbulent overland flow hydrographs. Journal of the Hydraulics Division, ASCE 96(HY2):441-459.
- Pack, F. J. 1923. Torrential potential of desert waters. Pan-American Geologist 40:349-356.
- Paul, J. H., and F. S. Baker. 1925. The floods of 1923 in northern Utah. Bulletin of the University of Utah, V. XV(3).
- Pierson, T. C. 1981. Dominant particle support mechanisms in debris flows at Mt. Thomas, New Zealand, and implications for flow mobility. Sedimentology 28:49-60.

- Rouse, H., and J. M. Robertson. 1941. On the four regimes of open-channel flow. Civil Eng. 11(3):169-171.
- Segerstroem, K. 1960. Erosion studies at Paricutin, State of Michoacan, Mexico: U.S. Geological Survey Bulletin 965-A, 164 p.
- Sharp, R. P. and L. H. Nobles. 1953. Mudflow of 1941 at Wrightwood, Southern California. Geological Society of America Bulletin, 64:547-560.
- Strelkoff, T. 1969. One-dimensional equations of open-channel flow. Journal of the Hydraulics Division, ASCE 95(HY3):861-876.
- Strelkoff, T. 1970. Numerical solution
 of Saint-Venant equations. Journal
 of the Hydraulics Division, ASCE
 96(HY1):223-252.
- Takahashi, T. 1978. Mechanical characteristics of debris flow. Journal of the Hydraulics Division, ASCE 104(HY8):1153-1169.
- Takahashi, T. 1980. Debris flow on prismatic channel. Journal of the Hydraulics Division, ASCE 106(HY3):381-396.
- Yevjevich, V. 1975a. Introduction, p. 1. In K. Mahmood and V. Yevjevich (Eds.). Unsteady flow in open channels, Vol. 1. Water Resources Publication, Fort Collins, Colorado.
- Yevjevich, V. 1975b. Storm-drain networks. In K. Mahmood and V. Yevjevich (Eds.). Unsteady flow in open channels, Vol. II. Water Resources Publication, Fort Collins, Colorado.

- 5 . 65 . J - 1 •4 - 7 - 4 ≓ 'F к. J **ر** م ند --~] ڭ _ - 7 - * ----- -لمد ما - 7 - 4 - -. ... - -. 4 ~ ~ **VPPENDICES** L à - -ن ا **-** 4 • • . .**.** - .
-- -- 3 . · . -

Appendix A. Computer Program Lists

EXPLANATION OF INPUT VARIABLES

Steady State Solution

FORTRAN

e ...

6.2

· ·

r -

ا ما

r -

L ...

r -

ι.

. h. .

r -

£ __

۴ ۲

k. _

h. ...

6. -4

e ...

الرتم

<u>Variable</u> Description of Data NSI No. of section for which channel geometry data will be given. NSO No. of section for which solution results will be computed and printed. If 0 channel is not a trapezoidal channel and geometry at NSI ITRAPE sections must be given as two dimensional arrays in which the second subscript gives the area, wetted perimeter and top width as a function of depth. IOYES If not 0 geometry of this problem will be taken the same as previous problem. QO Flow at upstream end. If QO = 0, then the array Q(I), read in later, represents flows at sections. XBEG x distance to Section 1. Δx distance between output sections consisting of NSO in XINC number. ERR Error parameter to terminate Newton iteration. NSTART Section number at which gradually varied profile solution begins. 1 if computation of gradually varied flow proceed downstream; -1 if they proceed upstream. NSINC NEND Ending section number for gradually varied flow computations. INFLOW O if flowrates are to be given at NSO sections; 1 if at NSI sections. YSTART Depth of flow at NSTART section. If greater than 0 a check will be made to determine whether a control exists in channel other than at section NSTART. MYSTRT IUNSTE If equal to zero only a steady state solution will be obtained. If greater than zero the geometry, etc ., at the NSO sections will be obtained from the NSI sections by linear interpolation, LINTER otherwise quadratic interpolation will be employed. Q(I) Lateral (accretion) inflows (or actual flows - see QO). XI(I) x - distances for NSI sections. SI(I) Slope of channel bottom S at NSI sections. BI(I) Bottom widths of channel at NSI sections.

FMI(I) Side slopes of channel at NSI sections.

C THIS PROGRAM IS THE RESULT OF SEVERAL CHANGES INTRODUCED INTO THE C ORIGINAL PROGRAM CALLED STREAM AND IS GOOD IN ORDER TO GET THE STEA-C OY STATE CDMOITION FOR DEGRIS FLOW, BUT ALSO THE OPTION FOR THE IMPLE-C MENTATION OF THE UNSTEADY STATE CONDITION REMAIN DPEN SO THAT IT CAN C BE DONE LATER.THIS IS THE REASON WHEN THE PROGRAM ASK YOU ABOUT TO C CHANGE SOME OF THE WARIABLES, YOU HAVE TO PUT THE VARIABLE IUNSTE C EQUAL TO ZERDIO, SO THAT THE PROGRAM CAN GIVE TO YOU THE RESULTS C UNTIL THE GRADUALLY VARIED FLOW. C THIS PROGRAM IS ONLY GOOD FOR DEBRIS FLOW WITH FREE SURFACE AND LA-MINAR FLOW CONDITION THAT MEANS REYNDLDS NUMBER LESS OR EQUAL TO 500. HAI TO ZEBUIULTY TIT DE FLOW. IL THE GRADULLY VARIED FLOW. IS PROGRAM IS OWLY GOOD FOR DEBRIS FLOW MITH FREE SHORE. IS PROGRAM IS OWLY GOOD FOR DEBRIS FLOW MITH FREE SHORE. IS PROGRAM IS OWLY GOOD FOR DEBRIS FLOW MITH FREE SHORE. CHARACTER'S ANAME(6), RW1(2), AMELD(5,6), PAR DIARACTER'S ANAME(6), RW1(2), AMELD(5,6), PAR COMPON BILLO, DEV(40), BILO), FM(40), CH(40), SILO), FM(40), SILO), FM(40), SIL 170 RVAR(1)=LIMICK RVAR(1)=CRR WRITE(IDUT,100,END=99) NSII,NSO,ITRAPE,IOYES,QD,XBEG,XINC,ERR WRITE(IDUT,100) 10 FORMAT(' DO YOU WANT A DEFINITION OF NAMELIST OPTIONS IN SPECIF? *Y OR N'/) READ(INPUT,120) PAR IF(PAR.EQ. 'Y 'INFICIAL STATES OF TRAPEZOIDAL AND GOEMETRY *AT NSI SECTIONS HUST BE GIVEN',/, 'IOYES=O IF NOT O GEOMETRY 20D *THIS PROBLEM WILL BE TAKEN THE SAME AS PREVIOUS PROBLEM.', 190 *THIS PROBLEM WILL BE TAKEN THE SAME AS PREVIONE PROBLEM.', 190 *THIS PROBLEM WILL BE TAKEN THE SAME AS PREVIONE PROBLEM.', 190 *THIS PROBLEM WILL BE TAKEN THE SAME AS PREVIONE PROBLEM.', 190 *THIS PROBLEM WILL BE TAKEN THE SAME AS PREVIONE PROBLEM.', 220 *THIS PROBLEM WILL BE TAKEN THE SAME AS PREVIONED LENSTS IN CHANNE 210 *CHECK WILL BE TAKEN THE SAME AS PREVIONED LENSTS IN CHANNE 210 *L OTHER THAM AT SECTION MYSTART',/' INNST=1 IF GUAL TO DONLY 220 *A STEADY STATE SOLUTION WILL BE OBTINED ',' LINTER=1 IF I GEOME *TRY.ETC. AT NSO SECTIONS IS DETERMINED BY LINEAR INTERPOLATION; '230 *IF 0 BY QUATRATIC INTERPOLATION',/' *1P O BY QUAIRAIL INTERPOLATION //) WRITE(10UT.30) FORMAT(' OEFAULT OPTIONS ARE;') WRITE(10UT.SPECIF) WRITE(10UT.31)ITRAPE,10YES,ERR,INFLOW,MYSTRT,IUNSTE,LINTER,NCONT, NDP 240 FORMAT(' ITRAPE=',14.' IOYES=',13.' ERR=',F10.5.' INFLOW=',I3. *' MYYTRT=',13.'IUNSTE=',13.' LINTER=',13.' NCONT=',I3.' NPR=',13} 250 FORWAT(' ITRAPE-',14,' IOYES-',13,' ERR-',FIO.5.' INFL *' MYSTRT-',13,' IUNSTE-',13,' LINTER-',13,' NCONT-',13, MRITE(IOUT,40) FORMAT(' DO YOU WANT ANY OF THESE CHANGEO? Y OR N',/) READ(INPUT,120) PAR IF(PAR.EQ. 'N' ') GO TO 60 WRITE(IOUT,50) FORMAT(' GIVE CHANGED OPTIONS IN &SPECIF LIST',/) READ(INPUT,SPECIF) CALL NAMEL1(SPECIF, NAMES,IVAR,RVAR,8,I,9) ITRAPE=IVAR(1) MYSTRT-IVAR(4) NPR=IVAR(8) LINTER-IVAR(6) 31 260 262 40 265 270 50 C LINTER=IVAR(6) LINTER=IVAR(6) C 25 NCONTEIVAR(7) .290 WRITE(10UT,70) *AND NAME WRITE; HELP'D DATA AFTER THE NAME. IF YOU DONOT UNDERST 300 *AND NAME WRITE; HELP'D D0 90 1=1.6 WRITE(10UT,85) ANAME(1) FORMAT(1H ,46, - ') 310 READ(1NPUT,120) RWI JF(RWI(1) .EQ. HELP') GO TO 82 320 C 60 TO 90 C C '60 70 .80 85 G0.T0 90 WRITE(10UT,100)ANAME(1),(AHELP(J,1),J=1,5) 82 GO TO 80 READ(RWI,91,ERR=BO) AIARY(1) 90 READ(RWI_91_ERR=B0) AIARY(1) FORMAT(EN.FI2.0) FORMAT('THE VARIABLE ',A6,' IS ',5A6) NSI1-AIARY(1) NSD=AIARY(2) QD=AIARY(3) 91 100 XBEG=AIARY(4) XEND=AIARY(5) YSTART=AIARY(6) TSIART=ALARTIO) NSII IS NEG. THEN ELEY OF BOTTOM INSTEAD OF SLOP IS GIVEN FORMAT[415,6F10.5] DELX=[XEND=XBEG]/FLOAT(NS0-1) C IF 110 NSI=1ABS(NSII) FORMAT(7A6) IVARR=D 120

X1NC=DELX OEL2=2.*DELX DEL32=1.5/DELX RDX4=4./OELX RDX3=3./DELX DXG=32.2*DELX DXG-32.2*DELA XINC2-XINC7. WRITE(10UT,122) NSO FORMAT("PROVIDE OUTPUT STA. NO. WHERE GVF SOL. IS TO BEG.,1.E.' *,' 1 OR',15,/) READ(INPUT.*) NSTART IF(MSTART .EQ. NSO) GO TO 124 GO TO 210 WRITE(10UT,190) NSI FORMAT(' PROVIDE BOTTOM SLOPES FOR',15,' INPUT STATIONS',/) READ(INPUT,*) (SI(1),1=1,NS1) FORMAT('OPROBLEM S'ECIFICATIONS',/,' X',(12F10.I,F9.1)) WRITE(10UT,230) (SI(1),1=1,NS1) FORMAT(' S',(12F10.5,F9.5)) MSO-NSI JE(INFIDU ED C) FORMAR(5,(1270.5,79.5)) MSO=NSI IF(INFLOW .EQ. 0) MSO=NSO WRITE(10UT,240) FORMAT(' 15 THERE LATERAL INFLOW? Y OR N',/) READ(INPUT,120) PAR IF(PAR .EQ. 'Y ') GO TO 260 DO 250 I=1,MSO Q(1)=0. GO TO 265 WRITE(10UT,262) MSO FORMAT(' PRVIOC',15,' VALUES OF LATERAL INFLOW. IF QO=0 THESE *ARE ACTUALFLOWS.',/) READ(INPUT,*) (Q(1),I=1,MSO) FORMAT(' SQ',(11F10.3,2F9.3)) .JF(QO .LT. 1.E-5) GO TO 290 Q(1)=00 MRITE(1001,300/MSI,MSI 300 FORMAT(' PROVIDE',15,' BOTTOM WIDTHS, THEN',15,' SIDE SLOPES',/) READ(IMPUT,*) (BI(1),1=1,NSI),(FMI(I),1=1,NSI) WRITE(1DUT,310) (BI(1),1=1,NSI) 310 FORMAT(' B',(12F10.3,F9.3)] WRITE(10UT,330) (FMI(1),1=1,NSI) C 330 FORMAT(' M',(12F10.3,F9.3)] WRITE(10UT,330) (FMI(1),1=1,NSI) C 330 FORMAT(' H',(12F10.3,F9.3)] WRITE(10UT,334) 334 FORMAT(' HAVE YOU MADE ANY MISTAKES? Y OR N',/) READ(IMPUT,120) PAR IF(PAR EQ.'N ') GO TO 450 WRITE(10UT,336) 336 FORMAT(' M) C START AGAIN AT THE BEGINNING OR *JUST WITH CHANNEL DATA? TYPE BEGIN. DR CHANNEL',/) READ(IMPUT,120) PAR IF(PAR EQ.' CHANNE') GO TO 135 GO TO 25 340 IF(NSI1 LT. 0) GD TO 360 WRITE(10UT,350] 350 FORMAT(' PROVIDE FORMAT AND THEN CROSS-SECTION DATA',/) READ(IMPUT,120) FMT1 READ(IMPUT,FMT1) NP,((Y1(1,J),J=1,NP),1=1,NSI),((TI(1,J),J= *((AI(1,J),J=1,NP),1=1,NSI),((PI(1,J),J=1,NP),1=1,NSI),((TI(1,J),J=

*1,NP),I=1,NS1) GD TO 380 C 360 READ(1MPUT,FMT1) (FN1(1),I=1,NS1) 360 READ(1MPUT,*1 NP 00 370 I=1,NSI READ(INUT,**) NP READ(INUT,**) NP OO 370 1=1,NS1 REAO(INUT,FWT1) {Y1{[1,3],J=1,NP} REAO(INUT,FWT1) {Y1{[1,3],J=1,NP} REAO(INUT,FWT1) {Y1{[1,3],J=1,NP} OO 430 1=1,NS1 WRITE(IOUT,FWT1) {T1{[1,3],J=1,NP} FORMAT(' X=',FI0.1, 'SO=',FI0.3] WRITE(IOUT,400) {Y1{[1,3],J=1,NP} FORMAT(' Y', (12F10.3,F9.3)) WRITE(IOUT,400) {Y1{[1,3],J=1,NP} FORMAT(' Y', (12F10.2,F9.2)] WRITE(IOUT,420) {P1{[1,3],J=1,NP} FORMAT(' Y', (12F10.2,F9.2)] WRITE(IOUT,420) {P1{[1,3],J=1,NP} FORMAT(' Y', (12F10.2,F9.2)] WRITE(IOUT,420) {T1{[1,3],J=1,NP} FORMAT(' Y', (12F10.2,F9.2)] WRITE(6,*) WHERE SNOULD THE OUTPUT GO? GIVE 1) TTY IF TERM ONLY; *2) FILE MAME' READ(5,452) PARI FORMAT(A12) IF(PAR1.EC,'TTY') GO TO 455 IF(PAR1.EC,'TTY') GO TO 455 IF(PAR1.EC,'TTY') GO TO 455 IF(IOTE) OPEN(INIT=IOUT,FILE=PARI,STATUS='NEN') IF(IDYES) 460,460,610 II=1 I2=2 I3=3 IF(INTEP, F0, 0) GO TD 530 370 380 390 400 410 420 430 440 450 452 453 454 455 460 12*2 13*3 IF(LINER_EQ. 0) GO TO 530 DNI=XI(2)-XI(II) DO 520 I=1,NS0 X(1)*XBEG*XINC*FLOAT(I-1) IF(X(I) _LT. XI(I2) .OR. 12 .EQ. NSI} GO TO 480 II=11+1 470 IF(X[1] LT. XI[12] .OR. 12 .EQ. NSI; up to to to 11=11+1 12=12+1 DNI=X1[12]-X1[11] G0 T0 470 480 FAC1=(X[1]-XI[11])DNI IF(ITRAPE .EQ. 0) G0 T0 490 B(1)=B1[11]+FAC1*(BI[12]-BI[11]) FM(1]=FM(11)+FAC1*(FMI[12]-FMI[11]) G0 T0 510. 490 D0 500 J=1,NP A[1,J]=A1[11,J]+FAC1*(T1[12,J])-T1[11,J]) TT[(1,J]=T1[11,J]+FAC1*(T1[12,J])-T1[11,J]) TT[(1,J]=T1[11,J]+FAC1*(T1[12,J])-T1[11,J]) 500 P[1,J]=P1[11,J]+FAC1*(FI[12,J])-F1[11,J]) 510 S(1)=S1(11]+FAC1*(S1[12]-S1(11)) IF(INFLOW .GT. 0) AA(1]=0[1]+FAC1*(ELEVB(12]-ELEVB[11]) C 220 FN[1]=FN1(1]+FAC1*(FN1(12)-FN1(11]) 520 CONTINUE G0 T0 660 530 00 600 I=1,NS0 x(1]=XBEG+XINC*FLOAT(I-1) IF(1)=LQ, 1) 60 T0 550 11=11+1 12=12+1 470 il=11+1
l2=12+1
l3=13+1
DN1=(X1(11)-X1(12))*(X1(11)-X1(13))
DN2=(X1(12)-X1(11))*(X1(12)-X1(13))
DN3=(X1(12)-X1(11))*(X1(13)-X1(12))
GO TO 540
FAC1=(X(1)-X1(11))*(X1)-X1(13))/DN1
FAC2=(X(1)-X1(11))*(X(1)-X1(13))/DN2
FAC3=(X(1)-X1(11))*(X(1)-X1(12))/DN3
IF(1TRAPE.EC) O) GO TO 570
B(1)=FAC1*B(11)+FAC2*B(12)+FAC3*B(13)
FM(1)=FAC1*FM(11)+FAC2*FM(12)+FAC3*B(13)
FM(1)=FAC1*FM(11)+FAC2*FM(12)+FAC3*B(13)
FM(1)=FAC1*FM(12)+FAC3*FM(12)+FAC3*FM(13) 550 . 560 FM(1)=FAC1*FM1(11)+FAC2*FM1(12)+FAC3*FM1(13) G0 T0 590 D0 580 J=1,NP A(1,J)=FAC1*1(11,J)+FAC2*A1(12,J)+FAC3*FM1(13,J) TT(1,J)=FAC1*T1(11,J)+FAC2*T1(12,J)+FAC3*T1(13,J) YT(1,J)=FAC1*T1(11,J)+FAC2*T1(12,J)+FAC3*T1(13,J) Y(1,J)=FAC1*T1(11,J)+FAC2*P1(12,J)+FAC3*T1(13,J) S(1)=FAC1*T1(11,J)+FAC2*P1(12,J)+FAC3*T1(13,J) S(1)=FAC1*S1(11)+FAC2*S1(12)+FAC3*S1(13) IF(NS11,LT,O)ELB(1)=FAC1*ELEVB(11)+FAC2*ELEVB(12)+FAC3*ELEVB(13) IF(NS11,LT,O)ELB(1)=FAC1*ELEVB(11)+FAC2*ELEVB(12)+FAC3*ELEVB(13) IF(NS11,LT,O)ELB(1)=FAC1*C1(12)+FAC3*FN1(13) CONTINUE CONTINUE CONTINUE 570 580 590 C600 CONTINUE GO TO 660 DO 650 1=1,NSC X(1)=XBEG-XINC*FLOAT(1-1) IF(1TRAPE E.C. 0) GO TO 620 B(1)=BI(1) FM(1)=FM1(1) GO TO 640 DO 630 J=1,NP 610 1C 620 A(1,J)=AI(1,J) TT(1,J)=T1(1,J) TT[[,])=T1[[,]) TT[[,])=T1[[,]) FN(])=FN[],] FN(])=FN[],] FN(]]=FN[] WRITE(10UT,700) (X[]],1=1,NS0) IF(1WFLOW .60, 0) GG TO 680 DO 670 1=1,NS0 Q(1)=AA(1) WRITE(10UT.690) (Q(1),1=1,NS0) FORMAT('0 SECTIONS ALONG CHANNEL',/,(1H ,13F10.2)) FORMAT('0 SECTIONS ALONG CHANNEL',/,(1H ,13F10.2)) IF(1TARPE .EQ, 0) GO TO 730 WRITE(10UT,710) (G(1),1=1,NS0) FORMAT('0 BOTTOM WIDTHS',/,(1H ,13F10.3)) 10 C64D 650 660 570 680 690 700

έΞ

b,

وسيئ

1 2 2.7

WRITE(10UT,720) (FM(1),1=1,NSO)
FORMAT('0 SLOPES OF SIDE OF CHANNEL',/,(1M ,13F10.3))
GO TO 770
GO TO 776
WRITE(10UT,740)
FORMAT('0 CROSS-SECTIONAL AREAS AND WETTED PERIMETERS OF CHANNEL')
OO 750 1=1,NSO
WRITE(10UT,760) (YT(1,J),A(1,J),P(1,J),J=1,NP)
FORMAT(1M, 5(3F8.3,1X))
WRITE(10UT,760) (FN(1),1=1,NSO)
WRITE(10UT,760) (S(1),1=1,NSO) 720 C 730 740 750 760 C770 C780 785 C2200 FORMAT('D SLOPE G. CHANNEL BOTTOM AT SECTIONS OF CHANNEL',/,(IH,13FI0.3))
785 WRITE(IOUT,790) (S(I),I=I,NS0)
790 FORMAT('D SLOPE G. CHANNEL BOTTOM AT SECTIONS',/,(IH ,I3FI0.5))
C SOLUTION OF CRITICAL DEPTH AND CRITICAL SLOPE
IF(NSILIT.0)WRITE(IOUT,000)(ELG(I),I=I,NS0)
800 FORMAT('ELEV. OF CHANNEL BOTTOM',/,(IH ,I3FI0.2))
IF(ITRAPE.E.0, 0) GO TO 840
YO=((O(I)/8(I))**2/32.2)**.333333
'D 0 830 I=I.NS0
OG2=0(I)**2
C OC2=0C2/2.22
OG2=0C2/3.2
FMZ=2.*FM(I)
NCT=0
SIO AR=(8(I)+FM(I)*Y0'SORT(FM(I)**2+1.)
A2=AR*AR
TR=B(I)+FFW2'Y0
F=0G2*FM2-3.*TR*A2
DF=0G2*FM2-3.*TR*A2
DF=0G2*FM2-3.*TR*A2
DF=0G2*FM2-3.*TR*A2
DF=0G2*FM2-3.*TR*A2
DF=0G2*FM2-3.*TR*A2
DF=0G2*FM2-3.*TR*A2
DF=0G2*FM2-3.*TR*A2
DF=0G2*FM2-3.*TR*A2
DF=0G2*FM2(I)**2'(1001,820) NCT.1.DIF,Y0
820 FORMAT(' DID NOT CONVERGE IN',13,' ITERATIONS, I=',13,' DIF=',EI0.
*3, 'Y(1)=',FI0.3)
Y(1)=0(I)/AR
DEVI=3.*MFR/AR
REY((I)**010*)*43.33333
[\$20 SC(I)=0C2*FM(I)**2'(8(I)+2.*Y0*SQRT(FM(I)**2+1.))**1.333333/((
C *0(I)=0C2*FM(I)**2'(8(I)+2.*Y0*SQRT(FM(I)**2+1.))**1.333333/((
C *0(I)=0C2*FM7(A2*AR)
GO TO 9I0
840 II=1
I2=2
I3-3
YO={(0(I)/(.7*P(I,1)))**2/32.2)**.33333
DD 000 I=1,NS0
OG2=0(I)**2
C OC2/C2/2.22
OG2=0C2/22.22
NCT=0
NCT=0
NCT=1
850 IF(LINTER.EQ.0) GO TO 880
DD 60 JJ=2.NP
J=JJ
TETTON J=JJ IF(YT[1,J).GE. Y0) GO TO 870 CONTINUE FACT=(Y0-YT(1,J-1))/(YT(1,J)-YT(1,J-1)) AA(1)=A(1,J-1)+FACT*(A(1,J)-A(1,J-1)) I2=J I1=J-1 I1=J-1 GO TO 390 CALL AREAP(1,Y0) TR=FAC1*TT(1,11)+FAC2*TT(1,12)+FAC3*TT(1,13) AR=AA(1) A2=AR*AR F=QC2*TR=AR*A2 DF=(QC2*TR=AR*A2 DF=(QC2*TR=AR*A2 DF=(QC2*TR=AR*A2 DF=(QC2*TR=AR*A2 DF=(CC2*TR=AR*A2 DF=(C 860 870 880 890 NetFac1P(1,11)+Fac2*P(1,12)+Fac3*P(1,13)
Y1(1)=0(1)/AR
DEV1=3.*PK/AR
REY(1)=0(1)*0EV1/PR.
C(1)=0(1)*0EV1/PR.
C(1)=0(1)*0EV1/PR.
Sc(1)=0(2*PR/(A2*AR)
NRITE(10UT,920) (YC(1),1=1,NS0)
FORMAT('0 CRITICAL OPPTNS AT SECTIONS'./.(1H ,13F10.4))
WRITE(10UT,930) (SC(1),1=1,NS0)
FORMAT('0 CRITICAL OPPTNS AT SECTIONS'./.(1H ,13F10.4))
WRITE(10UT,940) (AA(1),1=1,NS0)
FORMAT('0 XERAS CORRESPONDING TO CRITICAL DEPTN'./.(1H ,13F10.2))
WRITE(10UT,950) (Y1(1),1=1,NS0)
FORMAT('0 XERAS CORRESPONDING TO CRITICAL OEPTN'./.(1H ,13F10.2))
WRITE(10UT,950) (Y1(1),1=1,NS0)
FORMAT('0 XERAS CORRESPONDING TO CRITICAL OEPTN'./.(1H ,13F10.2))
WRITE(10UT,950) (Y1(1),1=1,NS0)
FORMAT('0 XELOCITIES CORRESPONDING TO CRITICAL OEPTN'./.(1H ,13F10.2))
WRITE(10UT,950) (Y1(1),1=1,NS0)
FORMAT('0 XELOCITIES CORRESPONDING TO CRITICAL OEPTN'./.(1H ,13F10.2))
WRITE(10UT,950) (Y1(1),1=1,NS0)
FORMAT('0 XELOCITIES CORRESPONDING TO CRITICAL OEPTN'./.(1H ,13F10.2))
WRITE(10UT,950) (Y1(1),1=1,NS0)
FORMAT('0 XELOCITIES CORRESPONDING TO CRITICAL OEPTN'./.(1H ,13F10.2))
WRITE(10UT,950) (Y1(1),1=1,NS0)
FORMAT('0 XELOCITIES CORRESPONDING TO CRITICAL OEPTN'./.(1H ,13F10.2))
WRITE(10UT,950) (Y1(1),1=1,NS0)
FORMAT('0 XELOCITIES CORRESPONDING TO CRITICAL OEPTN'./.(1H ,13F10.2))
WRITE(10UT,950) (Y1(1),1=1,NS0)
FORMAT('0 XELOCITIES CORRESPONDING TO CRITICAL OEPTN'./.(1H ,13F10.2))
WRITE(10UT,950) (Y1(1),1=1,NS0)
FORMAT('0 XELOCITIES CORRESPONDING TO CRITICAL OEPTN'./.(1H ,13F10.2))
WRITE(10UT,950) (Y1(1),1=1,NS0)
FORMAT('0 XELOCITIES CORRESPONDING TO CRITICAL OEPTN'./.(1H ,13F10.2))
WRITE(10UT,950)
FORMAT('0 XELOCITIES CORRESPONDING TO CRITICAL OEPTN'./.(1H ,13F10.2))
FORMAT('0 XELOCITIES CORRESPONDING TO CRITICAL OEPTN' C900 90D 910 920 :930 940 950 *.3)) WRITE(10UT.955) (REY(I),1=I.NSO) FORMATI'O REYNOLD''S NUMBERS CORRESPONDING TO CRITICAL DEPTH'./,(1 *H.13FI0.2)) *H.13FI0.2) 955 *H.13F10.2))
WRITE(10UT.956) (CH(1),1=1.NSO)
956 FORMAT('0 CHEZY''S NUMBERS CORRESPONDING TO CRITICAL DEPTH',/,(1H,
*13F10.2))
C SOLUTION OF NORMAL DEPTH BASED ON CHEZY EQUATION

1F(ITRAPE .EQ. 0) GO TO 1010 D0 1000 I*1,NSB Y0=SQRT(Q(1)/(10.*S(I)*B(1))) Y0=SQRT(Q(1)/(10.*S(1)*B(1))) IF(S(1).GT.1.E-12) GO TO 960 YN(1)=0. GO TO 1000 IF(Q(1).GT..01) GO TO 970 YN(1)=0. AA(1)=.001 GO TD 1000 FM2=2.*FN(1) QG2=Q(1)**2 QCN=FN(1)*Q(1)/1.49 CTS=10.6489*S(1) SQS=SQRT(S(1)) 960 970 ¢ CTS=10.6489*S(I) SQS=SQRT(S(I)) SS3=1.6666667*SQS S1DS=2.*SQRT(FM(I)**2+1.) QCN2=.6666667*QCN CTSQ-CTS*Q(I)**1.0332 ç 1170 c CTSO=CTS*Q(I)**i_0332 HCT=0 PR=B(I)+SIDS*V0 AR<[B(1)+FM(I)*Y0)*Y0 A19=AR**1_9668 A09=AR**1_9668 A09=AR**2_6666667 A23=AR**2_66666667 F=QCR*P23=AR*423*SQS F=QCR*P23=AR*423*SQS F=QCR*P23-AR*423*SQS F=QCR*P3-AR*423*SQS F=QCR*P3-AR*4 980 С С С C 1180 1190 DIF=F/DF Y0=Y0-DIF Y0-v0-DIF NCT=NCT+1 IF(ABS(DIF).GT..0001.AND.NCT.LT.10) G0 T0 980 IF(NCT.EQ.10) WRITE(10UT,990) I.DIF.Y0 FORMAT('FAILED TO CONVERGE FDR SECTION,',I5,' DIF=',EID.4,' *,FIO.3) YN(I)=Y0 AA(1)=AR Y1(I)=Q(I)/AR 0EY(I)=Q(I)/AR 0EY(I)=Q(I)/PR REY(I)=Q(I)/NOEYI/PR CH(1)=1.05*REY(I)**.5166 CONTINUE 990 YQ= 1000 CONTINUE GO TO 1120 I1=1 12=2 13=3 1010 12-2 13-3 00 1110 I-1.MS0 Y0-SQRT(0(1)/(10.*S(I)*B(I))) IF(S(1) GT. 1.E-12) GO TO 1020 YM(1)=0. GO TO 1110 1020 IF(0(1) .GT. .01) GO TO 1030 YM(1)=0. GO TO 1110 C1030 QC=P(1)**2 IF(S(1).GT. 0.) GO TO 1040 YM(1)=.00I GO TO 1110 C1040 SQS=SQRT(S(1)) 1040 CTS=10.6489*S(T) :C SS3=1.6666667*SQS IC QCM2-.6666667*SQS IC QCM2-.6666667*SQS IC QCM2-.6666667*SQS IC QCM2-.6666667*SQS IC QCM2-.6666667*SQS IC GS3=1.66666667*SQS IC GCM2-.6666667*SQS IC GCM2-.60606667*SQS IC GCM2-.6666667*SQS IC GCM2-.6670*SQS IC GCM2-.670*QCM CTSQ-.700*QCM CTSQ-.70 1270 00 1060 KJ=2,NP J=KJ IF(YT(I,J) .GE. Y0) GO TO 1070 CONTINUE FACT=(Y0-YT(I,J-1))/(YT(I,J)-YT(I,J-1)) AR=A(1,J-1)+FACT*(A(I,J)-A(I,J-1)) 1060 1070

 AR=A(1,J-1)+FACT*(Å(I,J)-Å(I,J-1))
 1280

 AA(1)=AR
 12=0

 PR=P(1,J-1)+FACT*(P(1,J)-P(1,J-1))
 1290

 12=1
 1300

 100
 CALL AREAP(1,Y0)

 AR=A(1)
 AR=A(1)

 PR=FAC1*P(1,11)+FAC2*P(1,12)+FAC3*P(1,13)
 1310

 C1000 P23-ans(PR)**.6666667
 1320

 C
 AP=AR**1.968

 A09-AR**1.966
 1320

 C
 F=0CX*PR-CT50*A09

 DF=0C2*PR-CT50*A09
 1320

 C
 F=0CX*PR-CT50*A09

 DF=0C2*PR-CT50*A09
 1340

 /(YT(1,12)-YT(1,11))/(YT(1,12)-YT(1,11))-QU1(A(1,12)-A(1,11)))/(YT(1360)

 C
 *1,12)-YT(1,11)

 DIF=F/DF
 NCT=NCT+1

 VCT=NCT+1
 F0AS(DF)

 Y0=Y0=DIF NCT=NCT+1 IF(ABS(DIF).GT,.GO1.AND, NCT.LT.10) GO TO 1050 IF(NCT.EQ.10) WRITE(IOUT,990) 1.2IF,Y0 YN(1)=Y0 Y1(1)=Q(1)/AA(1) OEY1=3.PR/AR REY(1)=Q(1)*DEY1/PR CH(1)=1.85*REY(1)**.5166 CONTINUE 1100 1110 CONTINUE 1120 WRITE(IOUT,II3O) (YN(I),T=1,NSO) 1130 FORMAT('O NORMAL OEPTHS AT SECTIONS',/,(IH ,13F10.3)) WRITE(IOUT,II4O) (AA(I),I=1,NSO) 1140 FORMAT('O AREAS CORRESPONDING TO NORMAL OEPTHS',/,(IH ,13F10.3)

WRITE(10UT,1150) (V1(1),I=1,NS0) 1150 FORMAT('OVELOCITIES CORRESPONDING TO NORMAL DEPTHS'./.(1H ,13P10.3 1150 FORMAT('OVELOCITIES CONNECTIONS *)) WRITE(IOUT,1155) (REY(I),1=1,NSO) 1155 FORMAT('0 REYNOLO''S NUMBERS CORRESPONDING TO NORMAL DEPTHS',/,(1H *,13F10.21) WRITE(IOUT,1157) (CH(I),I=1,NSO) 1157 FORMAT('0 CHEZY''S NUMBERS CORRESPONDING TO NORMAL DEPTH',/,(1H,13 *F10.21) DO 1170 I=1,NSO SUBC1-SUBC IF(SC(I) _LT_ S(I)) SUBC1=.FALSE. IF(SUBC1) & GO TO 1170 WRITE(10UT,1160) I FORMAT('THIS PROGRAM ASSUMES DEBRIS FLOW IN NATURAL CHANNELS IN "MHICH FLOW MUST BE SUB OR CRITICAL CHECK SECTION',12) COUTING 1160 CONTINUE IF(MYSTRT .EQ. 0) GO TO 1270 IF(MYSTRT .EQ. 0) GO TO 1270 ELEY=0. ELI=YM(1)+Y1(1)**2/64.4 I1=0 DO 1180 1=2.NSO IM=I-1 ELEY=ELEY=XINC2*(S(I)-S(IM)) ... EL=ELEY=XINC2*(S(I)-S(IM)) ... EL=ELEY=Y(1)**2/64.4 IF(EL .LT. ELI) GO TO 1180 I1=1 FLM=FL ELI=EL IF(ITRAPE) 1200,1200,1190 AR=(8(NSTART)*YSTART*FM(NSTART))*YSTART GO TO 1240 GO TO 1240 1200 IF(LINTER .EQ. 0) GOT 0 1230 K=NSTART DO 1210 KJ=2,NP J=KJ 1F(YT(K,J) .GE. YSTART) GO TO 1220 _ J=KJ JF(Y(K,J).GE, YSTART) GO TO 1220 1210 CONTINUE 1220 FACT=(YSTART-YT(K,J-1))/(YT(K,J)-YT(K,J-1)) AR=A(K,J-1)+FACT*(A(K,J)-A(K,J-1)) AA(K)+AR GOTO 1240 1230 CALL AREAP(NSTART,YSTART) AR=AA(NSTART) 1240 ELE1=0. JF(NSTART.EQ.NSD) ELE1=ELEY EL1=ELE1+YSTART+(Q(NSTART)/AR)**2/64.4 IF(EL1.GT.ELM) GO TO 1270 YNNAX=YN(11)+.005 WRJTE(IDUT.1250) IL,YNNAX,YSTART.ELM 1250 FORMAT('YSTART IS NOT LARGE ENDUGH TO ACT AS A CONTROL -- CONTROL * IS AT SECTION, 13,9710.3) 150 IF(II LT. 2 NG.JI.GT.NSO-2) GO TO 1270 IVARR=I YSTART=YNNAX NSTART=11 NSINC=-1 WTUPUT=1 NSIART=11 NSINC=-1 MCURVE=1 NEND=1 Y(NSTART)=YSTART CALL VARIED_ NSTART=11 NSTART=11 NSTART=11 NSINC=1 MCURVE=2 IVARR=0 Y(NSTART)=YSTART CALL VARIED 1F(YSTART .LT. 1.E-4) YSTART=YN(NSTART)+1.E-3 CALL VARIEO 1270 IF(YSTART LT. 1.E-4) YSTART=YN(NSTART)+1.E-3 Y(NSTART)+YSTART IF(YSTART .GT. YC(NSTART)) GO TO 1280 MCURVE-3 GO TO 1300 1280 IF(YSTART .GT. YN(NSTART)) GO TO 1290 MCURVE-2 GO TO 1300 1290 MCURVE-1 1300 CALL VARIEO IF(IUNSTE .EC. 0) GO TO 1350 IF(IUNSTE .EC. 0) GO TO 1320 WRITE(IOUT.1310) 1310 FORMAT(' UNSTEADY SOLUTION SUBROUTINE HAS BEEN WRITTEN TO ACCOMMOD *ATE ONLY TRAPEZOIDAL CHANNELS - NO UNSTEADY SOL. IS THEREFORE POSS *IBLE') GO TO 1350 1320 WRITE(IOUT.1330) 1330 FORMAT('D UNSTEADY SOLUTION BEGINS') CALL TRANST GO TO 1350 CALL HRANSI GO TO 1350 STOP WRITE(10UT,1360) FORMAT('000 YOU WANT TO SOLVE ANOTHER PROBLEM? Y OR N',/) REMO(IMPUR,120) PAR IF(PAR_EQ.'N ') STOP IF(PAR.EQ.'N ') STOP G0 T0 25 END SUBROUT INE NAMEL1(NAME,NAMES,IYAR,RVAR,NINT,NREAL,NTOT) COMMON B1(10),FM1(10),REY(40),B(40),FM(40),CH(40),S1(10),S(40), *X1(10),Y1(10,10),Q0,T1(10,10),TT(30,10),Y(40),A1(10,10),P(10,10), *(3,0),0),Y1(30,10),Y(140),FAC1,FAC2,FAC3,XINC,XBEG,ERR,QC2,QG2,OELX, *DEL2,OEL32,R0X4,R0X3,0XG,NS0,ITRAPE,NP,NSTART,NSINC,NEND,MCURYE, *11,12,13,MCT,MYSTT,IYARR,ELEYB(10),NS11,LINTER,NCONTT,ELB(40),MPR *,INPUT,IOUT

IF(KK .GT. NINT) GO TO 120 IVAR(KK)=FVALUE GO TO 300 I1=KK-NINT RVAR(I1)=FVALUE C This subroutine is designed to replace the NAMELIST of FORTRAN.

