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Symbol

O

NOMENCLATURE
Definition
Area
Bottom width of flume at section where t is measured

Contraction ratio, or the ratio of b to the width of the flume
where h is measured

Coefficient in free flow equation

Coefficient in numerator of submerged flow equation
Coefficient in denominator of submerged flow equation
Force

Maximum Froude number

Acceleration due to gravity

Upstream depth of flow measured from the elevation of the
crest of structure

Design head
Minimum depth of flow in flume throat

Total energy head at upstream section measured from the
crest of the structure

Total width of the roadway (pavement plus two shoulders)
Pavement width of embankment
Shoulder width of embankment

Exponent in the free flow equation and numerator of the
submerged flow equation

Exponent in the denominator of the submerged flow equation



Symbol

P +E

NOMENCLATURE (Continued)
Definition

Height of weir or embankment
Height of ogee spillway
Discharge per foot of length of weir
Total flow rate, or discharge
Submergence, which is the ratio of a downstream depth to an
upstream depth with both depths referenced to a common
elevation
Embankment slope
Pavement cross slope
Shoulder slope
Transition submergence
Downstream depth of flow measured from the crest of the structure
Average velocity
Average velocity at section 1
Average velocity at section 2
Flow depth
Flow depth at section 1
Flow depth at section 2
Flow depth at crown line
Momentum correction coefficient
Maximum Froude number occurring in the flume, V/(ghm)l/Z

Submergence, t/h

Energy loss parameter, (h - t)/hm



NOMENCLATURE (Continued)

Symbol Definition
v Specific weight of fluid
A Embankment slope

p Density of fluid



INTRODUCTION

Submerged flow exists for any given structure when a change in flow
depth downstream from the structure causes a change in flow depth upstream
from the structure for any given constant value of discharge. The two flow
depths, normally measured when submerged flow exists, consist of a depth
upstream from the structure, which is used also for free flow conditions,
and a depth of flow located any place downstream from the structure.

The initial studies in which the submerged flow analysis was developed
were made on flat-bottomed flumes (Hyatt, 1965; and Skogerboe, Walker,
and Robinson, 1965). Later studies verified the method of analysis for
Parshall flumes (Skogerboe, Hyatt, England, and Johnson, 1965; and Hyatt,
Skogerboe, and Eggleston, 1966), as well as for highway embankments
(Skogerboe, Hyatt, and Austin, 1966). Because of previous findings, it
was felt this method of analyzing submerged flow could be applied to various
types and kinds of weirs,

Original development of the parameters and relationships which
describe submerged flow came from a combination of dimensional analysis
and empiricism. Further verification of the parameters developed in this
manner are obtained by employing momentum relationships. Both approaches
to the submerged flow problem are discussed in this report.

Considerable effort and study has been expended on free and submerged

flow weirs by other authors in previous years. For this reason the authors



of this report went to the literature as a source of data.

Various studies typifying a particular type of weir structure were
investigated and the data selected from these studies were subjected to
the submerged flow analysis developed by the authors. The data from
these studies provide further verification of validity of the approach to the
submerged flow problem made by the authors.

Acknowledgment is given and appreciation expressed to those authors
whose studies provided the data used in the analysis presented in this
report.

Although no investigation was made of a contracted weir, the authoers
feel that the submerged flow analysis as explained in this report would be

just as valid for this type of structure.

DEFINITION OF FLOW REGIMES

The two most significant flow regimes or flow conditions are free
flow and submerged flow. The distinguishing difference between the two
is that critical depth occurs, usually near the crest of the weir, for the
free flow condition. This critical-flow control requires only the
measurement of a depth upstream from the point of critical depth for
determination of the free flow discharge. When the downstream or tailwater
depth is raised sufficiently, the flow depths at every point through the
structure become greater than critical depth, and submerged flow conditions
exist. In the submerged flow regime a change in the tailwater depth also

affects the upstream depth and a rating for the weir requires that two flow



depths be measured, one upstream and one downstream from the structure.
The flow condition at which the regime changes from free flow to
submerged flow is a transition state that is unstable and difficult to produce
in the laboratory. The value of submergence at which this condition occurs
is often referred at as the transition submergence, symbolized by St. This
change from supercritical flow to subcritical flow (transition submergence)
signifies that the Froude number is equal to 1 at a single flow cross-section,
and for every other cross-section the Froude number is less than 1. At the
transition from free flow to submerged flow, the discharge equations for the
two flow conditions should be equal. Consequently, if the discharge equations
are known, the transition submergence can be obtained by setting the free

and submerged flow equations equal to one another.
THEORETICAL ASPECTS OF SUBMERGED FLOW

Application of momentum theory can result in the development of
submerged flow discharge equations for weirs, flumes, or other structures.
Such equations are beneficial and instructive for comparison with the
empirical equations developed from dimensional analysis. An embankment-
shaped weir will be selected to illustrate the application of momentum theory.
A control volume of fluid will be used which is bounded by the vertical
sections at 1 and 2, the water surface, and the surface of the embankment,
as shown in Fig. 1.

