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Abstract 

Relationships between hydrologic variables are often nonlinear. Usually the functional 

form of such a relationship is not known a priori. A multivariate, nonparametric regression 

methodology is provided here for approximating the underlying regression function using locally 

weighted polynomials. Locally weighted polynomials consider the approximation of the target 

function through a Taylor series expansion of the function in the neighborhood of the point of 

estimate. Cross valid(!.tory procedures for the selection of the size of the neighborhood over which 

this approximation should take place, and for the order of the local polynomial to use are provided 

and shown for some simple situations. The utility of this nonparametric regression approach is 

demonstrated through an application to nonparametric short term forecasts of the biweekly Great 

Salt Lake volume. Blind forecasts up to four years in the future using the 1847-1993 time series of 

the Great Salt Lake are presented. 



1. Introduction 

Most hydrologists are familiar with linear regression and its use for developing a 

relationship between two or more variables. The general linear model (where the variables are 

presumed to be linearly related after applying some predetermined transform) is used as a building 

block in many activities ranging from spatial surface estimation, missing value imputation, 

sediment load estimation to autoregressive time series modeling. Often, such a procedure is not 

very satisfying. The choice of an appropriate transform to use may not be obvious, and scatterplots 

of the data may not visually support the assumed model. An alternative to such regression 

approaches that is capable of representing relatively complex relationships between variables, 

through "local" or pointwise approximation of the underlying function, is presented here. 

Procedures that determine model parameters automatically from the data, and also allow the user to 

choose between a parametric (i.e. linear model) and a nonparametric model (Le., a local linear 

model) are provided. 

There has been a surge in the development and application of nonparametric regression and 

density estimation methods in the last decade as computational resources have become more 

accessible. Some monographs that make this literature accessible are by Silverman (1986), 

Eubank (1988), HardIe (1989). Examples of nonparametric estimators include orthogonal series 

expansions, moving averages, splines, kernel, and nearest neighbor estimators. The reader is 

referred to Lall (1995) for a recent review of the application of nonparametric methods in 

hydrology. Some attributes of these methods are : 

(1) The estimator can often be expressed as a weighted moving average of the observations. 

(2) The estimates are defined locally or using data from a small neighborhood of each point of 

estimate. 

(3) Consequently, they can approximate a wide class of target, underlying functions. 

(4) The nonparametric estimator has parameters that control the local weights and the size of the 

neighborhood used for estimation. However, unlike linear or parametric regression, where the 

parameters (e.g., intercept and slope) are sufficient to provide an estimate at any point, the 

nonparametric estimator needs the observations in the neighborhood to provide an estimate at any 
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point. For example the parameter of a moving average is the number of points (e.g., 3) to average 

over. One still needs the three points surrounding the point of estimate to report the answer. By 

contrast, once a linear regression h~ been evaluated, the parameters are all one needs to provide an 

estimate at any point. In the parametric case, the overall behavior is of an assumed form (e.g., 

linear or log-linear), and the parameters of this global form are all one needs to estimate. The 

parameters of a nonparametric model thus have a different role, since no global form is assumed, 

and the parameters merely control how local averages are to be formed. 

Background information on multivariate, locally weighted polynomial regression is 

provided in the next section. Methods for parameter selection and the estimation of error variances 

and confidence intervals are presented next. An algorithm for local regression is then summarized. 

An application of local regression to time series forecasting is presented. A biweekly record of the 

Great Salt Lake volume from 1847-1993 was used for the forecasts. The dynamics of the time 

series of the Great Salt Lake has been studied by Sangoyomi (1993), Lall et al (1995a,b) and 

Abarbanel and Lall (1995). This work suggests that the dynamics of the Great Salt Lake (GSL) is 

nonlinear, and possibly chaotic, and demonstrated the success of a nonparametric regression 

scheme (Multivariate Adaptive Regression Splines, or MARS, due to Friedman (1991» for 

forecasting the GSL for up to 4 years ahead during extreme hydrologic periods. The local 

regression scheme presented here is a computationally faster alternative to MARS, and is easier to 

explain and analyze. 

2. Background 

Consider a general regression model given as : 

Yi=f(xi) + ei i=l, ... ,n (1) 

where, x is a M-vector of M explanatory variables, y is the "response" variable, f(.) represents the 

underlying functional relationship between y and x, ei are noise or measurement errors, that may 

or may not depend on Xi, and n is the number of observations. 

Linear regression considers the case where the function f(.) is linear in x, i.e., f(x) = x~, 

where ~ is a M-vector of coefficients that do not depend on x. Theoretical methods for parameter 

selection, analysis of variance, hypothesis testing, estimating confidence and prediction intervals, 
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outlier identification and other related statistical activities are well developed and understood for 

linear regression (Stuart and Ord (1991». Statistical software is readily available to perform these 

computations. Consequently, these methods see widespread use. Nonlinear relationships between 

x and yare admitted in this framework through prior transforms applied to x, and/or y. For 

instance, the components of x may include polynomial terms (1, v, v2 ... ) in an original variable v. 

The Box-Cox family of power transformations is often used in hydrology (see Helsel and Hirsch, 

1992) to select an appropriate transform. There are a number of difficulties with such an approach. 

