Utah State University
DigitalCommons@USU

Reports

Utah Water Research Laboratory

January 1982

Catalytic Oxidation of Sulfur Dioxide in Wastewater

Ernest J. Upton

V. Dean Adams

Follow this and additional works at: https://digitalcommons.usu.edu/water_rep

Part of the Civil and Environmental Engineering Commons, and the Water Resource Management Commons

Recommended Citation

Upton, Ernest J. and Adams, V. Dean, "Catalytic Oxidation of Sulfur Dioxide in Wastewater" (1982). *Reports.* Paper 49. https://digitalcommons.usu.edu/water_rep/49

This Report is brought to you for free and open access by the Utah Water Research Laboratory at DigitalCommons@USU. It has been accepted for inclusion in Reports by an authorized administrator of DigitalCommons@USU. For more information, please contact digitalcommons@usu.edu.

đ.

CATALYTIC OXIDATION OF SULFUR

DIOXIDE IN WASTEWATER

Ъу

Ernest J. Upton V. Dean Adams

Report to

International Environmental, Inc. Salt Lake City, Utah

Submitted by

Utah Water Research Laboratory Utah State University Logan, Utah 84322

February 1982

CATALYTIC OXIDATION OF SULFUR

DIOXIDE IN WASTEWATER

by

Ernest J. Upton V. Dean Adams

Report to

International Environmental, Inc. Salt Lake City, Utah

1

Submitted by

Utah Water Research Laboratory Utah State University Logan, Utah 84322

February 1982

ACKNOWLEDGMENTS

This publication represents the final report of a project evaluating the catalytic oxidation of sulfur dioxide in wastewater which was supported by funds provided by International Environmental, Inc. of Salt Lake City, Utah.

The authors express gratitude to all who contributed to the completion of this study. A sincere thanks is also extended to the Utah Water Research Laboratory for providing laboratory equipment and facilities necessary to complete this study and to the capable editorial and secretarial staff for their assistance in preparation and publication of this report.

TABLE OF CONTENTS

																				Page
ACKNO	OWLEDGMI	ENTS	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	ii
LIST	OF TABI	LES	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	v
LIST	OF FIG	JRES		•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	٠	viii
ABSTI	RACT .	•	•	•	•	•	•	•	•	•		•	•	•	•	•	. •	•	•	xi
INTRO	ODUCTIO	1	•		•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	1
OBJE	CTIVES	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		3
LITE	RATURE 1	REVIE	EW	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	4
	Metal (Activat				•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	4 5
EXPEI	RIMENTAI	L APP	PARA	TUS	S AN	ID I	PROG	CEDU	JRES	3	•	•	•	•	•	•	•	•	•	8
	Cataly: Sulfur Analyt: Experin	Dio> ical	Pro	ced	lure	es	•	Sou	irce	2	• • •	• • • •	•	•	• • •	• • •	• • •	• • •	• • •	8 9 10 11
	U	ar te pflow pwnfl	v cc	onta			•	•	•		•	• •	• •	• •	• •	• •	•	•	•	11 11 14
RESUI	LTS AND	DISC	CUSS	ION	1	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	20
	Jar Te: Upflow Downflo	Cont				• •	• • •		•		• •	• •	• •	• •	• •	• •	• •	• • •	•	21 26 27
COST	ANALYS	IS	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	46
SUMM	ARY AND	CONC	CLUS	SION	IS	•	•	•	•	•	•	•	•	•	•		•	•		52
ENGI	NEERING	SIG	IFI	CAN	ICE		•	•	•			•	•	•	•	٠	•	•	•	54
RECO	MMENDAT	IONS		•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	55
LITE	RATURE	CITE)	•				•	•		•	•				•		•		56

iii

and the second s

TABLE OF CONTENTS (CONTINUED)

Appendix A:Manufacturer Information<	APPENDICES	• • • •	•	•	•	•	٠	•	•	•	٠	•	٠	٠	58
	Appendix B: Appendix C:	Raw Data . Oxygen Requi	rem	ent:	• s	•	•	•	•	•	•	•	•	•	61 143

LIST OF TABLES

Table		Р	age
1.	City of Hyrum secondary clarifier effluent characteristics	•	10
2.	Variation of experimental design parameters	•	19
3.	Typical sulfur mass balance	•	25
4.	Typical upflow column data using activated carbon + Mn ⁺⁺ media	•	26
5.	Preliminary assessment of oxidation catalysts	•	28
6.	Summary design parameter variations and SO ₂ breakthrough	•	38
7.	Summary of design criteria	•	47
8.	${ m SO}_2$ oxidation system capital cost estimate $\ .$	•	47
9.	$^{ m SO}_2$ oxidation system summary of annual costs	•	49
10.	Comparison of capital and operation and maintenance costs for various wastewater disinfection processes .		50
11.	Summary cost ($c/1000$ gallons treated) comparison between sulfur dioxide disinfection and other alternative dis- infection systems	•	51
B-1.	SO_2 oxidation jar test4/22	•	63
B-2.	Preliminary assessment of oxidation catalysts	•	64
B-3.	SO2 oxidation column observations7/18	•	65
B-4.	SO2 oxidation column observations7/19	•	66
B-5.	SO2 oxidation column observations7/23	•	67
B-6.	SO_2 oxidation column observations7/23	•	68
B-7.	SO_2 oxidation jar test8/7	•	69
В-8.	SO_2 oxidation column observations8/10		70
B-9.	SO2 oxidation column observations8/12	•	71

LIST OF TABLES (CONTINUED)

Table							F	age
B-10.	SO2 oxidation column observations8/14	•		•	•	•	•	72
B-11.	SO2 oxidation column observations8/18	•	•	•	•	•		73
B-12.	SO ₂ oxidation column observations8/20	•		•	•	•	•	74
B-13.	SO ₂ oxidation column observations8/27	•	•	•	•	٠	•	75
B-14.	SO ₂ oxidation column observations8/29	•	•	•	•	•	•	76
B-15.	SO2 oxidation column observations8/31	•	•	•	•	•	•	77
B-16.	SO2 oxidation column observations9/10	•	•	•	•	٠		78
B-17.	SO2 oxidation column observations9/14	•	•	•	•	•		79
B-18.	SO2 oxidation column observations9/16	•	•	•	•	•	•	81
B-19.	SO2 oxidation column observations9/18	•	•	•	•	•	•	83
B-20.	SO2 oxidation column observations9/21	•	•	•	. •	•	•	85
B-21.	SO ₂ oxidation column observations9/23	•	•	•	•	٠	•	87
B-22.	SO ₂ oxidation column observations9/28	•	•	•	•	٠	•	89
B-23.	SO ₂ oxidation column observations9/30	•	•	•	•	•	•	91
B-24.	SO2 oxidation column observations10/2	•	•	•	•	•	•	93
B-25.	SO ₂ oxidation column observations10/5	•	•	•	•	•	•	94
B-26.	SO ₂ oxidation column observations10/7	•	•	•	•	•		96
B-27.	SO ₂ oxidation column observations10/9	•	•	•	•	•	•	98
B-28.	SO ₂ oxidation column observations10/9	•	•	•	•	•	•	100
B-29.	SO ₂ oxidation column observations10/1	2.	•	•	٠	•		102
B-30.	SO ₂ oxidation column observations10/1	2.	•	•	•	•		104
B-31.	SO ₂ oxidation column observations10/1	.4 .	•		٠	•		106
B-32.	SO2 oxidation column observations10/1	4.	•	•	•	٠	•	108
B-33.	SO2 oxidation column observations10/1	6.		•	•	•	•	110

vi

LIST OF TABLES (CONTINUED)

Table	I	Page
в-34.	SO_2 oxidation column observations10/19	112
в-35.	SO_2 oxidation column observations10/21	114
в-36.	SO2 oxidation column observations10/23	116
B-37.	SO_2 oxidation column observations10/26	118
в-38.	SO_2 oxidation column observations10/28	120
в-39.	SO2 oxidation column observations10/30	122
в-40.	SO_2 oxidation column observations11/2	124
B-41.	SO2 oxidation column observations11/4	126
B-42.	SO_2 oxidation column observations11/6	128
B-43.	SO_2 oxidation column observations11/9	130
B-44.	SO_2 oxidation column observations11/11	132
B-45.	SO2 oxidation column observations11/13	134
B-46.	SO_2 oxidation column observations11/16	136
B-47.	SO_2 oxidation column observations11/17	138
B-48.	SO2 oxidation column observations11/20	139
B-49.	SO_2 oxidation column observations11/23	141
D-1.	Summary of capital costs for sulfur dioxide dis- infection systems	149
D-2.	Summary of O&M costs for sulfur dioxide dis- infection systems excluding SO $_2$ oxidation	150

vii

.

LIST OF FIGURES

Figure		Page
1.	Jar test apparatus	12
2.	Bench scale upflow contactor	13
3.	Bench scale downflow contactor	15
4.	5 cm downflow contactor	16
5.	Air diffuser arrangement in 5 cm column	17
6.	8.5 cm downflow contactor	18
7.	pH versus SO ₂ species	21
8.	SO ₂ removal-jar test results	23
9.	SO_2 removal-jar test results	23
10.	Oxidation of SO2 using raw iron	25
11.	Manganese oxide on alumina before and after column run	29
12.	SO ₂ breakthrough using activated carbon and metals medium	31
13.	SO_2 breakthrough using activated carbon + iron medium .	32
14.	SO_2 breakthrough using activated carbon medium	33
15.	Variation in SO ₂ breakthrough for 5-24 hour runs (5 cm column)	34
16.	Variation in SO ₂ breakthrough for 5-24 hour runs (8.5 cm column)	35
17.	SO2 oxidation column observations	37
18.	Flow vs. carbon volume for zero SO ₂ breakthrough (24 hr runs)	38
19.	Air distribution at 70 l/hr	40
20.	Air distribution at 140 l/h	41
21.	96 hour column run	42
	•	

viii

~

LIST OF FIGURES (CONTINUED)

Figure

Page

22.	Backwashed column results
23.	Flow sheet for SO ₂ oxidation system
B-1.	SO ₂ oxidation column observations 80
B-2.	SO_2 oxidation column observations
В−3.	SO ₂ oxidation column observations
В−4.	SO_2 oxidation column observations
B-5.	SO_2 oxidation column observations
В-6.	SO_2 oxidation column observations 90
B-7.	SO_2 oxidation column observations
В-8.	SO_2 oxidation column observations
В−9.	SO_2 oxidation column observations
B-10.	SO_2 oxidation column observations
B-11.	SO_2 oxidation column observations
B-12.	SO_2 oxidation column observations
B-13.	SO_2 oxidation column observations
B-14.	SO_2 oxidation column observations
B-15.	SO_2 oxidation column observations
B-16	SO_2 oxidation column observations
B-17.	SO_2 oxidation column observations
B-18.	SO_2 oxidation column observations
B-19.	SO_2 oxidation column observations
B-20.	SO_2 oxidation column observations
B-21.	SO_2 oxidation column observations

ix

LIST OF FIGURES (C	ONTINUED)
--------------------	-----------

	LIST OF FIGURES (CONTINUED)	
Figure		Page
В-22.	SO_2 oxidation column observations	123
B-23.	SO_2 oxidation column observations	125
B-24.	SO_2 oxidation column observations	127
B-25.	SO_2 oxidation column observations	129
B-26.	SO2 oxidation column observations	131
в-27.	SO2 oxidation column observations	133
в-28.	SO_2 oxidation column observations	135
B-29.	SO_2 oxidation column observations	137
B-30.	SO_2 oxidation column observations	142

x

ABSTRACT

Sulfur dioxide has been shown to be an effective wastewater disinfectant. The aqueous sulfur dioxide creates an oxygen demand in the effluent which must be removed prior to discharge. Oxidation to sulfate is one means of accomplishing this task.

Experiments were carried out to determine the effectiveness of transition metals and activated carbon as catalysts for the oxidation of S+IV species in wastewater. Both the metals and carbon are known catalysts, but what inhibitory effect the wastewater might have was unknown. Effectiveness was defined as a combination of catalyst life, effluent quality, and cost.

Transition metals were eliminated as potential catalysts due to the high metal concentrations found in the effluent. The acidic nature of 500 mg/1 SO₂ dissolved in wastewater (pH 2.5) would dissolve the metals or cause them to desorb from a carbon base.

