Utah State University DigitalCommons@USU

Reports

Utah Water Research Laboratory

1-1-1979

Pre-Impoundment Water Quality Study for the Mancos Project

Larry Baker

V. Dean Adams

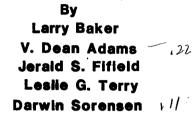
Leslie G. Terry

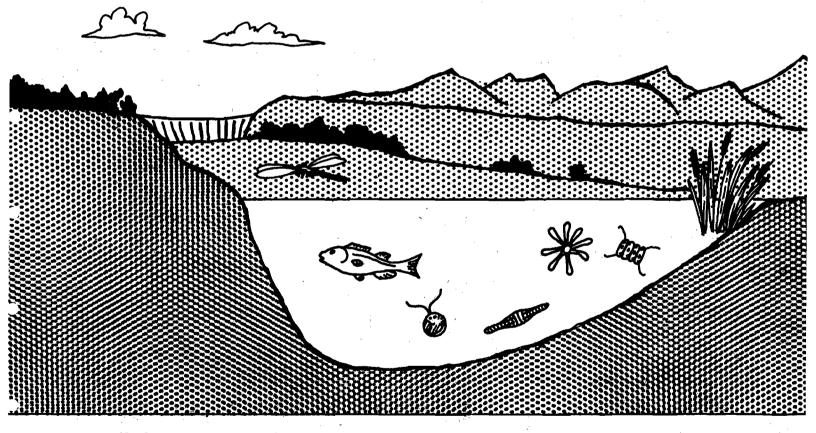
Jerald S. Fifield

Darwin L. Sorensen

Follow this and additional works at: https://digitalcommons.usu.edu/water_rep

Part of the Civil and Environmental Engineering Commons, and the Water Resource Management Commons


Recommended Citation


Baker, Larry; Adams, V. Dean; Terry, Leslie G.; Fifield, Jerald S.; and Sorensen, Darwin L., "Pre-Impoundment Water Quality Study for the Mancos Project" (1979). Reports. Paper 617. https://digitalcommons.usu.edu/water_rep/617

This Report is brought to you for free and open access by the Utah Water Research Laboratory at DigitalCommons@USU. It has been accepted for inclusion in Reports by an authorized administrator of DigitalCommons@USU. For more information, please contact digitalcommons@usu.edu.

PRE-IMPOUNDMENT WATER QUALITY STUDY FOR THE MANCOS PROJECT

Utah Water Research Laboratory College of Engineering Utah State University Logan, Utah 84321

June 1979

999.65

PRE-IMPOUNDMENT WATER QUALITY STUDY FOR THE

MANCOS PROJECT

by

Larry Baker V. Dean Adams Jerald S. Fifield Leslie G. Terry Darwin Sorensen

This report was completed for the United States Bureau of Reclamation as a part of Contract No. 7-07-40-S0329 (Chemical and Biological Analysis of Colorado Water Samples).

> Utah Water Research Laboratory College of Engineering Utah State University Logan, Utah 84321

> > June 1979

Acknowledgements

The authors of this report express gratitude to the personnel of the Utah Water Research Laboratory who participated in the chemical analysis and data compliation, including Alberta Seierstad, John Manwaring, Art Hirsch and Tom Peters. We also appreciated the technical advice of Don Porcella throughout this study.

We would also like to thank Joe Gardner and Art Rivers, Annette Brunson, Leslie Johnson, Barbara South, Michelle Kruschke, Betty Hansen, Kathy Bayn and Marianne Nelson for their help in preparing this report.

Table of Contents

Introduction .	•	•	•	٠	•	•	٠	•	•	•	•	•	•	•	• .	•	•	•	1
Methods	•	•	•	•	•	•	•	. •	•	•	•	•	•	•	•	•	•	•	2
Results	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	9
Discussion .	•	•	•	•	•	•	•	•	•	•	•		•	٠	•	•	•	•	15
Appendices .	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	18
Appendix A	-	Prop	ose	ed	Co1	ora	do	Wat	er	Qua	lit	y S	tan	dar	ds	•	•		18
Appendix B	-	Raw	Wat	ter	Qua	ali	ty	Dat	a	•	•	•	•	•	•	•	•	•	32
Appendix C	-	Stat	ist	tic	al /	Ana	lys	es	of	Wat	er	Qua	lit	y D	ata	•	•	•	35
Appendix D Proposed C		-								-									-
Bibliography .							5												

Introduction

The U.S. Bureau of Reclamation is currently in the process of evaluating a number of water development projects in Southwest Colorado. As a part of the planning process the Bureau has conducted a water quality investigation, in cooperation with the UWRL, of the stream segments that will be affected by each project. The data collected in this study were used to evaluate the water quality of each stream segment with respect to various beneficial uses of water (agriculture, raw municipal water supply, protection of the aquatic biota) and will provide a baseline by which to assess the impact of each project. In addition, these data will be used in the process of site location, design and operation planning for reservoirs and other project features.

This report includes only the results of the water quality study of the Mancos River, associated with the Mancos Project.¹ Water quality data were collected during the period from May, 1977, through August, 1978. One sample was collected and analyzed during each month except during June, 1977, in which two samples were collected from some sites. The concentration of 49 water quality constituents was determined for each sample at the UWRL.

¹Other projects included in this study are: the Dolores Project, the Animas La Plata Project, the Dominguez Project, the West Divide Project, the McElmo Creek Project and the San Miguel Project. The results of the water quality study for each project are contained in individual reports.

Methods

Bottles to be used for sample collection were prepared at the UWRL and sent to Colorado for sample collection via Greyhound bus. Three sample bottles were used for each station. Water to be analyzed for nonmetallic constituents (plus calcium and magnesium) were collected in half gallon Nalgene bottles. Two 500 ml polyethylene bottles were used for the collection of samples to be analyzed for metals. One of these was reserved for the analyses of "total" metals and the other reserved for the analyses of "dissolved" metals. All sample bottles were prepared prior to shipment using a rinse with dilute HCl followed by three rinses with high quality distilled water. Prior to shipment, 1.5 ml of 50 percent HNO₃ was added to each sample bottle reserved for the analyses of "total" metals.

In Colorado the staff of the USBR or of the consulting firm cf A and S Consultants, Inc. collected samples from each water quality station. Samples were packed in ice for the return trip to the UWRL and shipped via Greyhound bus. Samples usually arrived in Logan the following afternoon and analyses were begun immediately. Occasionally, samples were held in transit longer due to inclement weather.

Upon receipt at the UWRL a portion of the sample reserved for the analyses of non-metallic constituents and the entire sample reserved for the analyses of dissolved metals was filtered through a 0.45 μ "Millipore" filter. Where necessary samples were filtered through a GF/C glass fiber filter prior to filtration through the Millipore filter. Aliquots to be

used for the analyses of total Kjeldahl nitrogen, dissolved metals, cyanide and NO_3/NO_2 were preserved as outlined in Table 2.

3

Immediately following sample coding and pre-treatment (filtration and/or preservation), analyses were performed for total phosphorus, orthophosphate, alkalinity, cyanide, nitrate and nitrite. On some occasions the analyses of nitrate/nitrite and cyanide were postponed until the following day. When this was necessary the samples for NO_3/NO_2 and cyanide were preserved.

The analyses of calcium, total hardness, sulfate, chloride, total dissolved solids, total Kjeldahl nitrogen, hexavalent chromium and fluoride were completed within seven days using the methods listed in Table 1.

