Utah State University

DigitalCommons@USU

Reports

Utah Water Research Laboratory

January 1979

Pre-Impoundment Water Quality Study for the West Divide Project

Larry Baker

V. Dean Adams

Leslie G. Terry

Jerald S. Fifield

Darwin L. Sorensen

Follow this and additional works at: https://digitalcommons.usu.edu/water_rep

Part of the Civil and Environmental Engineering Commons, and the Water Resource Management

Commons

Recommended Citation

Baker, Larry; Adams, V. Dean; Terry, Leslie G.; Fifield, Jerald S.; and Sorensen, Darwin L., "Pre-Impoundment Water Quality Study for the West Divide Project" (1979). Reports. Paper 621.

https://digitalcommons.usu.edu/water_rep/621

This Report is brought to you for free and open access by the Utah Water Research Laboratory at DigitalCommons@USU. It has been accepted for inclusion in Reports by an authorized administrator of DigitalCommons@USU. For more information, please contact digitalcommons@usu.edu.

PRE-IMPOUNDMENT WATER QUALITY STUDY FOR THE WEST DIVIDE PROJECT

By
Larry Baker
V. Dean Adams
Jerald S. Fifield
Leslie G. Terry
Darwin Sorensen

Utah Water Research Laboratory College of Engineering Utah State University Logan, Utah 84321

PRE-IMPOUNDMENT WATER QUALITY STUDY FOR THE

WEST DIVIDE PROJECT

by

Larry Baker
V. Dean Adams
Jerald S. Fifield
Le;lie G. Terry
Da win Sorensen

This report was completed for the United States Bureau of Reclamation as a part of Contract No. 7-07-40-S0329 (Chemical and Biological Analysis of Colorado Water Samples).

Utah Water Research Laboratory College of Engineering Utah State University Logan, Utah 84321

June 1979

Acknowledgements

The authors of this report express gratitude to the personnel of the Utah Water Research Laboratory who participated in the chemical analysis and data compliation, including Alberta Seierstad, John Manwaring, Art Hirsch and Tom Peters. We also appreciated the technical advice of Don Porcella throughout this study.

We would also like to thank Joe Gardner and Art Rivers, Annette Brunson, Leslie Johnson, Barbara South, Michelle Kruschke, Betty Hansen, Kathy Bayn and Marianne Nelson for their help in preparing this report.

Table of Contents

Introduc	ction		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•]
Methods	•			•		•	•		•		•			• .	•		•	•	•	•	3
Results	•			•		•	•	•		•	•		•		•	•	•	•			10
Discussi	ion		•	•		•					•	•	٠	•	•	•	•	•	•		16
Appendi	ces	•	•	•	•	•	•	•	•	•	•		•	•	•			•	•		22
App	endi	x A		Pro	pos	ed	Co1	ora	do	Wat	er	Qua	lit	y S	tan	dar	ds	•	•	•	22
App	endi	ж В	_	Raw	Wa	ter	Qu	ali	ty	Dat	а	•	•	•	•	•		•	•	•	36
App	endi	х С	-	Sta	tis	tic	a1	Ana	1ys	es	of	Wat	er	Qua	lit	уD	ata	•	•	•	4]
	pendi opose																	•	•	•	45
Bibliogr	aphy			• ·	•																49

Introduction

The U.S. Bureau of Reclamation is currently in the process of evaluating a number of water development projects in Southwest Colorado. As a part of the planning process the Bureau has conducted a water quality investigation, in cooperation with the UWRL, of the stream segments that will be affected by each project. The data collected in this study were used to evaluate the water quality of each stream segment with respect to various beneficial uses of water (agriculture, raw municipal water supply, protection of the aquatic biota) and will provide a baseline by which to assess the impact of each project. In addition, these data will be used in the process of site location, design and operation planning for reservoirs and other project features.

This report includes only the results of the West Divide Project. 1

Data were collected for three water quality stations associated with this project:

Station #13: West Divide Creek

Station #20: Lower Colorado River at Silt, Colorado

Station #21: Upper Colorado River at Newcastle, Colorado

Water quality data were collected during the period May, 1977, through August, 1978. One sample was collected and analyzed during each month, except during June, 1977, when two samples were collected from some sites.

Other projects included in this study are: the Dolores Project, the Animas La Plata Project, the Mancos Project, the Dominguez Project, the McElmo Creek Project and the San Miguel Project. The results of the water quality study for each project are contained in individual reports.

The concentration of 49 water quality constituents was determined for each sample at the UWRL (Table 1).

Methods

Bottles to be used for sample collection were prepared at the UWRL and sent to Colorado for sample collection via Greyhound bis. Three sample bottles were used for each station. Water to be analyzed for non-metallic constituents (plus calcium and magnesium) were collected in half gallon Nalgene bottles. Two 500 ml polyethylene bottles were used for the collection of samples to be analyzed for metals. One of these was reserved for the analyses of "total" metals and the other reserved for the analyses of "dissolved" metals. All sample bottles were prepared prior to shipment using a rinse with dilute HCl followed by three rinses with high quality distilled water. Prior to shipment, 1.5 ml of 50 percent HNO₃ was added to each sample bottle reserved for the analyses of "total" metals.

In Colorado the staff of the USBR or of the consulting firm cf A and S Consultants, Inc. collected samples from each water quality station. Samples were packed in ice for the return trip to the UWRL and shipped via Greyhound bus. Samples usually arrived in Logan the following afternoon and analyses were begun immediately. Occasionally, samples were held in transit longer due to inclement weather.

Upon receipt at the UWRL a portion of the sample reserved for the analyses of non-metallic constituents and the entire sample reserved for the analyses of dissolved metals was filtered through a 0.45 μ "Millipore" filter. Where necessary samples were filtered through a GF/C glass fiber filter prior to filtration through the Millipore filter. Aliquots to be

used for the analyses of total Kjeldahl nitrogen, dissolved metals, cyanide and NO_3/NO_2 were preserved as outlined in Table 2.

Immediately following sample coding and pre-treatment (filtration and/or preservation), analyses were performed for total phosphorus, orthophosphate, alkalinity, cyanide, nitrate and nitrite. On some occasions the analyses of nitrate/nitrite and cyanide were postponed until the following day. When this was necessary the samples for NO_3/NO_2 and cyanide were preserved.

The analyses of calcium, total hardness, sulfate, chloride, total dissolved solids, total Kjeldahl nitrogen, hexavalent chromium and fluoride were completed within seven days using the methods listed in Table 1.

The data obtained for each water quality station during this study was subjected to statistical analysis to determine the means, maximum, minimum, range, standard deviation and coefficient of variation for each constituent. In addition the water quality data for each station was compared to the proposed Colorado Water Quality Standards for agricultural use, raw water supply and the protection of the aquatic biota (Appendix A). This analysis was based on the number of times in which the concentration of a constituent exceeded the proposed standard for that constituent with respect to the number of times a detectable concentration of the constituent was analyzed (Appendix D). In Tables 6 and 7 the comparison is made on the basis of the total number of samples analyzed since for most constituents if the concentration is below the detection limit of analyses it is below the proposed standards. For some metals (cadmium, mercury, silver, copper and zinc) the proposed standards for the protection of the

Table 1. Analytical methods used in water quality survey. 1

Analysis	Units/Sensitivity	Method
Non Metallic Constituents	,	
Total hardness	1 mg/1 as CaCO ₃	EDTA Titrimetric. S.M. p. 202
pН		pH electrode. S.M. p. 460
Total alkalinity	1 mg/I as CaCO ₃	Potentiometric. S.M. p. 278
Carbonate hardness	1 mg/1 as CaCO ₃	Calculated from CaCO ₃
Bicarbonate hardness	1 mg/1 as CaCO ₃	Calculated from CaCO ₃
Total dissolved solids	1 mg/1	Gravimetric. S.M. p. 82
Chloride, dissolved	mg/1, 2 place	Titrimetric (HgNO ₃) S.M. p. 304
Sulfate, dissolved	mg/1, 2 place	Turbidimetric (BaCl ₂) S.M. p. 496
Fluoride, dissolved	mg/1, 2 place	Ion selective electrode S.M. p. 391
Cyanide, total	mg/1, 2 place	Ion selective electrode S.M. p. 372
Phosphorus, total	mg/1, 2 place	Persulfate digestion S.M. p. 466
Phosphate, ortho	mg/1, 2 place	Ascorbic acid S.M. p. 481
Nitrogen, total organic	mg/1, 2 place	Kjeldahl. S.M. p. 437
Nitrate	mg/1, 2 place	Cadmium reduction (automated S.M. p. 620
Metallic Constituents		
Aluminum, total; dissolved	μg/1, 3 place	Atomic absorption (AA) S.M. p. 152
Arsenic, total; dissolved	μg/1, 3 place	Atomic Absorption (Vapor generation) S.M. p. 159

Table 1. Continued.

Analysis	Units/Sensitivity	Method
Barium, dissolved ²	μg/1, 2 place	Atomic absorption S.M. p. 152
Boron, dissolved	mg/1, 2 place	Carmine. S.M. p. 290
Calcium	mg/1, 2 place	Titrimetric (EDTA) S.M. p. 189
Cadmium, total; dissolved	μg/1, 3 place	Atomic absorption (Flameless EPA p. 78
Chromium, dissolved ²	μg/1, 3 place	Atomic absorption (Flameless) EPA p. 78
Chromium, hexavalent	μg/l, 3 place	Colorimetric, S.M. p. 192
Copper, total; dissolved	μg/1, 3 place	Atomic absorption S.M. p. 148
Iron, total; dissolved	μg/l, 3 place	Atomic absorption S.M. p. 148
Lead, total; dissolved	μg/1, 3 place	Atomic absorption (Flameless) EPA p. 78
Magnesium, dissolved	mg/1, 2 place	Calculated from calcium and total hardness
Manganese, total; dissolved	μg /1, 3 place	Atomic absorption S.M. p. 148
Mercury, total; dissolved	μg/1, 3 place	Atomic absorption (Cold vapor) S.M.p. 56
Molybdenum, total; dissolved	$\mu g/1$, 3 place	Atomic absorption (Flameless) EPA p. 78
Nickel, total; dissolved	μg/1, 3 place	Atomic absorption (Flameless) EPA p. 78
Potassium, dissolved	mg/1, 2 place	Flame photometric, S.M. p. 234
Selenium, total; dissolved	μg/1, 2 place	Atomic absorption (Vapor generation) S.M. p. 159
Silver, total; dissolved	μg/1, 3 place	Atomic absorption (Flameless) EPA p. 78

Table 1. Continued.

Analysis	Units/Sensitivity	Method				
Sodium, dissolved	mg/1, 2 place	Flame photometric, S.M. p. 250				
Zinc, total; dissolved	$\mu g/1$, 3 place	Atomic absorption, S.M. p. 148				

¹Sources of analytical methods:

- S.M. = Standard Methods for Examination of Water and Wastewater. 14th Ed. (1975). APHA.
- EPA = USEPA (1976a). Methods for Chemical Analysis of Water and Wastes.

These analysis were not included in original contract. Analysis of these constituents began in January, 1978.

Table 2. Methods of storage and preservation of samples used in the water quality survey.

Constitutent	Preservative	Storage						
Metals	3 ml 50% "mercury free" HNO ₃ /1	Several months (refrigerated)						
TKN	0.8 m1 conc. H ₂ SO ₄ /1	Max. of 7 days in dark amber glass bottle (refrigerated)						
NO ₃ -NO ₂	1 drop chloroform per 12 ml vials	Max. of 2 days in stoppered vials (refrigerated)						
CN	pH adjusted to 12 with ionic strength adjuster	Up to 24 hours (refrigerated)						

 $^{^1\}mathrm{Sample}$ bottles (500 ml) for "total metals" contained 1.5 ml HNO_3 when shipped to field.

aquatic biota are below the detection limits of analyses. Since there may have been instances in which the concentration of one of these metals was less than the detection limit of analysis but still greater than the proposed standard for the protection of the aquatic biota, the comparisons for these metals with the proposed standards in Tables 6 and 7 are enclosed in parenthesis.

Results

The water quality data collected during this study are presented in Appendix B. Statistical analyses of these data, including the mean, maximum, minimum, range, standard deviation and coefficient of variance for each constituent are presented in Appendix C.

The sampling period for this study began in May, 1977, and ended during August, 1978 (17 sampling rounds). Forty-four analyses were to be performed on each sample between May, 1977, and December, 1977, and 49 analyses were to be performed on each sample between January, 1978, through August, 1978. Thus, a total of 2,364 analyses were to be performed for the three sampling stations associated with the West Divide Project. During this study one sample (designated for non-metallic constituent analyses) was not received, resulting in the omission of 16 analyses (0.6 percent of the total). In addition to these, 16 analytical tests were omitted throughout the study (0.6 percent of the total). Thus, 98.2 percent of the initially scheduled analyses were completed.

In order to check the reliability of these analyses, ion balances were computed for each sample analyzed. The error in each ion balance was calculated as follows:

$$\% \text{ error} = \frac{\left| \sum M^{+n} - \sum M^{-n} \right|}{\sum M^{+n} - \sum M^{-n}} \times 100 \tag{1}$$

The ion balance calculations for each sampling period are presented in Table 4. A frequency distribution of the errors in the ion balances for each water quality station is presented in Table 5 and Figure 1.

Table 3. West Divide water quality survey - Missing parameter values. $^{\rm a}$

Sampling Round	Station	Analyses not performed	Reason for Omission
1	13,20	Hexavalent chromium	Analysis omitted
2	13	Alkalinity	Analysis omitted
	20	Nitrite	Analysis omitted
3	20	Total cyanide	Analysis omitted
	21	All non-metallic con- stituents, plus calcium and hex. chromium	Sample not received
4	21	Total nickel	Analysis omitted
5	13,21	Chloride	Analysis omitted
10	13,20,21	Fluoride; hex. chromium	Analysis omitted
	21	TDS	Analysis omitted
14	13, 20, 21	Arsenic (tot.; diss.); selenium (tot.; diss.)	Analysis omitted

^aWhen total hardness was not determined, magnesium concentration could not be calculated. When alkalinity was not determined, inorganic carbon species (HCO_3^- , CO_3^∞) could not be determined.

