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INTRODUCTION 

Creosote-pentachlorophenol (PCP) is a mixture commonly used as a wood preservative in the 
U.S. (1). A 1988 survey (2) indicated that 1,397 wood preserving waste contaminated sites exist 
in the United States consisting of 555 active wood treatment plants and 842 inactive plants. 
Stinson (3) identified 58 wood preserving sites on the National Priorities List, of which 51 have 
PCP and/or creosote or polycyclic aromatic hydrocarbon (P AH) contamination. 

Principal classes of organic constituents present in creosote waste are PAHs (-85% by weight) 
and phenolics. P AHs with less than three fused benzene rings comprise 69% (i.e., naphthalene, 
anthracene and phenanthrene); PAHs with more than three rings, such as pyrene, benzo(a)pyrene, 
benz(a)anthracene, dibenz(a,h)anthracene, and indeno(I,2,3-c,d)pyrene comprise 16% by weight 
of creosote. Phenolics comprise 2% to 17% of creosote. Nitrogen- and sulfur- containing 
heterocyclic compounds may comprise up to 13% of creosote by weight. Creosote and creosote 
components including phenol and several P AHs have been reported to be mutagenic, teratogenic, 
fetotoxic and/or toxic (4, 5) and have been designated as hazardous wastes under the Resource 
Conservation and Recovery Act of 1976 (6) and as hazardous substances under the 
Comprehensive Environmental Response, Compensation, and Liability Act of 1980. 

PCP is often added to creosote to enhance the wood preservation potential due to its 
bactericidal and fungicidal properties. PCP is also toxic to lower and higher plants (algicide, 
herbicide), to invertebrate and vertebrate animals (insecticide, molluscicide), and to man. Toxicity 
of PCP and potential for uptake by organisms are pH-dependent, since PCP is a weak acid with a 
Ka of about 10-5. Both bioaccumulation and toxicity increase as pH decreases due to the greater 
penetration of cell membranes by non-ionized PCP molecules than by pentachlorophenate ions (1). 
Therefore PCP may inhibit microbial degradation of other compounds in creosote-PCP waste, 
including oil and grease. 

Contaminated vadose zone soil systems generally consist of four phases: 1) aqueous; 2) gas; 3) 
oil (commonly referred to as non-aqueous phase liquid, or NAPL) ; and 4) solid, which has two 
components, an inorganic mineral compartment and an organic matter compartment (organic 
carbon-humic substances). Interphase transfer potential for waste constituents among oil (waste or 
NAPL), water, air, and solid (organic and inorganic) phases of a soil system is affected by the 
relative affinity of the waste constituents for each phase. Measurement of waste constituents in all 
four phases is generally not done in treatability studies, especially in complex environmental 
samples (7). 

High molecular weight (greater than 3 rings) PAHs are hydrophobic and essentially not mobile 
due to their low volatilities and water solubilities. Bulman et al. (8) and Keck et al. (9) observed 
that sorption of B(a)P to soil was the dominant mechanism of loss. Studies have shown that 
immobilization of some xenobiotics can be accomplished by incorporation into soil humus, or 
sorption into the clay lattice of soil (10). Humification and sorption have not been extensively 
evaluated for PAHs in creosote contaminated soil. 

PCP is, in general, more mobile in high pH soils than in acidic soils. At low pH, PCP exists 
as a free acid (non-ionized) and readily adsorbs to soil particles. At high pH, PCP exists in the 
ionized form (pKa = 4.7) as the negatively charged pentachlorophenate anion, and is more mobile. 
In a study by Choi and Aomine (11), "apparent adsorption" of PCP was greatest in strongly acid 
soil and in soils with high organic matter content "Apparent adsorption" was shown to include 
both the mechanisms of adsorption on soil colloids and precipitation in the soil micelle and in the 
extemalliquid phase, depending on the soil pH. Pionteck (12) also observed that although soil 
organic matter is important in determining the extent of adsorption of PCP, an even more important 
soil property is pH. Adsorption of PCP was shown to be reversible. Therefore, PCP may not be 
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permanently immobilized in the soil phase, but may be slowly released into and move through the 
soil (1). 

A wide range of soil organisms, including bacteria, fungi, cyanobacteria and eukaryotic algae, 
have been shown to have the enzymatic capacity to oxidize P AHs. Metabolites from the 
degradation of large P AHs identified in these studies are responsible for toxic, mutagenic, and/or 
carcinogenic responses in animal species and many indicate epoxide intermediates (13-20). 
Presence of PCP may inhibit microbial degradation of other organics, including P AHs, oil and 
grease, etc. 

Despite a high degree of chlorination, PCP has been shown to be degraded in soil. Microbial 
decomposition appears to be the primary detoxification mechanism. Success was highest in those 
studies that used acclimated or inoculated (with acclimated species) systems. The ability to degrade 
PCP may not be uniform among microorganisms, and adaptation of microbial populations to PCP 
and control of pH may play important roles in its degradation (1). 

Laboratory studies (7, 21) of the biodegradation potential of creosote wood preservative waste 
have shown that hazardous parent components were degraded, transformed, or immobilized in 
certain soil systems. In a study by Aprill et al. (21) on the biodegradation potential of creosote, the 
apparent degradation of four non-carcinogenic P AHs and four carcinogenic P AHs ranged from 
54% to 90% and 24% to 53% of mass added, respectively. Aprill et al. (21) defined apparent 
degradation as the measurement of changes in concentrations of specific constituents in solvent 
extracts of soil samples with time of incubation. The reduction in concentration of the higher 
molecular weight P AHs was correlated with oil and grease content of the waste. 

Degradation of a chemical in soil may not result in the complete mineralization of a hazardous 
waste, but may render waste constituents less hazardous or nonhazardous through transformations 
(1,7,21). However in some cases detoxification does not occur (22). 

Studies (23-30) conducted with 14C labeled compounds often report collection of the 
radiolabelled carbon in carbon dioxide trapping solutions to indicate degradation or mineralization. 
However, collection of the radiolabelled carbon in a carbon dioxide trapping solution may be 
misleading in two ways, Le., 1) liberation of CO2 may not be concurrent with complete 
degradation of the total mass present because of accumulation of metabolites in the soil (31), or 2) 
measurement of radiolabelled carbon may not indicate mineralization if volatilized parent compound 
or labeled metabolites are collected in the trapping solution in addition to 14C02 (32,33). 
Torstensson and Stenstrom (31) recommend that the rate of decomposition of a substance should 
be defined by direct measurement of its disappearance. However, direct measurement of the 
disappearance of hydrophobic organics from soil systems cannot be defined as degradation 
because of other loss mechanisms including volatilization or sorption to soil solids. Sorbed 
organics that cannot be removed from soil by organic solvents cannot be easily identified or 
analyzed. 