A solution for the horizontal component of the form resistance force,
Fe , due to the embankment will be developed. A generalized diagram of the

x
force of the embankment acting on the fluid is shown in Fig. 2.



Fig. 1. Control volume for analysis of embankment-shaped weir.

Fig. 2. Definition sketch for force acting
on the fluid due to embankment.



F (1b/ft) = TP -y "
2 sin A
LA T 1

sin A
F (1b/ft) = vP (y +—P) sin A
X - 2

sin A

P

The force of the embankment on the fluid will be designated as Fu for the
upstream slope and Fd for the downstream slope. The assumption is made
that the pressures acting on both the upstream and downstream slopes of
the embankment are hydrostatic. Assuming the pressure on the upstream
slope is due to the water surface elevation at section 1, and the pressure on
the downstream slope is due to the water surface elevation at section 2, the
horizontal components of F and Fd can be developed from similarity with

u

the equation for FX (Eq. 2).

Fo=yPh+P/2) . . . . . 3
X
F, =yP(+P/2) . . . . . . . . . . .. 4
X
F_ =yP(h+P/2) - P (t+P/2)

X

=y P(h-t) .. 5

The forces acting on the control volume at sections 1 and 2 (Fig. 1)
can be determined by assuming hydrostatic pressure distributions.
2
F o=vy(h+ L 6

1
F_ = P)%/2 7
, =y (4 P) s



If friction losses are neglected (F_ = 0), the summation of forces in the

£

horizontal direction can be evaluated.

ZszFl_FZ-Fe . . . . . . . . . . . . . 8
X
2 = h PZ/Z 2/2 P (h
Fx—y( + P) -y (t+P) -y P(h-t)
2 2
=fy(h-t)/2 . . . . . . . . . . P . ‘. 9

Assuming uniform velocity distributions at sections 1 and 2, the
following momentum equation can be written.

ZFX:qp (V—Vl) e e e 10

2
The summation of horizontal forces is given by Hq. 9.

2 2

y(h-t)/Z:qp(V—Vl)........... 11

2

Assuming steady flow, the continuity equation, q = Vy, can be employed.

qzzvl(h-+P):'V2(t+-P) e e e e e 12

The continuity equation can be substituted into Eq. 11.

I 2 2
FY’(h -t ) =q q _ q 13
_—2 t+ P h+ P . : B . . . . .

1
q=(g/2)/?

=~ m|

(h +t) (t +P) (h +P) e 14

Manipulation of Eq. 14 yields

1/2 3/2
q = (g/2) th - t) . . . . . . . . 15

3
(1 - S)
(1 +8) (S +P/h) (1 + P/h)
where S is the submergence, t/h.
Application of momentum theory to a flume with a similar development

will produce an equation almost identical to Eq. 15. The resulting equation is



1/2b 3/2

(g/2) (h - t)

Q =

(1 - BS) (1 —S)2
S (1 +8S)

where b is the width of the flume at the section where t is measured, and

16

B is the constriction ratio defined by the ratio of b to the width at the section

where h is measured.

Although the assumptions made in the development of the theoretical
submerged flow equations are not entirely valid, the equations do contain
certain characteristics which are similar to and which supplement the
submerged flow equation developed from a dimensional analysis approach
to submerged flow.

One additional concept for discussion is the theoretical equation
which could be developed for a contracted weir. This equation would be
a combination of Eq. 15 and Eq. 16. The discharge would be a function
of B, P, h, and t, but for a particular weir the values of B and P would

become constant leaving the discharge as a function of only h and t.
DIMENSIONAL ANALYSIS APPROACH TO SUBMERGED FLOW

Dimensional analysis was first applied to a trapezoidal flume (Hyatt,
1965) to develop the dimensionless parameters which describe submerged
flow. For any particular flume geometry, the variables involved can be
written as follows:

V =1f (g, h, hm, t)

With five independent quantities and two dimensions, three pi-terms are

17



necessary. The parameters or m terms which were found to describe
submerged flow were:

1. The maximum Froude number occurring in the flume
(which corresponds with the point of minimum depth
of flow, hm, in the flume throat) as expressed by

mL=F =—Y . . . 18
1/2

(gh )

m

2. The second m term is submergence, defined at the ratio
of the tailwater depth to the upstream depth of flow, and
is expressed by

Tr2:S=t/h . . . . . . 19

3. An energy loss parameter defined as the difference
between the upstream depth and tailwater depth divided
by the minimum depth of flow in the flume throat is the
third m term and is written

m,=t-tyYh . . . . . . . . 20
3 m

Plotting of the three parameters provides a unique relationship for any

particular flume geometry. Most significant of the plots made is the

plot of LB t/h, as the ordinate, and 'IT3, {(h - t)/hm, as the abscissa (Fig. 3).