Table 4. Ion balance calculations for the West Divide Project STDS = Sum of the constituents (mg/2) MTDS = Laboratory measured TDS (mg/t) = Sum of cations (meg/1) = Sum of anions (meg/1) ADIFF = Absolute difference between SC and SA (meq/L) REST DIVIDE PROJECT $ERR(Z) = (ADIFF)/(SC + SA) \times 100$ " Indicated date where one or more constituents have not STATION 13: MEST DIVIDE CHEEK heen recorded. = Indicates that the concentration was below detection limit. 5/25/77 0/16 R/24 6/30 7/19 9/21 10/19 11/15 12/13 1/18/78 2/15 3/21 4/18 5/16 0/16 7/19 0/24 47.0 87.0 114.0 64.0 79.0 106.0 83.0 94.0 51.0 29.0 0.0 42.0 44.0 5.0 23.0 28.0 34.0 45.0 43. 1) 10.0 31.0 30.0 42.0 1410 3.0 2.0 0_0 0.0 32.0 AL A 30.9 34.0 97.0 145.0 65.0 77.0 141.0 146.0 151.0 176.0 147.0 71.0 25.0 5.0 15.9 24.0 114.0 2.6 5.0 11.0 2.0 5.0 8.9 5.5 2.4 6.1 2.9 3.1 1.7 3.0 4.0 3.0 mc03 177.0 210.0 515.9 265.0 379.0 429.0 429.0 452.0 417.0 424.0 263.0 130.0 106.0 100.0 146.0 CO3 12.6 34.0 6.0 0.0 15.0 0.0 0.0 14.0 0.0 0.0. 12.0 0.0 0.0 0.0 19.0 0.0 22.0 CI 20.0 5.0 3.0 -1.0 9.0 23.0 -1.0 35.0 36.0 -1.0 32.0 21.0 55.0 -2.0 4 . 3 6.0 0.0 504 62.0 46.0 164.0 303.0 83.0 100.0 139.0 199.0 177.0 148.0 171.0 58.0 24.0 43.0 26.0 131.0 \$105 4ml.0 135.0 5H2.0 1173.0 515.0 763.0 538.5 1031.6 Y50.1 680.4 Y12.9 481.1 291.7 152.8 170.0 257.0 672.0 MICS 19A.0 202.0 59e.0 94e.0 400.0 648.0 750.0 791.0 763.0 734.0 711.0 436.0 171.0 112.0 166.0 211.0 576.0 7,532 4,387 10.231 16.472 7.046 10.769 12.766 16.350 14.568 15.945 14.015 6.664 3.623 1.426 0.755 3.710 10.414 SC 5.635 0.974 7.699 16.928 7.428 11.805 11.754 14.391 13.741 11.421 13.183 7.000 4.611 2.206 3.200 3.712 9.447 1.997 3.413 2.532 0.457 0.360 1.036 1.012 1.959 0.627 4.524 0.632 0.196 1.188 0.339 2.453 0.602 0.466 ERR(%) 15.051 03.565 14.122 1.357 2.024 4.590 0.128 6.373 2.922 16.530 3.061 1.405 14.085 6.098 01.908 0.029 4.660 WEST DIVIDE PROJECT STATION 20: LOWER COLORADO AT SILT

	5/25/77	6/16	6/30	7/19	8/24	9/81	10/19	11/15	12/13	1/16/78	2/15	3/21	4/18	5/10	6/16	7/19	6/24	
CA -	67.4	63.0	70.0	69.0	77.0	79.0	90.0	108.0	21.0	78.0	64.0	84.6	62.0	44.0	33.0	50.0	b6 0	
MG	9.0	14.0	10.0	12.0	10.0	12.0	16.0	8.0	24.0	18.9					3.0	5.0	10.0	
NA	192.0	73.0	124.0								171.0		•		4.0	38.0	44.0	
*	4.0	3.0	5.0		-	. •				3.1					3.0	3.0	4_6	
nc03	116.0	-	130.0			-	141.0				128.0				• .	115.0	139.0	
CO3	2.0		0.0							6.0					0.0	0.0	10.0	
CL					14.0									•	12.0		154.0	
\$74	73.0				105.0											0.50		
												. •	·	, ,		•	•	
STOS	513.0	471.6	545.0	003.0	422.0	600.0	699.5	903.0	775.4	75411	740.0	708.5	550.0	29611	205.0	334_C	603.0	
MTOS "	452.0	550.0	695.0	572.0	516.0	503.0	746.0	526.0	061.0	710-0	037.0	681.0	390.0	213.4	102.6	284.0	562.0	
SC	6.623	7.548	9.637	10,144	8.064	8.798	12.491	15.607	12.913	14.587	12.776	11.450	0.701	2.562	2.36.2	6 N3N	9.223	
5 A	7.629	7.360	10.212	9.316	5.021	9.908	10.188	15.009	12.151	11.375	11.219	11.172	10.262	4.954	3.243		4.552	
ADIFF	0.794		0.375		3.043	1.170	2.302	0.598	U.762	3.212	1.557	9.278	3.561	2.102	0.732			
ERR(%)	4.624	1,125	1.270	4,255	26.621	6.235	10.152	1.953	3.042	12.372	6.490	355.1	20.500	20.723	16.470	0.715	1.751	

Table 4. (cont'd). Ion balance calculations for the West Divide Project (1)

WEST DIVIDE PROJECT

STATION 21: UPPER COLORADO AT NEW CASTLE

			*		*												
	5/25/77	6/16	b/30	7/19	8/24	9/21	10/19	11/15	12/13	1/18/78	2/15	3/21	4/18	5/18	6/16	7/19	6/24
CA	67.0	62.0	0.0	61.0	73.0	82.0	103.0	101.0	87.0	79.0	80.0	86.0	68.0	43.0	35.0	46.0	76.0
™ G	13.0	9.0	0.0	14.0	7.0	14.0	6.0	12.0	12.0	14.0	74.0	8.0	2.0	6.0	2.0	6.0	11.0
NA .	94.0	77.0	122.0	128.0											9.0	3A.0	97.0
ĸ	4.0	3.0	5.0	4.0		5.0					2.9	3.3	2.2	4.7	3.0	3.0	4.0
HC03	116.0	107.0	0.0	118.0		129.0			139.0	127.0	128.0	125.0	112.0	158.0	77.0	108.0	130.0
CO3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	A.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0.
CL	135.0	111.0	0.0	174.0	0.0	193.0	167.0	283.0	288.0	226.0	550.0	213.0	213.0	25.0	13.0	71.0	154.0
504	75.0	92.0	0.0	88.0	111.0	110.0	127.0	174.0	135.0	117.0	109.0	123.0	87.0	43.0	49.0	66,0	191.0
\$10\$	E 0.11 B	44.		E07 0	****		70. 0	047.0	11 7 11 . A	770 5	70F 0	407.7	F5F 3	204 7	4 10 10 10	7	E 7 7 A
8198 M198	504.0		•							778.5						340.0	-
-	480.0	438.0	0.0	594.0						0.0					170.0	273.0	552.0
SC.	P.604	7.260	5.435	9.866						14,405				3,238	2.379	4.618	9.019
SA ADIFF	7,690	7.187	0.000							11.351					2.927	5.537	9.047
#01FF FRH(%)	0,914		5,435		3,445		2.109			3.054						0.919	0.028
	5,610	0.2041	ប្ផ⊛្លាក់ថ	4,054	20,/10	0,00/	4.320	3.673	3,152	11,856	63.017	0.000	\$0.020	14.670	10.255	9,045	0.156

```
STDS = Sum of the constituents (mg/l)
```

MTDS = Laboratory measured TDS (mg/l)

SC = Sum of cations (meq/l)SA = Sum of anions (meq/l)

ADIFF = Absolute difference between SC and SA (meq/l)

 $ERR(\%) = (ADIFF)/(SC + SA) \times 100$

* = Indicated date where one or more constituents have not been recorded.

= Indicates that the concentration was below detection limit.

Table 5. Frequency distribution of errors in the ion balances for the West Divide Project(1)

Station 13: West Divide Creek

Err(%)	Number	Z of total
0 ~ 5	9	60.0
5 - 10	2	14.3
10 - 15	2	14.3
15 ~ 20	2	14.3
. >20	- 0	0
Missing Data	2	
Total	17	

Station 20; Lower Colorado at Silt

Err(Z)	Number	I of total
0 - 5	8	47.1
;5 ~ 10 . ^.	3	17.6
10 - 15	2	11.8
15 - 20	1	5.9
>20	3	17.6
Missing Data	0	
Total	37	

Station 21: Upper Colorado at New Castle

Err(2)	Number	Z of total
0 - 5	5	33.3
5 ~ 10	5	33.3
10 - 15	2	13.3
15 - 20	1	6.7
>20	2	13.3
Missing Data	2	
Total	17	

Figure 1. Frequency distribution of errors in the ion balances for the West Divide Project.

Discussion

The waters from the two water quality stations on the Colorado River are very similar to one another with respect to the concentrations of major ions (Ca, Mg, K, Na, SO₄, Cl) and the total concentration of dissolved solids (See Tables C-2 and C-3). At both sites the mean TDS concentration was just over 500 mg/l. The TDS did not exceed 1,000 mg/l at either station at any time during this study.

The composition of water from West Divide Creek was similar to that of the Colorado River at New Castle and Silt with respect to the concentrations of major ions and TDS, although the levels of some metallic constituents were somewhat different in West Divide Creek than in the main stem of the Colorado River (compare Tables 7 and 8 with Table 9).

For the two water quality stations on the Colorado the most frequently exceeded of the proposed standards for raw water supply was that for total cadmium. The total cadmium standard was exceeded during 41 percent of the sampling periods at Silt and during 29 percent of the sampling periods at New Castle. The concentrations of several other metals exceeded the proposed standards for raw water supply (Tables 7 and 8) but none except cadmium exceeded the standards during more than two sampling rounds. The water from West Divide Creek exceeded the proposed raw water supply for total cadmium during 35 percent of the sampling periods. The most notable difference between the main stem of the Colorado River and West Divide Creek with respect to the proposed water supply standards is the number of occasions on which the dissolved manganese standard was exceeded. In the Colorado River the dissolved manganese standard was exceeded only once

Table ____. Constituents that exceeded the proposed Colorado Water Quality Standards at West Divide Creek.(1)

	Water Use										
Parameter	Class Water Su		Agricul	ture	Aquatic	Biota					
(All metals "total" unless specified)	N/T ⁽²⁾	%	N/T ⁽²⁾	%	N/T ⁽²⁾	%					
Aluminum (dissolved)	-		.	-	13/17	76					
Barium	1/10	10		-	-	_					
Cadmium ⁽³⁾	6/17	35	6/17	35	(11/17)	(65)					
Copper (3)	0/17	0	0/17	0	(7/17)	(41)					
Iron (total)	-	_	-	-	11/17	65					
Lead	0/10	0	0/10	0	2/10	20					
Manganese (dissolved)	8/17	47	-	-	· _	_					
Manganese (total)	- -		5/17	29	0/17	0					
Mercury (3)	3/17	18	_	_	(16/17)	(94)					
Silver ⁽³⁾	0/17	0	-	_	(3/17)	(18)					
Zinc ⁽³⁾	0/17	0	0/17	0	(10/17)	(59)					
Total Cyanide	0/17	0	0/17	0	11/17	65					
Nitrogen (nitrite)	0/17	0	0/17	0	1/17	6					
Sulfate	1/17	6		-	****	_					

 $^{^{(1)}}$ Proposed Colorado Water Quality Standards in Appendix A.

 $^{^{(2)}{\}rm N/T}$ = number of samples exceeding standard compared with total number of samples analyzed.

⁽³⁾ Parenthesis indicate that the proposed standard was below the detection limit of analyses.

Table ______ Constituents that exceeded the proposed Colorado Water Quality Standards in the Lower Colorado at Silt.(1)

	Water Use						
Parameter	Class II Water Supply		Agriculture		Aquatic Biota		
(All metals "total" unless specified)	N/T ⁽²⁾	%	N/T ⁽²⁾	%	N/T ⁽²⁾	%	
Aluminum (dissolved)	_	-	www.		14/17	82	
Bar: um	1/10	0	-		_		
Cadmium ⁽³⁾	7/17	41	7/17	41	(8/17)	(47)	
Copper (3)	0/17	0	0/17	0	(8/17)	(47)	
Iron (total)	_	_	-	_	4/17	23	
Lead	0/10	0	0/10	0	1/10	10	
Manganese (dissolved)	2/17	12	-		-	-	
Mercury (3)	1/17	6			(15/17)	(88)	
Selenium	1/17	6	1/17	6	0/17	0	
Silver (3)	0/17	0	-	_	(3/17)	(18)	
Zinc (3)	1/17	6	1/17	6	(11/17)	(65)	
Chloride	1/17	6		· <u> </u>	_	-	
Total Cyanide	0/17	0	0/17	0	11/17	65	
Nitrogen (nitrite)	0/17	0	0/17	0	1/17	6	

 $^{^{(1)}}$ Proposed Colorado Water Quality Standards in Appendix A.

 $^{^{(2)}}N/T$ = number of samples exceeding standard compared with total number of samples analyzed.

⁽³⁾Parenthesis indicate that the proposed standard was below the detection limit of analyses.

Table _d _. Constituents that exceeded the proposed Colorado Water (1)
Quality Standards in the Upper Colorado at New Castle.

	Water Use						
Parameter		Class II Water Supply		Agriculture		Biota	
(All metals "total" unless specified)	N/T ⁽²⁾	. %	N/T ⁽²⁾	%	N/T ⁽²⁾	%	
Aluminum (dissolved)		_	_	-	13/17	76	
Cadmium ⁽³⁾	5/17	29	5/17	29	(9/17)	(93)	
Copper (3)	0/17	0	0/17	0	(7/17)	(41)	
Iron (total)	_	. -	-	-	4/17	23	
Lead	0/10	0	0/10	0	2/10	20	
Manganese (dissolved)	1/17	6	-	-	-	-	
Manganese (total)	_	_	2/17	12	0/17	0	
Mercury (3)	1/17	6	-		(17/17)	(100)	
Silver (3)	0/17	0	_	_	(2/17)	(12)	
Zinc (3)	0/17	0	0/17	0	(12/17)	(71)	
Chloride	2/17	12	_	· _	_	-	
Total Cyanide	0/17	0	0/17	0	8/17	47	
Nitrogen (nitrite)	0/17	0	0/17	0	1/17	6	

 $^{^{(1)}}$ Proposed Colorado Water Quality Standards in Appendix A.

 $^{^{(2)}{}m N/T}$ = number of samples exceeding standard compared with total number of samples analyzed.

