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Abstract 

Wet/dry spell characteristics of daily precipitation are of interest for a 
number of hydrologic applications (e.g., flood forecasting or assessment of 
erosion potential). Here, we examine issues related to designing an appropriate 
nonparametric scheme that focuses on spell characteristics for resampling 
historical daily precipitation data. A subset of the nonparametric wet/dry spell 
model presented in Lall et al (1993) is tested with synthetic data to justify the 
strategy proposed for applications. An application of the nonparametric wet/dry 
spell model to a Utah data set follows. Performance is judged on a set of 
statistical measures. Numerical comparisons of model performance with a 
parametric alternating renewal model are also offered for this data set. Our 
presentation stresses data exploratory aspects rather than formal hypothesis 
testing. 



1. INTRODUCTION 

Many may be the unknown gods of daily precipitation at a site of interest. With this refrain, 

we (Lall et al (1993)) motivated our pantheistic (a.k.a. nonparametric) approach to a stochastic 

model for daily precipitation. The salient features of this model were the consideration of 

alternating wet and dry spells and of a daily rainfall structure within the wet spell. Kernel density 

estimates (k.d.e.'s) were espoused as effective methods for recovering all univariate, multivariate 

or conditional, discrete and/or continuous probability densities that were needed directly from the 

historical record. A kernel based procedure for disaggregating spell precipitation into daily 

precipitation was also provided. Here, we complement the largely theoretical discussion in Lall et 

al (1993) with numerical, illustrative examples. The purpose of these examples is twofold. First, 

we shall explore some of the issues relevant to the implementation of the proposed kernel density 

estimates. These are (a) the specification of the bandwidth of the kernel estimator for the 

continuous case, (b) the role of boundary effects in kernel estimation, and ( c) the selection of the 

estimator in the discrete case. The intent is to justify our recommended procedures by example, and 

to provide a comparison of the major estimation schemes available in the literature. Second, we 

pursue an application with a daily precipitation record from a station in Utah to evaluate the 

performance of the proposed model through Monte Carlo simulation relative to historical statistics. 

The relative performance of traditional models such as a first order, two state Markov chain (MC) 

and an alternating renewal model with the same data set was also of interest. We recognize from 

Trivedi (1982, p.325) that if we define an 'event' to be a change of state (in our case wet to dry or 

dry to wet), then the successive interevent times (i.e the wet spell length or the dry spell length) of 

a Markov chain are independent, geometrically distributed random variables. An alternating 

renewal model with geometrically distributed wet and dry spells is thus equivalent to a Markov 

Chain. Consequently we offer comparisons of the Nonparametric Renewal model (NPR) with 

Parametric alternating renewal model (PAR), that uses geometric wet and dry spell length 

distributions and an exponential distribution for the precipitation amount each wet day. 

To keep this presentation simple and.informative we consider a subset of the Lall et al 

(1993) model. Wet and dry spells are assumed to be independent, allowing the use of a univariate 

description for the spell length distributions. Daily precipitation amounts within a wet spell are also 

assumed to be independent. This leads to a univariate description of wet day precipitation amount. 

Correlation statistics computed for the data sets analyzed supported these assumptions. 

We begin with a brief description of the resulting model (section 2). Examples motivating 

our recommendations for model estimation follow in section 3. Performance measures and an 
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experiment design to test application(s) is presented next in section 4. The utility of the model 

developed is then illustrated through an application to data collected at Woodruff, Utah in section 

5. Musings on the results and pointers to related work in progress conclude the presentation. 

2. NONPARAMETRIC RENEWAL MODEL (NPR) 

The year is divided into four seasons:- (1) Winter (January - March), (2) Spring (April -

June), (3) Summer (July - September), and (4) Fall (October - December). The precipitation 

process is assumed to be stationary within these seasons. The random variables of interest are the 

wet spell length, w days, dry spell length, d days, and wet day precipitation amount, pinches. 

Variables wand d are defined through the set of integers greater than 1 (and less than season 

length), and p is defined as a continuous, positive random variable. Precipitation data are usually 

rounded to measurement precision (e.g., 0.01 inch increments). We do not expect the effect of 

such quantization of the data to be significant relative to the scale of the precipitation process, and 

treat precipitation as a continuous random variable. A mixed set of discrete and continuous random 

variables is thus considered. 

The model is applied to daily precipitation for each season. The probability density 

functions (p.d.f.'s) of wet day precipitation amount f(p) and the probability mass functions 

(p.m.f.'s) of wet spell length few) and dry speUlength fed) are estimated for each season using 

kernel density estimates based on the observed data. These estimates comprise the model. 

Synthetic precipitation sequences are generated following the strategy indicated in Figure 1. 

A dry spell is first generated using fed). Then a wet spell is generated using few). Precipitation for 

each of the w wet days is then generated from f(p). The process is repeated with the generation of 

another dry spell. If a season boundary is crossed, the p.d.f.'s used for generation are switched to 

those for the new season. This procedure continues until a synthetic sequence of the desired length 

has been generated. As is usual practice in such cases we discard the early part of each sequence 

generated to avoid startup bias. 