Using downflow contactors, activated carbon was shown to catalyze the reaction as long as sufficient oxygen was available. At a loading rate of 5.5 g carbon/1 and a hydraulic loading of 38 M^3/M^2 ·day, 24 hour runs were accomplished without SO₂ breakthrough (less than 4 mg/1). Longer runs resulted in gradual breakthrough (40 mg SO₂/1 after 96 hours). The cause of the failure was assumed to be the self-poisoning of the catalyst by sulfuric acid (the product of SO₂ oxidation) and/or the reduced solubility of oxygen in the sulfuric acid solution. Carbon regeneration, as a catalyst, was accomplished by backwashing the column with tap water. The cost of sulfur dioxide disinfection ranged from 0.23-0.73/1000 gallons treated. In general, this process was much more costly than other disinfection systems.

xi

INTRODUCTION

The use of chlorine as a wastewater disinfectant is receiving worldwide attention with respect to its potential adverse health effects. This is partially due to the formation of chlorinated organics which may be carcinogenic. Sulfur dioxide has been shown to be an effective disinfectant (Reynolds and Adams 1979). Sulfur dioxide is a strong reducing agent and when dissolved in water forms sulfite, bisulfite, or sulfurous acid, depending on the pH of the solution. The majority of the sulfur species remains essentially unchanged during and following the disinfection process. Sulfite and bisulfite ions are quite reactive and create an oxygen demand. This oxygen demand must be removed if wastewater discharge requirements are to be met. Oxidation of the sulfite and bisulfite ions to sulfate, catalyzed by transition metals or activated carbon, is one means of removing the oxygen demand.

There are other means of controlling sulfite. Watkins (1977) in his summary of methods for controlling sulfur compounds lists biological, chemical precipitation, electrodialysis, ion exchange, and reverse osmosis. Hesketh and Potokar (1977) found (by bubbling 1100 ppm SO₂ gas through fly ash or carbon slurries) that fly ash from coal burning operations had a sorptive capacity three times greater than activated carbon. Neither the type of carbon nor its catalytic oxidative capacity was compared, however.

Strong oxidants have also been investigated. Penkett et al. (1979) studied the effects of ozone and hydrogen peroxide on the oxidation of aqueous sulfur dioxide to sulfate. Most of these latter means of controlling sulfite are considered too costly for large scale operations such as sewage treatment facilities using sulfur dioxide for disinfection. Therefore, the focus of this research shall be the catalytic oxidation of aqueous sulfur dioxide by transition metals and/or activated carbon.

OBJECTIVES

1

The main objective of this research is the development of an efficient means of removing the oxygen demand created in wastewater following disinfection by sulfur dioxide. Specific objectives include:

- 1. Determination of an efficient catalyst for the oxidation of sulfite or bisulfite in wastewater.
- Development of design parameters for use of the catalyst as a means of removing sulfite from wastewater.
- Development of costs associated with use of the catalyst in sulfur dioxide-wastewater disinfection systems.

LITERATURE REVIEW

The oxidation of aqueous sulfur dioxide has been the subject of a great deal of research. This reaction does not occur at a measurable rate at low pH (0-3) without a catalyst present (EPA 1981). Thus most of this research has dealt with obtaining kinetic data in the presence of various catalysts.

Metal Catalysts

Fuller and Crist (1941) studied the effects of copper and pH on the rate of oxidation of sulfite in distilled water using pure oxygen. They found that copper ion concentrations greater than 10^{-9} M greatly increased the rate of oxidation. Lowering the pH from 8.2 to 3.2 decreased the rate of oxidation. Fuller and Crist accounted for this pH phenomenon by assuming the rate of oxidation is dependent on the sulfite ion concentration and the square root of the hydrogen ion concentration.

Other metals such as cobalt and manganese also catalyze the oxidation of aqueous sulfur dioxide. Coughanowr and Krause (1965) used manganous sulfate (0-6.6 x 10^{-4} M Mm²⁺) as a catalyst and determined a reaction rate proportional to the square of the catalyst concentration. Their SO₂ concentration was approximately 1.7 x 10^{-3} M in distilled water saturated with oxygen. Cobaltous sulfate (10^{-7} -3 x 10^{-6} M Co²⁺) as a catalyst was shown by Chen and Barron (1972) and Bengtsson and Bjeiles (1975) to affect the reaction rate (of 9.4 x 10^{-3} M SO₂ in distilled water) by the square root of the catalyst concentration.

The previous results were obtained under solution pH greater than 6.0. At low pH (0-3) the EPA (1981) found cobalt (2.5 x 10^{-5} M) to be an ineffective catalyst; the catalyzed reaction was second order in manganese (2 x 10^{-5} -2.5 x 10^{-4} M).

Tiwari et al. (1979), in studying the oxidation of ferrous sulfate under acidic conditions found that SO_2 would catalyze the reaction. This indicates that iron is another metal capable of increasing the rate of oxidation of sulfur dioxide. The EPA (1981) reported that iron (2.0 x 10⁻⁵ M Fe³⁺) did catalyze the reaction under acidic conditions and that the reaction was first order in iron.

Brimblecombe and Spedding (1974) found in their work that the reaction order of the oxidation of sulfite was dependent on the pH of the solution. A 0.1 M ammonium sulfate solution containing 10^{-5} M of S+IV in the presence of 10^{-6} M Fe(III) was used to simulate aqueous atmospheric aerosols. They were able to show, using steady-state principles, that at low sulfite ion concentrations (low pH conditions) the reaction is first order with respect to sulfite ion concentrations. At higher sulfite ion concentrations (higher pH conditions) the reaction appears to be second order. Thus it can be concluded from this work that the rate of oxidation of sulfite in the presence of a metal catalyst is pH dependent.

Activated Carbon

The oxidation of S+IV species is catalyzed by activated carbon. Air pollution research has provided a great deal of information in this area.

Siedlewski (1965) and Novakov and Chang (1975) determined that sulfur dioxide in air would chemisorb to the surface of the activated carbon at points where free carbon radicals exist. The quantity of sulfur dioxide oxidized is a function of the number of these active sites on the carbon, and not the quantity of sulfur dioxide or oxygen present.

The adsorptive capacity and catalytic activity of activated carbon appear to be a function of the number of free radical sites on the carbon. Seaburn and Engel (1973) bubbled SO₂ gas through slurries of activated carbon (using several different commercial brands of activated carbon) and determined that the number of these free radical sites was dependent on the source material for the carbon.

Komiyama and Smith (1975) found that the rate of oxidation of sulfur dioxide in slurries of activated carbon was first order with respect to oxygen concentration and zero order with respect to sulfur dioxide. They concluded that the controlling step of the oxidation mechanism is the adsorption of oxygen on the active sites of the carbon.

It is fairly well established that surface carbon-oxygen complexes are responsible for activated carbon's catalytic ability.

The reaction mechanism between sulfite and activated carbon is more than a simple reaction with surface adsorbed oxygen, however (Eatough et al. 1979). Free radical carbon sites are probably involved in the complexation of sulfite and carbon, resulting in the formation of sulfate. Eatough et al. concluded that oxidative regeneration of these active sites is the rate limiting step in the oxidation of sulfite on activated carbon.

The rate of the oxidation reaction has been found to be independent of the pH at values less than 7.6. Above a pH of 7.6 the rate of reaction drops to zero thus, indicating a poisoning of the carbon (Chang et al. 1976-77; Brodzinsky et al. 1980). Eatough et al. (1979) proposed that bisulfite was the reacting species. However, Brodzinsky et al. concluded that it is the carbon's active site, affected by pH, that causes the change in rate of oxidation.

Although some confusion exists as to the mechanism, it is generally agreed that activated carbon is an effective catalyst in the oxidation of sulfur dioxide.

EXPERIMENTAL APPARATUS AND PROCEDURES

A review of the pertinent literature concerning catalytic oxidation of sulfur dioxide showed that the primary experimental procedure used involved jar tests to obtain kinetic data (Komiyama and Smith 1975; Chang et al. 1976-77; Brodzinsky et al. 1980). To obtain data necessary to meet the objectives of this study, upflow and downward contactors, in addition to jar tests, were utilized.

Catalysts

Filtrasorb 400, manufactured by Calgon Corporation, was the activated carbon used in the jar tests. Filtrasorb 300 was used in all column experiments. Specifications given by the manufacturer have been included in Appendix A.

The wide range of particle sizes provided in the Filtrasorb 300 was found to be unacceptable for use in the column experiments because the finer particles would quickly flush out of the column and thus be unavailable as a catalyst. It was determined that the carbon retained on a 24 mesh sieve would function the best in the column experiments. The carbon was placed in the 24 mesh sieve and washed with chlorine free tap water to remove the fines. If used in conjunction with a metal catalyst, the carbon was then dried for 24 hours at 103°C. If used alone, the carbon was air dried overnight for use the following day.

Metal catalysts were used in conjunction with the activated carbon by adsorbing the desired metal onto the carbon. A metallic ion solution (FeCl3 or MnCl2, for example) was made based on adsorbing

2 or 6 mg metal ion per g carbon. The carbon was added to the solution and shaken for one hour. The liquid was separated from the carbon and tested for metal ion content to determine the actual amount of metal ion adsorbed. The carbon was rinsed with tap water to remove excess metal ion solution and then considered ready for use in the column.

Also, metal catalysts alone were used in the downflow contactors. They took the form of 3.2 mm inert pellets covered with metal oxides. Catalysts used were manganese oxide (19 percent) on alumina, ferric oxide (20 percent) on alumina, nickel-cobalt-iron oxide (3 percent each) on alumina, and vanadium oxide (10 percent) on alumina-silica (all manufactured by Alfa Products). The catalysts were rinsed with tap water prior to being placed in the column to remove excess powder created during shipping.

Plain, 3/8-inch iron nuts were used as a catalyst in jar tests. The nuts were soaked in 6N HCl for several hours then rinsed with tap water prior to immediate use.

Sulfur Dioxide and Sewage Source

The source of sulfur dioxide for all experiments was reagent grade sulfurous acid produced by J. T. Baker Chemical Co. or Fisher Scientific Co. Sufficient sulfurous acid was added to the sewage to maintain a concentration of 500 mg/l as SO₂. This is referred to as the "feed solution."

Sewage used for all experiments was secondary clarifier effluent obtained from the City of Hyrum's oxidation ditch wastewater treatment plant. Typical characteristics are shown in Table 1.

Parameter	Value
BOD ₅	15-20 mg/l
DO	5.5-6.0
pH	7.5-8.0
Alkalinity	270 mg/l as $CaCO_3$

Table 1. City of Hyrum secondary clarifier effluent characteristics.

Analytical Procedures

Sulfite concentrations were measured using the oxidation-reduction titration procedure described on pp. 451-452 of Standard Methods (APHA 1980). Sulfate concentrations were measured using the turbidimetric methods described on pp. 439-440 of Standard Methods (APHA 1980). A Bausch-Lomb Spec 70 set at 420 nm with a 5 cm light path was used to measure light absorbance.

Dissolved oxygen was measured using a YSI meter #54A and a YSI probe #5740. As effects of long term (i.e., hours) exposure to S=IV are unknown, the electrode membrane was changed daily (Reynolds and Adams 1979). The meter was calibrated by aerating tap water for 30 minutes to achieve saturation; a chart was used to calculate the saturation of oxygen based on temperature and altitude. The pH was measured using a Beckman Zeromatic II meter and a combination electrode.

Metal analysis was by atomic absorption using a Varian Model AA-6. Cobalt, iron, manganese, and nickel concentrations were determined using the direct aspiration method and vanadium was determined by the graphite furnace technique (EPA 1979; APHA 1980).

Experimental Procedures

Jar tests

Initial experimentation involved the determination of the ability of granular activated carbon to either adsorb or oxidize sulfite in wastewater. Carbon adsorption isotherms were developed for this purpose. Carbon amounts from 0 to 15 g were added to six 500 ml Erlenmeyer flasks; 250 ml secondary sewage from the Hyrum treatment plant containing 500 mg/l sulfur dioxide (SO₂) was then added to each flask. The flasks were stoppered with aluminum foil covered rubber stoppers and mixed for 2 hours at 150 rpm (see Figure 1). The samples were then filtered using a Millipore filter and analyzed for sulfite (SO₃⁼), sulfate (SO₄⁼), pH, and dissolved oxygen (DO). Isotherms were also developed to determine the effect of various metals adsorbed to the carbon. Metals used were iron and manganese. Adsorption of the metal to the carbon was discussed earlier.