The data obtained for each water quality station during this study was subjected to statistical analysis to determine the means, maximum, minimum, range, standard deviation and coefficient of variation for each constituent. In addition the water quality data for each station was compared to the proposed Colorado Water Quality Standards for agricultural use, raw water supply and the protection of the aquatic biota (Appendix A). This analysis was based on the number of times in which the concentration of a constituent exceeded the proposed standard for that constituent with respect to the number of times a detectable concentration of the constituent was analyzed (Appendix D). In Tables 6 and 7 the comparison is made on the basis of the total number of samples analyzed since for most constituents if the concentration is below the detection limit of analyses it is below the proposed standards. For some metals (cadmium, mercury, silver, copper and zinc) the proposed standards for the protection of the

Analysis	Units/Sensitivity	Method
Non Metallic Constituents	.	
Total hardness	1 mg/1 as CaCO ₃	EDTA Titrimetric. S.M. p. 202
рН		pH electrode. S.M. p. 460
Total alkalinity	1 mg/1 as CaCO ₃	Potentiometric. S.M. p. 278
Carbonate hardness	1 mg/1 as CaCO ₃	Calculated from CaCO ₃
Bicarbonate hardness	l mg/l as CaCO ₃	Calculated from CaCO ₃
Total dissolved solids	1 mg/1	Gravimetric. S.M. p. 82
Chloride, dissolved	mg/1, 2 place	Titrimetric (HgNO ₃) <i>S.M.</i> p. 304
Sulfate, dissolved	mg/1, 2 place	Turbidimetric (BaCl ₂) <i>S.M.</i> p. 496
Fluoride, dissolved	mg/1, 2 place	Ion selective electrode S.M. p. 391
Cyanide, total	mg/1, 2 place	Ion selective electrode <i>S.M.</i> p. 372
Phosphorus, total	mg/1, 2 place	Persulfate digestion S.M. p. 466
Phosphate, ortho	mg/1, 2 place	Ascorbic acid S.M. p. 481
Nitrogen, total organic	mg/l, 2 place	Kjeldahl. <i>S.M.</i> p. 437
Nitrate	mg/1, 2 place	Cadmium reduction (automated) S.M. p. 620
Metallic Constituents		
Aluminum, total; dissolved	μg/l, 3 place	Atomic absorption (AA) S.M. p. 152
Arsenic, total; dissolved	µg/1, 3 place	Atomic Absorption (Vapor generation) S.M. p. 159

Table 1. Analytical methods used in water quality survey.¹

?

. .

•

×.

Table 1. Continued.

.

Analysis	Units/Sensitivity	Method
Barium, dissolved	µg/1, 2 place	Atomic absorption S.M. p. 152
Boron, dissolved	mg/1, 2 place	Carmine. <i>S.M.</i> p. 290
Calcium	mg/1, 2 place	Titrimetric (EDTA) S.M. p. 189
Cadmium, total; dissolved	µg/1, 3 place	Atomic absorption (Flameless) EPA p. 78
Chromium, dissolved ²	µg/l, 3 place	Atomic absorption (Flameless) EPA p. 78
Chromium, hexavalent	µg/l, 3 place	Colorimetric, S.M. p. 192
Copper, total; dissolved	µg/l, 3 place	Atomic absorption S.M. p. 148
Iron, total; dissolved	$\mu g/1$, 3 place	Atomic absorption S.M. p. 148
Lead, total; dissolved	ug/1, 3 place	Atomic absorption (Flameless) EPA p. 78
Magnesium, dissolved	mg/l, 2 place	Calculated from calcium and total hardness
Manganese, total; dissolved	$\mu g/l$, 3 place	Atomic absorption S.M. p. 148
Mercury, total; dissolved	µg/l, 3 place	Atomic absorption (Cold vapor) S.M.p. 56
Molybdenum, total; dissolved	µg/l, 3 place	Atomic absorption (Flameless) EPA p. 78
Nickel, total; dissolved	µg/l, 3 place	Atomic absorption (Flameless) EPA p. 78
Potassium, dissolved	mg/l, 2 place	Flame photometric, <i>S.M.</i> p. 234
Selenium, total; dissolved	µg/1, 2 place	Atomic absorption (Vapor generation) <i>S.M.</i> p. 159
Silver, total; dissolved	µg/1, 3 place	Atomic absorption (Flameless) EPA p. 78

Table 1. Continued.

Analysis	Units/Sensitivity	Method		
Sodium, dissolved	mg/1, 2 place	Flame photometric, <i>S.M.</i> p. 250		
Zinc, total; dissolved	$\mu g/1$, 3 place	Atomic absorption, <i>S.M.</i> p. 148		

¹Sources of analytical methods:

- S.M. = Standard Methods for Examination of Water and Wastewater. 14th Ed. (1975). APHA.
- EPA = USEPA (1976a). Methods for Chemical Analysis of Water and Wastes.

²These analysis were not included in original contract. Analysis of these constituents began in January, 1978.

Constitutent	Preservative	Storage
Metals ¹	3 ml 50% "mercury free" HNO ₃ /l	Several months (refrigerated)
TKN	0.8 ml conc. $H_2SO_4/1$	Max. of 7 days in dark amber glass bottle (refrigerated)
^{NO} 3 ^{-NO} 2	l drop chloroform per 12 ml vials	Max. of 2 days in stoppered vials (refrigerated)
CN	pH adjusted to 12 with ionic strength adjuster	Up to 24 hours (refrigerated)

Table 2. Methods of storage and preservation of samples used in the water quality survey.

 $^{\rm l}{\rm Sample}$ bottles (500 ml) for "total metals" contained 1.5 ml ${\rm HNO}_3$ when shipped to field.

aquatic biota are below the detection limits of analyses. Since there may have been instances in which the concentration of one of these metals was less than the detection limit of analysis but still greater than the proposed standard for the protection of the aquatic biota, the comparisons for these metals with the proposed standards in Tables 6 and 7 are enclosed in parenthesis.

Results

The water quality data obtained during this study are presented in Appendix B. Statistical analyses of these data, including the mean, standard deviation and coefficient of variance for each parameter are presented in Appendix C.

This water quality study included 17 sampling periods (one each month, except for June, 1977, in which two samples were collected from some sites). No samples for the Mancos River were received during June, July or August, 1977, and August, 1978. In addition, 16 analyses were omitted because a sample bottle was cracked in transit during the December, 1977, sampling round. Finally, 8 analyses were omitted at the UWRL.

In order to check the reliability of these analyses, an ion balance was computed for each sample analyzed. The error in each ion balance was computed as follows:

$$\% \text{ error} = \frac{\left|\Sigma M^{+n} - \Sigma M^{-n}\right|}{\Sigma M^{+n} - \Sigma M^{-n}} \ge 100 \tag{1}$$

The ion balance calculations for each sampling period are presented in Table 4. The frequency distribution of errors in the ion balances was calculated for each water quality station (Table 5 and Figure 1). The error in the ion balances for this station was less than 10 percent during 50 percent of the sampling periods in which all the analyses required for the ion balance calculations were completed. For three samples the ion balances were over 20 percent. For two of the samples (3/21/78 and 5/18/78) an erratic endpoint was noted in the alkalinity titration. In addition, both of these

Sampling Round				
1	Hex. chromium, Boron	Analysis omitted		
2-5	All	No samples sent		
7	A11	No samples sent		
8	Hex. chromium	Analysis omitted		
9	All non-metallic constituents, plus calcium and hex. chormium	Sample bottle broke in transit		
12	Dissolved nickel	Analysis omitted		
15	Selenium (total; diss); Arsenic (total; diss.)	Analysis omitted		
17	A11	No samples received		

Table 3. Mancos River water quality study - missing parameter values.^a

^aWhen total hardness was not determined, magnesium concentration could not be caluclated. When alkalinity was not determined, inorganic carbon species (HCO_3^- , CO_3^-) could not be determined.

,

Table 4. Ion balance calculations for the Mancos water quality survey.