 This subroutine is designed to replace the NAMELISI OF FURIAMA.

 THE ARGUMENTS IN THE SUBROUTINE HAVE THE FOLLOWING MEANINGS:
 120

 1. NAME is the name of the NAMELIST.
 200

 2. NAMES is an array NTO long that contains the names of the 300
 300

 NAMELIST variables.
 These variables must be arranged with INTEGERS 300

 NAMELIST variables.
 These variables must be arranged with INTEGERS 300

 NAMELIST variables.
 These variables must be arranged with INTEGERS 300

 NAMELIST variables.
 These variables must be arranged with INTEGERS 310

 3. IVAR is an integer array that will contain the integer 310
 310

 3. IVAR is a real array that will contain the real variables in NAI320
 4. RVAR is a real array that will contain the real variables in NAI320

 4. RVAR is a real array that will contain the last integer variable the first real variable will be placed in RVAR(1) and the last in RVAR(NTOT-NINT).
 399

 5. NINT = number of integer variables in NAMELIST.
 300

 6. NREAL = number of real variables in NAMELIST.
 4. NTOT= NINT+NREAL 410

 IIA=1 IF(J .GT. 79) GO TO 5 IF(3 .GT. /9) GU 10 5 GO TO 40 IF(CARD(1:1+3).EQ.'SEND' .OR. CARD(I:I+3) .EQ.'&END') RETURN WRITE(IOUT.320) NAME_CARO(I:I+3) FORMAT(IX.A6,' LIST MUST END WITH A \$END OR &END. YOU ENDED WITH * '.A4,'' ONLY PREVIOUSLY GIVEN OPTIONS WILL BE CHANGED FROM DEFAULT č VALUES') RETURN WRITE(10UT,330) FORMAT('NO SEND OR &END FOUND -- STOP') STOP STOP WRITE(IOUT.420) CARD(J:J),CARD FORMAT(' VARIABLE ',A7, ' MORE THAN 6 CHAR. ',/,A80) 7. NTOT= total number of variables in NAMELIST, i.e. NTOT=NINT-NREAL,
IN THE CALLING PROGRAM THE FOLLWOING NEEDS TO BE GONE:
I. Replace the NAMELIST declaration (NAMELIST/SPECIF/ list) with
a CHARACTER declaration statement that places the NAMELIST variable
in the array NAMES, For example:
CHARACTER'S GAMES(4)/'NUNIT', 'NELOW', 'PEAKF', 'NISC'/
Z.Include the NAMELIST MAME in a CHARACTER declaracter and give it
the names of the NAMELIST variables, i.e.
CHARACTER'S GAME/SPECIF/
Add an EQUIVALENCE statement that equivalences each integer vari.
in the MAMELIST to the positions in the integer array IVAR in the
same order as they appear in the NAMES list. Also aquivalence each
vorwable to the real array RVAR in the same order as they appear
in NAMES after the integer variales.
Provide values to NINT.NREAL and NTOT, i.e.
DATA NINT.NREAL,NTOT/2,2/4
S. Replace the NAMELIST frad i.e. READ(5.SPECIF) with
a call to SUBROUTINE NAMELIST (AND. NUT,NREAL,NTOT) č 1420 STOP ENO SUBROUTINE AREAP(1,YO) COMMON BI(10),FMI(10),REY(40),B(4),FM(40),CH(40),SI(10),S(40), *XI(10),YI(10,10),QO,TI(10,10),TT(30,10),X(40),AI(10,10),PI(10,10), *XI(10),YI(30,10),YC(40),SC(40),YN(40),YT(30,10),Y(40),AI(40),QI(40) *),PP(40),TOP(40),YI(40),FAC1,FAC2,FAC3,XINC,XBEG,ERR,OC2,OG2,DELX, *OEL2,DEL2,RDX4,RDX3,DGK,MS0,ITARPL,M,NSTART,NSINC,MEND,MCURVE, *11,12,13,MCT,MYSTRT,IVARR,ELEVB(10),NS11,LINTER,NCONTT,ELB(40),NPR *.INPUT,IOUT FIF(10, GT, 1.E-6) GO TO 10 AA(1)=,OC1 GO TO 50 0000 G(10,50 G(10,50 IF(Y0 LE. .5*(YT(I,I2)+YT(I,I3)) .OR. 13 .EQ. NP) GO TO 20 10 11=11+1 II=II+1 I2=I1+1 I3=I2+1 MCT=1 REAL RVAR(NERAL) INTEGER IVAR(NINT) CHARACTER®S NAMES(NTOT),NAME,PAR CHARACTER*12 FMT CHARACTER*12 FMT IF(Y0 .GE. .5*(YT(I,I1)+YT(I,I2)) .OR. I1 .EQ. 1) GO TO 30
II=II-1 GO TO 10 20 IF(Y0_GE. .5*(YT(I,11)+YT(I,12)) .OR. I1 .EQ. 1) GO TO 30 I1=I1-1 I2=I1-1 I3=I2+1 MCT=1 GO TD 20 IF(MCT .EQ. 0) GO TO 40 DN1=(YT(I,12)-YT(I,12)+YT(I,13)) ON2=(YT(I,12)-YT(I,11))*(YT(I,12)-YT(I,13)) ON3=(YT(I,12)-YT(I,11))*(YT(I,13)-YT(1,12)) MCT=0 FAC1=(YO-YT(I,11))*(YO-YT(I,13))/ON1 FAC2=(YO-YT(I,11))*(YO-YT(I,13))/ON1 FAC2=(YO-YT(I,11))*(YO-YT(I,13))/ON1 FAC2=(YO-YT(I,11)*(YO-YT(I,12))/DN3 AA(1)=FAC1*A(I,11)+FAC2*A(I,12)+FAC3*A(I,13) RETURN SUBROUTINE BAND(N,MI1) COMMON B1(10),FMI(10),REY(40).B(40),FM(40),CH(40),SI(10),S(40), *X1(10),Y1(10,10),QO,TI(10,10),TT(30,10),X1(40),AI(10,10),P1(10,10), *X1(10),Y1(10,10),QO,TI(10,10),TT(30,10),X1(40),AI(10,10),Q(40 *),PP(40),TOP(40),Y1(40),FAC1,FAC2,FAC3,XINC,XEGE,ERR,UC2,QG2,DELX, *11,2,13,MCT,WYSTRT,IVARR,ELEVB(10),NSII,LINTER,NCONTT,ELB(40),NPR *,INPUT,IOUT CHARACTER*80 CARO TTA=C IIA=U READ(1NPUT,10,END=99) CARO FORMAT(A8D) 30 5 10 I-1 J=0 IF(11A .GT. 0) GD TO 40 IF(CARO(1:1) .ME.'') GO TO 20 I=1+1 IF(1 .LT. 81) GO TO 15 GO TO 5 IF(CARD(1:1) .EQ. '\$'.OR. CARD(I:1) .EQ. '&') GO TO 30 WRITE(10UT.22) FORMAT('LOOKING FOR \$ OR &') STOP 40 15 50 20 22 STOP I=I+1 J=1 JJ=I+6 30 JJ=1+0 J=J+1 IF[CARD[J:J] EQ. ' ') GO TO 34 IF[J LT. J] GO TO 32 WRITE[IOUT,33] CARD FORMAT[' YOU MUST LEAVE A BLANK AFTER NAMELIST NAME. YOU GAVE' 32 * INPUT,ICUT COMMON (260,6),V(80) GO TO (10,10,20,20,10,10,20,20),MI1 K4=4 GO TO 30 K4=5 DOD K=1,2 33 10 34 J=J=1 IF(CARD(1:J) .EQ. NAME) GO TO 40 WRITE(10UT,35) NAME, CARD(1:J) FORMAT('YOU SPELLED '.A5,' AS '.A6} STOP J=1+1 DED(-CARD(1:1)) 20 30 KP=K+1 KP=K+1 K1=K4-K DO 90 I=K1.N IM=I-1 FAC=C(I.K)/C(IM.KP) IF(MOD(1.2)) 50,50,60 35 40 40 J=J+1 CARDI=CARD(J;J) IF(J.GT.79) GO TO 5 IF(CARDI .NE.'\$' .AND. CARDI .NE.'&') GO TO 42 I=J GO TO 310 IF(CARDI'.EQ.' ' .OR. CARDI .EQ.',') GO TO 40 I=J-1 #. J=I+7 50 M=5 GO TO 70 G0 T0 70 M=4 D0 80 J=KP.M C(1,J)=C(1,J)-FAC*C(IM,J+1) V(1)=V(1)-FAC*V(IM) CONTINUE *---60 70 80 90 100 42 45 JJ=1+/ IF(I .GT, JJ) GO TO 410 IF(I .GT, 79) GO TO 5 CARD1=CARD(1:1) IF(CARD1 .EQ. '\$' .GR. CARD1 .EQ. '&') GO TO 310 IF(CARD1 .NE. '=' .AND. CARD1 .NE. ') GO TO 50 50 CONTINUE MI=I I=M-1 V(N)=V(N)/C(N,3) G0 T0(110,110,120,140,130,130,120,140),MI1 II=NS0-1 Q(NS0)=V(N) V(T1=V(V) V(NS0) + 411000 = 0 110 ITIORAL I=I-1 PAR=CARD{J:I} DD 60 K=1,NTOT. IF(NAMES(K) .EQ. PAR) GO TO 80 V(I)=(V(I)-V(N)*C(I,4))/C(I,3) Q(II)=V(I) Q(11)=V(1) IM=I-1 V(IM)=(V(IM)-C(IM,4)*V(I)-C(IM,5)*V(N))/C(IM,3) Y(II)=V(IM) GO TO 150 11=NSO-1 60 CONTINUE WRITE(IOUT,70) PAR FORMAT(1H ,AG,' 1S AN INVALIO OPTION NAME') STOP KK=K J=I+2 IF(CARD(1.I) .NE. ' '.AND. CARD(I:I) .NE. '='} GO TO 86 J=1+1 GD TO 82 CONTINUE 70 120 80 85 82 11=NSU-1 Q(II)=V(N) V(I)=(V(1)-V(N)*C(I,4))/C(I,3) Y(II)=V(1) I=N MI=3 G0 T0 150 J≠I IF{J .GT. 79) GO TO 5 86 IF(J.GT. 79) GO TO 5 J=J+1 IF(J.GT. BO) GO TO 100 CARDI=CARD(J:J) IF(CARDI - EQ.', ') GO TO 100 GO TO 90 J=J-1 ENCCODE(12,110.FMT) 1.1J FORMAT('('T,12,',F',12,',0) ') DECODE(J,FMT,CARD) FVALUE V(I)=(V(I)-V(N)*C(1,4))/C(I,3) 1I=NSO-1 Q(I)=V(1) 130 90 IM=1-1 IM#1-1 V(IM)=(V(IM)-C(1M,4)*V(I)-C(IM,5)*V(N))/C(IM,3) Y(II)=V(IM) GO TO 150 100 110 U(NSO)=V(N) V(I)=(V(I)-V(N)*C(I.4))/C(I.3) O(NSO)=V(I) 140

h ::

- -

ь "J

έ.,

II=NSO I=N MI=3 150 IE=1 IP=IE-1 I=1P-1 IM=1-1 11=11-1 11=11-1 ¥(1)=(¥(1)-C(1,4)*¥(1P)-C(1,5)*¥(1E))/C(1,3) ¥(1M)=(Y(1M)-C(1M,4)*¥(1)-C(1M,5)*¥(1P)-C(1M,6)*¥(1E))/C(1M,3) Q(11)=¥(1) Y(11)=¥(1) Y(1)=¥(1) F(1M. GT. M1) GO TO 150 1F(1M. GT. M1) GO TO 150 1F(1M. GT. G) GO TO 150 1F(M1. GT. G) GO TO 160 Q(1)=¥(2) RETURN RETURN RETURN END 160 END FUNCTION DYX(1) COMMON B1(10),FM1(10),REY(40),B(40),FM(40),CH(40),SI(10),S(40), *XI(10),YI(10,10),00,TI(10,10),TT(30,10),X(40),AI(10,10),PI(10,10), *A(30,10),P(30,10),YC(40),SC(40),YN(40),YT(30,10),Y(40),AA(40),Q(40) *),PP(40),TOP(40),VI(40),FAC1,FAC2,FAC3,XINC,XEEG,ERR,QC2,QC2,DELX,40 *OEL2,DEL32,RDX4,RDX3,DXG,NS0,ITRAPE,NP,NSTART,NSINC,NEND MCURVE, *11,12,13,MCT,MYSTRT,IVARR,ELEVB(10),NSI1,LINTER,NCONTT,ELB(40),NPR END **DL2,2,0EL32,RD34,RD33,D34,NS0,TTRAPE,NP,NS1AK1,NS1 **11,22,13,MCT,MYSTT,IVARR,ELEVB(10),NS11,LINTER,N *_INPUT,IOUT OG2=0(1)*2 OG2=0G2/32,2 (103=0(1)**1.0332 Ff(ITRAPE EQ, 0) 60 TO 50 AR=(8(1)+FM(1)*Y(1))*Y(1) A2=AR*AR TR=8(1)+2.*FM(1)*Y(1) PR=8(1)+2.*FM(1)*Y(1) PR=8(1)+2.*FM(1)*SQRT(FM(1)**2+1.) IF(1 EQ, NS0) 60 TO 10 IF(1 EQ, NS0) 60 TO 10 OEL2=2.*XINC IP=1+1 IM=1-1 DAX-(6(IP)-B(IM)+Y(1)*(FM(1P)-FM(1M)))*Y(1)/DEL2 DOX=(0(IP)-Q(1M))/DEL2 OX TO 30 DAX-(8(2)-B(1)+Y(1)*(FM(2)-FM(1)))*Y(1)/XINC OQX=(0(Q2)-Q(1))/XINC OQX=(0(Q2)-Q(1))/XINC ¢ DXX=(072)-B(1)+Y(1)+(FM(2)-FM(1)))+Y(1)/X1NC OXX=(0(2)-Q(1))/X1NC DXX=(0(2)-Q(1))/X1NC DXX=(0(NSO)-B(NSO-1)+Y(NSO)+(FM(NSO)-FM(NSO-1)))+Y(NSO)/X1NC DXX=(0(NSO)-O(NSO-1))/X1NC DXX=(0(NSO)-O(NSO-1))/X1NC DXX=(0(1)+Q(1))+DXX/(64.4*A2) A3=AR*A2 A103+AR*1.0332 CX2=10.6489*0103/A103 1F(DX.GT.0.0) DXX=2.*DQXF SF=QC2*FM(1)+Y*2(PR/AN)+*1.333333333/A2 SF=QC2*FM(1)+Y*2(PR/AN)+*1.3433333333/A2 SF=QC2*FM(1)+Y*2(PR/AN)+*1.3433333333/A2 SF=QC2*FM(1)+Y*2(PR/AN)+*1.3433333333/A2 SF=QC2*FM(1)+Y*2(PR/AN)A2NDXF)/(1)-OG2*TR/A3) 10 20 30 ċ DYX=(S(1)-SF+QG2/A3*DAX-DQXF)/(1.-QG2*TR/A3) RETURN IF(LINTER .EQ.0) GO TO 90 DO 60 J=2.NP IF(YT(I J)-Y(I)) 60.70.70 -50 If(Y(II J)=Y(I) b0,70,70
CONTINUE
FACT=(Y(I)=YT(I,J=1))/(YT(I,J)=YT(I,J=1))
AR = A(I,J=1)+FACT*(A(I,J)= A(I,J=1))
TR =TT(I,J=1)+FACT*(TT(I,J)=TT(I,J=1))
A2=AR*AR
IF(I = 0, 1) GO TO BO 60 70 IF(I .EQ. 1) GO TO 80 IM=1-1 IN=1-1 ARH=A(IM,J-1)+FACT*(A(IM,J)-A(IM,J-1)) OAX=(AR-ARM)/(X(I)-X(IM)) DQX=(Q(I)-Q(IM)) /(X(I)-X(IM)) DQX=(Q(I)+Q(IM))*DQX/(64.4*A2) GOTO 40 ARP=A(2,J-1)+FACT*(A(2,J)-A(1,J-1)) DAX=(ARP-AR)/(X(2)-X(1)) DQXF=(0(2)+Q(1))/(X(2)-X(1)) DQXF=(0(2)+Q(1))*DQX/(64.4*A2) GD TO 40 IF(Y(1) .LE. .5*(YT(1,I2)+YT(1,I3)) .OR. I3 .EQ. NP) GO TO 100 -II=IJ+1 80 90 12=12+1 13=13+1 MCT=1 50 GO TO 50 IF(Y(I) .GE. .5*(YT(1,11)+YT(1,12)) .OR. 11 .EQ. 1) GO TO 110 100 IF(Y(1) .GE. .5*(YT(1,11)+TT(1,12)) .OR. 11 FLC, 1, 00 ... 11 I1=11-1 I2=12-1 I3=13-1 MCT=1 G0 T0 100 DH1=(YT(1,11)-YT(1,12))*(YT(1,11)-YT(1,13)) DH3=(YT(1,12)-YT(1,11))*(YT(1,12)-YT(1,13)) DH3=(YT(1,12)-YT(1,11))*(YT(1,12)-YT(1,13)) DH3=(YT(1,12)-YT(1,11))*(YT(1,13))/DH2 FAC2=Y(1)-YT(1,11)*(Y(1)-YT(1,13))/DH2 FAC2=(Y(1)-YT(1,11))*(Y(1)-YT(1,13))/DH2 FAC2=(Y(1)-YT(1,11))*(Y(1)-YT(1,13))/DH2 FAC3=(Y(1)-YT(1,11))*(Y(1)-YT(1,13))/DH2 FAC3=(Y(1)-YT(1,11))*(Y(1)-YT(1,12)+FAC3=(Y(1,13))/(Y(1)-Y(1)))/(Y(1)-Y(1)))/(Y(1)-Y(1)))/(Y(1)-Y(1)))/(Y(1)-Y(1))/(Y(1)-Y(1))/(Y(1)-Y(1))/(Y(1)-Y(1))/(Y(1)-Y(1))/(Y(1)-Y(1))/(Y(1)-Y(1))/(Y(1)-Y(1)))/(Y(1)-Y(1)))/(Y(1)-Y(1)) 11=11-1 110 120

*XI(10),YI(10,10),Q0,TI(10,10),TT(30,10),X(40),AI(10,10),PI(10,10), *A(30,10),P(30,10),YC(40),SC(40),YN(40),YI(30,10),Y(40),AA(40),Q(40 *),PP(40),T0P(40),YI(40),FAC1,FAC2,FAC3,XINX,XBEG,ERR,QC2,QG2,DELX, *OEL2,DEL32,RDX4,RDX3,DXG,NS0,ITRAPE,MP.NSTART,NSINC,WEND,MCURYE, *11,12,13,MCT,MYSTRT,IVARR,ELEYB(10),NS11,LINTER,NCONTT,ELB(40),MPR *,INPUT,IOUT COMMON CGC(80,6),DY(80) JULI=0 LOMMA CGL(G,D),D)(G) L J=NSTART CFAC=,2 X1MC=X(NSTART+NSINC)-X(NSTART) D1FFA=100,*(ELB(1)-ELB(NSO))/(X1NC*FLOAT(NSO-I)) IF(YN)0, GT. 1.E-4) GO TO 10 DY(J)=0. GO TO 20 G0 T0 20 / DY(J)=0YX(J) / IF(ITRAPE .EQ. 0) G0 T0 30 AA(J)=(B(J)+FM(J)*Y(J) PP(J)=B(J)+2.*Y(J)*SQRT(FM(J)*FM(J)+1.) T0P(J)=B(J)+2.*Y(J)*FM(J) G0 T0 70 IF(LINTER .EQ. 0) GOTO 60 ID(40 KK=2.NP K=KK K=KK IF(YT(J,K) .GE. Y(J)) GO TO 50. IF(Y1(3,K).dc. 1(3); 0(3); 0(3); FACT=(Y1(3)-YT(3,K-1))/(YT(3,K)-YT(3,K-1)) FA(3)=A(3,K-1)+FACT*(A(3,K)-A(3,K-1)) PP(3)=P(3,K-1)+FACT*(P(3,K)-P(3,K-1)) TOP(3)=1(3,K-1)+FACT*(T(3,K)-T(3,K-1)) GO TO 70 Go TO 70 GO TO 70 CALL AREAP(J,Y{J)) PP(J)=FAC1*P{J,11}+FAC2*P{J,12}+FAC3*P{J,13} JM-J J=J+NSINC NCT=O Y{(J)=Y(JM)+X1NC*DY{JM}*CFAC Y(J) Y(JM)+X1NC*DY(JM)*CFAC ZC1=Y(J) MCT=1 IF(YN(J) .GT. 1.E-4) GO TO 90 DY(J)=0. GO TO 100 DY(J)=DYX(J) DY1=.5*(DY{JM}+DY(J)) NCT=NCT+1 ZC1=ZC1+ZC IF(NCT .NE. 1) GO TO 110 IF(NS5(ZC-Y(J)) .GT. DIFFA) ZC=ZC1/FLOAT(NCT+1) IF(AS5(DIF) .GT. DIFFA) ZC=ZC1/FLOAT(NCT+1) 90 100 Tr(MSTLL=T(0); UPTA/LC=2L1/FLOAT(MCT+1)
Y(J)=2C
GD TO 80
DIF=ZC=Y(J)
IF(ABS(DIF) .GT. ETR .AND. NCT .LT. 10) GO TO 80
CFAC=2./FLOAT(MCT)
IF(MCURVE-2) 120,220,240
IF(Y(J) .GT. 1.02*N(J)) GO TO 290
IF(Y(J) .GT. 1.02*N(J)) GO TO 290
IF(MCURVE-20,1 .AND.JJ1.E0.0)WRITE(10UT,130)NSTART,J,Y(J)
FORMAT(' M1 - CURVE BEGAN AT SECTION',15, 'AND EMDED AT SECTION',
*15, 'MITY = ',FI0.3)
JJJ1=JJJF1
IF(NCONTT .EQ. 0) GO TO 150
AA(J)=[6(J)+FM(J)*T(J))*Y(J)
PY(J)=A(J)+E(J)+2*Y(J)*SQRT(FM(J)*FM(J)+1.)
TOP(J)=B(J)+2*Y(J)*SQRT(FM(J)*FM(J)+1.)
TOP(J)=B(J)+2*Y(J)*SQRT(FM(J)*FM(J)+1.)
TOP(J)=B(J)+2*Y(J)*SQRT(FM(J)*FM(J)+1.)
TOP(J)=B(J)+2*Y(J)*SQRT(FM(J)*FM(J)+1.)
TOP(J)=B(J)+2*Y(J)*SQRT(FM(J)*FM(J)+1.)
TOP(J)=B(J)+2*Y(J)*SQRT(FM(J)*FM(J)+1.)
TOP(J)=B(J)+2*Y(J)+2*Y(J)*Y(J)
GO TO 190
CALL AREAP(J,Y(J))
FY(J)+T(J,K-1)+FACT*Y(A(J,K)-AT(J,K-1))
AA(J)=A(J,K-1)+FACT*Y(A(J,K)-AT(J,K-1))
TOP(J)=FT(J,K-1)+FACT*Y(J,K)-TT(J,K-1))
TOP(J)=FT(J,K-1)+FACT*Y(J,K)-TT(J,K-1))
TOP(J)=FT(J,K-1)+FACT*Y(J,K)-TY(J,K-1))
TOP(J)=T(J,K-1)+FACT*Y(J,K)-TY(J,K-1))
TOP(J)=T(J,K)-1)+FACT*Y(J,K)-TY(J,K-1))
TOP(J)=T(J,K)-1)+FACT*Y(J,K)-TY(J,K-1))
FY(J)=T(J,K)-1)+FACT*Y(J,K)-TY(J,K-1))
TOP(J)=T(J,K)-1)+FACT*Y(J,K)-TY(J,K-1))
FY(J)=T(J,K)-1)+FACT*Y(J,K)-TY(J,K-1))
FY(J)=T(J,K)-1)+FACT*Y(J,K)-TY(J,K-1))
FY(J)=T(J,K)-1)+FACT*Y(J,K)-TY(J,K-1))
FY(J)=T(J,K)-1)+FACT*Y(J,K)-TY(J,K-1))
FY(J)=T(J,K)-1)+FACT*Y(J,K)-TY(J,K-1))
FY(J)=T(J,K)-1)+FACT*Y(J,K)-TY(J,K-1))
FY(J)=T(J,K)-1)+FACT*Y(J,K)-TY(J,K-1))
FY(J)=T(J,K)-1)+FACT*Y(J,K)-TY(J,K-1))
FY(J)=T(J,K)-1)+FACT*Y(J,K)-TY(J,K)-TY(J,K-1))
FY(J)=T(J,K)-1)+FACT*Y(J,K)-TY(J,K)-TY(J,K-1))
FY(J)=T(J,K)-1)+FACT*Y(J,K)-TY(J,K)-TY(J,K)-1)
FY(J,J)
FY(J,K)-1)+FACT*Y(J,K)-TY(110 120 130 140 150 160 170 180 190 200 210 220 230 GO TO 590 AR=(B(J)+FM(J)*YN(J))*YN(J) AV=(B(J)+FH(J)+YN(J))*YN(J) YEL=Q(J)/AR YCONJ=.5*YN(J)*(SQRT{1.+.24845*YEL*YEL/YN(J)}-1.) QG2=Q(J)**2/32.2 FFM=G62/AR+K(.5*B(J)+FH(J)*YN(J)/3.)*YN(J)**2 NCTO Y2=YCONJ*YCONJ FAC=.5*B(J)+FH(J)*YCONJ/3. FAC=.5*B(J)+FH(J)*YCONJ/3. FAC=.5*B(J)+FH(J)*YCONJ/3. FAC=.5*B(J)+FH(J)*YCONJ/3. DF=2.*YCONJ*FAC+Y2*FH(J)/3.-QG2*{B(J}+2.*FH(J)*YCONJ)/(AR*AR) DIF=F/DF YCONJ*CONJ-DIF NCT=NCT+1 240 250

10 20

60 70

260	IF(NCT .EQ. 7) WRITE(10UT,260) J.DIF,YCONJ FORMAT(' OLD NOT CONVERGE IN DETERMINING CONJUGATE DEPTH A
	*N',15,2E12.5) YT{J,3}×YCONJ
	1F{Y(J} .LT. YCONJ) GO TO 290 WRITE(10UT.270) (YT(1.3),I=NSTART.J}
270	FORMAT(' CONJUGATE DEPTHS TO NORMAL DEPTHS' ,(1H ,13F10.3)
280	FORMAT(' A HYDRAULIC JUMP OCCURS BEFDRE SECTION', 15, ' TAK
	MCURVE=0
	0Y(J)=0. Y(J)=YN(J)
290	IF(ITRAPE .EQ. 0) GO TO 300 AA(J)=(B(J)+FM(J)*Y(J))*Y(J)
	PP(J)=B(J)+2.*Y(J)*SORT(FM(J)*FM(J)+1.) TOP(J)=0(J)+2.*Y(J)*EM(J)
	GO TO 340
300	17(LINTER .EQ. 0) 60 10 330 00 310 KK≈2,NP
	K=KK IF(YT(J,K) .GE. Y(J)) GO TO 320
310 320	CONTINUE FACT=(Y(J)-YT(J,K-1))/(YT(J,K)-YT(J,K-1))
	AA(J)=A(J,K-1)+FACT*(A(J,K)-A(J,K-1)) PP(J)=P(J,K-1)+FACT*(P(J,K)-P(J,K-1))
	TOP(J)=TT(J,K-1)+FACT*(TT(J,K)-TT(J,K-1))
330	G010 340 CALL AREAP(J,Y(J))
	PP(J)=FAC1*P(J,11)+FAC2*P(J,12)+FAC3*P(J,13) TDP(J)=FAC1*TT(J,11)+FAC2*TT(J,12)+FAC3*TT(J,13)
340 350	IF(NSINC) 350,590,360 IF(J_GT_NEND) 60 TO 70
360	GO TO 370
370	IF(1VARR .GT. 0) RETURN
C	WRITE(1001,100) (((1),1=1,NSO) IF(NPR.GT.O.OR.NSII.GT.O)WRITE(10UT,380) (Y(1),1=1,NSO)
380 C	FORMAT(' DEPTHS OF FLOW AT SECTIONS',/,(1H ,13F10.3)) WRITE(IDUT,300) (AA(1),1=1.NSO)
390	IF(NPR.GT.0.0R.NSI1.GT.0)WRITE(IDUT,390) (AA(1),1=1,NSO) FORMAT(' CROSS-SECTIONAL AREAS' / (1H .13F10,1))
350	00 400 1=1.NS0
400	REY(I) = 3.*VI(I)
C	WRITE(IOUT,303) (VI(1),1=1,NSO) IF(NPR.GT.O.OR.NSII.GT.O)WRITE(IOUT,4IO) (VI(1),1=1,NSO)
410 C	FORMAT(' VELOCITY',/,(IH ,I3F10.3)) WRITE(IOUT.301) (PP(I),I=1,NSO)
415	IF(NPR.GT.O.OR.NSII.GT.O) WRITE(IOUT,415) (REY(I),I=1,NSO) FORMAT(' REYNOLDS NUMBERS FOR GVE',/ (1H.13F10.3))
420	IF(NPR,GT.O.OR.NSI1.GT.O)WRITE(IOUT,420) (PP(I),I=1,NSO) EDDMAT(' VETTED REPIMETERS' ((1) 13E(0,1))
C	WRITE(IOUT, 302) (TOP(I), $I=1$, NSO) (TOP(I), $I=1$, NSO)
430	FORMAT(TOP WIDTH',/,(IH ,13F10.2))
	DO 440 I=1,NSO
	11=1+1 1F(IEQ. NSO) 11=1-1
44D C	DY(I)=ELB(I)+Y(I) WRITE(IOUT,308) (DY(I),I=I,NS0)
450	IF(NPR.GT.0) WRITE(IOUT,450) (DY(1),I=1,NSO) FORMAT(' FLEY, OF HGL',7,(IH .13F10,2))
460	00 460 1=1,NS0
480 C	WRITE(1017,309) (DY(1),1=1,NS0)
470	FORMAT(' ELEV. OF E.L.',/(1H ,13F10.2))
	IREP=0 I=NSO
.480	J=I-1 1F(DY(I) .LT. 0Y(J)) G0 T0 520
	IREP=IREP+I
490	K=K-1
	YHA=V1(1)**2
	YHA=YHA+Y1(J)**2 1F(DY(K) ,GT, DY(I)) GO TO 500
	¥HA=¥HA+¥I(K)**2 Go to 490
500	VHA=VHA/FLOAT(I-K+1) DHAY={DY(K)-DY(K))/{FLOAT(I-K}*ABS(XINC)}
	II=K+1 00 510 KK=II_3
510	CY(KK)=DY(KK-1)-DHAV*VI(KK)**2/VHA
520	
	IF(1 .GT. 1) GO TO 480 IF(1REP .EQ. 0) RETURN
	WRITE(10UT,470) (DY(1),I=1,NSO) 00 530 I=1.NSO
530	OY(1)=DY(1)-V1(1)**2/64.4 Y(1)=DY(1)-FLB(1)
000	WRITE(IOUT,450) (DY(I),I=1,NS0)
	00 570 I=1,NS0
	IF(LINTER .EQ. 0) GO TO 560 00 540 KK=2,NP
	K≃KK IF(YT(1,K) .GT. Y(1)) G0 TO 550
540 550	CONTINUE FAC=(Y(1)-YT(1,K-1))/(YT(1,K)-YT(1,K-1))
-	AA(1)=A(1,K-1)+FACT*(A(1,K)-A(1,K-1)) PP(1)=P (1,K-1)+FACT*(P(1,K)-P(1,K-1))
	TOP(1)=TT(1,K-1)+FACT*(TT(1,K)-TT(1,K-1)) CO TO 570
560	CALL AREAP(I,Y(I))

IF(ABS(DIF) .GT. .0001 .AND. NCT .LT. 7) GO TO 250

* -

έ.

e .

- -

r •

k. .

1. D

È...