There is a current lack of knowledge concerning the behavior of PAHs in complex 
environmental vadose zone soil samples. This study was undertaken, using a chemical mass 
balance approach, to determine the distribution of radiolabelled carbon, parent compounds, and 
transformation products of the radiolabelled PAH compounds, benzo(a)pyrene (B(a)P) and 
pyrene, among aqueous, gas, and solid phases of a non-contaminated and contaminated (creosote­
PCP) vadose zone soil over time of incubation. The apparent degradation of unlabeled P AHs and 
changes in the toxicity of the water-soluble (aqueous) fraction were also measured. 
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OBJECTIVES 

The goal of this research project was to evaluate mechanisms of alteration and humification of 
PARs in non-contaminated and contaminated (creosote and PCP) vadose zone soil. Specific 
objectives are listed below: 

1. Determine the distribution of spiked radiolabelled carbon. added as 14C-benzo(a)pyrene 
[B(a)P] and 14C-pyrene, among soil phases including aqueous, gas, and solid (humic plus 
fulvic acids and humin plus inorganic mineral components) phases as a function of incubation 
time in soil. 

2. Determine the extent of humification of spiked PARs 

3. Determine the extent of mineralization of B(a)P (spiked) and pyrene (spiked), and provide for 
separation of 14002 from volatile intermediates and parent compound in soil. 

4. Determine the apparent degradation of unlabeled P AHs and PCP occurring in the creosote-PCP 
contaminated vadose zone soil. 

5. Determine the initial toxicity and changes in toxicity of the aqueous phase of soil using the 
Microtox™ assay for contaminated (non-poisoned and poisoned) and non-contaminated (non­
poisoned and poisoned) soil samples spiked with B(a)P and Pyrene. 

APPROACH 

The approach to meeting the objectives of the research was to conduct a chemical mass balance 
of radiolabelled carbon through time of soil incubation. Both non-contaminated and contaminated 
samples of the same vadose zone soil were spiked with either 14C-B(a)P or 14C-pyrene and 
incubated in enclosed vessels. Soil poisoned with propylene oxide served as controls for each of 
four combinations evaluated: (1) contaminated soil with B(a)P spike, (2) contaminated soil with 
pyrene spike, (3) non-contaminated soil with B(a)P spike, or (4) non-contaminated soil with 
pyrene spike. While the gas phase was monitored for mineralization (14C02) and volatile 

chemicals, aqueous and solid phases were evaluated through sequential extraction using: (I) water 
and (2) solvent (dichloromethane), to determine parent compound, intennediates, and radiolabeled 
carbon, (3) base extract (humic plus fulvic acids), to determine 14C associated with extractable soil 

organic matter and (4) combustion of soil to detennine non-extractable 14C. Using a chemical 
mass balance approach resulted in determination of the distribution as well as changes in 
distribution of spiked 14C among gas, aqueous, and solid phases of a soil system through time of 
incubation, as well as mineralization of applied 14C and detoxification of the aqueous phase. 

Humification was measured as the incorporation of 14C into the solid phase of the soil and not 
extractable with water or dichloromethane, but associated with the solid phase characterized as 
humic plus fulvic acids (base extractable) and humin (non-extractable organic matter plus mineral 
components) fractions of soil. 

The Microtox™ assay was used to measure changes in toxicity of the water phase (water 
extracts of soil) through incubation time. The Microtox TM assay is an aqueous general assay that 
measures the reduction in light output produced by a suspension of martine luminescent bacteria in 
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response to an environmental sample (21,34). The assay measures the physiological effect of a 
toxicant and not just mortality. Symons and Sims (35) utilized the assay to assess the 
detoxification of a complex petroleum waste in a soil environment. The assay was included as a 
recommended bioassay in the USEPA Permit Guidance Manual on Hazardous Waste Land 
Treatment Demonstrations (36). 

CONCLUSIONS 

Conclusions based on observations and results obtained in this research are identified below: 

1. A chemical mass balance approach was useful for determining the distribution (fate and 
behavior) of spiked PAHs among aqueous, gas, and solid phases in both contaminated and 
non-contaminated soils as a function of incubation time. Mass balances of greater than 95% of 
spiked radiolabelled carbon were achieved throughout the 285 day incubation for both B(a)P 
spiked soil and for pyrene spiked soil. 

2. Humification of spiked PAHs represented the most significant fate mechanism in non­
contaminated soil, including non-poisoned and poisoned soils, and consistently increased with 
increased time of incubation. Results of mass balance analyses through time of incubation 
indicated a large fraction (70% to 80%) of 14C became associated with the soil solid phase 
while the solvent extract fraction decreased throughout the 285 day incubation. 

3. Humification of spiked P AHs also represented the most significant fate mechanism in 
contaminated soils in both non-poisoned and poisoned soils. However, humification as 
measured, was initially rapid and did not increase with increased time of incubation, with the 
exception ofpyrene in non-poisoned soil. Results for spiked PAHs in contaminated soil may 
be due to interference from the soil-associated creosote-PCP mixture (non aqueous phase 
liquid) with regard to extraction of B(a)P with dichloromethane. 

4. Mineralization and production of polar intermediates of spiked 14C were very low for both 
PAHs «5%). However, mineralization and production of polar intermediates were 
significantly greater in non-poisoned soil than in poisoned soil. Low rates and extent of these 
processes were attributed to the recalcitrance of the spiked P AHs. Mineralization can be 
successfully determined experimentally by separating 14C02 from volatile 14C-intermediates 
through the use of different trapping solutions, i.e., monoethanolamine for CO2 and ethylene 
glycol monomethyl ether for volatile organic carbon. 

5. Apparent degradation of PCP and P AHs including naphthalene, acenaphthylene, acenaphthene, 
and fluorene was obtained in non-poisoned contaminated soil, but not in poisoned 
contaminated soil. 

6. Microtox 1M toxicity was very different between non-contaminated and contaminated soils, with 
contaminated soil toxicity much higher than non-contaminated soil toxicity. 

