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PREFACE 

This report comprises a dissertation submitted by 

the author to Utah State University in partial fulfill­

ment of the requirements for the degree of Doctor of 

Philosophy in Civil Engineering o The author is assigned 

as Research Hydrologist, Western Region, Weather Bureau? 

ESSA, Salt Lake City, Utah. 

The study has been based on observations obtained 

during a cooperative evaporation project conducted from 

1962 to 1966 by the Uo S. Forest Service, Department of 

Agriculture and the Weather Bureau, ESSA, Department of 

Commerce. The study was conducted on the Davis County 

Experimental Watershed of the UQ So Forest Service near 

Farmington, Utah. Special thanks are extended to the 

Forest Service for permission to use the data for the 

dissertation o 
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ABSTRACT 

Influences of Exposure on Pan Evaporation in 

a Mountainous Area 

by 

Eugene Lo Peck 

Utah State University, 1967 

Major Professor: Dr. Jay Mo Bagley 
Department: Civil Engineering 

The effects of exposure on pan evaporation rates were 

studied at the Davis County Experimental Watershed near 

Fa.rmington? Utah, by operating a network of 12 class A 

evaporation stations on the watershed during the summer 

months of 1962 through 1966~ Standard Weather Bureau 

observations on a daily basis were obtained from a total of 

17 different sites representing widely diverse topography 

with a vertical range of 4,630 feeto 

Deviations from mean relations with elevation on 

monthly values of observed meteorological factors were 

found to be related to the type of exposure o Dewpoint 

observations on different slopes were found to be related 

not only to the differences in station exposure but also 

to the stability of the air and direction of the upper air 

flow. 

Two commonly-used methods for estimating monthly pan 

evaporation were found to be within 3 and 6 percent of 



observed values from the mountain area. Estimates of 

daily pan evaporation using the mass transfer equations 

derived from the Lake Hefner and Lake Mead water-loss 

investigations were found to over-estimate and under­

estimate for different types of exposures. The errors in 

the daily estimates were related to the type of exposure 

and stability indices. 

Revised mass transfer equations were found to corre~ 

late well with daily and 2-hourly pan evaporation rates 

when type of exposure was considered. Further improvement 

was obtained in the reliability of the mass transfer equa­

tions when the daily data were segregated on the basis 

of the direction and speed of the 700-millibar level wind. 

Pan evaporation for the network stations for open 

locations on top of major ridges and along their southern 

slope.s and on sites subject to strong night time drainage 

winds were found to have no discernable variation with 

elevation. For protected sites and those on northern 

slopes, pan evaporation showed a small decrease with 

increasing elevation. 

The effect of elevation (atmosphere pressure) indepen~ 

dently on evaporation rates was investigated through the 

use of data from stations where the other meteorological 

factors involved 9 other than pressure~ were the same. The 

study indicated that pan evaporation increases with increase 

in pressure 7 all other factors considered being the same. 

(144 pages) 



INTRODUCTION 

A large percentage of the precipitation that falls over 

mountainous areas is lost to the atmosphere by evaporation. 

A knowledge of the variation of the amount of the water 

removed by the evaporation process with time and space is 

necessary if we are to make maximum utilization of our 

water resources. 

Need fo~res~arch in 
mountainous areas 

Most of the results of the studies of evaporation and 

evapotranspiration during the past few years have not been 

tested or applied to the mountainous areas of the Western 

United States. This has been primarily due to the lack of 

basic data. For these mountainous areas, measurements of 

evaporation and evapotranspiration rates are very limited, 

as are the observations of the meteorological factors nor­

mally associated with these studies. 

Potential evapotranspiration is important for studies 

of water use by hydrologists, ecologists, foresters and 

others and has been defined by Thornthwaite, Mather and 

Carter (1958) as:: 

HThe only standard measures of evapotranspiration 
arethose from a large vegetation-covered land 
surface with adequate moisture at all times. 
This condition defines potential evapotranspira­
tion or water need; since moisture is not 
restricted, potential evapotranspiration ~s 
limited solely by available energy." 
(Thornthwaite and Hare, 1965, p. 168). 
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Evaporation from shallow free water surfaces may be 

used as an index to potential evapotranspiration as des­

cribed above (Kohler 9 Nordenson 7 and Baker? 1959). However? 

there are very few measurements of evaporation from shallow 

lakes and reservoirs in mountain areas and estimates for 

this factor are necessary. 

Many methods for estimating lake or free water evapo­

ration have been developed. These include those based on 

water budget analysis, energy budget considerations, mass 

transfer methods? combinations of aerodynamic and energy 

balance approaches and the use of pan and lysimeters with 

empirically developed coefficients. 

The most common extensively tested method for esti­

mating lake evaporation has been the use of an aerodynamic 

equation or what is also referred to as a mass transfer 

equation. Following the comprehensive water-loss investi­

gation at Lake Hefner, Oklahoma (U .. S" Geological Survey~ 

1954), Kohler, Nordenson and Fox (1955) developed a new 

mass transfer equation and tested it for locations through­

out the United States. Procedures for correlating meteoro­

logical factors with pan and lake evaporation were also 

developed. These procedures were based on the work of 

Penman (1948) who combined the aerodynamic and energy 

balance approaches to eliminate the. nee.d for water surface 

temperature. measure.ments" The Lake Mead water-loss investi­

gations 1 UQ So Geological Survey Professional Paper No. 298 

(1958)~ were a continuation of the Lake Hefner studies. 



These investigations further tested the validity of the 

mass transfer equation and the procedures for estimating 

lake evaporation o 

In mountainous areas, due to drainage winds and other 

local effects, the time distribution of wind movement is 

not the same on the mountain slope as that observed in the 

valley below. It can be assumed that equations developed 

from data at valley stations are not directly applicable to 

stations on the mountain slope. 
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Maps of annual lake evaporation have been prepared by 

various researchers for the United States (Myers, 1942 and 

Kohler, Nordenson and Baker, 1959). Those by Kohler~ 

Nordenson and Baker (1959) utilized procedures developed 

earlier by these authors to estimate lake and pan evapora­

tion using meteorological observations from Uo So Weather 

Bureau stations throughout the countryo These annual evapo­

ration maps provide the most accurate generalized estimates 

of evaporation available. However, the authors did state 

that the reliability of the maps was lower for areas of 

high relief (mountainous areas) than for areas in the plains 

region. Only limited data were available from stations 

above 5,000 feet mean sea level. These data were from 

valley locations and provided little information on the 

amount, or variability, of evaporation in the mountainous 

areas 0 

The use of present procedures for application to moun­

tainous areas would also be somewhat difficult without 



further testing. Blaney (1958) and Longacre and Blaney 

(1961) found that pan evaporation from higher elevations in 

southern California decreased with increasing elevation. 

Christiansen (1966) in his procedure for estimating monthly 

pan evaporation based on world-wide data, applies a correc­

tion term which increases with elevation~ The effect of 

this correction is to increase the estimated evaporation by 

4 

3 percent for each 1,000 foot increase in elevation above 

1,000 feet mean sea level. As the results of the first two 

st'udies indicate a decrease in the evaporation with elevation 

and the latter study indicates an increase, clearly further 

study is necessary_ 

Scope of present study 

As indicated previously, there has been very little 

research or basic data collected on evaporation rates in 

mountainous areas. Many of the more advanced techniques 

that have proven to be of value for lower? relatively flat 

areas do not appear to be applicable to the rugged topo­

graphic conditions of the higher mountain areas. These 

techniques generally require highly specialized measure­

ments of wind and moisture gradients and are based on 

assumptions that would not be expected to be met in the 

mountainous areas. Some of these assumptions are that the 

wind speed and moisture distribution in the vertical are 

logarithmic and that atmospheric lapse rates be essentially 

adiabatic. 



Because of the many possible complicating factors, it 

was decided that the present study, being a pilot project 

for mountainous terrain, should be limited to investigating 

the validity of the more commonly used methods. 
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The first requirement was for adequate reliable basic 

data. To obtain this data, standard procedures were used to 

collect data from observationsl sites with as large a varia­

tion in exposure and elevation as possible. 

Objectives 

The objectives of the present study are: 

1. To determine the variation of the more important 

meteorological factors affecting evaporation in 

mountainous areas. 

2. To evaluate the validity of commonly used mass 

transfer equations for estimating pan evaporation 

in mountainous areas and modify existing equations 

where possible. 

3. To investigate the effect of elevation (atmosphere 

pressure) independently on evaporation rates through 

the use of data from stations where the other 

meteorological factors involved 9 other than pressure, 

are the same. 



REVIEW OF LITERATURE 

Use of mass transfer equations 

Literature on the use of mass transfer or aerodyna-

mic equations for estimating pan evaporation is very exten-

sive. The basis for the use of the aerodynamic equations 

was very early recognized (Dalton, 1798). Rowher (1931) 

reviewed the use of aerodynamic equations up to that dateo 

Most of these were of the general form: 

E = (a + b U ) (e - e ) s a. 

where E is the monthly evaporation, U a wind movement 

(1) 

factor, e the saturation vapor pressure of the air or the 
s 

saturation vapor pressure of air corresponding to the water 

temperature, e the observed vapor pressure of the air, and 
a 

a and b are empirically determined constants. 

Rowher (1931) developed the equation: 

where B is the mean station barometric reading in inches of 

mercury. As stations are located at different elevations 

and the mean station barometric readings correspond to the 

elevation of the stations, this equation considers the 

effect of elevation on evaporation o The other symbols in 

the equation are as defined above. 

Penman (1948) in his paper, 11Natural evaporation from 

6 



open" water, bare soil and grass,11 presented additional 

theoretical basis for the empirical equations developed by 

Dalton. He combined the aerodynamic and energy balance 

approaches to eliminate the need for water temperature 

observations. This equation ~s: 

E = 
1 

(3) 

where 6. is the slope of the saturation vapor-pressure 

versus temperature curve at the air temperature Ta , 

Ea is the evaporation given by the aerodynamic equation, 

assuming water temperature (To) equal to air temperature 

(Ta ), Qn is the net radiant energy expressed in the same 

units as those of E, and 0 is defined from Bowen's (1926) 

dimensionless ratio, R: 

R = (j (4) 

The subscript 110
11 is used to represent the pan water 

surface and eo is the saturation vapor pressure of the air 

corresponding to the water temperature. 