PP(1)=FAC1*P(1,11)+FAC2*P(1,12)+FAC3*P(1,13) TOP(1)=FAC1*TT(1,11)+FAC2*TT(1,12)+FAC3*TT(1,13) TH AT SECTIO 570 V1(1)=0(1)/AA(1), 1=1, MSD) WRITE(10UT,400(PP(1),1=1,MSD) WRITE(10UT,420)(PP(1),1=1,MSD) WRITE(10UT,420)(PP(1),1=1,MSD) WRITE(10UT,420)(PP(1),1=1,MSD) WRITE(10UT,420)(PP(1),1=1,MSD) SUBROUTINE YDET(1,W,W2) TAKING OEPT C THIS SUBROUTINE IS IN THE ORIGINAL PROGRAM JEPPSON 1974 C BUT FOR THE DEBNIS PROGRAM IT HAS NOTHING TO DO.50 YOU C HAVE THE OPTION TO LEAVE IT IN OR OUT IT ODES NOT MAKE ANY C DIFFERENCE. REAL W(30,15),W2(40) C ONMON BI(10),FM1(10),REY(40),B(40),FM(40),CH(40),S1(10).S(40). *X1(10),V1(10,10),00,TT(10,10),TT(30,10),X(40),AA(40),04(40), *X1(40),V1(40),JAC1,FAC2,FAC3,XH0C,XBE5,ERR,QC2,Q22,DELX, *DEL2,DEL32,RDX4,RDX3,DX6,MSD,TRAPE,HP,MSTART,MSINC,MEND,MCURVE. *11,12,13,MCT,MYSTRT,IVARR,ELEVB(10),NSI1,LINTER,MCONTT,ELB(40),NPR *,IMPUT,IOUT MCT=1 10 IF(M2(1),LE..5*(W(1,12)+W(1,13)).OR.13.EQ.NY) GO TO 20 II=11+1 I3=12+1 MCT=1 GO TO 10 20 IF(W2(1).GE..5*(W(1,11)+W(1,17*) II=11-1 I2=11+1 G0 T0 10 IF (W2(1) .GE. .5*(W(1,11)+W(1,12)) .OR. 11 .EQ. 1) GO TO 30 11=11-1 12=11+1 13=12+1 MGT=1 G0 T0 20 IF (MCT .EQ. 0) GO TO 40 ON1=(W(1,11)-W(1,12))*(W(1,11)-W(1,13)) ON2=(W(1,12)-W(1,11))*(W(1,12)-W(1,13)) ON3=(W(1,12)-W(1,11))*(W(1,13)-W(1,12)) MGT=0 FAC2=W2(1)-W(1,12)*(W2(1)-W(1,13))/ON1 FAC2=W2(1)-W(1,11))*(W2(1)-W(1,13))/DN2 FAC3=(W2(1)-W(1,11))*(W2(1)-W(1,12))/DN3 RETURN END 30 40 EIUWA END SUBROUTINE TRANST C THIS SUBROUTINE HAS NOT BEEN WRITTEN YET. IT IS INTENDED TO C OBTAIN THE SOLUTION OF DEBRIS FLOWS FOR UNSTEADY CONDITIONS. TETURN END

. .

.

•

• •

- - -

.

.

_

.

-.

.

-

.

Appendix B. Example 1

.

Input Data for Example 1. Debris Flow

• ~

• •

r -

• ~

۰. ج~

1 -

\$ 2

r ---

. .

- - -

ь. "э

r -

برية. و س

۰. ...

F ~

۶ - ۲

. Е.,

e -

_ : `

· . .

Input Data for Example 1. Debris Flow (Continued)

\$ RUN MAIN	PROVIDE 5 X-DIST. FOR 5 INPUT SECTIONS
DO YOU WANT A DEFINITION OF NAMELIST IN SPECIF? Y OR N	0,1000, 2000, 3000, 4000
Ň	PROVIDE BOTTOM SLOPES FOR 5 INPUT SECTIONS
DEFAULT OPTIONS ARE:	0.1, 0.05, 0.005, 0.001, 0.0005
ITRAPE = 1 IOYES = 0 ERR = 0.00100 INFLOW = 1 MYSTRT = 0	PROBLEM SPECIFICATIONS
IUNSTE = 1 LINTER = 1 NCONT = 0 NPR = 0	X 0.0 1000.0 2000.0 3000.0 4000.0
DO YOU WANT ANY OF THESE CHANGED? Y OR N	s 0.1000 0.00500 0.00500 0.00100 0.00050
Y · · ·	IS THERE LATERAL INFLOW Y OR N
GIVE CHANGED OPTIONS IN & SPECIFIC LIST	N
& SPECIF IUNSTE = 0 & END	sq 0.000 0.000 0.000 0.000 0.000
GIVE THE INPUT DATA AFTER THE NAME. IF YOU DO NOT UNDERSTAND NAME WRITE, HELP	PROVIDE 5 BOTTOM WIDTHS, THEN 5 SIDE SLOPES
NSI	100, 200, 300, 400, 500, 0, 0, 0, 0, 0
5	B 100.000 200.000 300.000 400.000 500.000
NSO	M 0.000 0.000 0.000 0.000 0.000
11	HAVE YOU MADE ANY MISTAKES Y OR N
QO	N
100	WHERE SHOULD THE OUTPUT GO? 1) TTY IF TERM ONLY; 2) FILE NAME
XBEG	
0	
XEND	
4000	
YSTART	
100	
PROVIDE OUTPUT STA. NO. WHERE GVF IS TO BEG; I.E. 1 OR 11	,
11	