Jar tests involving raw iron were conducted by placing iron nuts in the bottom of a 4000 ml beaker containing the sewage and SO_2 . The solution was aerated at 500 ℓ/hr to assure that dissolved oxygen was not limiting. Iron, SO_2 , dissolved oxygen, and pH were measured at one minute intervals.

Upflow contactor

The upflow contactor apparatus consisted of a 5 gallon feed tank, a variable speed centrifugal pump (Micropump, Inc.), a flowmeter (Laboratory Supplies, Inc.) calibrated for 0.6-5 gph (38-315 ml/min), and a 5 cm diameter glass column. The apparatus is shown schematically in Figure 2.



Figure 1. Jar test apparatus.

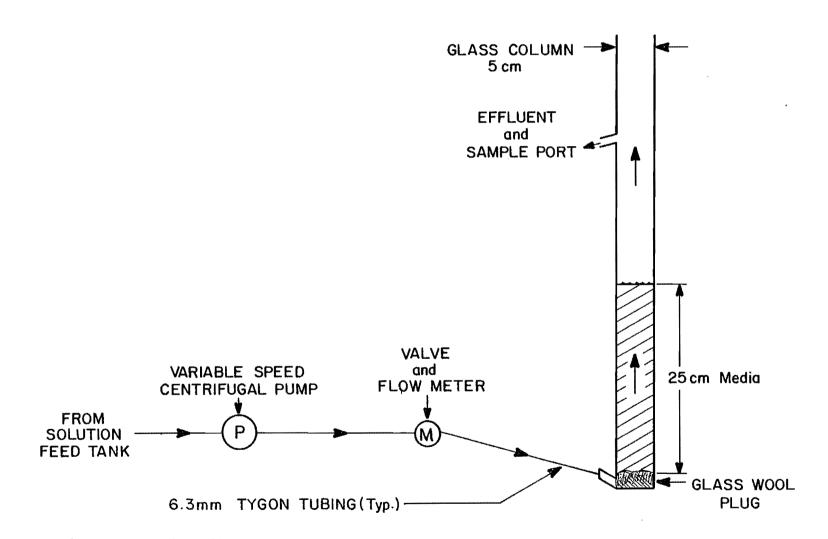


Figure 2. Bench scale upflow contactor.

Three upflow columns were run, each with a different media: activated carbon with either iron, cobalt, or manganese adsorbed to it. Columns were operated at 100 ml/min for one hour. Samples were collected at five minute intervals and analyzed for DO, pH, $SO_3^=$, $SO_4^=$, and the particular metal adsorbed to the carbon.

Downflow contactor

Initial downflow contactor runs utilized the same equipment as the upflow contactor. The only exception was insertion of a glass fritted gas dispersion tube in the side of the column to allow for aeration (see Figures 3, 4, and 5). Equipment changes made during the course of these experiments include replacement of the Micropump with a variable speed peristaltic pump (Masterflex Model 7016) and replacement of the flowmeter (Gilmont Compact Flowmeter #13, 2-300 ml/min). These changes were made to improve equipment performance.

Column runs using the metal oxides as the medium lasted 3 hours. A liquid flow rate of 50 ml/min and an air flow rate of 500 ℓ /hr were used. Medium depth was 25 cm.

Column runs using activated carbon or activated carbon plus metals initially lasted 6 hours, but were later extended to 24 hours. Liquid flow for all runs was 50 ml/min; air flow varied, 0 or 500 %/hr. Medium depth was 25 cm.

Evidence of short circuiting along the glass wall of the column prompted replacement of the 5 cm column with an 8.5 cm diameter column (see Figure 6). The interior surface of the column was coated with activated carbon to further eliminate short circuiting. The adhesive used was silicon (GE SCS1000).

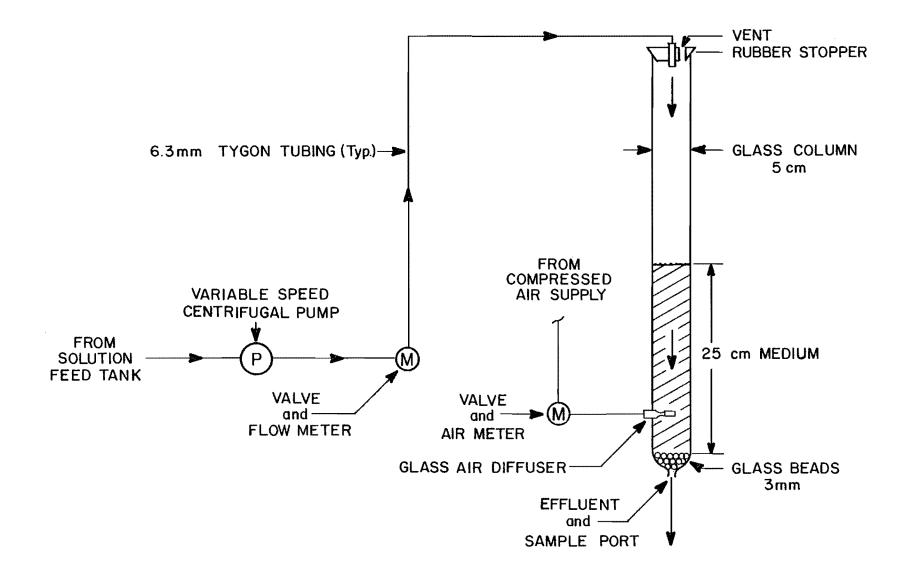


Figure 3. Bench scale downflow contactor.

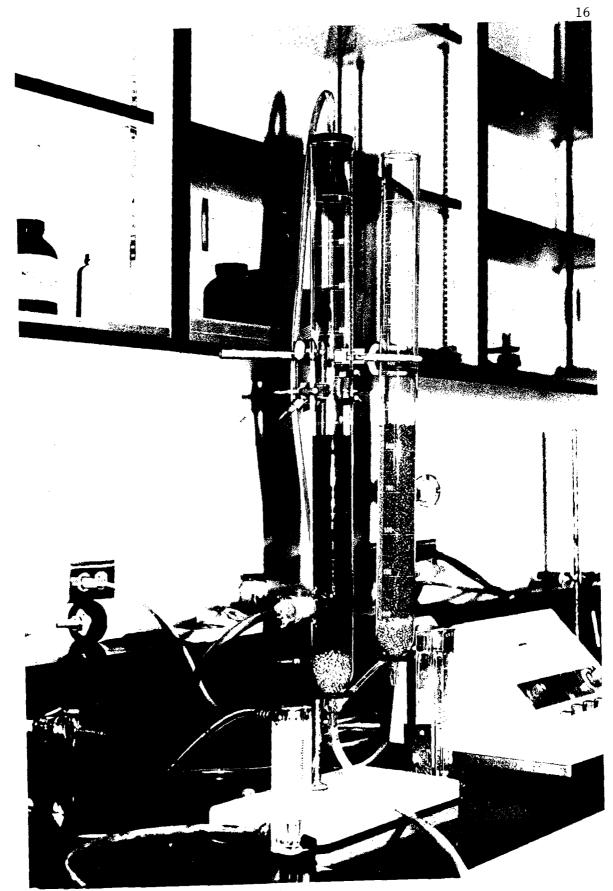
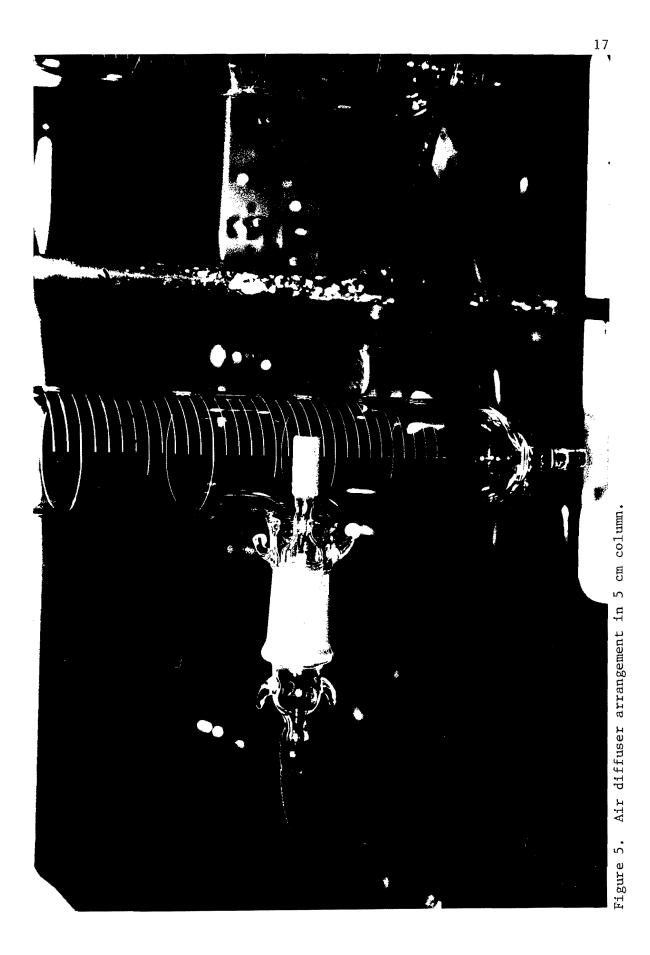



Figure 4. 5 cm downflow contactor.

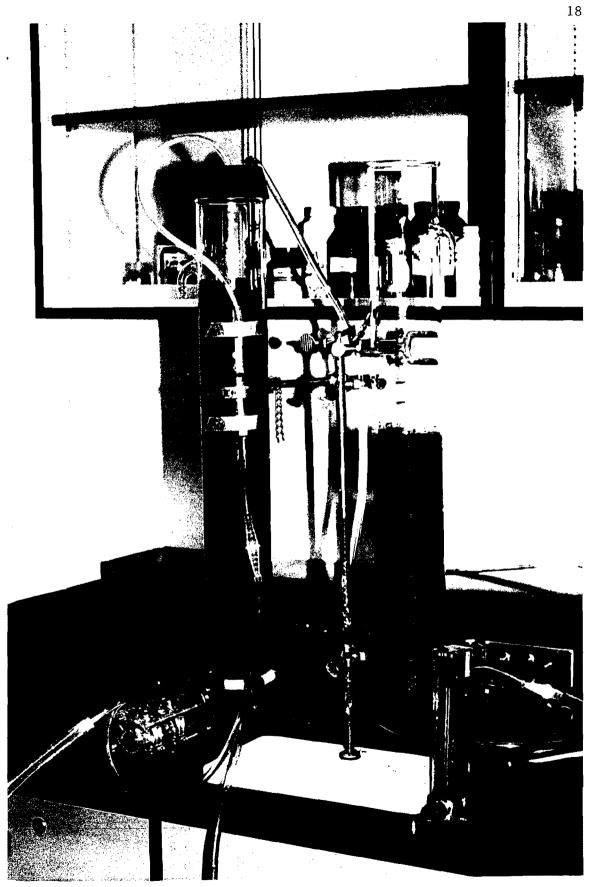


Figure 6. 8.5 cm downflow contactor.

All column runs using the larger column utilized activated carbon as a catalyst. Other column parameters varied as shown in Table 2. Prior to all column runs, chlorine free tap water was poured down the column to saturate the carbon.

Table 2.	Variation	of	experimental	design	parameters.

Parameter	Range	Units
Air Supply	0, 70, 140, 210	l/hr
Liquid Flow Rate	50, 75, 100, 150, 175	ml/min
Medium Depth	25, 35, 50	cm

RESULTS AND DISCUSSION

Sulfur dioxide has been shown to be an effective wastewater disinfectant (Reynolds and Adams 1979). Disinfection was found to be a function of three parameters, SO_2 concentration, time, and pH value. It was shown that 160 mg/1 SO_2 and a pH of 2.5 is the optimal combination of these two parameters at a 30 minute detention time. Using these values, the total coliform count can be reduced to less than 200 organisms/100 ml and fecal coliform counts to less than 20 organisms/100 ml. To obtain a pH value of 2.5 in high alkalinity wastewater (250-300 mg/1 as CaCO₃) a mineral acid must be added in addition to the 160 mg/1 SO_2 , or 500 mg/1 SO_2 must be added to the wastewater. This research has been based on the latter case.

Sulfur dioxide dissolved in water will form either sulfite $(SO_3^{=})$, bisulfite (HSO_3^{-}) or sulfurous acid (H_2SO_3) depending on the pH of the solution. This is depicted graphically in Figure 7 (EPA 1979). It should be noted that Figure 7 is not quantitative in that all activity coefficients are assumed to be unity. It does show a qualitative relationship between aqueous SO₂ species.