Anderson, Anderson and Marciano (1950) presented an 

excellent review of evaporation theory and development of 

instrumentation prior to the Lake Mead water-loss investi-

gationso 

The Lake Hefner, Oklahoma, studies, U. S. Geological 

Survey professional Paper No. 269 (1954) shows that the 

daily evaporation in inches from a class A Weather Bureau 

7 



evaporation pan could be quite accurately estimated through 

the use of the equation: 

Ep = (e - e ) (0.42 + Oe0040 U ) o a p 
(5) 

where Ep is the daily pan evaporation in inches, eo is the 

saturation of air at the temperature of the water surface 9 

e as defined above, and Up the wind movement above the pan a 

in miles per dayo Kohler, Nordenson and Fox (1955) found 

that the error between the estimated and observed evapora-

8 

ti.on when using the Lake Hefner mass transfer equation corre-

lated with vapor pressure differencesG Using graphical 

techniques they found that by introducing an exponent for 

the vapor pressure term, the errors were reduced. They 

arrived at the following equation~ 

E = (0 0 37 + 0.0041 U ) (e 
p p 0 

(6) 

Kohler 9 Nordenson and Fox (1955) also found that 

Rohwer!s (1931) correction for elevation could be removed 

through the use of the exponent on the vapor pressure differ­

ence term. They indicated that this was true since the 

vapor pressure generally decreases wi. th increases in eleva­

tion (decrease in pressure). However~ decreasing the vapor 

pressure term exponent has the same effect as increasing the 

wind term effect. Since wind speed may also have a corre-

lation with elevation~ the reason could be due to this rala-

tion rather than that of vapor pressure. 

Other authors have empirically determined that the 



vapor pressure difference term is exponentially related to 

evaporation. Himus (1929) found that the exponent term 

should be 0.83. Millar (1937) indicated the fundamental 

fact in a true mass transfer approach, the evaporation 

should be proportional to the difference in vapor concen~ 

tration rather than vapor pressure difference. He also 

showed that the vapor pressure concentration to the unity 

9 

power would be approximately the same as the vapor pressure 

difference to the 0 0 83 powero Other investigators (Sellers? 

1965) using basic turbulent transfer theory of water vapor 

have indicated that the exponent should be unity. 

The revised mass transfer equation of Kohler~ Nordenson 

and Fox (1955), equation 6? and their pan and lake evapora-

tion estimating procedures were checked with the data 

collected during the Lake Mead water~loss investigations. 

The results of these tests proved that the equations and 

procedures were valid for the Lake Mead area o 

Braslavskii and Vikulina (1954) developed the following 

formula from observations made using very large pans of 20 

and 100 square meters in area: 

(7) 

where E is in millimeters per day? e the saturation vapor o 

pressure in millibars at the given water temperature? 

e 200 the vapor pressure in millibars at 2 meters, and 

U200 the wind velocity in meters per second at the 2-meter 

level. They found the greatest errors were for evaporation 
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for evaporation pans situated in arid regions o These errors 

reached 25 to 30 percent and were negative (underestimated) 

in sign. The majority of the cases (75 percent) had errors 

which did not exceed 8 to 10 percent6 They also stated that 

the rate of water loss from the large pans is not affected 

by the pans. This is not the case for evaporation pans of 

smaller surface area 0 

Both groups of the above mentioned investigators 

(Braslavskii and Vikulina~ 1954 and Kohler, Nordenson and 

Fox~ 1955) found that the estimates using mass transfer 

equations will either over or underestimate when applied to 

different geographic locations o In general~ the predicted 

evaporation for the dry-arid regions is underestimated. 

Pruitt (1963) found a similar result from lysimeter and pan 

evaporation studies at Davis, California. On days with 

strong north winds~ which blow from a drier region 9 the 

dewpoints are generally much lower than average~ and the 

evaporation is greater than computed. 

PriestlY9 McCormick and Pasquill (1958) stated that 

most theoretical formulae are non-linear combinations of 

fundamental variables which are themselves often inter­

related. Thus 9 the insertion of mean values into a formula 

does not 9 in genera1 9 provide the best estimate of evapora~ 

tiona 

Sellers (1965) discussed the effect of using daily 

average values of wind moveme,nt with saturation and actual 

vapor pressure in theoretical equations. He concluded that 
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estimates of evaporation rates were generally too low. 

This results from averaging the values when there is a 

large difference in the diurnal variation. The vapor 

pressure difference between pan water surface and the atmos-

phere normally large when the stronger winds are observed 

during the day and normally small in value wlien the winds 

at night are relatively light. Tanner and Pelton (1960) 

have indicated that overall results could be obtained 

separate estimates were made for the night and day time 

periods. 

Approaches other than the mass transfer equation or 

the combination of the aerodynamic and energy balance 

methods have been used to develop methods for predicting 

pan evaporation~ One example is that used by Christiansen 

and Mehta (1965). This procedure uses the theoretical 

radiation and adjustment coefficients based on empirically 

derived equations for air temperature 9 wind movement 9 

humidity 9 sunshine, elevation and the month of the year. 

Stabilit¥ effects on 
evaporatlon rates 

Munn (1961) presented an excellent summary of the mass 

transfer theory of evaporation. In his discussion of the 

basic considerations regarding evaporation he stated: 

The rate of diffusion of water vapour away from a 
moist surface will depend upon the wind speed 9 the 
intensity of eddy activity~ and the size distribution 
of the eddies. When there is no horizontal gradient 
of water vapour? the wind speed has no direct influ­
ence on the rate of evaporation. Indirectly, however? 
increased wind leads to increased eddy energy? 



permitting the water vapour to be transferred upward 
more rapidly. The ease with which eddies may move 
vertically in the atmosphere depends upon the 
stability of the air. (Munn, 1961, p. 10) 

The assumption that increased wind speed leads to 

increased eddy energy may not hold true for mountainous 

areas. Down-canyon drainage winds are quite often very 

shallow in depth and the vertical wind speed profile may 
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show decreasing wind speed rather than the normal increasing 

wind speed with increasing height above ground. 

Williams (1961) has discussed the simplified mass 

transfer equation: 

(8) 

where 

E = evaporation rate 

feU) = function of wind veloc y 

feZ ) = roughness parameter 
0 

e s = vapor pressure at surface 

e a = vapor pressure of air at some level above 
the surface, and 

K = constant (which includes air density and 
air pressure terms) 

The difficulty in using this type of basic equation 

lies in evaluating the roughness parameter f(Zo). The 

values of the roughness parameter Zo found for the Lake 

Hefner study varied from 0.55 to 1.15 centimeters. 

Priestly (1959) showed that the roughness parameter for a 
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snow cover varied from 0.005 centimeters for smooth snow on 

short grass to 0.10 centimeters for snow surfaces on natural 

prairie. In a mountainous area it would be difficult to 

make a measurement of the roughness parameter of the surface 

under consideration. It is not clear whether the height of 

the mountains themselves or the surface characteristics of 

the mountain slope important. 

Webb (1966) found some association between a bulk 

Richardson number and the ratio of actual lake evaporation 

to observed pan evaporation. The Richardson number refers 

to the stability of the air mass above the surface under 

consideration as is defined as: 

Ri = g 

2 

where ~ is the potential temperature~ g the gravitational 

constant~ U the horizontal wind velocity and Z the elevation. 

The number represents the ratio of the work done against 

gravitational stability to energy transformed from mean to 

turbulent motion. 

The Lake Mead water=loss investigations (1958) showed 

that stability was a significant factor when wind data, 

measured above the vapor blanket at the surface of the lake 9 

was used in the aerodynamic equation. When wind values 

taken within the vapor blanket itself were used in the 

aerodynamic equation 9 stability did not appear to be an 
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important factor. This indicates that the rate at which 

the moisture is dissipated from the region above the vapor 

blanket is significant? as the Richardson number relates 

directly to the physical mechanism which causes the moisture 

removal. The consideration of air mass stability and its 

effect on evaporation has not been used. in conjunction 

with the mass transfer approach to any great extent~ 

The process of evaporation from a water surface is 

essentially governed by the fundamentals of simultaneous 

mass? energy and momentum transport processes~ Sellers 

(1965) stated that there are large differences in the time 

of occurrence of maximum heat flux and maximum momentum 

flux" Research by Hales 1 Dickson and Hand (1961) con",,_ 

sidering air above the Great Salt Lake Desert found the 

heat flux to be a minimum at sunrise? increasing to a maxi­

mum during the late afternoon and decreasing rapidly near 

sunset; conversely, the momentum flux has a maximum at sun­

rise, decreasing to a minimum during the afternoon and 

increasing slowly to sunset 0 The increase in the heat flux 

was found to be proportional to the logarithm of the nega­

tive Richardson number whereas the decrease in the momentum 

flux was determined to be approximately proportional to the 

absolute value of the Richardson number. 

Richardson~s (1920) development of his dimensionless 

stability index was made on the basic assumption that the 

exchange coefficients for heat and momentum transfer were 

equal. This assumption has since been proven invalid 



(Ellison, 1957). Hansen (1966) discusses the factors that 

adversely affect the use of the value of the Richardson 

number as a stability index o He also lists revisions that 

have been made to the original work by Richardson. He 

states that the accurate determination of the Richardson 
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number is highly dependent upon the proper evaluation of 

the.vertical gradients of wind and potential temperature in 

the first few meters of the atmosphere above the surface. 

Failure to take into account the terrain over which the 

flow occurs also lead to erroneous evaluation of the 

stability regime. More simplified versions of the Richardson 

number have been used by Deacon (1949) and Lettau and 

Davidson (1957) to define the stability regime. 

Effect of pressure on 
evaporation rates 

Nordenson (1966) summarized the effects of increasing 

altitude (decreasing pressure) on various parameters and 

the resulting influence on evaporation rate: 

1. Air temperature tends to decrease, evaporation 

rate to decrease o 

20 Wind movement tends to increase, evaporation rate 

to increase 0 

3 0 Potential short-wave radiation increases, potential 

evaporation tends to increase o In mountainous 

areas because of prevalent clouds the radiation, 

and hence the evaporation rate, tends to decrease. 

4. Long-wave radiation tends to decrease? evaporation 



rate to decrease. 

5. Vapor pressure of the moisture in the air 

decreases? evaporation rate tends to increase. 

It is generally accepted ·that evaporation decreases 

with increasing altitude 9 although not as much as would be 

indicated by the decrease in air temperature. 

Variation of meteorological 
factors-rn mountainous areas 

The meteorological factors affecting evaporation from 

a water surface are basically those due to temperature? 

humidity 9 wind and radiation 0 In addition 9 the successful 

prediction of evaporation based on station pan evaporation 

must necessarily follow standardized observational and 

equipmen t te.chniques 0 
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Temperature 0 A ve.ry complete discussion of tempe.rature. 

variations mountainous areas was reported by Hann (1903)0 

He discussed average monthly lapse rate with incre.ased 

vation and fC1und that (1) the rate of decrease is greater 

for southern slope stations than those on northern. slope.s? 