PALCOS PROJECT

STATION 161 MANCOS RIVEN

		*	*	*	*		*		*								÷.
	5/25/11	5/15	6730	7/19	8164	4/21	10/19	11/15	12/13	1/18/76	8/15	3121	4/18	5/18	6/10	7/19	0/24
C A	612.0	0.0	9.9	0.0	0.4	250.0	0.0	354.0	0.0	239.0	328.0	215.0	64.0	65.9	152.0	207.0	0.0
мG	327.0	0.0	r n	6. 1	6,6	77.0	ກູ້ຄ		0.0				21.9	1.0	21.0	43.0	0.0
NB	566.0	474.8	e a	0.0	0.0	59.0	n.u		316.0	-			34.0	9.0	30.0	151.0	n_n
ĸ	11.9	0.0	ຊູລ	0, 3	6.0	11.0	0.0		5.0		2.4	4.0	1.0	14.1	4.0	5. 0	0.0
HC03	155.0	0.0	÷ 0	រេ ព	α, σ	10.0	n_9		0.0				95.0	308.0	230.0	141.0	0.0
003	0.1	0.0	0.0	ម.ព	0,9	0.0	0.0	-	<u>^</u> _()	-			n e	0.9	6.0	0.0	0.0
¢ί	50.0	6 9	0.0	16 . 19	н . ч	8.0	0,0		ų n			24.4	10.0	-1.4	5.0	14.0	Ű.U
504	415, 0	0.0	n n	4.0	a 4	c15_0		2204.0		1045.0			-	114.0	516.0	433.0	0.0
\$105	2119.0	470.0	0.0	0.0	0.0	1290.0	6.9	3154.6	324.0	1789.9	2472.4	2217.0	361.0	511.1	444.0	1415.0	U . II
MIDS	5512.0	0.1	0.0	11.0		1435.0	•	2000.0		1095.0					710.0	1553.0	ΰ , υ
50	79.464	-	0,000	0.000	•	21.057				28,937						63.540	0.000
5.4	14.247	•	0.000	6,600		10.714				25 847						24.558	0.000
419]FF	5.1.2	•	0.000	6.000		2 443				3,439		14.441				2.534	0.600
•			•	• • • • • •											-		

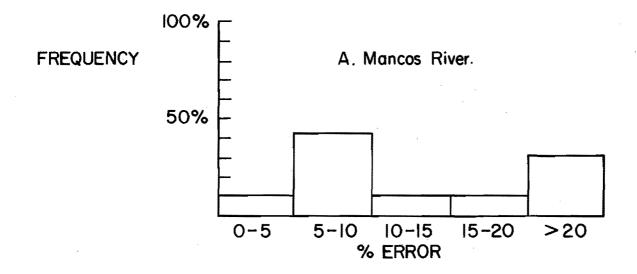

ERF(x) 69,523106,000 e.eon 0.000 7.289 0.000 6.326100.000 5.543 1.543 24.549 12.196 35.331 17.002 6.456 0.000

Table 5. Frequency distribution in the errors in the ion balances for the Mancos River.

Err(%)	Number	% of total
0 - 5	1	10
5 - 10	4	40
10 15	1	10
15 - 20	1	10
>20	3	30
Missing Data	7	
Total	17	

Station 16: Mancos River

Figure 2. Frequency distribution of errors in ion balance for the Mancos water quality study.

samples were noted as being "extremely turbid." These observations indicate that the suspended matter (probably clay) in the samples reacted as "alkalinity" and resulted in an unreasonable ion balance. Clays can absorb cations (i.e., hydrogen ions added in the alkalinity titration), so such an explanation may be reasonable. In both cases the sum of anions term was much greater than the sum of cations term, adding support to this explanation.

Discussion

The water quality of the Mancos River is extremely variable, as characterized by a range in TDS concentration from 339 mg/1 to 5,612 mg/1 (mean = 1,831 mg/1). The TDS was below 500 mg/1 only during the spring of 1978. The concentration of sulfates and total hardness was correspondingly high. Sulfate concentration ranged from 114 to 2,204 mg/1 (mean = 837 mg/1), and the total hardness ranged from 167 to 2,887 mg/1 as CaCO₃ (mean = 1,047 mg/1).

The concentration of several heavy metals exceeded the proposed Colorado Water Quality Standards for raw water supply, although none exceeded the proposed standards during more than half of the sampling periods. Specifically, the concentrations of barium, total cadmium, total chromium, total lead, total mercury and total selenium exceeded the proposed standards during one or more occasions. The concentration of these metals usually exceeded the proposed standards during March through May of 1978, reflecting the increase in suspended solids concentration usually associated with spring In addition to these metals, the concentrations of sulfate, magnesium, runoff. and dissolved manganese exceeded the proposed water supply standards throughout most of this study. The rationale for standards for these constituents is not direct toxicity but undesirable effects associated with their presence. Manganese in water supplies may cause an undesirable taste and result in the staining of sinks and laundry (EPA, 1976). Sulfate in high concentrations has a cathartic effect on some people, particularly those not accustomed to high concentrations of sulfate in their water supply (EPA, 1976). Magnesium also has a cathartic effect when present in high

Table $\underline{\ell}$. Constituents that exceede the proposed Colorado River Quality Standards in the Mancos River.⁽¹⁾

			Water	Use			
Parameter	Class Water Su		Agricul	ture	Aquatic Biota		
(All metals "total" unless specified)	$\overline{N/T}^{(2)}$	%	N/T ⁽²⁾	%	N/T ⁽²⁾	%	
Aluminum (dissolved)	·.	-			11/11	100	
Barium	2/10	20	-				
Cadmium ⁽³⁾	1/11	9	1/11	9	(2/11)	(18)	
Chromium	2/10	20	0/10	0	0/10	0	
Copper ⁽³⁾	0/11	, 0	0/11	9	(6/11)	(55)	
Iron (total)	. –	-		-	5/11	45	
Lead	1/10	10	1/10	10	1/10	10	
Magnesium	3/11	27	-		-	· -	
Manganese (dissolved)	5/11	45	_	-	-		
Manganese (total)	-	· _	4/11	36	1/11	9	
Mercury ⁽³⁾	1/11	9	-	-	(9/11)	(82)	
Nickel	-		1/11	9	2/11	18	
Selenium	1/11	9	0/11	0	0/12	0	
Silver ⁽³⁾	0/11	0	-		(2/11)	(3.8)	
Zinc ⁽³⁾	0/11	0	0/11	0	(4/11)	(36)	
Total Cyanide	0/11	0	0/11	0	6/11	55	
Sulfate	8/11	73			-	- .	

(1) Proposed Colorado Water Quality Standards in Appendix A.

 $(2)_{N/T}$ = number of samples exceeding standard compared with the number of samples analyzed.

(3) Parenthesis indicate that the proposed standard was below the detection limit of analyses.

concentrations. Finally, the Mancos River is extremely hard. This level of hardness (ave. > 1,000 mg/l as $CaCO_3$) is undesirable since very hard waters tend to cause scaling in pipes and require more soap for cleaning than do soft waters. No undesirable health effects have been associated with high total hardness, per se.

The high TDS of this river may be undesirable with respect to its use for irrigation water. Except during the spring of 1978 the TDS of the Mancos River was over 1,000 mg/1. The use of water having a TDS of 1,000 -2,000 mg/1 for irrigation may have adverse effects on many crops (NAS, 1972). The effects of using this water for irrigation would depend on the concentration of specific ions (especially sodium), the types of soils being cultivated, specific crops being irrigated and the intensity of irrigation. As noted in Table 6, the standards for several toxic metals were exceeded during this study. As noted earlier, those metals usually exceeded the proposed standards during the spring. During the irrigation season the concentrations of these metals were usually below the proposed standards.

The proposed standards for the protection of the aquatic biota were exceeded by several constituents. The standards for dissolved aluminum, total mercury, total copper, and total cyanide were exceeded during over half the sampling periods. The standards for total cadmium, total iron, total lead, total manganese, total nickel, total silver and total zinc were exceeded on one or more occasions.

APPENDIX A

Proposed Colorado Water Quality Standards

Parameter	Standard
Physical	
D.O. $(mg/l)^{1}$	Aerobic ²
рН	5.0-9.0
Suspended solids and turbidity	3
Temperature	X
TDS (mg/l)	Y
Biological	
Algae ⁴	Free of toxic and
	objectionable algae
Fecal coliforms ($\#/100 \text{ ml}$)	1,000
Inorganics	
Ammonia (mg/l as N)	0.5
Total residual chlorine (mg/l)	X
Cyanide (mg/l)	0.2
Fluoride (mg/l)	5
Nitrate (mg/l as N)	10
Nitrite (mg/l as N)	1.0
Sulfide as H_2S (mg/l)	0.05
Boron (mg/l)	X
Chloride (mg/l)	250
Magnesium (mg/l)	125
Sodium adsorbtion ratio	Х
Sulfate (mg/l)	250
Phosphorus (mg/L as P)	Bioassay ⁶
oxic Metals (mg/l)	
Aluminum	X
Arsenic	0.05
Bariu	1.0
Beryllium	X
Cadmium	0.01
Chromium	0.05
Copper	1.0
Iron	0.3 (soluble)
Lead	0.05
Manganese	0.05 (soluble)
Mercury	0.002
Molybdenum	Y
Nickel	Х

Table A-1 Proposed Colorado water quality standards: Class II water supply.