As noted, with a SO_2 concentration of 500 mg/l, the pH of the secondary sewage used in these experiments is approximately 2.6 (depending on the alkalinity of the sewage). Thus the dominant species in solution will be HSO_3^- . Oxidation of HSO_3^- leads to the formation of sulfate plus a proton:

$$HSO_3^- + 1/2 O_2^- \rightarrow H^+ + SO_4^=$$
 (1)

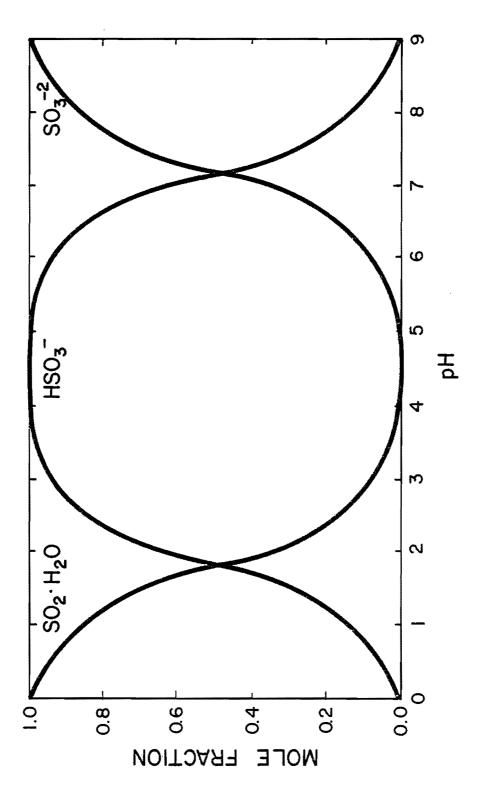


Figure 7. pH versus SO₂ species.

Schmidt (1972) noted that the formation of dithionate is increased at low pH:

$$2HSO_3 - S_2O_5 + H_2O$$
 (2)

$$s_2 o_5^- + H_2 o \rightarrow s_2 o_6^- + 2H^+ + 2e^-$$
 (3)

Dithionate is a very stable ion and will not undergo oxidation or reduction very easily. The oxidation state of dithionate (S+V) is not the same as sulfite (S+IV) or sulfate (S+VI). Thus dithionate is not detected by the analytical procedures used to measure sulfite or sulfate. Later discussion of the sulfur mass balance will return to this point.

All sulfur specie concentrations in the following discussion are reported in mg/l as SO_2 .

Jar Tests

The jar tests clearly indicate the catalytic abilities of activated carbon. The results were plotted as carbon adsorption isotherms. A favorable isotherm is one with an initial steep use at the low carbon masses. The carbon isotherm shown in Figure 8 would be considered unfavorable. The concentration of carbon necessary to completely remove the SO₂ was found to be 40 g/l. The pH increased from an initial 2.6 to 3.6. At higher carbon concentrations, the pH continued to increase, indicating that the activated carbon was removing the products of bisulfite oxidation from solution.

The jar tests involving activated carbon with adsorbed metals produced more favorable isotherms (Figure 9). The metals reduced the carbon concentration necessary for complete removal of SO₂ by

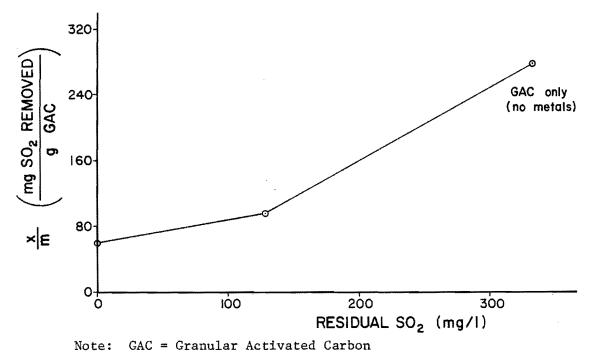


Figure 8. SO₂ removal-jar test results.

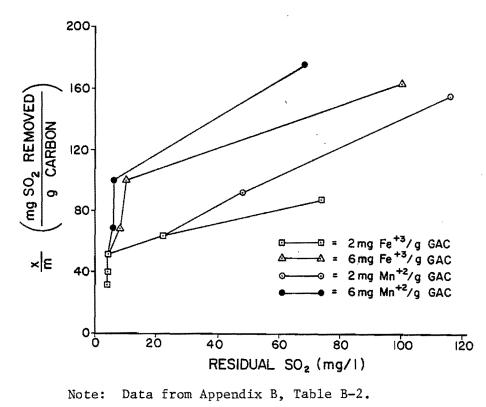
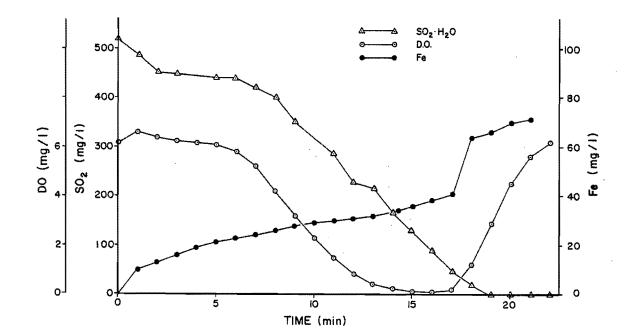


Figure 9. SO₂ removal-jar test results.

half, to 20 g/l. However, the gain in reduced carbon concentration was offset by desorption of the metals from the carbon. For example, the solution containing 50 g/l of carbon with 6 mg/g of iron adsorbed measured 51 mg/l iron at the end of the test. The reason for desorption of the metals is assumed to be the low pH (2.8) of the solution.


Removal of the bisulfite oxidation products by the carbon was again observed in these experiments. This assumption is proven by considering the mass balance of sulfur species. As shown in Table 3, the effluent sulfur species decrease with increasing carbon concentrations. With no carbon, the data show a loss of 107 mg/l SO₂ after two hours of shaking. Approximately one-third of this loss is due to oxidation to $SO_4^=$; the remainder is assumed to have gone off as gaseous SO_2 . As discussed earlier, dithionate may have been formed and would account for some of the missing sulfur.

The results of the carbon jar tests indicate that activated carbon is not very efficient (requiring 40 g/l) at removing SO_2 from wastewater. However, insufficient dissolved oxygen appeared to limit the oxidation of the SO_2 and therefore biased the results. Thus the impetus for column experiments was to further define the catalytic capabilities of carbon.

Jar tests involving raw iron as a catalyst also showed the adverse effects of the acidic solution. As shown in Figure 10, at an iron concentration of 20 mg/l the rate of SO_2 and DO reduction is rapid and constant. Further increases in the iron concentration do not affect the rate of reaction. As the reaction rate did not increase until 20 mg/l of iron was present it can be concluded that iron, as a catalyst, must be dissolved in solution. The catalytic effect is probably not a sur-

Carbon Conc. g/l	Final SO ₂ mg/l	Final SO4 ⁼ as SO2	Total SO ₂ mg/l
g/ ±			mg, t
Initial Solution	500	39	539
0	364	68	432
10	32	448	480
20	6	382	388
30	0	371	371
40	0	278	278
50	0	240	240

Table 3. Typical sulfur mass balance.

Note: Data from Appendix B, Table B-7. Figure 10. Oxidation of SO₂ using raw iron.

face phenomenon on the iron. Although a good catalyst, the use of raw iron does not appear feasible due to the high concentration (20 mg/l) of iron in the effluent.

Upflow Contactors

Three upflow columns were operated using either iron, manganese, or cobalt adsorbed to activated carbon. The results of the carbon and manganese column are shown in Table 4. The results are very similar to the jar tests, and show activated carbon with metals to be a very efficient catalyst as long as a sufficient stoichiometric amount of oxygen is present to complete the oxidation. The data also show that the acidic nature of the feed solution causes the metal to desorb from the carbon. As with the jar tests, insufficient oxygen did not allow for long term analysis of the catalytic capabilities of activated carbon.

Time (min)	DO	рH	SO ₂ mg/1	SO4 ⁼ as SO ₂	Mn++ mg/1
Initial	6.8	2.4	548	49	<4
5	2.2	5.0	0	388	178
10	2.2	4.1	0	403	182
15	1.7	3.2	0	388	156
20	0.2	2.5	0	352	105
25	0	2.4	32	395	91
30	0	2.4	48	395	89
35	0	2.4	136	344	55
40	0	2.4	168	358	49

Table 4. Typical upflow column data using activated carbon + Mn⁺⁺ medium.

Downflow Contactors

Downflow columns using eight different media were operated for 3-6 hour periods. The purpose of these runs was to make a preliminary assessment of the oxidative capacity of the various media. The results are summarized in Table 5 (raw data are included in Appendix B, Table B-2 through B-5).

None of the alumina base metallic media completely oxidized the SO₂ for any length of time. As excess air (500 *l*/hr) was being pumped into the column, the extremely large effluent SO₂ concentration should not have been caused by depleted oxygen levels. Insufficient detention time could have caused the breakthrough however. Increasing detention time was not attempted due to the primary reason for dismissing use of these media as catalysts: high metal concentrations in the effluent. Figure 11 shows the manganese catalyst before and after the column run. The removal of the manganese from the base alumina is clearly evident, again, due to the acidic nature of the feed solution.

Study of activated carbon and activated carbon plus metals continued with 24 hour runs. The purpose was to determine the maximum SO_2 breakthrough (if one existed) and the extent of metal desorption from the carbon. Metals used were cobalt, iron and manganese. Excessive air (500 ℓ/hr) was again used to prevent depleted oxygen levels from affecting catalyst evaluation.

SO₂ breakthrough occurred within 2 hours in all columns except the carbon-manganese column which lasted 5 hours (see Appendix B, Tables B-8 through B-16). On the basis of a single run, the carbonmanganese column had a maximum breakthrough of 28 mg/1; 68 mg/1 for the

Table 5. Preliminary assessment of oxidation catalysts.

```
Column Conditions:

Feed Rate = 50 ml/min.

Medium Depth = 25 cm

Feed Soln. pH = 2.5-2.9

Air Flow = 7.2-9.5 l/min.

Run Time = 3 hrs.
```

Medium		Crite	ria*		Additional
	Oxidative Capacity	Effluent DO	Effluent pH	Effluent Metals	Study
Activated Carbon	Fair	Good	Poor	N/A	Yes
Fe ³⁺ on GAC	Good	Good	Poor	Poor	Yes
Mn ²⁺ on GAC	Good	Good	Poor	Poor	Yes
Co^{2+} on GAC	Good	Good	Poor	Poor	Yes
Fe ₂ 03 on Alumina	Poor	Good	Poor	Good	No
MnO ₂ on Alumina	Fair	Poor	Poor	Poor	No
V ₂ O5 on Alumina	Poor	Good	Poor	Poor	No
NiCoFe on Alumina	Poor	Good	Poor	Poor	No

*Oxidative Capacity (Effluent SO₂ Concentration): Good \leq 50 mg SO₂/1; Fair \leq 100 mg SO₂/1; SO₂/1; Poor > 100 mg SO₂/1SO₂/1 Effluent DO: Good \geq 2 mg/1; Poor \leq 2 mg/1 Effluent pH: Good \geq 6.5; Poor \leq 6.5 Effluent Metals: Good \leq 1 mg/1; Fair \leq 5 mg/1; Poor > 5 mg/1

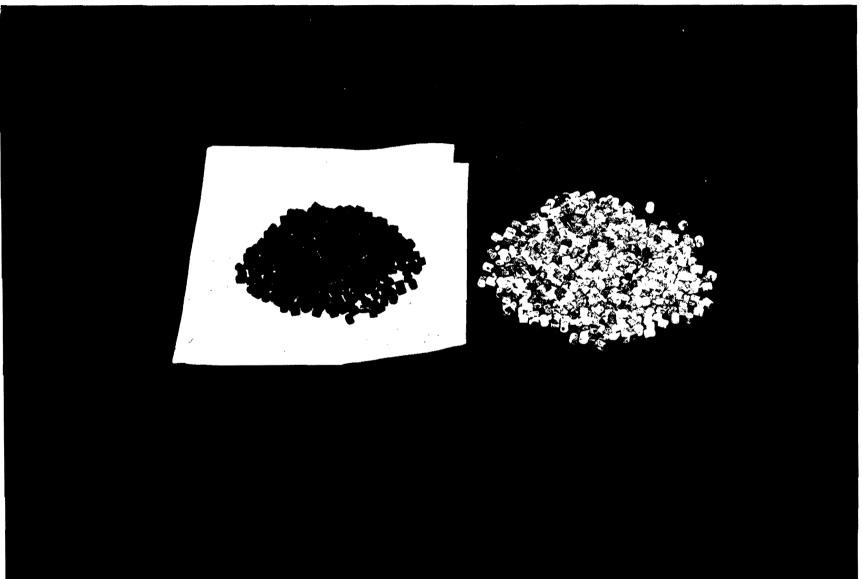


Figure 11. Manganese oxide on alumina before and after column run.

carbon-cobalt column (see Figure 12). Both columns did reasonably well based on metal desorption. The maximum cobalt concentration in the effluent was 5.8 mg/l; the values dropped to less than 1 mg/l after 3 hours. The manganese effluent concentration peaked at 6.1 mg/l and dropped to less than 1 mg/l after 3 hours.