7. Changes in toxicity of the water phase (water extracts) were related to the biological status of 
soil samples (non-poisoned versus poisoned) and to the contamination status (contaminated 
versus non-contaminated) of soil samples. Changes in toxicity of the water phase (water 
extracts) through incubation time occurred only in unpoisoned (biologically active) soil 
samples. Changes in toxicity were more pronounced in uncontaminated soil, with both 
decreases and increases in toxicity observed. Changes in toxicity of water extracts were less 
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pronounced in contaminated soil; however, consistent detoxification trends were observed. 
Poisoned control samples exhibited no statistical changes in toxicity over incubation time. 

RECOMMENDATIONS 

1. A chemical mass balance approach that includes measuring degradation, transformation, and 
mineralization in non-poisoned and poisoned (control) soil samples is required to evaluate the 
behavior and fate of hazardous constituents in complex environmental samples, including the 
role as well as the rate and extent of biological reactions versus abiotic reactions. 

2. A chemical mass balance should also include an evaluation of the partitioning and distribution 
of parent compound and transformation products among gas, aqueous, and solid phases as a 
function of time in contaminated soil. 

3. Evaluations of fate and behavior of organic chemicals in soil systems requires that methods be 
used to separate C~ from volatilized intermediates and parent compounds. 

4. Detoxification, as well as intoxification, of the aqueous phase should be evaluated because 
toxicity changes are not predictable based upon chemical mass balance. 

METHODS AND PROCEDURES 

Vadose Zone Soil. PCP-creosote contaminated vadose zone soil was supplied by Dr. Gary 
McGinnis, Mississippi State University, Forest Products Utilization Laboratory, Mississippi State, 
Mississippi. The soil is a McLaurin sandy loam classified as a coarse-loamy, siliceous, thermic 
Typic Paleudult, having a particle-size distribution of 56%,28% and 16% by weight for sand, silt, 
and clay, respectively. Uncontaminated sandy loam vadose zone soil from the same site was 
characterized as having a pH of 6.3, 3.7 cmol (+) kg-1 CEC and 0.41 % organic carbon content. 
The contaminated soil used in this study had a pH of 5.0, and 2.88% organic carbon content, with 
oil and grease and PCP contents of 2 to 3% and 421 mg kg-I, respectively. Bacterial enumeration 
indicated 4.5 X 105 bacteria /g soil dry-weight, determined by agar plate counting, for the 
contaminated soil and 4.5 x 106 for non-contaminated soiL Soil samples were characterized by the 
Soil Testing Laboratory, Utah State University, Logan, Utah. Waste characterization and soil­
waste concentrations were determined by the Utah Water Research Laboratory, Logan, Utah 
(Table I). Waste concentration in the soil was 8% waste wet weight (creosote-PCP) to soil (dry 
weight). 

Chemicals. Radiolabelled [7_14C] benzo(a)pyrene (B(a)P) was obtained from Chemsyn 
Laboratories, Lenexa, Kansas through the Cancer Research Program of the National Cancer 
Institute (NCn, Division of Cancer Cause and Prevention, Bethesda, MD. Radiolabelled 
[4,5,9,10-14C] pyrene was obtained from Chemsyn Laboratories, Lenexa, Kansas through the 
generosity of Drs. J.T. Dibble and I. Bossert, Texaco, Deacon, NY. Unlabeled benzo(a)pyrene 
and pyrene were purchased from Sigma, St. Louis, MO. Microtox™ reagents were obtained from 
Microbics Corp., Carlsbad, CA. Sep Pak™ C-18 preparatory columns were obtained from 
Waters, Milford, MA. All solvents and chemicals used were of the highest purity available. 

Analyses. Radiolabelled carbon was measured in a Beckman LS 1701 liquid scintillation 
counter, Beckman Instruments, Inc., Fullerton, CA. Microtox™ assays were performed on a 
Microtox™ Analyzer Model 2055, Beckman Instruments, Inc., Fullerton, CA. Soil and extracted 
soil samples were combusted on a Harvey Biological Oxidizer Model OX-400, R. J. Harvey 
Instrument Corporation, Hillsdale, NJ. Gas chromatography analysis of headspace was 
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performed on a Perkin Elmer Sigma 4 Isothermal Gas Chromatograph, with a Thermal 
Conductivity Detector, and an Alltech (Deerfield, ll...) CTRI Specialty column. HPLC analysis 
was performed on a Perkin Elmer Model Series 4 LC pump system with a LC90 UV 
Spectrometrometric Detector and a Supelco LC-PAH 25 em x 4.6 mm 5 J.UD column. 

Table I. Concentration (mglkg) of PCP! and PAH Compounds2 in Creosote Waste (wet weight) 
on McLaurin Sandy Loam Soil (dry weight). 

Compound 

Pentachlorophenol 
Naphthalene 
Acenaphthylene 
Acenaphthene 
Fluorene 
Phenanthrene 
Anthracene 
Fluoranthene 
Pyrene 
Benz(a)anthracene 
Chrysene 
Benzo(b )fluoranthene 
Benw(k)fluoranthene 
Benw(a)pyrene 
Benzo(g,h,i)perylene 
Dibenz(a,h)anthracene 
Indeno(I,2,3-c,d)pyrene 

Soil Concentration 
(mglkg) 

421 
885 
275 
411 
244 
696 
605 
806 
868 
539 
612 
121 
148 
126 
100 
100 
29 

Waste Concentration 
(mglkg)3 

3826 ± 1500 
80447 ± 20100 
24998 ± 6500 
37360 ± 11000 
22180 ± 5500 
63267 ± 13000 
54995 ± 22000 
73266 ± 16000 
78902 ± 15000 
48996 ± 12000 
55631 ± 12239 
10999 ± 2860 
13453 ± 3363 
11454 ± 1718 
9090 ± 2363 
9090 ± 2000 
2636 ± 290 

IDetennined by gas chromatography, U.S. EPA Method 8040 

(CV)4 

(4%) 
(25%) 
(26%) 
(29%) 
(25%) 
(21%) 
(40%) 
(22%) 
(19%) 
(24%) 
(22%) 
(26%) 
(25%) 
(15%) 
(26%) 
(22%) 
(11%) 

2Detennined by high performance liquid chromatography ,U.S.EPA Method 8310 
3Concentration is the average concentration of three replicate analyses.± one standard deviation 
4Cv (coefficient of variation = %). 

