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ABSTRACT 

An integrated value of soil moisture can be determined by mea­

suring the attenuation of vertically-polarized surface radio waves that 

are propagated over the ground between a transmitting and receiving 

antenna. Soil moisture values in the root-zone region were measured 

over longitudinal distances typically ranging from 50 feet to 600 feet 

with good results. Integrated soil moisture measurements over greater 

distances are also possible. The received field strength of propagated 

radio surface waves closely matches theoretical calculations. The 

measurement is easily made and does not disturb the soil. Dense, 

green vegetation, such as alfalfa or corn, causes errors in measurement 

accuracy. Less dense vegetation, such as range land, does not seri­

ously affect measurement accuracy. The described equipment is 

portable and can be used by an unskilled operator. 
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INTEGRATED MEASUREMENT OF SOIL MOISTURE 

BY USE OF RADIO WAVES 

INTRODUCTION 

Numerous methorll1 exist for determining soil moisture. All of 

the methods found in the literature discuss the measurement of soil 

moisture at a point or at least in a relatively small volume. To obtain 

a representative index of the moisture for an entire. field, numerous 

points must be sampled. Numerous samples require considerable 

time, effort, and money. A more desirable soil measurement, in 

some instances, would be one that sensed soil moisture over a rela­

tively large area and produced immediate soil moisture values. As 

a result of this need, an investigation of the use of radio waves was 

undertaken to determine the feasibility of their use in making an 

averaged or integrated soil moisture measurement. 

In radio wave propagation, the groundwave depends upon the 

conductivity and dielectric constant of the earth it is transversing. 

These two electrical properties of soil vary with soil moisture. 

Utilizing this fact, soil moisture may be determined by measuring 

the relative intensity of a radio wave. The purpose of this research 

was to determine the feasibility of measuring soil moisture using 

radio wave propagation and to investigate the variables and problems 
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encountered in making such a measurement. 

Sommerfeld (1909) was the first to obtain a solution for the field 

produced by a vertical antenna on the earth's surface. His remarkable 

piece of original work was largely unrecognized for about 20 years, 

at which time Sommerfeld I s equations were found useful for predicting 

broadcast antenna radiation effectiveness. His work demonstrated; 

for example, that maximum propagation for a given transmitter out­

put was obtained if the antenna was placed over wet, swampy soil. 

Sommerfeld's equations and subsequent work of others, including 

Norton (1936) who simplified the equations into a more usable form, 

have aided greatly in establishing a sound theoretical basis for this 

project. 

In this report, brief comments are first made as background 

concerning some of the more conunon ways in which soil moisture is 

measured. These comments are followed by a presentation of the 

theory of "integrated" measurements of soil moisture. The third 

section concerns measurement parameters and establishes the basic 

configurations to be used. The next section discusses details of 

instrumentation, and this is followed by a discussion of measurement 

variables and their effects. The last major section of'the report 

presents experimental measurements and conunents pertaining thereto 

followed by conclusions. 

\ .. / 



METHODS OF DETERMINING SOIL MOISTURE 

There are many methods of measuring soil moisture based on 

different physical principles. Ballard (1970) compiled a compre­

hensive study of the methods of measuring moisture and put them 

in the following categories: Hydrometric, electrical resistivity, 

capacitance, nuclear, gravimetric, radiation, tensiometry, thermo­

conductivity, and miscellaneous. Almost all the methods are point 

or small, restricted-area measurements. Present methods also 

require a substantial amount of time to obtain the measurement. For 

example, the gravimetric method, which was used as a calibration 

standard on this project, requires that numerous soil samples be 

taken. These soil saTIlples must be carefully weighed and then dried 

in an oven for several hours and then they are reweighed. The loss 

in weight represents the water that was present. The percent of soil 

moisture is found by determining the difference between the wet soil 

sample weight and the dried soil sample weight, then dividing the 

difference by the dry weight and multiplying by 100. 

3 

No further attempt is made herein to describe any of these 

methods in detail, as this information is not germane to this particular 

project and more complete information can be obtained elsewhere. 

Each method cited by Ballard measures soil at a particular point or 

small volume in the field and almost all methods either require a soil 
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sam.ple from the test site or require a quasi-permanent installation of 

equipment. The soil moisture measuring method described herein does 

not require a soil sample, does not measure moisture at a point, nor 

does it require a permanent installation of equipment. 
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RADIO WAVE THEORY 

As stated in the introduction, there is a theoretical basis wherein 

soil m.oisture might be m.easured in a large-scale, instantaneous, 

convenient m.anner. Before dis cus sing m.easurem.ent details, the 

theoretical basis is prei;ented showing why the system. works. 

Surface wave 

Near the surface of the earth a radio wave is com.posed of two 

com.ponents, a surface wave and a space wave. The surface wave 

propagates with its lower edge in contact with the ground and can, 

therefore, only be vertically polarized since any horizontal electric 

field is short-circuited by the earth. 

Power from. a surface wave is dissipated in the earth's crust 

depending upon the characteristics of the soil over which the wave is 

propagating. Charges are induced in the earth due to the vertically 

polarized electric field of the surface wave. These charges induce a 

current flow through the earth which behaves like a leaky capacitor and 

can be represented by a resistance shunted by a capacitance (Term.an, 

1955). Based. on this analogy, the electrical characteristics of the 

earth can be expressed by a conductivity CT and a dielectric constant 

E. Power is dissipated by the induced current flowing through the 

earth's resistance. This power loss accounts for the attenuation of 
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the surface wave as it propagates. 

Mathematical expressions describing the nature of the surface 

wave" first given by Sommerfeld" are discussed by Norton (1936). For 

an earth assumed flat" the surface wave field strength can be expressed 

by 

Field Strength 

in which 

= A Eo 
d 

(1 ) 

Eo = field strength of wave at the surface of the earth at a unit 

distance from the transmitting antenna" neglecting earth's 

losses 

d = dis tance from transmitting antenna 

A = attenuation coefficient due to ground losses 

The factor A is expressed by the curves in Figure 1. The 

numerical distance p for a vertically polarized wave is found by the 

relations 

in which 

x 

d 
A 

ifd 
cos b P = XA 

(2) 

E + 1 
tan b 

r = x 
(3 ) 

= . 12 / 1.80 x 10 cr f 

= distance in wavelengths 
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0" = ground conductivity in mhos per cm 

f = frequency in he rtz 

E = dielectric constant of the ground referred to air as unity 
r 

For b S 90
0

, the curves in Figure I can be expressed approximately 

by the relation (Terman, 1943) 

A :::: 2 + o. 3p 
2 

2 + P + 0.6 p 

~ 
- 8 

e sin b (4) 

The factor A is shown by Equations (2), (3), and (4) to be dependent 

upon the conductivity and dielectric constant of the earth, the frequency, 

and the distance from the transmitting antenna. 

Space wave 

The space wave is the second component of the radio wave of 

interest and is the vector sum of two separate waves. One is a direct 

wave between the transmitting and receiving antennas, and the other 

is a wave reflected by the surface of the earth before reaching the 

receiving antenna. 

If the heights of the transmitting and receiving antennas are 

small compared with the distance between the antennas, the angle of 

incidence of the reflected wave is small, and the two waves will be 

equal in amplitude but will differ in phase. This is due to the fact 

that the reflected wave will travel es sentially the same distance as 

the direct wave giving it the same magnitude, but will undergo a 
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phase shift due to the reflection fronl the ground. Under these con-

ditions, the field strength of the space wave can be expressed as 

Field Strength = 2 Eo 
d 

sin 
21Thrhs 

Ad (5 ) 

in which 

Eo = strength 'Of the direct wave at unit distance 

d = distance between transnlitting and receiving antennas 

" = wavelength, same units as d 

hs, hr = height of transmitting and receiving antennas, same 

units as d 

Examination of Equation (5) shows that the field strength of the 

space wave will be very small and probably negligible, compared to 

the surface wave, provided the antenna heights hr and hs are small 

in relation to the distance between the antennas. 

Skin depth 

Current flow in a conductor at radio frequencies is distributed 

so that most of the current flows near the surface of the conductor. 

This is because the inductance, and therefore, the impedance, is less 

near the surface than it is deeper in the conductor where more magnetic 

flux lines are linked with current flow (Terman, 1955). 

With the surface of the conductor at the Y = 0 plane, the current 

distribution in the Y direction will be given by (Jordan, 1950) 



1
. . - 'YY = 1 e 

o 

in which i = current density at the surface 
o 

10 

(6) 

Since the attenuation of current with depth is of chief interest, only the 

real part of 'Y is used. This is called the attenuation constant 0'. 