(2) diurnal range.s of temperatu.res are ge.nerally less on 

mountain sides a.s compared with valley locations; and 

(3) on mountain slopes the nights are. much m.ilder and the 

days are less cool than at locations in. mountain valleysQ 

Dickson. (1959) found a good relation (correlation 

coefficient of 0.97) betwe.e.n elevation and July mean tem-

peratures for the Southern Applachian Mountain region of 

the Eastern United. States o 



The above references relate to temperature only and 

not necessarily the effect of temperature on evaporation o 
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Wind. Many reports concerning mountain and canyon 

drainage winds are reported in the literature 0 Hawkes (1947) 

made a study of the canyon wind patterns in the mountain 

valleys near Salt Lake City, Utah, just to the south of the 

present study area reported in this work. The primary wind 

feature was the canyon drainage winds which occur practically 

every night, and are strongest during clear weather. Tern .. 

perature and moisture distribution patterns are related to 

the drainage wind movements. Koresawa (1960) has descri.bed 

the occurrence of drainage winds in Japan and the associated 

horizontal and vertical temperature. lapse patterns. One of 

the important findings with respect to evaporation is that 

the vertical lapse rates of temperature have been found to 

be significantly different with upslope and downslope 

drainage winds. This variation of the vertical lapse rate 

is one of the reasons why the assumptions of near adiabatic 

lapse rate conditions would no·t be valid for drainage wind 

locations. 

Radiation 

A summary of atmospheric radiation has been prepared 

by Bliss (1961). The variation of radiation for various 

exposures is a primary reason for many of the differences 

that are measured in meteorological factors. Frank and Lee 

(1966) have presented a method for computing the potential 
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solar radiation for mountain slope locations o The variation 

of radiation energy in forested areas has been discussed by 

Reifsnyder and Lull (1965)~ 

Equipment and observational methods 

Many of the published records, especially those at 

mountain locations where daily observers were not available, 

were not observed on a daily basis or in accordance with 

standard techniques. Hook gages for the measurement of 

evaporation rather than point gages were used in many 

instances and the observers would allow the water level in 

the pan to decrease considerably before refilling the pan. 

Nordenson and Baker (1962) and Bonython (1950) have shown 

that the evaporation rate from a pan varies with decrease 

in the water level. Bonytbon reported a 15 percent varia­

tion for a 5 cm difference in the level of the water and 

Nordenson and Baker a 9 percent decrease when the water was 

maintained 4-.5 inches below the level of the rim of the pan 

as compared with the recommended standard of 2 to 3 inches. 

Type of pan has been reported by Nordenson and Baker 

(1962) to cause variation in the measured evaporation rates. 

Stainless steel pans were found to have evaporation about 

6 percent less than the standard galvanized-iron pano Monel 

metal pans were within one percent of the standard class A 

pan .. 



PROCEDURE 

Description of evaporation 
stations 

During the spring and early summer of 1962, a network 
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of 12 class A pan evaporation stations was established on 

the Uo So Forest Service Davis County Experimental Watershed 

located in the Wasatch Mountain Range midway between Ogden 

and Salt Lake City? Utah o The watershed is located just 

east of Great Salt Lake within an area of approximately 

8 x 5 miles o Station number 1 is located in the town of 

Farmington, Utah, and is typical of evaporation stations 

commonly found in the Intermountain West o This station has 

been considered to be the control or base station o Eleva-

tions of the evaporation stations varied from 4,334 to 8,960 

feet mean sea level e Within this range of elevations, the 

climate varies from semidesert to sub humid 1 and the vegeta-

tion from sagebrush-grass to aspen~fir types. The topo.,: 

graphy is generally steep and rough q 

A listing of the 12 original stations, those which were 

installed later and others in the immediate area, is given in 

Table 1. The locations of all stations in the study area 

are shown on a map with contours (Figure 1)0 

Stations 11 2, 3 and 4 are within an airline distance 

of 3 0 6 miles of each other and provided an elevation pro­

file with a vertical range of 4 1 630 feet over widely diverse 

topographYQ The remaining eight of the original stations 
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Table 1. Names and identification numbers of evaporation stations 

Station 

studl.~ 

Farmington Warehouse 
Halfway Lower 
Farmington Rice 
Upper Halfway 
East Chicken Creek 

West Chicken Creek 
Upper Snow Course 
Farmington Parrish Field Station 
Parrish South 
Centerville Canyon 

Buckland-SE 
Buck1and-NW 
Miller Creek 
Steed Creek 
Parrish Mouth 

Gold Ridge 
Davis Creek 

Other stations 

Morgan 
Farmington Bay 
Saltair 

Network 
number 

1 
2 
3 
4 
5 

6 
7 
8 
9 

10 

11 
12 
14 
15 
16 

18 
19 

13 
17 
20 

Weather Bureau 
alpha number 

42-2726 
42-3574 
42-2725 
42-8943 
42 .. 8941 

42-5222 
42-8947 
42-2727 
42-6700 
42-1362 

42-1015 
42-1014 
42-5274 
42-8271 
42-6698 

42-3252 
42-2042 

42-5826 
42-2729 
42-7578 
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on the experimental watershed were located in pairs at 

approximately the same elevation and with similar vegeta­

tion types, but with different exposures as to orientation 

and topography. 

The network of stations was operated for five summer 

periods (1962 through 1966 inclusive). Changes in loca­

tions of some stations were made at different times during 

this period in order to obtain information on additional 

type of exposureso Following the first summer season, 

stations 5, 6 and 10 were removed. Stations 14 and 15 

(Figure 1) were installed to obtain a pair of stations on 

the north and south slopes of the major east-west ridge on 

the watershed. Station 16 was located at the mouth of 

Centerville Canyon to evaluate the effect of the strong 

drainage winds and to provide additional information at 

lower elevation. Before the start of the 1965 summer sea­

son, stations 7 and 10 were removed and stations 18 and 19 

were installed. Station 18 was located on the major 

drainage divide on the eastern side of the watershed to 

provide information on a ridge location in the lee of the 

major mountain ridge line. Station 19 was placed at a 

lower elevation on the western face of the general slope 

of the mountain where it would not be affected directly 

by drainage winds from a canyon. 

Class A evaporation stations were installed at Morgan 

and Farmington Bay Bird Refuge, Utah, during the study 

period. Station number 13 was assigned to Morgan, Utah, 

22 



and number 17 to Farmington Bay Bird Refuge, Utah o The 

station at Morgan, Utah, is situated in a small valley 

community at an elevation of 5,070 feet. The Farmington 

Bay Bird Refuge is located near large wildlife water areas 
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at an elevation of 4,205 feet (location is shown on Figure 1). 

For convenience, all reference to the Salt Lake City 

Weather Bureau Airport Station will be as station 210 This 

station is located at an elevation of 4,220 feet mean sea 

level. Complete weather observations are taken at this 

station including two rawinsondes and two windsondes at 

alternate 6-hourly periods. However, no evaporation measure­

ments are made. 

All stations were uniform in size, 16 by 20 feet~ and 

were enclosed by a 6-foot chain link fence topped by three 

strands of barbed wire to exclude large wildlife species 

and to discourage disturbance and vandalism. 

Each station was equipped with standard Uo So Weather 

Bureau equipment, including a 4Z5 inch diameter monel metal 

evaporation pan 10 inches deep with the pan mounted on a 

lattice platform constructed of 2 x 4-inch lumber. A 

totalizing anemometer j attached to the platform at a height 

of 6 inches above the pan rim recorded the wind data. Non~ 

floating Sixts thermometers were used to measure the pan 

water temperature, and standard maximum and minimum ther­

mometers in cotton region shelters ,to measure the free-air 

temperatures. These instruments? plus a standard 8-inch 

rain gage, were located within the enclosure according to 
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instructions in Circular B, U. So Weather Bureau (1962). 

During the initial season, four stations were instru­

mented with therrnographs, four with hygrothermographs, and 

eight with recording rain gages. During the five years of 

the project, additional hygrotherrnographs were installed and 

all 12 of the stations of the main network had hygrothermo­

graphs during the final season. 

Four actinometers (Belfort pyrheliographs) were added 

to the network during the 1963 seasono One was maintained 

at the base station and at stations 2 and 4. The other 

actinometer was rotated among the remaining stations. A 

temperature compensated Eppley pyrheliometer with a Brown 

circular chart recorder, equipped with an integrator, was 

installed at the base station prior to the 1964 season. 

A recording wind speed and direction assembly was 

erected on a 4-meter mast located on the ridge near 

station 9. Dial-type anemometers installed on 4-meter masts 

were located at stations 1 and 3, and occasionally at other 

stations 0 

Station characteristics 

The locations of the 17 evaporation stations on the 

experimental watershed provided major differences in 

station characteristics. The variations in the size of 

clearing, land slopes, and general aspects of the stations 

are difficult to define, but some descriptive material is 

given in Table 2. All stations are located in natural 
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Table 2. Description of evaporation station sites 

Station 
number 

1 
2 
3 
4 
5 

6 
7 
8 

9 

10 

11 

12 

13 
14 

15 

16 
17 

18 
19 
20 

Elevation Slope 
feet percent 

4,329 0 
6,200 60 
6,860 5 
8,960 0 
7,750 20 

7,640 10 
7,830 15 
8,060 40 

8,160 30 

7,960 25 

7,130 20 

7,010 35 

5,070 0 
8,340 40 

8,340 40 

4,680 5 
4,205 0 

7,600 0 
4,880 22 
4,210 0 

General 
aspect 

None 
S 

NW 
None 

W 

N 
N 
N 

S 

NW 

SE 

NW 

None 
N 

S 

W 
None 

None 
W 

None 

Location 

In town of Farmington 
Steep narrow canyon 
Large opening in aspen type 
Crest of open rid ge 
Small aspen opening 

Large opening in aspen type 
Median opening in aspen type 
Open mountain brush and 

aspen type 
Open mountain brush and 

aspen type 
Medium opening in aspen type 

Large opening in oakbrush 
type 

Sma 11 opening in oakbrush 
type 

In town of Morgan 
Sagebrush type near crest 

of ridge 
Sagebrush type near crest 

of ridge 

Bonneville Lake terrace 
At bird refuge head-

quarters 
Crest of an open ridge 
Bonneville Lake terrace 
At Morton Salt Company 
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clearings varying in size from approximately 60 by 80 feet 

to completely clear at the ridge stations numbers 4, 15 and 

18. Panoramic photographs of each station are shown in 

Figures 2-8. These photographs were taken by U. S. Forest 

Service personnel with each succeeding picture being tilted 

so that the horizon would be visible. It is very difficult 

to obtain any real concept of the steepness and roughness 

of the topography from the photographs of the stations. 

Daily measurements 

Daily observations were scheduled to begin at the 

control station at 8:00 a.m. MST and to be completed at all 

12 stations by 3:30 p.m. MST. Most observations were usually 

made within 5 minutes of the scheduled time at each station. 

Variation in the time of reading from year to year for some 

stations resulted when stations were relocated. 