Experimental vessels. Wide mouth Erlenmeyer flasks (1 L), sealed with rubber stoppers, 
were used as experimental vessels (Figure 1). Three replicates of each treatment were analyzed at 
each sampling event. Treatments evaluated included B(a)P in non-poisoned contaminated soil, 
B(a)P in poisoned contaminated soil, pyrene in non-poisoned contaminated soil, and pyrene in 
poisoned contaminated soil. Additional treatment included BWP and pyrene spiked into poisoned 
and non-poisoned uncontaminated soil. Two hypodermic needles (18 gauge, 1 1/2") with two­
way Luer-Lok stop-cocks attached were pushed through rubber stoppers for inlet and outlet 
valves. The inlet needle projected into a 3 inch piece of glass tubing that was sealed to the bottom 
of the rubber stopper with silicone sealant and allowed to cure for 72 hours prior to use. Creosote 
contaminated soil (700 grams air dried) was placed in each flask. The flasks were wrapped in 
black plastic and secured with rubber bands around the neck of the flask. Poisoned control flasks 
were prepared using propylene oxide. The propylene oxide was allowed to evaporate and the soil 
was mixed thoroughly three times and exposed to the air for three hours. 
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AirFlow 

> 
of--_....,Glass Tubing 

1 L Flask 

____ 700 g Soil 

Microcosm MEA 

Figure 1. Experimental flask (Microcosm) set up with impingers attached. Impingers contained 
ethylene glycol monomethyl ether (EOME) or scintillation 
cocktail:methanol:monoethanolamine solution (MEA). 

Seven hundred milligrams of unlabeled B(a)P and seven hundred milligrams of unlabeled 
pyrene were dissolved separately in 5 mL of dichloromethane, and brought to 100 mL volume each 
with ethylene glycol monomethyl ether (BOMB). EOMB was used to simulate the waste oil and 
grease matrix without introducing additional toxicity. EOMB adsorbs to surfaces of soil clay and 
can penetrate into interlayer spaces. These two stock solutions were then spiked with 1400 
/lCi of [7_14C] benzo(illpyrene or [4,5,9,10-14C] pyrene. Ten milliliters of the spiked stock 
solution were added in small increments, mixing the soil after each addition, to 700 grams of 
creosote contaminated vadose zone soil in each experimental flask, resulting in the addition of 100 
mg kg-1 B(a)P or pyrene, and a total of 14/lCi of radioactivity per flask. It was assumed in this 
study that the fate of the two 14C labeled compounds, the freshly added non-labeled BCa)P or 
pyrene, and the previously added B(a)P and pyrene from the original contamination was the same 
in all cases. 

Flask maintenance and incubation. It was detennined in our laboratory that the 
contaminated soil after air drying would absorb approximately 50% water by weight and therefore 
was not hydrophobic. Mter addition of the spiked B(a)P or pyrene solutions, the ftrst sub­
samples were taken and then double deionized water (DOW) was added to each flask to bring the 
moisture content to 40% by weight. Moisture content was maintained throughout the study by 
weighing each flask weekly and before and after sub-sampling, with addition of water when 
necessary to maintain post sampling weights. 

To avoid photooxidation/photodegradation, all procedures involving P AHs were performed 
under OE-40 gold fluorescent lights, and each soil microcosm was wrapped with black plastic 
(33). 

All flasks were incubated in a constant temperature room at 20 to 22° C and removed only for 
head space analyses, aeration, and sub-sampling. Addition of the spiked B(a)P or pyrene stock 
solutions, sterile ~OW, sampling, and any other manipulations involving opening the poisoned 
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flasks were carried out inside a sterile chamber. At time increments of 14,30,45,60, 100, 130, 
160,200, and 285 days, flasks were flushed with air with impingers (traps) attached, and trapping 
solutions were analyzed for radiolabelled carbon using scintillation counting. 

Sampling. A summary of the sampling and analyses conducted is shown in Figure 2. Prior 
to aerating the flasks, head space air was removed through one of the stop cocks with a 5 mL 
~yringe and directly injected into the gas chromatograph for analysis of head space gases, carbon 
dioxide, oxygen, and nitrogen. Scott Specialty Gases (plumsteadville, PA) oxygen, nitrogen and 
carbon dioxide standards were used. 

PAH 
SaP/Pyrene 

Soil 
SUDsample 

Aerobic. 
Degradation 

Carbon 

Extract with water to generate 

water soluble fraction 

Aqueous Solid 

Chemical 

Analysis 

Microtox 

Assay 

Figure 2. Sampling and Analyses for Soil Fractions through Incubation Time. 
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Flasks were aerated according to the method of Abbott et al. (32), except that three impingers 
were used. The first two impingers were filled with 20 mL of ethylene glycol monomethyl ether 
(EOME) for collection of volatile parent compound and volatile intermediates, and the third 
impinger with 20 mL of a (50:40:10) scintillation cocktail:methanol:monoethanolamine solution 
(MEA) for collection of carbon dioxide (Figure 1). Air supply, flasks and impingers were 
connected in series with Tygon tubing. Air flow was 50 mUminute and was maintained for 30 
minutes per flask. Each ethylene glycol monomethyl ether (EOME) trapping solution was 
transferred to two scintillation vials (approximately 10 mL each). Ten milliliters of Ready Oell'M 
scintillation cocktail was added to each vial and counted. The monoethanolamine (MEA) solution 
was transferred to a scintillation vial and counted in an unchanged form. Poisoned control flasks 
were aerated after sterile conditions were confirmed by head space analyses. All flasks were 
evacuated using compressed laboratory air. The air was introduced into the flasks via the stop 
cock with the glass tubing attached. For the poisoned control flasks, sterilized bacteria-vents were 
placed in line between the air source and the flasks. 

For B(a)P spiked flasks, soil sub-samples were taken at selected intervals during incubation 
(30, 60, 130, and 200 days) after aeration. At 285 days, the remaining soil was divided into three 
parts, sub-samples for plating and combustion were taken, and the remaining soil was used for the 
extraction series. For pyrene spiked flasks, soil sub-samples were taken at 30,60 and 100 days 
after aeration. Sub-samples were handled as follows: 2-1 g samples from poisoned flasks were 
suspended in sterile DOW, and diluted 1: 10 five times. One milliliter and 0.5 mL of the three most 
dilute suspensions were plated on dilute nutrient agar and on dilute tryptic soy agar for microbial 
enumeration; 1 g samples from all flasks were used for combustion to detennine non-extractable 
14C, and 30 to 50 g samples were used for the extraction series to detennine solvent extractable 
14C. 