Therefore Equation (6) is rewritten as 

. -ay 
i = 1 e 

o 
(7) 

The\kin depth is the depth at which the current density is l/e or 37 

percent of the surface current density i. This would appear to occur 
o 

at a depth of l/a as can be seen from Equation (7). From Jordan (1950) 

the attenuation factor is derived and can be expressed by 

2 
CT 

(8 ) 
2 2 

w E 

in which 

= permeability of free space -7 = 411' x 10 henrys / meter 

I 
farads/meter E = 

<T =. expressed in mhos/meter 

Using Equation (8) the skin depth can be calculated for any 

frequency and soil condition. For" good ll earth, with conductivity 
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-4 
(J" = 10 mhos per cm and a relative dielectric constant E r = 15, and 

-5 
"poor" earth:, with (J" = 2 x 10 mhos per cm and E r = 5, as defined 

by Terman (1943) the skin depths are plotted as a function of frequency 

in Figure 2. As can be seen from the curves, the skin depth becomes 

independent of frequency above 30 lV1Hz. From this analysis, it appears 

that the skin depth in soil VJould be difficult to control by varying the 

frequency of the propa ga ting wave. 

Care should be exercised in interpreting the data shown in 

Figure 2. Its chief purpose is to show that depth of penetration is not 

very qependent on frequency. The depth of penetration is calculated 

with values of permeability equal to that of air. The presence of 

trace amounts of ferrous material will reduce the depth of penetration 

by the square root of the actual value of permeability compared to 

unity (reference value for air). Perhaps, more importantly, reflections 

from boundary layers beneath the earth's surface exist, since the 

earth's surface is heterogeneous. Any reflections that do occur reduce 

the depth of penetration of the radio wave. 

For these reasons it is difficult to give a quantitative value of 

the depth of influence of the propagated wave; however, the depth of 

penetration is shown to be no greater than that indicated in Figure 2. 

From practical measurement experience, the system was shown 

to be chiefly sensitive to the top 3-4 feet of the earth's surface. 

This is due chiefly to the tendency for deeper soils to have a more or 
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less constant degree of wetness and also the ever lessening influence 

of the soil which is not more nearly "in the path" between the antennas. 

Effect of dielectric constant on 
radio wave propagation 

According to Josephson and Blomquist (1958) the dielectric 

constant of soil is detL'Y"lYJoined mainly by the moisture content and is 

relatively independent of the type of soil. Therefore, soil moisture 

measurements could best be made for a dielectric earth where con-

ductivity, which is dependent upon other soil properties besides 

moisture, would have a negligible effect upon surface wave attenuation. 

Jordan (1950) considers a material a good dielectric when (J"/WE 

< < 1. This is true for most soils for frequencies above 100 M1-Iz. 

Terman (1955) defines the numerical distance p, which can be used in 

Equation (4) to find the surface wave attenuation factor A, for a di-

ele ctric earth by 

(9 ) 

in which 

d = distance from transmitting antenna 

c = velocity of light 

f = frequency 

E r = dielectric constant of the ground referred to air as unity 

p in Equation (9) is dependent upon E r and no other' soil properties 
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m.aking the surface wave attenuation almost entirely dependent upon the 

dielectric constant and, therefore, soil moisture. 

Josephson and Blomquist (1958) give an approximate relation for 

Eras a function of soil water content to be used for VHF field strength 

calculations. With dry earth having a relative dielectric constant of 

2.5 and the relative dielectric constant for wet earth being proportional 

to the percentage water content, w percent, the relation is 

E r = • 78w + 2. 5 (10) 

Note that for pure water, or w = 100 percent; E r = 80.5 which is close 

to the value given for water, E r = 80. 

An idea of how the surface-wave signal strength theoretically 

varies with changes in soil moisture can be obtained from Equations 

(4), (9), and (10). For a water content of 10 percent E r = 10.3 and 

for an increase of 10 percent, or w = 20 percent, E r = 18. 1. Using 

a frequency of 170 MHz· and a separation of 17 wavelengths, the surface-

wave attenuation factor A is • 16 for E r = 10.3 and. 29 for E r = 18. 1. 

This gives a signal strength increase of 81 percent for a soil moisture 

increase of 10 percent. This large theoretical increase in signal 

strength for aiD percent by weight change in soil m.oisture is fortuitous 

and suggests that a large dynam.ic range exists over the operating soil 

nloisture region between the wilting point level and the soil water satu-
'.;' 

ration level. A more detailed presentation of this feature appears 

in the next section. 
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MEASUREMENT PARAMETERS 

Before soil moisture measurement experiments can be conducted 

which would have reasonable chances of success, there are several 

parameters that should be studied. Optimal conditions or compromises 

should be determined for best results. Those parameters of chief 

concern include: Frequency of operation, the antenna separation, and 

the optimal placing of the antenna, in elevation, for maximum effect. 

Frequency determination 

Considering the wide range of frequencies over which radio wave 

propagation is possible, the selection of an optimum frequency for 

radio wave measurement of soil moisture was investigated. 

There are several factors affected by frequency that must be 

considered. One is the separation distance between transmitting and 

receiving antennas. If very low frequencie s are used, the antenna 

separation may have to be in the order of miles to eliminate the effects 

of the unwanted near (induction) field. On the other extreme, fre­

quencies approaching the microwave region necessitate an antenna 

separation so small that the intent of obtaining an integrated measure­

ment of soil moisture over a reasonably large area would be defeated. 

Antenna size is another factor dependent upon frequency. The antenna 

should be small enough to be portable; the higher the frequency the 
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shorter the antenna. Another factor regarding frequency selection 

concerns the ratio of field strengths of signals propagated over dry 

and wet soil, since this is also a function of frequency. 

The field strength, as a function of frequency, was determined 

theoretically. Parameters for good and poor earth (wet and dry soil) 

were taken from Terman (1943), with conductivity CJ" = 10-
4 

mhos per 

cm and relative dielectric constant E r = 15 for good earth and CJ" = 
-5 

2 x 10 mhos per cm and E r = 5 for poor earth. Using Equation (1) 

the field strength ratio would be expressed by 

Eo 
Al d 

Field Strength Ratio = 
Eo 

A2 d 

(11 ) 

This relation is correct if the space wave is negligible compared to 

the surface wave leaving the surface wave as the only component. 

Since the reference field strength· Eo and the antenna separation d 

are the same for both poor and good earth, Equation (11) reduce s to 

Field Strength Ratio = Al / A2 (12) 

in which 

Al = attenuation coefficient over good earth 

A2 = attenuation coefficient over poor earth 

Al and A2 can be calculated, for a given frequency and the appropriate 

(j and E, using Equations (2), (3), and (4). 
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Examination of Figure 1 shows that the attenuation coefficient A 

differs only slightly from unity for p < 1. O. The losses in the earth 

then will have little effect upon the surface wave. For the factor A 

to vary for different soil conditions" the relation p > 1. 0 must be 

satisfied. 

Table 1 lists the values of the numerical distance p and the 

phase constant b for various frequencies" for two soil conditions" 

and at four different antenna separations" 8.6, 1 20" 34.6, 1 and 80 

wavelengths. Examination of Table 1 shows that p and b approach 

constant values at frequencies above 30 l\IfHz. 

Figure 3 is a plot of the ratio of field strengths for good and 

poor earth versus frequency for the four antenna separations mentioned 

previously. The peaks seen at the low frequency end are due to the 

changes in slope of the curves in Figure 1 for various values of b in 

the region 1. 0 =:: p =:: 10. For frequencies above 30 l\IfHz, the field 

strength ratio stays nearly a constant value. 

A frequency of approximately 1 70 l\IfHz was used for the operating 

frequency for several reasons. It occurred in the hydrologic T / M 

band and gave a good field strength ratio as shown in Figure 3. Anten-

nas for this frequency are of a reasonable size to be portable. Equipment 

1 A separation of 34. 6 wavelengths corresponds to 200 feet at 
170 l\IfHz where some preliminary measurements were made; later 
8.6 wavelengths (50 feet) were used for most of the analysis. 
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Table 1. Calculated values of phase angle, numerical distance, and 
attenuation coefficients at different frequencie s and distances 
for both good and poor earth. 