These include (1) the inability to find an appropriate transform for a given data set, (2) bias in the 

estimates upon backtransforming, (3) non-unique selection of applicable transforms for a given 

data set, which can lead to an unquantifiable uncertainty of estimate (particularly while 

extrapolating the data, which is the usual application I), and (4) reconciliation of the distribution of 

errors in the transformed and original coordinates relative to the underlying error distribution. 

An approach for the pointwise estimation of the unknown function f(.) from data, based on 

a local Taylor series expansion of f(x) at the point of estimate x, was proposed by Macauley 

(1931). Cleveland (1979), Cleveland and Devlin (1988) and Cleveland et al (1988) pioneered this 

idea into a statistical methodology for local approximation of functions from data. Recently (e.g., 

Hastie and Loader (1993), Fan and Gijbels (1992), MUller (1987), Lejeune (1985», these methods 

have been recognized as very useful generalizations of kernel regression (weighted moving 

averages). Applications to a suite of statistical estimation problems are emerging. Our presentation 

here is specific to the estimator we describe. The material presented here builds directly on the 

method of Cleveland and Devlin (1988), and the developments in Lall et al (1995) . The reader is 

referred to a recent monograph by Wand and Jones (1995) for general background on the methods. 

Generally, the strategy is to choose a certain number, k, of nearest neighbors (in terms of 

Euclidean distance) of the estimation point x, and to form the estimate f(x)through a locally 

weighted, polynomial regression over the (x,y) data that lie in the neighborhood. Consider the 

general regression model described in (1). The sampling locations Xi are usually not regularly 

spaced. We assume the ei are uncorrelated, mean zero, random variables, assumed to be 

approximately identically distributed in the k nearest neighborhood of the point of estimate. 

To motivate the local polynomial regression technique for approximating a wide class of 

functions f(.), first suppose that the errors ei are identically zero. Then locally, about some x*, we 
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can estimate f(.) using a (multivariate) polynomial in x which is chosen to interpolate Yi=f(x;) at 

x~, i =1..k, in the k nearest neighborhood of x*. The data indices i=l...k are arranged so that the 

data x; are arranged in order of increasing distance from x*. Here, we assume the underlying f is 

locally a smooth (i.e. continuous and differentiable to some order) function. In the univariate 

setting we can write the following Newton-Taylor expansion 

(2) 

where the points x and " are in the convex hull of { x; , ... , x~}, and f[x; ,x; , ... ,x;] is the (j-1) th 

divided difference (defined as the coefficient of the term xJ-I of the polynomial of degree j-l that 

agrees with f(xI)' f(x2) ... f(xj» of f(.) at the sample points {x;,x;, ... ,x;}). The point" is 

generally unknown, but guaranteed to exist by the mean value theorem provided f(.) is Ck smooth 

(i.e., continuous and differentiable to order k). We notice that if the sample points are closely 

grouped (i.e., I x-x~1 is small) and fO is locally Ck smooth (i.e., the kth derivative is finite), then 

the last term in the above equality can be neglected, and one obtains the local kth order polynomial 

approximation Pk(x) to f(x). 

The choice of the x;'s for any given x can be problematic in several ways. First, x* 

should be "centered" within the set { x; ,x; , ... ,x~}. This is not a problem if the sample points x; 

are uniformly distributed, and x is not near the boundary of the region. However, in situations 

where one has non-uniform sampling, and when one estimates f(.) near the boundary, we expect a 

deterioration in the estimate of f(.) provided by Pk(.)' Secondly, there is a choice of how many 

points, k, to use in building the estimator Pk(')' Choosing too few neighbors about x results in 

loss of information contained in higher derivatives; choosing too many neighbors (resulting in a 

higher degree polynomial) yields an estimator with too many degrees of freedom, allowing too 

much variation between the interpolation points. That is, the true, but unknown local behavior of 

f near x* may not be well represented by bringing in interpolation points "far away" from x*. 

Thus, even working with error free, perfect data, the idea of representing f by a local polynomial 

requires a means of balancing the trade-off occurring between choosing small local neighborhoods 
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(i.e., small k), resulting in a possibly oversmoothed or biased estimate, and choosing large 

neighborhoods, resulting in superfluous degrees of freedom. Asymptotically, (i.e., as the sample 

size n ~oo, one would decrease k, since the distance I x - x~ I will approach zero. 

With the introduction of noise, the above procedure can be readily adapted by requiring 

that an estimate of f(.) near a given x* be obtained by petforming a local least squares polynomial 

regression on the k nearest neighborhood, and using this regression polynomial's value at x* to 

estimate f(x*). It is desirable to prescale each data vector or coordinate in x to have similar scale, 

prior to computing nearest neighbor distances. In our implementation, we consider scaling each 

component to have a mean 0, and variance 1, or to lie between ° and 1. Practically, linear, 

quadratic and cubic polynomials are useful. Using a polynomial of degree p, we may have d 

parameters that need to be estimated locally. Note that d < k, else we can interpolate, with 

potentially disastrous results. In practice, we enforce k > 2d. It is desirable to form estimates that 

are "local", since the "end points" in a linear regression can have a large influence on the resulting 

estimate. Given these observations, and the observation that the point of estimate should be 

approximately centered in the locale of estimation, it is desirable to weight the local polynomial fit, 

such that observations close to the point of estimate are accorded a higher importance in the least 

squares fit, than those that lie further away in the neighborhood. 