Extraction series. Extraction of soil sub-samples follows the outline presented in Figure 2. 
Soil sub-samples from all flasks were suspended in DOW at a 1:6 soil to water ratio by weight, in 
glass mason jars, sealed with teflon lined lids, and tumbled for 24 hours. At the end of 24 hours, 
the soil and water were allowed to settle. Supernatant was decanted and measured in a graduated 
cylinder. Two milliliters of the supernatant were pipetted into a 7 mL scintillation vial, 
approximately 5 mL of Ready Safe™ scintillation cocktail were added, and then radiolabelled 
carbon was counted as a part of the chemical analysis procedure for the aqueous fraction shown in 
Figure 2. 

Samples for Microtox TM assay analyses were further manipulated as follows. Supernatant pH 
was measured and if necessary adjusted to between 6 and 8 using phosphate buffer. Ten mL of 
the supernatant were prepared and used in the Microtox™ bioassay according to the method 
described in Beckman (34) and Symons and Sims (35). 

Organic chemicals present in the water phase were extracted using C-18 Sep Pak cartridges 
according to the following procedure. Remaining supernatant was extracted using C-18 Sep Pak 
cartridges (that had been washed with 5% methanol, then flushed with 5 mL DOW). Water 
samples were passed through the cartridges at a flow rate of approximately 10 mlJmin to allow 
organic chemicals to sorb to the cartridges. Organic chemicals were desorbed from the cartridges 
sequentially using 5 mL methanol for the first fraction, followed by 5 mL of methylene chloride for 
the second fraction. Ready Oel™ scintillation cocktail was added to 200 ~ of each eluate in 
scintillation vials for counting 14C. The methanol and methylene chloride eluates were also 
analyzed by HPLC. 

Water extracted soil was allowed to air dry. The soil was then ground with mortar and pestle 
and weighed into a 250 mL beaker. One gram sub-samples were taken for combustion to 
determine the non-water extractable fraction of 14C, as part of the chemical analysis procedure for 
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the solid fraction shown in Figure 2, and the remainder was solvent extracted with methylene 
chloride according to the tissumizer homogenization procedure of Coover et al (37). A 200 IJL 
portion of each solvent extract was placed in scintillation vials with Ready Gel™ scintillation 
cocktail and counted. Organic extracts of soil and methanol and methylene chloride eluates of Sep 
Pak extractions were analyzed twice by reverse phase HPLC. The fIrst HPLC analysis was for 
PAH parent compounds. and used a gradient mobile phase program consisting of 2 minute 
isocratic elution with 40% acetonitrile in water followed by 15 minute linear gradient to 100% 
~cetonitrile at a flow rate of 1 mUmin. Analytes were detected at a wavelength of 254 run. 

The second HPLC analysis was for PCP and polar PAR metabolites. Void volume plus the 
rust fIve minutes of HPLC elution volume were collected and analyzed using a gradient mobile 
phase program consisting of 5 minutes of 100% acidifIed « 3 pH) water followed by a 5 minute 
linear gradient to 100% methanol at a flow rate of 1 mUmin. Analytes were detected at a 
wavelength of 250 run. 

14C associated with the solid phase that was not extracted using water or organic solvent 
(methylene chloride) was determined in the next step of the procedure as part of the chemical 
analysis of the solid phase. Solvent extracted soils were allowed to air dry under a laminar flow 
hood. When dry, solvent extracted soil was ground up with mortar and pestle and weighed. One 
gram sub samples were taken for combustion. The remaining dried solvent extracted soil was 
weighed and placed in a 500 mL Erlenmeyer flask for humic material extraction. 

14C associated with the humic material part of the solid phase was determined next. Humic 
material extraction was carried out by the method described by Skujins and Richardson (38), with 
the following modifIcations: I) Dowex was not used, 2) division of fulvic and humic acids into 
separate fractions was not attempted as the organic matter content of the soil was low, and 3) the 
combined humic-fulvic supernatant was not taken to dryness. Previous attempts to separate the 
humic and fulvic acids from the McLaurin soils were unsuccessful due to the low organic matter 
content of the soil. The humic-fulvic supernatant (0.5 mL) was added to scintillation cocktail and 
radiolabelled carbon was counted. The insoluble portion was allowed to air dry. When dry, this 
portion was ground up and I g samples were taken for combustion. 

All combustion samples were oxidized in a Harvey Biological Oxidizer using the method 
described by Bumpus and Aust (24), with the trapping solution counted for radiolabelled 
carbon. 

Results of 14C analysis from combusted samples were added to 14C results from aqueous and 
solvent extractions as well as extracted humic material to establish a complete mass balance 
measurement for 14C in PAR spiked contaminated and non-contaminated soil. 

RESULTS AND DISCUSSION 

Microbial activity and enumeration. Microbial activity of indigenous soil 
microorganisms was monitored through measurement of O2 utilization and CO2 production. 
Headspace analyses showed that carbon dioxide levels in poisoned (control) flasks remained 
consistently equal to ambient air concentration, and oxygen content did not change throughout the 
study. Enumeration by serial dilution and plating of soil subsamples comrrmed microbial activity 
was depressed in poisoned control flasks. In non-poisoned flasks, constant production of 
unlabeled carbon dioxide, utilization of oxygen, and decrease in oil and grease content of the soil 
(50%) indicated that the indigenous microbial population was active and degraded unlabeled 
organic carbon to CO2 in creosote contaminated soil. 
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Mass Balance. With regard to results for creosote-PCP contaminated soil, radiolabelled 
carbon (14c) mass balances over all soil phases indicated that greater than 95% of the radio labelled 
carix>n remained associated with soil solids as either solvent extractable (dichloromethane) or non­
solvent extractable (humic plus fulvic acids and insoluble humin plus mineral components) 
fractions after 285 days in B(a}P amended soil (non-poisoned and poisoned) (Figures 3 and 4), 
and after 100 days in pyrene amended soil (non-poisoned and poisoned) (Figure 5). Partitioning 
of the radiolabelled carix>n between solvent extractable and non-solvent extractable (humic plus 
fulvic acids, and humin plus mineral components) soil solids fractions did not change significandy 
through time for either B(a)P spiked non-poisoned or poisoned soils or for pyrene spiked poisoned 
soil. The average percent of 14C of three replicates associated with 14c-B(a}P amended soil solids 
were a) base extractable (humic and fulvic acid fractions) <12% and b} insoluble soil solids 
(humin) for poisoned (24 to 52%) and non-poisoned flasks (40 to 56%). This trend occurred 
initially and was independent of incubation time for spiked B(a}P For spiked pyrene, while the 
average percent of 14C associated with non-solvent extractable solids was 32% for poisoned soil 
at 100 days, the percentage increased to 62% in non-poisoned soil at 100 days incubation, which 
was significantly different from the poisoned soil samples (Figure 5). Thus microbial activity is 
likely the agent of incorporation of 14C derived from spiked pyrene into soil humic material. 
Humification, therefore, as defined in this study was a dominant mechanism of behavior for spiked 
B(a}P and pyrene in contaminated soil, and occurred in non-poisoned as well as poisoned soil 
samples; in addition, microbial activity was observed to increase humification of pyrene in 
contaminated soil. 