The curve must pass through the point 0,0, for as the submergence approaches

100 percent (log S = 0), the difference in water surface elevation, h - t, will

approach zero. The relationship which exists between T, and ™, can be

approximated by a straight line as shown in Fig. 3 over a large range of
submergence values with some sacrifice in the accuracy of the submerged

flow calibration plot. When the equation resulting from the straight line

approximation is manipulated with the other equations relating the dimension-

less parameters, a submerged flow discharge equation results which is
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10
dependent upon only the upstream and downstream flow depths. The general
form of the submerged flow equation can be expressed as

™
C, (h-t)

n

[ -(log t/h + C_)] 2

where h and t are flow depths measured upstream and downstream from
the point of minimum flow depth, C1 and CZ are coefficients which depend

upon the geometry of the structure, and n. and n,are exponents which are

1

also related to the structure geometry.

Equation characteristics

The real value in developing a submerged flow equation from the
theoretical viewpoint as well as employing dimensional analysis and
empiricism is the verification of the equation format each gives the other.
Evaluation of Eq. 16 reveals that for any particular flume geometry both
B and b are constants as is P for any particular weir in Eq. 15. Conse-
quently, the discharge in the theoretical submerged flow equations (Egs. 15

: 3/2
and 16) becomes a function of (h - t) and the submergence, S. Therefore,
the theoretical equations are similar in format to the empirical equation
derived from dimensional analysis (Eq. 21) where the discharge is a function
!
of (h - t) ~ and the submergence, S.
Attention is called to the coefficient C2 in Eq. 21. This coefficient

is the intercept on the ordinate resulting from the straight line approximation

of the plot drawn in Fig. 3. Although the coefficient C2 actually varies as



11
shown by the curvature of the plot in Fig. 3, the variation is of major
importance in only the 96 to 99. 9 percent submergence range. The value
of C_ approaches zero as the submergence approaches 100 percent.

2

Because C2 varies so greatly in this higher submergence range and since
submergence values in this range are not practical, the authors will not
write submerged flow equations utilizing a constant value of C2 which
cover these higher submergence values in the following sections.

As is shown in the section on embankment-shaped weirs, the empirically
developed submerged flow equation for an embankment-shaped weir differs
from Eq. 21 in that the C2 coefficient is absent. Explanation for this is
found in examination of the flow conditions. The flow over embankment-
shaped weirs is usually considered as two-dimensional and given in terms
of discharge, g, per foot of length whereas the flow in flumes is a three-
dimensional flow condition: It would thus appear that the absence or
presence of a C2 coefficient would indicate the absence or presence of side
effects exerted by a structure on the flow regime. Common reasoning would
indicate that flow over an embankment of great length (such as the example
presented in the embankment section) is a two-dimensional flow condition
and that side effects would be nonexistent. In flumes and suppressed
weirs of short lengths, the sides do exert an effect on the flow and the
presence of a C2 coefficient in the submerged flow equations for these
structures verifies this effect.

The real value provided by approaching the submerged flow problem

with dimensional analysis and the application of momentum theory is the
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fact that both approaches reveal only the upstream depth of flow, h, and
the downstream depth of flow, t, are all that is required for the determination

of the discharge.

Application principles

The calibration curves which depict the relationships given by
Eqgs. 15, 16, and 21 are obtained by plotting three-dimensionally the
discharge, Q, as the ordinate, difference between upstream and down-
stream depths of flow, h - t, as the abscissa, and submergence, t/h,
as the varying parameter. A family of lines of constant submergence result
from this plotting as illustrated by Figs. 5, 7, and 10. Hence, measurement
of the upstream and downstream depths of flow provides the necessary
information for obtaining the discharge for any particular structure. Once
these depths of flow are measured for a structure, the discharge for a
given flow condition may be obtained from calibration curves for that
structure by the intersection of the h - t value and the t/h value.

The free flow equation for flow measuring flumes can be expressed

by

™
Q=Ch — . .22

A noteworthy factor discovered from the flume studies (Skogerboe, Hyatt,
England, and Johnson, 1965; and Skogerboe, Hyatt, Johnson, and England,
1965) is the fact that the exponent on the h - t term in the submerged flow
equation (Eq. 21) is identical to the exponent on the h term in the free flow

equation (Eq. 22) for any given flume. Hence, the value of submergence
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at which the transition from free flow to submerged flow occurs can be
estimated by equating the free flow equation and the approximate sub-
merged flow equation, Eqs. 21 and 22, for a particular structure.