⁽³⁾ Parenthesis indicate that the proposed standard was below the detection limit of analyses.

at New Castle and twice at Silt, whereas in West Divide Creek the dissolved manganese standard was exceeded during nearly half (8 out of 17) of the sampling periods. The standard for dissolved manganese was established on the basis of the undesirable taste and brownish staining associated with the use of waters containing high concentrations of dissolved manganese. On this basis, the water from West Divide Creek would be less desirable than water from the Colorado River as a source of municipal water supply.

The water from the Colorado River at Silt and at New Castle exceeded the proposed agricultural use standard for cadmium during seven and five sampling periods, respectively. In addition, the agricultural standard for total manganese was exceeded on two occasions in the Colorado River at New Castle and the standards for total selenium and total zinc were exceeded (once each) in the Colorado River at New Castle. Many of the heavy metal standards were exceeded during the irrigation season. The salinity of the Colorado River at these two stations never exceeded 700 mg/l during the irrigation season. This level of salinity would be suitable for irrigation of all but the most sensitive crops (NAS, 1972). The water from West Divide Creek exceeded the proposed agricultural use standard for total cadmium during six sampling periods and for total manganese during five sampling periods. The standards for these metals were usually exceeded during the spring and summer months. The salinity of West Divide Creek may limit its use for irrigating sensitive crops, although the TDS never exceeded 1,000 mg/1 during this study.

The water from the Colorado River exceeded many of the proposed standards for the protection of the aquatic biota. Concentrations of dissolved aluminum, total cadmium, total mercury, total zinc and total

cyanide at both sites exceeded the proposed standards for the protection of aquatic biota during half or more of the sampling periods. The standards for several other constituents, including total copper, total iron, total lead, total silver and nitrite were exceeded at both Colorado River stations during one or more sampling periods (Tables 7 and 8). Algal bioassays conducted using the Algal Assay Bottle Test (EPA, 1971) with filtered water from the Colorado River at New Castle and Silt gave no indication of heavy metal toxicity during November, 1977, January, 1978, March, 1978, and May, 1978. Water from West Divide Creek also exceeded the proposed standards for the protection of the aquatic biota with respect to numerous metals. Concentrations of dissolved aluminum, total cadmium, total iron, total mercury, total zinc and total cyanide exceeded the proposed standards during over half of the samples from West Divide Concentrations of total copper, total lead, total silver and nitrite also exceeded the proposed standards, but less frequently. Bioassays were not conducted on water from West Divide Creek.

APPENDIX A

Proposed Colorado Water Quality Standards

Table A-l Proposed Colorado water quality standards: Class II water supply.

Parameter	Standard	
Physical		
D.O. (mg/l) ¹	Aerobic ²	
рН	5.0-9.0	
Suspended solids and turbidity	3	
Temperature	X	
TDS (mg/l)	Y	
Biological .		
Algae ⁴	Free of toxic and	
	objectionable algae	
Fecal coliforms (#/100 ml)	1,000	
Inorganics		
Ammonia $(mg/\ell \text{ as } N)$	0.5	
Total residual chlorine (mg/ℓ)	X	
Cyanide (mg/l)	0.2	
Fluoride (mg/l)	5	
Nitrate (mg/l as N)	10	
Nitrite (mg/l as N)	1.0	
Sulfide as H_2S (mg/ ℓ)	0.05 X	
Boron (mg/l) Chloride (mg/l)	250	
Magnesium (mg/l)	125	
Sodium adsorbtion ratio	X	
Sulfate (mg/l)	250	
Phosphorus (mg/l as P)	Bioassay ⁶	
Toxic Metals (mg/l)		
Aluminum	X	
Arsenic	0.05	
Barium	1.0	
Beryllium	X	
Cadmium	0.01	
Chromium	0.05	
Copper	1.0	
Iron	0.3 (soluble)	
Lead	0.05	
Manganese	0.05 (soluble)	
Mercury	0.002	
Molybdenum	Y	
Nickel	X	

X = numerical limit generally not needed for protection of classified use.

Y = limit may be required but there is insufficient data for setting a general standard.

Table 1-1 Continued.

Parameter	Standards
Toxic Metals (mg/l)	
Selenium	0.01
Silver	0.05
Thallium	X
Zinc	5.0
$\frac{\text{Organics}^7}{\text{Organics}}$	
Chlorinated pesticides ⁸	
Aldrin	Y
Chlordane ⁹	Ÿ
Dieldrin ⁸	Ÿ
DDT ⁹	Ÿ
Endrin	0.2
Heptachlor ⁹	Y
Lindane	4
Methoxychlor	Y
Mirex	100
Toxaphene	5
Organophosphate pesticides	
Demeton	Y
Endosulfan	Y
Guthion	Y
Malathion	Y
Parathion	Y
Chlorophenoxy Herbicides	
2, 4-D	100
2, 4, 5-TP	10
PCB's 10	Υ .
Pheno1	1
Radiological 11 (pCi/l) Alpha 11, 12 Beta 11, 12	
Alpha ¹¹ , 12	15
Beta ¹¹ , ¹²	50
Cesium 134	80
Plutonium	15
Radium 226 and 228 ¹² , 13	5
Strontium 90 ¹² , ¹³	8
Thorium 230 and 232	60
Tritium	20,000
Uranium (total, mg/ℓ)	5

25

Where dissolved oxygen levels less than the standard occur naturally, a discharge shall not cause a further reduction in dissolved oxygen in receiving water.

- ²An effluent shall be regulated to maintain aerobic conditions, and a guideline of 2.0 mg/L dissolved oxygen in an effluent should be maintained, unless demonstrated otherwise.
- ³Suspended solid levels will be controlled by Effluent Limitations and Basic Standards.
- Free from objectionable and toxic algae. It has been well established that heavy growth of some strains of blue-green algae, upon death and degradation, may release one or more substances which are toxic to humans and many other animals. Although no fixed numbers can be recommended at this time, it is clear that streams, lakes and reservoirs should not be permitted to bear heavy growth of algal blooms, nor allow these blooms to disintegrate. Every effort should be made to control algal growths to levels that are not hazardous.
- ⁵Fluoride limits vary from 2.4 mg/ ℓ at 12.0 C and below, to 1.4 mg/ ℓ between 26.3 C and 32.5 C, based upon the annual average of the maximum daily air temperature (see *National Interim Primary Drinking Water Regulations* for specific limitations).
- ⁶Phosphorus standards are to be determined by an algal bioassay using the method described in the latest edition of *Standard Methods for the Examination of Water and Wastewater*.
- All organics, not on this partial list, are covered under Basic Standards, Section 3.1., 1978 Colorado Water Quality Standards.
- ⁸Numerical limits in tables based on experimental evidence of toxicity. No point source discharges of organic pesticides shall be permitted to state waters.
- ⁹The persistence, bioaccumulation potential, and carcinogenicity of these organic compounds cautions human exposure to a minimum (EPA).
- 10 Every reasonable effort should be made to minimize human exposure (EPA).
- ¹¹Concentrations given are maximum permissible concentrations above naturally occurring or "background" concentrations except where otherwise noted.
- 12If Alpha or Beta are measured in excess of 15 or 50 pCi/l respectively, it will be necessary to determine by specific analysis the particular radionuclide or radionuclides responsible for the elevated level. Particular radionuclides should not exceed the limit given in the table. If an elevated level of Alpha or Beta emissions is caused by radionuclides, the Division should be consulted.
- ¹³Maximum permissible concentrations including naturally occurring or background contributions.

Table $\Delta - 2$ Proposed Colorado water quality standards (non-metallic): Protection of Aquatic Biota.

Parameter	Cold Water Biota	Warm Water Biota
Physical		
D.O. (mg/l) ¹	6.0 7.0 (spawning) ²	5.0
pH Suspended solids	6.5 - 9.0	6.5 - 9.0
and turbidity	3	3
Temperature (°C)	Maximum 20°C w/ 3° increase ⁴	Maximum 30°C w/ 3° increase 4
TDS (mg/l)	Y	Y
Biological		·
Algae ⁵	Free from objectionable and toxic algae	Same as Cold Water
Fecal coliforms	X	X
Inorganics		
Ammonia (mg/l as N) Total residual chlorine	0.02 unionized	0.10 unionized
(mg/l)	0.002	0.01
Cyanide (mg/l)	0.005	0.005
Fluoride (mg/l)	X	X
Nitrate (mg/l as N)	X	X
Nitrite (mg/l as N)	0.05	0.5
Sulfide as H_2S (mg/l)	0.002	0.002
D (/0)	undissociated	undissociated
Boron (mg/l)	X	X
Chloride (mg/l)	X	X
Magnesium (mg/l)	X	X
Sodium adsorbtion ratio	X	X
Sulfate (mg/l)	X	X
Phosphorus (mg/l as P)	Bíoassay ⁶	Bioassay ⁶
$\frac{\text{Organics}^7}{\text{Organics}}$		
Chlorinated Pesticides 8	0.000	
Aldrin ⁹	0.003	0.003
Chlordane Dieldrin ⁹	0.01	0.01
DDT	0.003	0.003
Endrin	0.001 0.004	0.001 0.004
Heptachlor	0.004	0.004
Lindane	0.001	0.001
Methoxychlor	0.01	0.03
Mirex	0.001	0.001
MILEX		O*OOT

Table A-2 Continued.

Parameter	Cold Water Biota	Warm Water Biota
Organophosphate Pesticides ⁸		
Demeton	1	1
Endosulfan	0.003	0.003
Guthion	0.01	0.01
Malathion	1	1
Parathion	0.04	0.04
Chlorophenoxy Herbicides		
2, 4-D	Y	Y
2, 4, 5-TP	Y	Y
PCB's	0.001	0.001
Phenols	1	1
Radiological 10 in (pCi/l) Alpha (excluding uranium		·
and radium ¹¹)	15	15
Beta (excluding Sr ⁹⁰ 11	50	50
Cesium 134	80	. 80
Plutonium 238, 239,		
and 240	15	15
Radium 226 and 228	5	5
Strantium 90 ¹²	8	8
Thorium 230 and 232	60	60
Tritium	20,000	20,000
Uranium (total) ¹³		

X = numerical limit generally not needed for protection of classified

Y = limit may be required but there is insufficient data for setting a general standard.

¹Where dissolved oxygen levels less than the standard occur naturally a discharge shall not cause a further reduction in dissolved oxygen in receiving water.

 $^{^2}$ A 7 mg/ 2 standard, during periods of spawning of coldwater fish, shall be set on a case by case basis as defined in the NPDES permit for those dischargers whose effluent would affect fish spawning.

³Suspended solid levels will be controlled by Effluent Limitations and Basic Standards.

28

Temperature shall maintain a normal pattern of diurnal and seasonal fluctuations with no abrupt changes and shall have no increase in temperature of a magnitude, rate and duration deemed deleterious to the resident aquatic life. (enerally, a maximum 3°C increase over a minimum of a 4-hour period, lasting for 12 hours maximum, is deemed acceptable for discharges fluctuating in volume or temperature. Where temperature increases cannot be maintained within this range using BMP, BATEA, and BPWITT control measures, the Division will determine whether the resulting temperature increases preclude an Aquatic Life classification.

Free from objectionable and toxic algae. It has been well established that heavy growth of some strains of blue-green algae, upon death and degradation, may release one or more substances which are toxic to humans and many other animals. Although no fixed numbers can be recommended at this time, it is clear that streams lakes and reservoirs should not be permitted to bear heavy growth of algal blooms, nor allow these blooms to disintegrate. Every effort should be made to control algal growths to levels that are not hazardous.

⁶Phosphorus standards are to be determined by an algal bioassay using the method described in the latest edition of *Standard Methods for the Examination of Water and Wastewater*, American Public Health Association.

⁷All organics, not on this partial list, are covered under Basic Standards, Section 3.1., 1978 Colorado Water Quality Standards.

⁸Numerical limits in tables based on experimental evidence of toxicity. No point source discharges of organic pesticides shall be permitted to state waters.

 9 Aldrin and dieldrin in combination should not exceed 0.000003 mg/ ℓ .

¹⁰Concentrations given are maximum permissible concentrations above naturally occurring or "background" concentrations except where otherwise noted.

11 If Alpha or Beta are measured in excess of 15 of 50 pCi/L respectively, it will be necessary to determine by specific analysis the particular radionuclide or radionuclides responsible for the elevated level. Particular radionuclides should not exceed the limit given in the table. If an elevated level of Alpha or Beta emissions is caused by radionuclides, the Division should be consulted.

¹²Maximum permissible concentrations including naturally occurring or background contribution.

13 See Uranium in Table A-3 for aquatic life limitations.

Table A-3 Proposed Colorado water quality standards (metallic): Protection of Aquatic Biota.

Parameter	Water Ha	ırdness¹ -	· Cold and	l Warm Wat	er Biola
	0-100	100-200	200-300	300-400	over 400
Toxic Metals ² (mg/l)					
Aluminum (soluble) Arsenic Barium Beryllium Cadmium Chromium Copper Iron Lead ³ Manganese Mercury Molybdenum Nickel Selenium Silver Thallium Uranium Zinc	0.1 0.05 X 0.01 0.004 0.1 0.01 1.0 0.004 1.0 0.00005 X 0.05 0.05 0.00010 0.15 0.03 0.05	0.1 0.05 X 0.3 0.001 0.1 0.01 1.0 0.025 1.0 0.00005 X 0.10 0.05 0.00010 0.15 0.2	0.1 0.05 X 0.6 0.005 0.1 0.01 1.0 0.050 1.0 0.00005 X 0.20 0.05 0.05 0.05 0.15	0.1 0.05 X 0.9 0.01 0.1 0.02 1.0 0.100 1.0 0.00005 X 0.30 0.05 0.00020 0.15 0.8	0.1 0.05 X 1.1 0.015 0.1 0.04 1.0 0.150 1.0 0.00005 X 0.40 0.05 0.00025 0.15 1.4 0.60

X = numerical limit generally not needed for protection of classified use.

¹Concentrations of total alkalinity or other chelating agents attributable to municipal, industrial or other discharges or agriculatural practices should not alter the total alkalinity or other chelating agents of the receiving water by more than 20 percent. Where the complexing capacity of the receiving water is altered by more than 20 percent or where chelating agents are released to the receiving water which are not naturally characteristic of that water, specific effluent limitations on pertinent parameters will be established. In no case shall instream modification or alteration of total alkalinity or other chelating agents be permitted without Commission authorization.

²Bioassay procedures may be used to establish criteria or standards for a particular situation. Requirements for bioassay procedures outlined in Section 3.1.10, Colorado Water Quality Standards, May 2. 1978.