Each evaporation pan was recharged to the fixed point 

with water measured to the nearest thousandth of an inch 

in a graduated plastic cylinder. Total 24-hour wind move­

ment to the nearest one-tenth of a mile, maximum and mini­

mum air and water temperatures to the nearest whole degree 

and the amount of precipitation (if any) to one-hundredth 

of an inch were recorded. Point measurements of wind speed 

and direction, wet and dry bulb psychrometric readings at 

the shelter height, and estimates of percent of sky covered 

by clouds, were made at the time of observation. Factors 

which might affect the interpretation of the records~ such 
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as the amount and cause of pan shading, ice formation in 

the pan? and any evidence of disturbance were also noted~ 
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As a quality control on the hygrothermograph, the obser­

vers computed the humidity from the psychrometric readings 

and checked the value against the chart reading. 

Special measurements 

In 1962, special hourly observations during daylight 

hours were taken at each station during one 24-hour period¢ 

Simultaneous hourly observations for the same period were 

made at the base station. During the 1965 summer season 

two similar sets of 24-hour readings were made at all 12 

evaporation stations simultaneously. One set of simul­

taneous readings for all stations was made during the 1966 

season but only during the daylight hours of one calendar 

day. Overnight observations were recorded during the 

special observational periods in 1962 and 1965. 

Observations of the sun azimuth and vertical angles 

at sunrise and sunset were made for each station during the 

1962 hourly observations. Changes in meteorological events 

as type and amount of cloud cover, shifts in wind speed or 

direction, and other phenomena which might provide additional 

correlative information, were recorded during all hourly 

observational periods. 

Basic data 

Standard measurements. The standard observations for 

a class A evaporation station were placed on a specially 



prepared punch card. These measurements include: 

1. Maximum? minimum and observational time air 

temperatures. 

2. Maximum, minimum and observational time water 

temperatures, 

3. 24-hour pan wind movement 

42 

4. Evaporation (read to thousandths of an inch rather 

than standard reading of one hundredth of an inch), 

and 

5. Precipitation. 

Additional data were also placed on the daily cards. 

These included the 4-meter mast winds where observed, 

6-hourly dewpoints and daily radiation in Langleys. 

Dewpoint computation,.' Hygrothermograph traces of 

temperature and humidity were adjusted by using the observed 

temperature and psychrometric readings. Using the corrected 

trace, 6-hourly dewpoints were computed beginning at 5:00 

a.m. MST. These times are the regular synoptic weather 

observation times. Surface and upper-air observations at 

the Salt Lake City, Utah, Weather Bureau Airport Station 

are made at these same intervals. 

Radiation. Daily radiation values in Langleys were 

taken from the digital integrator for the Eppley pyrhelio­

meter. Values for the remaining stations were calculated by 

planimetering the area on the pyrheliograph charts and using 

factors obtained by calibration of the instruments with the 

Eppley pyrheliometer. 
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Hourly measurements 

Since it was recognized that the hourly measurements 

of evaporation would be subject to some degree of error, 

the values were computed for 2-hourly intervals. Data for 

the 2-hour periods were placed on punch cards as was done 

for daily data. Separate cards were punched for each over­

lapping 2-hour period. For example, one card for the 2-hour 

period from 8:00 a.m. to 10:00 a.m. and a separate one for 

9:00 a&m. to 11:00 a.m. 

Identification of stations 

All stations were assigned a Weather Bureau identifi­

cation number (two digits for the state, 42, and four for 

the station number). These numbers are listed in Table 1. 

All punch cards contain the identification number, the 

year, month and day. For the 2-hourly data, the hour ending 

the period was entered on the card. Tabulations of mean 

monthly values for all network stations are listed in Table 3. 



Table 3. Average monthly values of meteorological factors and computed lake evaporation 

Pan Computed 
Mean Mean Mean wind lake 
air water dewpoint movement Evaporation Radiation evaporation 

Months degrees F degrees F degrees F miles per day inches 1ang1eys inches 

Station 1 
1962-66 1962-66 1962-66 1962-66 1962-66 1964-66 1962-66 

June 69.0 58.8 45.1 21.2 .265 609 .193 
July 76.2 62.9 46.8 23.2 .306 660 .216 
August 73.6 60.9 45.3 22.3 .268 584 .190 
September 64.7 53.0 39.9 19.0 .171 476 .122 

Station 2 
1962-66 1962-66 1963-66 1962-66 1962-66 1964-66 1962-66 

June 64.7 65.4 36.3 55.5 .290 604 .196 
July 72.4 70.3 40.0 58.7 .355 719 .240 
August 69.9 67.5 41.5 59.3 .311 651 .205 
September 61.5 59.0 35.8 60.8 .227 516 .144 

Station 3 
1962-66 1962-66 1966 1962-66 1962-66 1964-66a 1962-66 

June 53.4 42.5 28.5 137.2 .317 .167 
July 60.6 47.1 32.5 118.4 .354 666 .169 
August 58.1 46.1 32.4 114.2 .304 610 .151 
September 50.1 40.1 26.6 129.3 .246 487 .096 

+:-
+:-



Table 3. Continued 

Months 

June 
July 
August 

Mean 
air 

degrees F 

1962-66 
53.2 
60.6 
58.1 

September 50.1 

1962 
June 65.9 
July 63.4 
August 64.0 
September 59.3 

1962 
June 59.9 
July 58.5 
August 58.3 
September 52.8 

Mean Mean 
water dewpoint 

degrees F' degrees F 

1962-66 1962-66 
54.9 28.5 
60.4 32.5 
58.5 32.4 
50.3 26.6 

1962 
67.7 
66.2 
63.5 
57.0 

1962 
66.6 
65.1 
62.0 
54.8 

Pan 
wind 

movement 
miles per day 

Station 4 
1962-66 
137.2 
118.4 
114.2 
129.3 

Station 5 
1962 
22.4 
23.9 
31.3 
33.3 

Station 6 
1962 
24.9 
24:';'1 
34.7 
37.8 

Evaporation 
inches 

1962-66 
.317 
.354 
.304 
.246 

1962 
.262 
.242 
.234 
.187 

1962 
.256 
.240 
.234 
.183 

Radiation 
1ang1eys 

1964-66 
786 
820 
701 
593 

Computed 
lake 

evaporation 
inches 

1962-66 
.228 
.248 
.215 
.172 

.j::" 
lJ1 



Table 3. Continued 

Months 

June 
July 
August 

Mean 
air 

degrees F 

1962-64 
55.6 
61.3 
60.3 

September 53.5 

1962-66 
June 55.4 
July 61.6 
August 59.1 
September 51. 5 

1962-66 
June 57.5 
July 63.9 
August 61.7 
September 54.8 

Mean Mean 
water dewpoint 

degreesF' degrees F 

1962-64 
45.9 
50.5 
49.7 
42.4 

1962-66 1962-66 
61.2 32.5 
66.9 36.7 
64.5 36.2 
54.2 29.0 

1962-66 1962-66 
61.0 31.8 
66.3 35.1 
64.4 35.8 
55.6 29.2 

Pan 
wind 

movement Evaporation 
miles per day inches 

Station 7 
1962-64 1962-64 
45.0 .235 
31.2 .255 
31.9 .220 
37.7 .152 

Station 8 
1962-66 1962-66 
48.4 .238 
38.1 .258 
33.5 .225 
36.0 .164 

Station 9 
1962-66 1962-66 
49.4 .252 
38.7 .274 
34.1 .237 
39.0 .181 

Radiation 
Lang1eys 

1964-66a 

613 
696 
666 
506 

1965-66a 

656 
810 
709 
698 

Computed 
lake 

evaporation 
inches 

1962-66 
.182 
.196 
.171 
.121 

1962-66 
.185 
.198 
.200 
.129 
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Table 3. Continued 

Months 

June 
July 
August 

Mean 
air 

degrees F 

1962 
65.4 
60.7 
62.3 

September 57.7 

1962-66 
June 60.4 
July 66.6 
August 64.6 
September 57.1 

1962-64 
June 63.0 
July 69.7 
August 68.2 
September 61.5 

Mean Mean 
water dewpoint 

degrees F degrees F 

1962 
67.9 
65.9 
63.1 
56.2 

1962-66 1963-66 
66.0 36.9 
70.3 40.8 
67.3 40.4 
58.3 33.1 

1962-64 1963-64 
65.4 37.7 
71.4 39.3 
68.5 41.0 
59.0 33' :1 

Pan 
wind 

movement Evaporation 
miles per day inches 

Station 10 
1962 1962 
37.5 .252 
31.8 .233 
32.6 .212 
31.9 .160 

Station 11 
1962-66 1962-66 
37.8 .249 
36.6 .287 
36.9 .258 
38.0 .192 

Station 12 
1962-64 1962-64 
44.0 .240 
41.3 .283 
41.0 .247 
40.1 .172 

Radiation 
1ang1eys 

1966a 

676 
732 
658 
514 

1964a 

656 

Computed 
lake 

evaporation 
inches 

1963-66 
.182 
.209 
.184 
.132 

.j::" 
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Table 3. Continued 

Months 

June 
July 
August 

Mean 
air 

degrees F 

1963-66 
60.5 
65.5 
61.3 

September 53.1 

1963-66 
June 61.1 
July 66.0 
August 61.7 
September 53.5 

1963-66 
June 70.2 
July 79.5 
August 76.1 
September 66.8 

Mean Mean 
water dewpoint 

degrees F degrees F 

1963-66 1965-66 
63.6 35.2 
68.4 40.9 
64.0 37.7 
54.9 32.9 

1963-66 1965-66 
61.5 31.3 
64.1 36.1 
61.6 35.6 
52.8 31.6 

1963-66 1963-66 
69.2 40.9 
74.6 42.0 
72.4 42.7 
63.6 37.4 

Pan 
wind 

movement 
miles per day 

Station 14 
1963-66 
58.1 
57.8 
62.4 
65.3 

Station 15 
1963-66 
118.8 
140.4 
118.8 
147.5 

Station 16 
1963-66 

65.0 
72.3 
67.6 
64.0 

Evaporation 
inches 

1963-66 
.268 
.291 
.240 
.168 

1963-66 
.355 
.398 
.345 
.268 

1963-66 
.342 
.432 
.374 
.256 

Radiation 
1ang1eys 

1964-66a 

711 
769 
681 
495 

1964-66a 

790 
756 
692 
551 

1964-65a 
587 

587 

Computed 
lake 

evaporation 
inches 

1965-66 
.197 
.201 
.171 
.111 

1965-66 
.246 
.265 
.218 
.180 

1963-66 
.250 
.284 
.267 
.165 
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Table 3. Continued 

Months 

June 
July 
August 

Mean 
air 

degrees F 

1965-66 
59.2 
65.8 
62.1 

September 52.3 

1965-66 
June 7LL 
July 77.7 
August 73.7 
September 63.9 

aFew days only 

Mean Mean 
water dewpoint 

degrees F. degrees F 

1965-66 1965-66 
58,7 34.4 
63 .. 9 40.0 
61.3 39.3 
51.5 36.2 

1965-66 1965-66 
70.0 41.9 
74.4 44.6 
71.6 43.4 
62.6 41.3 

Pan 
wind 

movement 
miles per day 

Station 18 
1965-66 
129.8 
126.0 
113.0 
138.2 

Station 19 
1965-66 
58.3 
69.2 
58.6 
59.2 

Evaporation 
inches 

1965-66 
.359 
.384 
.332 
.271 

1965-66 
.314 
.373 
.316 
.209 

Radiation 
1ang1eys 

1965-66a 
715 
702 
676 

1966a 
·.715 

662 
645 
503 

Computed 
lake 

evaporation 
inches 

1965-66 
.248 
.262 
.228 
.180 

1965-66 
.215 
.201 
.214 
.133 

+" 
\0 
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RESULTS 

Air temperature relations 

Mean temperature. Monthly values of air temperatures 

were plotted versus elevation to determine its variation 

with elevation. Samples of these curves for July, August 

and September 1966 are shown in Figures 9, 10 and 11. Data 

on these graphs indicate the stations to be divided into 

two groups in o~der to best show the temperature-elevation 

relation. Stations with good drainage located on ridges or 

steep slopes generally had higher mean temperatures than 

those which were protected by vegetation and/or had poor 

drainage~ This is in general agreement with the findings 

of Hann (1903)e The two curves on the graph have been used 

to indicate the general relation for each type of station. 