Distance = 8. 6 wavelengths 

Frequency Good Earth Poor Earth 
(w-Jz) b (degrees) p Al b (degrees) p A2 

1 5. 1 O. 15 .900 9.5 0.74 .650 
5 23.9 0.69 .550 39.8 2.88 .180 

10 41.3 1. 13 .400 59. 1 3.85 · 135 
30 69.5 1.57 · 230 78.7 4.41 · 105 
50 77.3 1.65 · 210 83.2 4.44 .010 

100 83.5 1.70 • 2~5 86.5 4.58 .095 
150 85.8 1.67 .208 87.7 4.52 .097 
200 86.8 1.68 .207 88.3 4.45 .098 

Distance = 20 wavelengths 

Frequency Good Earth Poor Earth 
(MHz) b (degrees) p Al b(degrees) p A2 

1 5. 1 0.35 · 75 9.5 1. 72 .430 
5 23.9 1. 60 .34 39.8 6.70 .088 

10 41.3 2.62 · 20 59.1 8.96 .060 
30 69.5 3.67 · 12 78.7 10.26 .049 
50 77.3 3.84 · 115 83.2 10.33 .049 

100 83.5 3.95 · 11 86.5 10. 65 .045 
150 85.8 3.88 · 11 87.7 10.50 .046 
200 86.8 3.90 · 11 88.3 10.36 .046 

Distance = 34. 6 wavelengths 

Frequency Good Earth Poor Earth 
(1v.IHz) b (degrees) p Al b (degrees) p A2 

1 5. 1 0.60 · 72 9.5 2.98 .270 
5 23.9 2.76 .24 39.8 11. 60 .050 

10 41.3 4.54 · 115 59. 1 15.50 · 032 
30 69.5 6.34 .076 78.7 17.75 .028 
50 77.3 6.64 .072 83.2 17.88 .028 

100 83.5 6.84 · 07 86.5 18.43 .026 
150 85.8 6. 71 · 07 87.7 18. 18 .026 
200 86.8 6.74 .07 88.3 17.91 .026 
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Table 1. Continued. 

Distance = 80 wavelengths 

Frequency Good Earth Poor Earth 
(MHz) b (degrees) p Al b (degrees) p A2 

1 5. 1 1.39 O. 5 9.5 6.89 .109 
5 23.9 6.38 .095 39.8 26.82 .022 

10 41. 3 10.49 · 056 59. 1 35.85 .016 
30 69.5 14.67 · 033 78.7 41.04 · 014 
50 77.3 15.35 .032 83.2 41.33 · 014 

100 83.5 15.81 · 031 86. 5 42.62 · 013 
150 85.8 15.52 · 031 87.7 42.03 · 013 
200 86.8 15.59 · 031 88.3 41.42 · 013 
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was readily obtainable for this frequency and the antenna separation 

was practical as will be shown in the next section. 

Antenna separation 

21 

The separation between the transmitting and receiving antennas 

has a definite effect upon the attenuation factor A and it should be 

carefully chosen for measuring soil moisture. As the separation 

becomes smaller, the field strength becomes larger, which is a desired 

condition in order to simplify instrumentation, but the ratio of wet to 

dry signals gradually becomes less. An optimum transmitter and 

receiver antenna separation is the minimum distance that gives a 

maximum ratio of field strengths measured over good and poor earth. 

The effect of separation on the field strength ratio was investi­

gated theoretically. The field strength ratio is given by Equation (12) 

and the attenuation coefficients Al and A2 are calculated using 

Equations (2) and (3) and the graph of Figure 1 and the appropriate 

values for (J" and E. Equation (2) shows that the numerical distance 

p is proportional to the separation in wavelengths and, therefore, the 

separation essentially determines the position on the curves in Figure 

1 which s,how the relationship between A and p. 

The curves in Figure 4 show the relationship between the field 

strength ratio Al / A2 and the separation in wavelengths for three 

different frequencies, 30, 100, and 200 1\.1Hz. From the curves, it is 
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evident that a good field strength ratio is sustained for separations 

greater than about 8 wavelengths. 
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Judging from the curve of Figure 4, a separation of 30 wavelengths, 

or about 175 feet, at 170 lvIHz will give the maximum wet field to dry 

field signal ratio. When the desirability of keeping transmitter power 

low and received signal levels high is taken into account, there is 

justification to reduce the antenna separation below the so-called 

optimum. As will be shown later, much of the experimental work was 

conducted at 50 feet, or 8. 6 wavelengths, and 100 feet, 17. 3 wave­

lengths. Adequate wet to dry signal ratios were still maintained for 

accurate measurements. 

Antenna height 

The heights of the receiving and transmitting antennas above the 

ground determine which component of the propagating wave is dominant 

in producing a given signal at the receiver. According to theory, with 

vertically polarized waves and earth having reasonably good con­

ductivity, the surface wave ceases to dominate and the space wave 

becomes more irn.portant when the antennas are one or two wavelengths 

above ground (Terman, 1955). Since near the ground the space wave 

is independent of earth characteristics, it is desirable to have the 

surface wave dominate. 

The effect of antenna height was investigated with the use of 

Equation (5) which gives the theoretical field strength of the space 
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wave. In order to compare the two wave components, an expression 

for the space wave attenuation coefficient was derived from Equation 

(5) which could be compared with the surface wave attenuation co-

efficient given by Equation (1). The relation of comparative signal 

magnitude is 

Space Wave 
Surface Wave = 

( 2Tr~dshr ) 2 sin 1\ 

A 
(13 ) 

since both the reference field Eo and the separation d are common 

to both wave components. 

At 170 11Hz and a separation of 100 feet, the surface wave attenua-

tion coefficient, which is independent of antenna height, for good earth 

is • 244 and for poor earth is • 079. The space wave attenuation co-

efficient for various antenna heights is given in Table 2. 

Table 2. Calculated space wave attenuation coefficient for various 
antenna heights. 

Height (wavelengths) Atte'nuation Coefficient 

o 
1/8 
1/4 
1 

0.0 
. 0114 
.0454 
.726 

Examination of these figures indicates that the height of the antennas 

should be in the order of 1/8 wavelength or less for the surface wave 

to dominate for both poor and good earth. 
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INSTR UMENT ATION 

In the search for equipment to conduct the soil moisture tests 

by use of electromagnetic waves, it became apparent that there was 

no equipment commercially available that was both economical and 

convenient to use. Battery operation and ease of portability were con-

sidered es sential for convenience of field operations; also the field 

strength meter should have a linear instead of logarithmic scale for 

added precision in readout. As a result of these requirements, special 

instruments were designed. 

A number of important factors must be considered in making the 

system design. These factors are itemized as follows: 

1. The selection of the radio wave length to use is determined 

largely by the area of measurement desired. It is also 

partly determined by the cost; a 10 meter transmitter can 

be built much more inexpensively than a 2 meter transmitter. 

Antenna separation should be at least 8 wavelengths. Thus, 

a 10 meter band antenna would not be used with less than 

an antenna spacing oJ 

feet 
10 meters x 3. 28 

meters 
x 8 

1 = 262 feet 

1 For practical reasons at 10 meter wavelengths the distance used 
was 300 feet. 
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For smaller areas, higher frequencies are desirable. At 

170 M-Iz, and a wavelength of 1. 76 meters, a minimum 

separation distance of 50 feet was used between the trans-

mitting and receiving antennas. 

2. The system should be battery operated for convenience of 

field use. Preferably, the battery would operate for one 

year or longer. 

3. Equipment should be readily portable. 

4. The accuracy of operation should not be appreciably affected 

by temperature extremes encountered in the field. Warm-

up time from a cold start should not take longer than a few 

seconds. 

5. Operation of both transmitter and receiver should be accom-

plished by one person. This is probably only practical for 

minimum antenna separation, i. e., 50-100 feet. For greater 

distances, two people would be desirable, one to operate the 

transmitter and one the receiver. 

Equipment, meeting the requirements specified for measuring 

integrated soil moisture, is shown in block diagram form in Figure 5. 

The system operates as follows: 

1. Two vertical ground plane antennas are placed a given distance 

apart in the region where soil moisture is to be measured. 

2. A radio frequency transmitter is connected to one antenna 
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via a coax cable. A. field strength meter is connected via a 

similar coax cable to the othe r antenna. 

3. A radio frequency cw (continuous carrier) signal of known 

magnitude is broadcast by the transmitting antenna. 

4. A ·power meter connected to the transmitter is used to 

monitor and regulate transmitter power to a precise pre­

determined value. 

5. The received signal strength, as indicated by the field 

strength meter, is proportional to soil moisture. 