The form of Eq. 21, which describes submerged flow through flumes,
is then found to be valid as the equation form which describes submerged
flow over various types of weir structures. Those types of weirs
discussed in the following sections are (1) embankment-shaped weirs,

(2) suppressed-sharpcrested weirs, (3) suppressed-ogee crest weirs,
and (4) the triangular-shaped weir of Crump. Since no data on contracted
weirs were readily accessible to the authors the submerged flow analysis
was not applied to this type of weir structure. However, the authors feel
the analysis would be just as valid for the contracted weir as it is shown

to be for suppressed weir structures.

EMBANKMENT-SHAPED WEIRS

Kindsvater (1964) placed considerable effort into a study to evaluate
the discharge characteristics of flows over highway embankments. A
highway embankment is a form of broad-crested weir when overtopped by
flood waters. The submerged flow data collected by Kindsvater (1964)
has been previously analyzed by the authors, Skogerboe, Hyatt, and
Austin (1966). The results of this application are reiterated in this
section as additional illustration of the submerged flow method of analysis
as explained in the previous section.

The basic embankment design used in the study conducted by
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Kindsvater is illustrated in Fig. 4. The basic model was constructed at
a 1:9 scale. Corresponding to the 1:9 construction scale, the unit-discharge,
q, in the model is 1/27 of the discharge for the prototype embankment. In
the orijginal model, the intersections of the shoulder, embankment, and
pavement surfaces were sharp and precise. Subsequent use and polishing
rounded these intersections, but the results of Kindsvater (1964) indicated
no significant effects due to the rounding.

The principal variables used to describe flow over an embankment
are illustrated by Fig. 4. The laboratory facilities were such that the
discharge and degree of submergence could be controlled. The upstream
flow depth, h, was measured at a distance of approximately 52feet 2 inches
upstream from the crown line, while the downstream depth, t, was
measured at a distance o 8l feet downstream from the crown line.
Throughout the study, scale-model tests were made on 17 variations of
the basic embankment design. These tests were made by varying the
hydraulic parameters illustrated in Fig. 4 as well as testing various
roughness elements.

A plot of the free flow data for the basic model embankment design
resulted in the following free flow equation,

q=3.19h1‘53 C e e e 23

The data generated by Kindsvater (1964) for the basic embankment
design were plotted three-dimensionally with the discharge per foot of
embankment length, q, as the ordinate, the difference in upstream and

downstream flow depths, h - t, as the abscissa, and the submergence,



Crown line

Fig. 4.

embankment
slope

Principal parameters describing flow over an embankment. (Prototype dimensions)

R
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t/h, as the varying parameter (Fig. 5). Essentially, Fig. 5 is the graphical
presentation of the submerged flow equation (Eq. 21).

Lines of constant submergence which best fit the data are drawn
with a slope corresponding to the exponent of h in the free flow equation
for the basic embankment model. For example, the constant submergence
lines of 89.0, 93.7, 95.4, 96.4, 97.5, and 98.5 percent have been drawn
in Fig. 5. The slope of these lines of constant submergence is 1.53,
which corresponds with the exponent of h in the free flow equation (Eq. 23).

The submerged flow equation which fits the plotted data of Fig. 5 is

1.53

2.41 (h - t
o o241

(-log t/h)"*2°

24

The basic embankment model data have been converted to prototype
data from which an equation was developed and then plotted in Fig. 6 as
submerged flow calibration curves for the prototype structure. Thus,

Fig. 6 becomes the field rating curves for a highway embankment similar
in form to the basic model structure studied by Kindsvater (1964).

As previously discussed, the value of submergence at which the
transition from free flow to submerged flow occurs can be estimated by
equating the free flow and submerged flow equations. To illustrate the
solution for the transition submergence, St, the free flow and submerged

flow discharge equations for the basic embankment model will be equated.

1.
2.41 (h - t) 53

(-log ‘c/h)l'20

:3.19h1‘53. e e e e 25

0.755 (1 - ‘c/h)l'53 = (-log ‘c/h)l'20
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A solution is obtained by trial and error.
t/h = St = 0.849 = 84.9%
Kindsvater (1964) states that the value of the transition submergence
determined from his study is about 84 percent. The transition submergence
given by Kindsvater is based on the downstream flow depth, t, divided by

the total upstream head, H, (upstream flow depth plus velocity head},

1
whereas the value cited by the authors (85%) is based on the ratio of the
downstream flow depth divided by the upstream flow depth, (t/h). The
transition submergence will naturally be greater when computed from the
ratio, t/h, as compared with the ratio, t/Hl.
The constant submergence line of 85 percent drawn on Fig. 6 is the
transition submergence line dividing the free and submerged flow conditions.
Hence, Fig. 6 can be used for either free or submerged flow conditions.
To obtain a free flow discharge, enter the curve from below with the
measured value of h and move vertically upward until the transition
submergence line (85%) or free flow line is intersected and then move
horizontally to the left to obtain the discharge, q. The submerged
discharge is obtained by moving vertically downward with the (h - t)
value until the line of constant submergence (t/h) is intersected, then
move horizontally to the left to obtain the submerged flow discharge.
Utilizing the data from Kindsvater's (1964) study the other 17
modifications of the basic embankment model were analyzed by /Skogerboe,

Hyatt, and Austin (1966) in a similar manner. All modifications gave

comparable results to those described in this section as to verifying the



20

validity of the method of analyzing submergence presented by the authors.