For the discrete variables (wand d), the kernel estimator developed by Hall and 

Titterington (1987) (HT) is recommended. The HT kernel estimator for the p.m.f., fn(x), where x 

is either w or d, and n is the corresponding sample size is given as: 

(1) 
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K«x - x')Ih) 
where, W«x - xj)lh) = I, with h ~ 1 

j=OQ 

.L ~K(jlh) 
j=-OQ 

and K(.) is any suitable continuous variate kernel function satisfying properties of positivity, 

integrating to unity, symmetry and finite variance (see Lall et al. (1993), Equation 3.2), with 

compact support over the interval [-1,1]. 

The bandwidth h is selected as a minimizer of a Least Squares Cross Validation (LSCV) 

function suggested in Hall and Titterington (1987), oV,er a suitable range for h. We have used the 

bisquare kernel (K(t) = 15/16(1-t2)2) for our analysis. This estimator is defined over the set of 

integers. However wet and dry spell lengths are counting numbers (integers greater than 1). To 

avoid the problem of the estimator assigning probability to integers less than 0, the so called 

boundary problem, we have used boundary kernels developed by Dong and Simonoff (1994, in 

press) as given in Lall et al. (1993), Table 1. Section 3.1 compares three approaches to estimating 

discrete p.m.f s. The HT estimator proved best among these. 

For the p.d.f of wet day precipitation, a kernel density estimator applied to log transformed 

data was used. The log transformation provides bandwidth adaptation(in real space), alleviating the 

need to choose variable bandwidths with heavily skewed data (such as wet day precipitation). The 

boundary bias issues are also alleviated through use of the log transform. The resulting estimator 

is given as: 

(2) 

where, h is the bandwidth in log space and K(.) is the kernel function. 

The bandwidth h is chosen for the log transformed data using a recursive approach of 

Sheather and Jones (1991) to minimize the Mean Integrated Square Error (MISE). This procedure 

is described in Lall et al. (1993), section 3.5. The Epanechnikov kernel (K(t) = 3/4(I-t2), with 

t=(ln(p)-ln(Pi»lh) was used. Comparisons of this strategy with kernel density estimators defined 

in real space using boundary kernels, and for different bandwidth selection methods are offered in 

the next section. 

3. COMPARING CHOICES FOR KERNEL DENSITY ESTIMATION 

We compared three nonparametric estimators for estimating the p.m.f. for the discrete 
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variables (w or d), including the one recommended in section 2. The other two estimators are 

formally defined in Appendix 1. We also fit a parametric (geometric) distribution. Two examples 

of the application of these estimators to data from known populations are presented in section 3.1. 

For the continuous case, we considered four methods of bandwidth selection and estimation in 

real and in log space. Two examples comparing these estimators to data from known populations 

are presented in section 3.2. 

3.1 Discrete variable( s) 

The three methods considered are (1) HT - a kernel estimator suggested by Hall and 

Titterington (1987), using a Bisquare kernel with boundary modifications by Dong and Simonoff 

(1994), and bandwidth selected by LSCV (2) WV - a kernel estimator suggested by Wang and 

Van Ryzin (1981) using a geometric kernel with bandwidth selected by minimizing global or local 

mean square error (MSE) developed by Wang and Van Ryzin (1981), (3) MPLE - a maximum 

penalized likelihood estimator developed by Simonoff (1983). We refer the reader interested in 

"average" performance and properties to Monte Carlo analyses demonstrating the effectiveness of 

each estimator and some comparisons with other estimators to the authors cited above. It is 

instructive to see how these estimators do where a single sample is available. Consequently, the 

thrust of the presentation here is on a comparison of these estimators with data sets generated 

specifically from situations that may be of interest in our particular context. 

Two examples are provided. First we use a sample (Dt) from a geometric p.m.f. with 

1t=0.2. The second sample (D2), was generated from a mixture of two geometric p.m.f.'s defined 

as (0.3G(1t=0.9)+O.7G(1t=0.2)). In each case a sample of size 250 was used. For the rainfall data 

we subsequently analyse, sample sizes were typically around 400 to 500, based on 40 years of 

data for the season of interest. We also fitted a geometric distribution (GP) to Dl and D2 using the 

method of moments. Sample statistics and values of the key parameters in each case are 

summarized in table 1. The corresponding p.m.f.'s estimated by each method for D 1 and D2 are 

shown in Figure 2. Note that results from WV with local bandwidths are not shown, since they are 

very close to those obtained using a global bandwidth. 

The following observations are apparent from the figures: 

1. The WV procedure does not smooth the sample proportions (ri) properly. In most cases, there is 

very little smoothing. In cases where there is some smoothing (e.g., Figure 2a, in the range x=4 to 

6), the resulting estimate is rather unsatisfactory, and is inconsistent with the underlying 

population. We feel that part of this behavior is due to the rapid "drop off" of weight associated 
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with the Geometric kernel, and part due to the method used for selecting the bandwidth h. 

2. On the other hand, since the roughness penalty tries to make the p.m.f. uniform, MPLE 

emphasizes smoothness. Consequently, when the true p.d.f has a high second derivative (e.g., 

near the origin), MPLE has difficulty distinguishing between "true" curvature and observed 

variation. The resulting estimate often has a strong downward bias near the origin (Figure 2a). The 

MPLE is also sensitive to the value specified for xmax' the longest spell length considered. As 

xmax is increased, the downward bias at the origin is increased and the entire p.m.f. is 

"flattened". 