Antenna construction 

Identical ground plane A/4 vertically polarized antennas are 

used for both transmitting and receiving. The ground plane was chosen 

because it consists of an artificial ground which is separate from the 

earth ground. Both the inverted cone type (Figure 6a) and the flat 

ground plane type (Figure 6b) were used. Virtually no difference be­

tween their effectiveness as a radiator and the received signal strength 

was detected. Consequently, most of the data was ultimately taken 

using a flat round 3 foot diameter, 24 gage, galvanized-iron sheet 

as the ground plane. 

The cable used was a 50 ohm type RG 58 AU coax. Cable length 

was 50 feet for both the transmitter and receiving antenna. At 170 MHz 

there is considerable attenuation in the coaxial line amounting to 6 db 

, J 
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for each cable. This could have been reduced by using shorter 

and better cable, i. e., RG8 AU. 

A 50 foot cable length was chosen for two principal reasons: 

(1) With a 50 foot antenna spacing, a 50 foot cable length attached both 

to the transmitter and the receiver made possible the operation of the 

complete system with only one person. (See Figure 7.) (2) The operator 

should be removed a considerable distance from the antenna to avoid 

unwanted and unpredictable attenuation and reflection caused by an 

apparent" secondary antenna" in the radiating field, e. g., a person 

standing too close serves as an antenna. 

The rules of good antenna practice were not closely observed in 

the design of the ground plane for the 10 meter antenna. The same base 

dimension used for 2 meters was also used for 10 meters. This is a 

compromise to prevent a large unwieldy ground plane which wouldn't 

501 

Antenna 

Transmitter Bl ~ Receiver 

Figure 7. Field arrangement for operation by one operator. Use of 50 
foot cables permits transmitter and receiver to be located 
adjacent to each other but out of line of the transmis sion path. 
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be very portable. The design compromise only reduces radiated power 

which is a constant factor and this factor can be lumped together with 

other constants in a manner such that it has no detrimental effect. 

Transmitter 170 MHz 

Before the transmitter and field strength meter could be adequately 

designed, information had to be obtained regarding the magnitude of the 

transmitter power output and the associated receiver sensitivity. As 

these calculations are quite involved but not germane to the understanding 

of the equipment and its operation, the details are placed in Appendix I 

of how the equipment was optimally designed with regards to power 

output and commensurate receiver sensitivity. 

Theoretical studies show that any frequency above about 20 MHz 

and up through the VHF range should work well in determining soil 

moisture. Since the hydrologic T / M band extends from 1 70-1 74 MHz, 

this was one of the frequency bands selected for the study. At the 

wavelength corresponding to this frequency, 1. 76 meters, the minimum 

practical test distance is about 50 feet. Much of the test data was 

acquired using this 50 foot antenna spacing which gave a measured wet­

dry signal strength range of about 3 to I, somewhat more than that 

calculated using arbitrary value s of dielectric strength. 

The transmitter used was a commercial, hand-held, 2-watt 

Sonar transmitter. Any similar transmitter would be satisfactory. 
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In order to precisely control the output power, maintaining it at 

some fixed value throughout changing battery conditions and tempera­

tures, a voltage regulator and power output monitor were required. 

These units are discussed under separate headings. A picture of the 

I 70 lvtHz transmitter is shown in Figure 8. 

Transmitter 27 l\1Hz 

Citizen band transmitting equipment operating at 27 w-Iz is readily 

available and the cost of a transmitter is nominal, e. g., $50-$100. Not 

only is the transmitter more inexpensive, the wavelength which is about 

11 meters long works very well over distances of 300-600 feet or further. 

Some of the tests were conducted in this frequency band. 

Perhaps the chief disadvantage of this frequency is the need for 

two people to operate the system since the transmitter and receiver 

are too far separated to be operated conveniently by one person. A 

picture of the 27 l\1Hz transmitter and VSWR meter is shown in Figure 

9; a schematic diagram of the unit used on the project is illustrated in 

Figure 10. 

Voltage regulator 

The voltage regulator used for controlling the magnitude of the 

output power has a controlled variable output. A schematic diagram 

of this circuit is shown in Figure 11. The 10K potentiometer shown in 



33 

Figure 8. Photograph of 1 70 MHz transm.itter, voltage regulator, and 
ba tte ry box. 

Figure 9. Photograph of 27 MHz transmitter, voltage regulator, power­
VSWR meter, and battery box. 
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51 

( 
18 V 

2 10-15 
volts 

regulated 
output 

1 
jJ.A 7805 

3 

r . 1 jJ.f 

2 
- 0.33 jJ.f 

3 
10K n )10 lKn 

Figure 11. Voltage regulator. Adjustment of the potentiometer adjusts 
output voltage to obtain the desired transmitter output. 

the figure is used to adjust output voltage of the ~A 7805 voltage regulator. 

Output voltage must be at least 2 volts less than the input voltage for 

good regulation. Since the transmitters used on the project required 

about 12-13 volts to obtain a full watt output, an 18 volt battery was used 

for the primary power source. Thus, about 4 volts of battery sag could 

be tolerated before the system output dropped below its operational 

level. 

Transmitter power is applied by closing a power-on switch. A.s 

field strength measurements require only 2-3 seconds, the on-time 

of the transITlitter takes only long enough to adjust the output power and 

to obtain the ITleasure:ment, i. e., 8 -10 seconds. Thus, battery power 
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required is considered to be minimal. 

Transmitter power monitor 

The monitor used for measuring the transmitter output power and 

also the standing wave ratio (SWR) is adapted from a circuit published 

in September 1972 of the publication, QST. Information on this circuit 

is shown in modified form in Figure 12. As this monitor reading is not 

absolute, it is calibrated against an r. f. wattmeter. Thereafter, battery 

voltage is adjusted to obtain the reference value by which all subsequent 

soil moisture measureme'nts are made. 

In addition to making the power adjustments, a figure of merit 

of antenna match to the transmitter can be made on the monitor. A 

forward or power- going-out reading is obtained (V ) and then the 
o 

reflected power (V ) is read with the toggle switch in the reverse 
r 

position. The formula 

V + V 
VSWR = o r 

V - V 
o r 

gives the voltage standing wave ratio (VSWR) which ideally should be 

1. O. In actual operation, due to some mismatch at the antenna the 

VSWR is about 1.2 which is considered acceptable. 

Field strength meter 

Theoretical calculations from Appendix I show that the field 

strength of a one-watt, 170 MHz, transmitter is in the 0-30 millivolt 
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range, at 50 feet antenna separation, and about the same field strength 

for a 30 MHz signal at 300 feet antenna separation, the two antenna 

spacings used most frequently. Developing a suitable instrument for 

measurement of the field strength was considerably more difficult than 

first believed. Tuned circuits were troublesome and finally abandoned. 

Variations in temperature and/ or load conditions caused considerable 

fluctuation in the coil Q and there was the problem of good assurance 

that the circuit was properly tuned for the frequency being used. There 

are, of course, commercial field strength meters that cover both of 

these frequencies; however, they required a 60 cycle power source. 

No high-resolution, economical, battery-operated, field strength 

meter was located that was suitable and tuned the desired range. A.s a 

result, some design effort was made to make a field strength meter that 

would be well suited for portable soil moisture field strength measure­

ments. The results of this effort have proved quite satisfactory. The 

meter has no front end tuning, making it very broad band, yet its 

sensitivity is adequate. A circuit diagram of the field strength meter 

is illustrated in Figure 13. The circuit functions as follows: 

CW signals picked up by the quarter wave vertical antenna are 

fed through a 50 ohm coax to an FET gate, QI, which has a 50 percent 

on-time that is controlled by the 1000 hz chopper. Thereupon it is fed 

as r. f. pulses to the detector. This amplifier will detect and amplify 

, / 

, / 
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Resistors 

RI 
R2 
R3, R4 
R5, R6, R7 
R8 
R9 
RIO 
RII 
Rl2 
Rl3 
RI4 
Rl5 
RI6 
Rl7 
RIB 
R19 
R20 

Capacitors 

Cl 
C2 
C3 
C4 
C5 
C6, C7 

47Q 
2M 
4.7K 
IK 
220K 
lOOK 

Field Strength Meter Parts List 

14. 5 K nominal value (selected) 
16 K nominal value (selected) 
50K 1% 
400K 1% 
10 K (scale adjust potentiometer) 
10K 
lOOK 
3.3 K 
2.2K 
4.3 Q 

270 Q 

430 pf 
5 jJ.f 
3 jJ.f 
.03 l-Lf 
• 1 l-Lf 
68 jJ.f 

40 

Miscellaneous 

Al 
A2 
SQI 
Ml 
Ll 

Chopper 
QI 

741 (selected) 
741 
4031/25 (Burr - Brown) 
0-15 volt meter 
2 turns #2643022401 ferrite bead from Fair Rite Products 

Corporation, Wallkill, N. Y. 
NE 555 (National) 
TIS 73 
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the re suIting audio signal. The ac signal obtained froIn the detector 

is then aInplified. There are four gain settings possible by the setting 

of SWI and SW2. SW2 adjusts gain for high and low sensitivity, 

0-15 InV, and 0-30 InV. Switch SWI adjusts gain for slight changes 

in sensitivity at 30 MHz and 170 MHz. 