SUPPRESSED WEIRS

Sharpcrested

Several sharpcrested weirs of varying height were investigated by
Cox (1928). The weirs ranged in height from 1.14 to 5.93 feet high. Cox
also included in his report data collected on other sharpcrested weirs by
Bazin (1888), Fteley and Stearns (1883), and Francis (1871). The sub-
merged flow data reported by Cox on the studies conducted by Bazin (1888},
Fteley and Stearns (1883), and Francis (1871) were analyzed utilizing the
previously discussed concepts of submerged flow and found to be valid
although the results of the analysis are not included in this report. For
this report and purposes of illustration only the data on the sharpcrested
weirs of height 2. 00 and 5. 93 feet collected by Cox (1928) are subjected
to the submerged flow analysis.

All sharpcrested weirs used in Cox's study were constructed to
conform to standard methods at that time with the weir blades cut at a
45 degree angle and a 1/16 inch thickness at the weir crest.

The 2.00 foot high weir was tested in a channel 87 feet long, 1.96
feet wide, and 4.5 feet deep. The discharge for the 2. 00 foot high weir
was measured by an 8" x 4" Venturi Meter.

The 5. 93 foot high weir was tested in a different channel which was
66.5 feet long, 2 feet wide and 8.5 feet deep. The discharge for the 5.93
foot high weir was measured by means of a standard rectangular weir with

a notch 2 feet long.



Cox (1928) investigated the relationship between the weir height and
the location for measurement of the tailwater depth. He concluded that
the tailwater depth should be measured at a distance downstream from the
weir of 2.54 times the weir height. In his studies on the sharpcrested
weirs the tailwater depth was measured at this point. The upstream depth
of flow was measured at a distance of 6.0 feet upstream from the weir.
Both the upstream and tailwater depths were measured with point gages.
The submergence was varied during the study by adjusting a vertical lift
gate placed downstream from the weir.

A plot of the free flow data of the two weirs resulted in the following
equations:
for the sharpcrested weir 2. 00 feet high,

Q:6.85h1'55 C e e e e e 26

and for the sharpcrested weir 5. 93 feet high,

1.52
Q=6.86h > C e e e e e e 27

Figs. 7 and 8 result from plotting three-dimensionally the
submerged flow data generated from Cox's study (1928). The lines of
constant submergence were drawn to best fit the data at the same slope
as that which results from the free flow plot, 1.55 in Fig. 7 for the 2. 00
foot high weir, and 1.52 in Fig. 8 for the 5.93 foot high weir. Also shown
are lines of constant submergence ranging in value from approximately
0.0 to 99.9 percent submergence with a few values that are negative
or less than zero. . -

Cox (1928) states the negative submergence values result from the
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Fig. 7. Plot of submerged flow data for 2. 00 foot high sharpcrested weir.
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Fig. 8. Plot of submerged flow data for 5. 93 foot high sharpcrested weir.
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nappe over the weir plunging below the surface. Cox found that the flow
condition was changed, depending on which of the two nappe condition
existed. At the lower values of submergence it was possible for the nappe
to plunge below the surface and remain there for a considerable distance
from the weir before it came to the surface. At the point the nappe jet
reached the water surface the surface velocity moved both upstream
towards the weir and downstream towards the outlet. The other nappe
condition occurred as the tailwater level rose to the point where the
nappe no longer plunged below the surface but remained on the surface
with the velocity directed downstream. Both nappe conditions affected
the discharge in a different manner, but there existed a considerable
overlap for each flow condition whether the nappe plunged below or on the
surface. Cox recommended that the submerged sharpcrested weir be
operated with the nappe remaining on the surface.

Crump (1952) found the same condition (the nappe plunging under the
surface at low submergences and negative submergence values) when he
analyzed the submerged flow data of Francis (1871) and Fteley and Stearns
(1883) for the sharpcrested weir. The explanation offered by Crump for
this condition is that the transition submergence is reached well before
the tailwater depth rises to the crest level. Before the transition point
is reached, however, the nappe is discharging into free air and the air
pocket is maintained at atmospheric pressure from the vents in the side
walls. Located below the air- pocket is a mass of turbulent water. Then

as the tailwater depth rises the air pocket is replaced by water at less
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than atmospheric pressure increasing the curvature and velocities of the
nappe at the control section. This actually carries a greater flow through
the control section for the same given upstream depth. This condition
exists until the degree of submergence rises, which increases the pressure
on the under side of the nappe to the point where the air pocket is
completely filled with water and drowns out the effect.