SECTIONS	ALO	NG CHANNE	L	1200 0	1/00 0	2000 0	2400.0	2800.0
3200	• •	400.0	4000.0	1200.0	1800.0	2000.0	2400.0	200010
3200	••	3000.0	400010					
DISCHAR	GE A	LONG CHAN	NEL					
100.0	00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
100.0	00	100.00	100.00					
	атот	HS						
100.00	00	140.000	180.000	220.000	260.000	300.000	340.000	380,000
420.0	00	460.000	500,000					
SLOPES (DF S	IDE OF CH	ANNEL					
0.00	00	0,000	0.000	0.000	0.000	0.000	0.000	0.000
0.00	00	0.000	0.000					
	г сы	ANNEL BOT	TOM AT SEC	PROTE				
0.100	0	0.08000	0.06000	0.04100	0.02300	0.00500	0.00340	0.00180
0.000	70	0.00070	0.00050	000.100				
CRITICAL	. DE	PTHS AT S	ECTIONS					
0.314	43	0.2512	0.2124	0,1858	0.1662	0.1511	0.1390	0.1291
0.120	07	0.1136	0.1075					
	C1		FCTTONS					
0 0207	. 3L 70	1 070479	1 107405	1.201330	1.272320	1.336402	1.395091	1.449416
1 5001	10	1 547754	1.507754	1,201000	112/2020	11000102		
1.3001	.,	1.34//38	1,372,00					
AREAS CO	DRRE	SPINDING	TO CRITICA	L DEPTH				
31.4	43	35,16	38.24	40.89	43.23	45.34	47.27	49.05
50.	72	52,28	53.75					
					- 11			
VELOCIT	IES	CORRESPON	DING TU CH	ATTICAL DEP	18 217	12 204	2.114	2.039
3.14	81 72	2.844	2.013	2.440	2.313	2.200	2+110	21007
1.7	/2	1./15	1.000					
REYNOLD	'S N	UMBERS CO	RRESPONDIN	G TO CRITI	CAL DEPTH			
9.	54	8.53	7.85	7.34	6.94	6,62	6.35	6.12
5.9	92	5.74	5.58					
CHEZY'S	NUM	BERS CURR	ESPUNDING	TU CRITICA		4 01	A 01	A 71
5.9	73 / 7 ·	5.60	3.36	2.18	3.03	4.71	4+01	4.71
4.0	03	4.30	4.30					
NORMAL	DEPT	HS AT SEC	TIONS					
0.9	78	0.926	0.946	1.039	1.285	2.612	2,988	3.915
5.3	14	5.774	6.580				-	÷
AREAS C	DRRE	SFONDING	TO NORMAL	DEPTHS	774 040	707 451	1015 005	1407 471
97.8	13	129.595	170,221	228+669	334.049	/83+431	1013.003	140/ 031
2231.8	52	2655.847	3287+830					
VELOCITI	ES C	ORRESPOND	ING TO NOR	MAL DEPTHS				
1.02	22	0.772	0.587	0.437	0,299	0.128	0.098	0.067
0.0	45	0.038	0.030					
	•							
REYNOLD	'S N	UMBERS CO	RRESPONDIN	IG TO NORMA	L DEPTHS	_		
3.0	07	2.31	1.76	1.31	0.90	0.38	0.30	0.20
0.3	13	0.11	0.09					
01153970			CODANTING		NEPTH			
CHEZT'S	מטא ג	2.85	2.48	2.13	1.75	1.13	0.99	0.81
3	50 4.4	2.00	0.54	2.15	11,0			
DEPTHS	FFL	OW AT SEC	TIONS					
2.74	46	35.033	60.904	79.559	91.358	96.483	98,032	98.989
99.48	85	99.779	100.000					
CROSS-SE	CTIO	NAL AREAS					77774 0	77/15 0
274	• 6	4904.6	10962.7	1/502.9	23/33.1	28744+8	33331.0	2101310
41783	• 6	45878.5	20000+0					
	44	0.020	0.000	0.004	0.004	0.003	0.003	0.003
0.30	02	0.0020	0.007	*****	0,004			
REYNDING	NIIM	BERS FOR	GVF					
1.0	92	0.061	0.027	0.017	0.013	0.010	0.009	0.008
0.0	07	0.007	0.006					
WETTED PI	ERIM	ETERS		_				F =0 (
105	•5	210.1	301.8	379.1	442.7	493.0	536.1	2/8.0
619	••	659.6	700.0					
TOP WIDT	H 00	140.00	180.00	220.00	260.00	300.00	340.00	380.00
420	00	460.00	500.00		100.00			
			~~~~~					

0.0	400.0	800.0	1200.0	1600.0	2000.0	2400.0	2800.0	
3200.0	3600.0	4000.0						
		,						
DISCHARGE	ALONG CHAP	NNEL						
100.00	100.00	100.00	100.00	100,00	100.00	100.00	100.00	
100.00	100.00	100.00						
BOTTON UT	THE							
100.000	140 000	100 000	000 000	<b>n</b> /n nnn	700 000	740 000	700 000	
420.000	440.000	500.000	220.000	280.000	300.000	340.000	290,000	
4201000	400.000	300+000						
SLOPES OF	SIDE OF CH	HANNEL						
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
0.000	0.000	0.000			••••			
MANNINGS	N FOR SEC	CTIONS OF (	CHANNEL					
0.200	0.200	0.200	0,200	0.200	0.200	0.200	0.200	
0.200	0.200	0.200						
SLOPE OF C	HANNEL BOT	TTOM AT SEC	TIONS					
0,10000	0.08000	0.06000	0.04100	0+02300	0,00500	0.00340	0.00180	
0.00090	0,00070	0.00050						
CRITICAL I		SECTIONS						
0.3143	0.2512	0.2124	0.1858	0.1662	0.1511	0.1390	0.1291	
0.1207	0.1136	0.1075	0,1030	0.1002	0.1011	0.10.0	V.12/1	
001207	011100	0010/0						
CRITICAL S	LOPES AT S	SECTIONS						
0.860462	0.923952	0,975427	1.019000	1.056960	1.090718	1.121197	1.149043	
1,174721	1,198583	1.220895						
AREAS CORF	ESPONDING	TO CRITICA	L DEPTH					
31.43	35.16	38.24	40.89	43.23	45.34	47.27	49.05	
50.72	52.28	53.75						
VELOCITIES	LUKKESPUN		CITLAL DEP	111		- · · · ·	0 070	
3,181	2.844	2.615	2.445	2.313	2.206	2,116	2.039	
1.7/2	1.713	1.890						
NORMAL DEP	THS AT SEC	TIONS						
0,601	0.524	0.491	0.488	0.525	0.761	0.793	0.898	
1.041	1.062	1,118						
AREAS CORR	ESPONDING	TO NORMAL	DEPTHS					
60.087	73.372	88.372	107.304	136.420	228,425	269.564	341.083	
437.119	488.743	538,957						
VELOCITIES	CORRESPOND	ING TO NOR	MAL DEPTHS					
1.664	1.363	1.132	0,932	0,733	Q.438	0.371	0.293	
0.229	0.205	0,179						
	LUW HI SEU	11UN3	70 = 47	01 747	04 ×7×	00 07/	00 005	
1+/40	34+771	100 000	771040	71:34/	70.4/4	70.020	70+703	
CROSS-SECTI	UNAL AREAS	1001000						
174.6	4898.7	10958.7	17499.5	23750.2	28942.3	33328.9	37614.2	
41782.5	45878.0	50000.0						
VELOCITY								
0.573	0.020	0.009	0.006	0.004	0.003	0.003	0.003	
0.002	0.002	0.002						
WETTED PERI	METERS							
103.5	210.0	301.8	379.1	442.7	492,9	536.1	578.0	
619.0	659.6	700.0						
HTUIW YUI								
100.00	140.00	180.00	220.00	260,00	300.00	_340.00	380.00	
420,00	460.00	500.00						

• •

r ·

- -

• •

. .

ь .. e ..

• -

~ <del>• •</del>

۲ م

**ب** 

د ب ج -

12

- -

- ಕರ

r. ~~

- -

× ~

.

SECTIONS	ALONG CHANN	IEL					
0. 3200.	0 400.0 0 3600.0	800.0 4000.0	1200.0	1600.0	2000.0	2400,0	2800.0
DISCHARG	E ALONG CHA	INNEL					
100.0 100.0	0 100.00 0 100.00	) 100.00 ) 100.00	100.00	100.00	100.0	0 100.00	100.00
DOTTOK U					,		
100.00	101HS 0 140.000	180.000	220.000	260.000	300.00	340.000	380.000
420.00	0 460.000	500.000			000700		
SLOPES O	F SIDE OF C	HANNEL					
0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.00	0 0.000	0.000					
MANNINGS	N FOR SE	CTIONS OF	CHANNEL				
0.03	5 0.035	0.035	0.035	0.035	0.03	5 0.035	0.035
0+03	5 0.035	0.033					
SLOPE OF	CHANNEL BO	TTOM AT SE	CTIONS	A A7744			0 00100
0.0009	0.00070	0.00050	0.04100	0.02300	0.00300	0.00340	0.00180
CRITICAL	DEPINS AT 1 0.2512	SECTIONS 0.2124	0.1858	0.1442	0.151	0.1790	0.1291
0.120	7 0.1136	0.1075	011030	V+1002	0.131	0.1370	V.1271
CRITICAL	SLOPES AT	SECTIONS					
0.02635	2 0.028296	0.029872	0.031207	0.032369	0.033403	0.034337	0.035189
0.03597	6 0.036707	0.037390					
AREAS CO	RESPONDING	TO CRITICA	AL DEPTH				
31.4	3 35.16	38.24	40.89	43.23	45,34	47.27	49.05
50.7	2 52.28	53.75					
VELOCITI	ES CORRESPO	NDING TO CF	RITICAL DE	РТН			
3.18	2.844	2,615	2.445	2.313	2.200	2,116	2.039
1.77.	- 1.713	1.000					
NORMAL DI	PTHS AT SE	CTIONS			o o/-		
0.365	5 0.373	0.392	0.171	0.184	0.20/	0.278	0.315
AREAS CUP 21.054	RESPUNDING	TU NURMAL	DEPTHS 37.665	47.890	80,167	94.415	119,716
153.414	171.572	196.200					
	CODDECDON	DTNG TO NOS					
4.75		3.225	2.455	2.088	1.247	1.057	0.835
0.65	0.583	0.510					
THIS PROGR	AM ASSUMES	AT SECTION	ANNELS IN	WHICH FLOW	MUST BE	SUBCRITICAL	ROUGHNE
THIS PROGR	AM ASSUMES	NATURAL CH	ANNELS IN	WHICH FLOW	MUST BE	SUBCRITICAL	ROUGHNE
SS MUST BE	INCREASED	AT SECTION					
SS MUST RE	TNCREASED	AT SECTION	IANNELS IN	WHICH FLUW	MUSI BE	SUBERTICAL	RUUGHNE
DEPTHS OF	FLOW, AT SE	CTIONS	•				
1.665	34.991	40.881	79,543	91,347	96.474	98.026	98,985
CROSS-SECT	IONAL AREA	S 100.000			•		
_166.5	4898.7	_ 10958.7	17499.5	23750.2	28942.3	33328.9	37614.2
41782.5 VELOCITY	45898.0	50000.0					
0.601	0.020	0.009	0.006	0.004	0.003	0.003	0.003
0.002	0.002	0.002					
WEITED PER 103.3	210.0	301.8	379.1	442.7	492.9	536.1	578.0
619.0	659.6	700.0					
100 WIDTH	140.00	180.00	220.00	260.00	300.00	340.00	380.00

• ~

6.

τ...

SECTIONS A	LONG CHANN	EL						
0.0	400.0	800.0	1200.0	1600.0	2000.0	2400.0	2800.0	
3200,0	3600.0	4000.0						
DISCHARGE		NNFI						
100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	
100.00	100.00	100.00						
BOTTOM WI	DIHS	100 000				740 000	700 000	
420.000	140.000	180.000	220.000	250.000	300,000	340.000	380.000	
4201000		3001000						
SLOPES OF	SIDE OF C	HANNEL						
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
0.000	0.000	0.000						
NANNTHEC		-						
0 070	0 070	0.070	0 070	0 070	0.070	0.070	0.070	
0.070	0.070	0.070	0.070	0.070	0+070	0.070	0.070	
0.070	0.070	04070						
SLOPE OF	CHANNEL BO	TTOM AT SEC	CTIONS					
0.10000	0.08000	0.06000	0.04100	0.02300	0.00500	0.00340	0.00180	
0.00090	0.00070	0.00050						
CRITICAL	DEPTHS AT	BECTIONS						
0.3143	0.2512	0.2124	0.1858	0,1662	0.1511	0.1390	0.1291	
0.1207	0,1136	0.10/5						
CRITICAL	SLOPES AT	SECTIONS						
0,105407	0.113184	0.119490	0.124827	0.129478	0.133613	0.137347	0.140758	
0.143903	0.146826	0.149560						
		~						
AREAS COR	RESPONDING	TO CRITICA	AL DEPTH					
31.43	35.16	38+24	40.89	43.23	45.34	47.27	49.05	
50.72	52.28	03.70						
VELOCITIE	S CORRESPON	NDING TO CE	TTICAL DEP	тн				
3.181	2,844	2.615	2.445	2.313	2,206	2,116	2.039	
1.972	1.913	1.860						
		•						
NORMAL DE	PTHS AT SE	CTIONS						
0.319	0,2/9	0,261	0.260	0.279	0+405	0.422	0.478	
V+334	0.303	0.373						
AREAS COR	RESPONDING	TO NORMAL	DEPTHS					
31.934	39.027	47.023	57,108	72.609	121.555	143.458	181.518	
232.616	260.141	297,480						
VELOCITIES	CORRESPON	JING TO NOR	MAL DEPTHS					
3.131	2.562	2.12/	1,/51	1.3//	0.823	0.697	0.551	
0+430 NEDTUS OF 1	0.384 2100 AT 920	01010						
1.473	74.991	A0.991	79.543	91.347	94.474	00.024	99.995	
99.482	99.778	100.000	///010	/1.54/	701474	70+720	101100	
CROSS-SECT	IONAL AREAS	3						·
167.3	4898.7	10958.7	17499,5	23750.2	28942.3	33328.9	37614.2	
41782.5	45898.0	50000.0						
VELOCITY	A 404	A AAA	A AA/	A	A AA-	A 44-	A	
0.398	0.020	0.009	0+009	0.004	0.003	0.003	0.003	
WETTED PER	IMETERS	0.002						
103.3	210.0	301.8	379.1	442.7	492.9	534.1	578.0	
619.0	657.6	700.0			.,,	20011		
TOP WIDTH								
100.00	140.00	180.00	220.00	260,00	300.00	340.00	380.00	
420.00	460.00	500.00						

- -

• •

• -

і. .. я ...

• •

ъ.,

• -

њ. и . –

<u>с</u>....

ι.

r -

ц ...

k. ....

с с -

, .

۴ ... د .

<u>ج</u> ۲

L ... *

SECTIONS A	LONG CHANN	1EL					
0.0	400.0	800.0	1200.0	1600.0	2000.0	2400.0	2800.0
3200.0	320010	4000.0	,				
DISCHARGE	ALONG CHA	MNEL					
100.00	) 100.00	100.00	100.00	100.00	100.00	100.00	100.00
100.00	> 100.00	100.00	)				
80770H U1	DTUR						
100.000	140.000	180.000	220 000	3/0 000	700 000	740.000	790.000
420.000	460.000	500.000	220,000	280.000	300.000	3401000	300+000
SLOPES OF	SIDE OF C	HANNEL					
0.000	0.000	0.000	0.000	0.000	0.000	0,000	0.000
0.000	> 0.000	0.000					
MANNINGS	N FOR SE	CTIONS OF	CHANNEL				
0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100
0.100	0,100	0.100					
	-						
SLOPE OF	CHANNEL BO	TTOM AT SE	CTIONS				
0.10000	0.08000	0.06000	0.04100	0.02300	0.00500	0.00340	0+00180
0.00090	0,00070	0.00050					
CRITICAL	DEPTHS AT	SECTIONS					
0.3143	0.2512	0.2124	0.1858	0.1662	0,1511	0.1390	0.1291
0.1207	0.1136	0.1075	-				
CRITICAL	SLOPES AT	SECTIONS	A 05475A				A 0070/1
0+215115	0+230988	0,243857	0.254/50	0.264240	0.272680	0.280299	0.28/261
V+27300V	V1277040	V,3VJZ24					
AREAS COR	RESPONDING	TO CRITIC	AL DEPTH				
31.43	35.16	38,24	40.89	43.23	45.34	47.27	49.05
50,72	52.28	53.75					
VELOCITIE	S CORRESPO	NDING TU CI	RITICAL DEP	TH			
3,181	2.844	2,615	2.445	2.313	2.206	2,115	2.039
1+7/2	1,713	1,000					
NORMAL DE	PTHS AT SE	CTIONS					
0.396	0.345	0.324	0.322	0.346	0,502	0.523	0.592
0.686	0.701	0,737					
	DECOMMENT	TO NOONAL	DEDTUC				
30.58%	AG. 750	10 NORMAL 59.241	70.751	99.954	150.400	177.734	224.097
288.197	322.248	368.550		071704	130.000	1// 1/04	2291007
VELOCITIES	CORRESPON	DING TO NOP	RMAL DEPTHS				
2.526	2,068	1,716	1.413	1.112	0.664	0.563	0,445
0.347	0.310	0.271					
DEPINS UP 1	FLUW AI SEI	LIIUN5 (A 001	70 647	01 747	04 474	00 074	00 005
00.407	34:771	100.001	77.343	71+347	70.4/4	70,020	70,703
CROSS-SECT:	IONAL AREAS	5					
168.4	4898.7	10958.7	17499.5	23750.2	28942.3	33328.9	37614.2
41782.5	45898.0	50000.0					
VELOCITY							
0.594	0.020	0.009	0.006	0.004	0.003	0.003	0.003
0.002	0.002	0.002			•		
103.4	210.0	301-8	379.1	442.7	492.9	536.1	578.0
619.0		700.0					
TOP WIDTH	56770						
. 100.00	140.00	180.00	220.00	260.00	300.00	340.00	380.00
420.00	460.00	500.00					

----

# Appendix C. Example 2

. ..

e -

L .

.

Joput data for Example 2. Debris flow	Input data for Example 2 (cont.)
\$ RUN MAIN	PROVIDE 2-X DIST. FOR 2 INPUT SECTIONS
DO YOU WANT A DEFINITION OF NAMELIST IN SPECIF? Y OR N	0,1000
	PROVIDE BOTTOM SLOPES FOR 2 INPUT STATIONS
DEFAULT OPTIONS ARE:	0,105, 0,105
TRAPE = 1 IOYES = 0 ERR = 0.00100 INFLOW = 1 MYSTRT = 0	PROBLEM SPECIFICATIONS
NSTE = 1 LINTER = 1 NCONT = 0 NPR = 0	X 0.0 1000.0
D YOU WANT ANY OF THESE CHANGED? Y OR NO	S 0.10500 0.10500
	IS THERE LATERAL INFLOW Y OR N
IVE CHANGED OPTIONS IN & SPECIF LIST	N
SPECIF LUNSTE = 0 & END	SQ 0.000 0.000
IVE THE INPUT DATA AFTER THE NAME. IF YOU DO NOT UNDERSTAND NAM	E WRITE, HELP PROVIDE 2 BOTTOM WIDTHS, THEN 2 SIDE SLOPES
SI	70, 70, 0, 0
	B 70.000 70.000
30	M 0.000 0.000
	HAVE YOU MADE ANY MISTAKES Y OR N
	N
00	WHERE SHOULD THE OUTPUT CO? GIVE 1) TTY IF TERM ONLY; 2) FILE NAME
BEG	
ŇD	
000	
3T ART	
0	
ROVIDE OUTPUT STA.NO. WHERE GVG. IS TO BEG., I.E. 1 or 21	
1	
	75

SECTIONS AL	ÔNG CHANN	EL						
0.0	50.0	100.0	150.0	200.0	250.0	300.0	350.0	
400.0	450.0	500.0	550.0	600.0				
650.0	700.0	750.0	800.0	850.0	900.0	950.0	1000.0	
DISCHARGE		NNEL						
500.00	500.00	500.00	500.00	500.00	500.00	500.00	500.00	
500.00	500.00	500.00	500.00	500.00				
500.00	500.00	500.00	500.00	500,00	500.00	500.00	500.00	
-	THE							
20,000 WID	70.000	70 000	70 000	70 000	70 000	70 000	70 000	
70,000	70.000	70.000	70.000	70.000	/0.000	70.000	/0.000	
70.000	70.000	70.000	70,000	70,000	70.000	70.000	70.000	
SLOPES OF	SIDE OF C	HANNEL						
0.000	0.000	0.000	0.000	0.000	0.000	0,000	0.000	
0.000	0,000	0.000	0.000	0.000		0 000	0 000	
0,000	0.000	0.000	. 0.000	0.000	0.000	0.000	0.000	
SLOPE OF C	HANNEL BO	TTOM AT SE	CTIONS					
0.10500	0.10500	0.10500	0.10500	0.10500	0.10500	0.10500	0.10500	
0.10500	0,10500	0.10500	0.10500	0.10500				、
0,10500	0,10500	0.10500	0.10500	0,10500	0.10500	0.10500	0.10500	
	EPTHS AT	SECTIONS					ł	
1.1658	1.1658	1.1658	1.1658	1.1458	1,1458	1,1458	1,1458	
1,1658	1,1658	1.1658	1.1658	1,1658	111000			
1.1658	1.1658	1.1658	1.1658	1.1658	1,1658	1.1658	1,1658	
CRITICAL S	LOPES AT	SECTIONS						
0,480177	0.480177	0.480177	0.480177	0.480177	0.480177	0.480177	0.4801//	
0.480177	0.4801//	0.4801//	0.480177	0.480177	0.490177	0 480177	0.490177	
014001//	0.4001//	01400177	01400177	00400177	01400177	01400177	01400177	
AREAS CORR	ESPONDING	TO CRITIC	AL DEPTH					
81.61	81.61	81.61	81.61	81.61	81.61	81.61	81.61	
81.61	81.61	81.61	81.61	81.61	<b></b>	<b>.</b>	<b>64</b> 44	
81+91	81,61	81.01	81.01	81.61	81.61	81.61	81.01	
VELOCITIES	CORRESPO	NDING TO CF	RITICAL DEP	тн				
6,127	6,127	6.127	6.127	6.127	6,127	6,127	6.127	
6.127	6.127	6.127	6.127	6.127				
6.127	6.127	6.127	6,127	6.127	6.127	6.127	6.127	
REYNOLD'S I	NUMBERS CI	DRRESPONDIN	IG TO CRITI	CAL DEPTH	10 70	10 70	10 70	
10.30	10,30	18,138	10.30	10,33	10.30	10:30	10,30	
18.38	18.38	18.38	18.38	18.38	18.38	18.38	18.38	
CHEZY'S NU	ABERS CORP	RESPONDING	TO CRITICAL	L DEPTH				
8.32	8.32	8.32	8.32	8.32	8.32	8,32	8.32	
8,32	8,32	8.32	8,32	8,32	0 70	0 70	0 7 7	
0.32	0.32	0:32	0:32	0+32	0:32	0:34	0.32	
NORMAL DEPI	THS AT SEC	TIONS						
2.575	2.575	2.575	2,575	2,575	2.575	2.575	2,575	
2.575	2,575	2.575	2.575	2,575				
2,575	2.575	2,575	2.575	2.575	2,575	2.575	2.575	
AREAS CORRE	SPONDING	TO NORMAL	DEPTHS	100 370	100 270	190 770	190 379	
180.238	180.270	180.230	180.238	180,238	1041530	100.230	1041590	
180.238	180.238	180.238	180.238	180.238	180.238	180.238	180,238	

- -

.

-

. . .

7.7

. ...

VELOCITIES CORRESPONDING TO NORMAL DEPTHS

.

,

2:/74	2.7/4	2.1/4	2.114	2.//4	2.114	2.1/4	2.//4
2.774	2.774	2.774	2.774	2.774			
2.774	2.774	2.774	2.774	2.774	2.774	2,774	2.774
REYNOLD'S	NUMBERS CORR	ESPONDING	TO NORMAL	DEPTHS			
8.32	8.32	8.32	8.32	6.32	8.32	8.32	8,32
8.32	8.32	8.32	8.32	8.32			
8.32	8.32	8.32	8,32	8.32	8.32	8,32	8.32
CHEZY'S N	UMBERS CORRES	PONDING TO	D NORMAL DI	ЕРТН			
5.53	5,53	5.53	5.53	5.53	5.53	5.53	5.53
5.53	5,53	5,53	5.53	5.53			
5.53	5.53	5.53	5.53	5.53	5.53	5.53	5.53
M1 - CURVE	BEGAN AT SEC	TION 21	AND ENDED	AT SECTION	18 WIT	H Y =	2.490
DEPTHS OF I	FLOW AT SECTI	ONS					
2.575	2.575	2.575	2.575	2.575	2.575	2,575	2.575
2,575	2.575	2.575	2.574	2.576			
2.573	2.579	2.563	2.610	2,490	3.008	5,773	10,000
CROSS-SECT	IONAL AREAS		•				
180.2	180.2	180.2	180.2	180,2	180.2	180.2	180.2
180.2	180.2	180.2	180.2	180.3			
180.1	180.6	179.4	182.7	174.3	210.6	404.1	700.0
VELOCITY							
2,774	2.774	2,774	2.774	2.774	2.774	2.774	2.774
2.774	2,774	2.774	2.774	2.773			· *
2,776	2,769	2.787	2,737	2.869	2.375	1,237	0.714
REYNOLDS NU	JMBERS FOR GV	F					
8,323	8.322	8,322	8.322	8.322	8.323	8.323	8.323
8,323	8.322	8.322	8,323	8.320 .			
8.328	8.307	8.362	8.211	8.608	7.124	3.712	2.143
WETTED PERI	IMETERS						
75.1	75.1	75.1	75.1	75.1	75.1	75,1	75.1
75.1	75.1	75.1	75.1	75.2			
75.1	75.2	75.1	75.2	75.0	76.0	81.5	90.0
TOP WIDTH							
70.00	70,00	70,00	70.00	70,00	70.00	70.00	70.00
70.00	70.00	70.00	70,00	70.00			
70.00	70.00	70.00	70.00	. 70.00	70.00	70.00	70.00

- -

- -

**ب** -

r

. .

- -

<u>د....</u>

r ~

њ. –

د ب د -

ù ~

: 2

t ...

• .. • ..

- **t**. . . .

. . ...

: :

- -

BECITORS HE	ONG CHANNEL					700 0	750 0
0.0	50.0	100.0	150.0	200.0	250.0	300.0	350.0
400.0	700.0	750.0	800.0	850.0	900.0	950.0	1000.0
000,0							
DISCHARGE	ALONG CHANNE	EL					
500.00	500.00	500.00	500.00	500.00	500.00	500.00	500,00
500.00	500.00	500.00	500,00	500.00	<b>E</b> 0.0 0.0	500 00	500 00
500.00	500.00	500.00	500.00	500.00	500.00	300.00	300.00
80TT08 W11	THS						
70,000	70.000	70.000	70.000	70.000	70,000	70.000	70.000
70.000	70.000	70.000	70,000	70.000			
70.000	70.000	70.000	70.000	70.000	70.000	70,000	70.000
		INCI		,			
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.000	0.000	0.000	0.000	0.000			
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
MANNINGS	N FOR SECTI	CONS OF CH	IANNEL		A 944	0 200	0.200
0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200
0.200	0.200	0.200	0,200	0.200	0.200	0,200	0.200
0.200	0.200	0.200	0.200	0.200	01200		
SLOPE OF C	HANNEL BOTTO	IN AT SECT	IONS				
0.10500	0.10500	0.10500	0.10500	0.10500	0,10500	0.10500	0.10500
0.10500	0.10500	0.10500	0,10500	0.10500			
0,10500	0.10500	0.10500	0.10500	0.10500	0.10500	0.10500	0.10500
		SKATC					
1.1459	1.1458	1.1458	1.1458	1.1458	1.1658	1.1658	1.1658
1,1658	1.1658	1.1658	1.1658	1.1658			
1.1658	1.1658	1.1658	1.1658	1.1658	1.1658	1.1658	1.1658
CRITICAL S	LOPES AT SEC	CTIONS		A 575077	A 575077	A 575077	A 575077
0.575873	0.575873 (	0.5758/3	0.5/38/3	0.3/38/3	0.3/36/3	0+3/30/3	V+3/36/3
0.575873	0.5/58/3 (	J.J/38/3 575077	0.575873	0.575873	0.575873	0.575873	0.575873
0.2/28/3	0.5/58/3 (	1.3/38/3	0.373873	013/30/3	0.0/00/0	000/00/0	
AREAS CORF	ESPONDINO TO	CRITICAL	DEPTH				
81.61	81.61	81.61	81.61	81.61	81 <b>.61</b>	81.61	81.61
81.61	81.61	81.61	81.61	81.61			
81.61	81.61	81.61	81.61	81.61	81.61	81.61	81.61
				<b>T</b> 11			
VELUCITIES	CURRESPOND	4.127	4.127	6,127	6.127	6,127	6.127
6.127	6.127	6.127	6.127	6,127			
6.127	6,127	6,127	6.127	6,127	6.127	6.127	6.127
NORMAL DEF	THO AT OCOT!						
4 050	THS AT SECT	IONS					
1,937	1.959	IONS 1,959	1.959	1.959	1.959	1,959	1,959
1.959	1+959 1+959	IDNS 1.959 1.959	1.959	1.959	1.959	1,959	1,959
1.959 1.959 1.959	1.959 1.959 1.959 1.959	IONS 1.959 1.959 1.959	1.959 1.959 1.959	1.959 1.959 1.959	1.959 1.959	1.959 1.959	1.959 1.959
1.937 1.959 1.959	1.959 1.959 1.959 1.959	IONS 1.959 1.959 1.959 1.959	1.959 1.959 1.959	1.959 1.959 1.959	1.959 1.959	1.959 1.959	1.959 1.959
1.959 1.959 1.959 AREAS CORF	1.959 1.959 1.959 1.959 ESPONDING TO	IONS 1,959 1,959 1,959 1,959 D NORMAL I 137,162	1.959 1.959 1.959 1.959 DEPTHS 137.162	1.959 1.959 1.959	1.959 1.959 137.162	1.959 1.959 137.162	1.959 1.959 137.162
1.939 1.959 1.959 AREAS CORF 137.163 137.162	1.959 1.959 1.959 1.959 RESPONDING TO 137.162 137.162	IONS 1.959 1.959 1.959 0 NORMAL I 137.162 137.162	1.959 1.959 1.959 1.959 EPTHS 137.162 137.162	1.959 1.959 1.959 1.959 137.162 137.162	1.959 1.959 137.162	1.959 1.959 137.162	1.959 1.959 137.162
1.959 1.959 1.959 AREAS CORF 137.163 137.162 137.162	1.959 1.959 1.959 1.959 RESPONDING TO 137.162 137.162	(DNS 1.959 1.959 1.959 D NORMAL I 137.162 137.162 137.162	1.959 1.959 1.959 1.959 1.959 1.37.162 1.37.162 1.37.162	1.959 1.959 1.959 137.162 137.162 137.162	1.959 1.959 137.162 137.162	1.959 1.959 137.162 137.162	1.959 1.959 137.162 137.162
1.959 1.959 1.959 AREAS CORF 137.163 137.162	1.959 1.959 1.959 2.959 2.959 2.959 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.00000 2.00000 2.00000000	(DNS 1.959 1.959 1.959 D NORMAL I 137.162 137.162 137.162	1.959 1.959 1.959 1.959 1.959 1.37.162 1.37.162 1.37.162	1.959 1.959 1.959 137.162 137.162 137.162	1.959 1.959 137.162 137.162	1.959 1.959 137.162 137.162	1.959 1.959 137.162 137.162
AREAS CORF 137.163 137.163 137.162 137.162 VELOCITIES	1.959 1.959 1.959 2.590NDING TO 137.162 137.162 137.162 2.00RRESPONDING CORRESPONDING	IONS 1.959 1.959 1.959 0 NORMAL I 137.162 137.162 137.162 NORM	1.959 1.959 1.959 DEPTHS 137.162 137.162 137.162	1.959 1.959 1.959 137.162 137.162 137.162	1.959 1,959 137.162 137.162	1.959 1.959 137.162 137.162	1.959 1.959 137.162 137.162
AREAS CORF 137.163 137.163 137.162 137.162 VELOCITIES 3.645 7.445	1.959 1.959 1.959 1.959 ESPONDING TO 137.162 137.162 137.162 CORRESPONDING 3.645	IONS 1.959 1.959 1.959 D NORMAL I 137.162 137.162 137.162 NG TO NORM 3.645 3.645	1.959 1.959 1.959 1.959 1.959 1.959 1.37.162 1.37.162 1.37.162 1.37.162 1.37.162 1.37.162 1.37.465	1.959 1.959 1.959 137.162 137.162 137.162 3.645	1.959 1,959 137.162 137.162 3.645	1.959 1.959 137.162 137.162 3.645	1.959 1.959 137.162 137.162 3.645
AREAS CORF 1.959 AREAS CORF 137.163 137.162 137.162 VELOCITIES 3.645 3.645 3.645	Corresponding 3.645 3.645 3.645 3.645	IONS 1.959 1.959 1.959 D NORMAL I 137.162 137.162 137.162 NG TO NORM 3.645 3.645	1.959 1.959 1.959 1.959 1.959 1.37.162 137.162 137.162 137.162 137.162 137.162 137.162 3.645 3.645	1.959 1.959 1.959 137.162 137.162 137.162 3.645 3.645 3.645	1.959 1,959 137.162 137.162 3.645 3.645	1.959 1.959 137.162 137.162 3.645	1.959 1.959 137.162 137.162 3.645 3.645
AREAS CORF 1.959 1.959 AREAS CORF 137.163 137.162 VELOCITIES 3.645 3.645 3.645 M1 - CURVE	1.959 1.959 1.959 1.959 ESPONDING TO 137.162 137.162 137.162 CORRESPONDIA 3.645 3.645 3.645 BEGAN AT SEC	IONS 1.959 1.959 1.959 0 NORMAL I 137.162 137.162 137.162 NG TO NORN 3.645 3.645 3.645 CTION 21	1.959 1.959 1.959 1.959 1.959 137.162 137.162 137.162 137.162 137.162 137.465 3.645 3.645 3.645	1.959 1.959 1.959 137.162 137.162 137.162 3.645 3.645 3.645 D AT SECTI	1.959 1.959 137.162 137.162 3.645 3.645 0N 18 W	1.959 1.959 137.162 137.162 3.645 3.645	1.959 1.959 137.162 137.162 3.645 3.645 1.896
AREAS CORF 1.959 1.959 AREAS CORF 137.163 137.162 VELOCITIES 3.645 3.645 3.645 M1 - CURVE DEPTHS OF F	1.959 1.959 1.959 1.959 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.259 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.599 2.	IONS 1.959 1.959 1.959 0 NORMAL I 137.162 137.162 137.162 137.162 NG TO NORN 3.645 3.645 3.645 CTION 21 IONS	1.959 1.959 1.959 1.959 1.959 137.162 137.162 137.162 137.162 137.162 137.162 137.4645 3.645 3.645 3.645 3.645	1.959 1.959 1.959 137.162 137.162 137.162 3.645 3.645 3.645 3.645 D AT SECTI	1.959 1.959 137.162 137.162 3.645 3.645 ON 18 W1	1.959 1.959 137.162 137.162 3.645 3.645 TH Y =	1.959 1.959 137.162 137.162 3.645 3.645 1.896
AREAS CORF 1.959 1.959 AREAS CORF 137.162 137.162 VELOCITIES 3.645 3.645 3.645 M1 - CURVE DEPTHS OF F 1.960	Corresponding 1.959 1.959 1.959 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2	IONS 1.959 1.959 1.959 0 NORMAL I 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162	1.959 1.959 1.959 1.959 1.959 1.7162 137.162 137.162 137.162 137.162 137.162 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645	1.959 1.959 1.959 137.162 137.162 137.162 137.162 3.645 3.645 3.645 3.645 D AT SECTI 1.960	1.959 1.959 137.162 137.162 3.645 3.645 18 W1 1.959	1.959 1.959 137.162 137.162 3.645 3.645 TH Y = 1.961	1.959 1.959 137.162 137.162 3.645 1.896 1.896
AREAS CORF 1.959 1.959 AREAS CORF 137.162 VELOCITIES 3.645 3.645 3.645 M1 - CURVE DEPTHS OF F 1.960 1.962	CORRESPONDING TO 1.959 1.959 1.959 2.57.162 137.162 137.162 137.162 CORRESPONDING TO 3.645 3.645 3.645 BEGAN AT SECTI 1.959 1.959 1.956	IONS 1.959 1.959 1.959 0 NORMAL I 137.162 137.162 137.162 137.162 NG TO NORN 3.645 3.645 3.645 (DNS 1.960 1.965	1.959 1.959 1.959 DEPTHS 137.162 137.162 137.162 137.162 137.162 137.162 137.465 3.645 3.645 3.645 3.645 1.959 1.959	1.959 1.959 1.959 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 1.959	1.959 1.959 137.162 137.162 3.645 3.645 18 W1 1.959	1.959 1.959 137.162 137.162 3.645 TH Y = 1.961	1.959 1.959 137.162 137.162 3.645 3.645 1.896 1.958
AREAS CORF 1.959 1.959 AREAS CORF 137.163 137.162 VELOCITIES 3.645 3.645 3.645 M1 - CURVE DEPTHS OF F 1.960 1.962 1.944	1 + 959 1 • 959 1 • 959 1 • 959 2 • 5 • 5 • 5 • 5 • 5 • 5 • 5 • 5 • 5 •	LONS 1.959 1.959 1.959 0.NORMAL I 137.162 137.162 137.162 137.162 NG TO NORH 3.645 3.645 3.645 3.645 1.960 1.965 1.927	1.959 1.959 1.959 1.959 1.959 1.959 1.37.162 137.162 137.162 137.162 137.162 137.162 13645 3.645 3.645 3.645 3.645 AND ENDE 1.959 1.952 2.012	1.959 1.959 1.959 137.162 137.162 137.162 137.162 3.645 3.645 3.645 D AT SECTI 1.960 1.971 1.396	1.959 1.959 137.162 137.162 3.645 3.645 18 WI 1.959 2.083	1.959 1.959 137.162 137.162 3.645 TH Y ^{3.645} 1.961 5.198	1.959 1.959 137.162 137.162 3.645 1.896 1.958 10.000
AREAS CORF 1.959 1.959 AREAS CORF 137.163 137.162 VELOCITIES 3.645 3.645 M1 - CURVE DEPTHS OF 1.960 1.962 1.944 CROSS-SECTI	Corresponding 1.959 1.959 1.959 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2.559 2	IDNS 1.959 1.959 1.959 D.NORMAL I 137.162 137.162 137.162 NG TO NORM 3.645 3.645 CTION 21 IDNS 1.960 1.965 1.927 137.2	1.959 1.959 1.959 DEPTHS 137.162 137.162 137.162 137.162 MAL DEPTHS 3.645 3.645 3.645 AND ENDE 1.959 1.952 2.012	1.959 1.959 1.959 137.162 137.162 137.162 3.645 3.645 3.645 D AT SECTI 1.960 1.971 1.396	1.959 1.959 137.162 137.162 3.645 3.645 18 W1 1.959 2.083 137.1	1.959 1.959 137.162 137.162 3.645 3.645 TH Y = 1.961 5.198 137.2	1.959 1.959 137.162 137.162 3.645 1.896 1.958 10.000 137.0
AREAS CORF 1.959 1.959 AREAS CORF 137.163 137.162 137.162 VELOCITIES 3.645 3.645 3.645 M1 - CURVE DEPTHS OF F 1.960 1.962 1.944 CROSS-SECTJ 137.2 137.3	Corresponding 1.959 1.959 1.959 1.959 2.57.162 137.162 137.162 137.162 Corresponding 3.645 3.645 3.645 BEGAN AT SECTI 1.959 1.956 1.984 ONAL AREAS 137.2 136.9	IONS 1.959 1.959 1.959 0.NORMAL I 137.162 137.162 137.162 NG TO NORM 3.645 3.645 3.645 CTION 21 IONS 1.960 1.965 1.927 137.2 137.5	1.959 1.959 1.959 DEPTHS 137.162 137.162 137.162 137.162 MAL DEPTHS 3.645 3.645 3.645 AND ENDE 1.959 1.952 2.012 137.1 136.6	1.959 1.959 1.959 137.162 137.162 137.162 3.645 3.645 3.645 3.645 0 AT SECTI 1.960 1.971 1.396 137.2 138.0	1.959 1.959 137.162 137.162 3.645 3.645 18 W1 1.959 2.083 137.1	1.959 1.959 137.162 137.162 3.645 3.645 1.961 5.198 137.2	1.959 1.959 137.162 137.162 3.645 1.896 1.958 10.000 137.0
AREAS CORF 1.959 1.959 AREAS CORF 137.163 137.162 VELOCITIES 3.645 3.645 M1 - CURVE DEPTHS OF F 1.960 1.962 1.944 CROSS-SECTJ 137.2 137.3 136.1	Corresponding 1.959 1.959 1.959 1.959 2.57.162 137.162 137.162 137.162 Corresponding 3.645 3.645 3.645 BEGAN AT SECTI 1.959 1.956 1.984 ONAL AREAS 137.2 136.9 138.9	IONS 1.959 1.959 1.959 0.NORMAL I 137.162 137.162 137.162 NG TO NORM 3.645 3.645 3.645 CTION 21 IONS 1.960 1.965 1.927 137.2 137.5 134.9	1.959 1.959 1.959 1.959 DEPTHS 137.162 137.162 137.162 137.162 137.162 3.645 3.645 3.645 3.645 AND ENDE 1.959 1.952 2.012 137.1 136.6 140.9	1.959 1.959 1.959 137.162 137.162 137.162 3.645 3.645 3.645 3.645 3.645 0 AT SECTI 1.960 1.971 1.396 1.37.2 138.0 132.7	1.959 1.959 137.162 137.162 3.645 3.645 18 WJ 1.959 2.083 137.1 145.8	1.959 1.959 137.162 137.162 3.645 3.645 5.198 1.961 5.198 137.2 363.8	1.959 1.959 137.162 137.162 3.645 1.896 1.958 10.000 137.0 700.0