Since observations were made at some stations during 

1962 and not during 1965, a composite graph showing the 

temperature-elevation relation for all stations in the 

network is shown in Figure 12. 

The mean of the upper air temperatures for approxi­

mately 5,000 (850-millibar level) and 10,000 (700-millibar 

level) feet mean sea level for 5:00 a.m. and 5:00 p.m. from 

the Salt Lake City, Utah, radiosonde runs were also plotted 

on the graphs" 

The relations for the three months were very similar 

for both groups except for colder temperatures in August 
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and September. The lapse rate of temperature was found to 

be 4 F per thousand feet for both groups of stations and 

4.5 F for the mean upper air temperatures. 

55 

Maximum and minimum air temperature relations~ To inves-

tigate the cause of the difference in the mean air tempera­

ture relations with elevation as found for the different 

exposures, curves for maximum and minimum temperature rela-

tions were developed in a manner similar to the procedure 

for mean temperature. Relations for the months of JulY1 

August and September 1966 are shown in Figures 13~ 14 and 

15. A composite relation for July 1962 and July 1966 as 

prepared for the mean air temperature is shown in Figure 16. 

Maximum air temperature was found to be well correlated with 

elevation for all stations. The minimum temperature plottings 

fell into two groups similar to those experienced for the 

mean air temperature relations. 

The temperature lapse rate for the maximum temperature-

elevation relation was 5 F per thousand feet and that for 

both groups of minimum temperature-elevation curves 3.2 Fo 

Similar plots were made for clear days only during July.l 

The same general characteristics were noted with the lapse 

rate being slightly less for each set of curves. 

Dewpoint relations. A simple plot of dewpoint versus 

elevation for July 1966 is shown in Figure 17 with the 

lClear days as used in this study are days when all 
pyrheliographs recorded only smooth curves and no cloudiness 
was observed at the Salt Lake City Weather Bureau Airport 
Station. 
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average daily pan wind movement for each station. Analysis 

of the plot shows that dewpoints for stations located on 

top of ridges (4 and 18), high elevation south ridge sta­

tions (9 and 15), and those that have strong drainage winds, 

(2, 16 and 19), apparently have a different relation with 

elevation. The remaining stations are those having north­

oriented slopes and protected locations. 

A similar plot of dewpoint data for August 1966 

(Figure 18) shows a single relation for all stations. In­

vestigation into the possible reason for the difference in 

the relations indicated that the upper air wind direction 

was an important factor. During July 1966 there were only 

7 days when the 5:00 p.m. 700-millibar upper air wind had 

a northerly component. During August 1966, 21 days were 

observed to have a northerly component. The lapse rate 

with elevation for the dewpoint in July is about 2.0 F 

per thousand feet wlii~e thatf9r August 1966 is 2.35 F. 

A plot of dewpoint versus elevation relation for clear 

days only during July 1965 and 1966 is shown in Figure 19. 

The same general pattern as found for July 1966 in Figure 17 

may be observed but somewhat more pronounced. 

An unusual method of presentation was developed to help 

visualize the diurnal changes in dewpoint over the watershd. 

Figure 20 is a plot of the elevation versus the total 24-

hour pan wind movement for each station for clear days 
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during July 1965 and July 1966.~ Entered at each point are 

the 6-hourly dewpoint averages for 5:00 p.m. and 11:00 p.m. 

MST. The 5:00 p.mo observation is after the heating of the 

day has mixed the air and the up-canyon winds have been 

established for several hours. The moisture is fairly well 

distributed over the watershed. The lapse rate of dewpoint 

with elevation is not materially different for varying 

values of pan wind movement. A set of curves has been 

entered on the chart representing the analysis of the dew-

points on the graph. 

The second values of dewpoints are those for 11:00 p.m., 

after down-canyon winds have been established. At this time 

of day the lines of equal dewpoints are nearly vertical. 

The graph reflects a conside~able drying at the upper ele-

vations over the entire watershed. Only stations 1 and 21 

(Salt Lake City, Utah) have dewpoints above 40 F. 

Similar plots for 5:00 aom. and 11;00 a.m. are shown 

in Figure 21. The isolines for the 5:00 a.m. dewpoints are 

very similar to those for the 11:00 p.m. data 0 The down­

canyon winds are still in progress at this time of the 

morning. 

The last set of equal dewpoints lines is for the 11:00 

a.m. observation time. This is generally shortly after the 

lAn estimated pan wind for the Salt Lake City Airport 
Station was obtained by reducing the observed 20 foot above 
ground wind measurement to the pan wind level by the method 
explained by Weiss and van de Erve (1966). 
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up-canyon winds have been established. The position of 

the lines would indicate that moisture is moving up the 

hillsides to the higher elevations. These higher dewpoints 

reflect to some extent the moisture that was over the large 

water areas immediately east of the study area along the 

shorelines of Great Salt Lake during the night. 

The lower dewpoint values at 5:00 p.m., as compared 

with those at 11:00 a.m. undoubtedly are the result of the 

heating and mixing with the drier air aloft during the 

hottest portion of the day. 

The diurnal variation in dewpoint at a single location 

may be seen in the plottings of hourly dewpoints in Figure 22. 

The curve for station 4 shows the variation in dewpoint 

experienced by ridge locations. There is an increase in 

dewpoint during the morning hours until about 9:00 a.m., 

after which there is little change until the late afternoon 

when a rapid decrease in dewpoint values may be noted. At 

lower stations, subject to strong canyon winds, station 2, 

for example, the dewpoint continues to increase until about 

11:00 a.m., after which there is a moderate decrease until 

late in the evening when the down-canyon winds again cause 

the dewpciint to decrease rapidly. 

Station 17 was included to show the difference in 

dewpoint at valley locations. The dewpoints remain high 

during the night hours until heating is sufficient in the 

morning (about 9:00 a.m.) to cause mixing with drier air 

aloft and the dewpoint remains lower until the mixing is 
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discontinued at sundown. 

Radiation relations 

The daily radiation values from the Eppley pyrhelio­

meter at the base station were checked with those from the 

Weather Bureau regular installation at the Salt Lake City, 

Utah, Airport Station for the period of record during July 

and August 1966 (Figure 23). Values for the base station 

are for the 24-hour period ending 8:00 a.m. MST, while those 

for Salt Lake City, Utah, are for the calendar day. The 

relation indicates that the two records are in good agree­

ment. 

The pyrheliographs were calibrated with the Eppley at 

several times during the study. Since the pyrheliographs 

were installed on the top of the instrument shelters and 

subject to possible damage by gunfire, steel covers were 

used to protect the sides of the instruments. 

Relations of observed radiation values between indivi­

dual stations and the base station were developed, using 

period or monthly totals when available. These relations 

were found to be nearly linear and in general, parallel 

to one another. For the same radiation at the base station, 

the range in estimated values was slightly over 100 Langleys 

per day with the lowest values observed for station 3 and 

the highest for station 4. Figure 24 is a plot of the 

elevation-radiation relation for the month of July. The 

points for stations 1, 2 and 4 are observed values while 
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those for the remaining stations were based on short 

periods of record. The relation for the three stations 

with observed values seems to be a straight line with a 

good fit. 

The length of day (maximum possible sunshine) for the 

different stations varies considerably. Table 4 is a 

comparison of the length of day as observed during the 

special hourly observations during the 1962 season. 

Station 2 is located in a rather narrow canyon 

surrounded on both sides by rock cliffs. This station 

receives considerable reflected short-wave radiation from 

these rocky areas. 
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Generalized relations between radiation and pan evapo­

ration were developed from average values for periods when 

radiation data were available at each station. The slope df 

the best fit lines for these relations indicated that the 

daily average pan evaporation increased approximately .05 

of an inch for each 100 Langleys increase in radiation. 

Wind relations 

The anemometers used in the study were Weather Bureau 

F104D and have a normal starting speed of 1.5 miles per hour. 

The exposures of the various stations produced considerable 

difference in pan wind movement. The highest wind movements 

per day were observed at stations located on major ridges, 

on southern slopes of ridges and at lower stations subject 

to strong drainage winds. Lowest wind speeds were observed 



Table 4. Comparison of length of day for each station with base 
station during special observations in 1962 

Station 
number 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

Dates of 
observation 

1962 

17-18 Sep 

12-13 Sep 

25-26 Ju1 

22-23 Aug 

21-22 Aug 

4-5 Sep 

15-16 Aug 

14-15 Aug 

7-8 Aug 

28-29 Aug 

29-30 Aug 

Length of 
day 

hours 

8.2 

10.4 

14.3 

11.6 

11.4 

10.9 

11.7 

11.6 

10.9 

11.6 

11.8 

Length of day 
base station 

hours 

10.6 

10.8 

11.9 

11.6 

11.6 

11.1 

11.7 

11.7 

11.7 

11.4 

11.4 
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for stations in canyons with considerable vegetation and 

at stations with relatively flat surrounding terrain. 

Values of monthly pan wind movements are shown in Table 3 

for all stations. 
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The diurnal wind movement during the day varied con­

siderably from station to station. Highest wind movement at 

ridge stations was generally observed during the afternoon. 

At lower elevation stations with strong drainage winds the 

highest wind movement (down canyon) occurred during the 

night and early morning hours. The most comprehensive 

analysis on canyon winds in the Salt Lake City area has been 

pr~sented by Hawkes (1947.). Peck and pfahkuch (1963) 

showed that the pan wind movement on southern slopes was 

considerably greater than that on northern slopes during 

periods of southerly winds. 