Of three runs using carbon-iron medium two had similar peak SO_2 effluent values of 16 and 38 mg/l. The third run exhibited a much higher breakthrough however (see Figure 13). Iron desorption was higher than the other metals. Concentrations of 60 mg/l were measured at the beginning of the runs. Values decreased to approximately 1 mg/l after 24 hours.

The results of three runs using activated carbon medium are shown in Figure 14. As shown, the results were extremely variable. Five additional runs were completed, with zero air flow, in an attempt to replicate results (Figure 15 and Appendix B, Tables B-18 through B-22). Again, results were variable. As all column parameters were equal for these runs, it was determined that the cause of the variable results was short-circuiting down the glass column walls. Increasing the column diameter from 5 cm to 8.5 cm increased the carbon volume to glass wall area ratio by 70 percent. It also produced much more consistent results (Figure 16 and Appendix B, Tables B-22 through B-26).

At this point it was decided to eliminate the carbon plus metal catalyst from further study and concentrate on activated carbon. This decision was based on the desorption of the metals into the influent. The acidic nature of the feed solution would not allow the activated carbon to retain the metal ions.

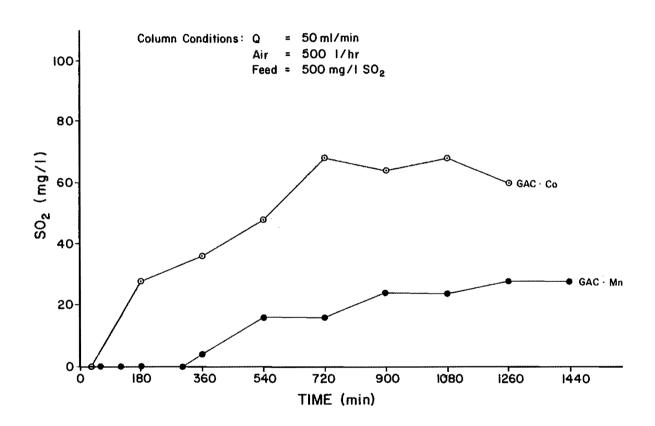
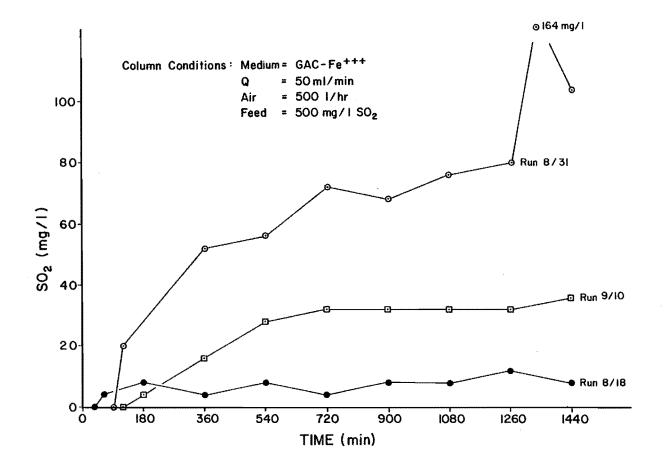



Figure 12. SO_2 breakthrough using activated carbon and metals medium.

 31

Note: 8/31 (i.e.) refers to date of experiment

Figure 13. SO_2 breakthrough using activated carbon + iron medium.

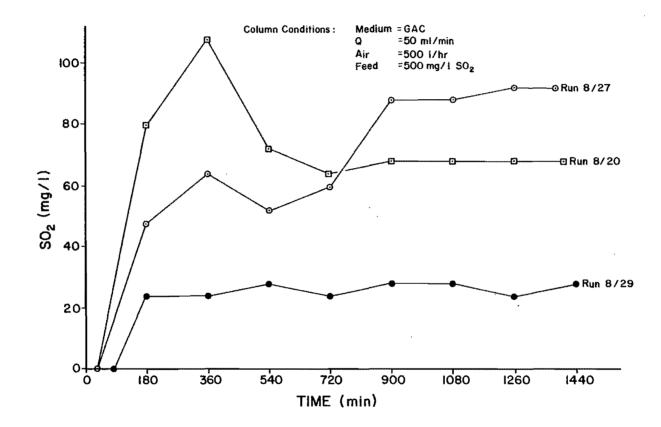


Figure 14. SO_2 breakthrough using activated carbon medium.

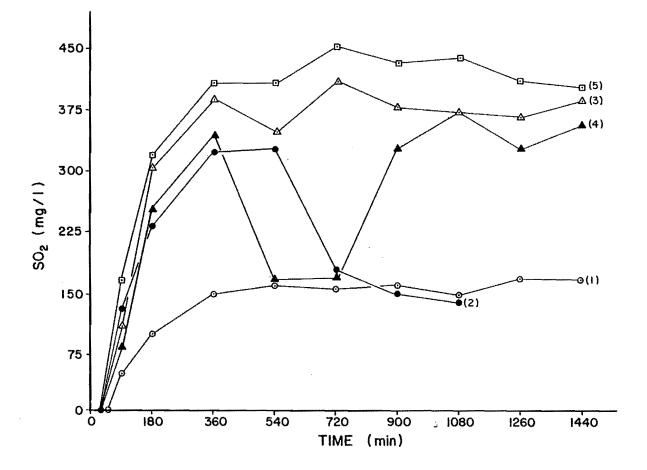


Figure 15. Variation in SO_2 breakthrough for 5-24 hour runs (5 cm column).

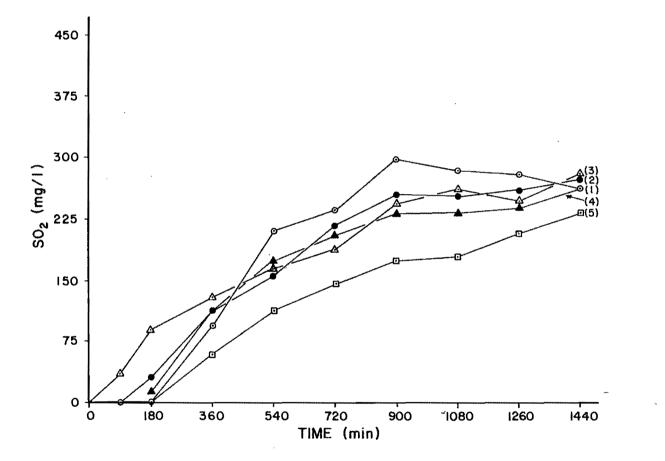


Figure 16. Variation in SO_2 breakthrough for 5-24 hour runs (8.5 cm column).

ω 5 Starting with the 8.5 cm column, other column parameters were varied while the medium was held constant as shown in Table 2. Figure 17 (Table B-24) shows the effects of zero air flow in the column. As before, insufficient oxygen caused column failure indicated by zero dissolved oxygen measurements. The increasing oxygen levels along with increasing SO₂ is indicative of catalyst poisoning. As the activated carbon becomes saturated with sulfuric acid (product of sulfite oxidation) the rate of reaction is decreased. Hence there is insufficient time in the column to utilize all the oxygen available.

Adding a second column in series, identical to the first, produces an effluent with 16 mg/l SO_2 (data in Appendix B, Tables B-27 through B-32). Thus it appears, with minor modifications, two filters in series with 25 cm activated carbon at a liquid loading of 8.8 ml/min per M² (50 ml/min) would oxidize the SO_2 .

A summary of the various combinations of design parameters used and the ability to remove the influent SO₂ are shown in Table 6 (see Appendix B, Tables B-33 through B-44). As shown, when aerating the column at 140 &/hr a relationship develops, at zero SO₂ breakthrough, between carbon depth and liquid flow (see Appendix B, Tables B-34, B-36, B-38, B-40, B-43, B-46). This proves to be a linear relationship as shown in Figure 18. Using the column with 50 cm of carbon and a flow rate of 150 ml/min for 24 hours, a carbon weight to liquid volume ratio of 5.5 g/l may be computed. Thus with sufficient oxygen available, activated carbon is a far better catalyst than indicated by the 40 g/l ratio determined by the jar tests.

Assuming an 8 percent transfer efficiency between air and water, 63 ℓ/hr of air should be required to oxidize 500 mg/l SO₂ at a flow

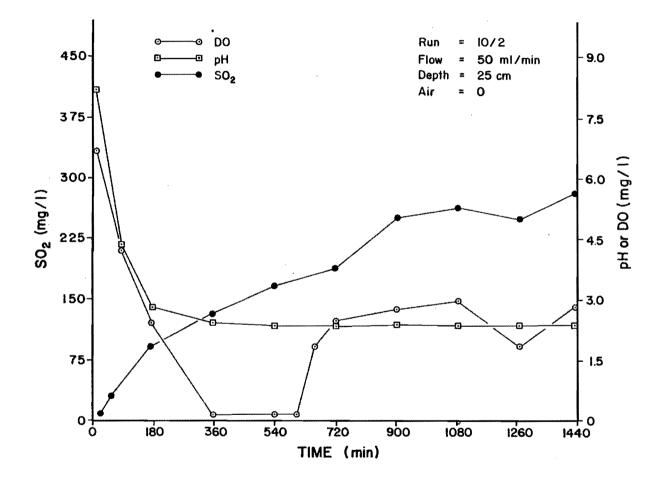
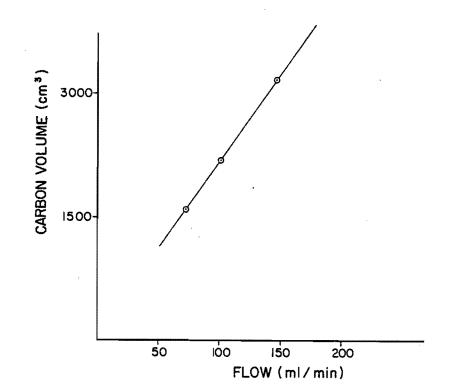
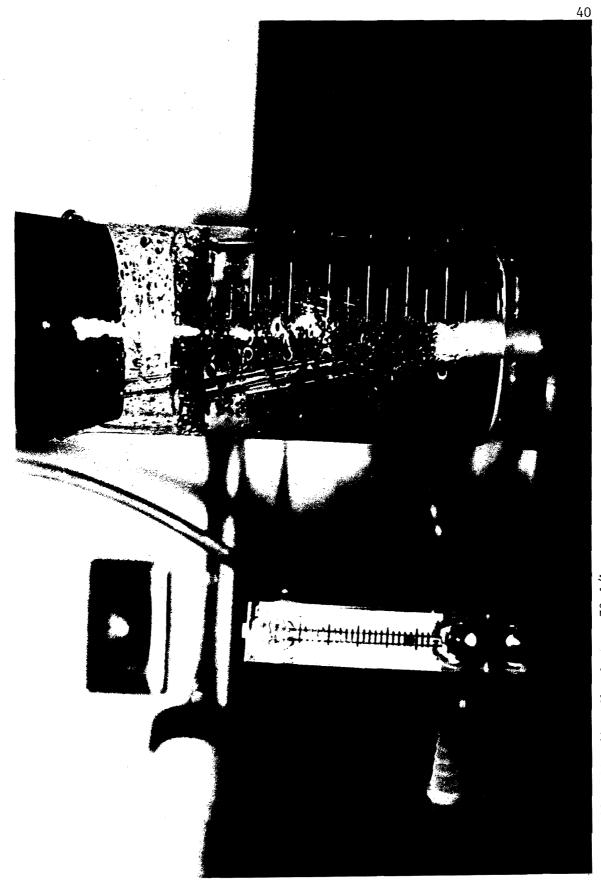
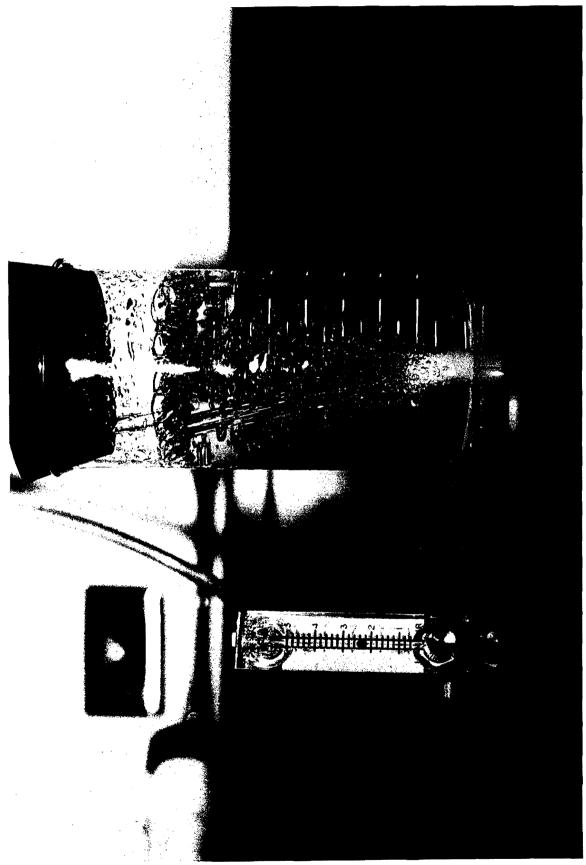