X = numerical limit generally not needed for protection of classified use.

Y = limit may be required but there is insufficient data for setting a general standard.

ι.

Table A-1 Continued.

Parameter	Standards
Toxic Metals (mg/l)	
Selenium	0.01
Silver	0.05
Thallium	X
Zinc	5.0
$\frac{\text{Organics}^7}{\ell}$ ($\frac{\mu g}{\ell}$)	
Chlorinated pesticides ^B	
Aldrin ⁹	Y
Chlordane ⁹	Y
Dieldrin ⁸	Y
DDT ⁹	Ŷ
Endrin	0.2
Heptachlor ⁹	Y
Lindane	4
Methoxychlor	Ŷ
Mirex	100
Toxaphene	5
Organophosphate pesticides ⁸	
Demeton	Y
Endosulfan	Y
Guthion	Y
Malathion	Y
Parathion	Ŷ
Chlorophenoxy Herbicides	
2, 4-D	100
2, 4, 5-TP	10
PCB's ¹⁰	Y
Phenol	1
Alpha ¹¹ , 12 Beta ¹¹ , 12	
Alpha ¹¹ , 12	15
Beta ¹¹ , ¹²	50
Cesium 134	80
Plutonium	15
Radium 226 and 228^{12} , 13 Strontium 90 ¹² , 13	5
Strontium 90 ¹² , ¹³	8
Thorium 230 and 232	60
Tritium	20,000
Uranium (total, mg/l)	5

٠.

¹Where dissolved oxygen levels less than the standard occur naturally, a discharge shall not cause a further reduction in dissolved oxygen in receiving water.

²An effluent shall be regulated to maintain aerobic conditions, and a guideline of 2.0 mg/l dissolved oxygen in an effluent should be maintained, unless demonstrated otherwise.

³Suspended solid levels will be controlled by Effluent Limitations and Basic Standards.

⁴Free from objectionable and toxic algae. It has been well established that heavy growth of some strains of blue-green algae, upon death and degradation, may release one or more substances which are toxic to humans and many other animals. Although no fixed numbers can be recommended at this time, it is clear that streams, lakes and reservoirs should not be permitted to bear heavy growth of algal blooms, nor allow these blooms to disintegrate. Every effort should be made to control algal growths to levels that are not hazardous.

⁵Fluoride limits vary from 2.4 mg/l at 12.0 C and below, to 1.4 mg/l between 26.3 C and 32.5 C, based upon the annual average of the maximum daily air temperature (see *National Interim Primary Drinking Water Regulations* for specific limitations).

- ⁶Phosphorus standards are to be determined by an algal bioassay using the method described in the latest edition of *Standard Methods for the Examination of Water and Wastewater*.
- ⁷All organics, not on this partial list, are covered under Basic Standards, Section 3.1., 1978 Colorado Water Quality Standards.
- ⁸Numerical limits in tables based on experimental evidence of toxicity. No point source discharges of organic pesticides shall be permitted to state waters.
- ⁹The persistence, bioaccumulation potential, and carcinogenicity of these organic compounds cautions human exposure to a minimum (EPA).
- ¹⁰Every reasonable effort should be made to minimize human exposure (EPA).
- ¹¹Concentrations given are maximum permissible concentrations above naturally occurring or "background" concentrations except where otherwise noted.
- ¹²If Alpha or Beta are measured in excess of 15 or 50 pCi/l respectively, it will be necessary to determine by specific analysis the particular radionuclide or radionuclides responsible for the elevated level. Particular radionuclides should not exceed the limit given in the table. If an elevated level of Alpha or Beta emissions is caused by radionuclides, the Division should be consulted.

¹³Maximum permissible concentrations including naturally occurring or background contributions.

Parameter	Cold Water Biota	Warm Water Biota
Physical		
D.O. (mg/l) ¹	6.0 7.0 (spawning) ²	5.0
рН	6.5 - 9.0	6.5 - 9.0
Suspended solids		•
and turbidity	3	3
Temperature (°C)	Maximum 20°C w/ 3° increase ⁴	Maximum 30°C w/ 3° increase ⁴
TDS (mg/l)	Y	Y
Biological		
Biological Algae ⁵	Free from objec-	Same as Cold
	tionable and toxic algae	
Fecal coliforms	X	X
norganics		
Ammonia (mg/l as N)	0.02 unionized	0.10 unionized
Total residual chlorine		
(mg/L)	0.002	0.01
Cyanide (mg/l)	0.005	0.005
Fluoride (mg/l)	x	X
Nitrate $(mg/l as N)$	x	X
Nitrite (mg/l as N)	0.05	0.5
Sulfide as H_2S (mg/l)	0.002	0.002
	undissociated	undissociated
Boron (mg/l)	X	X
Chloride (mg/l)	X	X
Magnesium (mg/l)	X	X
Sodium adsorbtion ratio	X	X
Sulfate (mg/L)	X	X
Phosphorus (mg/l as P)	Bioassay ⁶	Bioassay ⁶
$rganics^{7} \left(\frac{\mu g}{\ell}\right)$		
~ hlorinated Pesticides ⁸		
Aldrin ⁹	0.003	0.003
Chlordane	0.01	0.003
Dieldrin ⁹	0.003	0.003
DDT	0.003	0.001
Endrin	0.004	0.004
Heptachlor	0.001	0.004
Lindane	0.01	0.01
Methoxychlor	0.03	0.03
Mirex	0.001	0.001
Toxaphene	0.005	0.005

Table --- 2 Proposed Colorado water quality standards (non-metallic): Protection of Aquatic Biota.

Table A-2 Continued.

Parameter	Cold Water Biota	Warm Water Biota
Organophosphate Pesticides ⁸		
Demeton	1	1
Endosulfan	0.003	0.003
Guthion	0.01	0.01
Malathion	1	1
Parathion	0.04	0.04
Chlorophenoxy Herbicides		
2, 4-D	Y	Y
2, 4, 5-TP	Y	Y
PCB's	0.001	0.001
Phenols	1	1
Radiological ¹⁰ in (pCi/l) Alpha (excluding uranium		
and radium ¹¹)	15	15
Beta (excluding Sr ^{90 11}	50	50
Cesium 134	80	80
Plutonium 238, 239,		
and 240	15	15
Radium 226 and 228	5	5
Strantium 90 ¹²	8	8
Thorium 230 and 232	60	60
Tritium	20,000	20,000
Uranium (total) ¹³		`

X = numerical limit generally not needed for protection of classified use.

Y = limit may be required but there is insufficient data for setting a general standard.

¹Where dissolved oxygen levels less than the standard occur naturally a discharge shall not cause a further reduction in dissolved oxygen in receiving water.

 2 A 7 mg/l standard, during periods of spawning of coldwater fish, shall be set on a case by case basis as defined in the NPDES permit for those dischargers whose effluent would affect fish spawning.

³Suspended solid levels will be controlled by Effluent Limitations and Basic Standards.

- ⁴Temperature shall maintain a normal pattern of diurnal and seasonal fluctuations with no abrupt changes and shall have no increase in temperature of a magnitude, rate and duration deemed deleterious to the resident aquatic life. Generally, a maximum 3°C increase over a minimum of a 4-hour period, lasting for 12 hours maximum, is deemed acceptable for discharges fluctuating in volume or temperature. Where temperature increases cannot be maintained within this range using BMP, BATEA, and BPWITT control measures, the Division will determine whether the resulting temperature increases preclude an Aquatic Life classification.
- ⁵Free from objectionable and toxic algae. It has been well established that heavy growth of some strains of blue-green algae, upon death and degradation, may release one or more substances which are toxic to humans and many other animals. Although no fixed numbers can be recommended at this time, it is clear that streams lakes and reservoirs should not be permitted to bear heavy growth of algal blooms, nor allow these blooms to disintegrate. Every effort should be made to control algal growths to levels that are not hazardous.
- ⁶Phosphorus standards are to be determined by an algal bioassay using the method described in the latest edition of *Standard Methods for the Examination of Water and Wastewater*, American Public Health Association.
- ⁷All organics, not on this partial list, are covered under Basic Standards, Section 3.1., 1978 Colorado Water Quality Standards.
- ⁸Numerical limits in tables based on experimental evidence of toxicity. No point source discharges of organic pesticides shall be permitted to state waters.