Then, the locally weighted polynomial regression at each point of estimate xl*, 1 =l..np, 

given a (n*M) data matrix X and a (n* 1) response vector y, is obtained through the solution of the 

weighted least squares problem: 

Min (Yl - Zl13l)T WI (YI - Zl13l) 

~l 
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where the subscript I recognizes that the associated element is connected with the point of 

estimate xl *; 131 are estimates of the coefficients of the terms in the basis defined by Zl; Zl is a 

matrix formed by augmenting X, with columns that represent the polynomial expansion of X to 

degree p ( including cross product terms if desired); WI is a k*k diagonal weight matrix with 
k 

elements wii,l =K(Ui.l)lLK(uj,l)' where ~,l = ~idk,l; ~,l is the distance from xl* to xi using an 
j=! 

appropriate metric, and K(.) is a weight function. 

We have implemented a bisquare kernel (K(u)=15116(1-u2)2). The latter is recommended 

by Scott (1992) because of its smoothness properties. The matrices Yl and Zl are defined over the 

k nearest neighborhood ofxl*. Singular Value Decomposition (SVD) using algorithms from Press 

(1989) is used to solve the linear estimation problem resulting from (3). 

The reader may note that we are in the familiar territory of linear regression, and will hence 

have the usual statistical tools available to us. The coefficients I3I are obtained as: 

~l = (Z[WIZlrlZ:WlYl (4) 

The resulting estimate of f(x1)is then: 

f(x l ) = zl ~l (5) 

where zl is the d'* I vector formed by augmenting xl with polynomial terms to order p, and 

retaining the terms for which ~j are found to be significantly different from O. 

Expressions for the asymptotic bias and variance of an estimate equivalent to (5) are 

presented by Wand and Jones (1995, p. 140), and are not reproduced here. Instead, we shall 

develop some data driven estimates of variance and mean square error of estimate, under the 

assumption that the number of nearest neighbors, k, and the order of the local polynomial, p has 

been chosen appropriately. We shall consider k and p the "smoothing parameters" of the estimation 

scheme and consider the slopes ~l to be "structural parameters". 

The mean square error of estimate at Xl is estimated from the local regression as: 

(6) 

Note that this is a weighted average of the squared errors from the local regression, with 

the same weights as those used for estimating the regression. Essentially, the mean square error of 

fit is localized to the point of estimate. 
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An estimate of the variance of the local errors CJ. 1, i= L.k, is available as: , 
s; = e;W1e/«(k-d)lk) (7) 

1 -. 

where d is the number of parameters fitted. 

One can thus allow an error structure that is localized to the point of estimate as well. 

Hypothesis tests can then be designed to see if the error variance at two points is comparable or 

not. Such tests can either be implemented nonparametrically (e.g., through a bootstrap (Efron and 

Tibishirani (1993) of the data ), or parametrically with assumptions as to the probability 

distribution of errors. 

Under the assumption that the local errors ei,l are approximately normally distributed, one 

can construct a t-test for a hypothesis that individual coefficients ~j are significantly different from 

zero, at a desired significance level <x. A judicious application of this t test with a significance level 

<x, allows one to screen spurious coefficients and improve the degrees of freedom of the local fit, 

retaining d' of the d original terms in the regression. The t-statistic of interest (Stuart and Ord 

(1991, p. 1042), with (k-d) degrees of freedom is: 

tj = ~/(S;l ajj )0.5 (8) 

where '1j is the (j,j) element of the matrix (Z;WtZ1r1. 

Approximate confidence and prediction intervals for the estimate in (5) can also be obtained 

as for the regular linear regression model. We shall defer the presentation of these estimates until 

the end of the next section which focuses on the selection of the number of nearest neighbors and 

the order of the polynomial. 

3. Smoothing Parameter Selection and Prediction Limits 

Some of the issues that are important for picking the order of the local polynomial and for 

selecting the number of nearest neighbors to use were touched on in the last section. Here, we shall 

present the selection process we have adopted for smoothing parameter selection. It is helpful to 

begin with a simple univariate example. Consider the estimation of the function f(x) = Sin (x)e­

O.2x, from the data (~, Yi)' generated such that the ~ are equally spaced values from 0 to 10, and 

the Yi are then generated as f(xi) +ei, i=LlOO, and ei-N(O,O.I). This data set, the true, 

underlying function, and 3 local regressions are shown in Figure 1. 
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Figure 1 

illustration of local linear and local quadratic regression, with the weights wii =1& The data (small 

circles) is 100 points generated from y= Sin (x)e-O.2x+N(0,0.1). The true function is shown as the 

solid line. The thin dotted line is a linear regression through the full data. It shows the bias incurred 
if a neighborhood of size 100 is used at any point. The thin dashed line is a quadratic fit through 

the data. It shows that the bias may be reduced by going to a higher order polynomial. Estimates 

are considered at 3 points, x=2.2, 4 and 8. Local linear fits with 10 neighbors are used at the first 
two points, and a locally quadratic fit with 25 neighbors is used at x=8. The data in each 