3. The GP fit is very good (estimated 1t=0.1956) for D1 where the true distribution was geometric. 

As expected, a large bias is incurred near the origin for D2 (see figures 2b and 2d), where the 

estimated 1t was 0.2554. 

4. Figures 2b and 2d indicate that HT is the best of the estimators considered here. The estimated 

p.m.f is smooth, and it also exhibits the least pointwise bias. The HT estimator automatically 

adapts to a large range of density variation, providing optimal smoothness in finite samples. The 

HT estimates are robust to outliers, as opposed to the parametric fits. To illustrate this see Figure 

2e. Outliers were added at 45, 50, 75 and 100. These could be generated if the data were 

contaminated by a few large values (e.g. from a Geometric distribution with 1t=0.01). The fitted 

Geometric distribution, i.e (GP) is very much affected by the outliers and deviates from the true 

distribution, especially near the mode (i.e 1.). While the HT estimator still follows the data closely. 

The rationale for recommending HT is obvious from the above observations. Further 

reassurance of its asymptotic performance in terms of MSE and its relative MSE efficiency 

(compared to the MLE) may be found in Dong and Simonoff (1994). 

3.2 Continuous variable p 

The most critical aspect of developing the k.d.e. in this situation is the specification of the 

bandwidth. A second factor is the need for specialized treatment near p=O (Le., the boundary 

problem). We consider six estimators for fn(p). These are: (1) (PR-N) parametric reference 

assuming the underlying probability density function to be N(0,(;2), (2) (PR-M), parametric 

reference assuming the underlying probability density function to be a Gaussian mixture O.5N(-

2,1)+0.5N(2,1), (3) (PR-E) parametric reference assuming the underlying probability density 

function to be Exp(a), (4) (LSCV) Least squares cross validation, (5) (MLCV) Maximum 

likelihood cross validation, (5) (SJ) Sheather and Jones (1991) procedure, and (6) (SJL) Sheather 

Jones (1991) procedure applied to log transformed data. Table 2 summarizes the bandwidth 
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estimation procedures. Further details of these procedures are given in Lall et aL (1993). In the 

first three methods the term parametric reference means the bandwidth is chosen to be optimal with 

reference to an assumed underlying parametric distribution. The first five methods, which consider 

untransformed real space data also use Abramson's method (LaB et aI, 1993, section 3.5) to 

specify a local rather than a fixed global bandwidth. Boundary kernels as defined by Muller 

(1991) were used to adjust the density estimates near the lower boundary (p ~ 0), but were not 

used during bandwidth estimation. The SJL procedure, eliminated the boundary problem and 

provides some local bandwidth adaption, so no local bandwidth adjustment and no boundary 

kernels were used. 

Two examples are provided. First we sample (Cl) from a Gaussian mixture(O.5N(-

2,1)+0.5N(2,1)), to demonstrate estimatibility with location mixtures. The second sample (C2), 

was generated from an Exponential distribution with mean 0.15. In each case a sample of size 250 

was used. For the wet day precipitation data we subsequently analyse, sample sizes were typically 

around 600 to 800, based on 40 years of data for the season of interest. Sample statistics and 

values of the key parameters in each case are summarized in table 3. The corresponding p.d.f.'s 

estimated by each method for Cl and C2 are shown in Figure 3. For data set Cl we used methods 

PR-N, PR-M,LSCV, MLCV, SJ, while, for data set C2 we used PR-E, LSCV, MLCV, SJ and 

SJL. 

The following observations are apparent from the figures: 

1. The parametric reference (PR) procedures work very well as expected when the assumed p.d.f. 

matches the underlying p.d.f. However, under mis-specification, performance suffers. In case of 

Cl, the bandwidth from the true reference (PR-M) is 1.0, while from using the normal distribution 

(i.e mis-specification) as the reference (PR-N) the bandwidth is 1.76. This results in gross 

oversmoothing of the two modes present in Cl (see Figure 3a). The bandwidth from PR is the best 

possible estimate of h provided f(x) is known. Of course, one reason we pursue nonparametric 

estimates of the p.d.f. is lack of knowledge of the underlying modeL In this case PR estimates 

with the correct f(x) are useful as a benchmark to compare the performance of fully data driven 

methods. 

2. LSCV and MLCV are prone to undersmoothing especially when the data exhibits fine structure 

(e.g bimodes) and is long tailed (see, Hall and Marron (1987)). Also the cross-validation functions 

(which are minimized for the bandwidth estimation) have spurious local optima (corresponding to 

clustering of data at different scales) at small values of bandwidth, (see Hall and Marron (1991)). 

Thus, we expect small bandwidths from LSCV and MLCV which leads to an undersmoothed 

density estimate. This can be seen from Figures 3b and 3d, where the estimates from LSCV and 
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MLCV are very rough suggesting that the variance is high. 

3. SJ has been shown to have a better mean integrated square error (MISE) convergence rate than 

CV methods (see Sheather and Jones (1991)) and hence should lead to a better estimate. This is 

borne out in figures 3a and 3e, and table 2. Note that the SJ optimal bandwidth for C1 is close to 

the PR optimal bandwidth where the use of PR is justified, while for C2 it is not. This is due to the 

fact that the boundary effect is not considered while estimating the bandwidth, which is a problem 

in case C2 but not in Cl. In both cases the SJ bandwidth is superior to those chosen by MLCV 

and LSCV. 