As part of the chemical mass balance evaluation for contaminated soil, radiolabelled carbon 
associated with the gas phase plus aqueous phase of the soil was measured and added to that 
associated with the solid phase as described above. Collection of radiolabelled carbon in the gas 
phase from the volatile organic and carbon dioxide trapping solutions accounted for less than 1 % 
for both B(a)p and pyrene amended soils over the 285 day study for all flasks, non-poisoned and 
poisoned. The total radiolabelled B(a}P carbon associated with the aqueous fraction averaged less 
than 0.5% at each sampling for all B(a}P and pyrene flasks. 

With regard to results for non-contaminated soil, soil samples were spiked with 100 mg/kg 
pyrene and 14C-pyrene or with 100 mglkg B(a)P and 14C-B(a}P. 14C mass balances over all soil 
phases indicated that, as with contaminated soil results, greater than 95% of the radiolabelled 
carbon remained associated with soil solids as either solvent extractable (dichloromethane) or non­
solvent extractable (humic plus fulvic acids and insoluble humin plus mineral components) 
fractions after 285 days in B(a}P amended soil (non-poisoned and poisoned) (Figures 6 and 7), 
and after 100 days in pyrene amended soil (non-poisoned and poisoned) (Figures 8 and 9). 
However, unlike results with contaminated soil, partitioning of spiked PAHs between solvent 
extractable and non-solvent extractable fractions changed significantly through incubation time for 
both spiked PAHs. For B(a}P, a decrease in the solvent extractable fraction was associated with 
an increase in the fraction associated with humic and fulvic acids for both non-poisoned and 
poisoned soil samples, thus indicating that abiotic reactions may play a dominant role in the 
humification process for B(a}P. For pyrene, a decrease in the solvent extractable fraction was 
primarily associated with an increase in the humin plus mineral component fraction for both non­
poisoned and poisoned soil samples, thus indicating that abiotic reactions may playa dominant role 
in the humification process for pyrene. Humification, therefore, as described for results for 
contaminated soils, appeared to be the dominant mechanism of behavior for spiked B(a}P and 
pyrene in non-contaminated soil, and occurred in non-poisoned as well as poisoned soil samples. 
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Figure 3. Mass Balance of Radiolabelled Carbon in Non-Poisoned 14C-B(a)P Spiked 
Contaminated Soil. Vertical error bars show standard deviation of the data. 

As part of the chemical mass balance evaluation for non-contaminated soil, radiolabelled carbon 
associated with the gas phase plus aqueous phase of the soil was measured and added to that 
associated with the solid phase as described above. Collection of radiolabelled carbon in the gas 
phase from the volatile organic and carbon dioxide trapping solutions accounted for less than 1% 
for both B(a)P and pyrene amended soils over the 285 day study for all flasks, non-poisoned and 
poisoned. The total radiolabelled B(a)P carbon associated with the aqueous fraction averaged less 
than 0.5% at each sampling for all B(a)P and pyrene flasks. 

Degradation/Mineralization. With regard to mineralization for creosote-PCP 
contaminated soil, there were no significant differences in the amount of radio labelled carbon 
dioxide collected over incubation time for poisoned flasks for either radiolabelled B(a)P or pyrene. 
However, statistically significant differences in the amount of radio labelled carbon collected in the 
carbon dioxide traps due to treatment (non-poisoned versus poisoned) through incubation time 
indicated that some mineralization/degradation of at least the radiolabelled carbon (position 7) of 
B(a)P had taken place, although it was small «1 %). Also, with regard to pyrene, non-poisoned 
flasks produced almost twice the 14C02 compared with poisoned flasks over the 285 days 
incubation period, indicating mineralization of pyrene although it was less that 1 %. 
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Figure 4. Mass Balance of Radiolabelled Carbon in Poisoned 14C-B(a)P Spiked Contaminated 
Soil. Vertical error bars show standard deviation of the data. 

Radiolabelled carbon was found associated with volatile organic traps for both pyrene and 
B(a)P incubated flasks. Statistically significant differences in radiolabelled carbon associated with 
volatile organic traps from the B(a)P flasks were found due to incubation time in the non-poisoned 
flasks, and due to treatment (non-poisoned vs poisoned) and time, at 130 and 285 days incubation. 
The total amount of radioactive carbon recovered in volatile organic traps from poisoned and non­
poisoned BWP flasks over the 285 day incubation period was 0.0052% and 0.0089%, 
respectively. Total percentages of radiolabelled carbon associated with the volatile organic traps 
from the pyrene flasks (0.014% and 0.0091% for the non-poisoned and poisoned flasks 
respectively) were not significantly different 
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Figure 5. Mass Balance of Radiolabelled Carbon in 14C-Pyrene Spiked Contaminated Soil. 
Vertical error bars show standard deviation of the data. 