neighborhood are shown with large circles. The local fits are shown as thick solid lines. The 
approximation at the first two points is quite good. The estimate at x=8 is poorer. Since we know 
the true function, we can use those values with the local quadratic fit. The resulting fit at x=8 is 

shown as a thick dashed line. It is seen to coincide with the target function. Consequently, the 

approximation error at x=8 is a consequence of the local noise realization. 
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We observe that the quality of the local regressions is quite good. The higher order (quadratic) fit is 

less biased than the linear, and the bias decreases substantially as the size of the neighborhood is 

reduced from 100 to 10 or 25 points. However, the problem with local regressions of increased 

variability of estimate due to the reduced sample size is also shown. This is exacerbated as one 

moves to a higher order polynomial fit with the same number of data points. 

Thus, there is a trade off between bias and variance as one changes the order of the local 

polynomial and the number of points used to fit it. Another potential problem arises if the Xi values 

are randomly sampled or are clustered in certain locations. Consider for instance the following 

values of Xi (3.1,3.2,3.5,4.5,5,20,22,25,30,31). Now consider a local regression at x=lO. In this 

case, the first 5 neighbors of the point of estimate are all to its left, and no information is used from 

the data on the right. An estimate with ~5 will then certainly be an extrapolation of the data used. 

Recall from section 2, that it is desirable that the point of estimate be centered in its estimation 

neighborhood. Recall also that the variance of estimate of linear regression increases dramatically 

as one moves towards the edges of; or out of the range of data. Consequently, in the multivariate 

setting, we may find it desirable to devise a strategy by which we symmetrize the neighborhood of 

the point of estimate, and to explicitly consider the degree of extrapolation involved in a candidate 

local regression. 

Parameter selection approaches are usually based on an estimate of the Mean Square Error 

of the estimation scheme. Here, we have to be careful, since one can easily choose k and p to drive 

the mean square error of fit to zero, and the associated R2 will be 1! Of course, this may not say 

much about performance in a predictive as opposed to fitting setting. Consequently, we shall 

investigate some cross validatory choices of measures like mean square error for parameter 

selection. 
"-

A variety of estimators of Predictive Mean Square Error P( f) have been proposed in the 

literature. Cleveland and Devlin (1988) considered Mallows Cp in their work on local polynomial 

regression. Li (1985) discusses the theoretical foundations of this and other measures such as 

Ordinary and Generalized Cross Validation, the Finite Prediction Error, the AIC and the BIC. Of 

these the Generalized Cross Validation CGCV) statistic proposed by Craven and Wahba (1979) is 

of particular interest since it has performed well (Hardle (1984, 1989» in practical applications. It 
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is defined as : 
A A 

GCV(f)= MSE(f)/(n-1tr[I-H])2 (9) 

where 
A n A 

the Mean Square Error MSE(f)=n-1 I..cYi -~ i (10) 
i=1 

A 

H is the influence matrix defmed through f = H y (11) 

I is the identity matrix, and tr[.] represents the trace of the matrix. 

Note that (11) represents a linear estimator, and the ith diagonal element of H can be 

thought of as the "weight" of that data point on the estimate at that point. Eubank (1988), p. 406 

states that for linear regression (local or global, and on the raw variable or a polynomial in it) it is 

easy to show that ~ ~i:51. Thus if hii is I, and the other hij are 0, we see that we have 0 degrees 

of freedom, and the estimate at each point is simply the original data, i.e. the model completely 

overfits or undersmooths. The corresponding MSE is zero, and the GCV is infinity. On the other 

hand if all the hij are equal, the estimate at every point is the sample average of the Yi' the degrees 

of freedom are (n-l), since we fit one parameter, and the MSE may be large if f(.) is not a 

constant, and for n large, MSE and GCV will approach each other in magnitude. Consider also the 

case where the ~j are equal for the k nearest neighbors of a point and 0 elsewhere. In this case we 

may approximate f(.) better since we form a moving average of y values, and hence have a lower 

MSE. However, the degrees of freedom will only be (k-l), and the GCV may be larger. The 

denominator in (9) consequently has the role of a penalty for the effective number of parameters 

used in fitting the model. The effective number of parameters is determined by the number of 

neighbors and the number of terms in the local polynomial. 

The motivation for using GeV(f) comes from a theorem proved by Craven and Wahba 
A ~ 

(1979). They showed that GCV(f) is a nearly unbiased estimator of P(f). Eubank (1988) also 

shows that the GCV is closely related to the Ordinary Cross Validation (OCV) estimate of P(t) 

(p.30), and to the Akaike Information Criteria (p.40). OCV considers the Mean Square Error in 

dropping one observation at a time from the fitting set and then predicting it using the remaining 

data. It also estimates P( f), but at a higher computational cost 

We shall consider global (over the whole data set) and local estimates of GCV(f) to aid 
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parameter selection. The global GCV can be estimated after performing n local regressions at each 

data point X].,-as: 

GGCVCf> = (I,eUn)/(l- I,hu/n)2 (12) 
[=1 i=l 

wherehu =Z;(Z;WiZirlZiWii,i' zi is the augmented d'-vector corresponding to xi, Zi is the 

augmented matrix of the k nearest neighbors of xi' Wi is the weight matrix for estimation at zi' and 

wii i is the weight applied to zi, and where ei = Yi - f (xi)· , 
One can select appropriate values of k and p, as the minimizers of the GOCV value 

computed in equation 12 for each combination of k and p. These would be the values of k and p 

that would do well on the average. However, in certain situations (e.g., where the curvature of the 

target function varies over the data, and where the variance of the noise varies over the range of the 

data), one may wish to make such choices locally at the point of estimate. 