Pan water temperature relations 

Plotting of mean pan water temperatures with elevation 

shows a general decrease in pan water temperature with 

increase in elevation. As was noted for dewpoint and air 

temperature, the pan water temperatures were found to be 

different for stations with different exposures_(Figures 

25 and 26). The stations with high pan wind movements had 

colder pan water temperatures than protected stations at 

the same elevations. Values of average pan water tempera­

tures, difference between air and pan water temperatures 

and average daily pan wind movement are shown for July 1966 
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on Figure 27, and on Figure 28 for August 1966. Stations 

which have observed average pan water temperatures colder 

than the average air temperatures have been enclosed by 

circles. It is evident that these stations are divided 

into about the same grouping as was noted for the tempera­

ture relations. Values for stations 13, 17 and 20 (non­

project stations) have been entered and seem to fit the 
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general pattern. The general lapse rate for pan water tem-

perature with elevation is approximately 3.25 F per thou-

sand foot increase in elevation. 

The diurnal variations in air and pan water tempera-

tures from station to station were found to be considerably 

different for the various types of locations. Figures 29, 

30 and 31 show the hourly variations in air and pan water 

temperatures for protected (station 1), ridge (station 4) 

and drainage wind locations (station 19) as observed during 

hourly readings on 25 August 1965. 

Evaluation of standard equations 
for estimating monthly pan 
evaporation 

Three methods were selected to check on the validity of 

commonly-used procedures for estimating monthly pan evapora­

tion for the mountain stations in the project area. 

The first one was developed by Christiansen (1960) for 

the Utah area and later revised by Christiansen and Mehta 

(1965). The procedure is based on the equation: 

Ep = KRC (9) 
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where Ep is the monthly pan evaporation in inches, K an 

empirical dimensionless constant, R the theoretical solar 

radiation reaching the earth's outer atmosphere, and C a 

dimensionless empirical coefficient which is the product of 

subcoefficients expressing the effect of a given climatic or 

other factor. The original equation developed using data 

from northern Utah and the revised equation based on world­

wide data were used to compute estimates for all stations 

for the months of July and August 1966. The results of these 

computations are shown in Table 5. 

The Utah equation produced estimates that had only a 

very small negative bias with an average error of slightly 

over 5 percent. A slightly greater negative bias was noted 

for the higher elevation stations. This greater bias could 

have been the result of using the Salt Lake City, Utah, 

percent of possible sunshine in place of actual observed 

sunshine for the various stations. 

The use of the universal equation gave a greater and 

a positive bias but only a slightly higher average error 

for the monthly estimates. Maximum errors were about 16 

percent for both equations. 

The most tested methods for estimating pan evaporation 

are those by Kohler, Nordenson and Fox (1955). These include 

the mass transfer equation: 

E = (0.37 + 0.0041 U ) (e - e) 0.88 (10) 
p 0 a 
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Table 5. Results of applying Christiansen method for monthly estimates 
of pan evaporation to network stations, July and August 1966 

Station Month 

1 July 
August 

2 July 
August 

3 July 
August 

4 July 
August 

8 July 
August 

9 July 
August 

11 July 
August 

14 July 
August 

15 July 
August 

16 July 
August 

18 July 
August 

19 July 
August 

Utah Equation 

Monthly 
estimate 
inches 

9.71 
8.52 

11.23 
10.18 

8.15 
7.77 

11.61 
10.22 

7.58 
7.21 

8.62 
7.83 

9.43 
8.46 

9.45 
9.22 

15.73 
10.98 

13.07 
11.46 

14.30 
12.12 

12.86 
11.07 

Error 
inches 

.62 

.02 

.12 

.20 

-.49 
-.42 

-.54 
-.15 

.66 

.69 

.50 

.51 

.80 

.35 

- .40 
-.66 

-2.16 
-.34 

1.38 
1.22 

-.57 
.19 

.34 

.09 

Universal Equation 

Monthly 
estimate 

inches 

10.08 
9.16 

11.69 
10.85 

8.73 
8.48 

11.48 
10.57 

8.27 
8.11 

9.35 
8.78 

10.06 
9.32 

10.03 
9.95 

13.78 
11.26 

12.81 
11. 71 

13.26 
11.80 

12.82 
11.43 

Error 
inches 

.24 
-.64 

-.34 
-.47 

-1.07 
-1.13 

-.42 
-.49 

- .02 
-.21 

-.24 
-.44 

.17 
-.51 

-.98 
-1.39 

-.20 
- .63 

1.64 
.97 

.47 

.51 

.39 
-.28 



Table 5. Continued 

Equation 

Utah equation 

Universal 
equation 

Average 
bias 

-.080 

.210 

Average 
error 

.558 

.577 

85 

Average error 
percent 

5.38 

5.57 
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and the procedure using meteorological factors of mean 

daily temperature, mean daily dewpoint, pan wind movement 

and solar radiation in Langleys per day (Figure 2 in Weather 

Bureau Research Paper No. 38, Kohler, Nordenson and Fox, 

1955). 

The researchers have stated that approximately the 

same results are obtained if monthly averages are used in 

the procedures or if daily estimates are made and then 

summed for monthly totals. The findings of the present 

study verified this statement. Table 6 is a summary of the 

results of applying these procedures to the data obtained 

during the present study. Observed data required for the 

meteorological factor methods, including radiation, were 

available for 1,148 station days. The estimates from the 

meteorological factor methods were found to be 10.2 percent 

too high on the average. No definite reason for this 

apparent error could be established; however, errors in 

radiation measurements could be a factor since these are 

difficult to evaluate. 

The average error for the mass transfer equation method 

was only 3.1 percent low. The bias on the low side was 

greatest during the month of July. 

Evaluation of standard mass 
transfer equation for daily 
and 2-hourly pan evaporation 

Estimated daily pan evaporation from the mass transfer 

equation of Kohler, Nordenson and Fox (1955) were plotted 



Table 6. Results of applying Weather Bureau Research Paper No. 38 equations to estimate 
monthly pan evaporation, records from all seasons included 

Average 
observed 

Station(s) Number pan Computed Average Computed Average 
or of evap"ration average Bias error average Bias error 

period days inches inches inches percent inches inches percent 

1 330 .259 .285 .026 10 .265 .006 2 
2 209 .307 .335 .028 9 .290 -.017 6 
3 30 .239 .270 .031 13 .244 .005 2 
4 241 .322 .363 .041 13 .308 -.014 4 
8 44 .244 .270 .026 11 .243 -.001 0 

9 33 .256 .289 .033 13 .230 -.026 10 
11 66 .236 .269 .033 14 .228 -.008 3 
12 7 .267 .311 .044 16 .300 .033 12 
14 35 .249 .309 .060 24 • 249 .000 0 
15 45 .338 .371 .033 10 .335 -.003 1 

16 9 .384 .415 .031 8 .398 .014 4 
18 56 .358 .367 .009 3 .311 -.047 13 
19 43 .403 .415 .012 3 .387 -.016 4 

~ months 
June 110 .325 .363 .038 12 .309 -.016 5 
July 362 .349 .379 ,030 9 .327 -.022 6 
August 400 .280 .306 .026 9 .275 -.005 2 
September 276 .224 .259 .035 16 .231 .007 3 

All stations 1148 .293 .323 .030 10 .284 - .009 3 00 
"-J 



with observed daily pan evaporation for each station. For 

most stations the estimates were found to be too high for 

low evaporation rates and too low for days of high pan 

evaporation. 

For stations subject to strong canyon drainage winds, 

the mass transfer estimates were generally lower than 

observed values as shown in Figure 32 for station 16. For 

protected sites, such as at the base station, there was 
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little or no bias except for some days with high evaporation 

(Figure 33). 

Values of upper air wind direction and speed were 

plotted on the graphs of computed versus observed daily pan 

evaporation and it was noted that for the protected stations 

the greatest deviations from the observed values (low 

estimates) were for days with strong southerly winds aloft. 

Errors of estimates for the ridge stations did not show 

any consistency in the departures from observed pan evapo-

ration for days with strong southerly upper air winds. 

Development of mass transfer 
equations for study area 

The modified Gauss-Newton method for the fitting of 

non-linear regression function by least squares was used to 

evaluate the constants for mass transfer equations from the 

observed data for the study area. A computer program 

developed by Hurst (1966) based on the work of Gauss (1821), 

Hartley (1961) and Hartley and Booker (1965) was used. The 

procedure is under further development and at present does 
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not always provide complete answers for some cases. 

However, the method is functional and was considered the 

best approach available. 

The general form of the mass transfer equation was 

first used: 

Model I (11) 
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where the bls are the coefficients or exponents to be deter­

mined by the non-linear fitting technique. This equation 

allows for a non-linear variation for the vapor pressure 

difference but not for the pan wind factor. After several 

analyses had been made, the results indicated that the wind 

factor might also be non-linear and a second model was used 

to allow for this: 

Model II (12) 

When daily records from all stations were used in either 

model the resulting coefficients of determination (regression 

correlation squared) were found to be near 0.60. Consider­

able improvement was obtained when the stations were divided 

into separate groups. Based on the experience gained from 

the study of the meteorological factors, the stations were 

divided into two groups. Group I (stations 4, 9, 11, 15 

and 18) were those that were on top or on high southern 

slopes of major ridges. The remaining stations, Group II 

(stations 1, 2, 3, 8, 11, 14, 16 and 19) were those with 

northern exposures, protected areas, or stations at lower 
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elevations. 

Table 7 is a listing of the coefficients determined 

for Models I and II for both groups of stations using daily 

and 2-hourly data. 

Although the inclusion of the exponent on the pan wind 

factor in the equations did not significantly increase the 

value of the coefficients of determination, the relative 

changes in these exponents are considered significant. 

In all cases, for both daily and hourly data, the 

vapor pressure exponent was found to be greater for the 

June and September analyses than for the July and August 

data. Normally the overall stability of the air would be 

greater during June and September than during July and 

August. This is also reflected by the difference in the 

exponents for the two groups of stations. The vapor 

pressure difference exponents were greater for both sets 

of months for Group II stations than for the Group I. 

Stations in Group I had the highest observed pan winds. 