The authors can only speculate as to the effect the nappe (either
plunging below the surface or remaining on the surface) has on various flow
conditions without making additional studies themselves. Current plans
involve investigation later this year to give further study and answer
questions on concepts dealing with submerged weirs. Based on the data
thus far studied, the authors feel explanation offered by Crump (1952) is
correct except for the fact that the flow regime still passes through
critical depth, though the value and location of the depth probably changes,
until the transition submergence is reached somewhere between the sub-
mergence value of 30.0 and 60.0 percent.

Because of the difficulties encountered in analyzing submerged
flow conditions at the lower submergence values, a submerged flow
equation was not written to include submergence values from 0 to 50
percent. Neither was an equation written to include submergence values
from 96 to 99.9 percent because of the changing coefficient, CZ, in this
range. The lines of constant submergence drawn in Figs. 7 and 8 can
be described by the following equations for a range of submergence

between 50 and 96 percent:
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for the sharpcrested weir 2.00 feet high,

_4.83 (h - yt-2>

" - (log t/h + 0.0015) e e e e e e e e 28

Q

and for the sharpcrested weir 5. 93 feet high,

4,66 (h - yl-22

" - (log t/h +0.0015) . . . . . . . . . ... 29

Q

Noted in Eqs. 28 and 29 is the presence of the coeffient, CZ’ with a
value of 0.0015 which shows that the sides of the suppressed weirs exert
an effect on the flow conditions.

Although Eqs. 28 and 29 are limited because they describe only
the submerged flow regime from 50 to 96 percent submergence they

merit value because of the form they take. Both equations are of the

equation form previously described (Eq. 21).

OGEE CREST WEIRS

2 to 1 vertical face

Cox (1928) conducted an investigation on submerged flow over three
ogee weirs with a 2 to 1 upstream face which had heights, P, of 1.24,
2.13, and 6.11 feet. Although the submerged flow analysis of the authors was
applied to the data collected by Cox for all three weirs only the weir with
a height of 2.13 feet is discussed in this report. However, the data from
all three of the 2 to 1 upstream faced ogee weirs when analyzed portray
the validity of the submerged flow analysis.

Fig. 9 shows a plan view of the typical 2 to 1 upstream faced ogee
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Fig. 9. Plan view of a 2 to 1 upstream faced ogee crest weir.

weir study by Cox (1928). The point Cox selected for measurement of

the downstream depth was 2.29 times the weir height, P, and the upstream
depth was measured at a distance of 6 feet upstream from the face of the
dam (Fig. 9).

The 2.13 foot high weir was tested in the same channel as the 2. 00
foot high sharpcrested weir and in a similar manner with the discharge
measured by a 8" x 4'" Venturi Meter, flow depths measured with a point
gage, and the submergence varied by adjusting a vertical lift gate placed
downstream.

The free flow equation which described the 2.13 foot high 2 to 1

vertical faced ogee crest weir is
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Q=7.28h1'55 e e e e e e e e e e 30

The submerged flow data collected by Cox (1928) for the 2.13 foot
high weir were plotted as shown in Fig. 10. Further noted in Fig. 10 are
the lines of constant submergence which range in value from approximately
0.0 to 99.9 p;arcent submergence. The explanation for this is dealt! with
in the section on sharpcrested weirs.

The submerged flow equation which describes the data plotted in
Fig. 10 for the weir 2.13 feet high is

1.55
4, -
Q = 35 (b - t) L 31

1.21
[ - (log t/h + 0.0015)]

Eq. 31 is written to cover only submergence values from 50 to 96
percent as was previously explained. The power on the h - t term in
Eq. 31 is the same as that on the h term in Eq. 30 and is the slope of the
lines of constant submergence in Fig. 10.

The constant CZ, which equals 0.0015 in Eq. 31, indicates the side
effects on the discharge. Eq. 31 is similar in format to the basic
submerged flow equation (Eq. 21) and further shows the validity of
submerged flow analysis presented by the authors.

Cox (1928) states that an ogee weir that has been silted up will
operate as though no silting had occurred as long as the nappe flows
under, but when the nappe flows on the surface the weir will operate

differently. Hence, Cox recommends that the ogee weirs be operated

with the nappe flowing under.
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Plot of submerged flow data for 2.13 foot high 2 to 1 upstream

faced ogee crest weir.