⁹Aldrin and dieldrin in combination should not exceed 0.000003 mg/&.

- ¹⁰Concentrations given are maximum permissible concentrations above naturally occurring or "background" concentrations except where otherwise noted.
- ¹¹If Alpha or Beta are measured in excess of 15 of 50 pCi/L respectively, it will be necessary to determine by specific analysis the particular radionuclide or radionuclides responsible for the elevated level. Particular radionuclides should not exceed the limit given in the table. If an elevated level of Alpha or Beta emissions is caused by radionuclides, the Division should be consulted.
- ¹²Maximum permissible concentrations including naturally occurring or background contribution.

¹³See Uranium in Table A-3 for aquatic life limitations.

Parameter	Water Ha	rdness ¹ -	Cold and	l Warm Wat	er Biota
	0-100	100-200	200-30 0	300-400	over 400
$\frac{\text{Toxic Metals}^2}{(\text{mg/l})}$	·				
Aluminum (soluble)	0.1	0.1	0.1	0.1	0.1
Arsenic	0.05	0.05	0.05	0.05	0.05
Barium	X	X	X	X	X
Beryllium	0.01	0.3	0.6	0.9	1.1
Cadmium	0.004	0.001	0.005	0.01	0.015
Chromium	0.1	0.1	0.1	0.1	0.1
Copper	0.01	0.01	0.01	0.02	0.04
Iron	1.0	1.0	1.0	1.0	1.0
Lead ³	0.004	0.025	0.050	0.100	0.150
Manganese	1.0	1.0	1.0	1.0	1.0
Mercury	0.00005	0.00005	0.00005	0.00005	0.00005
Molybdenum	X	X	Х	X	X
Nickel	0.05	0.10	0.20	0.30	0.40
Selenium	0.05	0.05	0.05	0.05	0.05
Silver	0.00010	0.00010	0.00015	0.00020	0.00025
Thallium	0.15	0.15	0.15	0.15	0.15
Uranium	0.03	0.2	0.4	0.8	1.4
Zinc	0.05	0.05	0.10	0.30	0.60

Table A-3	Proposed Colorado water quality standards	(metallic):
	Protection of Aquatic Biota.	

X = numerical limit generally not needed for protection of classified use.

¹Concentrations of total alkalinity or other chelating agents attributable to municipal, industrial or other discharges or agriculatural practices should not alter the total alkalinity or other chelating agents of the receiving water by more than 20 percent. Where the complexing capacity of the receiving water is altered by more than 20 percent or where chelating agents are released to the receiving water which are not naturally characteristic of that water, specific effluent limitations on pertinent parameters will be established. In no case shall instream modification or alteration of total alkalinity or other chelating agents be permitted without Commission authorization.

²Bioassay procedures may be used to establish criteria or standards for a particular situation. Requirements for bioassay procedures outlined in Section 3.1.10, Colorado Water Quality Standards, May 2. 1978.

³For bioassay lead concentration is based on soluble lead measurements (i.e. non-filterable lead using a 0.45 micron filter).

Parameter	Standard
Physical	
D.O. $(mg/\ell)^{1}$	Aerobic ²
pH	x
Suspended solids and turbidity	3
Temperature	x
TDS (mg/l)	Y
Biological	
Algae ⁴	Free of toxic and
	objectionable algae
Fecal coliforms (#/100 ml)	1,000
Inorganics	
Ammonia (mg/l as N)	X
Total residual chlorine (mg/l)	x
Cyanide (mg/l)	0.2
Fluoride (mg/L)	x
Nitrate (mg/l as N)	100 ⁵
Nitrite (mg/L as N)	105
Sulfide as H S (mg/l)	x
Boron $(mg/\ell)^2$	0.75
Chloride (mg/l)	x
Magnesium (mg/l)	x
Sodium adsorbtion ratio	x
Sulfate (mg/l)	X
Phosphorus (mg/l as P)	X
Toxic Metals (mg/l)	
Aluminum	x
Arsenic	0.1
Barium	X
Beryllium	0.1
Cadmium	0.01
Chromium	0.0
Copper	0.2
Iron	X
Lead	0.1
Manganese	0.2
Mercury	X
Molybdenum	Ŷ
Nickel	0.2

Table A-4 Proposed Colorado water quality standards: Agricultural Use.

X = numerical limit generally not needed for protection of classified
 use.

Y = limit may be required but there is insufficient data for setting a general standard. Table A-4 Continued.

Parameter	Standard
Toxic Metals (mg/l)	
Selenium	0.02
Silver	X
Thallium	X
Zinc	2.0
$\frac{\text{Organics}^{6}}{\ell}$	
Chlorinated Pesticides ⁷	
Aldrin ⁸	Y
Chlordane ⁸	Ŷ
Dieldrin ⁸	Ŷ
DDT ⁸	Ŷ
Endrin	Y
Heptachlor ⁸	Y
Lindane	Y
Methoxychlor	Y
Mirex	Y
Toxaphene	Ŷ
Organophosphate Pesticides ⁷	
Demeton	Y
Endosulfan	Y
Guthion	Y .
Malathion	Y
Parathion	Y
Chlorophenoxy Herbicides	_
2, 4-D	Y
2, 4, 5-TP	Y
<u>PCB's</u>	Y
Phenol	Y
Radiological ¹⁰ (pCi/L)	
Alpha ¹¹ , ¹²	15
Beta ¹¹ , ¹²	50
Cesium	80
Plutonium	15
Radium 226, and 228 ¹²	5
Strontium 90 ¹²	8
Thorium 230 and 232	60
Tritium	20,000
Uranium (total, mg/l)	5

- ¹Where dissolved oxygen levels, less than the standard, occur naturally, a discharge shall not cause a further reduction in dissolved oxygen in receiving water.
- ²An effluent shall be regulated to maintain aerobic conditions, and a guideline of 2.0 mg/& dissolved oxygen in an effluent should be maintained, unless demonstrated otherwise.
- ³Suspended solid levels will be controlled by Effluent Limitations and Basic Standards.
- ⁴Free from objectionable and toxic algae. It has been well established that heavy growth of some strains of blut-green algae, upon death and degradation, may release one or more substances which are toxic to humans and many other animals. Although no fixed numbers can be recommended at this time, it is clear that streams, lakes and reservoirs should not be permitted to bear heavy growth of algal blooms, or allow these blooms to disintegrate. Every effort should be made to control algal growths to levels that are not hazardous.
- ⁵ In order to provide a reasonable margin of safety to allow for unusual situations such as extremely high water ingestion or nitrite formation in slurries, the NO_3-N plus NO_2-N content in drinking waters for livestock and poultry should be limited to 100 ppm or less, and the NO_2-N content alone be limited to 10 ppm or less.
- ⁶All organics, not on this partial list, are covered under Basic Standards, Section 3.1., 1978 Colorado Water Quality Standards.
- ⁷Numerical limits in tables based on experimental evidence of toxicity. No point source discharges of organic pesticides shall be permitted to state waters.
- ⁸The persistence, bioaccumulation potential, and carcinogenicity of these organic compounds cautions human exposeure to a minimum (EPA).
- ⁹Every reasonable effort should be made to minimize human exposure (EPA).
- ¹⁰Concentrations given are maximum permissible concentrations above naturally occurring or "background" concentrations except where otherwise noted.
- ¹¹If Alpha or Beta are measured in excess of 15 or 50 pCi/l respectively, it will be necessary to determine by specific analysis the particular radionuclide or radionuclides responsible for the elevated level. Particular radionuclides should not exceed the limit given in the table. If an elevated level of Alpha or Beta emissions is caused by radionuclides, the Division should be consulted.
- ¹²Maximum permissible concentrations including naturally occurring or background contributions.