Radiolabelled carbon was present in water extracts of both pyrene and B(a)P incubated flasks. 
Radiolabelled carbon associated with water extracts did not change over time for B(a)P non­
poisoned soil or poisoned soil flasks. However, there were increases in the radiolabelled carbon 
content in the methanol eluates of Sep Pak™ extracts of the water fractions from B(a)P non­
poisoned flasks (0.12% to 0.41 % of total recovered DPM, 0 and 285 day respectively), but not 
poisoned flasks. This observation suggests transformation of 14C-B(a)P resulting in the 
generation of polar intermediate compounds, which were recovered in the methanol solvent These 
metabolites were not detected using reverse phase HPLC. Radiolabelled carbon associated with 
the water extracts from the pyrene flasks were very small and similar to results obtained for B(a)P 
water extracts. The percentage of radiolabelled carbon in the methanol plus methylene chloride 
eluates of the Sep Pak extracts of the water fractions from B(a)P flasks totalled less than 1.5% for 
non-poisoned flasks and less than 1 % for poisoned soil flasks. Percent of radiolabelled carbon in 
Sep Pak TM eluates from pyrene flasks averaged a total of 1 % for both poisoned and non-poisoned 
flasks and was significantly different for the methanol eluate due to treatment. Fractions from 
HPLC analyses of the Sep Pak™ methanol eluate from day 30, 60 and 100 samples from the non­
poisoned pyrene flasks had 80, 80 and 100% of the label present in the HPLC void volume, 
respectively, indicating the presence of polar metabolites. 
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Figure 6. Mass Balance of 14C in BWP Non-poisoned Uncontaminated Vadose Zone Soil. Each 
Bar is the Average of Sub-samples from Three Replicate Flasks with Vertical Error 
Bars that Show Standard Deviation of the Data. 

Results concerning mineralization/degradation for non-contaminated soil samples were 
essentially identical to those for creosote-contaminated soil, described above. The observations 
were consistent for non-poisoned and poisoned soil samples. 
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Figure 7. Mass Balance of 14C in B(a)P Poisoned Uncontaminated Vadose Zone Soil. Each Bar 
is the Average of Sub-samples from Three Replicate Flasks with Vertical Error Bars 
that Show Standard Deviation of the Data. 

Apparent Degradation of PCP and P AHs. With regard to creosote-PCP contaminated 
soil, HPLC analysis of the methanol and dichloromethane Sep Pak™ eluates of water extracts 
indicated differences between non-poisoned and poisoned flasks for PCP and for P AHs including 
naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, anthracene and fluoranthene 
in both B(a)P and pyrene amended flasks. Water extracts of soil from the BWP amended and 
poisoned flasks showed greater concentrations of 14C-B(a)P, determined by HPLC and 
scintillation counting, than water extracts of B(a)P amended non-poisoned flasks, a trend that 
remained consistent throughout incubation time. Radiolabelled carbon content of water extracts of 
the pyrene amended and poisoned soil was significantly greater than non-poisoned soil water 
extracts for the 0 and 30 day samples and significantly less for the 100 day sample. 
Concentrations of PCP, naphthalene, acenaphthylene, acenaphthene, and fluorene from the non-

l: poisoned soil from both B(a)P and pyrene amended flasks showed decreases (Table ll), while 
phenanthrene, anthracene and fluoranthene concentrations remained constant in the extracts of the 
non-poisoned flasks. Pyrene, benz(a)anthracene, chrysene, benzo(k)fluoranthene, 
benzo(f)fluoranthene, benzo(a)pyrene, dibenz(a,h)anthracene, benzo(g,h,i)perylene, and 
indeno(I,2,3-c,d)pyrene were not present in detectable amounts in the water extracts of either the 
non-poisoned or poisoned soils. Decreases in PCP and in the PAHs listed in Table IT were not 
obsetved in poisoned flasks. 
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Figure 8. Mass Balance of 14C in Pyrene Non-Poisoned Uncontaminated Vadose Zone Soil. 
Each bar is the average of sub-samples from three replicate flasks with vertical error 
bars that show standard deviation of the data. 
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Table n. pcp and P AH concentrations in water fractions from non-poisoned flasks in Jlg/mL. 

Time (days) 0 30 60 100 130 160 200 285 

PCP 7.53 2.63 2.67 2.28 1.38 1.35 0.50 1.13 

Naphthalene 6.90 5.17 5.02 4.98 4.59 3.24 2.93 2.82 

Acenaphthylene 5.70 5.21 4.90 4.44 4.91 4.68 4.00 4.19 

Acenaphthene 2.86 2.34 2.17 2.00 2.05 2.06 1.33 1.42 

Fluorene 0.39 0.22 0.20 0.16 0.09 0.02 0.04 0.04 

The differences in the water extractability of phenols including PCP may be attributed to the 
changes in pH of the soil and water extracts. Equilibrium of neutral and ionized PCP in solution 
can be described with a knowledge of pH and the acid dissociation constant for PCP (pKa = 4.75) 
using the following equation as shown in Lee et al (38). 

0n (neutral fraction) = (1-10pH-pKar l 

With regard to poisoned contaminated soil. the pH of water extracts decreased from 5 to 4.2. 
due to the use of propylene oxide as the sterilant. This decrease in pH was accompanied by a 
decrease in PCP concentration in the water fractions (from 7.43 J..lg/mL to 3.6 J..lg/mL) and a 
corresponding increase in solvent extractable fraction of PCP (203.29 Jlg/g to 405.07 Jlg/g). Total 
PCP concentration in the poisoned soil (water and solvent extract) remained constant. 

With regard to non-poisoned contaminate soil, the pH of water extracts increased from 5 to 6 
over the 285 day incubation period possibly due to degradation of acidic creosote constituents. 
Water extractable PCP decreased through time of incubation (7.1 J..lg/mL to 1.3 J..lg/mL) while there 
was no change in solvent extractable PCP concentration. This indicated that the difference in PCP 
concentration between poisoned and non-poisoned soil was due to loss by degradation of PCP in 
the non-poisoned flasks and not due to adsorption caused by a change in pH. 

Toxicity of Water Extracts. The Microtox™ assay was used to evaluate changes in 
toxicity of soil water extracts through incubation time for contaminated and non-contaminated soil. 
The EC50 value. defined as the effective concentration (BC) [by percent soil water extract in 
buffered water] that causes a 50% reduction in light output by the test microorganisms. increases 
as the water extract toxicity decreases since a greater concentration (%) of extract is required to 
effect a 50% reduction in light output. For example. an EC50 value of 1 % indicates that a water 
extract to buffer ratio of Img:99ml will decrease light output by 50%, where an EC50 value of 
greater than 100% indicates that the water extract, at 100%. does not decrease light output by 50%. 
Therefore, as the EC50 values increases, the toxicity of the soil water extract to the exposed 
microorganism decreases. 