Fig. 10.
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Vertical upstream face

Suppressed ogee weirs with a vertical upstream face were another
type of weir investigated by Cox (1928) in his study. These weirs. had heights
of 1.24, 2.13, and 6.11 feet. Fig. 11 shows the shape of weir studied and

the location of the points where measurements were taken.

6' 2.45P

Fig. 11. Plan view of vertical upstream faced ogee crest weir.

Analysis of Cox's sﬁbrnerged flow data indicates some discrepancies
and questions in the data of the vertical faced weirs. Plotting the free flow
data for the 1.24, 2.13, and 6.11 foot high weirs results in the same free
flow equation for all three weir heights, which does not appear logical to
the authors. The free flow equation which results for these three weirs is

58

Q=17.25 h1° 32



31

When the submerged flow data is plotted as previously described
(Fig. 12), the slope of the lines of constant submergence for any one of the
three weirs is not consistent or uniform. For example, the data of the
vertical upstream faced weir 6.11 feet high with a crest width of 2. 03
feet is plotted in Fig. 12. The slope of the lines of constant submergence
which best fit the data through the submergence range of 0.0 to 80.0
percent is 1.58. Thereafter the slope of the constant submergence lines
decreases as the value of submergence increases until at 96 percent
submergence the slope has a value of about 1.36. This same trend exists
for the submerged flow plots of the 1.24 and 2.13 feet high weirs.

Koloseus (1951) investigated an ogee crest spillway which was almost
identical to the structure studied by Cox (1928). In the ogee crest spill-
say section the data of Koloseus plots in a manner consistent with that
proposed by the authors for a submerged flow plot. Hence, the only
explanation offered by the authors for the changing slope in the submerged
flow plot of Cox's data (Fig. 12) is that some of the data are in error.

The authors have included Fig. 12 in this report because it shows
that a trend exists similar to that proposed by the authors and verifies
to a certain extent that the submerged flow analysis presented in this
report is valid for another weir shape.

Due to the plotting of the data for vertical upstream faced weirs
(Fig. 12), no attempt was made to write a submerged flow equation
describing these weirs. The lines of constant submergence in Fig. 12

show only the trend of the data.
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Fig. 12. Plot of submerged flow data for vertical upstream faced ogee crest weir 6.11 feet high.
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Further mention is also made of the recommendation given by Cox
(1928) that better operation occurs when ogee weirs are used with the nappe

plunging below the surface.

Ogee crest spillways

Koloseus (1951) conducted model studies on several small diversion
dams or ogee crest spillways to obtain the design critera for these
structures. The submerged spillways had an ogee section which conformed
to the profile of the lower nappe from a ventilated sharp crested weir.

The upstream face of the crest was vertical. Typical of the spillways

studied by Koloseus is that shown in Fig. 13.

h i \Vi 1
— t
P ?
P
Q————-
90°
Y aead SIS S Y4 S S 7

Fig. 13. Plan view of typical ogee crest spillway studied by Koloseus.

The spillways studied had heights of 0.5, 1.0, 1.5, and 2.0 feet

with hd/ (P + E) ratios varying from 1/4 to 1. The testing was conducted
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in a glass-walled flume 18 feet long, 2 feet wide, and 3 feet high. The
spillway models were placed 6.3 feet downstream from the flume entrance.
Measurement of the flow depths, h.and't, and the water surface profile was
made with a traversing point gage. The value used for the flow depths
was taken as the average of three measurements taken downstream from
the flume entrance, at distances of 1, 2, and 3 feet for the upstream
depth of flow, and at 14, 15, and 16 feet for the downstream depth of
flow. Measurements of the discharge were made by the use of a 5 inch
orifice for the lower discharges and a 10 1/2 inch orifice for the higher
discharges.

The data from two of the model spillways were selected from the
thesis of Koloseus (1951) to illustrate the submerged flow analysis. One
spillway had a height, P + E, of 1.0 foot with a hd/ (P + E) ratio of 1/2
and the other spillway had a height of 1.5 feet with a hd/ (P + E) ratio of
1/4.

A plot of the free flow data of the two spillways analyzed resulted
in the following equations:
for hd/(P +E)=1/2,

a=4.60n% L a3

and for hd/(P + E)=1/4,

66 34

1.
q=4.79h
The data generated by Koloseus (1951) for the two forementioned

spillways were plotted three dimensionally with Q as the ordinate, h-t as

the abscissa, and t/h as the varying parameter (Figs. 14 and 15). In
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Figs. 14 and 15 the lines of constant submergence were drawn to best fit
the data. The slaope of these lines of constant submergence is the same as
that which resulted from the plot of the free flow data, 1.69 in Fig. 14
for the hd/(P + E) ratio of 1/2 and 1.66 in Fig. 15 for hd/(P + E) ratio of
1/4. The dashed lines of constant submergence drawn in Fig. 15 are so
drawn because of the scarcity of the data provided by Koloseus for that
particular spillway. The slope of these lines of constant submergence
is that indicated by the free flow plot. However, the data does not fit
this slope as well as desired, probably due to some error in the data.