	Standard					
Parameter	Class I	Class II				
	(Primary Contact)	(Secondary Contact)				
Physical						
$\frac{Physical}{D.0.^{1}} \left(\frac{mg}{\ell} D.0.\right)$	Aerobic ²	Aerobic ²				
pH	6.5-9.0	X				
Suspended solids and	0.9 900					
turbidity	X	Х				
Temperature	X	x				
TDS (mg/l)	X	X				
Biological	Frank of chineston	Process of chinetatory				
Algae ⁴	Free of objection-	Free of objection				
	able and toxic	able and toxic				
	algae	algae				
Fecal coliforms		1 000				
(#/100 ml)	200	1,000				
Inorganics mo		<u>``</u>				
Ammonia $\begin{pmatrix} mg \\ \mu \end{pmatrix}$ as N)	X	X				
Chloride (mg/L)	X	x				
Cyanide (mg/l)	x	X				
Fluoride (mg/L)	х	x				
NO_3 (mg/l as N)	х	X				
NO_2 (mg/l as N)	х	х				
Sulfide as H_2S (mg/ ℓ)	x	x				
Boron $(mg/l)^2$	x	X				
Chloride (mg/l)	X	x				
Magnesium (mg/l)	x	X				
SAR	x	x				
Sulfate (mg/l)	X	X				
Phosphorus (mg/l as P)		Bioassay ⁵				
ovia Notala (ma/8)						
oxic Metals (mg/l) Aluminum	X	v				
Arsenic	X	X X				
Barium	X	X´				
Beryllium	X	X				
Cadmium	X	X				
Chromium	X	X				
Copper	X	X				
Iron		X				
Lead	X	X				
Manganese	X	X				
Mercury	X	X				
Molybdenum	X	x				
Nickel	X X	x				
AN A A DEC A	*					

Table 1-5 Proposed Colorado water quality standards: Recreational Use.

٠.

Table A-5 Continued.

,

	Standard						
Parameter	Class I (Primary Contact)	Class II (Secondary Contact)					
Toxic Metals (mg/l)							
Silver	Х	x					
Thallium	Х	X					
Uranium	X	Х					
Zinc	X	X					
Organics ⁶							
Chlorinated Pesticides ⁷							
Aldrin ⁸	Y	Y					
Chlordane	Y	Y					
Dieldrin ⁸	Y	Y					
DDT ⁸	Y	Y					
Endrin	Y	Y					
Heptachlor ⁸	Y	Y					
Lindane	Y	Y					
Methoxychlor	Y	Y					
Mirex	Y	· .Y					
Toxaphene	Y	Y					
Organophosphate Pesticides ⁷							
Demeton	Y	Y					
Endosulfan	Y	Y					
Guthion	Y	Y					
Malathion	Y	Y					
Parathion	Y	Y					
Chlorophynoxy Herbicides							
2, 4-D	Y	Y					
2, 4, 5-TP	Y	Y					
PCB's	Y	Y					
Phenol	Y	Y					
Radiological							
Alpha	X	x					
Beta	X	x					
Cesium 134	X	X					
Plutonium 238, 239, and 2		X					
Radium 226 and 228	X	x					
Strantium	x	x					
Thorium 230 and 232	X	x					
Tritium	X	X					
Uranium (total)	X	x					

•

. .

.

- X = numerical limit generally not needed for protection of classified use.
- Y = limit may be required but there is insufficient data for setting a general standard.
- ¹Where dissolved oxygen levels, less than the standard, occur naturally, a discharge shall not cause a further reduction in dissolved oxygen in receiving water.
- ²An effluent shall be regulated to maintain aerobic conditions, and a guideline of 2.0 mg/L dissolved oxygen in an effluent should be maintained, unless demonstrated otherwise.
- ³Suspsended solid levels will be controlled by Effluent Limitations and Basic Standards.
- ⁴Free from objectionable and toxic algae. It has been well established that heavy growth of some strains of blue-green algae, upon death and degradation, may release one or more substances which are toxic to humans and many other animals. Although no fixed numbers can be recommended at this time, it is clear that streams, lakes and reservoirs should not be permitted to bear heavy growth of algal blooms, nor allow these blooms to disintegrate. Every effort should be made to control algal growths to levels that are not hazardous.
- ⁵Phosphorus standards are to be determined by an algal bioassay using the method described in the latest edition of *Standard Methods for the Examination of Water and Wastewater*, American Public Health Association.
- ⁶All organics, not on this partial list, are covered under Basic Standards, Section 3.1., 1978 Colorado Water Quality Standards.
- ⁷Numerical limits in tables based on experimental evidence of toxicity. No point source discharge of organic pesticides shall be permitted to state waters.
- ⁸The persistence, bioaccumulation potential, and carcinogenicity of these organic compounds cautions human exposure to a minimum (EPA).
- ⁹Every reasonable effort should be made to minimize human exposure (EPA).

APPENDIX B

Raw Water Quality Data

Table B-1. Water quality parameter codes.

A. METALLIC CONSTITUENTS (µg/1 unless noted) 101. Aluminium, Dissolved 102. Aluminium, Total 103. Barium, Dissolved 104. Barium, Total 105. Cadmium, Dissolved Cadmium, Total 106. 107. Calcium (mg/l) 108. Chromium, Hexavalent 109. Chromium, Total 110. Copper, Dissolved 111. Copper, Total 112. Hardness, Total 113. Iron, Dissolved 114. Iron, Total Lead, Dissolved 115. Lead, Total 116. 117. Magnesium (mg/1) 118. Manganese, Dissolved 119. Manganese, Total 120. Mercury, Dissolved 121. Mercury, Total 122. Molybdenum, Dissolved 123. Molybdenum, Total 124. Nickel, Dissolved 125. Nickel, Total 126. Potassium (mg/1) Selenium, Dissolved 127. 128. Selenium, Total 129. Silver, Dissolved Silver, Total 130. Sodium (mg/1) 131. 132. Zinc, Dissolved Zinc, Total 133.

B. NO	N-METALLIC CONSTITUENTS
	(mg/1 unless noted)
201.	Alkalinity, Total
202.	Arsenic, Dissolved (µg/1)
203.	Arsenic, Total (µg/l)
204.	Bicarbonate Hardness
205.	Boron
206.	Carbonate Hardness
207.	Chloride
208.	Cyanide
209.	Fluoride
210.	Nitrogen, Nitrate
211.	Nitrogen, Nitrite
212.	Nitrogen, Total Organic
213.	Phosphorus, Ortho
214.	Phosphorus, Total
215.	Sulfate
017	m, 1 m, 1 1 1 1 1 1

216. Total Dissolved Solids

Table B-2. Water quality data for the Mancos project.