Figure 17. SO_2 oxidation column observations.

fedium Depth (cm)	Air Flow (l/hr)	Liquid Flow (ml/min)	Max. Effluent SO ₂ (mg/1)
25	0	50	280
25	140	50	0
25	140	75	0
25	140	100	72
35	140	100	0
35	140	150	128
35	210	150	52
50	0	50	192
50	140	150	0
50	140	175	84
50	70	150	48

Table 6. Summary design parameter variations and SO_2 breakthrough.


Figure 18. Flow vs. carbon volume for zero SO_2 breakthrough (24 hr runs).

rate of 150 ml/min. Thus it was unexpected to see the column operated at 70 ℓ /hr of air fail. There appears to be several possible reasons. One reason is insufficient detention time in the column. In light of improved performance with increased air flow this explanation does not appear likely. Another reason is that the assumed 8 percent transfer efficiency is too high. This is tied to the air diffuser bubble size and air distribution in the column. Figures 19 and 20 shows the air distribution in a 9.0 cm diameter beaker. At 70 ℓ /hr the air bubbles rise straight up the center of the beaker whereas at 140 ℓ /hr the air bubbles spread out through the entire column. Thus it would appear that the assumed 8 percent transfer efficiency at 70 ℓ /hr is incorrect. More efficient air distribution in a larger system may reduce the required air flow to theoretical values.

Throughout these experiments a milky colored precipitate would form in columns that failed. There is no apparent cause for the formation of this precipitate. The precipitate would form in samples taken from 60 to 720 minutes; dissolved oxygen levels were generally less than 4 mg/l; pH varied from 2.4 to 5.5; and SO₂ concentrations were greater than 4 mg/l. An electron microscopy scan of the precipitate showed the primary elements to be phosphorus and iron. This again gave no clue as to the cause of the precipitation formation. Because the precipitate did not form in samples from successful columns (i.e. no SO₂ breakthrough), investigation of this phenomenon was not pursued.

The column consisting of 50 cm activated carbon, an air flow of 140 ℓ/hr , and a liquid flow of 150 ml/min was run for a period of 96 hours to determine long term catalytic abilities of the carbon (see Figure 21 and Appendix B, Table B-47). Breakthrough of SO₂ began after

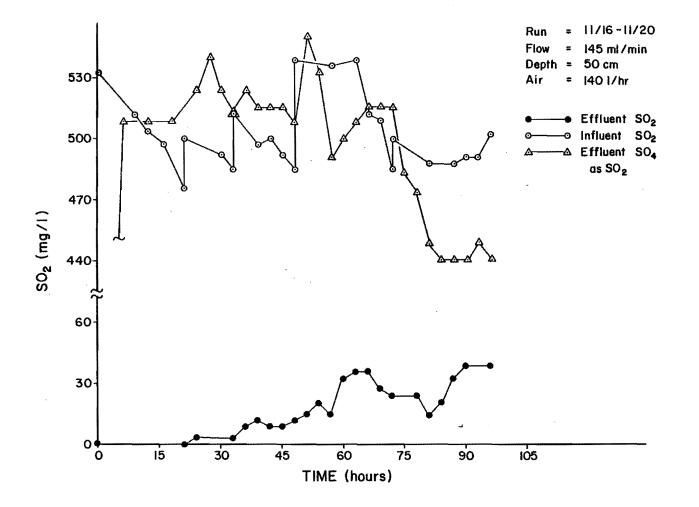


Figure 21. 96 hour column run.

24 hours and increased (in a fluctuating manner) to 40 mg/l after 96 hours, the highest concentration recorded. The cause of the gradual failure is the self-poisoning of the carbon via saturation with sulfuric acid. The removal of the sulfuric acid is necessary for continued oxidation of SO₂. This may be accomplished by flushing the carbon with water (Komiyama and Smith 1975). To test this assumption, a column was run to failure (defined by effluent SO₂ values greater than 20 mg/l), then backwashed with water and the column restarted (see Figure 22 and Appendix B, Table B-48). Backwashing was accomplished by running tap water up through the column, expanding the carbon bed by 20 percent. Forty liters of water were used over a 20 minute period. Initial pH of the backwash pH was 6.8. This increase in pH indicates the flushing out of the acid.

Following backwashing, the carbon bed resettled to 110 percent of its original height. This is due to the strong inter-particle attraction exhibited by wet carbon. The first run failed after 10 hours. The second run, after backwashing, ran for 40 hours without failing (as defined earlier). The most probable cause for the improved performance after backwashing is the increased exposed surface area created by the bridging between carbon particles. Thus it may be concluded that backwashing removes the sulfuric acid and regenerates the catalytic properties of the activated carbon.

The fate of the sulfur species was examined during all 24 hour runs. The results during the 96 hour run are shown in Figure 21. Through the course of the run, 91 percent of the influent sulfur

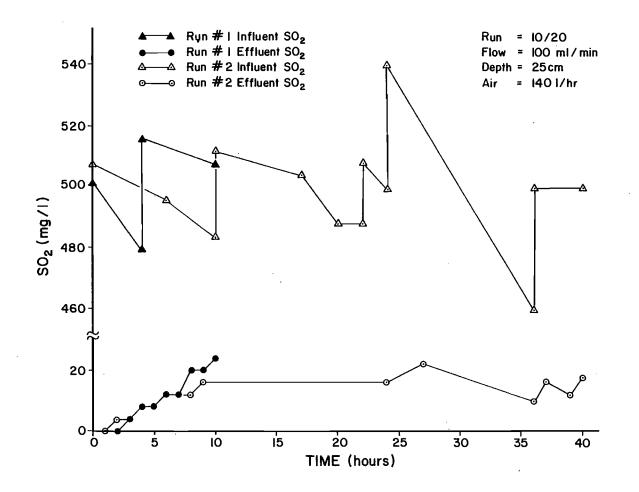


Figure 22. Backwashed column results.

species (+IV and +VI) were accounted for in the effluent. Causes of the missing sulfur may be the formation of dithionate, loss of SO_2 gas in the column, and inaccuracies in the sulfate data due to the analytical procedure used.

COST ANALYSIS

Costs for the sulfur dioxide oxidation system were developed based on reasonable limits in design criteria as shown in Table 7. The worst case design criteria is that developed by the bench scale column. The low surface loading in this case results in a very large filter surface area. By increasing the surface loading and increasing the carbon bed depth (maintaining the carbon volume), the filter surface area and cost may be greatly decreased. For a given carbon volume and flow rate, pilot plant testing must be conducted to optimize surface loading and carbon bed depth.

The worst case also assumes an air requirement equivalent to that used in the bench testing. The best case assumes an air requirement equal to theoretical values.

A capital cost summary for both cases is shown in Table 8. A generalized flow sheet for the SO² oxidation system is shown in Figure 23. The filter costs are based on a typical dual media filtration unit (see Appendix D). Included in the filter costs are the feed system, tankage, underdrain system, backwash pump and storage tank, building, and appurtenances necessary for complete operation. The large surface area required for the downflow contactor mode of operation, along with the need for enclosing the filters, makes this system extremely capital intensive.

Annual costs for the SO_2 oxidation system are shown in Table 9. The power costs include feed and backwash pumping, and blowers for aeration. Total power represents only 6-15 percent of the total annual costs indicating a very low-energy use system.

	Item	Best	Case	Worst Case		
		3785 m ³ /d	37850 m ³ /d	3785 m ³ /d	37850 m ³ /d	
¥.	Carbon Filters					
	1. No. of units	2	4	2	4	
	2. Surface area, total, m ²	32	320	100	1000	
	3. Bed depth, m	1.6	1.6	0.5	0.5	
	4. Surface loading, m ³ /m ² ·d	117.2	117.2	37.5	37.5	

1275

7.5

2

75

12750

2

2550 25500

7.5 75

2

Table 7. Summary of design criteria.

Note: $m^3/d \ge 2.6417 \ge 10^{-4} = mga1/day$ $m^2 \ge 10.7639 = ft^2$ $m \ge 3.2808 = ft$ $m^3/m^2 \cdot d \ge 24.5424 = ga1/ft^2 \cdot d$ $m^3/h \ge 0.5886 = ft^3/min$ $kw \ge 1.3410 = HP$

1. No. of units

3. kw

2. Capacity, total, m³/h

Table 8. SO2 oxidation system capital cost estimate.

	Item	Be	st Case	Wors	st Case	
		3785 37850		3785	37850	
		m ³ /d \$	m ³ /d \$	m ³ /d \$	m ³ /d \$	
1.	Filter, Complete			######################################		
	Except Medium	612,000		952,000	4,216,000	
2.	Activated Carbon	50,000	-	50,000	500,000	
3.	Blowers	10,000	48,600	20,000	97,200	
4.	Corrosion Liner	15,100	84,000	43,200	580,000	
Sub	total	\$687,100	\$3,352,600	\$1,065,200	\$5,393,200	
5.	Electrical & Piping	137,400	670,500	266,300	1,348,300	
Tot	al Capital ^a	\$824,500	\$4,023,100	\$1,331,500	\$6,741,500	

^aConstruction costs only.

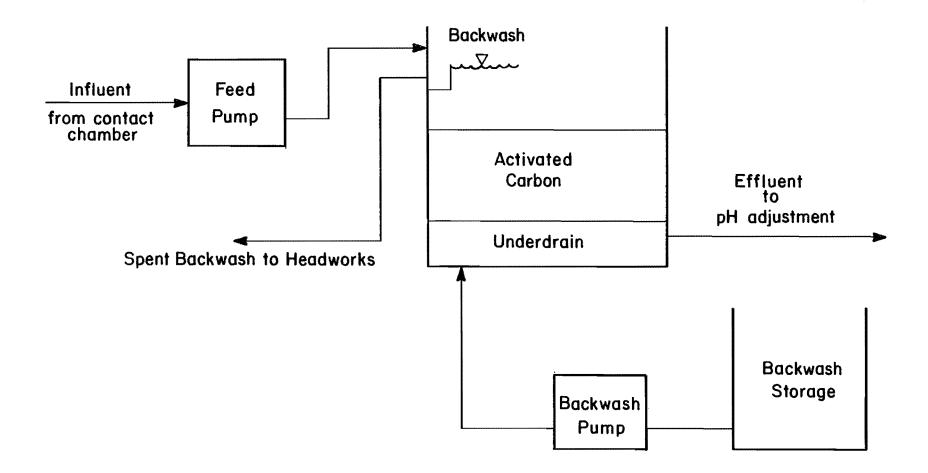


Figure 23. Flow sheet for SO_2 oxidation system.