Lall et al (1995) introduced the use of a local GCV score that uses data directly from the 

local regression at the point of estimate. In this case the errors eU are the residues of the model 

fitted over the k nearest neighbors of the point x~ , and Wi is the corresponding weight matrix. The 

trace of the matrix H in this case is simply d" the number of coefficients fitted. The local GCV 

score is then given as: 
, 

LOCV[(f)= e;W1e/«k-d')1k)2 (13) 

The appropriate values of k and p can then be obtained as the ones that minimize the local 

GCV score for the local regression. The LGCV I value also provides insight into the local predictive 

error variance. This approach to parameter selection is particularly useful when making a few 

estimates from a large data set. This can be the case when local regression is used for forecasting a 

nonlinear time series model, as is done later in this paper. 

A problem with the two selectors introduced thus far is that they presume a regular or well 

behaved sampling of the data Xi, and do not address the issue raised earlier of local data clustering 

and its effects on the regression. Since, both the global and the local GCV statistic are based on 

estimation at observed points (which may not coincide very well on average with the points at 

which we need estimates), they provide only limited insight into the best parameters to use 

locally, particularly in areas that are sparsely sampled. A modification of the local GCV score 

that attempts to address this problem is now introduced. 
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Comparing equations (7) and (13) we see that they differ by a factor (k-d')/k. In this 

context, the predictive error variance is merely a penalized version of the error variance for fitting, 

with a penalty that comes directly from the average weight (d'/k) ascribed to each data point during 

the fitting process. Now, following Stuart and Ord (1991, p. 1080), the estimation error variance 

for an estimate Yt at a data point zl is obtained in terms of the "leverage" hI exerted by the point of 

estimate on the observational data set as: 

var(YI) = s; hi 
1 

(14) 

where hi ={ ZI (Z;rWIZlflz;r / k}. 

The leverage hI for a point of estimate located at the mean of the k nearest neighborhood is 

d'/k. As one moves away from the center, the leverage value increases. The reader may recall that 

the confidence limits for linear regression expand as one moves away from the center. This 

corresponds to the increasing pointwise error variance due to increasing leverage, as in eqn. (14). 

We can then define a corresponding measure of local predictive mean square error with 

consideration of the "leverage" the point of estimate exerts on the data set as: 

LGCVLEV(zn)=LGCV1 hi (15) 

The LGCVLEV score now has a penalty to account for the degree of extrapolation at the 

point of estimate relative to the k nearest neighborhood. If the data are clustered and the point of 

estimate lies in the middle of the cluster, hI and hence the penalty are the lowest. On the other 

hand, if the point of estimate is outside the cluster, and one is extrapolating, hI and the penalty will 

be higher. In this case, if LGCVLEV is used to choose the local k, the value of k should increase 

until one or more points outside the cluster enter the local data set. Of course, the inclusion of these 

points could increase the mean square error. A trade off between symmetrization of the 

neighborhood and centering it about the point of estimate, and between increasing bias resulting 

from this growth in the neighborhood size is thus recognized. If symmetrization is not possible 

(e.g., if the point of estimate lies outside the original data set) , the leverage penalty will try to 

shrink the size of the neighborhood, provided that the LGCV score is not significantly increased. 

The absolute and relative values of leverage increase as the order p of the polynomial is increased. 

Thus this statistic will emphasize lower order fits. Recall from (2) that the approximation error of 

the scheme depends on both the order of the polynomial and on the size of the neighborhood. 

Page 13 May 25, 1995 



A simple univariate regression example that shows the performance of LGCV and 

LGCVLEV f€>r selecting the number of neighbors and polynomial order to use is presented through 

Figure 2. We see that when the point of estimate lies in a local cluster of data, both measures give 

the same optimal choice. When the point of estimate, lies in between clusters, LGCV will pick a 

value of k that leads to estimates from one of the clusters only, whereas LGCVLEV picks a value 

that forms the k nearest neighborhood using the 2 adjoining clusters, in a proportion that depends 

on the relative distance of Xl from the 2 clusters. The behavior of LGCV and LGCVLEV near the 

boundary of the data set is also different as was indicated earlier. For this example the global GCV 

choices are the same as those for the local GCv. 

Local parameter selection can lead to increased variability in the overall estimation scheme. 

In practice, we recommend that a number of local estimates at the np desired locations be made. 

Now one can form the average LGCV or LGCVLEV score as a function of k and p across this set 

of np prediction points. Determine the k and p values that minimize these average scores. If these 

values are not significantly different from the values obtained locally, it is expedient to use the 

same k and p across all prediction points. Variants of this idea across subregions of data are also 

useful. 