 $^{^3}$ For bioassay lead concentration is based on soluble lead measurements (*i.e.* non-filterable lead using a 0.45 micron filter).

Table -4 Proposed Colorado water quality standards: Agricultural Use.

Parameter	Standard
Physical	
D.O. (mg/l) 1	Aerobic ²
рН	X
Suspended solids and turbidity	3
Temperature	X
TDS (mg/l)	Y
Biological	
Algae ⁴	Free of toxic and
	objectionable algae
Fecal coliforms (#/100 ml)	1,000
Inorganics	
Ammonia (mg/l as N)	X
Total residual chlorine (mg/l)	X
Cyanide (mg/l)	0.2
Fluoride (mg/l)	X
Nitrate (mg/l as N)	100 ⁵
Nitrite (mg/l as N)	10 ⁵
Sulfide as H S (mg/ℓ)	X
Boron $(mg/l)^2$	0.75
Chloride (mg/l)	X
Magnesium (mg/l)	X
Sodium adsorbtion ratio	· X
Sulfate (mg/l)	X
Phosphorus $(mg/l as P)$	x
Toxic Metals (mg/l)	
Aluminum	X
Arsenic	0.1
Barium	X
Beryllium	0.1
Cadmium	0.01
Chromium	0.0
Copper	0.2
Iron	X
Lead	0.1
Manganese	0.2
Mercury	X
Molybdenum	Y
Nickel	0.2

X = numerical limit generally not needed for protection of classified
 use.

Y = limit may be required but there is insufficient data for setting a general standard.

Table A-4 Continued.

Parameter	Standa	nrd
Toxic Metals (mg/l)		,
Selenium	0.02	
Silver	X	
Thallium	X	
Zinc	2.0	
Organics $(\frac{\mu g}{\ell})$		
Chlorinated Pesticides ⁷		
Aldrin ⁸	Y	
Chlordane ⁸	Y	
Dieldrin ⁸	Ÿ	
DDT ⁸	Ÿ	
Endrin	Ÿ	
Heptachlor ⁸	Ÿ	
Lindane	Ÿ	
Methoxychlor	Ÿ	
Mirex	Y	
Toxaphene	Y	
Organophosphate Pesticides ⁷		
Demeton	. Y	
Endosulfan	Y	
Guthion	Y	•
Malathion	Y	
Parathion	Y	
Chlorophenoxy Herbicides	•	
2, 4-D	Y	
2, 4, 5-TP	Y	
PCB's 9	Y	
Phenol	Y	
Radiological 10 (pCi/l)		
Alpha ¹¹ , ¹²	15	
Beta ¹¹ , ¹²	50	
Cesium	80	
Plutonium	15	
Radium 226, and 228 ¹²	5	
Strontium 90 ¹²	8	
Thorium 230 and 232	60	
Tritium	20,000	
Uranium (total, mg/ℓ)	5	

. 32

- Where dissolved oxygen levels, less than the standard, occur naturally, a discharge shall not cause a further reduction in dissolved oxygen in receiving water.
- ²An effluent shall be regulated to maintain aerobic conditions, and a guideline of 2.0 mg/ ℓ dissolved oxygen in an effluent should be maintained, unless demonstrated otherwise.
- ³Suspended solid levels will be controlled by Effluent Limitations and Basic Standards.
- Free from objectionable and toxic algae. It has been well established that heavy growth of some strains of blut-green algae, upon death and degradation, may release one or more substances which are toxic to humans and many other animals. Although no fixed numbers can be recommended at this time, it is clear that streams, lakes and reservoirs should not be permitted to bear heavy growth of algal blooms, or allow these blooms to disintegrate. Every effort should be made to control algal growths to levels that are not hazardous.
- 5 In order to provide a reasonable margin of safety to allow for unusual situations such as extremely high water ingestion or nitrite formation in slurries, the NO₃-N plus NO₂-N content in drinking waters for livestock and poultry should be limited to 100 ppm or less, and the NO₂-N content alone be limited to 10 ppm or less.
- ⁶All organics, not on this partial list, are covered under Basic Standards, Section 3.1., 1978 Colorado Water Quality Standards.
- ⁷Numerical limits in tables based on experimental evidence of toxicity. No point source discharges of organic pesticides shall be permitted to state waters.
- ⁸The persistence, bioaccumulation potential, and carcinogenicity of these organic compounds cautions human exposeure to a minimum (EPA).
- ⁹Every reasonable effort should be made to minimize human exposure (EPA).
- Concentrations given are maximum permissible concentrations above naturally occurring or "background" concentrations except where otherwise noted.
- it will be necessary to determine by specific analysis the particular radionuclide or radionuclides responsible for the elevated level. Particular radionuclides should not exceed the limit given in the table. If an elevated level of Alpha or Beta emissions is caused by radionuclides, the Division should be consulted.
- ¹²Maximum permissible concentrations including naturally occurring or background contributions.

Table $^{-5}$ Proposed Colorado water quality standards: Recreational Use.

	Standard							
Parameter	Class I	Class II						
	(Primary Contact)	(Secondary Contact)						
Physical mg								
$\overline{D.0.}^{1}$ ($\frac{mg}{\varrho}$ D.0.)	Aerobic ²	Aerobic ²						
pH	6.5-9.0	X						
Suspended solids and								
turbidity	X	X						
Temperature	X	X						
TDS (mg/l)	X	X						
Biological								
Algae ⁴	Free of objection-	Free of objection-						
	able and toxic	able and toxic						
	algae	algae						
Fecal coliforms								
(#/100 ml)	200	1,000						
Inorganics								
Ammonia (mg as N)	X	X						
Chloride (mg/l)	X	x						
Cyanide (mg/l)	X	X						
Fluoride (mg/l)	X	X						
NO_3 (mg/ ℓ as N)	X	X						
NO_2 (mg/ ℓ as N)	X	X						
Sulfide as H_2S (mg/ ℓ)	X	X						
Boron $(mg/\ell)^2$	X	X						
Chloride (mg/l)	X	X						
Magnesium (mg/l)	X	X						
SAR	X	X						
Sulfate (mg/l)	X	X						
Phosphorus (mg/l as P)	_	Bioassay ⁵						
Toxic Metals (mg/l)								
Aluminum	X	x						
Arsenic	X	X						
Barium	X	X						
Beryllium	X	X						
Cadmium	X	X						
Chromium	X	\mathbf{x}_{\perp}						
Copper	Х	X						
Iron	X	X						
Lead	x	X						
Manganese	X	X						
Mercury	X	X						
Molybdenum	X	X						
Nickel	X	X						
Selenium	X	X						

Table A-5 Continued.

_	Standard								
Parameter	Class I (Primary Contact)	Class II (Secondary Contact)							
Toxic Metals (mg/l)									
Silver	X	X							
Thallium	X	X							
Uranium	X .	X							
Zinc	X	X							
Organics ⁶									
Chlorinated Pesticides 7									
Aldrin ⁸	· Y	Y							
Chlordane ⁸	Y	Y							
Dieldrin ⁸	Y	Y							
DDT ⁸	Y	Y							
Endrin	Y	Y							
Heptachlor ⁸	Y	Y							
Lindane	Y	Y							
Methoxychlor	Y	Y							
Mirex	Y	. Y							
Toxaphene	Y	Y							
Organophosphate Pesticides ⁷	•								
Demeton	Y	Y							
Endosulfan	Y	Y							
Guthion	Y	Y							
Malathion	Y	Y							
Parathion	Y	Y							
Chlorophynoxy Herbicides									
2, 4-D	Y	Y							
2, 4, 5-TP	Y	Y							
PCB's	Y	Y							
Pheno1	Y	Y							
Radiological									
Alpha	X	X .							
Beta	X	X							
Cesium 134	X	X							
Plutonium 238, 239, and		X							
Radium 226 and 228	X	X							
Strantium	X	X							
Thorium 230 and 232	X	X							
Tritium	X	X							
Uranium (total)	X	X							

- X = numerical limit generally not needed for protection of classified use.
- Y = limit may be required but there is insufficient data for setting a general standard.
- Where dissolved oxygen levels, less than the standard, occur naturally, a discharge shall not cause a further reduction in dissolved oxygen in receiving water.
- ²An effluent shall be regulated to maintain aerobic conditions, and a guideline of 2.0 mg/ ℓ dissolved oxygen in an effluent should be maintained, un]ess demonstrated otherwise.
- ³Suspsended solid levels will be controlled by Effluent Limitations and Basic Standards.
- Free from objectionable and toxic algae. It has been well established that heavy growth of some strains of blue-green algae, upon death and degradation, may release one or more substances which are toxic to humans and many other animals. Although no fixed numbers can be recommended at this time, it is clear that streams, lakes and reservoirs should not be permitted to bear heavy growth of algal blooms, nor allow these blooms to disintegrate. Every effort should be made to control algal growths to levels that are not hazardous.
- ⁵Phosphorus standards are to be determined by an algal bioassay using the method described in the latest edition of *Standard Methods for the Examination of Water and Wastewater*, American Public Health Association.
- ⁶All organics, not on this partial list, are covered under Basic Standards, Section 3.1., 1978 Colorado Water Quality Standards.
- ⁷Numerical limits in tables based on experimental evidence of toxicity.

 No point source discharge of organic pesticides shall be permitted to state waters.
- The persistence, bioaccumulation potential, and carcinogenicity of these organic compounds cautions human exposure to a minimum (EPA).
- Every reasonable effort should be made to minimize human exposure (EPA).

APPENDIX B

Raw Water Quality Data

Table B-1. Water quality parameter codes.

A.	METALLIC CONS	TITUENTS
	(µg/l unless	noted)
101	. Aluminium,	Dissolved
102	. Aluminium,	Total

103. Barium, Dissolved

104. Barium, Total105. Cadmium, Dissol

105. Cadmium, Dissolved106. Cadmium, Total

107. Calcium (mg/1)

108. Chromium, Hexavalent

109. Chromium, Total110. Copper, Dissolved

111. Copper, Total

112. Hardness, Total

113. Iron, Dissolved

114. Iron, Total

115. Lead, Dissolved

116. Lead, Total

117. Magnesium (mg/1)

118. Manganese, Dissolved

119. Manganese, Total

120. Mercury, Dissolved

121. Mercury, Total

122. Molybdenum, Dissolved

123. Molybdenum, Total

124. Nickel, Dissolved

125. Nickel, Total 126. Potassium (mg/

126. Potassium (mg/1)
127. Selenium, Dissolved

128. Selenium, Total

129. Silver, Dissolved

130. Silver, Total

131. Sodium (mg/1)

132. Zinc, Dissolved

133. Zinc, Total

B. NON-METALLIC CONSTITUENTS (mg/l unless noted)

201. Alkalinity, Total

202. Arsenic, Dissolved (µg/1)

203. Arsenic, Total $(\mu g/1)$

204. Bicarbonate Hardness

205. Boron

206. Carbonate Hardness

207. Chloride

208. Cyanide

209. Fluoride

210. Nitrogen, Nitrate

211. Nitrogen, Nitrite

212. Nitrogen, Total Organic

213. Phosphorus, Ortho

214. Phosphorus, Total

215. Sulfate

216. Total Dissolved Solids

Table B-2. Water quality data for West Divide Creek.