The large shift in the value of the exponents and 

coefficients in the wind term (using Model II) between 

those found for July and August and for June and September, 

may also be a result of stability effects. No large 

differences exist in the average pan wind movements between 

the two sets of months within station groupings~ 

Effect of wind direction 
on stability 

The mass transfer equation does not take into account 



Table 7. Mass transfer equations developed for groups of stations 
and different periods 

No. of b1 b2 b3 b4 Group cases : PeriOd Variance 

b 
Model I E = (b1 + b2 Up) (e - e ) 3 

0 a 

Daily 

1 57 JUh:Aug· .0385 .00035 0.64 .00280 

92 Junand Sep .0325 .00023 0.72 .00260 

2 150 Ju1-Aug .0215 .00029 0.79 .00230 

140 Jun and Sep .0108 .00018 0.98 .00127 

Hourly 

1 150 .0009 .00019 1.02 .000112 

2 146 .0006 .00013 1.13 .000115 

b b 
Model II E= (b1 + b2 U 3) (eo - ea ) 4 p 

Da,ily 

1 92 Ju1-Aug .0168 .00310 0.62 0.66 .00269 

57 Jun and Sep -.0800 .06380 0.14 0.82 .00260 

2 150 Ju1-Aug .0198 .00046 0.91 0.79 .00236 

140 Jun and Sep .0005 .00345 0.43 1.01 .00124 

Hourly 

1 150 .0007 .00035 0.75 0.99 .000112 

2 146 .0006 .00010 1.11 1.13 .000116 
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R2 

.783 

.730 

.749 

.872 

.697 

.754 

.797 

.734 

.749 

.875 

.700 

.754 
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the effect of variation in stability on evaporation rates 

other than that which is directly related to wind speed. 

Errors in mass transfer equations may be related to indices 

of stability and/or turbulence. Wind direction and speed, 

especially in mountain areas because of terrain effects on 

turbulent conditions, are considered to be related to the 

degree of stability and/or turbulence. 

Figures 34 and 35 are plots of the computed pan evapo­

ration (after Kohler, Nordenson and Fox, 1955) with observed 

pan evaporation for stations 14 and 15. These two stations 

were selected since they are located at the same elevation 

on the north and south slopes of the most prominent pro­

jecting ridge on the study area (see Figure 1). This pair 

of stations is somewhat free from complicating effects of 

nearby high terrain. Different symbols have been used on 

the graph to identify the direction of the 8,000 foot mean 

sea level 5:00 p.m. MST winds associated with each daily 

observation. The circles are for those days having upper 

air wind direction from 160 to 210 degrees (southerly winds). 

For station 14 (Figure 34) the observed values for these 

cases are greater than computed, while for northerly wind 

cases (those marked with an HX11) the plotted values are 

very near the 45-degree line. Westerly winds (those marked 

wi th a 11#11 symbol) have values that average more than 

observed but not as much deviation as those with southerly 

winds. 

For station 15, Figure 35, the results are quite 
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different. Southerly winds are mainly associated with 

overestimates in contrast to that observed for., station 14, 

while with: northerly flows the value tends to be under­

estimated, also in direct contrast with station 14. West­

erly wind directions for station 15 are primarily associated 

with under-estimates, which was also observed for station 14. 

The computed pan evaporation values are generally 

closer to observed values at station 15 than for station 14. 

This is probably due to pan winds at station 15 being 

affected by the southerly wind flow more than those at 

station 14. Thus the wind term in the mass transfer equa­

tion would tend to correct for the effect of the unstable 

flow to a greater extent at station 15 than at station 14. 

For northerly wind directions, the reverse conditions are 

noted. 

During the summer months, winds: from' the south are 

more frequently stronger than those from the northern 

quadrant. The air flow over the mountain ridge would also 

have the effect of producing more and larger eddies in the 

flow pattern on the lee side of the ridge. Thus the evapo­

ration at the lee station should be expected to have a 

greater departure from the computed pan evaporation (which 

is based only on average stability and turbulent conditions). 

The observations at stations 14 and 15 substantiate this 

assumption. 



Upper air wind direction and 
mass transfer equations 

If the upper air wind direction is as important as 

the analyses for stations 14 and 15 seem to indicate, then 

the mass transfer equation for specified upper air wind 

direction should show a significant improvement over those 

when wind direction is not considered. The direction and 

speed of the 700-millibar 5:00 p.m. MST winds were used to 
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classify the observational days. Coefficients and exponents 

for Model II were computed using the non-linear technique 

for each classification of days having more than 50 cases. 

The grouping of the data and the results of the non-linear 

analyses are summarized in Table 8. 

The coefficients of determination for the groups are 

generally much higher than those found when the data were 

not separated on the basis of upper air wind direction. 

This difference is especially significant in view of the 

fact that the stations are not separated by exposure and 

data from all months are included. The lowest coefficients 

of determination were for light upper air winds (less than 

10 knots) from the southwest and west. 

Upper air dewpoints and 
stability 

Several investigators have reported that dewpoints are 

lowest in the afternoon when heating and instability are 

most pronounced and surface air becomes mixed with drier 

air aloft. To determine if the differences between free air 



Table 8. Mass transfer equations by stratifying on direction and speed of upper air wind, 
data for all stations and all months included, (Model II) 

700 Millibar 
wind direction 

and speed 

170-190 degrees 
Greater than 10K 

200-220 degrees 
Less than 10K 
Greater than 10K 

230-250 degrees 
Less than 10K 

260-280 degrees 
Less than 10K 
10 to 14K 
15 to 19K 

290-350 degrees 
Less than 10K 
Greater than 10K 

Number 
of. 

cases 

119 

68 
74 

97 

72 
58 
87 

59 
91 

b1 

.0105 

.0088 

.0024 

.0259 

-.0017 
.0223 
.0188 

-.0081 
.0106 

b2 b3 b4 Variance 

.00297 .60 .74 .00258 

.00056 .81 .95 .00219 

.00203 .60 .92 .00260 

.00119 .80 .63 .00195 

.00670 .35 .93 .00204 

.00093 .80 .72 .00135 

.00028 1.04 .78 .00171 

.01017 .37 .79 .00151 

.00167 .69 .79 .00152 

R2 

.822 

.829 

.867 

.752 

.741 

.852 

.780 

.831 

.830 

\0 
\0 



dewpoints and those measured on mountain ridges were 

related to stability, a study was made of the dewpoint 

differences for station 4 and the free air at the 700-

millibar level. 
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Figure 36 is a plot of the 5:00 p.m. MST dewpoints at 

station 4 (elevation 8,960 feet mean sea level) and the 

dewpoint at the same time for the 700-millibar level. 

Only data for clear days during the 1965 and 1966 seasons 

were included. The plotting indicated a general relation 

but the differences ranged from near zero to 24 E. 

A bulk Richardson number was developed for the entire 

air mass using the temperatures and wind data from the 700-

and 850-millibar levels. The high values for this number 

were found to be associated with large differences in the 

two dewpoints. High values of the Richardson number have 

been indicated on the relation in Figure 36. 

Since air mass instability is normally considered to 

be associated with strong southerly winds, points repre­

senting days when the 700-millibar 5:00 p.m. MST wind 

direction (with wind speed greater than 5 knots) was from 

140 to 220 degrees have been circled. Points for the 

southerly wind conditions are generally related to small 

differences in the dewpoint values. 

Although these indications are not adequate for definite 

conclusions, it is believed that the findings are sufficient 

to suggest that the difference in the dewpoint values is 

related to stability of the air mass. Plots of the differ-
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ences of the. upper air and station dewpoints for other 

stations showed the same general relations as found for 

station 4. 

Stability relation with upper 
air dewpoint differences 

As shown in the previous section, the difference 

between the 5:00 p.m. dewpoint at station 4 and that for 

700 millibars seems to be related to the overall air mass 

stability. Stations 1, 3 and 8 are representative of 

protected sites and should not be affected by upper air 

eddies in the same way as stations 14 and 15. To further 

establish that the errors in the estimates for pan evapo-

ration by the mass transfer equation are related to sta~ 
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bility, the errors were plotted against the differences in 

the dewpoints at station 4 and 700 millibars at 5:00 p.m. 

MST. These plottings (Figures 37, 38 and 39) show a fair 

relation with little or no bias for large differences and 

negative bias for small differences. Since it was pre­

viously assumed that small differences were associated with 

unstable conditions, these findings would tend to lend 

credence to the assumption that air mass instability is a 

more important factor in increasing pan evaporation other 

than computed by the mass transfer equation which considers 

pan wind velocity alone. 

Effect of pressure on 
evaporation 

A dimensional analysis approach was used to determine 
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if the effect of pressure on evaporation might be deter­

mined independently of the other factors. The Buckingham 

Pi Theorem as described by Murphy (1950) was used to arrive 

at the following relation: 

~ = l (Epel , Ri, C 1 
g(Del) 71.- ;- (13) 

where the term on the left is a dimensionless term including 

pan evaporation (E) in inches, Up the pan wind movement, 

g constant for gravity, and Del the vapor pressure differ-

ence (eo - e a ). This term is some function of the three 

dimensionless terms on the right. The first term is the 

ratio of Del to the atmospheric pressure (P), the second 

the Richardson number, an index of stability, and C a term 

for the physical characteristics of the topography imme­

diately surrounding each station. The development of the 

dimensional analysis is given in the Appendix. 

The functional relationships among the three dimension-

less groupings was found by considering stations which had 

similar wind movement and vapor pressure differences. It 

was assumed that the functional relation for the stability? 

as represented by the Richardson number, was accounted for' 

as nearly constant by using data from stations experiencing 

only low winds 0 

Analyses were made using daily data from all stations 

with pan winds between 40 and 50 miles per day and vapor 

pressure between 20 and 29 millibars. It was found that 
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the ridge and high south ridge stations did not fit a 

general pattern but that the rest of the stations gave the 

relation shown in Figure 40. Values of P in tens of milli­

bars are plotted on the points. These results indicated 

that the evaporation increases with increase in pressure, 

all other factors being held constant. Such a conclusion is 

contrary to the usual statement that evaporation should pro­

bably decrease with increase 1n pressure with all other 

influences eliminated. 

Similar plots for pan wind movement less than 40 miles 

per day or greater than 60 miles did not show significant 

results. The starting speed of the anemometers used in the 

project was near 1.5 miles per hour and this is probably a 

factor for the lack of significant results with the lower 

wind speeds. From the study of stability and turbulence 

effects these factors are probably much more variable from 

station to station and override the effect due to pressure 

alone with strong winds. The assumption that the Richardson 

number is constant for all stations is undoubtedly in error 

for stronger winds. 

The same type of analysis was made on the 2-hourly data. 

In these cases using pan wind movement near 4 miles (3.6 to 

4.4 for the 2-hour period) the results were similar to those 

obtained for daily data (Figure 41). For higher wind speeds 

or lower wind speeds the results were again not as conclusive. 

It was considered that for the relations found other 

factors which were not used in the computation such as 
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differences in pan and air temperature, etc., might be inter-

related with the pressure. Checks were made to establish 

whether or not such an inter-relation might exist. With the 

type and range of data available no inter-relation was found 

that seemed to influence the results. 

Radia tion-pan.-evaporation 
relations 

The radiation-evaporation curves that were developed for 

each station were used to estimate the evaporation that would 

occur at each station for specific radiation values. Figure 

42 is a plot of elevation with the average pan evaporation 

for each station for 650 Langleys of radiation. 

Plotted on each point is the average pan wind movement. 