Approximate confidence intervals assuming normally distributed local errors with local 

error variances;l can be obtained for each estimate f(xJ following Stuart and Ord (1991, p. 1043) 

as: 

f(Xl>C~ =f(xl)±tk-d·.l_aIl *se
1 

(16) 

where tk_d" 1-012 is a Student's t variate with (k-d') degrees of freedom, and significance level a. 

Note that the above confidence interval is likely to be narrower than it should be, because it 

does not recognize the variability one should associate with the choice of k and p. Some 

consideration of these factors is possible through the use of LGCVLEVO.5 in place of se in 
1 

equation 16, since LGCVLEV corresponds to an estimate of error variance that recognizes the price 

to be paid for estimating the smoothing parameters. Prediction intervals are given as: 

(1 +hl) se in place of se , or 
1 I 

(LGCV +LGCVLEV)O.5 (17) 

A better, but computationally more intensive approach to prediction intervals is provided by Yao 

and Tong (1994) who directly solve for the a conditional percentiles of y given Xl' by considering 
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an appropriate asymmetric quadratic loss function that depends on the percentile of interest <X. 
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Figure 2 

A simple univariate regression example to illustrate how the selection of the number of nearest 
neighbors, k, varies with LGCVLEV and LGCV for cluster data. A data set of length 40 is 

generated from the model y = IOx2 + N(O,O.I). The sampling locations are organized into four 
clusters centered at (xc=0.005, 0.505,0.755, 0.995), with each cluster spread between xc±0.005. 

Twentyfive points (4 at the cluster centers, and 21 equally spaced from 0 and 1) were considered 
for estimation. Locally linear fits were considered with k ranging from 4 to 40. LGCV almost 
always (23 out of 25 cases) picks k=5. GGCV also picks k=5, and hence gives the same estimates 
as LGCV. Since each cluster has 10 points in it, in most cases the resulting estimates will be based 
only on data from one cluster. The resulting fit is seen to be quite poor except at the estimation 
points that lie in or very close to the clusters. LGCV estimates that are really poor are off the graph 
(worst fit is at x=O.3 where the value is -70.2). LGCVLEV picks k=8 to 17 for the estimates 
within clusters, and k=17 to 29 for the estimation points that are not in the clusters. In this case, 
the data from each cluster is used for estimates within clusters, and data from more than one cluster 
is used when the point of estimate is in between clusters. The resulting estimates are seen to be 
quite good over the range of the data. The "bias" in the estimate between x=OA and x=0.5, 
corresponds to a LGCVLEV choice of k=29. Such increased variability is a consequence of the 
increased number of parameter choices when choosing parameters locally. 
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4. Algorithm 

The Local Polynomial Regression algorithm is now summarized. 

I. Given data (xi' Yi)' i=1...n. 

• Plot Scatterplots of y vs. each component of x. Decide on a range {k1,k2} of nearest neighbors, 

and {p 1, p2} of polynomial order. 

• Typically p1=O or 1, and p2 is 1 or 2; k1 ~ 2*d, where d is the total number of coefficients to 

solve for, and k2 =n. The case p1=O takes care oflocal1y constant fitting, i.e., kernel regression. 

II. For each point of estimate Xl' l=1...np, estimate a local regression (eqns 4, 5) for each value of 

k and p considered. 

• Form the augmented k*d matrix Zl for the polynomial basis indicated by p with k nearest 

neighbors. 

• Form the k*k matrix of weights WI indicated by the number of neighbors k. 

• Identify for each such regression, the coefficients i3j' j=l..d', and associated columns of the 

matrix Zl to retain using (4). Re-solve the model with the the reduced set and compare the LGCV 

value for the reduced model with the original model. OPTIONALLY adjust the model using 

LGCV. 

• Select optimal (k*, P*)l as the minimizers of LGCVLEV (or LGCy) over k and p. 

• Retain for each such regression, the following statistics: 

1) the estimate f(x!), (2) the residual el (k,p), (3) LGCVI(k,P), (4) LGCVLEVI(k,P), (5) s;\, (6) 

hu (eqn 12), and hI (eqn 14), (7) the number of coefficients, d' that were selected, and (8) (k*,p*h 

• Provide prediction intervals for f(x!) corresponding to d', k* ,p* if needed. 

III. (OPTIONAL) Compute the following statistics from the information retained in II.: 

• GGCV(k,p) (eqn 12), Average(LGCVLEVI(k,P), Average(LGCVI(k,P». The averages are taken 

over 1= Lnp. 

• Determine the k*, p* that minimize (1) GGCV, (2) Average (LGCVLEV) and (3) Average 

(LGCV). If these are all similar and the spread of (k* ,P*)l is relatively small, use these values at 

alII, else use the (k* 'P*)l determined in II. 
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Application 

The primary application we consider in this paper is the forecast of the volume of the Great 

Salt Lake at key points in time from its 1847-1993, biweekly time series. However, we shall 

begin by forecasts of data from two known models to assure ourselves that the forecasting scheme 

can work. The generic forecasting model is described first. 