AREAS CORF 1.959 1.959 AREAS CORF 137.163 137.162 VELOCITIES 3.645 3.645 3.645 M1 - CURVE DEPTHS OF F 1.960 1.962 1.944 CROSS-SECTI 137.2 137.3 136.1 VELOCITY	Corresponding 1.959 1.959 1.959 1.959 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59 2.59	IONS 1.959 1.959 1.959 0.NORMAL I 137.162 137.162 137.162 NG TO NORM 3.645 3.645 3.645 CTION 21 IONS 1.960 1.965 1.927 137.2 137.5 134.9	1.959 1.959 1.959 1.959 DEPTHS 137.162 137.162 137.162 137.162 137.162 3.645 3.645 3.645 3.645 AND ENDE 1.959 1.952 2.012 137.1 136.6 140.9	1.959 1.959 1.959 137.162 137.162 137.162 3.645 3.645 3.645 0 AT SECTI 1.960 1.971 1.396 1.37.2 138.0 132.7	1.959 1.959 137.162 137.162 3.645 3.645 18 WJ 1.959 2.083 137.1 145.8	1.959 1.959 137.162 137.162 3.645 TH Y = 1.961 5.198 137.2 363.8	1.959 1.959 137.162 137.162 3.645 1.896 1.958 10.000 137.0 700.0
AREAS CORF 1.959 1.959 AREAS CORF 137.163 137.162 VELOCITIES 3.645 3.645 3.645 M1 - CURVE DEPTHS OF F 1.960 1.962 1.944 CROSS-SECTI 137.2 137.3 136.1 VELOCITY 3.645	Corresponding T( 1.959 1.959 1.959 1.959 2.37.162 137.162 137.162 137.162 Corresponding 3.645 3.645 3.645 BEGAN AT SECTI 1.959 1.956 1.984 ONAL AREAS 137.2 136.9 138.9 3.645	IONS 1.959 1.959 1.959 0 NORMAL I 137.162 137.162 137.162 137.162 137.162 NG TO NORN 3.645 3.645 1.960 1.965 1.927 137.5 134.9 3.645	1.959 1.959 1.959 1.959 1.959 1.959 1.959 1.37.162 137.162 137.162 137.162 3.645 3.645 3.645 3.645 3.645 4.052 2.012 1.959 1.952 2.012 1.37.1 1.36.6 1.40.9 3.646	1.959 1.959 1.959 137.162 137.162 137.162 3.645 3.645 3.645 3.645 0 AT SECTI 1.960 1.971 1.396 137.2 138.0 132.7 3.644	1.959 1.959 137.162 137.162 3.645 18 W1 1.959 2.083 137.1 145.8 3.647	1.959 1.959 137.162 137.162 3.645 	1.959 1.959 137.162 137.162 3.645 1.896 1.958 10.000 137.0 700.0
AREAS CORF 1.959 1.959 AREAS CORF 137.162 VELOCITIES 3.645 3.645 3.645 M1 - CURVE DEPTHS OF F 1.960 1.962 1.944 CROSS-SECTI 137.2 137.3 136.1 VELOCITY 3.645 3.645 3.645 3.645	Corresponding 1.959 1.959 1.959 1.959 2.37.162 137.162 137.162 137.162 Corresponding 3.645 3.645 3.645 BEGAN AT SECT 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.652 3.652 3.655 3.655 3.655 3.655 3.655 3.655 3.655 3.655 3.655 3.655 3.655 3.655 3.655 3.655 3.655 3.655 3.655 3.655 3.655 3.655 3.655 3.655 3.655 3.655 3.655 3.655 3.655 3.655 3.655 3.655 3.655 3.655 3.655 3.655 3.655 3.655 3.655 3.655 3.655 3.655 3.655 3.655 3.655 3.655 3.655 3.655 3.655 3.655 3.655 3.655 3.655 3.655 3.655 3.655 3.655 3.655 3.655 3.655 3.655 3.655 3.655 3.655 3.655 3.655 3.655 3.655 3.655 3.655 3.655 3.655 3.655 3.655 3.655 3.655 3.655 3.655 3.655 3.655 3.655 3.655 3.655 3.655 3.655 3.655 3.655 3.655 3.655 3.655 3.655 3.655 3.655 3.655 3.655 3.6555 3.6	IONS 1.959 1.959 1.959 1.959 0 NORMAL I 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.5 137.5 134.9 3.645 3.645 3.645 1.927 137.5 134.9 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.	1.959 1.959 1.959 1.959 1.959 1.959 1.959 1.37.162 137.162 137.162 137.162 137.162 3.645 3.645 3.645 3.645 AND ENDE 1.959 1.952 2.012 137.1 136.6 140.9 3.646 3.659	1.959 1.959 1.959 137.162 137.162 137.162 137.162 3.645 3.645 3.645 3.645 0 AT SECTI 1.960 1.971 1.396 137.2 138.0 132.7 3.644 3.624 3.624	1.959 1.959 137.162 137.162 3.645 18 W1 1.959 2.083 137.1 145.8 3.647 7.470	1.959 1.959 137.162 137.162 3.645 TH Y = 1.961 5.198 137.2 363.8 3.643	1.959 1.959 137.162 137.162 3.645 1.896 1.958 10.000 137.0 700.0 3.648
AREAS CORF 1.959 1.959 AREAS CORF 137.162 VELOCITIES 3.645 3.645 3.645 M1 - CURVE DEPTHS OF F 1.960 1.962 1.944 CROSS-SECTJ 137.2 137.3 136.1 VELOCITY 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645	Corresponding to 1.959 1.959 1.959 1.959 2.37.162 137.162 137.162 137.162 Corresponding 3.645 3.645 3.645 BEGAN AT SECTI 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.956 1.9566 1.9566 1.9566 1.9566 1.9566 1.9566 1.9566	IDNS 1.959 1.959 1.959 1.959 D NORMAL I 137.162 137.162 137.162 137.162 137.162 NG TO NORN 3.645 3.645 1.965 1.927 137.2 137.5 134.9 3.645 3.645 3.635 3.706	1.959 1.959 1.959 1.959 1.959 1.959 1.959 1.37.162 137.162 137.162 137.162 3.645 3.645 3.645 3.645 3.645 3.645 1.959 1.952 2.012 1.37.1 136.6 140.9 3.646 3.659 3.549	1.959 1.959 1.959 137.162 137.162 137.162 137.162 3.645 3.645 3.645 3.645 0 AT SECTI 1.960 1.971 1.396 137.2 138.0 132.7 3.644 3.624 3.767	1.959 1.959 137.162 137.162 3.645 18 W1 1.959 2.083 137.1 145.8 3.647 3.430	1.959 1.959 137.162 137.162 3.645 TH Y ^{3.645} 1.961 5.198 137.2 363.8 3.643 1.374	1.959 1.959 137.162 137.162 3.645 1.896 1.958 10.000 137.0 700.0 3.648 0.714
AREAS CORF 1.959 1.959 AREAS CORF 137.162 VELOCITIES 3.645 3.645 3.645 M1 - CURVE DEPTHS OF F 1.960 1.962 1.944 CROSS-SECH 137.2 137.3 136.1 VELOCITY 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.73 137.3 137.3 137.3 3.645 3.645 3.645 3.73 137.3 137.3 3.645 3.645 3.73 137.3 137.3 3.645 3.645 3.645 3.73 137.3 137.3 137.3 137.3 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645	Corresponding 1.959 1.959 1.959 1.959 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57	IDNS 1.959 1.959 1.959 1.959 D NORMAL I 137.162 137.162 137.162 137.162 NG TO NORK 3.645 3.645 3.645 1.960 1.965 1.927 137.5 134.9 3.645 3.645 3.635 3.706 73.9	1.959 1.959 1.959 1.959 1.959 1.959 1.959 1.37.162 137.162 137.162 137.162 3.645 3.645 3.645 3.645 4.059 1.952 2.012 137.1 136.6 140.9 3.646 3.659 3.549 73.9	1.959 1.959 1.959 137.162 137.162 137.162 3.645 3.645 3.645 0 AT SECTI 1.960 1.971 1.396 137.2 138.0 132.7 3.644 3.624 3.767 73.9	1.959 1.959 137.162 137.162 3.645 18 W1 1.959 2.083 137.1 145.8 3.647 3.430 73.9	1.959 1.959 137.162 137.162 3.645 3.645 1.961 5.198 137.2 363.8 3.643 1.374 73.9	1.959 1.959 137.162 137.162 3.645 1.896 1.958 10.000 137.0 700.0 3.648 0.714 73.9
AREAS CORF 1.959 1.959 AREAS CORF 137.163 137.162 VELOCITIES 3.645 3.645 3.645 M1 - CURVE DEPTHS OF F 1.960 1.962 1.944 CROSS-SECTJ 137.2 137.3 136.1 VELOCITY 3.645 3.641 3.675 WETTED PERJ 73.9 73.9	Corresponding 1.959 1.959 1.959 1.959 2.57.162 137.162 137.162 137.162 Corresponding 3.645 3.645 3.645 DEGAN AT SECTI 1.959 1.956 1.984 CONAL AREAS 137.2 136.9 1.984 CONAL AREAS 137.2 136.9 1.984 CONAL AREAS 137.2 136.9 1.984 CONAL AREAS 137.2 136.9 1.984 CONAL AREAS 137.2 136.9 1.984 CONAL AREAS 137.2 136.9 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.977 1.977 1.977 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.987 1.	IDNS 1.959 1.959 1.959 1.959 DNORMAL I 137.162 137.162 137.162 NG TO NORM 3.645 3.645 3.645 TION 21 INS 1.960 1.965 1.927 137.5 137.5 137.9 3.645 3.635 3.706 73.9 73.9	1.959 1.959 1.959 1.959 DEPTHS 137.162 137.162 137.162 137.162 137.162 3.645 3.645 3.645 3.645 1.952 2.012 137.1 136.6 140.9 3.646 3.659 3.549 73.9	1.959 1.959 1.959 1.37.162 137.162 137.162 3.645 3.645 3.645 3.645 0 AT SECTI 1.960 1.971 1.396 137.2 138.0 132.7 3.644 3.624 3.624 3.767 73.9 73.9	1.959 1.959 137.162 137.162 3.645 18 W1 1.959 2.083 137.1 145.8 3.647 3.430 73.9	1.959 1.959 137.162 137.162 3.645 3.645 TH Y = 1.961 5.198 137.2 363.8 3.643 1.374 73.9	1.959 1.959 137.162 137.162 3.645 1.896 1.958 10.000 137.0 700.0 3.648 0.714 73.9
AREAS CORF 1.959 1.959 AREAS CORF 137.163 137.162 VELOCITIES 3.645 3.645 M1 - CURVE DEPTHS OF F 1.960 1.962 1.944 CROSS-SECTI 137.2 137.3 136.1 VELOCITY 3.645 3.641 3.645 WETTED PERI 73.9 73.9 73.9	Corresponding 1.959 1.959 1.959 1.959 2.57 2.57 2.137.162 1.37.162 1.37.162 2.137.162 2.137.162 2.137.162 2.137.162 2.137.162 2.137.162 2.137.162 2.137.162 2.137.162 2.137.162 2.137.162 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.72 1.984 2.72 1.984 2.72 1.984 2.72 1.985 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.	IDNS 1.959 1.959 1.959 1.959 DNORMAL I 137.162 137.162 137.162 NG TO NORM 3.645 3.645 3.645 3.645 1.960 1.965 1.927 137.5 137.5 134.9 3.645 3.635 3.706 73.9 73.9 73.9 73.9	1.959 1.959 1.959 1.959 DEPTHS 137.162 137.162 137.162 137.162 137.162 3.645 3.645 3.645 3.645 AND ENDE 1.952 2.012 137.1 136.6 140.9 3.646 3.645 3.549 73.9 73.9 73.9 74.0	1.959 1.959 1.959 1.37.162 137.162 137.162 3.645 3.645 3.645 3.645 0 AT SECTI 1.960 1.971 1.396 137.2 138.0 137.2 138.0 132.7 3.644 3.624 3.767 73.9 73.9 73.8	1.959 1.959 137.162 137.162 3.645 18 W1 1.959 2.083 137.1 145.8 3.647 3.430 73.9 74.2	1.959 1.959 137.162 137.162 3.645 	1.959 1.959 137.162 137.162 3.645 1.896 1.958 10.000 137.0 700.0 3.648 0.714 73.9 90.0
AREAS CORF 1.959 1.959 AREAS CORF 137.163 137.162 VELOCITIES 3.645 3.645 3.645 M1 - CURVE DEPTHS OF F 1.960 1.962 1.37.2 137.3 136.1 VELOCITY 3.645 3.641 3.645 3.645 3.641 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.75 3.73 3.73 3.73 9 73.9 TOP WIDTH	Corresponding 1.959 1.959 1.959 1.959 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57	IDNS 1.959 1.959 1.959 1.959 0 NORMAL I 137.162 137.162 137.162 137.162 NG TO NORM 3.645 3.645 3.645 1.927 137.2 137.5 134.9 3.645 3.645 3.706 73.9 73.9 73.9	1.959 1.959 1.959 1.959 1.959 1.959 1.959 1.959 1.37.162 137.162 137.162 3.645 3.645 3.645 3.645 3.645 4.00 ENDE 1.959 1.952 2.012 137.1 136.6 140.9 3.646 3.659 3.549 73.9 73.9 74.0	1.959 1.959 1.959 1.959 1.37.162 137.162 137.162 3.645 3.645 3.645 3.645 1.971 1.960 1.971 1.396 137.2 138.0 132.7 3.644 3.767 73.9 73.9 73.8	1.959 1.959 137.162 137.162 3.645 18 W1 1.959 2.083 137.1 145.8 3.647 3.430 73.9 74.2	1.959 1.959 137.162 137.162 3.645 	1.959 1.959 137.162 137.162 3.645 1.896 1.958 10.000 137.0 700.0 3.648 0.714 73.9 90.0
AREAS CORF 1.959 1.959 AREAS CORF 137.163 137.162 VELOCITIES 3.645 3.645 3.645 M1 - CURVE DEPTHS OF F 1.960 1.962 1.944 CROSS-SECTJ 137.2 137.3 136.1 VELOCITY 3.645 3.645 3.645 3.645 3.645 3.645 73.9 73.9 73.9 73.9 73.9 73.9 73.9	Corresponding T( 1.959 1.959 1.959 1.959 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.	IDNS 1.959 1.959 1.959 1.959 D NORMAL I 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.5 137.5 137.5 134.9 7.645 3.645 3.645 3.706 73.9 73.9 73.9 73.9	1.959 1.959 1.959 1.959 1.959 1.959 1.959 1.959 1.37.162 137.162 137.162 137.162 137.162 1.959 1.952 2.012 1.37.1 136.6 140.9 3.646 3.659 3.549 73.9 73.9 74.0 20.00	1.959 1.959 1.959 1.959 1.37.162 137.162 137.162 137.162 3.645 3.645 3.645 3.645 3.645 1.971 1.960 1.971 1.396 137.2 138.0 132.7 3.644 3.767 73.9 73.9 73.8 70.00	1.959 1.959 137.162 137.162 3.645 18 W1 1.959 2.083 137.1 145.8 3.647 3.430 73.9 74.2 70.00	1.959 1.959 137.162 137.162 3.645 	1.959 1.959 137.162 137.162 3.645 1.896 1.958 10.000 137.0 700.0 3.648 0.714 73.9 90.0 70.00
AREAS CORF 1.959 1.959 AREAS CORF 137.163 137.162 VELOCITIES 3.645 3.645 3.645 M1 - CURVE DEPTHS OF F 1.960 1.962 1.944 CROSS-SECTI 137.2 137.3 13645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.73 137.3 137.1 VELOCITY 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.73 137.2 137.3 137.3 137.3 137.3 137.3 13.645 3.645 3.645 3.645 1.926 1.926 1.926 1.926 1.926 1.926 1.926 1.926 1.926 1.926 1.926 1.926 1.926 1.926 1.926 1.926 1.926 1.926 1.926 1.926 1.926 1.926 1.926 1.926 1.926 1.926 1.926 1.926 1.926 1.926 1.926 1.927 1.927 1.977 1.977 1.97 7.3.9 7.3.9 7.3.9 7.3.9 7.3.9 7.3.9 7.3.9 7.3.9 7.3.9 7.3.9 7.3.9 7.3.9 7.3.9 7.3.9 7.3.9 7.3.9 7.3.9 7.3.9 7.3.9 7.3.9 7.3.9 7.3.9 7.3.9 7.3.9 7.3.9 7.3.9 7.3.9 7.3.9 7.3.9 7.3.9 7.3.9 7.3.9 7.3.9 7.3.9 7.3.9 7.3.9 7.3.9 7.3.9 7.3.9 7.3.9 7.3.9 7.3.9 7.3.9 7.3.9 7.3.9 7.3.9 7.3.9 7.3.9 7.3.9 7.3.9 7.3.9 7.3.9 7.3.9 7.3.9 7.3.9 7.3.9 7.3.9 7.3.9 7.3.9 7.3.9 7.3.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7	Corresponding T( 1.959 1.959 1.959 1.959 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.57 2.	IDNS 1.959 1.959 1.959 1.959 D NORMAL I 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.162 137.5 137.5 137.5 134.9 73.9 73.9 70.00 70.00 70.00	1.959 1.959 1.959 1.959 1.959 1.959 1.959 1.959 1.37.162 137.162 137.162 137.162 137.162 1.955 1.952 2.012 1.955 1.952 2.012 1.37.1 1.36.6 1.40.9 3.646 3.659 3.549 7.3.9 7.3.9 7.3.9 7.4.0 70.00 70.00 70.00	1.959 1.959 1.959 1.959 1.37.162 137.162 137.162 3.645 3.645 3.645 3.645 3.645 0 AT SECTI 1.960 1.971 1.396 1.37.2 1.38.0 1.32.7 3.644 3.767 7.3.9 7.3.9 7.3.8 70.00 70.000 70.000	1.959 1.959 137.162 137.162 3.645 18 %1 1.959 2.083 137.1 145.8 3.647 3.430 73.9 74.2 70.00	1.959 1.959 137.162 137.162 3.645 5.198 137.2 363.8 3.643 1.374 73.9 80.4 70.00	1.959 1.959 137.162 137.162 3.645 1.896 1.958 10.000 137.0 700.0 3.648 0.714 73.9 90.0 70.00

z -

147 SH	Input data for Example 3. Debris flow.	Input data for Example 3.
	\$ RUN MAIN	PROVIDE 9 X-DIST. FOR 9 INPUT SECTIONS
	DO YOU WANT A DEFINITION OF NAMELIST IN SPECIF? Y OR N	0,1100, 1320, 1800, 2420, 2640, 3520, 3740, 4180
.a. =	N	PROVIDE BOTTOM SLOPES FOR 9 INPUT SECTIONS
	DEFAULT OPTIONS ARE:	.019, .013, .00008, .00002,.0001, .015, .01, .0007, .00005
	ITRAPE = 1 IOYES = 0 ERR = 0.00100 INFLOW = 1 MYSTRT = 0	PROBLEM SPECIFICATIONS
* *	IUNSTE = 1 LINTER = 1 NCONT = 0 NPR = 0	X 0.0 1100.0 1320.0 1800.0 2420.0 2640.0 3520.0 3740.0 4180.0
	DO YOU WANT ANY OF THESE CHANGED? Y OR N	s 0.0190 0.01300 0.00008 0.00002 0.00010 0.01500 0.01000 0.00070
	Y .	0.00005
	GIVE CHANGED OPTIONS IN & SPECIF LIST	IS THERE LATERAL INFLOW? Y OR N
	& SPECIF IUNSTE = 0 & END	Y
	GIVE THE INPUT DATA AFTER THE NAME. IF YOU DO NOT UNDERSTAND NAME	PROVIDE 9 VALUES OF LATERAL INFLOW. IF QO=O THESE ARE ACTUAL FLOWS
	WRITE, HELP	0, 0, 5, 5, 0, 0, 0, 0, 0
۰	NSI	SQ 0.000 0.000 5,000 5,000 0.000 0.000 0,000 0.000 0.000
	9	PROVIDE 9 BOTTOM WIDTHS, THEN 9 SIDE SLOPES
	NSO	12, 13, 15, 50, 25, 15, 16, 18, 20,
× · ·	39	.5, .75, 1.5, 2., 1.5, 1., .75, 1., 1.5
	QO	B 12.000 13.000 15.000 50.000 25.000 15.000 16.000 18.000 20.000
	80	M 0.500 0.750 1.500 2.000 1.500 1.000 0.750 1.000 1.500
ι,	XBEG	HAVE YOU MADE ANY MISTAKES Y OR N
r	0	N
	XEND	WHERE SHOILD THE OUTPUT GO? GIVE 1) TTY IF TERM ONLY · 2) FILE NAME
	4180	
r ~	YSTART	
	100	
	PROVIDE OUTPUT STA. NO. WHERE GVG. IS TO BEG., I.E. 1 OR 39	
ē - 1	39	
< _		
r		
·• •		
	7	79

ε.,

SECTIONS A	LONG CHANNE	EL					
0.0	110.0	220.0	330.0	440.0	550.0	660.0	770.0
880.0	990.0	1100.0	1210.0	1320.0			
1430.0	1540.0	1650.0	1760.0	1870.0	1980.0	2090.0	2200.0
2310.0	2420.0	2530.0	2640.0	2750.0			
2860.0	2970.0	3080.0	3190.0	3300.0	3410.0	3520.0	3630,0
3740.0	3850.0	3960.0	4070.0	4180.0			
DISCHARGE	ALONG CHAN	INEL.					
80.00	80.00	80.00	80.00	80.00	80,00	80.00	80.00
80.00	80.00	80.00	82,50	85.00			
86.15	87.29	88.44	89,58	90.00	90.00	90.00	90.00
90.00	90.00	90.00	90.00	90.00			
90.00	90.00	90.00	90.00	90.00	90.00	90.00	90.00
90.00	90.00	90.00	90.00	90.00			
BOLLOW MI	DTHS						
12.000	12.100	12.200	12.300	12.400	12.500	12,600	12.700
12.800	12,900	13.000	14.000	15.000			
23.021	31.042	39.063	47.083	47.177	42.742	38,306	33.871
29.435	25.000	20.000	15.000	15.125			
15.250	15.3/5	15.500	15.625	15./50	15.8/5	16,000	17,000
18,000	18.500	19.000	19.500	20.000			
SLUPES UP	SIDE OF CH	IANNEL			A / 75	A (EA	A /7F
0,500	0.525	0.550	0.5/5	0.800	0.625	0.650	0.675
0.700	0.725	0./50	1,125	1.500			
1.615	1.729	1.844	1,958	1,944	1.855	1.766	1.677
1,589	1.500	1.250	1,000	0.969			
0.938	0.906	0.875	0.844	0.813	0./81	0.750	0.875
1.000	1,125	1.250	1.3/5	1,500			
		704 AT 000	TTONE				
SLUPE UP	CHANNEL BUI	IUM HI SEL	11085				
0.01900	0.01840	0.01/80	0.01/20	0.01660	0.01800	0.01540	0.01480
0,01420	0.01360	0.01300	0.00854	0.00008	A AAAAF	A AAAA/	A AAAAA
0.00007	0.00008	0.00005	0.00003	0.01477	0.00003	0.00008	0.00008
0.00007	0.00010	0.00733	0.01107	0.01437	0 01047	0 01000	0 00575
0.013/3	0.00054	0.01230	0.00110/	0.00005	0.01083	0.01000	0.00333
0.00070	0.00054	0.00037	0.00021	0.00003			
CRITICAL	NEPTHS AT S	FCTTONS					
1.0947	1.0804	1.0971	1.0744	1.0703	1.0640	1.0579	1.0519
1 0460	1 0400	1 0747	0 0074	A 8447	1.0040	1.03/7	1.0317
1.0437	1.0400	1.0343	0.7776	0.4903	A 5175	0.5500	0.5070
0 45 473	0.0170	0 0 0 1 5	1 01 41	1 0004	0+3123	010000	013770
1 0051	1 0004	A 0041	1.0141	0.0074	0 0071	0.0700	0 9797
0.0015	0.0040	0.9494	0.9574	0.9395	V:7031	017766	017372
0.7033	010000	V+0074	V+0000	V+0303			
CRITICAL	SUDPES AT S	ECTIONS					
0.541161	0.541239	0.541420	0.541658	0.541950	0.542291	0.542680	0.543112
0.543586	0.544099	0.544648	0.547024	0.552327			
0.610759	0.662062	0.706809	0.746055	0.745581	0.722555	0.698206	0.672335
0.644734	0.615396	0.579010	0.540916	0.541850			
0.542825	0.543822	0.544841	0.545883	0.546948	0.548039	0.549154	0.556143
0.563554	0.567510	0.571665	0.575959	0.580343			
AREAS CORF	RESPONDING	TO CRITICA	L DEPTH				
13.76	13.81	13.86	13.91	13.96	14.01	14.06	14.11
14.15	14.20	14.25	15.09	15.90			
18.03	19.88	21.52	23.03	23,11	22,39	21.63	20.82
19,94	18,98	17.72	16.24	16.26			
16.27	16.29	16.31	16.33	16.34	16.36	16.38	16.74
17.08	17.97	17.44	17.45	17.93		<b>T</b> .	

VELOCITIE	S CORRESPON	NDING TO CR	ITICAL BEP	тн			
5.816	5.794	5.772	5,751	5.731	5.711	5,691	5.671
5.652	5.633	5.615	5,468	5.347			
4.778	4.392	4.109	3.890	3.895	4.019	4.160	4.323
4.513	4.742	5.080	5.542	5.536			
5,530	5.524	5,518	5.513	5.507	5,501	5.495	5,377
5,269	5.210	5.153	5.100	5.049	0.001		
REYNOLD'S	NUMBERS CO	RRESPONDIN	G TO CRITI	CAL DEPTH			
17,45	17,38	17,32	17.25	17.19	17.13	17.07	17.01
16.96	16.90	16.84	16,41	16.04			
14.33	13.18	12.33	11.67	11.68	12.06	12.48	12.97
13,54	14.23	15.24	16.62	16.61			
16.59	16.57	16.56	16.54	16.52	16.50	16.48	16.13
10+01	13.03	15,40	15.30	12.12			
CHEZY'S N	UMBERS CORR	ESPONDING	TO CRITICA	L DEPTH	o	0.44	0.00
8.10	8.09	8.0/	. 8.06	8.04	8.03	8.01	8+00
7.78	7.97	/.70	/+85	/./6		1	
7.32	/,01	6.7/	6+58	6.59	6.69	0.82	6.95
7.11	7.29	7,56	7,90	7.90			
7,89	7.89	7.89	7.88	7.88	7.87	7.87	7.78
7.70	/.00	/+01	/.5/	/.53			
NORMAL DEI	PTHS AT SEC	TIONS					F
6.762	6.789	6.822	6.861	6.907	6,959	7.019	7.086
7.161	7,245	7.338	9.274	51,765			
51.315	51.979	53.993	57,990	55.839	51.394	48+648	46.953
46.007	45.655	7.665	6.426	6.572			
6.729	6.899	7.084	7.285	7.506	7.749	8.018	10,363
25.069	26.828	29+937	36,302	61,276			
AREAS CORI	RESPONDING	TO NORMAL	DEPTHS				
104.005	106.337	108,816	111.452	114.261	117,256	120.456	123,882
127,558	131.510	135.773	226.611	4795.986			
5432.809	6285,459	7484.182	9315.880	3674.245	7095.897	6043,200	5288.446
4716,957	4267.990	226.742	137.690	141.237			
145,062	149.203	153,702	158.611	163.994	169,924	176,500	270,144
1079.681	1306.050	1689,068	2519.940	6857,591			
ELOCITIES	CORRESPOND	ING TO NOR	MAL DEPTHS				
0,769	0.752	0.735	0.718	0.700	0.682	0.664	0.646
0.627	0.608	0.589	0.364	0.018			
0.016	0.014	0.012	0.010	0.010	0.013	0.015	0.017
0.019	0.021	0.397	0,654	0,637			
0.620	0.603	0,586	0,567	0.549	0,530	0.510	0.333
0.083	0.069	0.023	0.036	0.013			
REYNOLD'S	NUMBERS CO	RRESPONDIN	G TO NORMAL	DEPTHS			
2.31	2.26	2.21	2.15	2,10	2,05	1,99	1.94
1.88	1.82	1.77	1.09	0.05			
0.05	0.04	0.04	0.03	0.03	0,04	0.04	0,05
0.06	0.06	1.19	1.96	1.91			_
1.86	1.81	1.76	1.70	1.65	1.59	1.53	1.00
0.25	0.21	0.16	0.11	0.04			
CHEZY'S NU	IMBERS CORR	ESPONDINO '	TO NORMAL I	DEPTH			
2,85	2.82	2.78	2.75	2.71	2,68	2.64	2,60
2.56	2.52	2.48	1,94	0.41			
0.38	0.36	0.33	0.30	0.31	0.34	0.37	0.40
0.42	0.44	2.02	2.62	2.59			
2.55	2.51	2.48	2.44	2.39	2.35	2,30	1,85
0.90	0.82	0.72	0.58	0,35			
PTHS OF F	LOW AT SECT	TIONS					
62.461.			79,964	76,678	78,332	79,926	. 81.459

• •

- -

. -

5 -

**.** ..

۰ -۲

ь... .....

а н. а н. У С. 3 Г.

- - - -

к... ....

ь ... r ...

£____

**د** ...

к ... У К

- -

~ ،

. 11

× .

.

						•	
82.932	84.344	85.695	86.682	87.011			
87.017	87.022	87.026	87.029	87.031	87.035	87.039	87.044
87.050	87.058	87.453	88.608	90.103			
91.533	92,900	94.203	95.442	96.618	97.730	98,778	99,553
99.854	99.915	99,960	99.988	100.000			
CROSS-SECTI	ONAL AREAS						
3245.9	3536.5	3839.1	4153.3	478.5	4814.1	5159.4	5513.6
5875,9	6245.6	6621.8	9666.5	12661.5			
14228.7	15796.0	17363.1	18930.0	18827.2	17770.5	16713.9	15657.5
14601.3	13545.1	11309.2	9180.5	9227.6			
9250.6	9249.7	9225.1	9177.2	9106.5	9013.3	8898.2	10364.4
11768.3	13079.4	14389.2	15696.5	17000.0			
VELOCITY							·
0,025	0.023	0.021	0.019	0.018	0.017	0.016	0.015
0.014	0.013	0.012	0.009	0.007			
0.006	0.006	0.005	0.005	0.005	0.005	0.005	0.006
0.006	0.007	0.008	0.010	0.010			
0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.009
0.008	0.007	0.006	0.006	0.005			
REYNOLDS NUI	MBERS FOR (	GVF					
0.074	0.068	0.063	0.058	0.054	0.050	0.047	0.044
0.041	0.038	0.036	0.026	0.020			
0.018	0.017	0.015	0.014	0.014	0.015	0.016	0.017
0.018	0.020	0.024	0.029	0.029			
0.029	0,029	0.029	0.029	0.030	0.030	0.030	0.026
0.023	0.021	0.019	0.017	0.016			
WETTED PERIN	IETERS						
167.3	173.3	179.3	185.2	191.2	197.2	203.3	209.3
215.3	221.3	227.2	274.9	328.7			
353.5	378.7	404.1	429.8	427.6	409.5	391.6	373.8
356.3	338.9	300.0	265.6	266.0			
266.2	266.1	265.8	265.4	264.7	263.9	262.9	281.6
300.4	319.3	339.0	359,5	380.6			
TOP WIDTH							
81.46	87,02	92,71	98.51	104.41	110.42	116.50	122.67
128.90	135.20	141.54	209.03	276.03			
304.01	331.99	359.97	387.95	385,48	365.61	345.75	325.89
306.03	286.17	238.63	192.22	189.70			
186.87	183.76	180.36	176.68	172.75	168.58	164.17	191.22
212 21	247 71	240 00	204 47	720 00			

SECTIONS A	LONG CHANNEL	220.0	330.0	440.0	550.0	660.0	770.0	
880.0	990.0 1540.0	1100.0	1210.0	1320.0	1980.0	2090.0	2200.0	
2310.0	2420.0	2530.0	2640.0	2750.0	3410.0	3520.0	3630.0	
2000+0	3850.0	3960.0	4070.0	4180.0	011000			
0, 40,0								
DISCHARGE	ALONG CHAN	NEL OA AA	00.00	90.00	80.00	80.00	80.00	
80.00	80.00	80.00	82.50	85.00	00100			
86.15	87.29	88,44	89.58	90.00	90.00	90.00	90.00	
90.00	90.00	90.00	90.00	90.00		80.00	90.00	
90,00	90.00	90.00	90.00	90.00	90100	70100	,	
90.00	70+00	,,,,,,	,	,				
BOTTOM WI	DTHS				10 500	12 400	12.700	
12.000	12.100	12,200	12.300	12.400	12.300	12,000	121700	
23.021	31.042	39.063	47.083	47.177	42,742	38,306	33.871	
29.435	25.000	20.000	15.000	15.125	15 075	14 000	17 000	
15.250	15.375	15,500	15.625	15,750	15.8/5	18.000	17.000	
18,000	18,500	17.000	171500	20.000				
SLOPES OF	SIDE OF CH	ANNEL					0 (7E	
0.500	0.525	0.550	0.575	0.600	0,625	0.650	0.6/5	
0.700	0.725	0.750	1.120	1.944	1,855	1,766	1.677	
1,015	1.500	1.250	1.000	0.969				
0.938	0.906	0.875	0.844	0.813	0,781	0.750	0.875	
1.000	1.125	1,250	1.375	1.500				
MANNINGS	N FOR SEC	TIONS OF C	HANNEL					
0.035	0.035	0.035	0.035	. 0,035	0.035	0.035	0.035	
0.035	0,035	0.035	0.035	0.035	0.035	0.035	0.035	
0.035	0.035	0.035	0.035	0,035				
0.035	0.035,	0.035	0.035	0.035	0,035	0.035	0.035	
0.035	0.035	0.035	0,035	0.035				
SLOPE OF (	CHANNEL BOT	TOM AT SEC	TIONS			_		
0.01900	0.01840	0.01780	0.01720	0.01660	0.01600	0.01540	0.01480	
0.01420	0.01360	0.01300	0.00654	0.00008	0 00004	0.00006	0.00007	
0.00007	0.00005	0.00004	0.00002	0.01437	0100004			
0.01375	0.01312	0.01250	0.01187	0.01125	0.01063	0.01000	0.00535	
0.00070	0.00054	0,00037	0.00021	0.00005				
CRITICAL	DEPTHS AT S	ECTIONS						
1,0963	1.0896	1.0831	1.0766	1.0703	1.0640	1.0579	1.0519	
1.0459	1.0400	1,0343	0.9976	0.9663	0.5125	0.5508	0.5970	
0./443	0.0190	0+33/3	1.0141	1.0096	010120			
1.0051	1,0006	0.9961	0.9918	0.9874	0.9831	0.9788	0.9392	
0.9035	0.8860	0.8694	0.8536	0.8385				
CRITICAL	SLOPES AT S	ECTIONS						
0.019931	0.019884	0.019841	0.019802	0.019765	0.019732	0.019702	0.019675	
0.019651	0.019629	0.019609	0.019354	0.019295	A A00575	0 0000/4	0.021562	
0.020369	0.021360	0.022229	0.022993	0.022979	V+V22035	VIV22V04	A1A51705	
0.021028	0.019344	0.019377	0.019412	0.019448	0.019484	0.019522	0.019549	
** 0.019614	0.019638	0.019377	0.019728	0.019786		• -		

- -

. . . .

. .

. .

50

r ~

ал . т.т.

r -

د ب م م

ы – , –

i ...

E D

r ~

L ...

r ~

. .

. . .

. .

- = =

- ----- "

83

Ч.

AREAS CORR	ESPONDING	TO CRITICA	L DEPTH				
13.76	13.81	13.86	13.91	13.96	14.01	14.06	14.11
14.15	14.20	14,25	15.09	15,90		01 /7	20 92
18.03	19.88	21.52	23.03	23.11	22.39	21,03	20102
19,94	18,78	1/./2	16.24	16+26	14.74	16.38	16.74
10+2/	10,47	10+31	17.45	17.91	10:00	10000	
17+08	17.27	17+40	17+65	17.03			
VELOCITIES	CORRESPON	NDING TO CR	ITICAL DEP	тн			
5.816	5,794	5,772	5.751	5.731	5,711	5,691	5.671
5,652	5.633	5,615	5,468	5,347			
4.778	4.392	4,109	3.890	3.895	4.019	4.160	4.323
4.513	4.742	5.080	5,542	5.536			* * * * *
5,530	5.524	5.518	5,513	5.507	5,501	5,495	3.3//
5,269	5.210	5.153	5+100	5.049			
NUKRAL DEP	1 114 61 361	1,120	1.124	1,129	1.134	1.140	1.147
1 154	1,147	1,171	1,379	4.454			
7.099	7.451	3,531	3.434	3.486	3.286	3.223	3,245
7.777	3,503	1,123	1.093	1,103			
1 117	1,125	1,137	1.150	1.165	1.181	1,199	1,388
2,452	2,590	2.814	3,245	4.782			
2,902	2.0/0	2,014	012.0			*	
AREAS CORR	ESPONDING	TO NORMAL	DEPTHS				
13.969	14.155	14.350	14.552	14.763	14,983	15,214	15.455
15.709	15.977	16.259	21,443	102.368			
117.489	136,384	160,910	196.970	188.074	160.492	141.810	127.566
115.924	105.998	24.034	17.589	17,856		/	
18.138	18,437	18.754	19,092	19,453	19,640	20,256	25.286
50.150	55.452	63.355	77.766	129,958			
VELOCITIES	LUKKESPUNL	10 00 10 00F	MHL DEFIND	5.410	5. 170	5.258	5,176
5./2/	3+634	3,3/3	J+470 7 047	0.970	0.007	01200	
5.093	5.007	4.720	3+84/	0.470	0.541	0.435	0.706
0.733	0.640	7 745	5 117	5.040	01001		
0.770	0+847	A.799	4.714	4.627	4.536	4.443	3.559
4+702	4.001	1.421	1,157	0.693			
<b>NEDTUG OF E</b>	11025 1 DU AT SEC	TTONS					
49.323	71.230	73.075	74.860	76.583	78,245	79.846	81.385
82.864	84.281	85.637	86.627	86,959			
86.966	86,973	86.977	86,981	86.984	86.987	86.992	86.998
87.006	87.016	87.413	88.571	90.068			
91.502	92.872	94.178	95.421	96.599	97.714	98.766	99.544
99.848	99.911	99.957	99.987	100.000		,	
CROSS-SECTI	ONAL AREAS	· · · · · ·		***	4004 5	5150.0	5504.5
3234.7	3525.5	3828.5	4143+0	4400.0	4004+3	3130.0	220412
586/.1	623/+1	6613+3	7033+0	10000 0	17757.1	14497.7	15642.6
14213.4	13//7.0	11200 4	9177.3	9221.0	1//00/1	100//////	1001210
1438/*/	1333217	0770 4	0177.4	9103.2	9010.7	8896.2	10362.6
7244.7	7244+3	14388.4	15696.1	17000.0	/01007	00.072	
VELOCITY	130/012	1420014	100/011	1,00000			
0.025	0.023	0.021	0.019	0.018	0.017	0.016	0.015
0.014	0.013	0.012	0.009	0.007			
0.006	0.006	0.005	0.005	0.005	0.005	0.005	0,006
0.006	0.007	0.008	0,010	0.010			
0.010	0,010	0.010	0.010	0.010	0.010	0.010	0.009
0.008	0.007	0.006	0.006	0,005			
WETTED PERI	METERS			101 0	107 0	207 1	209.1
167.0	173.0	1/9.0	182+0	171+0	177.0	203+1	20/11
215.1	221+1	227+1	2/4+8	427.4	409.3	391.4	373.7
356.1	336.7	299.9	285.5	265.9	40710		
266.1	266.0	265.8	265.3	264.7	263.9	262.9	281.5
300.4	319.3	339.0	359.5	380.6			
TOP WIDTH			_				123 57
81.32	86.89	92,58	98,39	104.30	110.51	110,40	144.3/
128,81	135,11	141.46	208,91	275.88		7 AF 50	105 7A
303.85	331.82	359.79	387.76	385.29	365.44	343+38	3231/4
305.89	286.05	238.53	192.14	189.63	168.55	164.15	191.20
186.82	183./1	100,31	1/0+0J 294.44	320.00	100100		

SECTIONS A	LONG CHANNE	L					770 0	
0.0	110.0	220.0	330.0	440.0	550.0	660.0	//0.0	
880.0	990.0	1100.0	1210.0	1320.0			0044 4	
1430.0	1540.0	1650.0	1760.0	1870.0	1980.0	2090+0	2200.0	
2310.0	2420.0	2530.0	2640.0	2750.0			<b></b>	
2860.0	2970.0	3080,0	3190.0	3300,0	3410.0	3520.0	3630.0	
3740.0	3850.0	3960.0	4070.0	4180.0				
V+V+V								
DISCHARGE	ALONG CHAN	NEL						
	0A AA	00 00	ØA AA	90.00	80.00	80.00	80.00	
80.00	80.00	80.00	0V+UV	00.00				
80.00	80.00	80.00	82.30	00+00	90.00	90.00	90.00	
86+15	87.29	88.44	84.28	70,00	70100			
90.00	90.00	90.00	90.00	90.00	00 00	90.00	90.00	
90.00	90.00	90,00	¥0.00	90.00	70,00			
90.00	90.00	90.00	90.00	90.00				
BOTTOM WI	DIHS			10 400	10 804	12 400	12.700	
12,000	12.100	12.200	12,300	12,400	12,300	12:000	******	
12,800	12.900	13.000	14.000	15.000		70 70/	77 071	
23,021	31.042	39.063	47.083	47.177	42.742	38,306	22.8/1	
29.435	25.000	20.000	15.000	15,125				
15,250	15,375	15.500	15.625	15.750	15.875	16.000	17,000	
18.000	18.500	19.000	19.500	20.000				
******	10.000							
SI OPES OF	SIDE OF CH	ANNEL						
010,10 01	0.525	0.550	0.575	0.600	0.625	0.650	0.675	
01000	0.323	A 784	1 125	1.500				
0.700	0.725	1.044	1.950	1.944	1.855	1.766	1,677	
1.615	1./29	1+844	1 17 38	11774	11000			
1.589	1,500	1,250	1.000	V,707 A 017	0.791	0.750	0.875	