1 FST HIV (DE PROJECT

STATION IST - MEST DIVIDE CREEK

COHE	5/25/77	n/ta	5/30	7/19	E724	9/21	16/19	11/15	12/13	1/15/75	2/15	3/21	4/18	5/10	6/10	//19	4813
101	234.	340	310.	460.	410.	240.	93.	76.	-5n	55.	272.	154.	184.	147.	1700-	ے ن ہا نے	٤٥٤.
102	2147.	7 a n	1690		30166	4/61	4384.	755	411	1037.		15915			7900	4421.	1635.
105		,	*	•	•	•		160.	-100	110	154	207.	172.	-100	127	100.	131.
104								194	-100	184	171.	677.	404	1355.	509	210.	151.
105	+ 5 ·	-3.	- 7 .	- 5	- 5 <u>-</u>	-3.	4.	-3.	-3.	-3.	-3.	-3	3.	-3.	- 5 .	-3.	-3.
106	52.	٠.	<i>2</i> 5.	- 3	12.	14.	13.	-3.	•3.	-3.	-3.	5.	11.	- 5	5.		٠.
1 n 7	21 6	ដូច្	ΑÇ.	114.	69.	F7.	79.	160.	63.	44	82.	Si.	45.	24.		48.	54.
105		₽.	٠.	1.	+1.	t.	-1.	5.	. .		2.		5	٠.	4.	-1.	-1.
109										- ≥0.	20 .	-2e.	-20.	- > n	-e ii .	· 20	-20.
119	-1 tr	-1e.	-10.	-11.	#10 _*	-10.	-10.	-10.	*10.	- [t)	-10.	-10.	-10.	-10.	-10.	13.	-10.
111	15.	-10.	26.	-16.	54.	72.	-16.	14.	-10.	10.		20.	-10.	۵l.	49.	21.	-10.
112	3"3.	144.	546.	4111.	201.	300.	354.	387.	345.	412.	378.	185.	123.	bb.	45.	13è.	200.
113	-51.	53.	26.	5 e .	81.	٠ رو ^{در}	71.	-21.	52.	-21.	-21.	²e.	35.	100.	72.	230.	>4.
114		547.	1235.	251,	8010.	3745.	3234.	605,	596	694.	1390.	25400.	3147.	23674.	6570.	0842.	1440.
115								-1.	6.	-1.	-1.	-1.	1.	ė,	ĉ.	-1.	-1.
116								-1.	.12.	-1.	+1.	1 ii .	4.	٥.	. 22.	-1.	-1.
117	ā d *	Ď.	e3.	24.	13.	34.	31.	30.	45.	93.	42.	٠ ت ١	3.	2.		ь.	32.
118		11.	စ်ပါ 🔹	49.	18.	120.	81.	115.	111.	149.	145.	57.	27.	24.	9.	21.	. ۶ د
119	F 6 .	3₽.	511.	127.	349.	317.	132.	115.	115.	151.	140.	421.	120.	h74.	154.	137.	St.
120	د م	0.0	1.2	-1) . 2	9.0	3.3	0.5	-0.2	- 0.≥	1.8	0.5	0.9	0.0	-9.2	0.4	(· , 7	0.0
155	1,5	7,6	5.1	0 . 4	1.8	11.7	0.5	0.3	-0.2	3.0	11.5	0.9	0.9	6.4	0 , 4	0.7	0.7
153	.	5.	13.	· ·	્રું.	10.	.5.	-5.	-5.	7.	5.	~ 5.	-5.	-5.	- 4	* 2,	٠,
124	#% <u>.</u>	a.	13.	14.	54.	13.	13.	-5,	- 5.	7.	14.	-5,	14.	*7.	. 5.	7.	55.
125	≖ ⊙. 5.	23.	٠,	***	• t:	*0.	11.	54.	-n.	-5.	-5.	*b.	*6.	~o.	~6.	~ o .	•••
126	2	5.0	43.	· 1.	111.	154.	11.	54.	11.	-6.	7.	55.	95.	44.	٠.	-0.	~ ∪.
127	-1.	• l .	5.0	5.0	۴,9	11.0	5:5	5.6	6.1	2,4	٧. ج	3.1	1 . 7	3.8	4 - 11	3.0	5.0
125	-1	-1.	-1.	-1.	*1.	•1.	-i.	-!.	-1.	-1.	-1.	*1.	-1.		-1.	5.	-1.
129	- 9	- 9	-9	-1. -4.	• 1	~1. ~9.	-1.	~{ ,	-1.	• t •	-1.	-1.	-1.	4.	~1.	5,	₹.
130	-4		- y	-7.		-9	15.	-9.	-9. 11.	-4. -4.	-9.	-4.	-4.	-9.	• 0 •	~ · · ·	-9. -0
131	36.	34	7	145	o.,	77	141.	196	151.	176.	147.	13. 71.	-9. 25.	-9. S.	ωψ ₄	-9.	-9.
132	•5	- 5			5.	1 .	15.	14	-5.	14.	30	71.	7.	15.	15.	24.	114.
133	194.	130	244	5 - 5	457	317.	288.	567.	-5	27.	25.	210.	457	555.	225.	54. 214.	14.
211	1 = 9.	•	210.	531	253	303.	435.	463	452.	417.	430.	263.	158	100.	110.	166.	50n.
202	-1.	-1.	-1	-1.	-1.	-1.	-1.	-1.	•1.	-1.	-1.	-1.	+1.	,	*1.	+1.	-1.
203	-1.	-1.	- i .	- 1	-1.	-1.	-1.	-1	-1.	- 1,	-1.	٤١.	-1.		*1	-1.	4.
264	177.		216	510.	âr 5	179	429.	424	452.	417.	a a i	203.	138.	100.	1 (10)	145.	314.
205	1.43	·0.05	1.16	6.7-	0.41	0.11	•0.05	6.10	-0.05	0.23	1.77	0.03	11.32	0.41	6.05	0.23	-0.05
206	12.	•	• • • • •	15.		ti .	14	3,4			12.			V • - 1	16	V . E . J	55.
207	av.	5.	3.	- 1		23.		35	36.	-1.	32.	21.	55.	-2.	4.	5.	
200	51.60	0.02	- •	•n_1	01	0.11	0.10	0.14	-0.01	-0.01	0.01	6,00	-0.01	0.01	0.01	0.02	0.05
549	0,23	0.19	0.48	n, en	4, 47	0.74	1.11	n 66	1.60	• • • • •	0.75	0.03	5 a l	•0 u1	V • · 1	0.02	0.09
210	0.01	6,62	15.0	0.09	1,27	0.00	0.25	0.11	3.64	9.34	0.24	0.45	(35	0.23	0.20	0.11	0.10
211	0,101	-	9.015	U.vn.		មិត្តមាន	9.002	5,002	u nna	0.005	0.005	0.010	0.005	0.003	0.015	0.005	(1,01)
213	0.7	0.4	0.1	1.5	1.8	0.9	0.8	1.1	0.9	0.8	1.0	-0.1	0.4	1.4	il n	1.0	1.6
213	0.001	Bon. "	0.618	0.007	0,055	0.013	0.005	0.003	510.0	0.013	0.005	0.000	0.029	0.040	0 , បំផុំផ	0.607	មួ (១) ម
214	0.000	6,008	0.1/5.	0.701	0.055	0.212	0.101	0.046	0.000	9.025	0.057	0.275	0.212	v./50	8 . सपल	0.192	0.054
215	n2.	40.	164.	573.	~ + 4.	150,	154.	199.	177.	148.	171.	50	24	7.	33.	25	151.
216	145.	262.	596.	94~	403.	bah.	750.	791	763.	734.	711.	430.	171.		100.	211.	570.

Table B-3. Water quality data for the Lower Colorado River at Silt.

WEST DIVION PROJECT

STATION SOL LOWER COLOPADO AT SILT

100	COUF	5/25/77	6/16	6730	7/10	A/24	9/51	invia	11/15	12/13	1/13/78	2/15	3721	4716	5/18	6/16	7/12	P/74
100	101	248.	360	210	370	130.	220	118	123	-50	e ii	100	-50	103	124	1 1 2 11	2011	7.2A
100	102																-	
106	103	•	•		•													
105	104																	
100	105	-3.	-3.	-3.	÷3.	•3.	÷3.	-3.			•			•				-
107	105								-	•	•	-	- •					
108	107											_			•		-	
100	108	•									. •						-	-
110	1 U Å		•	•	•	• •	•		- •	•	-20-							
111	110	-10.	-10.	-10.	-10.	-10.	-10.	-14.	-şn	-10.					_			
117	111	= 1 0 .	-10.	-10.	-10.	102.	58.	-10.	14.	27	19.	- j n	-10	15.	5.0		آ چ خ	-10.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		203.	215.	215.	223.	232.	246.	Sa3.				764.			_	-		
110	113	33.	-21.	-ê1.	50.	57.	26.	-21.	-15-	28		-21.						
116 117 0, 10, 10, 12, 10, 12, 16, 6, 20, 14, 13, 11, 4, 2, 3, 7, 20, -1, 117 0, 10, 10, 10, 12, 10, 15, 16, 6, 20, 14, 13, 11, 4, 2, 3, 5, 10, 110 36, 20, 23, 45, 73, 56, 22, 23, 36, 30, 30, 20, 55, 146, 161, 162, 175, 44, 21, 171 121 0, 2, 2, 2, 2, 2, 2, 2, 6, -0, 2, 0, 5, -0, 2, 0, 7, -0, 2, 0, 0, 0, 7, 0, 5, 104, 160, 162, 175, 44, 171 121 10, 9, 0, 2, 1, 3, 0, 6, 0, 5, 20, 36, 9, 7, -0, 2, 0, 2, 0, 7, 0, 5, -0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 1, 2, 110 122 123 124 125 126 127 128 129 129 129 129 129 129 129 129 129 129		601.	566.	259.	521.	960.	804.	250.	192.							4566		
110									-1.	4.	-1.	-1.	-1.	ď.	d .	7.		-1.
11h									2.	7	-1.	-1.	-1	16.	.75			
110			10.	to.	12.	10.	15.	16.	÷.	20,	IA.	13.	11.	4	2.	3.	5.	10.
120			6.	~ [≪] •	6.	10.	15.	16.	14.	24.	18.	14.	34.	33.	64.	15.	54.	25.
121			24.	23.	45.	73.	5K.	22.	23.	34.	30.	∂ñ.	55	104.	160.	152.	125	44.
122					-0.2	0.5		0.7	-0.2		-n.2	. n.2	0.7		-n_2	ج ہ	-0.2	1.2
127 -5, 16, 20, 55, 25, 29, 36, 9, 0, 18, 8, 6, -5, -5, -5, -5, -5, 0, 124 -6, -6, -6, -6, -6, -6, -6, -6, -6, -6,				1.3	0.8	0.6	۵, ۵	0.8		11.4	•a • 5	n_a	0.7	ñ.6	ج پا⊸	0.4	n . 2	1.0
124								. 27.		٥.	18.	٩.	6.	₩ 15 ³ •	~ 5 •	- 5 _	-9.	٠.
125				2٠.		25.	29.	36.	9.	0	320.	12,	۴.	11.	+5.	- ≒,	-5.	۰.
126				_	_			-6.		*h.	-6.	~ h .	•6.	-··	-6.	-4.	-h.	-5.
127			- •							٠.	- ^ .	-h.	~ h .	31.	et.	3.	12.	- ÷ .
126			-	5.0	4.0	5.0	5.^	4.5	3.0	7.0	3.1	% , n	1,5	5.0	5.1	8.0	ች . ሶ	4.0
120		•					2.	-1.		-1.	-1.	-1.		-1.		-1.	-1.	-1.
130											•		-1.	-1.		-1.	٠, ٩	٦.
131										- ? .								
137							-				-	-						
133																		
201 118. 131. 130. 120. 122. 122. 143. 160. 141. 126. 134. 127. 110. 172. 70. 116. 139. 202 -1111111111.																		
202																		
205				_	_					_					172.			
204				-				-	-		-	•	-	-		-	-	
205													•	•				
206																		
207 146. 115. 168. 178. 14. 186. 161. 286. 236. 215. 211. 213. 215. 21. 16. 16. 16. 150. 208					-		-	-			-							
208			-			-				-	• • • • • • • • • • • • • • • • • • • •	-	-			-		
209				100.														
210				0.12							. • 1			-				
211 0.003 0.006 0.004 0.013 0.007 0.001 0.005 0.003 0.070 0.004 0.015 0.013 0.005 0.014 0.005 0.014 0.005 0.006 0.006 0.006 0.006 0.006 0.007 0.025 0.017 0.014 0.006 0.005 0.006 0.006 0.006 0.025 0.017 0.014 0.006 0.005 0.006 0.026 0.006 0.025 0.017 0.014 0.006 0.005 0.007 0.025 0.007 0.007 0.025 0.007 0.											0							
213 0.7 0.6 -0.1 -0.1 0.2 0.2 0.2 0.2 0.2 1.4 -0.1 5.2 -0.1 3.2 1.5 0.5 1.6 213 0.905 0.014 0.000 0.005 0.006 0.000 0.000 0.000 0.005 0.017 0.014 0.005 0.015 0.007 0.023 0.001 214 0.010 0.014 0.03) 0.024 0.080 0.056 0.040 0.028 0.096 0.047 0.040 0.040 0.040 0.27 0.055 0.055 0.152 0.024 215 73. 92. 136. 91. 105. 94. 150. 172. 138. 134. 140. 176. 88. 03. 67. 62. 107.				•														
213 0.905 0.014 0.004 0.005 0.006 0.000 0.000 0.000 0.005 0.025 0.017 0.024 0.006 0.016 0.007 0.025 0.001 214 0.010 0.014 0.031 0.024 0.060 0.056 0.040 0.028 0.090 0.047 0.049 0.044 0.20 0.205 0.005 0.152 0.024 215 73. 92. 136. 91. 105. 94. 150. 172. 138. 134. 140. 176. 88. 03. 67. 62. 107.																		
214 0.010 0.014 0.031 0.024 0.080 0.086 0.040 0.026 0.090 0.047 0.049 0.044 0.126 0.095 0.095 0.152 0.024 215 73. 92. 136. 91. 105. 94. (50. 172. 138. 134. (40. 176. 88. 03. 67. 62. 107.		•																
215 73, 98, 138, 91, 105, 99, 150, 172, 138, 138, 140, 176, AB, 83, 67, 62, 107,																		
		•	•															
		482	550.	696	572	518.	563	748	826.	661	716	637	661	796	213	1.5	284	567.

Table B-4. Water quality data for the Upper Colorado River at New Castle.