Note that in all these cases, the optimal h is determined without using the boundary 

kernels, and is perhaps smaller than it would be (to reduce the effect of leakage across the 

boundary) if boundary kernels were used during bandwidth estimation. This emphasizes the need 

for proper treatment of the boundary of the domain during all phases of k.d.e .. We expect to 

pursue modifications of the SJ estimator to account for boundaries during bandwidth selection. 

4. For C2, in Figures 3c and 3d, we use the Millier boundary kernels (except when using SJL) to 

reduce the bias at the boundary. Despite this a considerable bias can be observed near the origin in 

these figures, for each of these estimators. This is a consequence of the high curvature of the 

target density near the origin, and the "leakage" from the kernels across the boundary at x=O. 

Figure 3e for the case C2 includes a p.d.f estimated without using boundary kernels (SJ-NBK) 

along with those from SJ and SJL. The inclusion of boundary kernels in SJ offers only a marginal 

improvement over SJ in this case, since it still suffers from a bias due to the high curvature of f(x) 

in this area. SJL, on the other hand does not suffer as much from this problem and hence, 

performs better. 

5. For data sets with a heavy concentration of data near the origin, a log transformation is an 

attractive choice. We see from Figure 3e that the SJL procedure provides a very competitive k.d.e 

in this situation. Note that SJL provides local bandwidth adaptation in real space. For the wet day 

precipitation data, that is usually modeled using an Exponential, or a Gamma distribution, this may 

be a natural transformation to consider. 

Our recommendation of SJL is motivated largely by a desire to deal with the boundary 

effect issue and local bandwidth adaptation in a natural way given the nature of the precipitation 

data. Where boundary effects are not of concern (e.g., C1) a direct application of SJ would be 

preferred. Once a modification of SJ to account for boundary effects during bandwidths estimation 

is successful, SJL need not be the method of choice even in this situation. 
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4. PERFORMANCE MEASURES AND EXPERIMENT DESIGN 

To demonstrate the utility of the NPR model for simulation of daily precipitation, the model 

was applied to daily rainfall data from the station Woodruff in Utah. Forty two years of daily 

rainfall data was available from the period 1948-1989. Woodruff is at 410 32'N latitude, Illo9'W 

longitude and at an elevation of 6320 ft. Most of the precipitation comes in the form of snow. 

Rainfall occurs mainly in Spring, with some in Fall. We can see from Table 4 that season 3 

(Summer) has the highest mean wet day precipitation and maximum wet day precipitation, while 

season 2 (Spring) has the highest percentage of yearly precipitation. Season 2 (Spring) has the 

highest average wet spell length and the longest wet spell length. For the dry spells, season 3 

(Summer) has the highest average dry spell length and the longest dry spell length. It can be 

observed from Table 4 that Seasons 2 and 3 (i.e Spring and Summer) are the active seasons and 

show marked persistence. Usually Winter and Fall are the active seasons in this region (mainly due 

to snow fall). The unusual behaviour seen at Woodruff is due to the fact that it is in the rain 

shadow region. Convective precipitation in summer seems to be the dominant mechanism. 

We shall first list some measures of performance that can help us judge the utility of the 

model, and then outline the experimental design. 

4.1 Performance measures 

The following statistics were considered to be of interest in comparing the historical record and the 

model simulated record. 

1. Probability distribution function of wet spell length, dry spell length and wet day precipitation 

in each season. 

2. Mean of wet spell length, dry spell length and wet day precipitation in each season. 

3. Standard deviation of wet spell length, dry spell length and wet day precipitation in each 

season. 

4. Length of longest wet spell and dry spell in each season 

5. Maximum wet day precipitation in each season. 

6. Percentage of yearly precipitation in each season. 

7. Fraction of wet and dry days in each season. 

4.2 Experiment design 
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Our purpose here is to test the utility of the NPR model in modeling the daily precipitation 

process. The main steps involved in accomplishing this are: 

1. Each year is divided into four seasons and the wet and dry spells for each season are 

determined from the daily precipitation data. Spells that cross seasonal boundaries are 

truncated at the season boundary and included in the appropriate seasons. We recognize 

that this could have the effect of introducing a small bias in the spell characteristics for a 

given season. Missing data are skipped, and the spell count is restarted with the next event. 

2. Probability density/mass functions are fitted for the wet day precipitation, wet spell lengths 

and dry spell lengths for each season using 'the kernel estimators recommended in 

section 2. 

3. Twenty five synthetic records of forty two years each (i.e the historical record length) are 

simulated using the NPR model . 

4. The statistics of interest are computed for each simulated record, for 

each season and compared to statistics of the historical record using boxplots. 

Comparisons with a parametric alternating renewal (PAR) model are also made. Here, 

Geometric distributions are fitted for the wet spell length and dry spell length for each season, and 

an Exponential distribution is fitted for the precipitation amount. Simulations are made from the 

fitted parametric distribution functions, following the scheme in Figure 1. Once again, twenty five 

records of forty two years are simulated. The statistics listed in section 4.1 are computed for the 

simulated record and compared with those of the historical record and those from NPR 

simulations. 