Figs. 14 and 15 show that the lines of constant submergence range
from approximately 0.0 to 99.9 percent submergence (previcusly explained
in the sharpcrested weir section). However, study of Koloseus' data
(1951) by the authors indicated that the upstream depth of flow for any
given discharge did not change until the downstream depth reached 50 to
60 percent of the upstream depth (transition submergence). This occurred
even though Koloseus took the submergence ratio as zero when the down-
stream depth was at the spillway crest level.

The submerged flow equation written to fit the lines of constant
submergence from 50 to 95 percent in Fig. 14 for the hd/(P + E) ratio
of 1/2 is

3.44 (h - *t)l’69

q =
1.
[ -(log t/h + 0.0025)] > <

35

Mention is made that the coefficient CZ, 0.0025, appears in Eq. 35. No

equation was written for the data in Fig. 15 because of the scarcity of data.



38

The U. S. Bureau of Reclamation (1948) conducted model studies
of submerged flow over overfall dams which were very similar in structure
to those studied by Koloseus (1951). Although not included in this report,
the data collected in the Boulder Canyon project (U. S. Bureau of
Reclamation, 1948) was subjected to the submerged flow analysis presented
by the authors and found to be valid. The Bureau of Reclamation's study
was limited in the range of discharge employed but the data did indicate

that the submerged flow analysis reported herein was applicable.
TRIANGULAR- SHAPED WEIR OF CRUMP

The data collected by Crump (1952) for a submerged weir of
triangular profile was also subjected to analysis. As shown by Fig. 16,
the weir-block had an upstream face sloped at 2 to 1 and a downstream
face sloped at 5 to l-producing a crest-angle of 142 degrees 7 minutes—
both of which were truncated to give two vertical faces. The weir-block
had a length of 14 inches and a crest height above the steel flume floor
of 3.063 inches. Measurement of the upstream and downstream depths
of flow, at the points shown in Fig. 16, were made using manometers
and the discharge was obtained from a standard V -notch weir placed up-
stream from the model. The discharge was kept constant for each run
and the tailwater varied by a gate at the downstream end of the 22 inch
wide rectangular flume.

The equation which describes the free flow condition over the model
studied by Crump is

Q= 8. 33'h1' s e e e e e e e e 36
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Fig. 16. Plan view of the test model triangular-shaped weir of Crump.

The submerged flow data which resulted from this study were plotted
three dimensionally as shown by Fig. 17. The slope of the lines of constant
submergence which best fit the data is 1.75, the same slope given by Eq. 36.
Though the slope of 1.75 was selected for use in this analysis, some
flexibility exists. The data from Crump (1952) furnished only four free
flow discharge values and hence only four points on the free flow plot. A
slope of 1.75 fits these points very well but the slope could easily be
varied by + 0. 02.

Fig. 17 shows several lines of constant submergence drawn at a
slope of 1.75 which range in value from 75.0 to 97.7 percent. The
submerged flow discharge equation written to describe these lines over

this range is
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1.
_5.71 (h - t) =
- 1.36

[ - (log t/h)]

Q 37

Utilizing Eq. 37, the calibration curves for this particular triangular-
shaped weir are drawn as shown by Fig. 18.

Further understanding can be gained from Fig. 18 by equating
Eqs. 36 and 37 for the solution of the transition submergence, St. The
transition submergence solves to be 77 percent and is drawn on Fig. 18
as the dividing point between free and submerged flow conditions.
Justification for the transition submergence obtained by the authors may
be made by quoting from Crump (1952): "It is seen that the model has a
high modular limit (transition submergence) of 70 percent, and that with
a submergence ratio of 80 percent the departure from modularity is
less than 1 percent."

Fig. 18 can be used as the calibration curve for either free flow
or submerged flow conditions. The free flow discharge is obtained by
entering from below with the measured value of h and moving vertically
upward until the 77 percent submergence line or free flow line is
intersected and then moving horizontally to the left to obtain the dis-
charge, Q. The submerged flow discharge is obtained by moving
vertically downward with the measured h - t value until the line of

constant submergence t/h is intersected and then moving horizontally

to the left.
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SUMMARY

The parameters which describe submerged flow in measuring
flumes are developed by theoretical momentum relationships and
supplemented with dimensional analysis. These submerged flow
parameters and method of analysis are shown to be valid for many
types of weir structures, such as sharpcrested, ogee, embankment-
shaped, and triangular. The data for analysis was taken from selected
submerged flow studies found in the literature. The plots and examples
found in the report are illustrative of the compatability and validity of

the submerged flow analysis developed by the authors.
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