With regard to contaminated soil, all poisoned control samples were consistently toxic through 
incubation time using the Microtox™ assay with no significant changes (Figures 10 and 11). 
However, a decrease in toxicity of water extracts was observed for non-poisoned soil through time 
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of incubation. Water extracts from B(a)P spiked non-poisoned flasks decreased in toxicity as 
indicated by a change in ECSO from 5% to 22% over the 285 day incubation (Figure 10) and from 
an EC50 of 4.3% to 9.4% over 100 days of incubation for the pyrene non-poisoned flasks (Figure 
11). The amount of radio labelled carbon in the water fractions from the B(a)P non-poisoned soil 
flasks as well as the concentrations of naphthalene, acenaphthylene, acenaphthene, and fluorene 
also decreased with time (Table m. The amount of radiolabelled carbon in the water fractions from 
the pyrene non-poisoned soil flasks increased over 100 days, with decreases of naphthalene, 
acenaphthylene, acenaphthene, and fluorene. Water extracts from B(a)P poisoned controls 
showed constant radiolabelled carbon concentrations and from pyrene poisoned controls showed 
decreased radiolabelled carbon concentrations. Therefore, detoxification was observed to occur 
throughout incubation time for non-poisoned contaminated soil, with no detoxification trend was 
apparent for poisoned soil. 

The trend indicating decrease in toxicity shown in the Microtox™ assay in non-poisoned soil is 
similar to the trend reported by Aprill et al (21) for a creosote-PCP contaminated soil. Aprill et al 
(21) used 0.3% creosote-PCP to soil ratio (weight). In this study, the concentration of 
contamination was higher (8% creosote-PCP to soil) and the decrease in toxicity was not as 
dramatic. 

In contrast to the detoxification trend observed with creosote-PCP contaminated soil, non­
contaminated soil, from the same site, incubated with 100 mg/kg pyrene or with 100 mg/kg B(a)P 
showed consistent trends of increasing toxicity in non-poisoned samples with increase in 
incubation time for pyrene (Figure 12) and for B(a)P (Figure 13). The increase in toxicity in 
water extracts of pyrene and B(a)P spiked soils may indicate the production of polar metabolites, 
which would also be more water soluble than the parent compounds. This is indicated by the 
increase in the percent of 14C identified in the water extract phase of the soil sample (Figure 12). 
Poisoned samples, however, showed no increase in toxicity with increase in incubation time for 
either pyrene or B(a)P spiked samples. 

SUMMARY 

The distribution of spiked radiolabelled carbon, added as 14C-B(a)P and as 14C-pyrene to non­
contaminated and creosote-PCP contaminated vadose zone soil (McLaurin Sandy Loam), was 
determined among aqueous, gas, and solid (humic plus fulvic acids and humin plus inorganic 
mineral components) phases as a function of incubation time. Four soil/PAH combinations were 
evaluated: (1) contaminated soil with B(a)P spike, (2) contaminated soil with pyrene spike, (3) 
non-contaminated soil with B(a)P spike, and (4) non-contaminated soil with pyrene spike. 

Mass balance results of greater than 95% indicated that the major pathway for radio labelled 
carbon for both PAH compounds was incorporation into the non-solvent extractable soil solid 
phase in a process defined for this study as humification. Specific soil solid phase fractions where 
spiked 14C_p AHs became associated in the process of humification can be characterized as humic 
plus fulvic acids and humin plus inorganic mineral components. Incorporation of spiked 14C in 
poisoned as well as non-poisoned soil samples indicated that abiotic reactions may be predominant 
in humification processes that occurred in the test soils with the test chemicals. 

Mineralization and production of polar intennediates of spiked 14C accounted for less than 5% 
of added 14C for both P AHs in non-contaminated and in creosote-PCP contaminated soil. 
However, mineralization and production of polar intennediates were significantly greater in non­
poisoned soil than in poisoned soil. Also, apparent degradation of PCP and PAHs naturally 
present in creosote-PCP contaminated soil was obtained in non-poisoned soil but not in poisoned 
soil. 
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Figure 10. Toxicity of Soil Water Extract Measured with the Microtox™ Assay with Incubation 
Time for BWP Spiked Creosote Contaminated McLaurin Sandy Loam Soil. 
EC50(5,15°) denotes the effective concentration (voVvol) of soil water extract that 
reduced light emission of the Microtox TM organisms by 50% five minutes after 
exposure to the test solution at 15° C. 

Toxicity of the soil water extract fraction, as measured by the Microtox TM, were very different 
between non-contaminated and creosote-PCP contaminated soil, with contaminated soil water 
toxicity much higher than non-contaminated soil water toxicity. 

Changes in toxicity of the water phase were also related to the biological status of soil samples 
(non-poisoned versus poisoned) and to the contamination status (contaminated versus non­
contaminated soil). Changes in toxicity of the soil water extracts through time occurred only in 
non-poisoned (biologically active) soil samples. Also, changes in toxicity were more pronounced 
in non-contaminated soil, with both decreases and increases in toxicity observed. Changes in 
toxicity of water extracts were less pronounced in contaminated soil; however, consistent 
detoxification trends were observed. Water extracts from poisoned control soil samples exhibited 
no statistical change in toxicity over incubation time. Changes in toxicity of the soil water extract 
were also correlated with the amount of 14C associated with the water extract This was attributed 
to the production of polar metabolites in biological active samples that would be more water soluble 
than the parent P AHs that were spiked. 
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Figure 11. Toxicity of Soil Water Extract Measured with the Microtox™ Assay with Incubation 
Time for Pyrene Spiked Creosote Contaminated McLaurin Sandy Loam Soil. 
EC50(5,15°) denotes the effective concentration (vol/vol) of soil water extract that 
reduced light emission of the Microtox TM organisms by 50% five minutes after 
exposure to the test solution at 15° C. 
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Figure 12. Radiolabelled Carbon and Toxicity Associated with the Soil Water Extract with 
Incubation Time for Pyrene Spiked Non-Contaminated and Non-Poisoned McLaurin 
Sandy Loam Soil. Water Extract Toxicity Measured with the Microtox™ Assay 
where EC50(5, 150 ) denotes the effective concentration (vol/vol) of soil water extract 
that reduced light emission of the Microtox TM organisms by 50% five minutes after 
exposure to the test solution at 150 C. 
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Figure 13. Toxicity of Soil Water Extract Measured with the Microtox™ Assay with Incubation 
Time for B(a)P Spiked Non-Contaminated and Non-Poisoned McLaurin Sandy Loam 
SoiL EC50(5,15°) denotes the effective concentration (voVvol) of soil water extract 
that reduced light emission of the Microtox TM organisms by 50% five minutes after 
exposure to the test solution at 15° C. A hOffi1etic response in the Microtox™ assay 
indicates an increase in light output compared to non-toxic controls. 
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