PEST DIVIDE PPOJEC

STATION 21: UPPER COLORADO AT GEN CASILE

CONF	5/25/77	6/16	6/30	7/19	8/24	9/21	10/19	11/15	12/13	1/18/78	2/15	3/21	4718	5/1"	6715	7/14	8724
101	248.	360.	300.	420.	360.	- 50.	5ñ.	208.	-50]	77.	265.	122.	144.	180.	1500.	235,	230.
102	980	73n	740	940	2400	342	173.	208	2556	4354	2/7	359		16500	4+20	4713.	231
1 n 3	•	•	, = (•	•		3.47	11.00	100	-100	-100	107	1 53.	104	-1 m	-104	-100	= 1 0 n _
104								104	119.	1 4 4	162	153.	417	778	-100	671	-10e.
105	-3.	-3.	-3.	-3.	-3.	-3.	-3.	-3	- 1	- 1	-3.	#3.	- 3	- 3	- 3	-3	-3
106	11.		5	12.	39.	19.	н.	3.	-3	- 4	-3.	• 5	10.	3.	-3.	4.	a.
107	17.	62.	•	61	73.	A >	103.	101.	я7.	79.	An.	86.	(.A.	43.	35.	LA.	76.
108	• 7 •	-1.		-1.	- 1.		-1.	2	_		-	-	,				_
100				- (,	-, -	1.47	-,.	ε.	۶.	_ 2	-1.	*1.		- No.	· .	٦,	a .
110	w10.	-10.	-10.	-10.	-10.	-10.	-10.	-10.	-10	-2∺. -10.	-20.	->n.	-10.	- 5 n	٠٠, ١	~2ú.	⇒ēr.
111	-10	-10	12.	30	60.	50	-10				-10.	-10	-		- 1 O	-10.	÷in.
112	221	104	15.	211.	208.	263	28/4	-10. 301.	-10.	30	#10.	-10.	-111.	<i>*</i> ' •	13.	13.	-1 n
113	-21.	-21.	-21.	-	38.	-	-		267	255.	eva.	Pag.	177.	131	Q z;	145.	73h.
114	543	555	317.	36. 722.	2370.	41.	-21.	64.	42.	-21.	-21.	-21.	\$1° a	1486	104.	105	3.5.
115		273.	317.	126.	8311.		239.		343,	391.	246.	160	ke.	Sana3.	5000.	\$461.	226.
116								-1.	-1.	-1,	-1.	-1.	-1.	1.	۶.	1.	-1.
117	13.	٩.		14.	7	1.0		۶.	3.	,	-1.	-1.	17.	40.	· .	13.	-1.
116	Â	10.	٩.	-5	7.	14.	6.	12.	15.	14.	74.	.4.	2.	n.	≥.	<u>.</u>	. 11.
110	3°.	33.				19.	22.	27.	50.	20.	15.	3,3	35.	15.	₹0,	А,	÷5.
120	9.3	0.5	. 22.	4h.	86.	43.	26.	27.	3/1	33.	34	43.	105.	619.	233	9.0	55.
121	0.5	6.8	0.8	-0,2 9,0	0,9	- n.≥	1.0	+ 0+2	F. 6	0.7	0.5	0.4	0.6	+u*5	9.5	r.7	1.0
152	-5	10			0.9	0.2	1.8	1 . 4	1.4	(1 . P	4.7	1.5	"2"		1.4	0.3	4.0
123	-5	21.	14. 21.	21.	24.	19.	۶n.	÷5.	16.	15.	12.	٠٩.	*5.	-5.	-5.	7.	10.
124	••	€/. #6.	-	27. -6.	27.	19.	15.	•5.	15.	31.	25.	۶.	59.	٠٠,	-5.	4.	lt.
125	17	-	-h.	™ ₽.	~ 6.	-6.	-6.	75.	**.	- 6.	~ 6.	-4.	* t) .	₩6.	-t.	• • •	-r.
12.	4.6	38. 3.0	5. n	n	63,	93.	ь.	75.	11.	- 6.	***	**.	50.	91.		- h	****
127	-1	*1.	~ 1	a n	6 • ft	5.0	4.8	2.4	7.4	3.5	2:0	3,3	5.2	a . 7	3.0	3.0	4 * 6
126	-1:	- 1	-1	-1. -1.	-1. 3.	-1. -1.	-1.	-1. -1.	-1.	-1.	-1.	-1.	*!.		-1.	-1.	-1.
124	- 2	-0	-0	- 0	-3.	=9	- G	_0	-1.	-1.	٩.	-1.	-1.		-1.	٤.	
130	11.	-0	-						+3.	-3.	G -	****	~°.	• ? •	- Q.	-9,	• **
131	94	77.	122.	128	87.	-9. 84.	• • •	-9.	- o .	-4.			-7.	***	-ç.	-9.	# Q .
132	9			45.		12.	151.	240.	155.	212.	172.	139.	71.	11.	٠,٠	3.5	47.
135	770.	132.	169	516	6. 391.	585	A.	13.	#15 _#	н2.	24.	35.	54.	15.	1	10.	- G
501	114	107	104.	118.	150	120.	213.	14.	421.	192.	24.	35.	Mar.	454		210.	31.
žnž	-1.	-1		•	•	-	143.	155	127.	127.	174.	125,	112.	15A.	77.	Inm.	130.
203	-1	-1	+1. +1.	-1.	-1.	-1.	-1.	-1.	- t .	-1.	-1.	-1.	-1.		-1.	-1.	*1.
264	110.	107		-1. 118.	-1.	-1.	-1.	-1.	-1.	-1.	-1.	-1,	-1.		-1.	2.	٠.5
205	1.66	0.31	1.34	0.38	12n. 0.56	159.	143.	149	140	127.	128.	125.	112.	178	77	1 11 11	130.
206	Ű	0	1.54	"•37	0	-1.15	-n.e5	0.55	., *0 • 0 ° 0	0.05	~0.95	0.11	15	11.32	•1 • 5	→ 0.0%	₩ () • () by
207	135.	111.		174	u	. 0	-	0.	_عدح	, J	0	0)	Ú	. 0	n	0
201	-0_01	-0.01			4	193.	107.	243		556	256	213.	213,	284	11	71.	1 29
204	n.13	6.10		-0.01	÷n.nt	0.11	0.14	0.17	-0.01	-n. ^1	0.61	0.01	-0.01	*0.01	1.11	0.01	30.02
210	0.07	0.13		0.15	9.16	0.18		0.16	11.24	A 0.0	11.21	10.0	*P.61	÷11 , 11	* 1 . 13 5	0.01	0.03
211	0,053			0.12	54.0	0.13	P. 0.4	1,19	0.37	0.44	ा , ३म	0.35	0.23	0.81	7	0.46	4.11
ج ا ج	0:7	ج ۱۰		0.004	0.058	0.008	0.001	0.005 0.3	7 nn 3	9,807	n . a e d	0.85%	10 g 11 11 Ag	13 4 27 28 48	0.017	2.000	0,014
213	0.007	0.614.		0.005	2.1	0.7	0.01 700.0	0.408	0,3		0.4	0.5	0.7	(, * k	1.4	1.3	11 . 6 0 . 11 . 1 . 1
214	0.007	0.014		0.037	0 033	0.107	0.037	0.040	0.00A 0.624	0.922 0.037	0.054	0.114	0.117	. n.	0.116	0.149	0.003
215	75.	42		АА	111.	110	127.	174.	135	117.	1110	103.	0,117	0.765 33.	0.273	75. 10. 10.	101.
216	480	438		594	500	502	752.		446	11/	665.	705	•	-		-	552
~ 1 0	-, · · · ·	- 3 C •		374.	31119	37C.	176.	814.	440		• زيتان	. / ! " " •	374.	223.	170.	773.	777

APPENDIX C

Statistical Analyses of Water Quality Data

Table C-1. Statistical analysis of the water quality data for West Divide Creek.

WEST DIVIOR PROJECT

STATION 13: WEST DIVIDE CHEEK

	,	141101 171	nrai vita	ILIFE CHEEN					
Cubs	CONSTITUENT	46.434	VARIANCE	\$.0.	C DF V	MAX	m I ia	HATIFE	
	Keran GPHUP Aq	METALLIC C	CONSTITUENTS	*****					
101	ALUMTHIUM, DISSHIVED (HOLL)	320.9	.14658+06	385.3	120.1	17 14.	55.	1.45.	15
102	ALUMINIUM, TOTAL (HGZL)	0004.1	.76126+08	872F.4	127.2	50100	411.	24064	17
103	SERIUM, DISSULVED (UL/()	144.6	.1134e+98	33.7	23.5	207.	tro.	101.	Ą
104	MARTON, TOTAL (NG/L)	435.4	.15716+00	396.4	91.0	1353.	131.	12/2.	, Ç
105	CAGATON, OISSOLVED (DEVL)	3.5	.56001. +110	0.7	20.2	q	š.	1.	خ
105	CAPATON, TOTAL (UG/L)	14.0	19621103	14.0	100.1	52.	. ذ	44	11
107	CALCIUM (MG/L)	69.2	.6166E+03	24.8	35.0	114.	ဥပ္	êy.	10
108	CHPURILDA, HEXAVALENT (DGVL)	4.1	.5211E+01	2.3	55.7	H.	1.	î.	10
109	CHRUMIUM, TOTAL (UGVL)	ກູ້ນ		0.0	0.0	11.	Ü.	0	()
116	CUPPER, DISSOLVED (UG/L)	13.0		0.0	9.0	15.	13.	11	i
111	CUPPEH, THIAL (UG/L)	30.2	3711++03	19.3	63.8	72.	10.	62.	10
511	HARDNESS, TOTAL AS CACOS (HG/L)	202.4	14446+05	150.2	45.7	412.	nt.	346.	17
111	1600 DISSULVED (116/1)	73.6	30236+04	55.0	79.7	250.	zъ.	210.	13
114	IRON TOTAL (US/L)	5528.9	6445E+05	802H.7	145.2	26400.	251.	20144.	10
115	LEAD, DISSOLVED (OG/L)	2.6	49178+01	2.2	80.5	ι.	1.	5.	4
116	LEAD, TOTAL (UG/L)	- 11.2	45208+02	6.7	60.0	22.	4.	16.	5
1 1 7	MAGNESTHM (MG/L)	24.5	246 48+03	15.7	64.1	15	z.	43.	16
115	MANGAGESE, DISSOLVED (DG/L)	62.2	24616+04	14 A	89.1	109.	ë.	141.	17.
119	MANGAMESE, TOTAL (UG/L)	200.5	24506+05	152.3	81.2	670.	58.	560	11
120	MERCURY, DISSULVED (116/1)	0.73	.16236+00	0 00	55.13	1,11	خ و و	1.0	1.3
151	MERCUPI, TUTAL (UG/L)	1.49	34416+01	1.86	124.71	4.7	0.5	6.4	15
122	MOLYBORNEY, BISSOLVED (LGZ)	7.4	71948+01	2.7	34.5	13.	5.	ь.	9
123	MOLYEDFRUM, FOTAL (UG/L)	13.5	2787L+02	5.3	30.2	23.	7.	it.	1.1
124	MICKEL, DISSULVED (UG/L)	23.7		26.4	111.5	54.	6.	48.	,
125	MICKEL, TOTAL (UG/L)	42.6	21466+04	46.3	104.8	154	6.	152.	14
125	POTASSIUM (MG/L)	4.3	\$375E+04	2.4	56.4	11.	ě.	9.	17
127	SPLE-IUM, DISSOLVED (UG/L)	5.0		0.0	9,0	5.	š.	0.	1
126	SELENIUM, TOTAL (UG/L)	3.0	30006+01	1.7	57.7	5.	ž.	3.	3
124	SILVER, DISSOLVED (UG/L)	0.0	0	0.0	u_6	ő.	0	0.	0
130	SILVER, TUTAL (UGYL)	13.0		5."	15.4	15.	11.		5
131	SUDIUM (MG/L)	92.1	4237F+04	65.1	70.7	100	5.	141.	1/
132	ZIRC. DISSOLVED (DG/L)	17.0	2390E+03	15.5	90.9	39	ő.	5.1	11
133	ZINC, TUTAL (UG/L)	256.5		165.1	54.4	567.	14.	553	10
					_	34.			,
	***** GPUUP BI	NON-METALL	.ic constitu	ENTS ****					
201	ALKALIMITY, TUTAL AS CACUS (MG/L)	308.4	.24631+119	143.6	46.h	531.	105.	425.	10
505	AMSERIC, DISSULVED (UGAL)	0.0	ń.	0.0	4) 11	0.	o,	0.	+ ;
503	ARSHUTC, TOTAL (UGVL)	15.0	.72005,+02	8.5	56.0	21.	9.	12.	2
504	BICAMBURATE HAPONESS AS CACOS (MGVE)	214.2	. 145AF + 115	130.1	46.5	516.	tou.	416.	15
205	POHON (ROVE)	0.476	.19136+00	0.437	91.854	1.93	0.08	1,55	13
506	CARRONATE AS CACOS (MGVL)	15.6	.75946+#2	H.7	55.8	34.	t.	28.	24
207	CHLORIUE (MG/L)	21.8	.27906+03	16.7	75.6	55.	٥.	52.	1.1
508	CYANIDE (MGVL)	0.048	.2440F=02	0.050	163.648	0.19	0.01	6.13	11
500	FLUOWIDE (NGZL)	0.459	. 1 37 48 + 00	0.371	84.746	1.14	0.01	1.10	1 4
510	MITROLES, MITRATE (MG/L)	0,547	7744++09	0.880	173.501	3.60	0.01	3.08	17
211	MITAUGEN, HIRITE (MGVL)	0.9697	.3618E-03	0.0190	196.3541	H. CHO	0.061	0.079	16
212	ULTRUGE : TOTAL DURANTE (MG/L)	0.91	1940++40	0.44	48.60	1.4	4.1	1.7	16
213	PROSPHORUS, OPTHO (MG/L)	0.0167	.304KE=43	0.0176	94.0031	0.055	9.861	0.054	17
214	PROSPHORUS, TOTAL (MG/L)	0,1423	. 2977F-01	0.1725	121.2517	0.730	4.000	0.724	17
512	SULFATE (MG/L)	114.5	.03501+04	79.7	00 H	3111.	7.	246.	17
216	TOTAL DISSULVED SOLIDS (MG/L)	4.99.4	.7220E+05	208.7	53.8	314°	112.	M30.	17.
						*			

Table C-2. Statistical analysis of the water quality data for the lower Colorado River at Silt.