0.938	0.906	0.875	0.844	0.013	0.701	V1/JV	010/0	
1,000	1.125	1,250	1,375	1,500				
	N 500 050		UANNEL					
MANNINGS	N FUR SEC	JIUNS UP C		A	0 AEA	0 050	0.050	
0.050	0.050	0.050	0,050	0.050	0.020	0.030	V+V3V	
0.050	0.050	0.050	0.050	V+050			A 454	
0.050	0.050	0.050	0,050	0.050	0,050	0.050	0.020	
0.050	0,050	0.050	0.050	0.050				
0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	
0.050	0.050	. 0.050	0,050	0.050				
01000					•			
SLOPE OF	CHANNEL BOT	TOM AT SEC	TIONS					
A A18AA	0.01940	0.01780	0.01720	0.01660	0.01600	0.01540	0.01480	
0.01700	A 64724	0.01700	0.00454	0.0008				
0.01420	0.01350	0,01300	0,00034	0.00007	0.00004	0.00004	0.00007	
0.00007	0.00005		0100002	0.01427				
0,00009	0.00010	0.00/35	0.01300	VIVI70/	0.01047	0.01000	0.00535	
0.01375	0.01312	0.01250	0,01187	0.001120	A+A1003	*******	v · · · · · · · · ·	
0.00070	0,00054	0.0003/	0.00021	0.00000				
CRITICAL	DEPTHS AT S	ECTIONS				1 4530	1 4519	·
1.0963	1.0896	1.0831	1,0766	1.0/03	1,0640	1:03/9	1+0314	
1.0459	1.0400	1.0343	0,9976	0.9663			*	
0.7443	0.6190	0,5373	0.4794	0,4803	0.5125	0.5508	0,5970	
0.6543	0.7275	0.8415	1.0141	1.0096				
1.0051	1,0006	0,9961	0.9918	0.9874	0.9831	0.9788	0.9392	
A. 0075	0.8840	0.8494	0.8534	0.8385				
0.7030	A1000A	V,00/7						
0077704		ECTIONS						
GRITICAL	SLUPES HIS	C. 110N9	0.040411	0.040377	0.040270	0.040209	0.040153	
0.040676	0.040580	0.040492	0.040411	0.040337	VIV4V2/V			
0.040103	0.040058	0.040018	0.039498	0.0393/8		0 045000	0.044005	
0.041570	0.043592	0.045366	0.046924	0.046896	0.042330	0+043028	V+V-4VVJ	
0.042915	0.041759	0.040433	0.039281	0.039345	0.070744	0.070041	0.039994	
0,039410	0.039477	0.039546	0.03981/	0.039689	01039/84	V+V37041	V:VJ/0/0	;
. 0.040028	0.040078	0.040158	0.040261	_ 0.040381				· ••• ·

· .

• •

τ.,

· · ·

۰. ..

- -

-- -

e i

× -

r -

L. ...

. .

۷ ـ

ς....

* ~

• •

- L :

- - ---

- -

AREAS CORR	ESPONDING	TO CRITICAL	DEPTH				
13.76	13.81	13.86	13.91	13,96	14.01	14.06	14.11
14.15	14,20	14.25	15.09	15.90			
18.03	19.88	21.52	23.03	23.11	22.39	21.63	20.82
19,94	18.98	17.72	16.24	16.26			
16.27	16.29	16.31	16.33	16.34	16.36	16.38	16.74
17.08	17,27	17.46	17.65	17.83			
				-			
VELOCITIES	CORRESPON	DING TO CRI	TICAL DEPI	TH T			
5.816	5.794	5,772	5.751	5.731	5.711	5.691	5.671
5+652	5.633	5.615	5.468	5,347			
4.778	4.392	4.109	3.890	3.895	4.019	4.160	4.323
4.513	4.742	5.080	5.542	5.536			
5.530	5.524	5.518	5.513	5,507	5.501	5.495	5.3//
5+269	5.210	5,153	5,100	5.049			
FAILED TO C	ONVERGE FO	R SECTION,	13 DIF=(	0.7807E-05	YO≕	5.639	
NORMAL DEP	THS AT SEC	TIONS					1 105
1.386	1.389	1.394	1.399	1.404	1.410	1+417	1.425
1.434	1.444	1.454	1.704	5,639			
4.873	4.479	4.340	4.470	4.289	4.044	3,966	3.991
4.101	4.299	1.389	1.354	1.366			
1.379	1.394	1.410	1,427	1.445	1.466	1.488	1.721
3.030	3.193	3,462	3.980	5.821			
AREAS CORR	ESPONDING	TO NORMAL D	EPTHS				
17.591	17.826	18.072	18,327	18.594	18,873	19,165	19,472
19.794	20.133	20.491	27.124	132.267			
150.523	173.725	204.236	249.561	238.110	203.206	179,702	161.892
147.434	135,209	30.196	22,137	22:470			
22.821	23,193	23,589	24.011	24.460	24.944	25.467	31.849
63.715	70.545	80.749	99.402	167.260			
000,10	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	••••					
VELOCITIES	CORRESPOND	ING TO NORM	AL DEPTHS				
4.548	4.488	4.427	4.365	4.302	4.239	4.174	4.109
4,040	7 974	7.904	3.042	0.643			
4+042	3+7/7	0.477	0.759	0.378	0.443	0.501	0.556
0+5/2	0.302	0.433	4 044	4.005	01440		
0.610	0.660	2,701	7 749	7.479	3.408	3.534	2.826
3+744	3.880	3.013	0 005	0.579	0,000		
1.413	1,2/6	1+113	0.703	0.000	,		
DEPTHS OF F	LUW AI SEL	11045	74 0/0	74 507	79.245	79.944	81.385
69.323	/1.230	/3.0/2	94.407	86.959	/0.245	//.040	011000
82+004	04+201	04.077	84.991	86.984	84.987	86.992	86.998
	00+7/3	07 417	00.571	90.048			
8/.000	07.010	0/ 413	05 421	04.599	97.714	98.766	99.544
91.502	72,8/2	74+1/0	70.421	100.000			
99.848	77,711 Dual Addag		77 + 70/	100,000			
CRUSS-SECTI	UNAL AKEAS	7000 F	41 47 0	4449.4	4804.5	5150.0	5504.5
3234.7	3020.0	3828.3	4143+0	490010	400440	010000	
5867+1	6237+1	6613.5	9633.0	12047+1	17767 1	. 12207 7	15442.4
14213.4	15779.6	17345.6	18911.4	18808.9	1//33+1	1007/1/	13042.0
14587.7	13532.9	11299.6	91/3.3	9221.0		000/ 0	10740 4
9244.7	9244.5	9220.6	9173.4	9103.2	9010.7	8870+2	10302.0
11766.8	13078,2	14388.4	15696.1	17000.0			
VELOCITY							
0.025	0.023	0.021	0.019	0.018	0.017	0.016	0.015
0.014	0.013	0.012	0.009	0.007			
8:862	ð:ðð3	0.005	0.005	0.005	0.005	0.005	0,006
0.006	0.007	0.008	0.010	0.010			
0,010	0.010	0.010	0.010	0.010	0.010	0.010	0.009
0.008	0.007	0.006	0.006	0.005			
WETTED PERI	METERS						000 1
167.0	173.0	179.0	185.0	191.0	197.0	203.1	209.1
215.1	221.1	227.1	274.8	328.5			
353.4 .	378.5	403.9	429.6	427.4	409.3	37,1+4	\$13.1
356.1	338.7	299.9	265.5	203.7	7/7 0	242.0	281.5
266.1	266.0	205.8	203.3	204+/	20317	202+7	
300.4	319.3	339.0	359.5	380.6			
TOP WIDTH				104 70	110 71	114.40	122.57
81.32	86.89	92,58	98,39	104.30	110+31	110+40	20210/
128.81	135,11	141.46	208.91	2/5,88	748 44	746 60	325.74
303.85	331.82	359.79	387.76	383+27	303+44	343+38	0201/4
305.89	286.05	238.53	172,14	107.03	140 55	144.15	191.20
186.82	183,71	180.31	1/0+00	1/2+/4	190111	104410	
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	747 70	749.89	274. AA	* 20 × UU			

- -

0.0	110 0	- 220 0	370.0	440.0	550.0	660.0	770.0
000 0	110+0	220.0	1010.0	1700 0	00000		
1470 0	1540-0	1450.0	1740.0	1970.0	1980.0	2090.0	2200.0
1430.0	2420.0	2570.0	2640.0	2750.0			
2860.0	2970.0	3080.0	3190.0	3300.0	3410.0	3520.0	3630.0
3740.0	3850.0	3960.0	4070.0	4180.0			
DISCHARGE	ALONG CHANN	NEL					
80.00	80.00	80.00	80.00	80.00	80.00	80.00	80,00
80.00	80.00	80.00	82.50	85.00			
86.15	87,29	88,44	87.58	90.00	90.00	90.00	90.00
90.00	90.00	90.00	90.00	90.00			
90.00	90.00	90.00	90.00	90.00	90.00	90+00	90.00
90.00	90.00	90,00	90.00	90.00			
BOTTOM WI	DTHS						
12.000	12.100	12,200	12.300	12,400	12.500	12.600	12,700
12,800	12,900	13.000	14.000	15,000			
27.021	31.042	39.063	47.083	47.177	42,742	38.306	33,871
20.475	25.000	20.000	15.000	15.125			
45 754	15.775	15.500	15.625	15.750	15.875	16.000	17.000
13+250	18.500	19.000	19.500	20,000			
100000							
SLOPES OF	SIDE OF CHA	ANNEL					A .75
0,500	0.525	0.550	0.575	0.600	0.625	0.920	0.6/3
0.700	0.725	0.750	1,125	1.500			
1.615	1.729	1.844	1.958	1,944	1.855	1+766	1.6//
1,589	1.500	1.250	1.000	0.969			A 075
0,938	0.906	0.875	0.844	0.813	0.781	0./50	0+8/5
1.000	1.125	1.250	1.375	1.500	• •		
			HANNEL				
*****	A FUX SEL						
MANNINGS	N FUR SECT	0.090	0.080	0.080	0.080	0.080	0.080
MANNINGS 0.080	0.080	0.080	0.080	0.080	0.080	0.080	0.080
MANNINGS 0.080 0.080	0.080 0.080	0.080	0.080	0.080	0.080	0.080	0.080
MANNINGS 0.080 0.080 0.080	0.080 0.080 0.080	0.080 0.080 0.080	0.080 0.080 0.080	0.080 0.080 0.080	0.080 0.080	0.080	0.080 0.080
MANNINGS 0.080 0.080 0.080 0.080	N FUR SECT 0.080 0.080 0.080 0.080	0.080 0.080 0.080 0.080 0.080	0.080 0.080 0.080 0.080	0.080 0.080 0.080 0.080	0.080	0.080	0.080
MANNINGS 0.080 0.080 0.080 0.080 0.080	N FUR SECT 0.080 0.080 0.080 0.080 0.080	0.080 0.080 0.080 0.080 0.080 0.080	0.080 0.080 0.080 0.080 0.080 0.080	0.080 0.080 0.080 0.080 0.080	0.080 0.080 0.080	0.080 0.080	0.080 0.080 0.080
MANNINGS 0.080 0.080 0.080 0.080 0.080	N FUR SECT 0.080 0.080 0.080 0.080 0.080 0.080	0.080 0.080 0.080 0.080 0.080 0.080	0.080 0.080 0.080 0.080 0.080 0.080	0.080 0.080 0.080 0.080 0.080 0.080	0.080 0.080 0.080	0.080 0.080	0.080 0.080 0.080
MANNINGS 0.080 0.080 0.080 0.080 0.080 0.080 SLOPE DF 0	N FUR SECT 0.080 0.080 0.080 0.080 0.080 0.080 0.080	0.080 0.080 0.080 0.080 0.080 0.080 0.080	0.080 0.080 0.080 0.080 0.080 0.080 0.080	0.080 0.080 0.080 0.080 0.080 0.080	0.080 0.080 0.080	0.080	0.080 0.080 0.080
MANNINGS 0.080 0.080 0.080 0.080 0.080 0.080 SLOPE DF 0 0.01900	N FUR SECT 0.080 0.080 0.080 0.080 0.080 0.080 0.080 CHANNEL BOTT 0.01840	0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080	0.080 0.080 0.080 0.080 0.080 0.080 0.080	0.080 0.080 0.080 0.080 0.080 0.080	0.080 0.080 0.080 0.080	0.080 0.080 0.080 0.080	0.080 0.080 0.080 0.080
MANNINGS 0.080 0.080 0.080 0.080 0.080 0.080 SLOPE DF 1 0.01900 0.01420	N POR SECI 0.080 0.080 0.080 0.080 0.080 0.080 0.080 CHANNEL BOTT 0.01840 0.01360	0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.01780 0.01780	0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080	0.080 0.080 0.080 0.080 0.080 0.080 0.080	0.080 0.080 0.080 0.080	0.080 0.080 0.080 0.01540	0.080 0.080 0.080 0.01480
MANNINGS 0.080 0.080 0.080 0.080 0.080 0.080 SLOPE DF 1 0.01900 0.01420 0.00007	N POR SECI 0.080 0.080 0.080 0.080 0.080 0.080 CHANNEL BOTT 0.01840 0.01360 0.00005	0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.01780 0.01300 0.00004	0.080 0.080 0.080 0.080 0.080 0.080 TIONS 0.01720 0.00654 0.00654	0.080 0.080 0.080 0.080 0.080 0.080 0.01660 0.00008 0.00008	0.080 0.080 0.080 0.01400 0.00004	0.080 0.080 0.080 0.01540 0.00006	0.080 0.080 0.080 0.01480 0.00007
MANNINGS 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.01900 0.01420 0.01420 0.00007 0.00009	N FUR SECI 0.080 0.080 0.080 0.080 0.080 0.080 CHANNEL BOTT 0.01840 0.01360 0.0005 0.00010	0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.01780 0.01780 0.01780 0.0004 0.00055	0.080 0.080 0.080 0.080 0.080 0.080 TIONS 0.01720 0.00454 0.00002 0.01500	0.080 0.080 0.080 0.080 0.080 0.080 0.01660 0.0008 0.00008 0.00003 0.01437	0.080 0.080 0.080 0.01400 0.00004	0.080 0.080 0.080 0.01540 0.00004	0.080 0.080 0.080 0.01480 0.00007
MANNINGS 0.080 0.080 0.080 0.080 0.080 0.080 SLOPE DF 1 0.01900 0.01420 0.00007 0.00007 0.01375	N FOR SECT 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.01840 0.01340 0.01340 0.0005 0.00010 0.01312	IDN3 37 0 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.01780 0.01780 0.01780 0.01780 0.01250	0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.01720 0.00654 0.00002 0.01500 0.01187	0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.0008 0.00008 0.00008 0.01437 0.01437	0.080 0.080 0.080 0.01400 0.00004 0.01063	0.080 0.080 0.080 0.01540 0.00006 0.01000	0.080 0.080 0.080 0.01480 0.00007 0.00535
MANNINGS 0.080 0.080 0.080 0.080 0.080 0.080 SLOPE DF 0 0.01900 0.01420 0.00007 0.01375 0.00070	N POR SECI 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.01840 0.01340 0.01340 0.01340 0.01312 0.00054	IDN3 37 0 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.01780 0.01780 0.01780 0.01780 0.01250 0.000037	0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.01720 0.00654 0.000654 0.00002 0.01187 0.00021	0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.0008 0.00008 0.00003 0.01437 0.01125 0.00005	0.080 0.080 0.080 0.01400 0.00004 0.01063	0.080 0.080 0.080 0.01540 0.00006 0.01000	0.080 0.080 0.080 0.01480 0.00007 0.00535
MANNINGS 0.080 0.080 0.080 0.080 0.080 0.080 SLOPE DF 1 0.01900 0.01420 0.00077 0.00007 0.01375 0.00070	N POR SECI 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.01840 0.01360 0.01360 0.00005 0.00010 0.01312 0.00054	IDN3 37 0 0.080 0.080 0.080 0.080 0.080 0.080 0.01780 0.01780 0.01780 0.01780 0.01250 0.00004 0.00755	0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.01720 0.00654 0.00002 0.01500 0.01187 0.00021	$\begin{array}{c} 0.080\\ 0.080\\ 0.080\\ 0.080\\ 0.080\\ 0.080\\ 0.080\\ 0.080\\ 0.0008\\ 0.00008\\ 0.00008\\ 0.00003\\ 0.01437\\ 0.01125\\ 0.0005\end{array}$	0.080 0.080 0.080 0.01400 0.00004 0.01063	0.080 0.080 0.080 0.01540 0.00006 0.01000	0.080 0.080 0.080 0.01480 0.00007 0.00535
MANNINGS 0.080 0.080 0.080 0.080 0.080 0.080 0.01900 0.01420 0.01900 0.01420 0.01007 0.00007 0.01375 0.00070 CRITICAL	N POR SECI 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.01340 0.01340 0.01340 0.01340 0.01312 0.00054 0.00054	CONSTRUCTIONS	0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.01720 0.00454 0.00022 0.01500 0.01187 0.00021	0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.0008 0.00008 0.00003 0.01437 0.01125 0.00005	0.080 0.080 0.01600 0.00004 0.01063	0.080 0.080 0.080 0.01540 0.00006 0.01000	0.080 0.080 0.080 0.01480 0.00007 0.00535
MANNINGS 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.01900 0.01420 0.01420 0.00007 0.01375 0.00070 CRITICAL 1 1.0963	N FOR SECI 0.080 0.080 0.080 0.080 0.080 0.080 CHANNEL BOTT 0.01840 0.01360 0.00005 0.00010 0.01312 0.00054 DEPTHS AT SE 1.0896	COM AT SEC 0.080 0.080 0.080 0.080 0.080 0.080 0.01780 0.01780 0.01300 0.00004 0.00755 0.01250 0.00037 0.00037 ECTIONS 1.0831	0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.01720 0.00654 0.00654 0.00022 0.01500 0.01187 0.00021	0.080 0.080 0.080 0.080 0.080 0.080 0.01660 0.0008 0.0003 0.01437 0.01125 0.00005	0.080 0.080 0.01400 0.00004 0.01063 1.0640	0.080 0.080 0.01540 0.00006 0.01000 1.0579	0.080 0.080 0.01480 0.00007 0.00535 1.0519
MANNINGS 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.01900 0.01420 0.01375 0.00070 CRITICAL 1.0963 1.0963 1.0963 1.0963 1.0963 1.0963 1.0963 1.0963 1.0963 1.0963 1.0963 1.0963 1.0963 1.0963 1.0963 1.0963 1.0963 1.0963 1.0963 1.0963 1.0963 1.0963 1.0963 1.0963 1.0963 1.0963 1.0963 1.0963 1.0963 1.0963 1.0963 1.0955 1.0955 1.0955 1.0955 1.09555 1.09555 1.09555 1.09555 1.09555 1.09555 1.09555 1.09555 1.09555 1.095555 1.095555 1.0955555 1.095555 1.095555 1.095555 1.095555 1.095555 1.095555 1.095555 1.0955555 1.095555 1.095555 1.095555 1.095555 1.095555 1.095555 1.0955555 1.0955555 1.0955555 1.0955555 1.09555555 1.095555555 1.09555555555 1.09555555555555555555555555555555555555	N FUR SECI 0.080 0.080 0.080 0.080 0.080 0.080 CHANNEL BOTT 0.01840 0.01360 0.00005 0.00010 0.01312 0.00054 DEPTHS AT SE 1.0896 1.0400	CIUNS 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.01780 0.01780 0.01780 0.00004 0.00755 0.01250 0.00037 ECTIONS 1.0831 1.0343	0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.01720 0.00654 0.00654 0.00052 0.01187 0.00021 1.0766 0.9976	0.080 0.080 0.080 0.080 0.080 0.080 0.0008 0.00003 0.01437 0.01125 0.00005 1.0703 0.9663	0.080 0.080 0.080 0.01600 0.00004 0.01063 1.0640	0.080 0.080 0.01540 0.00006 0.01000 1.0579	0.080 0.080 0.080 0.01480 0.00007 0.00535 1.0519 0.5970
MANNINGS 0.080 0.080 0.080 0.080 0.080 0.080 SLOPE DF 0 0.01900 0.01900 0.01375 0.00007 CRITICAL 1 1.0963 1.0459 0.7443	N POR SECI 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.01840 0.01340 0.01340 0.01340 0.0005 0.00015 0.00015 0.00054 DEPTHS AT SE 1.0896 1.0400 0.6190	CINE S SF C 0.080 0.080 0.080 0.080 0.080 0.01780 0.01780 0.01780 0.01780 0.01250 0.00037 CTIONS 1.0831 1.0343 0.5373	0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.01720 0.00654 0.00002 0.01500 0.01187 0.00021 1.0766 0.9976 0.4794	0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.0008 0.00008 0.00003 0.01437 0.01125 0.00005 1.0703 0.9663 0.4803	0.080 0.080 0.01400 0.00004 0.01063 1.0640 0.5125	0.080 0.080 0.01540 0.00004 0.01000 1.0579 0.5508	0.080 0.080 0.080 0.01480 0.00007 0.00535 1.0519 0.5970
MANNINGS 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.01900 0.01400 0.01470 0.01375 0.0007 0.01375 0.00070 CRITICAL 1 1.0963 1.09459 0.7443 0.6543	N POR SECI 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.0180 0.01840 0.01840 0.01312 0.00054 0.01312 0.00054 DEPTHS AT SE 1.0896 1.0400 0.6190 0.7275	CINES 37 0 0.080 0.080 0.080 0.080 0.080 0.01780 0.01780 0.01780 0.01300 0.00004 0.00755 0.01250 0.00037 CTIDNS 1.0831 1.0831 1.0343 0.5373 0.8415	0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.01720 0.00654 0.00022 0.01500 0.01187 0.00021 1.0766 0.9976 0.4794 1.0141	0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.0008 0.00003 0.01437 0.01125 0.00005 1.0703 0.9663 0.4803 1.0096	0.080 0.080 0.01600 0.00004 0.01063 1.0640 0.5125	0.080 0.080 0.01540 0.00006 0.01000 1.0579 0.5508	0.080 0.080 0.080 0.01480 0.00007 0.00535 1.0519 0.5970
MANNINGS 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.01900 0.01400 0.01400 0.01375 0.0007 CRITICAL 1 1.0963 1.0459 0.7443 0.6543 1.0051	N POR SECI 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.01340 0.01312 0.0005 0.00010 0.01312 0.00054 DEPTHS AT SE 1.0896 1.0400 0.6190 0.7275 1.0006	CON AT SEC 0.080 0.080 0.080 0.080 0.080 0.01780 0.01780 0.01780 0.01755 0.01250 0.00037 5 CTIONS 1.0831 1.0831 1.0343 0.5373 0.8415 0.9961	0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.01720 0.00654 0.00654 0.00022 0.01500 0.01187 0.00021 1.0766 0.9976 0.4794 1.0141 0.9918	0.080 0.080 0.080 0.080 0.080 0.080 0.0003 0.01437 0.01125 0.00005 1.0703 0.9663 0.4803 1.0096 0.9874	0.080 0.080 0.01600 0.00004 0.01063 1.0640 0.5125 0.9831	0.080 0.080 0.01540 0.00006 0.01000 1.0579 0.5508 0.9788	0.080 0.080 0.01480 0.00007 0.00535 1.0519 0.5970 0.9392
MANNINGS 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.01900 0.01400 0.0140 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.7443 1.0459 0.7443 1.0051 0.9035	N POR SECI 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.01340 0.01360 0.00005 0.00010 0.01312 0.00054 DEPTHS AT SE 1.0896 1.0400 0.6190 0.7275 1.0006 0.8860	CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTRUCTIONS CONSTR	0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.01720 0.00654 0.00022 0.01500 0.01187 0.00021 1.0766 0.9976 0.4794 1.0141 0.9918 0.8536	0.080 0.080 0.080 0.080 0.080 0.080 0.0003 0.01437 0.01125 0.00005 1.0703 0.9663 0.4803 1.0096 0.9874 0.8385	0.080 0.080 0.01600 0.00004 0.01063 1.0640 0.5125 0.9831	0.080 0.080 0.01540 0.00006 0.01000 1.0579 0.5508 0.9788	0.080 0.080 0.01480 0.00007 0.00535 1.0519 0.5970 0.9392
MANNINGS 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.01900 0.01400 0.01400 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0743 0.0455 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.00555 0.00555 0.00555 0.00555 0.00555 0.005555 0.005555 0.005555 0.00555555 0.0055555555	N POR SECI 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.01340 0.01360 0.00005 0.00010 0.01312 0.00054 DEPTHS AT SE 1.0896 1.0400 0.6190 0.7275 1.0006 0.8860 SLOPES AT SE	CUNS 37 0 0.080 0.080 0.080 0.080 0.080 0.01780 0.01780 0.01750 0.01250 0.00037 0.00037 CTIONS 1.0831 1.0343 0.5373 0.8415 0.9961 0.8694 CTIONS	0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.01720 0.00654 0.00022 0.01500 0.01187 0.00021 1.0766 0.9976 0.4794 1.0141 0.9918 0.8536	0.080 0.080 0.080 0.080 0.080 0.080 0.0003 0.01437 0.01125 0.00005 1.0703 0.9663 0.4803 1.0096 0.9874 0.8385	0.080 0.080 0.01600 0.00004 0.01063 1.0640 0.5125 0.9831	0.080 0.080 0.01540 0.00006 0.01000 1.0579 0.5508 0.9788	0.080 0.080 0.01480 0.00007 0.00535 1.0519 0.5970 0.9392
MANNINGS 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.01900 0.01420 0.01420 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01743 0.6543 0.09035 CRITICAL 0.0007 0.01051 0.0007 0.01051 0.0007 0.01051 0.00051 0.0007 0.01051 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0	N POR SECI 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.01340 0.01312 0.0005 0.00010 0.01312 0.0005 0.00010 0.01312 0.0005 1.0896 1.0400 0.6190 0.7275 1.0006 0.8860 SLOPES AT SE 0.103886	CTIONS 0.1035 0.080 0.080 0.080 0.080 0.080 0.01780 0.01780 0.01780 0.01780 0.01780 0.01250 0.00755 0.01250 0.00755 0.01250 0.00755 0.01250 0.00755 0.01250 0.00755 0.01250 0.00755 0.01250 0.00755 0.01250 0.00755 0.01250 0.00755 0.01250 0.00755 0.01250 0.00755 0.01250 0.00755 0.01250 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.01780 0.01780 0.01780 0.01250 0.00755 0.01250 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.01780 0.01780 0.01250 0.09755 0.01250 0.080 0.080 0.080 0.09755 0.01250 0.080 0.080 0.080 0.09755 0.01250 0.080 0.080 0.080 0.0900 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.080 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.080 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.000000	0.0080 0.080 0.080 0.080 0.080 0.080 0.0080 0.01720 0.00654 0.00654 0.000021 1.0766 0.9976 0.4794 1.0141 0.9918 0.8536 0.103453	0.080 0.080 0.080 0.080 0.080 0.0008 0.00008 0.01437 0.01125 0.00005 1.0703 0.9663 0.9663 0.9874 0.98385 0.103264	0.080 0.080 0.01600 0.00004 0.01063 1.0640 0.5125 0.9831 0.103091	0.080 0.080 0.01540 0.00006 0.01000 1.0579 0.5508 0.9788	0.080 0.080 0.080 0.01480 0.00007 0.00535 1.0519 0.5970 0.9392 0.102792
MANNINGS 0.080 0.080 0.080 0.080 0.080 0.080 SLOPE DF 1 0.01900 0.01420 0.01900 0.01375 0.00077 0.010375 0.00070 CRITICAL 1 1.0963 1.0459 0.7443 0.6543 1.0051 0.9035 CRITICAL 3 0.104131 0.102644	N FOR SECI 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.01340 0.01340 0.01340 0.0132 0.00054 DEPTHS AT SE 1.0896 1.0400 0.6190 0.7275 1.0006 0.8860 SLOPES AT SE 0.103886 0.102549	CTIONS 1.035 JF C 0.080 0.080 0.080 0.080 0.080 0.01780 0.01780 0.01780 0.01780 0.01250 0.00037 CTIONS 1.0831 1.0343 0.5373 0.8415 0.9961 0.8694 CTIONS 0.103660 0.102446	0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.01720 0.00654 0.00654 0.00021 1.0766 0.9976 0.4794 1.0141 0.9918 0.8536 0.103453 0.101116	0.080 0.080 0.080 0.080 0.080 0.080 0.0008 0.00003 0.01437 0.01125 0.00005 1.0703 0.9663 0.4803 1.0096 0.9874 0.8385 0.103264 0.103264	0.080 0.080 0.01600 0.00004 0.01063 1.0640 0.5125 0.9831 0.103091	0.080 0.080 0.01540 0.00006 0.01000 1.0579 0.5508 0.9788 0.102934	0.080 0.080 0.080 0.01480 0.00007 0.00535 1.0519 0.5970 0.9392 0.102792
MANNINGS 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.0190 0.0175 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.0459 0.7443 0.6543 1.0051 0.9035 CRITICAL 0.0104131 0.102644 0.102644	N POR SECI 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.01340 0.01340 0.01340 0.01340 0.01312 0.00054 0.00054 1.0896 1.0400 0.7275 1.0006 0.8860 0.8860 SLOPES AT SE 0.103886 0.102549 0.111594	CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS CTIONS	0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.01720 0.00654 0.00654 0.00002 0.01500 0.01187 0.00021 1.0766 0.9976 0.4794 1.0141 0.9918 0.8536 0.103453 0.101116 0.120126	0.080 0.080 0.080 0.080 0.080 0.080 0.0008 0.00003 0.01437 0.01125 0.00005 1.0703 0.9663 0.4803 1.0096 0.9874 0.9385 0.103264 0.103264	0.080 0.080 0.01600 0.00004 0.01063 1.0640 0.5125 0.9831 0.103091 0.117735	0.080 0.080 0.01540 0.00004 0.01000 1.0579 0.5508 0.9788 0.102934 0.115272	0.080 0.080 0.080 0.01480 0.00007 0.00535 1.0519 0.5970 0.9392 0.102792 0.112652
MANNINGS 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.0190 0.01900 0.01470 0.0007 0.0007 0.0007 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0	N POR SECI 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.01340 0.01340 0.0005 0.00010 0.01312 0.00054 DEPTHS AT SE 1.0896 1.0400 0.4190 0.7275 1.0006 0.8860 SLOPES AT SE 0.103886 0.102549 0.111594 0.11594 0.106902	CUNS 37 0 0.080 0.080 0.080 0.080 0.080 0.01780 0.01780 0.01780 0.01755 0.01250 0.00037 CTIONS 1.0831 1.0831 1.0831 1.0843 0.5373 0.8415 0.9961 0.8694 CTIONS 0.103660 0.1102446 0.116137 0.103510	0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.01720 0.00654 0.00022 0.01500 0.01187 0.00021 1.0766 0.9976 0.4794 1.0141 0.9918 0.8536 0.103453 0.101116 0.120126 0.100560	0.080 0.080 0.080 0.080 0.080 0.080 0.0008 0.0003 0.01437 0.01125 0.00005 1.0703 0.9663 0.4803 1.0096 0.9874 0.8385 0.103264 0.103264 0.100808	0.080 0.080 0.01600 0.00004 0.01063 1.0640 0.5125 0.9831 0.103091 0.117735	0.080 0.080 0.080 0.01540 0.00006 0.01000 1.0579 0.5508 0.9788 0.102934 0.115272	0.080 0.080 0.080 0.01480 0.00007 0.00535 1.0519 0.5970 0.9392 0.102792 0.112652
MANNINGS 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.01900 0.01420 0.01420 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01375 0.0007 0.01420 0.01420 0.01420 0.01420 0.01420 0.01420 0.01420 0.01420 0.01420 0.01420 0.01420 0.01420 0.01420 0.01420 0.010411 0.102664 0.100418 0.100480 0.100480 0.100480 0.100480 0.100480 0.100480 0.100480 0.100480 0.100480 0.100480 0.100480 0.100480 0.100480 0.100480 0.100480 0.100480 0.100480 0.100480 0.100480 0.100480 0.100480 0.100480 0.100480 0.100480 0.100480 0.100480 0.100480 0.100480 0.100480 0.100480 0.100480 0.100480 0.100480 0.100480 0.100480 0.100480 0.100480 0.100480 0.100480 0.100480 0.100480 0.100480 0.100480 0.100480 0.100480 0.100480 0.100480 0.100480 0.100480 0.100480 0.100480 0.100480 0.100480 0.100480 0.100480 0.100480 0.100480 0.100480 0.100480 0.100480 0.100480 0.100480 0.100480 0.100480 0.100480 0.100480 0.100480 0.100480 0.100480 0.100480 0.100480 0.100480 0.100480 0.100480 0.100480 0.100480 0.100480 0.100480 0.100480 0.100480 0.100480 0.100480 0.100480 0.100480 0.100480 0.100480 0.100480 0.100480 0.100480 0.100480 0.100480 0.100480 0.100480 0.100480 0.100480 0.100480 0.100480 0.100480 0.100480 0.100480 0.100480 0.1	N PDR SECI 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.01340 0.01312 0.0005 0.00010 0.01312 0.00054 0.00054 0.6190 0.7275 1.0006 0.8860 0.08860 0.103886 0.102549 0.111594 0.106902 0.101061	CTIONS 0.080 0.080 0.080 0.080 0.080 0.080 0.01780 0.01780 0.01780 0.01780 0.01250 0.00037 CTIONS 1.0831 1.0343 0.5373 0.8415 0.9961 0.8694 CTIONS 0.103640 0.102446 0.104137 0.103510 0.101237	0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.01720 0.00654 0.00654 0.000021 1.0766 0.9976 0.4794 1.0141 0.9918 0.8536 0.103453 0.101116 0.10266 0.101419	0.080 0.080 0.080 0.080 0.080 0.080 0.0003 0.01460 0.00008 0.01437 0.01125 0.00005 1.0703 0.9663 0.4803 1.0096 0.9874 0.8385 0.103264 0.103264 0.100808 0.120053 0.100723 0.101605	0.080 0.080 0.01600 0.00004 0.01063 1.0640 0.5125 0.9831 0.103091 0.117735 0.101796	0.080 0.080 0.01540 0.00006 0.01000 1.0579 0.5508 0.9788 0.102934 0.115272 0.101993	0.080 0.080 0.080 0.01480 0.00007 0.00535 1.0519 0.5970 0.9392 0.102792 0.112652 0.102135

íì

, .**.** 

• -

- -

• •

د د د د

- -

. -

ل سا س

۰. م ۲

E ...

ь... н.

т <u>в</u>ъ ка

. -

AREAS CORR	ESPONDING	TO CRITICA	NL DEPTH				
13.76	13.81	13.86	13.91	13,96	14.01	14,06	14,11
14.15	14.20	14.25	15.09	15.90		_	
18.03	19.88	21.52	23,03	23,11	22.39	21.63	20.82
10 04	10.09	17.72	14.24	16.26			
14 07	14 20	16.31	14.77	14.74	14.36	16.38	16.74
10+2/	10+27	17 44	17 45	17.07	10100		
17:08	17.2/	1/140	17.03	17403			
	CODDECCO			ты			
VELOCITIES	E 70A	5 773	5.751	5 771	5.711	5.691	5.671
2.818	31/74	5 /15	5,751	5 747	<b>U</b> •/ **	••••	
5+652	0.633	2.013	5.468	3+34/		A 140	4.323
4.778	4.392	4.109	3,890	3.895	4.017	41100	41020
4.513	4.742	5.080	5.542	5+536			F 377
5.530	5.524	5.518	5.513	5.507	5.501	5.495	0:3//
5.269	5,210	5,153	5,100	5,049			
FATLED TO C	ONVERGE FO	R SECTION	13 DIF=	0.2576E+02	Y0≈ 5	5.673	
						1. A.	
NORMAL DEP	THS AT SEC	TIONS					
1.853	1.857	1.841	1.866	1.873	1.880	1.888	1.898
1,000	1 000	1 077	2.000	55.477			
1,908	1,920	14733	2+270	5 420	5.701	5,197	5.225
6.313	3.837	3,0/3	1.012	1 010	0,001	••••	
5,361	5,607	1.83/	1./73	1.010	4 0 4 0	1 070	2.287
1.829	1,849	1.870	1.894	1.920	1.748	1+770	21200
3.994	4,196	4.532	5.186	7+498			
AREAS CORR	ESPONDING	TO NORMAL	DEPTHS				a/ 500
23,954	24.275	24.610	24.960	25.325	25.708	26.109	26.529
26,972	27,439	27.933	37,162	11167.237			
207.685	240.231	281,073	342.607	326.545	278,712	246.768	222.766
203.468	187.329	40.954	30,109	30,554			
203,400	71.527	72.053	32.620	33,228	33.882	34,588	43.369
314023	07 400	111 774	179.097	234.294			
8/.838	97.420	111,770	13010//	2044270			
	COPPERPOND		MAL DEPTHS				
VELOCITES	CORRESPOND	7 054	7 205	7 160	7.112	3.044	3.016
3,340	3,296	3+251	3.203	31137	3+112	01004	41010
2,966	2,916	2,864	2.220.	0.008		A 7/F	~ ***
0.411	0.363	0.315	0,261	0.276	0,323	V.365	0.404
0.442	0.480	2.198	2,989	2,946			
2,901	2.855	2.808	2,759	2.709	2.656	2.602	2.0/5
1.025	0.924	0.805	0.652	0.384			
DEPTHS OF F	LOW AT SEC	TIONS					
69.323	71.230	73.075	74.860	76.583	78,245	79.846	81.385
82.864	84.281	85.637	86.627	86.959			
94.944	86.973	86.977	86.981	86.784	86,987	86.992	86.998
07.00/	07 014	07 417	99.571	90.068			
87.008	07+010	0/ 170	05 471	04.590	97.714	98.766	99.544
91,302	72+0/2	77,170	00 007	100 000			