Following the aInplifier, the signal is rectified and filtered by 

capacitor C3 and fed into a square root generator. The square root 

of the signal is required since square -law detection was obtained in 

the detector. The output of the square root generator is fed through a 

variable resistor to an indicating Ineter. The variable resistor is 

adjusted to give the desired scale factor on the Ineter. 

Although the systeIn would be slightly Inore accurate with built-

in temperature cOInpensation, since the diodes are teInperature sensitive, 

te sts showed the se errors are sInall. Some care was exercised, .how­

ever, to keep the Ineter out of direct sunshine when used for extended 

pe riods of tiIne. 

Power supply 

The power supply and accoInpanying voltage regulators used for the 

field strength Ineter are illustrated in Figure 14. The nickel cadIniuIn 

rechargeable battery powers a free-running Inultivibrator whose output 

voltage is stepped up, rectified, filtered, and regulated with both positive 

and negative voltage regulation, giving plus and Ininus 15 volt outputs. 
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Components 

Rl, R2 
R3, R5 
R4 
R6 
R7, R8 
R9 

Power Supply Parts List 

910n iw ± 5% 
2.2K 
1.8 K 

::= 4. 2 K (selected) 
2.7K 
4.7K 

CI 150~f, 50VDC 
TIl: 4. 5 s te pup w / c t 
Ql, Q2 2N2l39 
Q3 2N5496 
Q4 2N5189 
Q5, Q6 2Nll74 
BI 7. 5 volt battery #560 Eveready 
SW 1 Powe r - on switch 
Dl, D2, D3, D4 KBP005 Bridge rectifier 
D5, D6 5.8 V Ref Zener 

43 



44 

Capacity of the battery and load drain are such that several months of 

moderate use can be obtained before a battery recharge is necessary. 

~ 
. / 
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EXPERIMENTAL RESULTS 

Although theoretical analysis predicts that soil rnoisture can be 

readily deterrnined by the outlined rnethod presented in this report, 

chief interest lies in the question, "How well do field tests corroborate 

with theory and does it work sufficiently well to be useful?" Experi­

mental field data are presented for further systern evaluation in answer 

to these questions. 

Before proceeding with the se details, cornrnent should be rnade 

regarding sorne of the practical aspects of field tests. In order to 

evaluate variables, it is advantageous to hold all the variables but one 

constant while it is varied to deterrnine its effect on the systern. 

Thereupon, the second variable is allowed to vary, holding others 

constant while its effect is deterrnined, then the third variable is 

perrnitted to vary, etc. When dealing with the capriciousness of nature, 

it is not possible to conduct such ideal tests. For exarnple, Septernber 

was one of the wetter rnonths of record for Cache Valley as shown in 

Table 3. Any experirnent planned that rnonth would be accordingly dis­

turbed. For a soil rnoisture depletion rate test, ideally the soil should 

be initially wet and then be allowed to gradually dry out, without the 

sporadic application of uncertain arnounts of precipitation. As soil 

loses rnoisture slowly, this test could last an entire surnrner. With 



Table 3. Record of precipitation in Cache Valley by months for long 
term average and for 1973. 

June July Aug. Sept. 

1973 1.45 " 1.40" 1. 07" 4.93" 
Average 1. 76 0.34 0.87 0.94 

sporadic rainfall however some of the same soil moisture conditions 

may be repeated several times while the end value of extremely dry 

soil conditions may not be reached. It is generally possible however 
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to observe soil moisture variations ranging between saturation and the 

wilting point which is the primary range of interest. 

Area of effect 

One of the initial goals of the experimental measurement was to 

deterITline the surface area of effect. Two experimental tests were 

conducted using 170 MHz antennas; one test with 100 foot antenna 

separation, the other test with a 50 foot separation. In each test the 

antennas were moved laterally from the center of the wet field to the 

adja~ent dry area as shown in Figure 15. The field strength as a function 

of antenna position is plotted in each case and the results are shown in 

Figures 16 and 17. In each of these tests the wet area was obtained by 

pumping 1000 - 2000 gallons of water onto the te st site. 

Using the data of Figure 17, they are plotted in Figure 20 and 

compared in that figure to theoretical calculation. The theoretical 

"" / 
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ant. 

• • 
"dry" field 

"wet" 

• • /' 
xmtr. ant. 

Figure 15. Plan view of a wet field section located in the middle of 
a "dry" field. Dots represent antenna placement position 
for area of influence tests. 

calculations are based on the assumption that the effective width is 

25 feet for an antenna separation of 50 feet. As can be seen, there is 

fairly close agreement between the theoretical and actual values 

:measured suggesting that the area of influence was approxi:mately 

equivalent to the values chosen. A slight departure from the theoretical 

value at the I /4 wet/dry ratio demonstrates that in actuality the fringes 

of the 25 foot wide strip are not as important in affecting the field strength 

as is the more nearly direct-line-of-sight. In actuality, the field-of-

effect region is more nearly oval shaped rather than rectangularly 

shaped. As the area of effect is not delineated by a sharp demarcation 

but a "grey" area, it is difficult to depict the exact boundaries. Tests 
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Figure 16. A plot of field strength versus antenna placement with 
respect to a wet strip of ground 16' wide x 100' long. 
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show, however, that the approxim.ate rectangular area of Figure 20 

correlates with experiTIlental results with SOTIle iTIlprovem.ent possible 

if the area is oval or football shaped having a length to TIlaxiTIluTIl width 

ratio of about 2 to 1. 

In retrospect, when conducting the area of effect tests, the wet 

area test bed should have been considerably wider than the estiTIlated 

beaTIl width of 25 feet. This would rem.ove wet-dry boundary regions 

away froTIl the test area and eliminate possible reflections at the 

boundary that could conceivably give incorrect results. The good 

correlation between calculated and measured wet-dry effects obtained 

in Figure 18, however, tends to support the fact that effective beam width 

is about as indicated. The wet area of Figure 16 is known to be too 

narrow to effectively determine beam width since the wet to dry signal 

ratio is about 1.5 to 1 while that of Figure 17 is more representative 

of wet to dry signal ratios of 2. 8 to 1. 

Soil dielectrics (capacitor analogy evaluation) 

From theoretical discussions presented earlier, the soil is 

expected to behave as a dielectric. If this is the situation, then selectively 

wetting a portion of the ground as shown in Figure 19 will permit an 

analysis based on the "two serie s -capacitors analogy. " 

If two capacitors of equal physical size are connected in series, 

but have different dielectric constants, then their total series capacity 

can be expressed as 
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1 
( 14) 

In an actual field test, a 25 ft x 50 ft area was used as a test bed. 

In its "dry" state, the field strength was 4.4 mv. When one-half of 

the area, 25 ft x 25 ft, was wetted, the received signal strength was 

6.8 mv. With it all wet, the signal rose to 14 mv. These values have 

an analog to the dielectric constants, since field strength should be 

propo:rtional to capacity which is directly proportional to the dielectric 

constant and inversely proportional to the thickness of the dielectric. 

Hence, corresponding millivolt levels can be inserted in the capacitance 

equation giving, for the half-wet half-dry condition 

Field Strength "" c "" T 
1 

1 1 
28 mv + 8.8 mv 

= 6.7 mv 

(15 ) 

The measured value for this condition is 6. 8 mv compared to 6. 7 mv 

calculated, which is considered to be very good agreement. Note that 

values for C 1 and C
2 

are two times as large as measured, i. e., 14 

and 4.4 mv. This is due to the fact that capacitance is inversely pro-

portional to the thickness of the dielectric. Therefore, a 25 foot length 

is given a value of 2 times the capacitance over that of a 50 foot length. 

An observation can be made at this point regarding the so-called 

"integrated" or averaged measurement of soil moisture. When dry 
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and wet regions are running parallel to the path between the transmitting 

and receiving antennas in either the horizontal or vertical plane, the 

observed measured value is the average of the two regions. If a long 

narrow dry section of ground, i. e., gravel or sand bar, exists per-

pendicular to the path of transmission, received field strength representing 

the average value of soil moisture will not be obtained, since the dry 

section will dominate the reading, as illustrated by the insertion in 

Equation (14), of large and small numbers representing wet and dry 

regions, respectively. 