5. RESULTS 

In this section we present comparative results (using the performance measures listed in 

section 4.1) of the NPR and PAR model for the Woodruff data. The statistics of interest calculated 

from the simulations are compared with those for the historical record using boxplots. The box in 

the boxplots (e.g Figure 5) indicates the interquartile range of the statistic computed from twenty 

five simulations, the line in the middle of the box indicates the median simulated value. The solid 

lines correspond to the statistic of the historical record. The boxplots show the range of variation in 

the statistics from the simulations and also show the capability of the simulations to reproduce 

historical statistics. The plots of the pdf s and pmf's are truncated to show a common range across 

seasons and to highlight differences near the origin (mode). 

Figure 4 shows that fitted kernel densities for wet day precipitation amount are close to the 
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histogram in all the four seasons. They differ from the fitted exponential distribution, particularly 

in season 3 (Summer). These differences are manifested in the simulations. Simulations based on 

the NPR model reproduce the observed standard deviations and maximum daily precipitation well 

(Figure 5) while simulations from the parametric (Exponential distribution) model are too low in 

these statistics (Figure 6). The mean wet day precipitation and the fraction of yearly precipitation 

are comparable in both cases. 

Figure 7 shows that the wet spell length p.mJ.' s estimated by HT and the fitted geometric 

distribution are very close. In this case one could argue for using the Geometric distribution rather 

than HT. But the "loss" in using HT is small and for uniform application across sites, HT may still 

be a better choice. Figures 8 and 9 show that for the mean wet spell length, standard deviation of 

wet spell length and for the fraction of wet days per season, results between simulations from HT 

and the Geometric distribution are similar with somewhat tighter boxes for the Geometric 

distribution, as is to be expected. However the longest wet spell length simulated by the 

Geometric distribution has greater variation. The Geometric distribution and the HT behaviour is 

really quite close overall. Differences are largely accounted for by the fact that a fixed bandwidth, 

rather than a local bandwidth is used in HT, as was discussed in section 4.1. This leads to 

increased variation in the simulations for small wet spell values (near the mode) and reduced 

variance in the tails (longest wet spell lengths). We expect local bandwidths to be larger in the tails 

and smaller near the mode compared to the fixed bandwidth used now. 

Figure 10 shows that the dry spell length p.m.f.' s estimated by HT and the fitted 

Geometric distribution are generally similar with the most difference in season 3 (Summer), which 

we noted as being the most "active" with regard to dry spell length extremes. The difference 

between Geometric and HT p.m.f estimates is similar to the difference we saw in Figure 2d where 

these procedures were applied to the synthetic Geometric mixture data D2. The dry spell length 

data for season 3 (Summer) behaves as though it was from a mixed distribution. 

Observationally we know that there are dry summers with little rainfall activity and other 

summers with intermittent, stagnating precipitation systems in this area. Thus we would expect a 

mixture mechanisms generating dry spells to show up in this season. Of course if this structure is 

really present for a while season our model with independencies of sequential dry spells would not 

properly reproduce it. A more general model that considers dependence between sequential spell 

length (Lall et. al. 1993) may also be useful in such cases. 

The reader might be tempted to suggest formal tests to check for a mixture of the geometric 

distributions in this case as an alternative to the kernel density estimate. While this may be a fruitful 

activity (we did consider it), it gets harder to perform and/or justify as we consider arbitrary, finite 

component mixtures. An advantage of the kernel density estimator (HT) employed here is that it 
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readily admits such mixtures without requiring that they be hypothesized or fonnally identified. 

We feel that this provides a more direct and parsimonious representation of this sort of structure if 

present in the data. 

Figures 11 and 12 show that in tenns of summary statistics both models perfonn equally 

welL These summary statistics do not appear to be stringent discriminators between models. The 

p.m.f.'s of wet spell length, dry spell length and p.d.f.'s of the wet day precipitation of the 

historical record are well reproduced by the simulations (figures are not shown for brevity). 

6. SUMMARY AND CONCLUSIONS 

A subset of the Nonparametric wet/dry spell model described in Lall et.al (1993) was 

compared with an alternating renewal model for real precipitation data. The primary difference here 

was in the parametric versus nonparametric estimation (using kernel density estimators) of the 

p.d.f/p.m.f needed. Issues in estimating parameters for continuous and discrete kernel density 

estimators were discussed and recommended procedures were developed through examples. 

Three estimators were tested for the discrete p.m.f estimation (namely, the Hall and 

Titterington (1989) estimator (HT), Wang and Van Ryzin (1981) estimator (WV) and Maximum 

Penalized Likelihood Estimator, Simonoff (1983) (MPLE)). The HT estimator was recommended. 

Several methods for the continuous kernel estimation of p.d.f.'s in our context were also tested 

and we recommend the Sheather and Jones (1991) (SJ) procedure when there was no boundary 

and the Sheather and Jones (1991) procedure on log transfonned data (SJL) when data was 

clustered near the boundary (the case for wet day precipitation). The NPR model was implemented 

with HT and SJL procedures and compared with an alternating renewal model with Geometric and 

Exponential distributions. 