WEST DIVIDE PROJECT

STATION 20: LOWER COLORADO AT SILT

		· ·		Lone. Col	Chapt.	U12.				
	CODE	COMSTITUENT	MEAN	VAPIANCE	s.n.	C OF V	MAX	H1N	RANGE	N;
		**** GROUP A;	METALLIC (CONSTITUENTS	****					
	101	ALUMINIUM, DISSOLVED (UG/L)	2,7 3	3/15.0-	37- 0	20.3	t a a is	. 0	a	
		* * * * * * * * * * * * * * * * * * *	2.83.2	.5524E+05	235.0	A0.3	1040.	લય.	956.	15
	103	ALUMINION, TOTAL (UG/L) BARIUM, DISSOLVED (UG/L) RAPIUM, TOTAL (UG/L) CADMIUM, DISSOLVED (UG/L) CADMIUM, TOTAL (UG/L) CALCTUM (MG/L) CHROMIUM, TOTAL (UG/L) CHROMIUM, TOTAL (UG/L)	2406.8	.2274E+08	4768.6	108.1	19700.	110.	19540.	17
	104	BARTIM TOTAL CHOICE	134.0	0. 50555.Ac	0.0	0.0	134.	134.	0.	1
	105	CARATUM DISCOLURG CHECK	441.2	.20235 +06	492.4	111.6	1393.	105.	1590.	¢
•	106	CADATON DISSULVED (BEYL)	5,3	.50006+00	0.7	80.8	a .	3.	1.	5
	100	CADMIUM, TOTAL (UG/L)	26.3	.1214E+04	34.8	132.3	110.	3.	107.	ú
	107	CALLIUM (MG/L)	71.7	.3231E+03	18.0	25.1	108.	33.	75.	17
	106	CHRUMIUM, HEXAVALENT [UG/L]	2.5	.1429E+01	1.2	47.8	5.	1.	4.	Æ
		The find to the	V • U	₩.	0.0	0.0	в.,	0.	0.	Λ
	110	COPPER, DISSOLVED (UG/L)	0.0	0.	0.0	0.0	n,	Û,	0.	()
	111	COPPER, DISSULVED (UG/L) COPPER, DISSULVED (UG/L) IRON, DISSULVED (UG/L) IRON, TOTAL (UG/L)	36.7	.8365E+03	58.9	7A.0	102.	14.	ah,	Ġ
	112	HARDNESS, TOTAL AS CACHS (MG/L)	223.0	.3411E+04	5A.4	26.2	300.	46.	204.	1.7
	113	IPON, DISSOLVED (UG/L)	57.1	.2062E+04	45.4	74.5	174	22.	152.	11
			2421.4	.3593E+0A	5994.0	247.5	24971.	25.	54444	1.7
		LEAD, DISSOLVED (UG/L)	4.2	.3200E+01	1.75	42.6	7.	٠. ٤	5.	٠,
	116	LEAD, TOTAL (UG/L)	12.5	\$9906+05	A.4	64.9	23.	2.		
	117	MAGNESIUM (MG/L)	10.6	.23375+02	4 3	43.4	2e.	2.	36.	17
	118	MANGANESE, DISSULVED (UG/L)	23.1	3269E+03	18.1	7# 4	54.	6.	58	16
	119	MANGAMESE, DISSULVED (UG/L) MANGAMESE, TOTAL (UG/L)	63.9	3500E40#	50.0	79.6	152.	20.	142.	17
	120	MERCURY, DISSOLVED (UG/L)	0.52	.1136E+00	0.34	65,05	1.2	0.2	1.0	
	121	MERCURY, TOTAL (UG/L)	0.91	1029F+01	1.01	111.69	4,4	9.2		15
	122	MOLYBOFNUM, DISSOLVED (HEZL)	15.2	6779F+03	R.2	54.3	29.	6.		12
	123	MOLYSDENUM, TOTAL (UGZ)	42.5	7119F+0#	84 4	198.7	3.20	٥.	314.	13
	124	NICKEL, DISSOLVED (UC/L)	50.5	3445F + 0 n	58.7	VA.6	101.	je.	83.	5
	125	NICKEL TOTAL (HGZL)	31 4	98576+01	31.4	60,4		3	99.	15
	126	POTASSIUM (MC/L)	21.4	10405104	31		7.			
	127	SELECTION DISSOLVED AUTOLS	3 4	* I m D U C 4 \(\text{1} \)	1.2	30.6		2.	5.	
	128	SELENTING TOTAL THE CA	2.17	47775.05	0.0	0.0	2.	ξ.	· ·	1
	129	CILVED DISSILVED (UCV.)	0.1	.13335703	11.5	133.2	22.	2.	20.	3
	130	STINED TOTAL CHOICE		40775.00	0."	0.0	.0.	· .	0.	ø
	131	STEASE INTEL (ARVE)	11.5	*10225+05	3.2	28. a	15.	9.	Ò.	3
	177	True franchisch durch	110.7	.3837E+04	61.9	56.0	218.	9.	504.	1.7
	132	ZINC, DISSOLVED (UGVE)	34.7	.1032E+04	32.1	92.5	107.	8.	96.	11
	133	ZINC, TOTAL (UG/L)	666.5	.3091E+07	1754.2	263.7	6763.	18.	6745.	1 4
		MERCUPY, DISSOLVED (UG/L) MERCUPY, TOTAL (UG/L) MOLYBDENUM, DISSOLVED (UG/L) MOLYBDENUM, TOTAL (UG/L) NICKEL, DISSOLVED (UG/L) NICKEL, TOTAL (UG/L) POTASSIUM (MG/L) SELENIUM, DISSOLVED (UG/L) SELENIUM, TOTAL (UG/L) SILVER, TOTAL (UG/L) SODIUM (MG/L) ZINC, TOTAL (UG/L) ALKALINITY, TOTAL AS CACO3 (MG/L)	NON-METALL	IC CONSTITUE	ENTS ****	•				
	201	ALKALINITY, TOTAL AS CACO3 (MG/L)	127.4	.4536E+03	21.3	16.7	172.	74.	94,	17
	505	ARSENIC, DISSOLVED (UG/L)	0.0	0.	0.0	0.0	n	0	0.	n
	203	ARSENIC, TOTAL (UG/L)	2.0		n 6	0.0	>.	à.	0	1
	204	BICARBONATE HARDNESS AS CACOS (MG/L)	125.5		19.4	15.4	172.	78.		17
	205	BORON (MG/L)	0.528	45318+00	0.675	127.487	2.14	0.05		10
	206	CARBONATE AS CACO3 (MG/L)	9.3	63076+02	7.7	85.1	21.	1.	20.	p.
	207	CHLORIDE (MG/L)	152.4	.6748E+04	82.1	53.0	205			
		CYANIDE (MG/L)	0.048	3256E=02	0.057	118.036	p. 1 a	12.	274.	17
		FLUDFIDE (HG/L)	0.135	.6244E-02	0.072	28 838 110 € 433		0.01	0.17	11
		MITRUGEN, MITRATE (MG/L)				-	0.27	0,01	0.25	13
	211	NITROGEN, NITRITE' (MC/L)	0.539		0.753	139,516	3,33	0.06	3,27	17
	215	NITROGEN. TOTAL ORGANIC AMERICA	0.0091	.27098+03	0.0165	181.6044	0.4670	0.001		16
	213	NITROGEN, NITRITE (MG/L) NITROGEN, TOTAL ORGANIC (MG/L) PHOSPHORUS, ORTHO (MG/L)	1.34	.49546+01	2.23	166.30	F.7	5.0	7.0	13
	214	PHOSPHORUS, TOTAL (MG/L)	0.0098	.4640E=04	0.068	69.5945	0.023	6,091	0.022	17
	215	PHOSPHORUS, TOTAL (MG/L)	0.1935	.4410E=01	0.2100	202,0453	ר כיב	0.010		1.7
		SULFATE (MG/L)	105.6	.1128E+04	33.6	31.8	172.	43.	129.	17
	E 1 D	TOTAL DISSOLVED SOLIDS (MG/L)	545.1	.3537E+05	188.1	34.5	A26.	162.	654.	17

Table C-3. Statistical analysis of the water quality data for the upper Colorado River at Newcastle.

WEST DIVIDE PROJECT

STATION 21: UPPER COLORADO AT NEW CASTLE

CODE	CONSTITUENT	MEAN	VAPTANCE	5.D.	C (IF V	MAX	~1N	HANGE	Ŋ
	***** GROUP A:	METALLIC (CONSTITUENTS	****					
101	ALUMINTUM, DISSULVED (UG/L)	321.0	.1358E+06 ·	368.5	114.5	1600.	00.	1534.	15
102	ALUMINIUM, TOTAL (UG/L)	2661.0		4000.7	150.3	16500.	173.	16327.	17
	BARIUM, DISSOLVED (UG/L)	114.7		15.9	13.9	143.	104.		
104	BARIUM, TOTAL (UGVL)	114.7	73415105					29.	3
	CADMIUM, DISSOLVED (UG/L)	321.3 0.0 10.1 71.9 3.5	.72618+05	269.5	83.9	774.	174.	674.	8
106	CADMINE ACAMI AND A DOLLAR OF A CADMINE AND A DISTORTED AND A CADMINE AN	0.0	0,	0.0	0.0	n •	n.	0.	0
107	CADMIUM, TOTAL (UG/L) CALCIUM (MG/L)	10.1	.1068E+03	10.3	102.5	39.	3.	36.	12
	CACCION (NG/C)	71.9	.3667E+03	19.2	26.6	143.	35.	58.	16
108	CHROMIUM, HEXAVALENT (UG/L)	3.5	.7714E+01	2.8	74.4	10.	2.	₽.	8
109				0.0	n.º	n.	۰,	0.	0
	COPPER, DISSOLVED (UG/L)	9.0	0.	0 , 11	0.0	9.	o.	A .	()
111	COPPER, TOTAL (UG/L)	34.6	4303E+03	20.7	59.9	ьo.	12.	40.	H
112	HAPONESS, TOTAL AS CACOS (MG/L)	234.1	.8638E+04	92.9	39.7	509.	94	415	16
113	IRON, DISSOLVED (HG/L)	64.1	1513E+04	38.9	60.7	140	30.	110.	10
114	IRON, TOTAL (UG/L)		.3360E+08	5797.0	245.0	24093	30.	24003	17
115	LEAD, DISSOLVED (UG/L)		.3333E+00	0.6	43.3	٠.	1.	1.	3
116	LEAD, TOTAL (UG/L)	11.4		11.5	100.9	34	2.	3 8 .	7
117	MAGNESTUM (MG/L)	111 1	3707F±07	16.7	127.1	7/1.	5.	72.	16
118	MANGANESE, DISSOLVED (UG/L)	23.4	28486+03				-		
	MANGANESE, TOTAL (UG/L)	89.8	9130E.0E	16.9	74.7	72.		55.	
120	MERCURY, DISSOLVED (UG/L)			145.9	162.6	619,	55.	597	17
121	MEPCURY, TOTAL (UR/L)	9.73	.1173E+00	0.34	46.87	1.6	0.3	1.3	13
	MOLYMOENIN DISCOLUED AND A	1.11	./36KE+00	0.87	78.67	4.9	0.2	3.8	17
123	MOLYEDENUM, DISSOLVED (UG/L)	15.5	. 52978+97	5.7	36.4	26.	7.	19.	11
124	MOLYBDENUM, TOTAL (UG/L)	22.0	.7568E+00 .3207E+02 .1820E+03	13,5	61.3	20.	5		- 13
	MICKEL, DISSOLVED (UG/L)	75.0	0.	0.0	$a_{\bullet}a$	75.	75.	۰.	1
125	NICKEL, TOTAL (UG/L)	49.3	.1126E+04	33.6	6ñ.n	¢3.	6,	A7.	9
126	POTASSIUM (MG/L)	4.0	.15956+01	1.3	31.4	7.	≥.	ŗ.	1 7
127	SELENIUM, DISSOLVED (UG/L)	0.0	0.	0.0	a,n	٠,٠	0.	r •	0
	SELENIUM, TOTAL (HG/L)	2.8	.2917F+01	1.7	68.1	٠, ٠	1.	4.	4
154	SILVER, DISSOLVED (HG/L)	0.0	0.	0.0	0.0	9.	0.	n.	n
130	SILVER, TUTAL (UG/L)	10.0	.20006+01	1.4	14.1	11.	9.	5.	2
	SODIUM (MG/L)	111.6	41668+04	64.5	57.8	240.	٩	231.	17
132	ZINC, DISSOLVED (UG/L)	21.0	.4385E+03	₽n_9	49.7	8.2	٥.	76.	12
133	ZINC, TOTAL (UG/L)	251.5	.1595E+01 0. .2917F+01 0. .2000E+01 .4166E+04 .4385E+03 .4795E+05	219.0	P7.1	774	18.	756.	17
	**** GROUP B:			-		•	• • •	,,,,,	• •
201									
	ALKALINITY, TOTAL AS CACO3 (MG/L)		*3867E+03	19.7	15.8	158.	77.	×1.	16
203	ARSENIC, DISSOLVED (UG/L)	0.0		0.40	6 • 0	В.	0.	n.	0
204	ARSENIC, TOTAL (UG/L)	2.0		0.0	0.0	٠,	5.	0.	د
	BICARBONATE HARDNESS AS CACO3 (MG/L)	124.1	.3645E+03	19.1	15.4	156.	77.	41.	16
205	BORON (MG/L)	0.543	.2888E+00	0.537	98,981	1.60	0.05	1.61	1.0
506	CAPBONATE AS CACO3 (MG/L)	6.0	٥.	0.0	0.0	6.	6.	n.	1
207	CHLOPIDE (MG/L)	165.7	.6910E+04	. A3.1	50.2	أومح	13.		15
208	CYANIDE (MG/L)	0.060	.4657E=02	0.068	113.739	0.17	0.01	0.15	8
503	FLUORIDE (MG/L)	0.121	.6554E=02	0.081	46.498	11.26	0.01	0.25	
210	NITROGEN, NITRATE (MG/L)	0.279		0.128	57.261	0.67	0.08	0.54	16
511	NITPOGEN, NITPITE (MG/L)	0.0085		0.0138	161,2945	n ,5A	5,001	6.057	15
212	NITROGEN, TOTAL ORGANIC (HG/L)	0.72	.2683E+0n	0.52	72.07	ے ا	0.2	3.4	16
213	PHOSPHORUS, ORTHO (MG/L)	0.0149	1883E-03	0.0137	91.4715	0 <u>.</u> 549	0,001	. ពួកជំន	16
214	PHOSPHORUS, TOTAL (MG/L)	0.1059		0.1869	176.5040	0.755	0.007	0.758	
	SULFATE (MG/L)	100.4	.1104E+04	33.2		•			16
216	TOTAL DISSOLVED SOLIDS (MG/L)				33,1	174.	43.	131.	16
	producted doctor (well)	310.1	.3837E+05	195.9	39.0	a j p	170.	Auo.	1 🥆

APPENDIX D

Comparison of Water Quality Data with the Proposed Colorado Water Quality Standards

Table D-1. Comparison of the water quality data for West Divide Creek with the proposed Colorado Water Quality Standards.

MEST DIVIDE PROJECT STATION 13: HEST DIVIDE CREEK

CODE	CONSTITUENT	STANDARD	SOUPCE	NUMBER Exceeding	NUMMER OF SAMPLES	PERCENT Exceloing
101	ALUMINIUM, DISSOLVED (UG/L)	100,000	4.5	13	16	81.25
104	BARIUM, TOTAL (UGYL)	1000.000	a S	1	9	11.11
	CADMIUM, TOTAL (UG/L)	10,000	A G	h	1.1	54.55
	•	10.000	*5	6	11	54.55
		0,400	ARLT	1 '	11	9.09 36.35
	•	1.000 5.000	51HA 4H23	3 .	11 11	21.27
		10.000	1434	3	11	27.27
	•	15,000	ARG4	0	11	0.00
109	CHROHIUM, TOTAL (UG/L)	100,000	A G	0	0	0.00
		50,000	45	0	ņ	0.00
		100,000	A H	0	. 0	0.00
111	COPPER, TOTAL (UG/L)	200,000	A G	0	10	0.00 0.00
		1000,000	M5 AHL1	2	10	20.00
		10,000	A512	۶	10	20.00
		19,000	4923	Š	10	50.00
		20,000	AR34	1	10	10.00
		49.000	AAG4	n	10	0.00
113	IRO", DISSOLVED (UG/L)	300,000	≓S.	0	13	0.00
114	IRON, TOTAL (UG/L)	1000,000	AR	11	16 5	68.75 0.00
116	LEAD, TOTAL (UG/L)	100,000	AG ms	υ 0	5	0.00
		50,000 4,000	ABLI	ş	ś	40.00
		25.000	4812	ō	5	0.00
		50,000	4423	n	5	0.00
		100,000	4634	0	5	0.00.
		150.000	. AHG4	0	5 .	0,00
117	MAGNESIUM (MG/L)	125.000	w S	0	15	0.00
118	MANGANESE, DISSOLVED (UG/L)	50.000	* 5	8 5	17 17	47.06 29.41
119	MANGANESE, TOTAL (UG/L)	200.000	A G A fi		17	0.00
	MERCURY, TOTAL (UG/L)	1000.000	N5	3	16	18.75
151	HENCOMY, TOTAL (DG/L)	0.050	4A	16	16	100,00
125	NICKEL, TOTAL (UG/L)	200,000	AG	0	14	0.00
		50.000	ABLI	0	1 4	0.00
		100.000	4912	0	1 4	0.00
		500.000	4923	0	1 # 1 #	0.00
		300.000	A 9 5 4	Ö	14	0.00
	SELENIUM, TOTAL (UG/L)	400.000 20.000	AG	0	3	0.00
128	SELENIUM, TOTAL (UG/L)	10.000	W.S	ó	ž	0.00
		50.000	AH	n	3	0.00
130	SILVER, TOTAL (UG/L)	50,000	ri S	0	3	0.00
		0.100	4 8 L 1	0	3	0.00
		0,100	AE12	1	3	33.33
		0.150	A923	0	3	0.00 66.67
		0.200 0.250	4434 4864	0 5	3	0.00
	ZINC, TOTAL (UG/L)	2000.000	AG	ő	16	0.00
133	ZINC, TOTAL (UG/L)	5000.000	#S	ō	16	0.00
		50.000	ABLI	Š	16	12.50
		50,000	AP12	4	16	25,00
		100,000	A 623	2	16	12.50
		-300.000	At:34	, <mark>e</mark>	16	12.50
		600,000	A 4 G 4	P	16	0.00
505	ARSENIC, DISSOLVED (UG/L)	100,000	4 G # S	0	0	0.00
		50.000 50.000	44	Ű	"	0.00
205	BOPON (MG/L)	750.000	ĀĢ	ň	13	0.00
207	CHLORIDE (MG/L)	250.000	• 5	Ô	11	0.00
306	CYANIDE (MG/L)	0.200	4 G	0	11	0.00
		0.200	45	e	11	0.00
		4.005	9.4	11	3.1	190,60
209	FLUCKIDE (MG/L)	2,4110	n.5	0	14	0.00
510	WITROGEN, NITHATE (MG/L)	107,000	A.G. ↑S	e	17 17	0.00
211	NITHOREN, WITRIJE (MG/L)	10,000	A G	0	16	6.00
-11	The state of the s	1,000	45	ò	15	0.00
	•	0.050	ARC	. 1	16	6.25
		9,500	W FI W	e	16	0.00
215	SULFATE (MG/L)	520.000	⊭ S	1	17	5.83