99.848	99.911	99+93/	77.70/	100.000			
CROSS-SECTI	UNAL AREAS			AA40 4	4004 5	5150.0	5504.5
3234,7	3525.5	3828.5	4143.0	4400.0	4004+3	313010	000410
5867.1	6237.1	6613.5	9655.0	1264/+1			
14213.4	15779.6	17345.6	18911.4	18808.7	17753+1	1669/./	15642.0
14587.7	13532.9	11299.6	9173.3	9221.0			
9244.7	9244.5	9220.6	9173.4	9103.2	9010.7	8896.2	10362+6
11766.8	13078.2	14388.4	15696.1	17000.0			
VELOCITY							
0.025	0.023	0.021	0.019	0.018	0.017	0.016	0.015
0.014	0.013	0.012	0.009	0.007			
0.004	0.004	0.005	0.005	0.005	0.005	0.005	0.006
0.000	0.000	0.000	0.010	0.010			
0.008	0.007	0.000	0.010	0.010	0.010	0.010	0.009
0.010	0.010	0.010	0.010	0.01V	VIV1V		
0,008	0.007	0+005	0.008	0.005			
WETTED PERI	METERS			4.5.4 5	107 6	207 4	200 1
167.0	173.0	179.0	185.0	171.0	14/10	20311	207+1
215.1	221.1	227,1	274.8	328.3		704 -	**** *
353.4-		~ .403.9	429.6	427,4	407.3	37114	0/0+/.
336.1	338+7	277.9	203.3	203.7	247.0	242.0	201.5
200,1	200.0	200.8	203.3	2044/	203.7	20217	*01+J
300.4	319.3	339.0	359.5	380.6		د	
TOP WIDTH	<b>.</b>	<b></b>	00 70	104 70	110 74	114 10	100 87
81,32	86.89	72.58	78.37	104.30	110+21	110+40	122101
128.81	135.11	141.46	208.91	2/5,88		7 AF F-	705 7×
303,85	331,82	359,79	387,76	385.29	365,44	343+38	323./4
305.89	286.05	238.53	192.14	189.63			101 07
186.82	183.71	180.31	176.65	172.72	168.55	164.15	191,20
217.70	243.30	268.89	294.46	320.00			

-

: .

SECTIONS A	ONG CHANNE	L				((0.0	770 0
0.0	110.0	220.0	330.0	440.0	550.0	000+0	//0.0
880.0	990.0	1100.0	1210.0	1320.0			
1430.0	1540.0	1650.0	1760.0	1870.0	1980.0	2090.0	2200.0
2310.0	2420.0	2530.0	2640.0	2750.0			7.70 0
2860.0	2970.0	3080.0	3190.0	3300.0	3410.0	3520.0	3830.0
3740.0	3850.0	3960.0	4070.0	4180.0			
DISCHARGE	ALONG CHAN	NEL					
80.00	80.00	80,00	80.00	80.00	80,00	80.00	80.00
80.00	80.00	80.00	82.50	85,00			
86.15	87.29	88.44	87,58	90,00	90.00	90.00	90,00
90.00	90.00	90.00	90.00	90.00			
90.00	90.00	90.00	90.00	90.00	90.00	90.00	90.00
70.00	80.00	00.00	90.00	90.00			
70+00	70.00	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,	,,,,,			
BOTTON HT	THS						
10 000	12 100	12.200	12.300	12,400	12,500	12.600	12.700
12.000	12.100	12+200	12,000	15 000			
12.800	12,900	13,000	14,000	47 177	42.742	38.306	33.871
23.021	31.042	37.003	4/1083	4/+1//	721/12	001011	
29.435	25.000	20.000	15.000	10,120	15.075	14,000	17,000
15.250	15.375	15.500	12+672	13+/30	134013	101000	1
18.000	18.500	19.000	19.500	20.000	*		
		A 1111					
SLOPES OF	SIDE OF CH	ANNEL		A 40A	A 425	0.450	0.675
0.500	0,525	0.550	0.5/5	0.800	V+02J	01030	010/0
0.700	0,725	0.750	1,125	1,500	1 055	1 744	1 477
1.615	1.729	1.844	1,958	1.744	1:011	1.700	1.0//
1.589	1.500	1.250	1.000	0.969			A 075
0.938	0.906	0.875	0+844	0,813	0./81	0.730	0.875
	4 4 9 5	1 250	1.375	1.500	,	* •	
1,000	1+1×3	1.200	110/0				
1,000	1,123	1+250	110/0				
1.000 MANNINGS	N FOR SEC	TIONS OF C	HANNEL				0.047
1,000 MANNINGS 0,050	N FOR SEC 0.049	TIONS OF C 0.048	HANNEL 0,047	0.046	0.045	0.044	0.043
1.000 MANNINGS 0.050 0.042	N FOR SEC 0.049 0.041	TIONS OF C 0.048 0.040	HANNEL 0.047 0.030	0.046	0.045	0.044	0.043
1.000 MANNINGS 0.050 0.042 0.020	N FOR SEC 0.049 0.041 0.019	TIONS OF C 0.048 0.040 0.019	HANNEL 0.047 0.030 0.018	0.046 0.020 0.01B	0.045	0.044 0.018	0.043
1.000 MANNINGS 0.050 0.042 0.020 0.019	N FOR SEC 0.049 0.041 0.019 0.019	TIONS OF C 0.048 0.040 0.019 0.030	HANNEL 0.047 0.030 0.018 0.040	0.046 0.020 0.018 0.041	0.045 0.018	0.044	0.043
1.000 MANNINGS 0.050 0.042 0.020 0.019 0.041	N FOR SEC 0.049 0.041 0.019 0.019 0.019 0.042	TIONS OF C 0.048 0.040 0.019 0.030 0.043	HANNEL 0.047 0.030 0.018 0.040	0.046 0.020 0.01B 0.041 0.044	0.045 0.018 0.044	0.044 0.018 0.045	0.043 0.019 0.033
1.000 MANNINGS 0.050 0.042 0.020 0.019 0.041 0.021	N FOR SEC 0.049 0.041 0.019 0.019 0.019 0.042 0.020	TIONS OF C 0.048 0.040 0.019 0.030 0.043 0.043 0.019	HANNEL 0.047 0.030 0.018 0.040 0.043 0.043 0.019	0.046 0.020 0.01B 0.041 0.044 0.01B	0.045 0.018 0.044	0.044 0.018 0.045	0.043 0.019 0.033
1.000 MANNINGS 0.050 0.042 0.020 0.019 0.041 0.020	N FOR SEC 0.049 0.041 0.019 0.019 0.042 0.020	TIDNS OF C 0.04B 0.040 0.019 0.030 0.043 0.019	HANNEL 0.047 0.030 0.018 0.040 0.043 0.019	0.046 0.020 0.01B 0.041 0.044 0.01B	0.045 0.018 0.044	0.044 0.01B 0.045	0.043 0.019 0.033
1.000 MANNINGS 0.050 0.042 0.020 0.019 0.041 0.020 SLOPE OF 0	N FOR SEC 0.049 0.049 0.019 0.019 0.042 0.020 Channel Bot	TIONS OF C 0.048 0.040 0.019 0.030 0.043 0.043 0.019 TOM AT SEC	CHANNEL 0.047 0.030 0.018 0.040 0.043 0.043 0.019 CTIONS	0.046 0.020 0.01B 0.041 0.044 0.018	0.045 0.018 0.044	0.044 0.018 0.045	0.043 0.019 0.033
1.000 MANNINGS 0.050 0.042 0.020 0.019 0.041 0.020 SLOPE OF ( 0.01900	N FOR SEC 0.049 0.049 0.019 0.019 0.042 0.020 CHANNEL BOT 0.01840	TIONS OF C 0.04B 0.040 0.030 0.043 0.043 0.019 TOM AT SEC 0.01780	CHANNEL 0.047 0.030 0.018 0.040 0.043 0.019 CTIONS 0.01720	0.046 0.020 0.018 0.041 0.044 0.018	0.045 0.018 0.044 0.01600	0.044 0.01B 0.045 0.01540	0.043 0.019 0.033 0.01480
MANNINGS 0.050 0.042 0.020 0.019 0.041 0.020 SLOPE OF 0 0.01900 0.01900	N FOR SEC 0.049 0.041 0.019 0.020 0.020 CHANNEL BOT 0.01840 0.01360	TIDNS DF C 0.04B 0.040 0.019 0.030 0.043 0.019 TDM AT SEC 0.01780 0.01300	CHANNEL 0.047 0.030 0.018 0.040 0.043 0.043 0.019 CTIONS 0.01720 0.00654	0.046 0.020 0.018 0.041 0.044 0.018 0.01660 0.00008	0.045 0.018 0.044 0.01600	0.044 0.018 0.045 0.01540	0.043 0.019 0.033 0.01480
HANNINGS 0.050 0.042 0.020 0.041 0.041 0.020 SLOPE DF 0 0.01900 0.01420 0.00007	N FOR SEC 0.049 0.049 0.019 0.019 0.020 CHANNEL BOT 0.01840 0.01360 0.00006	TIONS OF C 0.048 0.040 0.019 0.030 0.043 0.019 TOM AT SEC 0.01780 0.01300 0.00005	CHANNEL 0.047 0.030 0.018 0.040 0.043 0.019 CTIONS 0.01720 0.00654 0.00003	0.046 0.020 0.018 0.041 0.044 0.018 0.01660 0.00008 0.00004	0.045 0.018 0.044 0.01600 0.00005	0.044 0.01B 0.045 0.01540 0.00006	0.043 0.019 0.033 0.01480 .0.00008
1.000 MANNINGS 0.050 0.042 0.020 0.041 0.020 SLOPE OF 0 0.01900 0.01420 0.00007 0.00007	N FOR SEC 0.049 0.041 0.019 0.042 0.020 CHANNEL BOT 0.01840 0.01360 0.00006 0.00010	TIONS OF C 0.048 0.040 0.019 0.030 0.043 0.019 TOM AT SEC 0.01780 0.01300 0.01300 0.00055	CHANNEL 0.047 0.030 0.018 0.040 0.043 0.043 0.019 CTIONS 0.01720 0.00654 0.0003 0.01500	0.046 0.020 0.018 0.041 0.044 0.018 0.01660 0.0008 0.00008 0.00004 0.01437	0.045 0.018 0.044 0.01600 0.00005	0.044 0.018 0.045 0.01540 0.00006	0.043 0.019 0.033 0.01480 .0.00008
1.000 MANNINGS 0.050 0.042 0.020 0.041 0.041 0.020 SLOPE OF 0 0.01900 0.01420 0.00007 0.00009 0.01375	N FOR SEC 0.049 0.019 0.019 0.020 CHANNEL BOT 0.01840 0.01360 0.00006 0.00010 0.01312	TIONS OF C 0.048 0.040 0.019 0.030 0.043 0.019 TOM AT SEC 0.01780 0.01300 0.00005 0.00755 0.01250	HANNEL 0.047 0.030 0.018 0.040 0.043 0.019 TIONS 0.01720 0.00654 0.00003 0.01500 0.01187	0.046 0.020 0.018 0.041 0.044 0.018 0.01660 0.00008 0.00004 0.01437 0.01125	0.045 0.018 0.044 0.01600 0.00005 0.01063	0.044 0.01B 0.045 0.01540 0.00006 0.01000	0.043 0.019 0.033 0.01480 0.00008 0.00535
1.000 MANNINGS 0.050 0.042 0.020 0.019 0.041 0.020 SLOPE OF 0 0.01900 0.01420 0.00007 0.00007 0.00075 0.00070	N FOR SEC 0.049 0.041 0.019 0.020 CHANNEL BOT 0.01840 0.01360 0.00006 0.00010 0.01312 0.0054	TIONS OF C 0.04B 0.040 0.019 0.030 0.043 0.019 TOM AT SEC 0.01780 0.01300 0.00005 0.00755 0.00755 0.00037	HANNEL 0.047 0.030 0.018 0.043 0.043 0.01720 0.00654 0.0003 0.01500 0.01187 0.00021	0.046 0.020 0.018 0.041 0.044 0.018 0.01660 0.00008 0.00008 0.00004 0.01437 0.01125 0.00005	0.045 0.018 0.044 0.01600 0.00005 0.01063	0.044 0.01B 0.045 0.01540 0.00006 0.01000	0.043 0.019 0.033 0.01480 0.00008 0.00535
HANNINGS 0.050 0.042 0.020 0.019 0.041 0.020 SLOPE OF 0 0.01900 0.01420 0.01900 0.01420 0.00009 0.01375 0.00070	N FOR SEC 0.049 0.041 0.019 0.042 0.020 CHANNEL BOT 0.01840 0.01360 0.00006 0.00010 0.01312 0.00054	TIONS OF C 0.04B 0.040 0.019 0.030 0.043 0.019 TOM AT SEC 0.01780 0.01300 0.00005 0.00755 0.01250 0.00037	HANNEL 0.047 0.030 0.018 0.043 0.01720 0.01720 0.00654 0.00003 0.01500 0.01187 0.00021	0.046 0.020 0.01B 0.041 0.044 0.018 0.01660 0.00008 0.00004 0.01437 0.01125 0.00005	0.045 0.018 0.044 0.01600 0.00005 0.01063	0.044 0.01B 0.045 0.01540 0.00006 0.01000	0.043 0.019 0.033 0.01480 0.00008 0.00535
1.000 MANNINGS 0.050 0.042 0.020 0.041 0.020 SLOPE OF 0 0.01900 0.01420 0.00007 0.00007 0.00007	N FOR SEC 0.049 0.041 0.019 0.020 CHANNEL BOT 0.01840 0.01360 0.00006 0.00010 0.01312 0.00054	TIONS OF C 0.04B 0.040 0.019 0.030 0.043 0.019 TOM AT SEC 0.01780 0.01300 0.01300 0.00055 0.00755 0.01250 0.00037	CHANNEL 0.047 0.030 0.018 0.040 0.043 0.01720 0.00454 0.00054 0.00053 0.01500 0.01187 0.00021	0.046 0.020 0.018 0.041 0.044 0.018 0.01660 0.0008 0.00008 0.00004 0.01437 0.01125 0.00005	0.045 0.018 0.044 0.01600 0.00005 0.01063	0.044 0.01B 0.045 0.01540 0.00006 0.01000	0.043 0.019 0.033 0.01480 0.00008 0.00535
HANNINGS 0.050 0.042 0.020 0.019 0.041 0.020 SLOPE OF 0 0.01900 0.01420 0.0007 0.01375 0.00070 CRITICAL 1	N FOR SEC 0.049 0.041 0.019 0.020 CHANNEL BOT 0.01840 0.01360 0.00006 0.00010 0.01312 0.00054 DEPTHS AT S	TIONS OF C 0.04B 0.040 0.019 0.030 0.043 0.019 TOM AT SEC 0.01780 0.01300 0.01300 0.00755 0.01250 0.00037 SECTIONS 1.0831	HANNEL 0.047 0.030 0.018 0.040 0.043 0.019 TIONS 0.01720 0.00654 0.0003 0.01500 0.01187 0.00021 1.0766	0.046 0.020 0.018 0.041 0.044 0.018 0.01660 0.00008 0.00004 0.01437 0.01125 0.00005	- 0.045 0.018 0.044 0.01600 0.00005 0.01063	0.044 0.018 0.045 0.01540 0.00006 0.01000 1.0579	0.043 0.019 0.033 0.01480 0.00008 0.00535
HANNINGS 0.050 0.042 0.020 0.019 0.041 0.020 SLOPE OF 0 0.01900 0.01900 0.01420 0.00007 0.00009 0.01375 0.000070 CRITICAL 1 1.0963 1.0963	N FOR SEC 0.049 0.041 0.019 0.042 0.020 CHANNEL BOT 0.01840 0.01360 0.00006 0.00010 0.01312 0.00054 DEPTHS AT S 1.0896	TIDNS OF C 0.048 0.040 0.019 0.030 0.043 0.01780 0.01780 0.01780 0.01300 0.00005 0.00755 0.01250 0.00037 ECTIONS 1.0831	HANNEL 0.047 0.030 0.018 0.040 0.043 0.01720 0.00654 0.0003 0.01500 0.01500 0.01187 0.00021 1.0766 0.9976	0.046 0.020 0.018 0.041 0.044 0.018 0.01660 0.00008 0.00004 0.01437 0.01125 0.00005	0.045 0.018 0.044 0.01600 0.00005 0.01063 1.0640	0.044 0.01B 0.045 0.01540 0.00006 0.01000 1.0579	0.043 0.019 0.033 0.01480 0.00008 0.00535
HANNINGS 0.050 0.042 0.020 0.041 0.020 SLOPE OF 0 0.01900 0.01900 0.01420 0.00007 0.00007 0.00007 0.00007 0.00007 CRITICAL 1 1.0963 1.0459	N FOR SEC 0.049 0.041 0.019 0.042 0.020 CHANNEL BOT 0.01840 0.01360 0.00006 0.00010 0.01312 0.00054 DEPTHS AT S 1.0896 1.0400 0.1490	TIONS OF C 0.04B 0.040 0.019 0.030 0.043 0.01780 0.01780 0.01780 0.01300 0.00055 0.01250 0.00037 SECTIONS 1.0831 1.0343 0.5373	HANNEL 0.047 0.030 0.018 0.040 0.043 0.01720 0.00654 0.0003 0.01500 0.01500 0.01187 0.00021 1.0766 0.9976 0.494	0.046 0.020 0.018 0.041 0.044 0.018 0.01660 0.00008 0.00004 0.01437 0.01125 0.00005 1.0703 0.9663 0.9663 0.4803	0.045 0.018 0.044 0.01600 0.00005 0.01063 1.0640 0.5125	0.044 0.018 0.045 0.01540 0.00006 0.01000 1.0579 0.5508	0.043 0.019 0.033 0.01480 0.00008 0.00535 1.0519 0.5970
HANNINGS 0.050 0.042 0.020 0.041 0.020 SLOPE OF 0 0.01900 0.01420 0.00077 0.00007 0.00007 0.01375 0.00070 CRITICAL 1 1.0963 1.0459 0.7443	N FOR SEC 0.049 0.041 0.019 0.020 CHANNEL BOT 0.01840 0.01360 0.00006 0.00010 0.01312 0.00054 DEPTHS AT S 1.0896 1.0400 0.6190 0.7275	TIONS OF C 0.04B 0.040 0.019 0.030 0.043 0.019 TOM AT SEC 0.01780 0.01300 0.00055 0.00755 0.01250 0.00037 SECTIONS 1.0831 1.0343 0.5373 0.8415	HANNEL 0.047 0.030 0.018 0.040 0.043 0.01720 0.00454 0.0003 0.01500 0.01500 0.01187 0.00021 1.0766 0.9976 0.4794 1.0141	0.046 0.020 0.018 0.041 0.044 0.018 0.01660 0.00008 0.00004 0.01437 0.01125 0.00005 1.0703 0.9663 0.4803 1.0996	0.045 0.018 0.044 0.01600 0.00005 0.01063 1.0640 0.5125	0.044 0.018 0.045 0.01540 0.00006 0.01000 1.0579 0.5508	0.043 0.019 0.033 0.01480 0.00008 0.00535 1.0519 0.5970
HANNINGS 0.050 0.042 0.020 0.019 0.041 0.020 SLOPE OF 0 0.01900 0.01420 0.00070 0.01375 0.00070 CRITICAL 1 1.0963 1.0459 0.7443 0.6543	N FOR SEC 0.049 0.041 0.019 0.020 CHANNEL BOT 0.01840 0.01360 0.01360 0.00006 0.00010 0.01312 0.00054 DEPTHS AT S 1.0896 1.0400 0.6190 0.7275 1.0006	TIONS OF C 0.04B 0.040 0.019 0.030 0.043 0.019 TOM AT SEC 0.01780 0.01300 0.00755 0.01250 0.00037 SECTIONS 1.0831 1.0343 0.5373 0.8415	HANNEL 0.047 0.030 0.018 0.040 0.043 0.01720 0.00654 0.0003 0.01500 0.01187 0.00021 1.0766 0.9976 0.4794 1.0141 0.9918	0.046 0.020 0.018 0.041 0.044 0.018 0.01660 0.00008 0.00004 0.01437 0.01125 0.00005 1.0703 0.9663 0.4803 1.0096	0.045 0.018 0.044 0.01600 0.00005 0.01063 1.0640 0.5125 0.9831	0.044 0.018 0.045 0.01540 0.00006 0.01000 1.0579 0.5508 0.9788	0.043 0.019 0.033 0.01480 0.00008 0.00535 1.0519 0.5970 0.9392
HANNINGS 0.050 0.042 0.020 0.019 0.041 0.020 SLOPE DF 0 0.01900 0.01420 0.00007 0.00009 0.01375 0.00009 0.01375 0.000070 CRITICAL 1 1.0963 1.0951 0.7443 0.6543 1.0051	N FOR SEC 0.049 0.041 0.019 0.042 0.020 CHANNEL BOT 0.01840 0.01360 0.00006 0.00010 0.01312 0.00054 DEPTHS AT S 1.0896 1.0400 0.6190 0.7275 1.0006	TIDNS OF C 0.048 0.040 0.019 0.030 0.043 0.01780 0.01780 0.01780 0.01300 0.00005 0.00755 0.01250 0.00037 SECTIONS 1.0831 1.0343 0.5373 0.8415 0.9961	HANNEL 0.047 0.030 0.018 0.040 0.043 0.01720 0.00654 0.0003 0.01500 0.01500 0.01500 0.01187 0.00021 1.0766 0.9976 0.4794 1.0141 0.9918 0.834	0.046 0.020 0.018 0.041 0.044 0.018 0.01660 0.00008 0.00004 0.01437 0.01125 0.00005 1.0703 0.9663 0.9663 0.9663 1.0096 0.9875	0.045 0.018 0.044 0.01600 0.00005 0.01063 1.0640 0.5125 0.9831	0.044 0.018 0.045 0.01540 0.00006 0.01000 1.0579 0.5508 0.9788	0.043 0.019 0.033 0.01480 0.00008 0.00535 1.0519 0.5970 0.9392
HANNINGS 0.050 0.042 0.020 0.041 0.020 SLOPE OF 0 0.01900 0.01420 0.00007 0.00007 0.01375 0.00007 CRITICAL 1 1.0963 1.0459 0.7443 0.6543 1.0051 0.9035	N FOR SEC 0.049 0.041 0.019 0.042 0.020 CHANNEL BOT 0.01840 0.01360 0.00006 0.00010 0.01312 0.00054 DEPTHS AT S 1.0896 1.0400 0.6190 0.7275 1.0006 0.8860	TIONS OF C 0.04B 0.040 0.019 0.030 0.043 0.019 TOM AT SEC 0.01780 0.01300 0.00005 0.00755 0.01250 0.00037 SECTIONS 1.0831 1.0343 0.5373 0.8415 0.9961 0.8694	HANNEL 0.047 0.030 0.018 0.040 0.043 0.01720 0.00654 0.0003 0.01500 0.01187 0.00021 1.0766 0.9976 0.4794 1.0141 0.9918 0.8536	0.046 0.020 0.018 0.041 0.044 0.018 0.01660 0.00008 0.00004 0.01437 0.01125 0.00005 1.0703 0.9663 0.9663 1.0096 0.9874 0.8385	0.045 0.018 0.044 0.01600 0.00005 0.01063 1.0640 0.5125 0.9831	0.044 0.018 0.045 0.01540 0.00006 0.01000 1.0579 0.5508 0.9788	0.043 0.019 0.033 0.01480 0.00008 0.00535 1.0519 0.5970 0.9392
HANNINGS 0.050 0.042 0.020 0.041 0.020 SLOPE OF 0 0.01900 0.01420 0.00079 0.01425 0.00070 CRITICAL 1 1.0963 1.0459 0.7443 0.6543 1.0051 0.9035	N FOR SEC 0.049 0.041 0.019 0.020 CHANNEL BOT 0.01840 0.01360 0.00054 0.00054 DEPTHS AT S 1.0896 1.0400 0.6190 0.7275 1.0006 0.8860	TIONS OF C 0.04B 0.040 0.019 0.030 0.043 0.019 TOM AT SEC 0.01780 0.01300 0.00055 0.01250 0.00755 0.01250 0.00037 SECTIONS 1.0831 1.0343 0.5373 0.8415 0.9961 0.8694	1.076 CHANNEL 0.047 0.030 0.018 0.040 0.043 0.01720 0.00654 0.0003 0.01500 0.01187 0.00021 1.0766 0.9976 0.4794 1.0141 0.9918 0.8536	0.046 0.020 0.018 0.041 0.044 0.018 0.01660 0.0008 0.00004 0.01437 0.01125 0.00005 1.0703 0.9663 0.4803 1.0096 0.9874 0.8385	- 0.045 0.018 0.044 0.01600 0.00005 0.01063 1.0640 0.5125 0.9831	0.044 0.018 0.045 0.01540 0.00006 0.01000 1.0579 0.5508 0.9788	0.043 0.019 0.033 0.01480 0.00008 0.00535 1.0519 0.5970 0.9392
HANNINGS 0.050 0.042 0.020 0.041 0.020 SLOPE OF 0 0.01900 0.01420 0.0007 0.00007 0.00007 0.00007 0.01375 0.00007 0.01375 0.00070 CRITICAL 1 1.0963 1.0459 0.7443 0.6543 1.0051 0.9035 CRITICAL 1 0.9035	N FOR SEC 0.049 0.041 0.019 0.020 CHANNEL BOT 0.01840 0.01360 0.00006 0.00010 0.01312 0.00054 DEPTHS AT S 1.0896 1.0400 0.6190 0.7275 1.0006 0.8860 SLOPES AT S 0.038973	TIONS OF C 0.04B 0.040 0.019 0.030 0.043 0.019 TOM AT SEC 0.01780 0.01300 0.01300 0.00755 0.01250 0.00037 SECTIONS 1.0831 1.0343 0.5373 0.8415 0.9961 0.8694 SECTIONS	HANNEL 0.047 0.030 0.018 0.040 0.043 0.01720 0.00654 0.0003 0.01720 0.00654 0.00021 1.0766 0.9976 0.4794 1.0141 0.9918 0.8536 0.035707	0.046 0.020 0.018 0.041 0.044 0.018 0.01660 0.00008 0.00004 0.01437 0.01125 0.00005 1.0703 0.9663 0.4803 1.0096 0.9874 0.8385	0.045 0.018 0.044 0.01600 0.00005 0.01063 1.0640 0.5125 0.9831 0.032619	0.044 0.018 0.045 0.01540 0.00006 0.01000 1.0579 0.5508 0.9788	0.043 0.019 0.033 0.01480 0.00008 0.00535 1.0519 0.5970 0.9392 0.029697
HANNINGS 0.050 0.042 0.020 0.019 0.041 0.020 SLOPE DF 0 0.01900 0.01420 0.00007 0.00009 0.01375 0.00009 0.01375 0.00009 0.01375 0.00009 0.01375 0.000070 CRITICAL 1 1.0963 1.0459 0.7443 0.6543 1.0051 0.9035 CRITICAL 1 0.9035	N FOR SEC 0.049 0.041 0.019 0.020 CHANNEL BOT 0.01840 0.01360 0.00006 0.00010 0.01312 0.00054 DEPTHS AT S 1.0896 1.0400 0.6190 0.7275 1.0006 0.8860 SLOPES AT S 0.038973	TIDNS OF C 0.048 0.040 0.019 0.030 0.043 0.01780 0.01780 0.01780 0.01780 0.00005 0.00755 0.01250 0.00037 SECTIONS 1.0831 1.0343 0.5373 0.8415 0.9961 0.8694 SECTIONS 0.037318	HANNEL 0.047 0.030 0.018 0.040 0.043 0.01720 0.00654 0.0003 0.01500 0.01500 0.01500 0.01187 0.00021 1.0766 0.9976 0.4794 1.0141 0.9918 0.8536 0.035707 0.014219	0.046 0.020 0.018 0.041 0.044 0.018 0.01660 0.00008 0.00004 0.01437 0.01125 0.00005 1.0703 0.9663 0.9663 0.9874 0.8385 0.034142 0.004301	0.045 0.018 0.044 0.01600 0.00005 0.01063 1.0640 0.5125 0.9831 0.032619	0.044 0.018 0.045 0.01540 0.00006 0.01000 1.0579 0.5508 0.9788	0.043 0.019 0.033 0.01480 0.00008 0.00535 1.0519 0.5970 0.9392 0.029697
HANNINES 0.050 0.042 0.020 0.041 0.020 SLOPE OF 0.01900 0.01420 0.00007 0.01420 0.00007 0.01375 0.00007 CRITICAL 1.0963 1.0459 0.7443 0.6543 1.0051 0.9035 CRITICAL 0.9035	N FOR SEC 0.049 0.041 0.019 0.042 0.020 CHANNEL BOT 0.01840 0.01360 0.00006 0.00010 0.01312 0.00054 DEPTHS AT S 1.0896 1.0400 0.6190 0.7275 1.0006 0.8860 SLOPES AT S 0.038973 0.026935	TIONS OF C 0.04B 0.040 0.019 0.030 0.043 0.019 TOM AT SEC 0.01780 0.01300 0.00055 0.01250 0.00755 0.01250 0.00037 SECTIONS 1.0831 1.0343 0.5373 0.8415 0.9961 0.8694 SECTIONS 0.037318 0.025612	HANNEL 0.047 0.030 0.018 0.040 0.043 0.019 TIONS 0.01720 0.00654 0.0003 0.01500 0.01187 0.00021 1.0766 0.9976 0.4794 1.0141 0.9918 0.8536 0.035707 0.014219 0.001455	0.046 0.020 0.018 0.041 0.044 0.018 0.01660 0.00008 0.00004 0.01437 0.01125 0.00005 1.0703 0.9663 0.9663 1.0096 0.9874 0.8385 0.034142 0.006301 0.006301	0.045 0.018 0.044 0.01600 0.00005 0.01063 1.0640 0.5125 0.9831 0.032619 0.006154	0.044 0.018 0.045 0.01540 0.00006 0.01000 1.0579 0.5508 0.9788 0.031138 0.006143	0.043 0.019 0.033 0.01480 0.00008 0.00535 1.0519 0.5970 0.9392 0.029697 0.006119
HANNINGS 0.050 0.042 0.020 0.041 0.020 SLOPE OF 0 0.01900 0.01420 0.00070 0.01420 0.0007 0.00007 0.00007 0.01375 0.00007 0.01375 0.00070 CRITICAL 1 1.0963 1.0459 0.7443 0.6543 1.0051 0.9035 CRITICAL 2 0.040676 0.028297 0.006350	N FOR SEC 0.049 0.041 0.019 0.020 CHANNEL BOT 0.01840 0.01360 0.00054 DEPTHS AT S 1.0896 1.0400 0.6190 0.7275 1.0006 0.8860 SLOPES AT S 0.038973 0.026935 0.006350 0.0077	TIONS OF C 0.04B 0.040 0.019 0.030 0.043 0.019 TOM AT SEC 0.01780 0.01780 0.01300 0.00055 0.01250 0.00755 0.01250 0.00037 SECTIONS 1.0831 1.0343 0.5373 0.8415 0.9961 0.8694 SECTIONS 0.03731B 0.025612 0.006295 0.014075	1.076           0.047           0.030           0.018           0.040           0.043           0.01720           0.00654           0.00454           0.0003           0.01500           0.01500           0.01500           0.01500           0.01500           0.01501           0.01502           1.0766           0.9976           0.4794           1.0141           0.9918           0.8536           0.035707           0.014219           0.025140	0.046 0.020 0.018 0.041 0.044 0.018 0.01660 0.0008 0.00004 0.01437 0.01125 0.00005 1.0703 0.9663 0.4803 1.0096 0.9874 0.8385 0.034142 0.06301 0.006154 0.025974	- 0.045 0.018 0.044 0.01600 0.00005 0.01063 1.0640 0.5125 0.9831 0.032619 0.006154	0.044 0.018 0.045 0.01540 0.00006 0.01000 1.0579 0.5508 0.9788 0.9788	0.043 0.019 0.033 0.01480 0.00008 0.00535 1.0519 0.5970 0.9392 0.029697 0.006119
HANNINES 0.050 0.042 0.020 0.019 0.041 0.020 SLOPE OF 0 0.01900 0.01420 0.01900 0.01375 0.00007 0.00007 0.01375 0.00007 CRITICAL 1 1.0963 1.0953 1.0051 0.9035 CRITICAL 2 0.040676 0.028297 0.006350 0.006082	N FOR SEC 0.049 0.041 0.019 0.042 0.020 CHANNEL BOT 0.01840 0.01360 0.00006 0.00010 0.01312 0.00054 DEPTHS AT S 1.0896 1.0400 0.6190 0.7275 1.0006 0.8860 SLOPES AT S 0.038973 0.026935 0.006350 0.006350	TIDNS OF C 0.048 0.040 0.019 0.030 0.043 0.01780 0.01780 0.01780 0.01300 0.00005 0.00755 0.01250 0.00037 SECTIONS 1.0831 1.0343 0.5373 0.8415 0.9961 0.8694 SECTIONS 0.037318 0.025612 0.006295 0.014075	HANNEL 0.047 0.030 0.018 0.040 0.043 0.01720 0.00654 0.0003 0.01500 0.01500 0.01500 0.01187 0.00021 1.0766 0.9976 0.4794 1.0141 0.9918 0.8536 0.035707 0.014219 0.005140 0.025140	0.046 0.020 0.018 0.041 0.044 0.018 0.01660 0.00008 0.00004 0.01437 0.01125 0.00005 1.0703 0.9663 0.4803 1.0096 0.9874 0.8385 0.034142 0.006301 0.006154 0.025974	0.045 0.018 0.044 0.01600 0.00005 0.01063 1.0640 0.5125 0.9831 0.032619 0.006154 0.031320	0.044 0.018 0.045 0.01540 0.00006 0.01000 1.0579 0.5508 0.9788 0.9788 0.031138 0.006143 0.032271	0.043 0.019 0.033 0.01480 0.00008 0.00535 1.0519 0.5970 0.9392 0.029697 0.006119 0.016856

.

`

.

• -

• ~

. .

e ~

. -

• •

**-** ٦

. ~

- -

. .

k ...

- -

د با ب با

* -• -± ::

÷ .

÷....

- E S - - -

> . . .

÷.,,

. *C*'=

## 0.006405 0.006096 0.005799 0.005512 0.005233

AREAS CORI	RESPONDING	TO CRITICA	L DEPTH			14.04	14.11
13.76	13.81	13.86	13.91	13.96	14+01	14+00	14011
14.15	14.20	14.25	15.09	13.90	00.70	21.47	20.82
18.03	19,88	21,52	23.03	23,11	22.37	21.03	20102
19.94	18.98	17.72	16.24	16.26		14.70	16.74
16.27	16,29	16.31	16.33	16.34	10+30	10.30	101//
17.08	17,27	17,46	17.65	17.83			
VELOCITIE	S CORRESPON	IDING TO CR	ITICAL DEPT	Г <b>Н</b>		E (01	5 471
5.816	5,794	5,772	5.751	5.731	5./11	3+671	J+0/1
5.652	5.633	5.615	5+468	5.347			
4.778	4,392	4.109	3.890	3.875	4.019	4.160	4.323
4.513	4.742	5,080	5.542	5.536			
5.530	5.524	5,518	5.513	5.507	5.501	5,495	5.377
5,269	5.210	5.153	5.100	5.049			
	PTHS AT SEC	SKUTT					
1.784	1.372	1.359 -	1.347	1.334	1.322	1.311	1.300
1.000	1 300	1 270	1.259	3.422			
1,290	1,200	1+270	2 257	2.199	2.144	2.157	2,211
2+827	2,303	2+32/	1.194	1.206	2.12.10		
2.308	2.400	1.014	1 7 7 5	1 777	1.343	1.396	1.328
1,229	1,253	1.2/8	1,303	1,333	1.303	100/0	
1.756	1.831	1,965	2.240	3.280			
			DEDTUD				
AREAS COR	RESPONDING	TU NURMAL	DEPTHS			47 /77	17 454
17.591	17.594	17.599	17.605	17.614	17.624	1/+63/	1/+014
17.673	17.696	17,724	19.392	68.888			
78.058	88.602	100,884	116.220	112.563	100.258	90.842	83,092
76.400	70.425	21.562	19.165	19.649			
20.155	20.684	21.240	21.824	22.442	23.097	23.795	24.110
74 494	77.444	42.154	50.586	81.912			
34+000	37+0+0	42,100	000000		····		
VELOCITIES	CORRESPOND	ING TO NOR	MAL DEPTHS				
A E40	A 547	4.544	4.544	4.542	4.539	4.536	4.532
4.348	4.54/	4+540	4.054	1.234			
4.52/	4,321	4,314	0.771	0.800	0.898	0.991	1.083
1.104	0.703	0.077	A 404	4.580			_
1.178	1.278	4.1/4	4.070	4.300	7 007	3.792	3.733
4.465	4,351	4.237	4+124	4.010	3.077	51702	01700
2,595	2.391	2,135	1.//9	1.099			
DEPTHS OF	FLOW AT SEC	TIONS			70 740	70 040	81.780
69.318	71,224	73.070	74.854	/6.5/8	/8.240	/9.840	01,300
82.858	84.276	85.632	86.622	86.934		- / /	o/ 000
86,961	86,968	86,974	86.978	86.981	86.986	86,991	80,998
87.006	87.016	87,413	88,571	90.068			
91.502	92.872	94.178	95.421	96.599	97.714	· <b>98</b> •766	99.544
99.848	99.911	99.957	99,987	100.000			
CROSS-SECT	TONAL AREAS	3					_
3234.3	3525.1	3828.0	4142.5	4468.0	4803.9	5149.4	5503.9
5944.5	6236.4	6612.8	9653.9	12645.7			
14211 0	15770.1	17744.3	18910.3	18808.0	17752.6	16697.4	15642.5
14211+7	17577 0	11299.6	9173.3	9221.0			
1430/4/	0244.5	9220.4	9173.4	9103.2	9010.7	8896.2	10362.6
14744 0	17070 0	1 4 7 9 9 4	15494.1	17000.0			
11/00+0	130/0+2	1400014	100/011				
VELOCITI		0 001	A A19	0 019	0.017	0.016	0.015
0,025	0,023	0+021	0.014	0.010	0.01/		
0.014	0.013	0.012	0.009	0.007		0 00F	0 004
0.006	0.005	0,005	0.005	0.005	0.005	0.005	0.000
0.006	0.007	0.008	0.010	0.010			A AAA
0,010	0.010	0.010	0,010	0.010	0.010	0.010	0.009
0.008	0.007	0.006	0.006	0.005			
WETTED PER	IMETERS						
167.0	173.0	179.0	185.0	191.0	197.0	203.0	209+1
	221.1	227.1	274.8	328.5			
353:3	378.5	<b>4</b> 03.9	429.6	427.4	409.3		373.7
356.1	338.7	277.2	265.5	265.9	243.0	242.9	281.5
266.1	266.0	265.8	200.3	204+/	20017	-9477	
300.4	319.3	339.0	324.2	380+0			
TOP WIDTH			ac - c	104 00	110 70	114 70	122.56
01 72	86.89	92.58	78,38	104.29	110.30	110.37	
01+32		141.45	208.90	275.86			705 74
128.80	135.10	141140					
128.80 303.83	135.10 331.81	359.78	387.75	385.28	365.43	345.58	323.74
128.80 303.83 305.89	135.10 331.81 286.05	359.78	387.75 192.14	385.28 189.63	365.43	345.58	323,74
128.80 303.83 305.89 184.82	135.10 331.81 286.05 183.71	359.78 238.53 180.31	387.75 192.14 176.65	385.28 189.63 172.72	365.43	345.58	191.20
128.80 303.83 305.89 186.82 217.70	135.10 331.81 286.05 183.71 243.30	359.78 238.53 180.31 268.89	387.75 192.14 176.65 294.46	385.28 189.63 172.72 320.00	365.43 168.55	345.58	191.20

- -

₹ .3

# Appendix E. Example 4

. .

- -

F *	Input data for Example 4. Debris Flow	Input data for Example 4. Debris Flow (continued)
r –	\$ RUN MAIN	100
	DO YOU WANT A DEFINITION OF NAMELIST IN SPECIF? Y OR N	PROVIDE OUTPUT STA. NO. WHERE GVF IS TO BEG: I.E. 1 or 11
	N	11
۰.	DEFAULT OPTIONS ARE	0, 1000, 2000, 3000, 4000
• •	ITRAPE = 1  IOYES = 0  ERR = 0.00100  INFLOW = 1  MYSTRT = 0 $IINISTE = 1  IINTER = 1  NCONT = 0  NER = 0$	PROVIDE BOTTOM SLOPES FOR 5 INPUT SECTIONS
	DO YOU WANT ANY OF THESE CHANGED? Y OR N	0.1, 0.05, 0.005, 0.001, 0.0005
L	Y	PROBLEM SPECIFICATIONS
e	GIVE CHANGED OPTIONS IN & SPECIF LIST	x 0.0 100.0 2000.0 3000.0 4000.0
÷	& SPECIF IUNSTE = 0 & END	IS THERE LATERAL INFLOW Y OR N
	GIVE THE INPUT DATA AFTER THE NAME, IF YOU DO NOT UNDERSTAND NAME	N
	WKILE, HELP NSI	SQ 0.000 0.000 0.000 0.000 0.000
	5	PROVIDE 5 BOTTOM WIDTHS, THEN 5 SIDE SLOPES
	NSO	100, 200, 900, 3500, 5000, 0, 0, 0, 0, 0
h	11	B 100.000 200.000 900.000 3500.000 5000.000
	QO	HAVE YOU MADE ANY MISTAKES Y OR NO
ù	100	N
	XBEG	WHERE SHOULD THE OUTPUT GO? 1)ITTY IF TERM ONLY; 2)FILE NAME
	XEND	
۴	4000	
* **	YSTART	
1		
• •		
r ^		
* 53		
e ~		
<b>L</b> 2		
5 2		91

SECTIONS ALONG CHANNEL 400.0 800.0 2800.0 0.0 1200.0 2400.0 1600.0 2000.0 4000.0 3200.0 3600.0 DISCHARGE ALONG CHANNEL 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 BOTTOM WIDTHS 100.000 140.000 180.000 3800.000 4400.000 5000.000 340.000 620.000 900.000 1940.000 2980.000 SLOPES OF SIDE OF CHANNEL 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 MANNINGS N FOR SECTIONS OF CHANNEL 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 SLOPE OF CHANNEL BOTTOM AT SECTIONS 0.10000 0.08000 0.06000 0.04100 0.02300 0.00500 0.00340 0.00180 0.00090 0.00070 0.00050 CRITICAL DEPTHS AT SECTIONS 0.2512 0.3143 0.2124 0.1390 0.0931 0.0726 0.0435 0.0327 0.0278 0.0252 0.0232 CRITICAL SLOPES AT SECTIONS 0.026352 0.028296 0.029872 0.034337 0.039214 0.042592 0.050510 0.055564 0.058648 0.060589 0.062335 AREAS CORRESPONDING TO CRITICAL DEPTH 31.43 35.14 38.24 47.29 57.76 65.38 84.59 97.45 105.74 110.98 115.80 VELOCITIES CORRESPONDING TO CRITICAL DEPTH 3.181 2.844 2.615 2.115 1.731 1.529 1.182 1.026 0.946 0.901 0.864 NORMAL DEPTHS AT SECTIONS 0.211 0.184 0.172 0.132 0.109 0.138 0.098 0.092 0.097 0.096 0.099 AREAS CORRESPONDING TO NORMAL DEPTHS 21.051 25.734 31,012 44.824 67.772 124.347 189.874 272.675 369,980 423.069 492,627 VELOCITIES CORRESPONDING TO NORMAL DEPTHS 3.886 1.476 0.804 0.527 0.367 4.750 3,225 2.231 0.270 0.236 0.203 THIS PROGRAM ASSUMES NATURAL CHANNELS IN WHICH FLOW MUST BE SUBCRITICAL--ROUGHNE SS MUST BE INCREASED AT SECTION THIS PROGRAM ASSUMES NATURAL CHANNELS IN WHICH FLOW MUST BE SUBCRITICAL--ROUGHNE SS MUST BE INCREASED AT SECTION THIS PROGRAM ASSUMES NATURAL CHANNELS IN WHICH FLOW MUST BE SUBCRITICAL--ROUGHNE SS MUST BE INCREASED AT SECTION DEPTHS OF FLOW AT SECTIONS 1,665 34.991 60.881 79.543 91.347 96.474 98.026 98.985 99.482 99.778 100,000 CROSS-SECTIONAL AREAS 166.5 4898.7 378032.4 439024.0 10958.7 27044.7 56635.1 86826.8 190170.9 294974.6 VELOCITY 0.020 0.009 0.004 0.002 0.001 0.001 0.000 0.601 0.000 0.000 WETTED PERIMETERS 0.000 103.3 210.0 301.8 499.1 802.7 1092.9 2136.1 3178.0 5200.0 3999.0 4599.6 TOP WIDTH 140.00 180.00 340.00 620.00 900.00 1940.00 2980.00 100.00 5000.00 3800.00 4400.00