Radio wave field strength versus 
applied water 

One of the most direct approaches to observing effects soil 

moisture has on the field strength is to apply known amounts of water 

to a test bed and record the corresponding field strength. Figure 20 

illustrates the results from this type of an experiment. The soil 

moisture was initially 6 percent by weight at the beginning of the test. 

Water was applied via sprinkling; the area sprinkled measured 25 ft x 

50 ft square. The transmitter frequency was 170. 225 1v.1Hz at a power of 

one watt into a 50 foot RG58 cable to a "",,/4 ground-plane antenna. The 

field strength was observed to be linear with applied water until O. 64 

inch of water was applied, thereupon a nonlinear increase in field 

strength was observed until 1. 6 inches of water was applied at which point 
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the test was terminated. The water was applied at a rate of . 32 inch 

per hour. Virtually all of the water infiltrated as there was no runoff or 

appreciable collection of water on the surface. The following day the 

field strength had "sagged" back to 14 millivolts. The second day after 

the te st the reading was 13. 4 millivolts at which point an additional . 4 

inch of water was applied increasing the field strength to 14. 6 mvand 

1/2 hour later it was 14.4 mv. Seven days following the initial test the 

field strength was 11.6 mv. Grass vegetation growing on the plot was 

relatively dormant during this period (July). The loss of signal with 

time was considered to be due to evaporation losses at the surface and 

drainage of water downward. As water goes deeper, its ability to 

enhance the radio signal diminishes. This phenomenon was discussed 

under the topic on depth of penetration. 

Test site data 

Semiarid range land shown in the photograph of Figure 21 was 

selected as a test site for monitoring of natural soil moisture con­

ditions. Annual precipitation at the Green Canyon site averages about 

15 inches per year. Vegetation is principally composed of western 

wheat grass, yarrow, orchard grass, chicory, rabbit brush, and sage 

brush. 

The top soil is about 12 to 14 inches deep. Under the top soil is 

a gravel-clay mixture which made difficult the obtaining of soil samples 
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Figure 21. Range land showing typical vegetation growth and 170 :NIHz 
antenna used in tests. 

below about one and one -half feet. The top soil is clas sified as 

Greenville, gravely sandy loam. Soil moisture data taken by gravi-

metric measurements and also by field strength methods were obtained 

during several month-long periods spanning 24 months and the soil 

moisture as determined by weight maintained a constant relationship 

with the magnitude of the attenuated radio wave. For the data shown, 

the soil moisture was averaged over a two foot depth. A plot of this 

relationship is illustrated in Figure 22. 
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A linearity test can be conducted on field strength data shown 

in Figure 22 to determine if a linear relationship exists between the 

field strength and soil moisture. To test for linearity the data can be 

plotted using the equation for a straight line 

y = mx + b 

in which 

x is percent of soil 

y is the field strength in millivolts 

b is the value of the field strength when the soil moisture 

is zero 

m. is the slope as constant of proportionality 

5R 

The results of the data plotted in this manner are illustrated in Figure 23. 

In the data thus presented there appears to be an ahnost perfect one-to­

one relationship between the two m.ethods used in m.easuring soil moisture, 

radio wave versus gravity m.ethod. No values were observed at the 

extremities of the soil m.oisture range during this test but based on 

other data such as that of Figure 20, it is expected to behave as indicated 

by the dashed line extensions. 

Numerous other tests, sim.i1ar to the one just described, were 

conducted at different sites. Typical results for these tests are illustrated 

in Figure s 24 and 25. Straight line plots of field strength (F /S) ver sus 

soil moisture are plotted in Figures 26 and 27 and correspond to 
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Figure 23. Green Canyon-North plot of soil moisture by gravity 
measurement versus electrical field strength. 

Figures 24 and 25 respectively. The data shown in these figures 

illustrate a generally good correlation, particularly so in Figure 26 

when the soil was loose and soil samples were easily obtained. 

In general it is felt that much of the scatter is due to the standard 

used for calibration. Generally two or three soil samples were taken 

and averaged for the determination of soil moisture. Individual variations 
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between samples were observed to be of sufficient magnitude to account 

for much if not all of the scatter observed in the data points. For a 

more accurate standard, probably 7 or more soil samples should have 

been averaged together. Such a technique would aid materially in getting 

more accurate results. The data of Figure 28 probably illustrate the 

point being discussed. Considerable scatter in this figure was attri­

buted to too few soil samples. The test was conducted in a rough 

plowed ground area. Due to the hills and valleys shaded and sunny 

spots, considerable fluctuation apparently existed in soil samples being 

taken. Another factor was that samples were taken on a weight, in lieu 

of a volume, basis which may be aggravated by the plowed field; hence 

the scatter noted in the figure. 

Another interesting area that was studied was an apple orchard. 

The data were taken during the early part of the growing season before 

irrigation commenced, April 24 through May 15. During this period, 

the orchard grass grew to a height of about 9 inches. The antennas 

were situated parallel to the rows and equidistant between the rows. 

Antenna spacing was 50 feet and transmission frequency was 170 l\AHz. 

Measurement of soil moisture in the orchard presented some unique 

problems. Tree spacing was such that the water depletion was not 

uniform. It is difficult to get representative soil moisture samples 

under these circumstances. Soil moisture was observed to vary greatly 

from the center line between tree rows, to areas adjacent to the tree 

trunk where the irrigation ditches ran. 
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The unique properties of soil moisture averaging by the radio 

wave attenuation method was shown by taking several soil moisture 

readings in the orchard as follows: Four soil moisture radio readings 

were taken. The antennas were first placed on the center line between 

rows, next they were placed one-third the distance from the center of 

the row to the tree line. Third, they were placed two-thirds the distance 

to the tree line, and fourth the antennas were placed directly in line with 

the trees. The trees were in full leaf at the time and orchard grass 

about 8-10 inches high was located primarily under the trees where most 

of the moisture was found. The re suIts are shown in Figure 29. Even 

though the interpath vegetation varies greatly and soil moisture varies 

375 percent, the field strength varied only 30 percent. This should not 

be construed as an insensitivity to detect soil moisture, since previous 

data show about a linear correspondence between soil moisture and field 

strength over the range of general interest. The data presented in 

Figure 29 does illustrate the degree to which the field strength method 

is able to average the variations of the soil moisture within the orchard. 

The data also illustrate that trees placed directly in line between the 

antennas do not greatly affect. the signal strength. U sing the parallel 

capacitor analogy and data of other test plots, the wet and dry areas 

should typically average out at the millivolt levels that were actually 

measured. Numerous other soil moisture tests were made on several 

other test sites giving essentially the same results as those presented. 
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Invariably the results were representative of soil moisture except 

where rank vegetative growth existed. The nature and magnitude of 

this problem are discussed in the following section. 
~ 
, J 

Effects of vegetation on field strength 

Unfortunately green vegetation has an adverse effect on soil 

moisture determinations by use of radio waves. The more dense the 

vegetation the more the signal strength is attenuated independently of 

soil moisture. The reason for this attenuation is difficult to analyze 

theoretically in a quantitative manner. In general terms it is known that 

green plants will tend to short out the electric (E) field since the vertical 

standing plant and the vertically polarized wave are in the same plane. 

Since the E field is partially terminated in a conducting corn stalk for 

example, energy losses occur since appreciable power is absorbed in 

the corn stalks. 

The attenuation of the field strength in this manner can lead to 

the impression that the soil is dry when in fact, the reduced signal is 

caused principally by the presence of vegetation. To date this problem 

is not solved. There are several ways to partially overcome the problem, 

however, and several observations are made concerning them. Much 

vegetation is relatively constant in amount. In situations of this nature, 

the effect is present but constant and therefore its effect can be ignored 

as it is eliminated by the calibration process. Some types of vegetation 

does not seriously affect the signal. This may include orchards, range 



67 

lands, and crops that aren't too dense. The type of vegetation where it 

is most noticeable is the dense agricultural crops like mature alfalfa, 

1 
or corn. 

An experiment was conducted in order to illustrate the magnitude 

of the effect that mature, green rangeland grass had upon the signal 

strength, similar to that pictured in Figure 21. Initially the signal 

strength was 4.4 millivolts, the antenna separation was 50 feet, and the 

area to be mowed was 25 feet wide and 50 feet long between the trans-

mitting and receiving antenna. The first 20 inch swath was mowed 

directly between the two antennas. Signal strength rose from 4. 4 mv 

to 4. 6 mv. A second swath was mowed and the field strength rose to 

4.8 mv. At this point, the mowed grass was raked and removed from 

the area. After removal the signal remained unchanged at 4.8 mv. 