The wind movement values seem to be an important factor for 

the relation. Stations with high wind movement have higher 

evaporation for the same radiation than do stations with 

light wind movement. For the same radiation, the high wind 

stations are about 20 percent above the mean relation while 

the low wind stations are about 20 percent below. 

Computed lake evaporation 

Weather Bureau Research Paper No. 38 by Kohler, 

Nordenson and Fox (1955) presented two methods for esti-

mating lake evaporation as well as the previously discussed 

methods for estimating pan evaporation. Computer programs 

as developed by Lamoreux (1952) were used to compute esti-

mated lake evaporation for all stations. 
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The method using meteorological factors (equation 10 

in Research Paper No o 38) gave estimates that were about 

15 percent greater than those by the second method (equa­

tion 14 in Research Paper No. 38). 
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Estimates for pan evaporation using the meteorological 

factor method were found to be biased on the high side. 

It was assumed that this type of method for lake evaporation 

estimation might also be biased in a like manner for the 

data from the study area. It was also believed that the 

method using the observed pan data might better integrate 

the unusual influences due to the mountain exposures. 

Figure 43 is a plot of the observed monthly pan evapo­

ration averages with elevation for clear days only during 

July 1965 and 1966 0 As found for many of the other relations 

between meteorological parameters and elevation the data 

seemed to be divided into two groups. Stations located on 

major ridges, on southern slopes of high ridges and on open 

steep slopes have a higher pan evaporation rate for the 

same elevation than do stations that are protected or 

located on northern slopes. There is little evidence from 

the plot that evaporation for the exposed sites changes with 

elevation. 

For the protected and northern exposed sites, the 

evaporation rate does appear to decrease slightly with 

increase in elevation. This is in general agreement with 

the mean altitude-evaporation curve (Figure 44) found by 

Longacre and Blaney (1962). However, from personal 
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conversation with Blaney he indicated that the two highest 

points, Florence Lake (elevation 7,345 feet) and Kaiser Pass 

(9,194 feet) were the only stations used that had open expo­

sures. In view of the findings of the present study, it is 

easy to draw curves for open and protected sites as has 

been done on Figure 44. The separation of the curves for 

type of exposure would then be in good agreement with the 

curves shown in Figure 43. 

The computed values of lake evaporation for clear days 

only during July 1965 and 1966, based on equation 14 of 

Research Paper No. 38, are plotted against elevation on 

Figure 45. The same general grouping of the stations may 

be noted. There is about a 20 percent difference between 

the mean lines representing the two general relations. 

Similar plots were made for other months and periods 

and the same general relations with elevation were noted. 

Monthly values of computed lake evaporation for all stations 

having sufficient measurements are listed in Table 3. 
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DISCUSSION OF RESULTS 

Variation of meteorological 
factors 
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Departures of meteorological factors from mean rela­

tions with elevation were found to be related to stations! 

exposures. Stations having poor drainage, for example, 

were found to have lower minimum temperatures. The addi-

tional cooling at these sites resulted in a slower rate of 

evaporation the following day until the heat deficiency was 

compensated for by incident radiation. This in turn is one 

of the reasons why the protected sites were observed to have 

less pan evaporation than stations with open exposures and 

good drainage. 

The absolute moisture of the air, as measured by the 

dewpoints, was also greatly affected by exposure. Differ-

ences in dewpoints for stations at the same elevation but 

with different exposures were found to be related not only 

to exposure but to the direction of the general flow of the 

air mass over the mountain range as indicated by the direc-

tion of the 700-millibar level wind. The large decrease in 

the measured dewpoints which was found to occur after dark 

for most stations was a result of the down canyon drainage 

winds. 

Diurnal variations in the wind movement at the various 

stations also influenced the diurnal variation in the evapo-

ration rates. The large decrease in night time dewpoints at 
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higher elevations results in a large increase in the vapor 

pressure difference between the water surface and the air. 

This causes a large increase in the evaporation rate. At 

ridge-top locations where winds quite often attain a maxi­

mum during the afternoon, the maximum potential evaporation 

would likewise occur at this time. For the lower canyon 

sites, where the maximum winds are associated with the 

night-time drainage winds, the maximum potential evapora­

tion may well occur during the late evening. Such varia­

tions in the timing of potential evapotranspiration should 

be important to ecological studies in mountain areas. 

The relations for the different type of sites for pan 

evaporation with elevation should be of value in extrapo-

lating observed pan measurements to higher elevations in 

mountain areas. Reference to topographic and ecologic maps 

would provide the necessary sUbjective background to make 

such extrapolations for developing improved maps for pan 

and lake evaporation. 

Validity of mass transfer 
equations 

The verification of the mass transfer equation of 

Research Paper No. 38 for estimating pan evaporation on a 

monthly basis indicates that the equation is reliable for 

this purpose. However, pan evaporation estimates on a 

daily basis were not found to be reliable. Nor was work in 

other previous reports where the time interval was less 

than a week. Departures from the reliable methods for 
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estimating monthly values when used for daily estimates 

were found to be related to station exposure and stability 

indices. The effects of the stability (as indicated through 

the indices used) on evaporation when taken over a long 

period of time tend to average themselves out. From a know-

ledge of the type of exposure and applying the developed 

mass transfer equations in Table 7 and 8, reasonable esti­

mates for daily values of pan evaporation can be obtained. 

Reasons for variations in the 
exponents in mass transfer 
equations 

The rugged topography and unusual wind conditions of 

the study area were the underlying reasons why stability had 

so large an influence on pan evaporation. 

Many investigators have found that observed wind speed 

is related to the stability of the air near the surface. 

The changes in the exponents on the vapor pressure term of 

the mass transfer equations developed using daily and 2-

hourly data for stations with different exposures reflected 

variations in stability. The change to lower exponent 

values was also found when equations were developed for 

July-August data as compared with the exponents for equa-

tions based on June and September observations. 

The many variations in constants for the general mass 

transfer equation as found in the literature could be the 

result of differences in stability conditions at the sites 

where data were obtained. 
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Pressure effect on evaporation 

The dimensional analysis indicated that pressure 

effect, independent of other factors, caused an increase 

in pan evaporation with increase in pressure. This effect 

was shown only for light wind conditions, with the assump­

tion that the Richardson number (or stability of the air 

near the ground) was approximately the same for all stations. 

The results of an approach of this type are no better than 

the assumptions on which they are based. Many other fac~ 

tors, not considered in the dimensional analysis develop-. 

ment, may also have an important relation to evaporation, 

and these might offset the effect observed for pressure if 

considered. It should again be emphasized that this author 

does not assume that indications found in this preliminary 

study are actually related to physical reality. The 

findings are of interest but need considerable more 

verification than can be made in this study. 
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CONCLUSIONS 

The conclusions are: 

1. Deviations from mean relations with elevation 

of monthly values of meteorological factors 

were found to be related to station exposure. 

2. Differences in dewpoints for stations at the 

same elevation are related not only to 

differences in station exposure but also to 

the stability of the air and direction of the 

upper air flow. 

3. Diurnal variation of meteorological para­

meters at a location are associated primarily 

with diurnal variations of the wind movement. 

Diurnal variations of wind movement, in turn 

are dependent upon the location of the station 

with respect to the topographic features. 

4. The Christiansen method for estimating mean 

monthly pan evaporation was found to have an 

average error of less than 6 percent for the 

network stations. 

5. The mass transfer equation given in Weather 

Bureau Research Paper No. 38 gave estimates of 

mean monthly evaporation within 3 percent of 

observed values .. 

6. Errors in the Weather Bureau mass transfer 
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equation for daily values were found to be 

related to stability indices. 

122 

7. Improvement between observed and estimated 

daily pan evaporation by mass transfer equa­

tions was found when the station exposures 

and the time of the season were considered. 

8. Further improvement in mass transfer equations 

was found when the daily data were separated 

on the basis of direction and speed of the 

700-millibar level wind. 

9. Pan evaporation for well exposed locations on 

top of major ridges and along their southern 

slopes, and also on sites where st!Dng night 

time drainage winds occur, was found to have 

no discernable variation with elevation. 

10. For protected sites and those on northern 

slopes, pan evaporation showed a small 

decrease with increasing elevation. 

11. Computed lake evaporation values, for differ­

ent types of exposures, were found to have 

the same relations with elevation as did the 

observed pan evaporation. 

12. Mass transfer equations were developed that 

gave good correlation with observed 2-hourly 

evaporation measurements from network stations. 

13. Observed daily and 2-hourly measurements of 

pan evaporation at different altitudes were 
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found to increase with increase in pressure 

(decrease in elevation) for periods when the 

pan wind averaged near 2 miles per hour. This 

is opposite to the general theory that evapo­

ration should decrease with elevation, all 

other effects being the same. 
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1 

APPENDIX 



Development of dimensional 
relation 

The basis for the Buckingham Pi Theorem is that all 

pertinent, independent primary quantities should be 
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included in the general relationship from which the analysis 

is made o Basedon.the ,known relations, the following state-

ment of evaporation as a function of other factors is 

assumed to contain the primary quantities. 

Where: 

E = evaporation = F L- 2 T-l 

g = gravity = L T-2 

.. 
-e- = potential temperature = 0 

(eo - ea ) = vapor pressure difference; F L-2 

P = atmosphere pressure; F L- 2 

au oZ = wind variation with height; T- l 

0-& pZ = variation of potential temperature 

with height ~ 0 L-l 

Up = daily pan wind movement • L T·l 
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C = physiographic characteristics of station not 

accounted for in other terms ; dimensionless 

The basic units are F force, T time, L length, -e­

potential temperature. 

Following the standard procedure as outlined by 

Murphy (1950) the development is as follows: 

The dimensional equation is: 

The auxiliary equations are: 

F-, Cl + C4 + Cs = 0 

L· , -2Cl + C2 2C4 - 2CS - C7 + Cs = 0 

T-, -Cl - 2C2 - C6 - Cs = 0 

-e-. , C3 + C7 = 0 

(15) 

(16) 

(17) 

(lS) 

(19) 

Equating the exponents of dimensions the following 

Pi terms are derived: 

U 3U 
p n 

Pi 3 = --..;...---g 

(20) 

(21) 

(22) 



U 2 
P 

g-& 

Pi 5 = C 
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(23) 

(24) 

From theory Pi 1, containing the evaporation rate, may 

be equated with some function of the remaining Pi fS terms. 

If there is a known relation between two Pi terms, they may 

be combined to form one. 

If Pi 3 is inverted and is squared and multiplied by 

Pi 4 as below, the result is the basic form of the Richardson 

number (Richardson, 1920): 

U 2 ~ 
P gz 
g -& 

d-B­az_: . 
o U 2 
oZ 

(25) 

Combining Pi 3 and Pi 4 into the Richardson number 

(Ri) the final relation may be written: 

= , Ri, c)- (26) 
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