Item	Best	t Case	Worst Case		
		37850	3785		
	m ³ /d \$	m ³ /d \$	m ³ /d \$	m ³ /d \$	
Capital Cost	\$824,500	\$4,023,100	\$1,331,500	\$6,741,500	
Capital Recovery ^a	77,800	379,700	125,700	636,300	
Power @ 6.5¢/kwh	10,700	97,600	10,700	97,600	
Labor @ 13.20/Man hr	5,500	16,000	5,500	16,000	
Materials	8,300	40,200	13,300	67,400	
Total Annual Cost	\$102,300	\$533,500	\$155,200	\$817,300	

Table 9. SO₂ oxidation system summary of annual costs.

a7 percent for 20 years, cost recovery factor = 0.09439.

Labor and material costs were an average of values taken from EPA (1980) cost curves for dual media filtration and trickling filter operations. Labor costs were adjusted to a current rate of \$13.20 per man hour; material costs represent from 1.5-2.5 percent of the capital costs.

Table 10 compares the complete SO₂ disinfection process with other disinfection systems. The costs for the SO₂ disinfection process excluding the oxidation system, along with the other alternative disinfection processes were developed by Nielsen, Maxwell and Wangsgard-Montgomery Inc. (see Appendix D). As shown, when compared to other processes, the SO₂ disinfection process is capital intensive. Total operation and maintenance costs are also significantly higher than for other disinfection processes.

	4			
Disinfection Process	Standard =	1000 TC/1000 ml	Standard =	2.2 FC/1000 m
	$3785 \text{ m}^3/\text{d}$	37850 m ³ /d	3785 m ³ /d	37850 m ³ /
. Chlorination-dechlorination ^a (without post aeration)				
A. Capital, \$	83,000	216,000	124,000	855,000
B. Operation & Maintenance, \$/yr	12,600	44,900	15,460	64,060
L. Chlorine Dioxide with SO ₂ Reducti	on ^a			
A. Capital, \$	112,000	309,000	160,700	979,400
B. Operation & Maintenance, \$/yr	-	361,220	80,780	680,600
[I. Ultraviolet Light ^a				
A. Capital, \$	140,000	1,100,000	3,200,000	26,000,000
B. Operation & Maintenance, \$/yr		187,000	583,300	5,809,000
7. Ozonation ^a				
A. Capital, \$	212,500	914,700	799,500	3,724,700
B. Operation & Maintenance, \$/yr		109,850	96,010	801,200
. SO ₂ Worst Case ^b				
A. Capital, \$	1,608,000	7,870,000	1,608,000	7,870,000
B. Operation & Maintenance, \$/yr	• •	955,000	114,000	955,000
L. SO ₂ Best Case ^b				
A. Capital, \$	997,000	4,665,000	997,000	4,665,000
B. Operation & Maintenance, \$/yr	-	408,000	54,000	408,000

Table 10. Comparison of capital and operation and maintenance costs for various wastewater disinfection processes based on Total Coliform (TC) or Fecal Coliform (FC) standards.

^aCosts developed by Nielsen, Maxwell and Wangsgard-Montgomery, Inc.

^bTotal SO₂ disinfection process, including SO₂ oxidation system.

Costs were also developed for two different coliform discharge standards. The costs for the alternative disinfection systems increase significantly with a more stringent fecal coliform standard. This is due to much greater chemical costs required to meet the higher discharge standards. Larger chemical doses are not necessary with the SO₂ disinfection system, thus costs are not affected by the more stringent standards.

The costs for sulfur dioxide disinfection range from 0.23 to 0.73/1000 gallons treated (Table 11). Only for the most stringent coliform standard does the best case 0.2 system prove to be less costly than ozonation or ultraviolet radiation. When compared with other disinfection processes and coliform standards the 0.2 system is more expensive.

Table 11. Summary cost (¢/1000 gallons treated) comparison between sulfur dioxide disinfection and other alternative disinfection systems.

		lard =	Standard = 1000 TC/100 ml	
Process		/100 m1		
	3785 m3/d	37850 m ³ /d	3785 m ³ /d	37850 m ³ /d
				•
Chlorination-Dechlorination (without post aeration)	7.9	4.6	6.0	1.9
Chlorination-Dechlorination (with post aeration)	9.2	5.5	7.3	2.6
Chlorine Dioxide/SO ₂ Reduction	27.2	21.9	16.2	10.9
Ozonation	51.7	34.6	12.9	6.1
Ultraviolet Light	261.6	250.7	9.7	8.7
Best SO ₂ Case	40.5	23.2	40.5	23.2
Worst SO ₂ Case	72.9	46.5	72.9	46.5

Note: c/1000 gal x 0.264 = c/M^3 .

SUMMARY AND CONCLUSIONS

This research dealt with the removal of the oxygen demand created in wastewater disinfected with sulfur dioxide at a concentration of 500 mg/l. The removal mechanism studied was catalyzed oxidation. Catalysts studied included transition metals (Fe⁺⁺, Mn⁺⁺, Co⁺⁺), activated carbon (Calgon Filtrasorb 300), and a combination of the two. It was found that the metals, and activated carbon plus metals were very good catalysts for the oxidation of sulfur dioxide, to sulfate. However, the acidic nature of the disinfected wastewater (pH 2.6) dissolved the metals or caused them to desorb from the carbon. Activated carbon was also shown to be a good catalyst as long as sufficient oxygen levels were maintained. Results showed that the catalytic properties of activated carbon may be maintained over an extended period of time by backwashing the carbon to remove the sulfuric acid produced by the oxidation of sulfur dioxide.

The costs of sulfur dioxide disinfection range from \$0.23-\$0.73/ 1000 gallons treated. In general, this is much more costly than other disinfection processes.

Specific conclusions drawn from this research include:

1) The acidic nature of the disinfected wastewater (pH 2.6) will not allow use of transition metals as an oxidation catalyst due to excessive metal transport into solution.

2) Activated carbon does catalyze the oxidation of SO_2 in wastewater.

3) In a downflow contactor with sufficient oxygen, it was found that 5.5 g carbon/l was necessary for complete SO_2 removal over a 24 hour period.

4) Twice the theoretical air flow was found necessary to provide sufficient oxygen for complete SO_2 oxidation, probably caused by poor air distribution in the column.

5) Self-poisoning of the carbon by sulfuric acid (the product of SO₂ oxidation) and/or reduced oxygen solubility in the sulfuric acid saturated column slowly reduced the catalytic effects of the activated carbon.

6) Backwashing the column removed the sulfuric acid and restored the catalytic properties of the activated carbon.

7) Without significant capital cost reductions, SO₂ disinfection cannot compete with other disinfection processes.

53

Ξ.

ENGINEERING SIGNIFICANCE

The data collected in this study suggest a possible method for the oxidation of sulfur dioxide in wastewater. The development of wastewater disinfection processes, to replace chlorination, is needed in light of increasing evidence of adverse health affects created by chlorination. Sulfur dioxide has been shown to be an effective disinfectant; however, the oxygen demand created by aqueous sulfur dioxide must be eliminated prior to discharge. Oxidation is one means of accomplishing this task.

Activated carbon was shown to be an effective catalyst in the oxidation of sulfur dioxide, with sulfuric acid as a byproduct. The ease of operation of a trickling filter type reactor (downflow contactor) and the sample regeneration of the carbon via backwashing make the system worth further consideration. However a great deal of additional research is necessary to optimize the type of activated carbon used and the process design parameters. Hopefully this research will lead to significant reductions in the preliminary capital costs generated during this study.

RECOMMENDATIONS

- Conduct pilot plant testing to refine the design parameters developed at bench scale including surface loading, backwashing, and air flows.
- 2. Further study the role of activated carbon as a catalyst.
- Further study the fate of other wastewater constituents in the system.
- 4. Study different system configurations to help reduce costs (e.g., recycle filter effluent to reduce sulfur dioxide requirements).
- 5. Study several different commercial brands of activated carbon to determine how raw materials affect catalytic properties.
- 6. Other reactor types, such as a fluidized carbon bed, should be investigated in order to reduce the high costs associated with the downflow contactor arrangement.

LITERATURE CITED

- APHA. 1980. Standard methods for the examination of water and wastewater. 15th Ed. American Public Health Association, American Water Works Association, Water Pollution Control Federation, Washington, D.C. 1134 p.
- Brimblecombe, P., and D. J. Spedding. 1974. The reaction order of the metal ion catalyzed oxidation of sulfur dioxide in aqueous solution. Chemosphere 1:29-32.
- Bengtsson, S., and I. Bjeiles. 1975. Catalytic oxidation of sulphite in diluted aqueous solutions. Chemical Engineering Science 30: 1429-1435.
- Brodzinsky, R., S. G. Chang, S. S. Markowitz, and T. Novakov. 1980. Kinetics and mechanism for the catalytic oxidation of sulfur dioxide on carbon in aqueous suspensions. J. Phys. Chem. 84: 3354-3358.
- Chang, S. G., R. Brodzinsky, S. S. Markowitz, and T. Novakov. 1976-77. Catalytic oxidation of SO₂ on carbon in aqueous suspension. Atmospheric Aerosol Research, Annual Report, LBL 6819.
- Chen, T-I., and C. H. Barron. 1972. Some aspects of the homogeneous kinetics of sulfite oxidation. Ind. Engng. Chem. Fundl. 11(4): 466-469.
- Coughanowr, D. R., and F. E. Krause. 1965. The reaction of SO₂ and O₂ in aqueous solutions of MnSO₄. Ind. Engng. Chem. Fundl. 4(1):61-66.
- Eatough, D. J., W. P. Green, and L. D. Hansen. 1979. Oxidation of sulfite by activated charcoal. Lawrence Berkeley Lab J. 79(LBL-9037):131-132.
- EPA. 1979. Kinetics of sulfur dioxide in aqueous solution. EPA-600/ 7-79-030. 73 p.
- EPA. 1980. Innovative and alternative technology assessment manual. EPA-430/9-78-009.
- EPA. 1981. Sulfur dioxide oxidation reactions in aqueous solutions. PB81-196834. 31 p.
- Fuller, E. C., and R. H. Crist. 1941. The rate of oxidation of sulfite ions by oxygen. J. Am. Chem. Soc. 63:1644-1650.
- Hesketh, H. E., and R. W. Potokar. 1977. Reduce SO₂ emissions using fly ash slurries. Proc. Environ. Eng. Sci. Conf., 6th Annual, Univ. of Louisville, Louisville, KY.

- Komiyama, H., and J. M. Smith. 1975. Sulfur dioxide oxidation in slurries of activated carbon. AlChE J. 21(4):664-670.
- Novakov, T., and S. G. Chang. 1975. Catalytic oxidation of SO₂ on carbon particles. AlChE Symposium Series 72(156):255-262.
- Penkett, S. A., B. M. R. Jones, K. A. Brice, and A. E. J. Eggleton. 1979. The importance of atmospheric ozone and hydrogen peroxide in oxidizing sulfur dioxide in cloud and rainwater. Atmospheric Env. 13:123-137.
- Reynolds, J. H., and V. D. Adams. 1979. Evaluation of sulfur dioxide disinfection. Report to International Environmental, Inc., Salt Lake City, UT.
- Schmidt, M. 1972. Fundamental chemistry of sulfur dioxide removal and subsequent recovery via aqueous scrubbing. Int. J. Sulfur Chem., Part B. 7(1):11-19.
- Seaburn, J. T., and A. J. Engel. 1973. Sorption of sulfur dioxide by suspension of activated carbon in water. AlChE Symposium Series 69(134):71-75.
- Siedlewski, J. 1965. The mechanism of catalytic oxidation on activated carbon. The role of free carbon radicals in the oxidation of SO₂ to SO₃. Int. Chem. Engng. 5(4):608-612.
- Tiwari, B. L., J. Kolbe, and H. W. Hayden, Jr. 1979. Oxidation of ferrous sulfate in acid solution by a mixture of sulfur dioxide and oxygen. Metallurgical Trans. 10B:607-612.
- Watkins, J. P. 1977. Controlling sulfur compounds in wastewaters. Chem. Engng. 84(22):61-65.

APPENDICES .

.

Appendix A

Manufacturer Information

Activated carbon characteristics

<u>Description.</u>* Filtrasorb activated carbons are manufactured from select grades of bituminous coal to produce a high density, high surface area, durable granular product. They are capable of withstanding the abrasion and dynamics associated with repeated reactivation, hydraulic transport, backwashing, and mechanical handling. Filtrasorb carbons wet readily and do not float, thus minimizing loss during backwash operations.

Physical properties.

	Filtrasorb 300	Filtrasorb 400
Total Surface Area (N2, BET Method)	950	1050
Bed Density, Backwashed and Drained (lbs/cf)	26	26

Specifications.