. .

SECTIONS ALONG CHANNEL 400.0 0.0 800.0 1200.0 1600.0 2000.0 2400.0 2800.0 3200.0 3600.0 4000.0 DISCHARGE ALONG CHANNEL 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 BOTTOM WIDTHS 100.000 140.000 366.667 180.000 633,333 900.000 1940.000 2980,000 3800,000 4400,000 5000,000 SLOPES OF SIDE OF CHANNEL 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 MANNINGS N FOR SECTIONS OF CHANNEL 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 SLOPE OF CHANNEL BOTTOM AT SECTIONS 0.10000 0.08000 0.06000 0.00090 0.00070 0.00050 0.00340 0.00047 0.00273 0.00500 0.00180 CRITICAL DEPTHS AT SECTIONS 0.3143 0.2512 0.2124 0.1322 0.0918 0.0726 0.0435 0.0327 0.0232 0.0278 0.0252 CRITICAL SLOPES AT SECTIONS 0.026352 0.028296 0.029872 0.034913 0.039399 0.042592 0.050510 0.055564 0.058648 0.060589 0.062335 AREAS CORRESPONDING TO CRITICAL DEPTH 31+43 35.16 38.24 48.47 58.16 65.38 84.59 97.45 110.98 115,80 105.74 VELOCITIES CORRESPONDING TO CRITICAL DEPTH 3.181 2.844 2.615 2.063 1.719 1.529 1.182 1.026 0.946 0.901 0.864 NORMAL DEPTHS AT SECTIONS 0.211 0.172 0.184 0.483 0.204 0,138 0.098 0.092 0.097 0.096 0.099 AREAS CORRESPONDING TO NORMAL DEPTHS 21.051 25.734 31.012 177.008 369.980 423.069 492.627 129.524 124,334 189.874 272.675 369,980 423.069 . VELOCITIES CORRESPONDING TO NORMAL DEPTHS 4.750 3.886 3.225 0,565 0.772 0.804 0,527 0.367 0.270 0.236 0.203 THIS PROGRAM ASSUMES NATURAL CHANNELS IN WHICH FLOW MUST BE SUBCRITICAL--ROUGHNE SS MUST BE INCREASED AT SECTION THIS PROGRAM ASSUMES NATURAL CHANNELS IN WHICH FLOW MUST BE SUBCRITICAL--ROUGHNE SS MUST BE INCREASED AT SECTION DEPTHS OF FLOW AT SECTIONS 24.233 57.542 99.482 99.778 94.430 83.433 98.026 95.032 96.474 98.985 100.000 CROSS-SECTIONAL AREAS 2423.3 8055.9 15017.9 378032.4 439024.0 500000.0 34624.4 60186.8 86826.8 190170.9 294974.6 VELINCITY 0+041 0.012 0.007 0.003 0.002 0.001 0.001 0.000 0.000 0.000 0.000 WETTED PERIMETERS 255.1 148.5 346.9 555.5 823.4 1092.9 2136.1 3178.0 3999.0 4599.6 5200.0 TOP WIDTH 140.00 100.00 180,00 633,33 366.67 900.00 1940.00 2980.00 3800,00 4400.00 5000.00

. **-**4

. .

× -

. .

r -

. .

. .

÷ ...

~ ~

د ۲ م م

Ĩ.

. .

ι.

*....* 

. .

. .

2 2

r •

L ...

r -

-- '-- ---

. . .

0.0		=L.											
3200.0	400.0 3600.0	800.0 4000.0	1200.0	1600.0	2000.0	2400.0	2800.0						
UISCHARDE ALUNU CHANNEL 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00													
100.00	100.00	100.00	100.00	100+00	100.00	100.00	100.00						
100.00	100100	100.00											
BOTTOM WI	DTHS												
100.000	140.000	180.000	366,667	633,333	900.000	1940.000	2980.000						
3800,000	4400.000	5000.000											
CIOPES OF		JANNET											
0.000	0.000	0.000	0.000	A AAA	A 000	0.000	0.000						
0.000	0.000	0.000	0.000	0.000	0.000	0.000	01000						
00000	01000	01000											
SLOPE OF	CHANNEL BOT	TOM AT SE	CTIONS										
0.10000	0.08000	0.06000	0.00047	0.00273	0.00500	0.00340	0.00180						
0.00090	0.00070	0.00050											
CRITICAL	DEPTHS AT S	SECTIONS				1							
0.3143	0.2512	0.2124	0,1322	0.0918	0+0726	0.0435	0.0327						
0.0278	0.0252	0.0232											
CRITICAL	SLOPES AT S	FCTIONS											
0.920379	1.030679	1.122495	1.431833	1,727117	1.949626	2.531766	2,944095						
3,197512	3.366533	3.518294											
AREAS CORF	RESPONDING	TO CRITIC	AL DEPTH										
31,43	35.16	38.24	48.47	58.16	65.38	84.59	97.45						
105.74	110,98	115.80											
	CORRECTOR												
VELUCITIES	CORRESPON	IDING IO CI	CITICAL DEP		1 500	1 100	1 00/						
3,181	2+844	2+613	2.063	1,719	1+329	1,102	1.028						
0.740	0.701	0.004											
REYNOLD'S	NUMBERS CO	RRESPONDT		CAL DEPTH									
9.54	8.53	7.85	6.19	5.16	4.59	3.55	3,08						
2.84	2,70	2,59											
					4.4								
CHEZY'S NU	IMBERS CORR	ESPONDING	TO CRITICA	L DEPTH									
		/											
5.93	5.60	5.36	4,74	4.32	4.06	3.56	3.31						
5.93 3.17	5.60 3.09	5.36 3.03	4.74	4.32	4.06	3.56	3.31						
5.93 3.17	5.60 3.09	5.36 3.03	4.74	4.32	4.06	3.56	3.31						
5.93 3.17 NORMAL DEF	5.60 3.09 THS AT SEC	5.36 3.03	4.74	4.32	4.06	3.56	3.31						
5.93 3.17 NORMAL DEF 0.978 1.778	5.60 3.09 THS AT SEC 0.926 1.880	5.36 3.03 TIONS 0.946 2.095	8,005	4.32	4.06	3.56	3.31 1.408						
5.93 3.17 NORMAL DEF 0.978 1.778	5.60 3.09 THS AT SEC 0.926 1.880	5.36 3.03 TIONS 0.946 2.095	4.74 8.005	4.32 2.447	4.06	3.56	3.31						
5.93 3.17 Normal Def 0.978 1.778 Areas Corr	5.60 3.07 THS AT SEC 0.926 1.880 ESPONDING	5.36 3.03 TIONS 0.946 2.095 TO NORMAL	4.74 8.005 DEPTHS	4.32 2.447	4.06	3.56 1.259	3.31						
5.93 3.17 NORMAL DEF 0.978 1.778 AREAS CORR 97.813	5.60 3.09 THS AT SEC 0.926 1.880 ESPONDING 129.595	5.36 3.03 TIONS 0.946 2.095 TO NORHAL 170.221	4.74 8.005 DEPTHS 2935.100	4.32 2.447 1549.698	4.06 1.511 1359.968	3.56 1.259 2442.467	3.31 1.408 4197.257						
5.93 3.17 NORMAL DEF 0.978 1.778 AREAS CORR 97.813 6756.075	5.40 3.09 THS AT SEC 0.926 1.880 ESPONDING 129.595 8270.690	5.36 3.03 TIONS 0.946 2.095 TO NORHAL 170.221 10472.803	4.74 8.005 DEPTHS 2935.100	4.32 2.447 1549.698	4.06 1.511 1359.968	3.56 1.259 2442.467	3.31 1.408 4197.257						
5.93 3.17 NORMAL DEF 0.978 1.778 AREAS CORR 97.813 6756.075	5.60 3.09 THS AT SEC 0.926 1.880 ESPONDING 129.595 8270.690	5.36 3.03 TIONS 0.946 2.095 TO NORHAL 170.221 10472.803	4.74 8.005 DEPTHS 2935.100	4.32 2.447 1549.698	4.06 1.511 1359.968	3.56 1.259 2442.467	3,31 1,408 4197,257						
5.93 3.17 NORMAL DEF 0.978 1.778 AREAS CORR 97.813 6756.075 VELOCITIES	5.60 3.09 THS AT SEC 0.926 1.880 ESPONDING 129.595 8270.690 CORRESPOND	5.36 3.03 TIONS 0.946 2.095 TO NORHAL 170.221 10472.803 ING TO NOR	4.74 8.005 DEPTHS 2935.100 KHAL DEPTHS	4.32 2.447 1549.698	4.06 1.511 1359.968	3.56 1.259 2442.467	3.31 1.408 4197.257						
5.93 3.17 NORMAL DEF 0.978 1.778 AREAS CORR 97.813 6756.075 VELOCITIES 1.022 0.015	5.60 3.09 THS AT SEC 0.926 1.880 ESPONDING 129.595 8270.690 CORRESPOND 0.772 0.12	5.36 3.03 TIONS 0.946 2.095 TO NORHAL 170.221 10472.803 ING TO NOF 0.587	4.74 8.005 DEPTHS 2935.100 KMAL DEPTHS 0.034	4.32 2.447 1549.698 0.065	4.06 1.511 1359.968  0.074	3.56 1.259 2442.467 0.041	3.31 1.408 4197.257 0.024						
5.93 3.17 NORMAL DEF 0.978 1.778 AREAS CORR 97.813 6756.075 VELOCITIES 1.022 0.015	5.40 3.09 PTHS AT SEC 0.926 1.880 ESPONDING 129.595 8270.690 CORRESPOND 0.772 0.012	5.36 3.03 TIONS 0.946 2.095 TO NORHAL 170.221 10472.803 ING TO NOF 0.587 0.010	4.74 8.005 DEPTHS 2935.100 RMAL DEPTHS 0.034	4.32 2.447 1549.698 0.065	4.06 1.511 1359.968  0.074	3.56 1.259 2442.467 0.041	3.31 1.408 4197.257 0.024						
5.93 3.17 NORMAL DEF 0.978 1.778 AREAS CORR 97.813 6756.075 VELOCITIES 1.022 0.015 REYNOLD'S	5.40 3.09 PTHS AT SEC 0.924 1.880 ESPONDING 129.595 8270.690 CORRESPOND 0.772 0.012 NUMBERS CO	5.36 3.03 TIONS 0.946 2.095 TO NORHAL 170.221 10472.803 ING TO NOF 0.587 0.010 RRESPONDIN	4.74 8.005 DEPTHS 2935.100 KMAL DEPTHS 0.034	4.32 2.447 1549.698 0.065	4.06 1.511 1359.968  0.074	3.56 1.259 2442.467 0.041	3.31 1.408 4197.257 0.024						
5.93 3.17 NORMAL DEF 0.978 1.778 AREAS CORR 97.813 6756.075 VELOCITIES 1.022 0.015 REYNOLD'S	5.40 3.09 THS AT SEC 0.926 1.880 ESPONDING 129.595 8270.690 CORRESPOND 0.772 0.012 NUMBERS CO	5.36 3.03 TIONS 0.946 2.095 TO NORHAL 170.221 10472.803 ING TO NOF 0.587 0.010 RRESPONDIN	4.74 8.005 DEPTHS 2935.100 RMAL DEPTHS 0.034 IG TO NORMA	4.32 2.447 1549.698 0.065 L DEPTHS 0.18	4.06 1.511 1359.968 0.074	3.56 1.259 2442.467 0.041 0.12	3.31 1.408 4197.257 0.024						
5.93 3.17 NORMAL DEF 0.978 1.778 AREAS CORR 97.813 6756.075 VELOCITIES 1.022 0.015 REYNOLD'S 3.07 0.04	5.60 3.09 THS AT SEC 0.926 1.880 ESPONDING 129.595 8270.690 CORRESPOND 0.772 0.012 NUMBERS CO 2.31 0.04	5.36 3.03 TIONS 0.946 2.095 TO NORHAL 170.221 10472.803 ING TO NOF 0.587 0.010 RRESPONDIN 1.76 0.03	4.74 8.005 DEPTHS 2935.100 RMAL DEPTHS 0.034 IG TO NORMA 0.10	4.32 2.447 1549.698 0.065 L DEPTHS 0.19	4.06 1.511 1359.968 0.074 0.22	3.56 1.259 2442.467 0.041 0.12	3.31 1.408 4197.257 0.024 0.07						
5.93 3.17 NORMAL DEF 0.978 1.778 AREAS CORR 97.813 6756.075 VELOCITIES 1.022 0.015 REYNOLD'S 3.07 0.04	5.60 3.09 THS AT SEC 0.926 1.880 ESPONDING 129.595 8270.690 CORRESPOND 0.772 0.012 NUMBERS CO 2.31 0.04	5.36 3.03 TIONS 0.946 2.095 TO NORHAL 170.221 10472.803 ING TO NOF 0.587 0.010 RRESPONDIN 1.76 0.03	4.74 8.005 DEPTHS 2935.100 RMAL DEPTHS 0.034 NG TO NORMA 0.10	4.32 2.447 1549.698 0.065 L DEPTHS 0.19	4.06 1.511 1357.968 0.074 0.22	3.56 1.259 2442.467 0.041 0.12	3.31 1.408 4197.257 0.024 0.07						
5.93 3.17 NORMAL DEF 0.978 1.778 AREAS CORR 97.813 6756.075 VELOCITIES 1.022 0.015 REYNOLD'S 3.07 0.04 CHEZY'S NU	5.60 3.09 THS AT SEC 0.926 1.880 ESPONDING 129.595 8270.690 CORRESPOND 0.772 0.012 NUMBERS CO 2.31 0.04	5.36 3.03 TIONS 0.946 2.095 TO NORHAL 170.221 10472.803 ING TO NOF 0.587 0.010 RRESPONDIN 1.76 0.03 ESPONDING	4.74 8.005 DEPTHS 2935.100 RMAL DEPTHS 0.034 NG TO NORMAL	4.32 2.447 1549.698 0.065 L DEPTHS 0.19 DEPTH	4.06 1.511 1359.968 0.074 0.22	3.56 1.259 2442.467 0.041 0.12	3.31 1.408 4197.257 0.024 0.07						
5.93 3.17 NORMAL DEF 0.978 1.778 AREAS CORR 97.813 6756.075 VELOCITIES 1.022 0.015 REYNOLD'S 3.07 0.04 CHEZY'S NU 3.30	5.40 3.09 THS AT SEC 0.926 1.880 ESPONDING 129.595 8270.690 CORRESPOND 0.772 0.012 NUMBERS COR 2.31 0.04 MBERS CORR 2.85	5.36 3.03 TIONS 0.946 2.095 TO NORHAL 170.221 10472.803 ING TO NOF 0.587 0.010 RRESPONDIN 1.76 0.03 ESPONDING 2.48	4.74 8.005 DEPTHS 2935.100 KMAL DEPTHS 0.034 IG TO NORMAL 0.57	4.32 2.447 1549.698 0.065 L DEPTHS 0.19 DEPTH 0.79	4.06 1.511 1359.968 0.074 0.22 0.85	3.56 1.259 2442.467 0.041 0.12 0.63	3.31 1.408 4197.257 0.024 0.07						
5.93 3.17 NORMAL DEF 0.978 1.778 AREAS CORR 97.813 6756.075 VELOCITIES 1.022 0.015 REYNOLD'S 3.07 0.04 CHEZY'S NU 3.30 0.37	5.40 3.09 THS AT SEC 0.924 1.880 ESPONDING 129.595 8270.690 CORRESPOND 0.772 0.012 NUMBERS COR 2.31 0.04 MBERS CORR 2.85 0.33	5.36 3.03 TIONS 0.946 2.095 TO NORHAL 170.221 10472.803 ING TO NOF 0.587 0.010 RRESPONDIN 1.76 0.03 ESPONDING 2.48 0.30	4.74 8.005 DEPTHS 2935.100 RMAL DEPTHS 0.034 NG TO NORMAL 0.10 TO NORMAL 0.57	4.32 2.447 1549.698 0.065 L DEPTHS 0.19 DEPTH 0.79	4.06 1.511 1359.968 0.074 0.22 0.85	3.56 1.259 2442.467 0.041 0.12 0.63	3.31 1.408 4197.257 0.024 0.07 0.47						
5.93 3.17 NORMAL DEF 0.978 1.778 AREAS CORR 97.813 6756.075 VELOCITIES 1.022 0.015 REYNOLD'S 3.07 0.04 CHEZY'S NU 3.30 0.37 DEPTHS4.0FF	5.40 3.09 THS AT SEC 0.926 1.880 ESPONDING 129.595 8270.690 CORRESPOND 0.772 0.012 NUMBERS CORR 2.31 0.04 MBERS CORR 2.85 0.33 LOW AJ. SEC	5.36 3.03 TIONS 0.946 2.095 TO NORHAL 170.221 10472.803 ING TO NOF 0.587 0.010 RRESPONDIN 1.76 0.03 ESPONDING 2.48 0.30 TIONS	4.74 8.005 DEPTHS 2935.100 RMAL DEPTHS 0.034 NG TO NORMAL 0.10 TO NORMAL 0.57	4.32 2.447 1549.698 0.065 L DEPTHS 0.19 DEPTH 0.79	4.06 1.511 1359.968 0.074 0.22 0.85	3.56 1.259 2442.467 0.041 0.12 0.63	3.31 1.408 4197.257 0.024 0.07 0.47						
5.93 3.17 NORMAL DEF 0.978 1.778 AREAS CORR 97.813 6756.075 VELOCITIES 1.022 0.015 REYNOLD'S 3.07 0.04 CHEZY'S NU 3.30 0.37 DEPTHS OF F 24.255 99.482	5.60 3.09 THS AT SEC 0.926 1.880 ESPONDING 129.595 8270.690 CORRESPOND 0.772 0.012 NUMBERS CORR 2.81 0.04 HBERS CORR 2.85 0.33 LOW AT SEC 99.778	5.36 3.03 TIONS 0.946 2.095 TO NORHAL 170.221 10472.803 ING TO NOF 0.587 0.010 RRESPONDIN 1.76 0.03 ESPONDING 2.48 0.30 TIONS 83.440 100.000	4.74 8.005 DEPTHS 2935.100 RMAL DEPTHS 0.034 IG TO NORMAL 0.10 TO NORMAL 0.57 94.433	4.32 2.447 1549.698 0.065 L DEPTHS 0.19 DEPTH 0.79 95.034	4.06 1.511 1359.968 0.074 0.22 0.85 96.475	3.56 1.259 2442.467 0.041 0.12 0.63 98.027	3.31 1.408 4197.257 0.024 0.07 0.47 98.985						
5.93 3.17 NORMAL DEF 0.978 1.778 AREAS CORR 97.813 6756.075 VELOCITIES 1.022 0.015 REYNOLD'S 3.07 0.04 CHEZY'S NU 3.30 0.37 DEPTHS QF F 99.482 CROSS-SECT	5.60 3.09 THS AT SEC 0.926 1.880 ESPONDING 129.595 8270.690 CORRESPOND 0.772 0.012 NUMBERS COR 2.31 0.04 HBERS CORR 2.85 0.33 LOW AT SEC 99.778 IONAL AREAS	5.36 3.03 TIONS 0.946 2.095 TO NORHAL 170.221 10472.803 ING TO NOF 0.587 0.010 RRESPONDIN 1.76 0.03 ESPONDING 2.48 0.30 TIONS 100.000	4.74 8.005 DEPTHS 2935.100 RMAL DEPTHS 0.034 NG TO NORMAL 0.10 TO NORMAL 0.57 94.433	4.32 2.447 1549.698 0.065 L DEPTHS 0.19 DEPTH 0.79 95.034	4.06 1.511 1359.968 0.074 0.22 0.85 96.475	3.56 1.259 2442.467 0.041 0.12 0.63 98.027	3.31 1.408 4197.257 0.024 0.07 0.47 98.985						
5.93 3.17 NORMAL DEF 0.978 1.778 AREAS CORR 97.813 6756.075 VELOCITIES 1.022 0.015 REYNOLD'S 3.07 0.04 CHEZY'S NU 3.30 0.37 0.04 CHEZY'S NU 3.30 0.37 0.04 CHEZY'S NU 3.30 0.37 CROSS-SECT 2429.5	5.40 3.09 THS AT SEC 0.926 1.880 ESPONDING 129.595 8270.690 CORRESPOND 0.772 0.012 NUMBERS COR 2.31 0.04 HBERS CORR 2.85 0.33 LOW AT SEC 99.778 EONAL AREAS BOS8.3	5.36 3.03 TIONS 0.946 2.095 TO NORHAL 170.221 10472.803 ING TO NOF 0.587 0.010 RRESPONDIN 1.76 0.03 ESPONDING 2.48 0.30 TIONS 83.440 100.000 15019.2	4.74 8.005 DEPTHS 2935.100 KMAL DEPTHS 0.034 NG TO NORMAL 0.10 TO NORMAL 0.57 94.433 34625.6	4.32 2.447 1549.698 0.065 L DEPTHS 0.19 DEPTH 0.79 95.034 60188.0	4.06 1.511 1359.968 0.074 0.22 0.85 96.475 86827.7	3.56 1.259 2442.467 0.041 0.12 0.63 98.027	3.31 1.408 4197.257 0.024 0.07 0.47 98.985						
5.93 3.17 NORMAL DEF 0.978 1.778 AREAS CORR 97.813 6756.075 VELOCITIES 1.022 0.015 REYNOLD'S 3.07 0.04 CHEZY'S NU 3.30 0.37 DEPTHS 0FF 99.482 CROSS-SECT 2429.5 378033.2	5.40 3.09 THS AT SEC 0.926 1.880 ESPONDING 129.595 8270.690 CORRESPOND 0.772 0.012 NUMBERS COR 2.31 0.04 HBERS CORR 2.85 0.33 LOW AJ SEC 5/559 99.778 BOSB.3 439024.5	5.36 3.03 TIONS 0.946 2.095 TO NORMAL 170.221 10472.803 ING TO NOF 0.587 0.010 RRESPONDING 2.48 0.30 TIONS 83.440 100.000 15019.2 500000.0	4.74 8.005 DEPTHS 2935.100 KMAL DEPTHS 0.034 NG TO NORMA 0.10 TO NORMAL 0.57 94.433 34625.6	4.32 2.447 1549.698 0.065 L DEPTHS 0.19 DEPTH 0.79 95.034 60188.0	4.06 1.511 1359.968 0.074 0.22 0.85 96.475 86827.7	3.56 1.259 2442.467 0.041 0.12 0.63 98.027 190172.0	3.31 1.408 4197.257 0.024 0.07 0.47 98.985 294975.7						
5.93 3.17 NORMAL DEF 0.978 1.778 AREAS CORR 97.813 6756.075 VELOCITIES 1.022 0.015 REYNOLD'S 3.07 0.04 CHEZY'S NU 3.30 0.37 DEPTHS OF F 99.482 CROSS-SECTI 2429.5 378033.2 VELOCITY	5.40 3.09 THS AT SEC 0.926 1.880 ESPONDING 129.595 8270.690 CORRESPOND 0.772 0.012 NUMBERS COR 2.31 0.04 HBERS CORR 2.31 0.04 HBERS CORR 2.31 0.04 HBERS CORR 2.31 0.04 HBERS CORR 2.31 0.04 HBERS CORR 2.31 0.04 HBERS CORR 2.33 1.004 HBERS CORR 2.33 1.004 HBERS CORR 2.33 1.004 HBERS CORR 2.33 1.004 HBERS CORR 2.33 1.004 HBERS CORR 2.33 1.004 HBERS CORR 2.33 1.004 1.559 99.778 IONAL AREAS 8058.3 439024.5	5.36 3.03 TIONS 0.946 2.095 TO NORHAL 170.221 10472.803 ING TO NOF 0.587 0.010 RRESPONDING 2.48 0.30 TIONS 2.48 0.30 TIONS 100.000 15019.2 500000.0	4.74 8.005 DEPTHS 2935.100 RMAL DEPTHS 0.034 NG TO NORMAL 0.10 TO NORMAL 0.57 94.433 34625.6	4.32 2.447 1549.698 0.065 L DEPTHS 0.19 DEPTH 0.79 95.034 60188.0	4.06 1.511 1359.968 0.074 0.22 0.85 96.475 86827.7	3.56 1.259 2442.467 0.041 0.12 0.63 98.027 190172.0	3.31 1.408 4197.257 0.024 0.07 0.47 98.985 294975.7						
5.93 3.17 NORMAL DEF 0.978 1.778 AREAS CORR 97.813 6756.075 VELOCITIES 1.022 0.015 REYNOLD'S 3.07 0.04 CHEZY'S NU 0.37 DEPTHS OF F 99.482 CROSS-SECT: 2429.5 378033.2 VELOCITY 0.041	5.60 3.09 THS AT SEC 0.926 1.880 ESPONDING 129.595 8270.690 CORRESPOND 0.772 0.012 NUMBERS CORR 2.31 0.04 HBERS CORR 2.31 0.04 HBERS CORR 2.31 0.04 HBERS CORR 2.31 0.04 HBERS CORR 2.31 0.04 HBERS CORR 2.31 0.04 HBERS CORR 2.33 100 AT SEC 0.33 LOW AT SEC 0.33 LOW AT SEC 0.33 LOW AT SEC 0.33 LOW AT SEC 0.33 LOW AT SEC 0.33 LOW AT SEC 0.012	5.36 3.03 TIONS 0.946 2.095 TO NORHAL 170.221 10472.803 ING TO NOF 0.587 0.010 RRESPONDIN 1.76 0.30 TIONS 83.440 100.000 15019.2 500000.0 0.007	4.74 8.005 DEPTHS 2935.100 RMAL DEPTHS 0.034 NG TO NORMAL 0.10 TO NORMAL 0.57 94.433 34625.6 0.003	4.32 2.447 1549.698 0.065 L DEPTHS 0.19 DEPTH 0.79 95.034 60188.0 0.002	4.06 1.511 1359.968 0.074 0.22 0.85 96.475 86827.7 0.001	3.56 1.259 2442.467 0.041 0.12 0.63 98.027 190172.0 0.001	3.31 1.408 4197.257 0.024 0.07 0.47 98.985 294975.7 0.000						
5.93 3.17 NORMAL DEF 0.978 1.778 AREAS CORR 97.813 6756.075 VELOCITIES 1.022 0.015 REYNOLD'S 3.07 0.04 CHEZY'S NU 0.37 DEPTHS QF F 24.295 378033.2 VELOCITY 0.041 0.000 REYNOLDS MI	5.60 3.09 THS AT SEC 0.926 1.880 ESPONDING 129.595 8270.690 CORRESPOND 0.772 0.012 NUMBERS CORR 2.81 0.04 HBERS CORR 2.31 0.04 HBERS CORR 0.33 LOW AT SEC 0.33 LOW AT SEC 0.33 LOW AT SEC 0.33 LOW AT SEC 0.012 0.000 0.000	5.36 3.03 TIONS 0.946 2.095 TO NORHAL 170.221 10472.803 ING TO NOF 0.587 0.010 RRESPONDIN 1.76 0.03 ESPONDING 0.30 TIONS 83.440 100.000 15019.2 500000.0 0.007 0.000	4.74 8.005 DEPTHS 2935.100 RMAL DEPTHS 0.034 IG TO NORMAL 0.10 TO NORMAL 0.57 94.433 34625.6 0.003	4.32 2.447 1549.698 0.065 L DEPTHS 0.19 DEPTH 0.79 95.034 60188.0 0.002	4.06 1.511 1359.968 0.074 0.22 0.85 96.475 86827.7 0.001	3.56 1.259 2442.467 0.041 0.12 0.63 98.027 190172.0 0.001	3.31 1.408 4197.257 0.024 0.07 0.47 98.985 294975.7 0.000						
5.93 3.17 NORMAL DEF 0.978 1.778 AREAS CORR 97.813 6756.075 VELOCITIES 1.022 0.015 REYNOLD'S 3.07 0.04 CHEZY'S NU 3.30 0.37 0.04 CHEZY'S NU 3.30 DEPTHS OF F 2429.5 378033.2 VELOCITY 0.041 0.000 REYNOLDS NU 0.123	5.40 3.09 THS AT SEC 0.926 1.880 ESPONDING 129.595 8270.690 CORRESPOND 0.772 0.012 NUMBERS COR 2.31 0.04 HBERS CORR 2.85 0.33 LOW AT SEC 99.778 EDNAL AREAS 8058.3 439024.5 0.012 0.000 MBERS FOR	5.36 3.03 TIONS 0.946 2.095 TO NORHAL 170.221 10472.803 ING TO NOF 0.587 0.010 RRESPONDIN 1.76 0.03 ESPONDING 2.48 0.30 TIONS B3.440 100.000 15019.2 500000.0 0.007 0.000	4.74 8.005 DEPTHS 2935.100 RMAL DEPTHS 0.034 RG TO NORMAL 0.10 TO NORMAL 0.57 94.433 34625.6 0.003	4.32 2.447 1549.698 0.065 L DEPTHS 0.19 DEPTH 0.79 95.034 60188.0 0.002	4.06 1.511 1359.968 0.074 0.22 0.85 96.475 86827.7 0.001	3.56 1.259 2442.467 0.041 0.12 0.63 98.027 190172.0 0.001	3.31 1.408 4197.257 0.024 0.07 0.47 98.985 294975.7 0.000						
5.93 3.17 NORMAL DEF 0.978 1.778 AREAS CORR 97.813 6756.075 VELOCITIES 1.022 0.015 REYNOLD'S 3.07 0.04 CHEZY'S NU 3.30 0.37 0.04 CHEZY'S NU 3.30 0.37 0.04 CHEZY'S NU 2429.5 378033.2 VELOCITY 0.041 0.000 REYNOLDS NU 0.001	5.40 3.09 THS AT SEC 0.926 1.880 ESPONDING 129.595 8270.690 CORRESPOND 0.772 0.012 NUMBERS COR 2.31 0.04 HBERS CORR 2.85 0.33 LOW AT SEC 5.559 99.778 EDNAL AREAS 8058.3 439024.5 0.012 0.000 MBERS FOR 0.037 0.04	5.36 3.03 TIONS 0.946 2.095 TO NORHAL 170.221 10472.803 ING TO NOF 0.587 0.010 RRESPONDING 2.48 0.03 ESPONDING 2.48 0.30 TIONS 83.440 100.000 15019.2 500000.0 0.007 0.000 GVF 0.020	4.74 8.005 DEPTHS 2935.100 KMAL DEPTHS 0.034 KMAL DEPTHS 0.034 KMAL DEPTHS 0.034 KMAL 0.10 TO NORMAL 0.57 94.433 34625.6 0.003 0.009	4.32 2.447 1549.698 0.065 L DEPTHS 0.19 DEPTH 0.79 95.034 60188.0 0.002 0.005	4.06 1.511 1359.968 0.074 0.22 0.85 96.475 86827.7 0.001 0.003	3.56 1.259 2442.467 0.041 0.12 0.63 98.027 190172.0 0.001 0.002	3.31 1.408 4197.257 0.024 0.07 0.47 98.985 294975.7 0.000 0.001						
5.93 3.17 NORMAL DEF 0.978 1.778 AREAS CORR 97.813 6756.075 VELOCITIES 1.022 0.015 REYNOLD'S 3.07 0.04 CHEZY'S NU 3.30 0.37 DEPTHS OFF 2429.5 378033.2 VELOCITY 0.041 0.000 REYNOLDS NU 0.123 0.001 WETTED PERT	5.40 3.09 THS AT SEC 0.926 1.880 ESPONDING 129.595 8270.690 CORRESPOND 0.772 0.012 NUMBERS COR 2.31 0.04 MBERS CORR 2.85 0.33 LOW AJ SEC 99.778 COAL AREAS 8058.3 439024.5 0.000 IMBERS FOR 0.037 0.001 HETERS	5.36 3.03 TIONS 0.946 2.095 TO NORMAL 170.221 10472.803 ING TO NOF 0.587 0.010 RRESPONDING 2.48 0.30 TIONS 2.48 0.30 TIONS 1.76 0.03 ESPONDING 2.48 0.30 TIONS 1.5019.2 500000.0 0.007 0.000 GVF 0.020 0.001	4.74 8.005 DEPTHS 2935.100 RMAL DEPTHS 0.034 NG TO NORMAL 0.10 TO NORMAL 0.57 94.433 34625.6 0.003 0.009	4.32 2.447 1549.698 0.065 L DEPTHS 0.19 DEPTH 0.79 95.034 60188.0 0.002 0.005	4.06 1.511 1359.968 0.074 0.22 0.85 96.475 86827.7 0.001 0.003	3.56 1.259 2442.467 0.041 0.12 0.63 98.027 190172.0 0.001 0.001	3.31 1.408 4197.257 0.024 0.07 0.47 98.985 294975.7 0.000 0.001						
5.93 3.17 NORMAL DEF 0.978 1.778 AREAS CORR 97.813 6756.075 VELOCITIES 1.022 0.015 REYNOLD'S 3.07 0.04 CHEZY'S NU 3.30 0.37 DEPTHS OF F 99.482 CROSS-SECTI 2429.5 378033.2 VELOCITY 0.041 0.000 REYNOLDS NU 0.123 0.001 WETTED PERI 148.6	5.40 3.09 THS AT SEC 0.926 1.880 ESPONDING 129.595 8270.690 CORRESPOND 0.772 0.012 NUMBERS CORR 2.31 0.04 MBERS CORR 0.037 0.001 METERS 255.1	5.36 3.03 TIONS 0.946 2.095 TO NORHAL 170.221 10472.803 ING TO NOF 0.587 0.010 RRESPONDING 2.48 0.30 TIONS 2.48 0.30 TIONS 15019.2 500000.0 0.007 0.000 GVF 0.020 0.001 346.9	4.74 8.005 DEPTHS 2935.100 RMAL DEPTHS 0.034 NG TO NORMAL 0.10 TO NORMAL 0.57 94.433 34625.6 0.003 0.009	4.32 2.447 1549.698 0.065 L DEPTHS 0.19 DEPTH 0.79 95.034 60188.0 0.002 0.005 823.4	4.06 1.511 1359.968 0.074 0.22 0.85 96.475 86827.7 0.001 0.003 1087.0	3.56 1.259 2442.467 0.041 0.12 0.63 98.027 190172.0 0.001 0.002	3.31 1.408 4197.257 0.024 0.07 0.47 98.985 294975.7 0.000 0.001						
5.93 3.17 NORMAL DEF 0.978 1.778 AREAS CORR 97.813 6756.075 VELOCITIES 1.022 0.015 REYNOLD'S 3.07 0.04 CHEZY'S NU 3.30 0.37 DEPTHS OF F 2429.5 378033.2 VELOCITY 0.041 0.021 0.021 0.021 0.041 0.123 0.001 WETTED PERI 148.6 3999.0	5.60 3.09 THS AT SEC 0.926 1.880 ESPONDING 129.595 8270.690 CORRESPOND 0.772 0.012 NUMBERS CORR 2.31 0.04 MBERS CORR 2.31 0.04 MBERS CORR 2.31 0.04 MBERS CORR 2.31 0.04 MBERS CORR 2.31 0.04 MBERS CORR 0.33 LOW AT SEC 0.33 LOW AT SEC 0.012 0.000 MBERS FOR 0.001 MBERS FOR 0.037 0.001 METERS 255.1 4599.6	5.36 3.03 TIONS 0.946 2.095 TO NORHAL 170.221 10472.803 ING TO NOF 0.587 0.010 RRESPONDING 2.48 0.30 TIONS 83.440 100.000 15019.2 500000.0 0.007 0.000 GVF 0.020 0.001 346.9 5200.0	4.74 8.005 DEPTHS 2935.100 RMAL DEPTHS 0.034 NG TO NORMAL 0.10 TO NORMAL 0.57 94.433 34625.6 0.003 0.009 555.5	4.32 2.447 1549.698 0.065 L DEPTHS 0.19 DEPTH 0.79 95.034 60188.0 0.002 0.005 823.4	4.06 1.511 1359.968 0.074 0.22 0.85 96.475 86827.7 0.001 0.003 1093.0	3.56 1.259 2442.467 0.041 0.12 0.63 98.027 190172.0 0.001 0.002 2136.1	3.31 1.408 4197.257 0.024 0.07 0.47 98.985 294975.7 0.000 0.001 3178.0						
5.93 3.17 NORMAL DEF 0.978 1.778 AREAS CORR 97.813 6756.075 VELOCITIES 1.022 0.015 REYNOLD'S 3.07 0.04 CHEZY'S NU 0.37 DEPTHS OF 2429.5 378033.2 VELOCITY 0.041 0.000 REYNOLDS NU 0.123 0.01 WETTED PERI 148.6 3999.0 TOP WIDTH	5.60 3.09 THS AT SEC 0.926 1.880 ESPONDING 129.595 8270.690 CORRESPOND 0.772 0.012 NUMBERS CORR 2.81 0.04 HBERS CORR 2.31 0.04 HBERS CORR 0.33 LOW AT SEC 0.33 LOW AT SEC 0.012 0.001 MBERS FOR 0.037 0.001 MBERS FOR 0.037 0.001 MBERS FOR 0.037 0.001 MBERS FOR 0.037 0.001 METERS 255.1 4599.6	5.36 3.03 TIONS 0.946 2.095 TO NORHAL 170.221 10472.803 ING TO NOF 0.587 0.010 RRESPONDIN 1.76 0.03 ESPONDING 2.48 0.30 TIONS 100.000 15019.2 500000.0 0.007 0.000 GVF 0.020 0.001 346.9 5200.0	4.74 8.005 DEPTHS 2935.100 RHAL DEPTHS 0.034 RG TO NORMAL 0.57 94.433 34625.6 0.003 0.009 555.5	4.32 2.447 1549.698 0.065 L DEPTHS 0.19 DEPTH 0.79 95.034 60188.0 0.002 0.005 823.4	4.06 1.511 1359.968 0.074 0.22 0.85 96.475 86827.7 0.001 0.003 1093.0	3.56 1.259 2442.467 0.041 0.12 0.63 98.027 190172.0 0.001 0.002 2136.1	3.31 1.408 4197.257 0.024 0.07 0.47 98.985 294975.7 0.000 0.001 3178.0						
5.93 3.17 NORMAL DEF 0.978 1.778 AREAS CORR 97.813 6756.075 VELOCITIES 1.022 0.015 REYNOLD'S 3.07 0.04 CHEZY'S NU 3.30 0.37 0.04 CHEZY'S NU 3.30 0.37 0.04 CHEZY'S NU 3.30 0.37 0.04 CHEZY'S NU 3.30 0.37 0.04 0.021 2429.5 378033.2 VELOCITY 0.041 0.000 REYNOLDS NU 0.021 0.001 WETTED PERI 148.6 3999.0 TGP WIDTH _100.00	5.40 3.09 THS AT SEC 0.926 1.880 ESPONDING 129.595 8270.690 CORRESPOND 0.772 0.012 NUMBERS COR 2.31 0.04 HBERS CORR 2.85 0.33 LOW AT .85 99.778 EDNAL AREAS 8058.3 439024.5 0.012 0.000 HBERS FOR 0.037 0.001 HETERS 255.1 4599.6 140.00	5.36 3.03 TIONS 0.946 2.095 TO NORHAL 170.221 10472.803 ING TO NOF 0.587 0.010 RRESPONDIN 1.76 0.03 ESPONDING 2.48 0.30 TIONS 83.440 100.000 0.007 0.000 GUF 0.020 0.001 346.9 5200.0 180.00	4.74 8.005 DEPTHS 2935.100 RMAL DEPTHS 0.034 RG TO NORMAL 0.10 TO NORMAL 0.57 94.433 34625.6 0.003 0.009 555.5 366.67	4.32 2.447 1549.698 0.065 L DEPTHS 0.19 DEPTH 0.79 95.034 60188.0 0.002 0.005 823.4 633.33	4.06 1.511 1359.968 0.074 0.22 0.85 96.475 86827.7 0.001 0.003 1093.0 900.00	3.56 1.259 2442.467 0.041 0.12 0.63 98.027 190172.0 0.001 0.002 2136.1 1940.00	3.31 1.408 4197.257 0.024 0.07 0.47 98.985 294975.7 0.000 0.001 3178.0						

SECTIONS A	LONG CHANN	EL					/					
0.0	400.0	800.0	1200.0	1600.0	2000.0	2400.0	2800.0					
3200.0	3600.0	4000.0	)									
DISCHARGE ALONG CHANNEL												
100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00					
100.00	100.00	100.00	)									
BOTTOM WIDTHS												
100.000	140.000	180.000	340.000	620.000	900.000	1940.000	2980.000					
3800.000	4400.000	5000.000	)	0200000								
SLUPES UF	SIBE OF C	HANNEL			0 000	0 000	0.000					
0.000	0.000	0,000	0.000	0.000	0.000	0.000	0.000					
SLOPE OF	CHANNEL BO	TTOM AT SE	CTIONS									
0,10000	0.08000	0,08000	0,04100	0.02300	0.00500	0.00340	0.00180					
0100070	0.00070	0.00030										
CRITICAL	DEPTHS AT	SECTIONS										
0.3143	0.2512	0.2124	0.1390	0.0931	0.0726	0.0435	.,0.0327					
0,0278	0,0252	0.0232										
CRITICAL	SLOPES AT	SECTIONS										
0.920379	1,030679	1.122495	1.393996	1,714033	1.949613	2,531766	2.944095					
3.197512	3.366533	3.518294										
40540 COD	DECDANDING											
31.43	35.16	38.24	47,29	57.76	65,38	84.59	97.45					
105.74	110.98	115.80		0,1,0	00100	007						
VELOCITIE	S CORRESPON	NDING TO C	RITICAL DE	PTH								
3+181	2.844	2,615	2,115	1./31	1.529	1,182	1.028					
01740		01004										
REYNOLD'S	NUMBERS CO	DRRESPONDI	NG TO CRIT	ICAL DEPTH								
9.54	8.53	7.85	6.34	5.19	4.59	3.55	3,08					
2.84	2.70	2.59										
CHEZY'S N	UMBERS CORF	RESPONDING	TO CRITIC	AL DEPTH								
5,93	5.60	5,36	4.80	4.33	4.06	3,56	3.31					
3.17	3.09	3.03										
NORMAL DE		TTONS										
0.978	0.926	0.946	0.837	0.835	1.511	1,259	1.408					
1.778	1.880	2.095										
	CODANTING		<b>TEDTUR</b>									
97.813	129.595	170,221	284.664	517,750	1359.968	2442.467	4197.257					
6756.075	8270.690	10472.803				21121,00						
				_								
VELOCITIES	CORRESPOND	ING TO NOP	RMAL DEPTHS	3								
1,022	0.772	0,58/	0,351	0.193	0,0/4	0.041	0.024					
0.013	0,012	0.010										
REYNOLD'S	NUMBERS CO	RRESPONDIN	G TO NORMA	AL DEPTHS								
3.07	2.31	1.76	1.05	0.58	0.22	0.12	0.07					
0.04	0.04	0.03										
CHEZY'S NU	INDERS CORR	ESPONDING	TO NORMAL	DEPTH								
3.30	2.85	2.48	1,90	1.40	0.85	0.63	0.47					
A 37	A 77	0 70										
DEPTHS OF F	LOW AT SEC	IIONS	70 517	01 740	0/ 175							
2+/37	33,020	100 000	/7.34/	71.347	70,4/5	98.027	A8*A82					
CROSS~SECTI	ONAL AREAS	1001000										
273.9	4902.8	10960.4	27046.0	56636.3	86827.7	190172.0	294975.7					
378033.2	439024.5	500000.0										
VELUCITY	0.020	0.000	0.004	0.002	0.001	0 001	0.000					
0.000	0.000	0.000	01004	01002	*****	01001	~, ~ ~					
REYNOLDS NU	MBERS FOR	GVF										
1.095	0.061	0.027	0.011	0.005	0.003	0.002	0.001					
0.001 UFTTED PEPT	0.001 Meters	0.001	-									
105.5	210.0	301.8	499.1	802.7	1093.0	2136.1	3178.0					
3999.0	4599.6	5200.0										
TOP WIDTH	140.00	100 00	740 00	190 00	900 00	1040 00	2000 00					
3800.00	4400.00	180,00	340.00	620.00	700.00	1940.00	2780.00					
~~~~		~~~~~										

. ·

- .

....

. .

- -

• •

. .

r •

..... L ...

- -

с. г -

۰. ۲.

د ...

۰__

۲ ...

-....

•
.

.-

. _____