MANCHS PRUJECT

STATION 16: MANCOS RIVER

COLE	5/25/77	6/16	6/30	7719	6/24	9/21	11/19	11/15	12/13	1/10/78	2/15	3121	4718	5/15	5/15	7/14	6/24
101	1527					720.		429.	275.	410.	401.	212.	214.	105	1640.	<i>د</i> به.	
102	1527.					1000		642.	275.	5466.		159475		79300	3010.	502	
103								142.	150.	-100.	125.	207	179.	-160	-100	-100.	
104								201.	150	. 556.	317.	27:11	750.	1526.	533.	104	
105	-3.					5.		۹.	н.	-3.	- 3 .	- 5 .	- 3.	۶.	-3,		
106	-3.					ø.		٧.	4	7.	- 5.		21.	7.	5.	4	
107	612.					251.		354.		239.	320	21F	64.	e5.	152.	207.	
105						-1.				-1.	-1	-1.	3.	ù.	5.	-1.	
149			-							-50	-20	96.	53.	24.	-29	-20.	
110	÷1υ.					-10,		-1ñ.	-1 C.	-19.	70.	-10.	-10.	-10,	-10	22.	
111	10.					36.		138.	-10.	44.	70.	297.	54.	164.	56.	29.	· .
112	2687.					943.		1055.	-	1942.	1359.	831.	248.	101.	467.	400.	
113	21.					22.		-21.	28,	25.	-21.	49.	h5.	169.	31.	211.	
114	374.					300.		377.	119.	462.	1872.	162925.	35339.	10374.	2664.	242.	
115								1 .	3.	-1.	-1,	а,	-1.	-1.	-1.	-1.	
115								7.	3.	-1.	-1.	150.	3.	33.	~1.	٢.	
117	327.					77.		177.		107.	130.	A.0.	21.	1.	21.	93.	
116	425.					11.		43.	71.	86.	54,	54.	13.	24.	12.	23.	
119	452.					32.		56.	71.	190,	110.	2850	475.	aqu.	` 4 "	45	
150	9.0					-0.2		e , 4	5,0 -	0.4	0.7	0 . 4	e.4	-0.2	0.4	÷.4	
121	0.0					+0.2		0.6	-0.2	0.4	0.7	0.5	2.5	0.3	0.5	0.4	
122	-5.					÷.		33.	21.	17.	30.	7.	-5.	-5.	-5.	14.	•
153						13.		33.	21.	17.	33.	11.	321.	7.	-5.	57,	
124	17.					-n.		102.	÷0.	14.	22.		-6.	-ò.	-0.	- b .	
125	13.					62.		192.	24.	14.	22.	2740.	67.	124.	10.	• t .	
156	11.0	•				11.0		4.6	8.0	2.9	2.4	ચ_ર	1.0	14.1	ម្ម ព	5.0	
127	-1.					1.		-1.	-1.	-1.	-1.	۱.	-1.		-1.	-1.	
156	-1.					1.		~1 .	-1.	14.	-1.	10.	-1.		-1.	٤.	•
129	-9.					-9,		9.	9.	-9.	- º .	-9.	- G .	- 9.	÷°.	- 5.	
130	• Q •					-9.		4.	۹.	-9.	-9.	30.	-°,	10.	- 4 a	-9.	
131	500.					59.		264.	316.	187.	212.	150.	34,	9.	30.	121.	
132	54.					20.		50.	-5.	10.	15.	21.	-5.	-5.	ч.	żч.	
133	231.					240.		238.	501,	1031.	174.	gon.	n₽b.	520.	122.	175.	
211	185.					75.		152.		142	255.	1055	ча.	396.	230.	141.	
502 202	-1,					-1.		-1.	≓ 1.	-1.	-1.	-1.	÷1.		-1.	-1.	
	-1.					~1 .		-1.	•ł.	-1.	-i.	115.	22.		-1,	۱.	
204 205	185.					76.		152.	-	152.	225.	4h3.	48.	305.	230.	141.	
205						0.44		0,34	-0,0S	+0.05	#A.85	n.03	0.57	(1.54	() . e e	-0.05	
207	ьч.							***				31.					
208	• 1_01					À.		29.		17.	ć	54.	14,	-1.	5.	14.	
209	0,16					-0,01		0.12		0.01	0.05	p, r 1	-0.01	-0.01	0.11	6.05	
210	0.04					0.19		0.14 0.10		0	0,10	0.02	-0,01	*0.01	•0.01	6.01	
211	0,032					0.15		0,10		0.47	0.64	*.1+	9.13	0.20	0.15	0,3×	
212	1,0					0.532		0,694		0.015	0.019	4.424	0.004	0,025	0,004	0,003	
213	-0.001					0.002 0.002		9.41 0 - 10 - 0	-0.001	1.4	2.1	1,3	-9,1	2.7	6.5	0.7	
214	0,004					0.002		0,002	0.007	0,003	0.001	0,005	0.006	9.000	6.005	0.000	÷
215	-15					615.		2204	14 - 11 - 1	0,083 1046	P.057	°,503	r.345	1.៨៧០	0.035	0.42A	
210	5612.					1435		2400.		1693.	1549.	758.	154.	114.	510.	533.	
						14554		< "UG.		1043*	2338.	1000.	339.	240.	716.	1553.	

APPENDIX C

Statistical Analyses of Water Quality Data

Table C-1. Statistical analysis of the water quality data for the Mancos project.

MANCOS PROJECT

STATION 16: MANCOS FIVEH

CODE	CONSTITUENT	MEAN	VARIANCE	S.D.	C OF V	HAX	MIN	RAHGE	24	
	***** GRUUP	AI METALLIC	ONSTITUENTS	*****						
101	ALUMINIUM, DISSULVED (UG/L)	612.0	.2579E+06	507.0	65.6	1640.	198.	1952.	11	
105	ALUMINIUM, TOTAL (UG/L)	28428.9	.2634E+10	51326.1	180.5	159476.	275.	159221.	11	
103	BARIUM, DISSOLVED (UG/L)	160.6	.1054E+94	32.5	20.2	207.	125.	62.	5	
104	BARIUM, TOTAL (UG/L)	768.0	.712AE+06	844.3	109.9	2701.	104.	2547.	9	
105	CADHIUM, DISSOLVED (UG/L)	5.8	.6700E+01	2.6	44.6	υ.	3.	ь.	5	
106	CADHIUM, TOTAL (UG/L)	8.2	\$669E+02	5.2	62.8	21.	4.	17.	Q	
107	CALCIUM (MG/L)	248.9	2548E+05	159.0	64.1	612.	64.	538	10	
108	CHPOMIUM, HEXAVALENT (UG/L)	3.3	.3333E+00	0.6	17.5	и.	3.	1.	3	
109	CHROMIUM, TOTAL (UG/L)	56.0	_8190E+03	28.6	51.1	R.	29	57.	3	
110	COPPER, DISSOLVED (UG/L)	46.0	.1152E+04	33.9	73.8	70.	22.	u A 🖕	5	
111	COPPER, TUTAL (UG/L)	88.2	.7749E+00	HAIN	99 R	297.	14	2-5.	10	
511	HARDNESS, TOTAL AS CACO3 (MG/L)	1047.2	.6267E+06	791.0	15.4	2847	107.	2720	10	
113	IRON, DISSOLVED (UG/L)	64.3	3974E+04	63.4	9A 0	211.	22	159.	<u>_</u> 9	
114	IPON, TOTAL (UG/L)	19555.3	.23715+10	48688.6	249.0	162925	119	162846	11	
115	LEAD, DISSOLVED (UG/L)	3.5	5000E+00	0.7	50.5	4	3.	1.	Ś	
116	LEAD, TOTAL (UG/L)	28.7	2132E+04	46.2	161.1	120	3.	117.	5	
117	MAGNESIUM (MG/L)	102.3	9131E+04	95.6	91.4	327.	1.	326	10	
118	MANGAHESE, DISSULVED (UG/L)	75.5	14105+05	118.8	157.4	425	11.	414	11	
119	MANGANESE, TOTAL (UG/L)	438.1	6609E+06	812.9	185.6	28.27	32	2797	11	
120	MEPCURY, DISSOLVED (UG/L)	0.44	2268E-01	0.15	34.42	0.7	0,2	0.5	A	
151	MERCURY, TOTAL (UG/L)	0.74	4628E+00	0.64	91.38	2 5	0.3	5.5	9	
122	MOLYBDENUM, DISSOLVED (UG/L)	18.7	9890E+02	a 9	53.1	33.	7.	20.	7	
123	MOLYBDENUM, TOTAL (UG/L)	52.1	.9162E+04	95.7	183.7	321.	7.	314.	10	
124	NICKEL, DISSOLVED (UG/L)	61.3	7609E+04	87.2	142.4	1.02	1'4	175.	4	
125	HICKEL, TOTAL (UG/L)	328.8	7266E+06	852.4	259 3	2749	10.	2739.	10	
150	POTASSIUH (MG/L)	6.3	,1703E+02	4.1	65.2	14.	2.	13.	11	
127	SELENIUM, DISSULVED (UG/L)	1.0	n. –	P	0.0	1	1.	0	ź	
158	SELENIUM, TOTAL (HG/L)	6.8	3958E+02	6.3	91.2	14	1.	13.	- 4	
129	SILVER, DISSOLVED (UG/L)	9.0		15 11	0.0	0	9	0	S	
130	SILVEP, TOTAL (UG/L)	14.5	.1070E+03	10.3	71.3	10	9	21	ū	
131	SODIUM (HG/L)	194.8	2750E+05	165 8	85.2	Son	9	191	15	
132	ZINC, DISSOLVED (UG/L)	22.4	2014E+03	14 2	63.4	51	9	45	à	
133	ZINC, TOTAL (UG/L)	441.8	93106+05	305.1	69.1	1031.	174.	457	11	
		•••							• •	