Let us say that we have a time series, Gt, t=l...nt. We shall presume that Gt is the outcome 

of a Markovian (i.e., future values depend only on a finite set of past values) process, and consider 

a nonlinear, autoregressive model as appropriate for forecasts of such a system. We refer the 

reader to Tong(l990) for theoretical background and attributes of such an approach. The model of 

interest is stated as: 

(18) 

where Gt+m is an m step ahead forecast, fm (Vt ) is a forecast or recursion function (the conditional 

expectation of Gt+m given V t), that is presumed to be continuous and twice differentiable, et is a. 

independent and locally (in the k nearest neighborhood of Vet»~ identically distributed noise 

process with zero mean and finite variance, Vet) is a state vector of length mI, with components 

(Gt, Gt-'t' .... Gt-(m-I)'t), where 't is a delay or lag between coordinates. 

N ow, one can consider two approaches for forecasting the m step ahead value for the time 

series. One could forecast 1 step ahead m times, updating Vt to Vt+I' ... Vt+j etc., with the the j 

forecasted values Gt+j that are available at that point. This is called an iterated forecast. 

Alternately, one could directly forecast m steps ahead using the current Vt. In either case, m 

successive estimates of fm(Vt) are needed. We have explored both strategies in our work, and 

found them to give comparable results for the data sets tested. In what follows, the direct 

prediction method is described. Iterated forecasts follow a very similar strategy. 

Direct Forecasts of a Time Series for m steps forward from time index t=nt: 

(1) Select a lag 't and an embedding dimension ml. These are parameters that can be varied and 

picked as the ones that minimize the GGCV for the m step forecasts Gt+m' or they can be chosen 

based on other prescriptive criteria (e.g., 't as the delay that corresponds to the first minimum of the 

Average Mutual Information, and mi as the value that minimizes the percentage of false nearest 

neighbors - see Abarbanel et al (1993) for details of both prescriptions). Usually, these will not be 
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changed during the m step prediction, but may change if the forecasts are started under rather 

different conditions. 

(2) Form a data matrix X with ml columns corresponding to Vt, and (nt-(ml-l)*'t-m) rows 

from the time series 0t using the appropriate lags of the time series. For example say 't=2, ml=3. 

Then the first row of X will have 05' 03' 01; and the last row will have 0nt-m' 0nt-m-2' Gnt-

m-4' 

(3) Form a data vector y corresponding to X, as the value 0t+m corresponding to each row of the 

first column of X. For example, for m=5 in the previous example, the first entry of y is °10' and 

the last entry is Onto 

(4) Solve the local regression problem at Xl = (Ont' 0nt-'t' ... 0nt-(m-l )'t) as in Section 4. 

(5) Evaluate the forecast and provide confidence/prediction intervals if needed. 

Note that since Vt does not change for each step in the direct forecasting method, if k and p 

do not change one can retain the matrix (ZJW,Zlr1 between forecasts, and speed up the 

computations. 

Synthetic Series: 

The first scenario is a time series of length 200 from an AR(2), or autoregressive model of 

lag 2. The model is defmed by: 

Yt = Yt-l - 0.5 Yt-2 + tt (19) 

where ~ is a Normally distributed random variable with mean 0 and variance 1. 

In this case, we selected 't= 1, and varied m 1 from 1 to 5. The number of nearest neighbors 

to use was varied from 50 to the sample length 200, and linear and quadratic (without cross 

product terms) fits were considered from 1 to 20 various points in the series. In all cases 

LOCVLEV was used to select the parameters of interest. The number of nearest neighbors was 

consistently picked as the full sample size, ml was typically picked to be 2, and linear fits were 

always selected. Since, the models selected were essentially global, linear, autoregressive models 

each time, the resulting statistical properties were satisfactory. 

Lorenz Equations: 

The Lorenz equations are given as: 
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x = -cr(x+y) 

y = -xz+rx-y 

z = xy-bz 

(20) 

Here we took cr=16, r=45.92, b=4, and ot=O.05, and sampled the x state variable. This is 

a chaotic system, that has been well studied by many investigators. From prior work (Lall et al, 

1995a, Moon et al, 1995) we knew that one should expect 't=2 to 4, and ml=4 to 6. Consequently 

we investigated these values and k1=50 to k2=150, and pl=l, p2=2. Forecasts from index 1996 

of the x time series are presented in Figure 3. No data after index 1996 were used for the forecasts. 

40 
Data yp3 Forecasts begin 

.• 

y 

~ ! :1 

..... :/\", /"':/\'" H .J 
: ; : \ .:/ ~,. .:1 '!! .... ,: '\ 

~ V V ~ 
Ii 

20 

o 

-20 

-40~--------~~---------r----------~--------~ 
1900 1950 2000 2050 2100 

Index 

Figure 3 

Direct m-step forecasts of Lorenz data starting from index 1997. The dotted line represents the 

actual values while the solid lines are the forecasted values (ml=5, 't = 3, k=50 at the first 21 
points, 90 or 150 at the rest of the points, and p=l at the first 9 points, p=2 at the rest points). The 
divergence of the forecasted and the observed trajectories near index 2030, is characteristic of the 
loss of predictability in the Lorenz system as trajectories pass near the unstable point (x=y=z=O). 
The increase in k and p after the first 20 points may reflect increasing derivatives of f(V V as one 

approaches the origin. 
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The Lorenz system has an instability near x=y=z=O. Trajectories that approach this state 

tend to diverge rapidly. We notice from Figure 3 that the forecasts of the Lorenz x variable are 

quite good until the trajectory passes near the unstable point. A small uncertainty in the value at 

index 1996 leads to the trajectories from the numerical simulation of the Lorenz equations diverge 

similarly. Thus this divergence is intrinsic to this model. Subsequent similarity in the forecast and 

actual trajectories is coincidental. Similar results were obtained in Lall et al (1995) using MARS. 