We found that where the parametric procedure was appropriate, the nonparametric 

procedure worked nearly as well. Where the parametric model was inappropriate, the 

nonparametric kernel density estimators were suitable. Given that the nonparametric procedures are 

robust and reproduce different parametric alternatives without prior assumptions, they offer a very 

general procedure for unifonn application across a variety of sites and processes. Simulations 

effectively demonstrated the ability of kernel methods to reproduce moments as well as historical 

extremes. 

Problems with kernel density estimates are high relative bias and variance in the tail of the 

density if local adaption of the bandwidth is not used. Ability to extrapolate is limited to one 

bandwidth of the maximum observed value. Where a local bandwidth is used, the local bandwidth 
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at the extreme point of observation is usually quite large and this problem is ameliorated. 

We are working on improved kernel methods for estimation of probability mass function of 

discrete variables, with p.m.f s of the type considered here. Initial results from our new univariate 

kernel density estimator are quite promising, and work on a bivariate estimator is in progress. 

Thus, the nonparametric modeling framework provides a promising alternative to 

parametric approaches. The assumption free, data adaptiveness and robust nature of the 

nonparametric estimators makes the model attractive in a broad class of situations. Our analyses 

also demonstrated the utility of the approach for judging the performance of a candidate parametric 

model with simulations from a purely data driven resampling procedure. 

A number of issues of interest to stochastic precipitation modelers were not discussed here. 

The foremost is the behaviour of the proposed model at different time scales. We view our 

developments as "operational" and relevant to the time scale of the data which was daily. Spell 

definitions are tenuous at best at finer time scales and sample sizes drop rapidly as longer time 

scales (e.g. monthly or annual) are considered. Thus while the scaling issue is of theoretical and 

practical interest, it is difficult to formally assess how such a model may fit in. It is an issue we 

expect to explore in due course. A second issue is the need to incorporate climatic or precipitation 

"types" (e.g. Bogardi et al1993, Wilson and Lattenmaier, 1993) into the daily precipitation model. 

We feel that implicit consideration of some of these factors is provided by our model by admitting 

an arbitrary mixture of generating mechanisms. Transitions between generating mechanisms are 

not explicitly modeled. However, their relative frequencies ought to be reproduced. Given limited 

data sets and the relatively large number of generating mechanisms (e.g. related to Pacific North 

American (PNA) pattern, North American Oscillation (NAO), EI-Nino etc.) this may be all that is 

reliably feasible in a number of cases. Finally, there is the question of regionalization and lor 

portability of the method. The nonparametric approach clearly enjoys broader applicability than its 

parametric competitors. On the other hand, it may be less amenable to direct regionalization as is 

sometimes done in ter:mS of the parameters of a parametric distribution. It is meaningless to talk of 

a regional bandwidth. It may be more fruitful to develop a space-time nonparametric precipitation 

model with a nonhomogenous point process structure that is inferred from the data. Preliminary 

work on such a model is in progress. 
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Table I 

Statistics (Sample size =250 for each) and methods for Figure 2 

Kernel Method of Bandwidth 

Figure Data Estimator used Selection 

2a DI (x = 4.8, s = 4.23) WV Geometric kernel MSE 

MPLE 

2b DI HT Bisquare kernel LSCV 

2c D2 ex = 3.92, s = 4.02) WV Geometric kernel MSE 

MPLE 

2d D2 HT Bisquare kernel LSCV 

Note: x is sample mean and s is sample standard deviation 
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Method 

PR-M 

Table 2 
Choices of bandwidth selection for kernel estimators 

Equation 

hopt = 3.03n-0.5 

of continuous variables 

CriterialRemarks 

Based on minimization of MISE, given Epanechnikov kernel 

and assuming underlying probability density function to be 

0.5N(-2, 1)+0.5N(2, I). 

PR-N hopt = 2.13crn-0.5 Based on minimization of MISE, given Epanechnikov 

kernel and assuming the underlying probability density 

function to be N(O,cr\ cr is the sample standard deviation. 

PR-E hopt = 1.9700-0.5 Based on minimization of MISE, given Epanechnikov 

kernel and assuming the underlying probability density 

function to be Exp(a). cr is the sample standard deviation. 

LSCV LSCV(b) =/ f' -2n-1 t, f-,(xil Based on minimizing the LSCV(h) function. 

n 

MLCV MLCV(h) = n-1I log(f_i) 
i=l 

SJ refer to equations, 3.18-3.20, 

of Lall et.al (1993) 

f_i represents the k.d.e constructed by dropping 

the ith observation. 

Based on maximizing the MLCV(h) function. 