***** GROUP B: NON-METALLIC CONSTITUENTS *****

201	ALKALINITY, TOTAL AS CACO3 (NG/L)	262.5	.7581E+05	275.5	104.7	1022.	76.	446.	10
205	ARSENIC, DISSOLVED (UG/L)	0.0	n _	0.0	0 D	1.	9.	ò .	0
203	APSENIC, TOTAL (UG/L)	45.3	35445+04	59.5	171.3	113.	1.	112	ž
204	BICAMBONATE HARDNESS AS CACO3 (MG/L)	259.5	7084E+05	266.2	102.6	992	76.	916	10
205	BORON (MG/L)		42436-01	0 200	56.434	0,67	0,48	0.52	
206	CARBONATE AS CACO3 (MG/L)	61.0		0.0	0_0	61	01	0	ĩ
207	CHLDRIDE (MG/L)	22.9		19.1	ніз	69.	5.	64	ġ
205	CYANIDE (MG/L)	0.032	1897E-02	0.044	137 420	0.12	n.e1	0.11	6
209	FLUDRIDE (HG/L)	0.113	.6067E-02	0.078	65 725	A 1 -	0.01	0.14	6
210	NITPOGEN, MITPATE (MG/L)	0.270	6322E=01	0.251	93.126	0.74	0.04	0.70	10
211	NITPOGEN, NITRITE (HG/L)	0.0048	9507E-04	0,0098	40 4020	0.032	0.002	0.050	10
212	NITROGEN, TOTAL ORGANIC (MG/L)	1.27	.7175E+00	n 85	6.0 F7	2.7	0.5	2.2	
213	PHOSPHORUS, ORTHO (HG/L)	0.0059	60365-04	0.0074	131.0405	0.026	6,901	5	
214	PHOSPHORUS, TOTAL (MG/L)	0.2345	.1856E+00	0,4308	163 7478	1.400	9.004	1,430	
215	SULFATE (MG/L)	837.3	4150E+0A	644.2	76.9	2204	114.	2040	
216	TOTAL DISSOLVED SOLIDS (MG/L)	1831.8	2443E+07	1562.9	es 3	5612.	≥×0	5352.	

APFENDIX D

Comparison of Water Quality Data with the Proposed Colorado Water Quality Standards

Table D-1. Comparison of water quality data for the Mancos project with the proposed Colorado Water Quality Standards.

HANCOS PROJECT

STATION INT MANCOS FIVEN

OUE	CONSTITUE	STANDARD	SOUNCE	NUPBER Evceering	NUMBER OF SAMPLES	PENCENT Excetoin
01	ALUHJNINH, DISSOLVED (UG/L)	100,000	۸ij	11	11	100.00
ñ 4	PARIUM, TOTAL (UG/L)	1000,000	¥5	ş	9	\$5.25
00	CADMIUM, TOTAL (UG/L)	10,000	46	1	9 9	11.11
		10,000	85 101 1	1	4	11,11 0,00
		0,400 1,000	ABL1 AB12	1	4	11,11
		5.000	A823	1	4	11.11
		10.000	4434	p	4	0,00
		15,000	APG4	ō	9	0.00
09	CHRUMIUM, TOTAL (UG/L)	100,000	AG	ġ.	3	0.00
••		50,000	*5	S	3	65.67
		100,000	4 8	n	3	0.00
11	COPPER, TOTAL (UG/L)	200,000	AG	1	10	10,00
		1000,000	*s	Ô	10	0.00
		10,000	AHLI	0	10	0,00
		10.000	21H4	1	10	10.00
	•	10,000	4823	1	10	10,00
		20,000	6934	0 4	10	0,00
		40,000	AHG4 MS	0	10	40.00 0.00
13	IRON, DISSOLVED (UG/L)	300,000		5		45,45
4	IRON, TOTAL (UG/L)	1000,000	46 46	5	11	16.67
6	LEAD, TOTAL (UG/L)	50,000	NS	1	6	16.67
		4,000	ABL1	6	ě	0.00
		25,000	5184	· · · ·	6	16.67
		50,000	4823	0	6	0.00
		100,000	4934	0	6	0.00
		150,000	ABG4	0	6	0.00
7	HAGNESIUH (HG/L)	125.000	₩5	3	10	30,00
8	MANGANESE, DISSOLVED (UG/L)	50.000	۳S	5	11	45,45
4	MANGANESE, TOTAL (UG/L)	500,000	AG	4	11	35.36
		1000.000	AR	1	11	9.09
21	MERCURY, TOTAL (UG/L)	5.000	45	1	9	11,11
	· · · · · · · · · · · · · · · · · · ·	0,050	AB	9	9 10	100,00
25	NJCKEL, TOTAL (UG/L)	500,000	AG	1	10	0,00
	,	50.000	ARLI	1	10	10.09
		100,000	514A	0	10	0.00
		290,000 300,000	AP23	é	10	0,00
		400.000	ARGA	ì	10	10.00
28	SELENIUM, TOTAL (UG/L)	50.000	AG	0	a	0.00
	account forme toaver	10,000	WS	1	4	25.00
		50,000	AH	õ	4	0,00
30	SILVER, TOTAL (UG/L)	50,000	NS	0	4	0,00
		9,100	AHL1	0	4	0,00
		0,100	5144	. i	4	25.00
		6,150	AH23	0	4	0.00
		0,200	AH34	0	4	0,00
		0.250	ARG#	2	5	50,00
55 1	ZINC, TOTAL (UG/L)	5000,000	٨G	<u> </u>	11	0.00
	•	5000,000	#5	0	11	0,00
		50.000	48L1	- 0	11	0,00
		50,000	4612	1	11	9,04 9,04
		100,000	A625	1	11	0.00
		300,000	4834 4864	2	11	18,18
-		600,000	AG	ō	6	0.00
2	APSENIC, DISSOLVED (UG/L)	100,000	¥5	0	ö	0.00
		50,000	4B	0	-	0.00
e	BORON (HG/L)	750,000	AG	ö	о . ь	0,00
)5)7 .		250,000	×s	ō	9	0,00
)8 	CYANIDE (MG/L)	0,200	AG	0	6	0.00
r D	A CONTRACTOR AND A CONTRACTOR	0.200	#S	Ó	6	0,00
		0.005	4 (4	6	6	100.00
9	FLUDRIDE (HG/L)	2.400	WS	o	6	0,00
0	NITROGEN, NITRATE (MG/L)	100,000	۸G	0	10	0,00
		10.000	¥ S	0	10	0.00
11	NITROGEN, NITRITE (MG/L)	10,000	A G	0	10	0.00
		1,000	#5	6	10	0,00
		0.050	AHC	0	10	0.00
		0,500	X A 4			
15	SULFATE (HG/L)	250,000	HS	А	10	80.00

•

DEST AR & ADUATIC FIDIA ARC & ADUATIC FIDIA (CULD) ARW & AGUATIC BIDTA (AARM) ARL1 & ACUATIC BIDTA (AARM) ARL1 & ACUATIC FIDIA (TITAL HANDNESSI LESS THAN 100) AH23 & AGUATIC HIDTA (TITAL MANDNESSI 200-300) AH23 & AGUATIC HIDTA (TITAL MANDNESSI 200-300) AH23 & AGUATIC HIDTA (TOTAL HANDNESSI GEEATER THAN 400) AG & AGUICULTURE NS & CLASS 2 RAW MATER SUPPLY

Bibliography

- A.P.H.A. 1975. Standard methods for the examination of water and wastewater. 14th Edition. 1193 p.
- Hem, John D. 1970. Study and interpretation of the chemical characteristics of natural water. 2nd Edition. U.S.G.S. Water Supply Paper No. 1473. 363 p.
- National Academy of Sciences. 1972. Water quality criteria, 1972. Ecological Research Series EPA-R-3-73-003. 594 p.
- Sawyer, Clair N., and Perry L. McCarty. 1978. Chemistry for sanitary engineers. 3rd Edition. McGraw-Hill Book Co., New York. 532 p.
- U.S.E.P.A. 1971. Algal assay procedure: Bottle test. National Eutrophication Research Laboratory, Corvallis, OR. 81 p.
- U.S.E.P.A. 1976a. Methods for chemical analysis of water and wastes. Technology Transfer Series EPA-625/6-74-003a. 298 p.
- U.S.E.P.A. 1976b. Quality criteria for water. U.S.G.P.O. 0-222-904, Washington, D.C. 256 p.

ł,