Subsequent mowed swaths caused the signal to increase to 7. 5 mv. 

Thereupon additional mowings reduced the signal slightly until it stabilized 

at about 6. 8 mv. The exact cause of the increased interim signal noted 

which was larger than the final value is believed to be due to the channeling 

or "wave guide" effect of the signal caused by the standing gras s. Re-

flections from the standing grass were of sufficient magnitude and proper 

phase such that some signal enhancement was probably obtained. This 

lIn some instances the growth rate of rank crops might be measured 
on a day to .day basis by the day to day attenuation of the signal. Such a 
serendipity effect has not been evaluated. 



sam.e phenom.enon has been noted several tim.es in sim.i1ar tests, thus 

discounting possible instrum.entation error. 

The interesting fact that raking and rem.oving the grass had no 

m.easurable effect is worthy of note. Apparently the am.ount of water 
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in the grass is not sufficient to change the signal unless the grass is 

standing vertical and thus parallel to the E-field as explained earlier. 

Adjacent to the m.owed area there was a bare 25 ft x 50 ft plot which had 

been cleared the year before. The field strength in that plot was 11. 2 

m.v. When com.pared to the plot just discussed with a field strength 

of 6.8 m.v, it is easy to tell how m.uch water was used by the plants. The 

actual value in percent m.oisture can be read from. the graph in Figure 

27. This can be approxim.ately related to inches of water with the aid 

of Figure 20. 

Instrum.ent calibration 

The results obtained to date indicate that a laboratory calibration 

of m.oisture by weight will not hold for different types of soil and 

vegetation. This requires that each area where the instrum.ent is to be 

used will need to be calibrated. This is not difficult, but it does require 

that two bench m.arks be obtained; "wet" soil condition and "dry" or 

plant stress conditions. Thereafter experience to date shows that a 

linear relationship exists between these two end points provided that 

vegetation is either not too dense or that it does not change in density 

a great deal. Norm.ally the wet soil condition can be m.ost easily obtained 
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in the spring of the year or early summer after heavy rains or following 

an irrigation. The "dry" condition, of course, follows at a later date. 

Typically the "wet" soil signal is 2i - 3 times the "dry" soil condition 

so that if only one of the two bench marks are obtained the other can be 

predicted with fair accuracy. No attempt was made to calibrate moisture 

on a volume basis in lieu of a weight basis. From a theoretical standpoint, 

water expressed as a percent by volume should have a more nearly constant 

calibration coefficient for different types of soil. The degree to which this 

is achieved has not been determined. 

Horizontal polarization 

Since vertically oriented vegetation tends to reduce the field 

strength of the propagated wave, it is interesting to speculate whether 

or not a horizontally polarized radio wave could be used to minimize 

this problem. From a theoretical standpoint, there is much greater 

attenuation due to soil moisture for the horizontally polarized wave 

but the vertically standing vegetation should not have so great an effect. 

Two pairs of horizontally polarized dipole antennas were built to 

test horizontal propagation, one at 27 :MHz the other at 170 w-Iz. Tests 

showed the received field strength to be extremely sensitive to antenna 

elevation in each case. The degree of this sensitivity is illustrated in 

Figure 30. For comparative purposes, a second test was run where field 

strength versus antenna height was plotted for a vertically polarized 

l70 MHz antenna, Figure 31. As can be seen from these two figures, 

the field strength from the horizontally polarized antennas has a high 
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degree of dependence on antenna height, while field strength from the 

vertically polarized wave does not have much dependence, for low 

elevation. Because of this undesired phenomenon in the horizontal 

polarization case, further tests were not conducted. If the antennas 

were installed in a permanent manner, however, so that the elevation 

was not a variable, the horizontal polarization might yet prove useful 

in order to overcome sensitivity to vegetation. Unfortunately this 

approach was not thought of and tried until late in the project and it wa.s 

not possible to pursue it further. 

Comparison of 1 70 M1-Iz data with 
27 M1-Iz data 

The results obtained for the two frequencies, 170 MHz and 27 MHz, 

were remarkably similar. The 27 MHz tests were ccnducted chiefly cver 

a 300 fcct ccurse length. The 170 M1-Iz extended generally to' cnly 50 feet. 

The fact that partially different scil was being sampled, plus errors cf 

sampling, were ccnsidered adequate to' account fcr any deviaticns noted. 

A compariscn cf the field strengths cf the twO' frequencies is illustrated 

in Figure 32. These data were taken at twO' widely differing lccaticns 

over a three mcnth pericd cf time. The standard errcr between them is 

1. 1 milli vclts. In terms cf scil mcisture, it is about 1 percent, i. e. , 

7 percent versus 8 percent scil mcisture, etc. 

Nctes cn cperaticnal prccedures 

Numercus additicnal experiments were ccnducted regarding bcth 

technical and practical aspects of soil mcisture mcnitcring. The 
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reduced by a factor of two, e. g., if power output is 10 percent 

above normal received signal strength calculates to be 4. 9 

percent above normal. Despite this "advantage" care should 

be exercised to maintain constant the radiated power. 

5. Accurate antenna spacing is important and for comparative 

measurements the antennas should be placed in the exact 

same spot each time the measurements are made. 

6. The antenna length is a fairly important parameter. It will 

not work well if bent, and it must be as near vertical as can 

be judged by the eye to work properly. 

7. It does not matter appreciably if the antenna is wet or if it 

is raining at the time of the measurement. 

8. The system is moderately sensitive to water distribution in 

the vertical plane. A more stable reading is obtained a few 

hours after a heavy rainfall when the soil moisture distri­

bution is in a more stable state. This assumes that the original 

calibrations were also made with soil moisture in a quasi­

stable state. 

9. For vertical polarization, antennas can be elevated a quarter 

of a wave length above the surface to be measured without 

appreciably affecting the field strength. 

10. The operation of a transmitter to measure soil moisture 

requires a license from the Federal Communications 

Commission, Washington, D. C. 
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SUMMARY 

The results of this research demonstrate that the presence of 

soil moisture increases the field strength in direct proportion to the 

m.oisture present. Linearity between field strength and soil moisture 

is Illaintained over a wide range of interest pertaining to many plant 

requirem.ents. 

The propagated radio waves are launched from a transmitting 

antenna and detected SOIlle distance away by a receiving antenna. Con­

sequently, this type of measurement can be considered as an integrated 

value of soil moisture since it samples the entire region between the 

antennas. If the moist soil is assumed to appear as a dielectric Illaterial 

between plates of a capacitor (the antennas in this case) its electrical 

behavior was shown to closely reseIllble the iIllpedance characteristics 

of a capacitor. 

Two electrical analogies of the properties of soil were made by 

assuming two nonhomogeneous soils existed which represented two 

capacitors of differing dielectrics in both the parallel and serie s con­

figurations. The theoretical and Illeasured field strength values were 

in very good agreement. Since the effective parallel dielectrics are 

additive, but the effective series dielectrics are inversely proportional 

to the sum of their individual reciprocal values, the good agreement 

obtained in each instance makes the analogy unique and well defined. 



76 

Since different soil types would probably have different intrinsic 

values of dielectric, each soil type may require a unique soil-moisture / 

field- strength calibration. Vertical polarization was chosen over 

horizontal polarization since horizontally polarized waves are attenuated 

very quickly and have considerable dependence on antenna elevation. 

A chief disadvantage of the vertically polarized wave is that its 

magnitude is diminished by green, rank vegetation. The attenuation is 

not serious if the vegetation lies close to the ground or is not too dense 

as is mature alfalfa or tall corn. Reliable results were obtained in an 

orchard, range land, pasture land, golf course, etc. 

Soil moisture in the top 2 to 3 feet of the soil has the dominant effect 

on the received field strength. Exact depth of radio wave penetration 

depends on magnetic permeability of the soil and the" skin effect, " 

an electrical phenomenon which causes alternating currents to flow on 

the surface of a conductor, viz. the earth. Probably in no event would 

depth of penetration be appreciable below 5 to IO feet at the radio 

frequencies used in this research. 

The theoretical mathematical expression shows that the radio waves 

attenuate in an exponential fashion with soil depth, therefore, the radio 

waves are more affected by moisture in the top of the soil mantle than 

they are at the deeper extremities of their penetrable range. 