Based on recursive estimation of MISE 

SJL Same as SJ, but applied to log transformed data 

Note: (For details on these methods, see Lall et.al (1993) section 3.5) 

PR Parametric reference 

LSCV Least squares cross validation 

MLCV Maximum likelihood cross validation 

SJ Sheather and Jones (1991) procedure 

SJL Sheather and Jones (1991) procedure applied to log transformed data 

MISE Mean integrated squared error 
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Data 

Table 3 
Statistics (Sample size =250 for each) and methods for Figure 3 

Method 

(corresponding to Appendix 2) 

Global 

Bandwidth 

C1 (x = 0.00, s = 2.26) PR-M 1.00 

PR-N 1.76 

LSCV 0.48 

MLCV 0.53 

SJ 1.03 

C2 (x = 0.16, s = 0.18) PR-E 0.11 

Note: 
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LSCV 

MLCV 

SJ 

SJL 

x is sample mean and s is sample standard deviation 

The SJL estimator is, (Equation 2) 

f (p):.if _1 K(ln(p) -In(Pi)) with Epanechnikov kernel 
n n 1 hp h 

The Parametric reference, LSCV, MLCV and SJ all use, 
n 

0.015 

0.02 

0.04 

0.77 (in log space) 

fn(p) = L 1
h

_ K(xh-~j) with Epanechnikov kernel and MUller boundary kernels. 
i=l nIl 

Local bandwidths hi are given by, hi = h(f(Pi)/gt 112, where h is global bandwidth, 

flPi) is the kernel density estimate at Pi using the global bandwidth h and g is the geometric 

mean of !(Pi). These estimators only differ in the procedure used to obtain global 

bandwidth. 
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Table 4 
Statistics from the historical precipitation record at 

Woodruff, UT, 1948-1989 

Statistic Season 1 Season 2 Season 3 Season 4 

(Jan - Mar) (Apr - Jun) (Jul- Sep) (Oct - Dec) 

A vg. wet spell length 1.39 days 1.90 days 1.59 days 1.55 days 

Std. dey. of wet spell length 0.81 days 1.36 days 1.06 days 0.90 days 

Fraction of wet days 0.25 0.28 0.23 0.24 

Longest wet spell length 6 days 10 days 8 days 7 days 

A vg. dry spell length 4.12 days 4.82 days 5.45 days 5.08 days 

Std. dey. of dry spell length 3.91 days 4.46 days 5.58 days 4.88 days 

Fraction of dry days 0.75 0.72 0.77 0.76 

Longest dry spell length 26 days 25 days 39 days 38 days 

A vg. wet day precip. 0.09 in. 0.13 in. 0.15 in. 0.12 in. 

Std. dey. of wet day precip. 0.10 in. 0.16 in. 0.21 in. 0.15 in. 

Fraction of yearly precip. 0.19 0.31 0.27 0.23 

Max. wet day precip. 0.87 in. 1.43 in. 1.65 in. 1.11 in. 
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Appendix 1 
Discrete Density Estimators 

1. Wang and Van Ryzin (1981) estimator (WV) 

A kernel estimator for p.m.f. of discrete variable x, (here the length of wet or dry spell with 

n sample values Xi) as given by Wang and Van Ryzin (1981) is: 

(AI) 

h is the bandwidth and K(.) is the geometric kernel given as: 

hE [0,1] 

= (I-h) if x = Xi (A2) 

The bandwidth h can be a constant parameter, in which case it is called a global bandwidth, or it 

can vary locally from point to point, denoted h(xi). 

Wang and Van Ryzin (1981) derived optimal global and local bandwidths to minimize the 

MSE (Mean Square Error = E[(f(x)-fn(x))2n. They estimate the local bandwidths h(xi) by 

minimizing the approximate MSE of fn(xi), by truncating the geometric kernel at xi±2. The 

resulting expressions are in terms of the unknown true probabilities f(xi). They show that 

substitution of the relative frequencies of Xi, estimated from the sample as q (ri = njln) in the 

expressions leads to a strongly consistent procedure. An optimal global bandwidth is obtained by 

minimizing the average MSE (i.e., lInLiMSE(xi)) over the data. Expressions for the optimal 

global and local bandwidths are given below. 

Global bandwidth 

Local bandwidth 

where, 
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·1 
h = ~1 {3/2 + BI - B2 + (n-l)~lO} 
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n 

~l =1 -~ rr+rBh 
I 

n 

n n 

Bl = L ri(ri-l + ri+l), B2 = L ri(ri-2 + ri-2) 
ii' 

blO = ~ rt - Bl + }Bo 
I 

Gi = rj(ri_2 + rj+2), Fi::: rj(ri-l + ri+d, Ei = (ri-l + ri+J), di = ri(1 - ri) + rFj, 

2 n 
ei = (ri - iEi) , Bo= ~ (ri-l + ri+lP 

I 

Note that for small values of h, the estimator is close to the naive maximum likelihood 

estimator (MLE) (i.e Pi), and for Pi small, h is larger? leading to a higher smoothing, or larger 

"smearing" of the relative frequencies. An improved extrapolation in the tail of the density results 

through the use of the local bandwidths. 

2. Maximum Penalized Likelihood Estimator (MPLE) 

The MPLE was first introduced by Good and Gaskins (1971) for continuous variables, and 

was later extended to the density estimation for discrete variables by Simonoff (1983). Simonoff 

(1983) proposes a solution for the "category" probabilities ~ that maximizes a penalty function 

given by, 

L = Log likelihood - roughness penalty (A5) 

The idea is to balance the goodness-of-fit of the estimate (i.e., likelihood) with its 

smoothness (i.e., roughness penalty). The smoothest estimate is obtained if all cell probabilities are 

equal over the range of cells considered. With this in mind, the penalized likelihood function is 

defined as: 

Xmax Xmax 

L = L ni log(~) - ~ L {log(~/Cl)}2 
i=l 

Xmax 

where L ~ =1, 
i=l 

i=l 

~ ;;;:: 0, is a smoothing parameter, and xmax is the longest spell length considered. 