The local polynomial forecasts are however considerably faster to execute. 

Great Salt Lake Forecasts: 

The Great Salt Lake (GSL) of Utah is a closed lake in the lowest part (elevation 1280 m. 

above Mean Sea Level) of the Great Basin (latitudes 400 20' and 41 0 40' N, and longitudes 111 0 

52' and 1130 06' W), in the arid Western U.S.A. The GSL is approximately 113 km long and 

48 km wide, with a maximum depth of 13.1 m and an average depth of 5.0 m. The large surface 

area and shallow depth make the lake very sensitive to fluctuations in long term climatic variability. 

As shown in Figure 4, the lake volume has varied considerably over decadal time scales during the 

last 140 years. The low frequency character makes this an interesting time series to forecast. 
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Figure 4 

Biweekly time series of the Great Salt Lake, 1847-1993 

We considered blind forecasts of the GSL volume from different states for 1 to 2 years into 

the future from the date of forecast. The forecasted values are then compared with the volumes that 

were actually recorded subsequently. They are presented in Figures 5 and 6. The lag 't was selected 

as 10 as in the range of the first minimum of the average mutual information (Moon et al, 1995) 

and it was based on experimentation to get the best predictions (min predictive squared error). An 

embedding of ml=5 was selected after experimentation with various values in the range I to 9. 

Usually, this value corresponded to the one that minimized GGCV, LGCV or LGCVLEV. 
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A sequence of 1 year blind forecasts of the GSL using the direct m step method, from August 1977 
to July 1987. The dots represent the observed GSL time series. The solid lines represent 12 
forecasts, one for each month of the next year. Only data available up to the beginning of the 
forecast period is used for fitting and forecasting. Given the extreme nature of the 1983-87 period 
the predictions appear to be quite good. Of particular interest is the forecast starting in August 
1983. The predictability is quite poor for this forecast 
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A sequence of 2 year blind forecasts of the GSL using the direct m step method, from August 1977 
to July 1988. The dots represent the observed GSL time series. The solid lines represent 24 

forecasts, one for each month of the next year. Only data available up to the beginning of the 
forecast period is used for fitting and forecasting. Comparing with Figure 5, we see that some 
trajectories (e.g., August 1980 start, August 1983 start) that appeared to be departing from the 
observed trajectory at the end of 1 year have followed the observed trajectory during the next 
year.However, others (e.g., August 1982 start) have continued to drift away. The forecast started 
in August 1981 does quite well till it reaches August 1982 when it behaves much like the first year 
of the forecast started in August 1982. The second year of the forecast started in August 1985 
diverges from the observed trajectory, while the forecast with information up to August 1986 does 
much better. Clearly, predictability is quite high for the conditions in the 1970's through 1982. In 

1982, the system appears to pass through a rather unpredictable state. The predictability of the 
system during the extreme event seems to be not as good as during the 1970's, but still quite good. 
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We searched over k1=SO to k2=lSO nearest neighbors and typically selected 120 to ISO. Locally 

linear and quadratic (without x-products) fits were considered. Typically linear was selected. The 

results are discussed in the figures. 

Finally, a forecast of the Great Salt Lake volume for 4 years from the end of the available 

record is presented in Figure 7. Prediction intervals for this forecast were calculated using equation 

(17). 
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Figure 7 

Forecasts for 4 years starting Aug. 1993. The solid line is the forecasted sequence while circles are 
the actual series. Prediction intervals using LGCVLEV for the forecast are also shown. 

Conclusions 
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A locally weighted polynomial regression methodology for approximating nonlinear 

regressions was introduced in this paper. The basic algorithm presented is derived from the work 

by Cleveland and Devlin (1988), and Lall et al (1995). A new, local cross validatory criteria was 

introduced for selecting the smoothing parameters of the method while considering a bias-variance 

trade off in estimation and symmetrization of the k nearest neighborhood of the point of estimate. 

The utility of this selector for this purpose was demonstrated with a simple example. 

From Taylor series, the approximated error of a local linear model with small k is 
" comparable to a local quadratic model with large k. So, if n is much greater than d and f is high 

then a local quadratic model will be picked. If n is not much greater than d then a local linear model 

is picked. 

The methodology presented was then applied to the forecast of selected time series with 

encouraging results. These methods are still evolving. We can expect improvements in procedures 

for estimating prediction intervals and for selecting parameters of the method. Algorithmic 

improvements for more efficiently exploiting multivariate data structures are also to be expected. 

From a hydrological point of view, these methods provide new directions for the 

exploration of data as well as the possibility of dramatic improvements in time series forecasting 

and spatial surface reconstruction. The latter is discussed at length in Lall et al (1995b), and 

compared with Kriging. 
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