Incremental changes in soil moisture were readily detectable 

after each rainfall. The sensitivity of the system to rainfall could thus 
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be of considerable benefit in assessing the effects of a storm. A.s a 

result of this information, irrigation practices could be adjusted to 

take economic advantage of such quantitative knowledge about the areal 

extent and the intensity of the storm. 

The experimental results closely correlate with the theoretical 

analysis appearing in Appendix 1. The analysis in Appendix I assumes 

given published value s for the dielectric constant of "good" and "poor" 

soils which are functions of the water present. This function would 

logically correspond to volumetric water content rather than gravimetric 

water content. Because ready acces s was not always available to an 

instrument for measuring water by volume, the comparisons were made 

chiefly on a gravimetric basis. Had all soil moisture tests been made 

on a "volume" basis, the calibration curves may have had a more nearly 

uniform calibration curve, i. e., slope and intercept. This supposition 

has not been verified but it is substantiated by the capacitor analogy 

theory. 

The system worked equally well at 27 !vfHz and at 170 1VfrIz. The 

area of effect is proportional to the wave length and a minimum of 8 wave 

lengths spacing between antennas are required to approach the ideal 

maximum to minimum signal ratio for the wet to dry soil range. 
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RECOMMENDATIONS FOR CONTINUED RESEARCH 

The rapidity and ease with which the discussed method can be 

used as well as its obvious application for large -scale area measurement 

and remote sensing would appear to justify further research. Better 

definition of depth-of-soil being measured is needed. Ways of over­

comiJ1,g attenuation by rank vegetation is desirable and may be possible. 

Horizontally polarized waves may provide better results in these cases. 

The phenomenon of normally unwanted attenuation caused by 

vegetation might be usefully used for an integrated measurement of 

crop growth rates, provided soil moisture was brought to some known 

value each time the vegetation measurement was to be made. Another 

approach would be to make a moisture depletion allowance when measuring 

crop growth. The pos sihility for using field strength measurements to 

measure crop growth appears sufficiently promising to warrant further 

research. 
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APPENDIX I 

SIGNAL STRENGTH CALCULATIONS 

Calculations for determining expected received signal strength as 

read by a field strength meter are important in preliminary system 

design. Once a particular transmitter and transmitting power and 

frequency are specified, the field strength expected at some distance 

away can be determined by calculation. Such a determination will aid 

in the design of a field strength meter to be used in measuring the received 

signal. This information will as sist in optimizing transmitter configuration 

and costs against field strength, circuit configuration, and costs. To 

illustrate how this might be optimized it is pos sible to build either a 

very powerful transmitter costing x dollars so that an inexpensive, 

e. g. a diode and meter can be used as a field strength meter or con-

ver sely perhaps a simple inexpensive micropower transmitter should be 

used in conjunction with an extremely sensitive field strength meter. This 

concept is illustrated in Figure 33. Care should be used in its interpre­

tation as the information is subjective; however, this type reasoning 

prevailed when transmitter and F. S. meter were being designed. 

Theoretical calculations for determining the strength of field in 

volts /meter at the antenna are a first step to computing signal levels 

derived from the antenna. In order to calculate it, several parameters 

must be given: 



Transmitter 
costs 

(dollars) 

Field Strength Meter Sensitivity my/meter 

• 01 • 1 1 10 
800 

600 
Total Cost~:~ 

400 • 

200 

Receiver 
costs vs. 

sensitivity 

~:'Cost is only relative. Actual costs 
would be determined by many factors. 

• a 1 • 1 1.0 10 

Transmitter Power - Watts 

100 
800 
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Field 
600 Strength 

400 

200 

100 

Meter 
Costs 

(dollars) 

Figure 33. Estimate of relative costs of transmitter and field 
strength meter and trade offs possible between them. 
Sketch indicates an optimum (lowest cost) exists 
when using "moderate" power and Ilmoderate" field 
strength meter sensitivity. 
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1. Tran.smitter frequency is 170 :MHz. 

2. Antennas are 'A/4 vertical ground-plane types placed directly 

on the ground. 

3. Antenna spacing is 50' (15.24 ITleters). 

4. Transmitter power is 1 watt into a 50' long RG-58 coax 

cable feeding a 'A/4 antenna. 

5. The receiver (field strength ITleter) is connected to its antenna 

by a similar 501 coax. 

Other as sUITlptions that ITlust be ITlade are that (1) the dielectric of the 

soil is 14 corresponding to ITloist pastural land in Ohio, and (2) soil con­

ductivity is 1 x 10-
4 

ITlhos/cm. 

A vertical 'A/4 antenna, having a field strength E at a distance 

d, assuITling a perfectly conductive soil surface, can be expressed by 

the equation (Kraus, 1950), 

in which 

1 

a 

r 

1 
r 

60 
E(a,r) = 

r 

= antenna height 

= angle froITl horizontal 

= distance to SOITle point 

= (2'TT/'A)1 

cos (1 sin a) - cos 1 ) 
r r 

cos a 

(16) 

p 
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self-resistance of vertical antenna 

effective los s of antenna 

power input to antenna 

Simplifying, for the case where a = 0 and the self-resistance 

1 
R 11 = 36 ohm.s, and R lL is assum.ed to be zero: 

60 
E = 

r 

= • 652 volts /m.eter. 

({ih) o 
(cos 0 ) 

(17) 

Since there is a 3db los s of transm.itter power delivered to the antenna, 

caused by the 50 feet of interconnecting coax cable this reduces the 

1 
voltage by ~ therefore 

E = .652 x 
I 

tJ2 
= .455 volts /m.eter. 

Equation 2 gives the field strength without taking into account the 

ground losses which are appreciable. The ground losses are calculated 

using notation from. page 6 of the report. 

I For radiation constant see Kraus (1950, p. 315). 
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p _. 
(

rr ic) (e f ) = 1T( 15. 24 \ (170 x 10
6

) = 1. 8 
r+ 1 300x10 6) 15 

( 18) 

Using the relationship plotted in Figure 1 the value A corresponding to 

p of 1. 8 and an angle b of 

x 

(14 + 1) 170 x 10
6 

= 
(1. 8 x 10

12
) (10-

4
) 

= tan b = E + 1 

gives, 

A = O. 23 

and the field strength is 

Field strength = (. 23) (. 455) = . 104 volts /meter 

The field strength can also be expressed in terms of volts per wave 

length giving: 

Field strength = (volts /meter) (
speed of light) 

frequency 

= (. 104) 
300 = . 187 

volts 

170 
wave length 

Since the impedance of free space is 120 1T, the power density P d is 



.187 v/A2 
1201T 
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To convert the power density at the receiving antenna to a voltage 

at the termination impedance (R
1

, Figure 34) the effective antenna 

aperature (A ) must be determined. (The antenna aperature is the 
e 

ratio of the power in the terminating resistors, R
1

, to the effective 

power in the space around the antenna.) The value of the antenna 

aperature is determined by integrating the field strength at the antenna. 

Figure 34 shows that 

dV 

v 

v 

= Edy cos ~ 
'A 

'A/4 

= J E cos 

0 

EA 
= 

21T 

~ dy 
'A 

( 19) 

The power in the terminating resistor Rl can now be calculated. For 

maximum power transfer the load resistance should be equal to the 

antenna impedance, thus 

R 
antenna = R 

The power in the load (PI) is now expressed as 

(20) 



f 
y 

J 

T 
dy 

-... 

" 4 

R 
antenna 
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R 
load 

Figure 34. A 'A./4 antenna terminated in 50 ohms. The antenna and 
load is represented as a Thevenins equivalent circuit. 

Recalling that the antenna aperature (Ae) is the ratio of PI to the 

effective power in the space around the antenna, and substituting in 

Equation 20 give s 

A 
e = = = .0478 'A. 

2 

in which P is equal to the field strength divided by the impedance of 

free space, 120 11'. 

Neglecting cable loss in the receiver antenna, the power delivered 

to the load is 

~ 

, / 
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Since, 

p = 

the load voltage is 

v = ".j 50 x 4.42 jJ.W = 14. 9 lllV 

,Considering a 3db loss in the receiver cable (50' of RG58) 

v = = 10.5 lllillivolts 

The calculation used above aSSUllles a soil llloisture such that 

the dielectric constant would be E = 14. A signal of 10.5 millivolts 

is well within the capability of the field strength llleter and thus the 

operating ranges chosen for antenna-translllitter power and field strength 

meter capability appear to be a good choice. As a lllatter of interest the 

10.5 mv level correlates very closely with actual field llleasurelllents as 

can be seen in the body of the report. 
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