SCURCE CODES:

ARE AUDATIC BIOTA

ARC & FOURTIC HIDTA (COUD)

APR & AUDATIC BIOTA (FAM)

ARI & AUDATIC RIDTA (TOTAL HARDNESS) LESS THAN 100)

ARI & AUDATIC BIOTA (TOTAL HARDNESS) LESS THAN 100)

ARI & AUDATIC BIOTA (TOTAL HARDNESS) 200-300)

ARI & AUDATIC BIOTA (TOTAL HARDNESS) 300-000)

ARI & AUDATIC BIOTA (TOTAL HARDNESS) 300-000)

ARG & AGRICULTUPE

MS & CLASS & RAW WATER SUPPLY

Table D-2. Comparison of the water quality data for the lower Colorado at Silt with the proposed Colorado Water Quality Standards.

MEST DIVIDE PROJECT
STATION 20: LOWER COLORADO AT SILT

	•					
CODE	CONSTITUENT	STANDARD	SOURCE	NUMBER Excepding	NUMBER OF Samples	PERCENT EXCELDING
101	ALUMINIUM, DISSOLVED (UGZL)	100,000	AB	10	15	93.33
104	BARTUM, TOTAL (UG/L)	1000,000	N.5	1	- 6	16,67
106	CADMIUM, TUTAL (UG/L)	10,000	A G	7	9	77,78
-	• • • • • • • • • • • • • • • • • • • •	10.000	> S	7		77.78
	Α.	0.400	ABLI	0	9 .	0.00
		1,000	4 n 1 2	3	4	33,33
		5.000	AR23	5	•	55,56
		10,000	A834	0	9	0.00
_		15,000	ASGU	n	9	0.00
109	CHROHIUM, TOTAL (UG/L)	100,000	AG	0 0	0	0.60
		50,000	WS AR	0	ő	0.00
	COPPER, TOTAL (UG/L)	100.000	AG	o o	9	0.00
111	COPPERT TOTAL (UGYL)	100.000	W.5	n n	á	0.00
		10,000	AALI	ï	ą	11.11
		17,000	A812	3	o ·	33.33
	•	10.000	ESAA	4	9	44.44
		20.000	ARBU	0	9	0.00
		40.000	AHG4	Ĉ.	Ģ	9.00
113	IRON, DISSOLVED (UG/L)	360,000	HS.	C;	11	0.03
114	IRON, TOTAL (UG/L)	1000,000	AB	4	17	23.53
116	LEAD, TOTAL (UG/L)	100,000	AG	0	ь	0.00
		50.000	NS	0	6	0.00
		4,600	ABL1	1	6	15.67
		25.000	ARIZ	0	6	0.00
		50.000	A823	6	6	0.00 0.00
		100,000	AB34 ABG4	6	6 6	0.00
117	MAGNESIUM (MG/L)	150.000 125.000	WS	0	17	0.00
118	MANGANESE, DISSOLVED (UG/L)	50.000	*S	ž	16	12,50
119	HANGANESE, TOTAL ('IG/L)	200.000	A G	ē	17	0.00
,	TANGENCOLY TOTAL (TOYE)	1000,000	AB -	0	17	0.00
151	MERCURY, TOTAL (UGZL)	2,000	MS.	i	is .	6.67
		0.050	Ab	15	15	100,00
125	NICKEL, TOTAL (UG/L)	200,000	AG	0	15	0,00
		50,000	49L1	0	18	0.00
	•	100.000	SIBA	0	12	0.00
		500.000	ESRA	0	12	0.00
		300,000	4434	b.	12	0,00
		400,000	ANGA	0	15	0,00
128	SELENIUM, TOTAL (UG/L)	20,000	AG	1	3	33.33
		10,000	×5	1 .	3 3	33,33 0,00
130	SILVER, TOTAL (UG/L)	50.000 50.000	AH HS	é	. 3	0.00
130	STEATULE (OGAE)	0,100	ABLI	ò	. š	0.00
		0,100	AH12	. 0	3	0.00
	•	0.150	ARZS	3	3	100,00
		0.200	A#34	0	3	0.00
	•	0.250	AHG4	0	3	0.00
133	ZINC, TOTAL (UG/L)	2000,000	A G	1	14	7.14
		5000,000	ws	1	1 4	7.14
		50.000	AHL1	1	14	7.14
		50,000	AR12	3	14	21.43
		100.000	AH23	7	14	00,02 01,0
		303,00n	A834	0 .	14	0,00
		600,090	¥ 8:0 m	0	14	0.00
202	AFSENIC, DISSOLVED (NG/L)	100.000	AG	0	,,	0.00
		50,000	⊮S AR	ů,	ų.	0.00
		50,000 750,000	A G	ø	10	0,00
205	BODON (RENT)	250,600	75	í	17	5.88
207	CHLORIDE (MG/L)	0.200	AG	Ü	ii	0.00
208	CYANIDE (MG/L)	0.200	45	õ	ii	0.00
	•	0.005	AS.	11	7 1	100.00
209	FLUORIDE (MG/L)	2.400	m S	Ô	13	0.00
210	NITROGEN, NITRATE (MG/L)	100.000	A G	n	17	0.00
- 10	THE STREET STREET	10,000	NS.	U	17	0.00
211	WITROGEN, WITRITE (MG/L)	10,000	A G	0	16	0.00
	•	1.000	WS_	0	16	0.00
		0.050	AAC	1	16	6.25 0.00
_		0.500	ABH	0	16 17	0.00
215	SULFATE (MG/L)	250.000	₩5	v	• •	• • • • • • • • • • • • • • • • • • • •
		•				

SOUPCE CODES:

AB & ACUATIC BIDTA

ABC & ACUATIC BIDTA (COLD)

ABN & ACUATIC BIDTA (KALM)

ABLI & ACUATIC BIDTA (KALM)

ABLI & ACUATIC BIDTA (IDTAL HARDVESS) LESS THAN 100)

ABIZ & ACUATIC BIDTA (IDTAL HARDVESS) INC-200)

ABIZ & ACUATIC BIDTA (IDTAL HARDVESS) INC-200)

ABIZ & ACUATIC BIDTA (IDTAL HARDVESS) INC-200)

ABGW & ACUATIC BIDTA (IDTAL HARDVESS) GOT-400)

AG & ACRICULTURE

HS & CLASS 2 NAW MATER SUPPLY

Table D-3. Comparison of the water quality data for the upper Colorado River at New Castle with the proposed Colorado Water Quality

WEST DIVIDE PROJECT

STATION 21: UPPER COLORADU AT NEW CASTLE

					NUMBER OF	PERCENT
CODE	CONSTITUENT	STANL APD	SOURCE	NUMBER EXCELDING	SAMPLES	EXCEEDING
	•					
101	ALUMINIUM, DISSULVED (UG/L)	100 000	A 44	13	15	86.67
	BARTUM, TOTAL EUG/L)	1000 000	45	0 5	8 12	0.00
100	CADMIUM, TOTAL (UG/L)	10,000 10,000	4 G 4 S	5	12	41,67
		0,400	48L1	ő	12	0.00
		1,900	4612	ŭ	iz	33.33
		5,000	£584	5	12	41.67
		10,999	4434	0	12	0.00
		15,000	ARGU	. 0	5.1	0.00
109	CHROMIUM, TOTAL (UG/L)	100,000	AG	0	n	0.00
		50,000	*5	Ò	0	0,00
		100.000	48	ņ	<u>0</u> .	0.00
111	COPPER, TOTAL (UG/L)	200,000	AG	0	8	0.00
		1000.000	*S	0 1	8 8	0,90 12,50
		10.000	48L1 4912	ź	8	25.00
		10.000	A623	ŭ.	ě	50.00
		20,000	A934		8	0.00
		40.000	ARGA	6		6,90
113	IRON. DISSOLVED (UG/L)	300,000	WS	0	10	0.00
114	IRON, TOTAL (HG/L)	1000,000	48	4	17	23.53
116	LEAD, TOTAL (UG/L)	100,000	A G	0	7	n.00
		50,000	#S	0	7	0.00
		4,000	49L1	1	7	10.29
		25.000	4412	1	7	14.29
		50.000	A923	9	7	0.00
		100.000	4334	0	7	0.00
443	MARKETTING AND ILS	150.000 125.000	ASG4.	0	16	0.00
117	MAGNESIUM (MG/L) MANGANESE, DISSOLVED (UG/L)	50.000	45	i	15	0.57
119	MANGANESE, TOTAL (UG/L)	200,000	4 G	ž	17	11,76
117	THE TOTAL TOTAL	1000,000	AR	٥	17	0.00
121	HERCURY, TOTAL (UG/L)	5.000	5	1	17	5.44
		0.050	AH	17	17	100.00
125	NICKEL, TOTAL (UG/L)	200.000	A G	0	9	6.00
		50,000	ABLI	0	9	0.00
	•	100,000	SIRA	ç	ě	0.00
		200.000	254A 427A	9	. 9	0.00
	•	300,000 400.000	ABG4	ó		0.00
128	SELFNIUM, TOTAL (UG/L)	29.000	AG.	ö	d	0.00
150	SCERTION INTAL (DEVE)	10,000	#S	ŭ	a	0,00
		50,000	AH	0	ā .	0.00
130	SILVER, TOTAL (UG/L)	50,000	MS	c	2	0.00
		0.100	ARLI	0	?	0.00
		0,100	ARIZ	0	2	0.00
		0,150	AH23	\$?	100,00
		0.200	A634	n o	5	0.00
	THE PARTY THE PARTY IN	0.250	APG4	. 0	17	0.00
133	ZINC, TOTAL (UG/L)	2000.000 5000.000	AG #S	ñ	17	0.00
		50.000	ABLI	1	17	5.88
		50.000	4812	á	17	23.53
		100,000	AR23	7	17	41.18
		300,000	AGSU	Ō.	17	0.00
		600.000	ABG4	0	17	0.00
505	ARSENIC, DISSOLVED (UG/L)	100,000	AG	0	Ģ	0.00
		50,000	WS AR	0	Ů Ů	0,00 0,00
	See and the second	50.000	A F	0	10	0.00
205	BOROM (MG/L) CHLORIDE (MG/L)	750.000 250.000	W.S.	ş	15	13.33
207 208	CYANIDE (MG/L)	0.200	AG	ŋ	16	0.00
£ 17 (3	ALLEN FUREE	0.200	KS.	ò	ě	0.00
		0,005	AH	ě	8	100.00
209	FLUORIDE (MG/L)	2.400	WS	n	12	0,00
210	MITROGEN, NITRATE (MG/L)	100,000	≜ G	0	16	0.00
		10,000	w.S.	0	16	0.00
511	NITROGEN, NITRITE (MG/L)	10.000	A G	. 0	15	0.00
		1.000	HS	0 3	15 15	0,00
		^.050 ^.500	AHC	,	15	0,00
215	SULFATE (MG/L)	250,000	HS.	0	16	0.00
613	NOR THE COURTS	230,4000			•	. •

AR = AGUATIC BIOTA

ARC = AQUATIC BIOTA

ARC = AQUATIC BIOTA (COLD)

ARC = AQUATIC BIOTA (COLD)

ARL = AQUATIC BIOTA (IDTAL HAPDNESS) LESS THAN 100)

ARL = AQUATIC BIOTA (TOTAL HAPDNESS) LO0-200)

ARBA = AGUATIC BIOTA (TOTAL HAPDNESS) LO0-200)

Bibliography

- A.P.H.A. 1975. Standard methods for the examination of water and wastewater. 14th Edition. 1193 p.
- Hem, John D. 1970. Study and interpretation of the chemical characteristics of natural water. 2nd Edition. U.S.G.S. Water Supply Paper No. 1473. 363 p.
- National Academy of Sciences. 1972. Water quality criteria, 1972. Ecological Research Series EPA-R-3-73-003. 594 p.
- Sawyer, Clair N., and Perry L. McCarty. 1978. Chemistry for sanitary engineers. 3rd Edition. McGraw-Hill Book Co., New York. 532 p.
- U.S.E.P.A. 1971. Algal assay procedure: Bottle test. National Eutrophication Research Laboratory, Corvallis, OR. 81 p.
- U.S.E.P.A. 1976a. Methods for chemical analysis of water and wastes. Technology Transfer Series EPA-625/6-74-003a. 298 p.
- U.S.E.P.A. 1976b. Quality criteria for water. U.S.G.P.O. 0-222-904, Washington, D.C. 256 p.