Page 21 Tue. Nov 30, .1993 

(A6) 

(A7) 



The smoothing parameter ~ controls the relative weight assigned to smoothness and 

consequently has the same role as the bandwidth used in kernel estimation. Here a data dependent 

~ is used through the following procedure which minimizes asymptotic mean square error. 

1. An initial ~ is chosen as O.009N(xmax)O.6(log(xmax))0.4), where N is the sample size. 

2. Given this~, the penalized likelihood (equation A6) is maximized with respect to~, i = 
1, .. ,xmax using the method of Lagrange multipliers. 

3. An optimal ~ is now estimated by minimizing an asymptotic MSE, defined as an 
XI!1liX 

asymptotic approximation to ~ ( ~ - Xi)2. Simonoff (1983) develops this asymptotic 
i=l 

MSE expression in terms of the sample relative frequencies ri (ri = ni/n), ~ and the 
"'-

unknown probability Xi. For Xi he uses the estimates fi from step 2. 

4. Steps 2 and 3 are repeated till convergence is achieved. 

S imonoff (1983) argues that although a formal proof of the convergence of this procedure 

is not available, extensive computations have indicated that the scheme does converge. The need to 

specify xmax (in excess of the longest observed spell) detracts from the use of this method. We 

would prefer a natural extension of the tail of the p.m.f. by the method used, rather than a prior 

specification of its extent. 
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Figure Captions 

Figure I: Structure of the renewal model used for daily precipitation. 

Figure 2a: Plot of p.m.f s estimated from WV (h = 0.43), MPLE (~=30.25), the true underlying 

p.m.f and observed proportions, for the data set Dl. 

Figure 2b: Plot of p.m.fs estimated from HT (h=7), GP (p=0.1956), the true underlying p.m.f 

and observed proportions, for the data set D 1. 

Figure 2c: Plot of p.m.f s estimated from WV (h=0.08), MPLE (~=28.25), the true underlying 

p.m.f and observed proportions, for the data set D2. 

Figure 2d: Plot of p.m.fs estimated from HT (h=3), GP (p=0.2554), the true underlying p.mJ 

and observed proportions, for the data set D2. 

Figure 2e: Plot showing the effect of outliers on fitted Geometric distribution (GP), and HT 

estimate. Outliers at 45,50,75,100 in the data set Dl. 

Figure 3a: Plot of p.d.f's estimated from PR-M (h=I), PR-N (h=1.76), SJ (h=1.03), the true 

underlying p.d.f, observed data and histogram of observed data, for the data set Cl. 

Figure 3b: Plot of p.d.fs estimated from LSCV (h=0.48), MLCV (h=0.53), the true underlying 

p.d.f, observed data and histogram of observed data, for the data set C2. 

Figure 3c: Plot of p.d.fs estimated from PR-E (h=O.II), SJ (h=0.04), SJL (h=0.77), the true 

underlying p.d.f, observed data .and histogram of observed data, for the data set C2. 

Figure 3d: Plot of p.d.fs estimated from LSCV (h=0.015), MLCV (h=0.02), the true underlying 

p.d.f, observed data and histogram of observed data, for the data set C2. 

Figure 3e: Plot of p.d.f's estimated from SJ, SJL, and SJ-NBK (Band width chosen from SJ 

procedure but boundary kernels are not used). Along with true underlying p.d.f, observed data 

and histogram of observed data, for the data set C2. 

Figure 4: Plots of p.d.fs of wet day precipitation for the four seasons at Woodruff, UT, estimated 

using SJL procedure, the fitted Exponential distribution and histogram of the observed data. 

Figure 5: Boxplots of mean, standard deviation, fraction of yearly precipitation and maximum 

precipitation of wet day precipitation in each season, for simulations made from the NPR model 

along with the historical values. 

Figure 6: Boxplots of mean, standard deviation, fraction of yearly precipitation and maximum 

precipitation of wet day precipitation in each season, for simulations made from the Alternating 

Renewal Model (i.e using fitted Exponential distribution). 

Figure 7: Plots of p.m.fs of wet spell length for the four seasons at Woodruff, UT, estimated 

using HT estimator. Along with the fitted Geometric distribution and observed proportions. 

Figure 8: Boxplots of mean, standard deviation, fraction of wet days and longest wet spell length 
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in each season, for simulations made from the NPR model along with the historical values. 

Figure 9: Boxplots of mean, standard deviation, fraction of wet days and longest wet spell length 

in each season, for simulations made from the Alternating Renewal Model (i.e using fitted 

Geometric distribution). 

Figure 10: Plots of p.m.f's of dry spell length for the four seasons at Woodruff, UT, estimated 

using HT estimator. Along with the fitted Geometric distribution and observed proportions. 

Figure 11: Boxplots of mean, standard deviation, fraction of dry days and longest dry spell length 

in each season, for simulations made from the NPR model along with the historical values. 

Figure 12: Boxplots of mean, standard deviation, fraction of dry days and longest dry spell length 

in each season, for simulations made from the Alternating Renewal Model (i.e using fitted 

Geometric distribution). 
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