					Filtrasorb 300	Filtrasorb 400
Iodine Number (min.)	•	•	•		900	1000
Abrasion Number (min.)		•	•		75	75
Moisture (max.)	•	•			2.0%	2.0%
Mean Particle Diameter (mm) .	•				1.5-1.7	0.9-1.1
Effective Size (mm)			•		0.8-0.9	0.55-0.65
Water Soluble Ash (max.)		•	•		0.5%	0.5%
U.S. Standard Series Sieve Size:						
Larger than No. 8 (max.)		•		•	15%	-
Smaller than No. 30 (max.)	•		•	•	4%	
Larger than No. 12 (max.)			•		-	5%
Smaller than No. 40 (max.)	•	•	•	•	-	4%

*Calgon Corporation, Product Bulletin 27-33a.

Manufacturers addresses

- Calgon Corp. Activated Carbon Division P.O. Box 1346 Pittsburgh, PA 15230
- 2) Alfa Products Thiokol/Ventron Division 152 Andover St. Danvers, MA 01923

Appendix B

<u>Raw Data</u>

Note:

- 1. The following tables and graphs may show air flow in units of cubic feet per hour. The conversion to liters per hour is: CFH x $28.32 = \ell/hr$.
- 2. All sulfur specie concentrations are reported as mg/1 as SO_2 .

	al Feed $DO = 2$ $pH = 1$ $SO_2 = 5$ $SO_4 = Alk = 2$.8 .9 10 mg/1			$\frac{\text{Final Feed Soln.}}{\text{DO} = -}$ $\text{pH} = -$ $\text{SO}_2 = -$ $\text{SO}_4^2 = -$		
Jar T GAC g/l	<u>'est Data</u> DO	рН	SO ₂ mg/1	so_4^{\pm} as so_2	Jar Test Media		
0 10 20 30 40 50 60	0.7 0.3 0.3 0.4 0.9 1.4	- 2.3 2.5 2.6 2.8 3.1 3.5	420 172 74 22 4 4 4	34 368 456 440 390 349 328	2 mg Fe ³⁺ /g GAC		
0 10 20 30 40 50 60	6.9 0.5 0.3 0.6 1.5 1.5 1.8	2.6 2.4 2.3 2.5 2.7 3.1 3.5	460 100 10 8 4 4 4	35 534 480 436 380 329 291	6 mg Fe ³⁺ /g GAC		
0 10 20 30 40 50 60	7.0 0.3 0.2 0.1 1.1 1.4	2.6 2.3 2.4 2.6 2.75 3.1 3.1	500 118 48 22 4 4 4	37 511 545 490 456 413 373	2 mg Mn ²⁺ /g GAC		
0 10 20 30 40 50 60	5.6 0.3 0.2 0.4 1.4 1.4 1.5	2.5 2.3 2.6 2.9 3.2 4.4	412 68 6 4 4 4	34 533 523 512 458 440 425	6 mg Mn ²⁺ /g GAC		

Table B-1. SO_2 oxidation jar test--4/22.

I F Initia D S S S	Column Media Initial Metal =Fe Alumina N/A Final Metal =Initial Feed Soln. DO = 6.8 pH = 2.8 SO2 = 528 mg/1 SO4 = 98 mg/1 Fe = 175 μ g/1Final Feed Soln. DO = 6.7 pH = 2.6 SO2 = 496 mg/1 SO4 = 54 mg/1Column Data:Air Flow = 15-20 CFH										
Column	Data:	Air Flo	ow = 15-2	20 CFH							
Time Min.	DO	рĦ	SO ₂ mg/1	SO4 as SO2	Flow ml/min						
20 30 40 50 60 90 120 150	0.1 0.8 1.1 3.1 3.7 4.7 6.0 5.9	6.3 5.6 4.3 3.6 3.5 3.6 3.7 3.7 3.6 3.6 3.5	260 284 288 300 320 328 348 344	155 184 371 151 177 186 175	55 44 50 56 57 50 48 54 53 48 53	745 207 240 131 104 98 118 164 154 165 566					

I		= Mn·Al Metal = tal =					
D P S S	H = 2	.2 .7 32 mg/1 9 mg/1		Final Feed Soln. DO = 5.7 pH = 2.5 SO ₂ = 496 mg/1 SO ₄ = 161 mg/1			
Column	Data:	Air Flo	w = 15-2	0 CFH		·	
Time Min.	DO	pH	SO ₂ mg/1	\$04 as \$02	Flow ml/min	Metal mg/l	

Table B-3. SO_2 oxidation column observations--7/19.

-

Table B-4. SO₂ oxidation column observations--7/23.

```
\frac{\text{Column Media}}{\text{Initial Metal}} = \text{Co, Ni, Fe-Alumina}
\frac{\text{Initial Metal}}{\text{Final Metal}} = \frac{\text{N/A}}{\text{Final Metal}}
\frac{\text{Initial Feed Soln.}}{\text{DO} = 5.0}
pH = 2.6
SO_2 = 540 \text{ mg/l}
SO_4^{\text{medal}} = 46 \text{ mg/l} \text{ as } SO_2
Co = \sqrt{3} \text{ mg/l}
\text{Ni} = 16 \text{ µg/l}
\text{Fe} = 49 \text{ µg/l}
```

```
Final Feed Soln.

DO = 5.2

pH = 2.4

SO<sub>2</sub> = 488 mg/1

SO<sub>4</sub> = 37 mg/1 as SO<sub>2</sub>
```

Column Data: Air Flow = 15-20 CFH

Time Min.	DO	рH	SO ₂ mg/1	SO4 ⁼ as SO2	Flow ml/min	Co mg/1	Metal Ni µg/1	Fe µg/1
	2 (2 0	17	20			1107	205
0	3.6	3.2	16	30	55	93	1107	395
10	3.6	3.2	52	72	49	45	535	381
20	4.3	3.3	80	53	49	34	371	361
30	4.7	3.3	120	38	54	26	261	357
60	5.5	3.4	172	45	51	17	137	419
90	4.5	3.3	188	50	51	16	94	430
120	4.3	3.3	216	70	51	13	71	479
150	4.3	3.4	208	74	41	15	72	492
180	4.6	3.3	244	66	49	10	52	601
210	4.5	3.2	260	75	52	9	43	596
240	4.8	3.2	268	69	51	7	36	884
270	5.0	3.2	268	71	51	7	36	691

]		Metal =	mina and N/A	Silica			
E F S S	al Feed 00 = 5 00 = 2 $00_2 = 5$ $00_4^2 = 5$ $00_4^2 = 5$ $00_4^2 = 5$.8 .6 52 mg/1 9 mg/1 a	as SO ₂		DO pH SO2		
Column	n Data:	Air Flo	w = 15-2	20 CFH			
Time Min.	DO	рН	SO ₂ mg/1	SO4 = as SO2	Flow ml/min	Me tal µg/1	
	5.9 5.7 5.8	4.2 4.1 3.8 3.8 3.7 3.7		141 109 109 94 85 79	58 45 49 52 52 53	85,000 85,000 70,200 64,600 50,400 36,600	

Table B-5. SO_2 oxidation column observations--7/23.

_

Table B-6. Preliminary assessment of oxidation catalysts--7/30.

```
Column Conditions:

Feed Rate = 50 ml/min.

Medium Depth = 25 cm

Feed Soln. pH = 2.5-2.9

Air Flow = 7.2-9.5 l/min.

Run Time = 3 hrs.
```

Medium		Crite	ria*		Additional
	Oxidative	Effluent	Effluent	Effluent	Study
	Capacity	DO	pН	Metals	
Activated Carbon	Fair	Good	Poor	N/A	Yes
Fe ³⁺ on GAC	Good	Good	Poor	Poor	Yes
Mn ²⁺ on GAC	Good	Good	Poor	Poor	Yes
Co ²⁺ on GAC	Good	Good	Poor	Poor	Yes
Fe ₂ O3 on Alumina	Poor	Good	Poor	Good	No
MnO ₂ on Alumina	Fair	Poor	Poor	Poor	No
V2O5 on Alumina	Poor	Good	Poor	Poor	No
NiCoFe on Alumina	Poor	Good	Poor	Poor	No

*Oxidative Capacity (Effluent SO₂ Concentration): Good \leq 50 mg SO₂/1; Fair \leq 100 mg SO₂/1; SO₂/1; Poor > 100 mg SO₂/1SO₂/1 Effluent DO: Good > 2 mg/1; Poor \leq 2 mg/1 Effluent pH: Good \geq 6.5; Poor \leq 6.5 Effluent Metals: Good \leq 1 mg/1; Fair \leq 5 mg/1; Poor > 5 mg/1 Raw iron (1/4" nuts) was placed in bottom of 4000 ml beaker. 1700 ml sewage with 500 mg/l SO₂ added to beaker and aerated at 15-20 CFH. pH and DO monitored continuously. Samples taken at 1 min. intervals.

Time Min.	DO	рН	SO ₂ mg/1	Metal mg/l	Comments	
0	6.2	2.7	516	_		
1	6.6	2.7	492	8		
2	6.4	2.7	456	10		
3	6.3	2.7	456	13		
4	6.2	2.7	408	16		
5	6.1	2.7	440	19		
6	5.8	2.75	440	21		
7	5.2	2.8	424	23		
8	4.2	2.7	400	24		
9	3.2	2.7	352	26		
10	2.3	2.6	-	28		
11	1.5	2.6	292	29		
12	0.8	2.6	232	31		
13	0.4	2.5	224	32		
14	0.2	2.45	172	34	Cloudy	
15	0.1	2.4	132	36	Cloudy	
16	0.1	2.3	92	39	Cloudy	
17	0.2	2.3	48	41	Cloudy	
18	1.2	2.3	20	64	Cloudy	
19	2.9	2.3	0	66	Cloudy	
20	4.5	2.2	0	70	Cloudy	
21	5.6	2.2	0	71	Cloudy	
22	6.2	2.2	0	105	Cloudy	

<u>Colum</u>	n Media Initial I Final Fe	Fe = 5 =	00 mg/1 3.1 mg/3	l Fe adsorbe	ed/295 g GA	с		
<u>Initi</u>		.8 .75 72 mg/1			Final Feed Soln. DO = 6.2 pH = 2.7 SO ₂ = 416 mg/1 SO ₄ ⁼ = 51 mg/1 as SO ₂			
Colum	n Data:	Air Flo	w = 15-2	20 CFH				
Time Min.	DO	pH	SO2 mg/1	SO4= as SO2	Flow ml/min	Fe mg/l		
$ \begin{array}{c} 10\\20\\30\\60\\90\\120\\150\\180\\240\\300\\360\\420\\540\\600\\600\\720\\1200\\1260\\1320\\1380\end{array} $	7.7 7.4 7.2 7.2 7.0 7.0 6.9 6.6 6.5 6.4 6.3 6.3 6.3 6.3 6.3 6.3 6.7 6.5 7.4 7.0 6.7 6.5	3.9 3.5 3.0 2.5 2.3 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2	$ \begin{array}{c} 4\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 4\\ 12\\ 16\\ 24\\ 20\\ 16\\ 0\\ 4\\ 6\\ 16\\ 16\\ \end{array} $	97 167 222 296 322 344 361 370 349 345 333 335 328 322 327 316 330 349 291 296	47 49 52 54 47 51 49 50 50 50 50 50 49 51 56 52 50 49	17 35 38 30 26 23 22 23 17 14 10.5 11 6 5 4 3 1.5 1.2 1.1 1.1		
1440	0.0	2.2	10	270	47	1.1		

]	n <u>Media</u> (nitial) Final Mn	Mn = 1	AC 1006 mg/1 <u>179 mg/1</u> 827 mg =	- Mn adsorl	oed/295 g G	AC	
I I S S	pH = 2 $SO_2 = 48$ $SO_4^2 = -$	<u>Soln.</u> .1 .8 88 mg/1 39 μg/1		$\frac{\text{Final Feed Soln.}}{\text{DO} = 5.9}$ $pH = 2.7$ $SO_2 = 344 \text{ mg/l}$ $SO_4^{=} = 63 \text{ mg/l as SO_2}$			
Column	<u>Data</u> :	Air Flo	ow = 15-2	20 CFH			
Time Min.	DO	pH	SO2 mg/1	s04 ⁼ as S0 ₂	Flow ml/min	Mn µg/1	
10 20	6.6 7.3	6.2 6.3	0 0	154 210	49 52	58000 61000	
30	7.3	4.3	0	243	52	61000	
60	6.8	3.0	0	305	48	53000	
90	6.7	2.5	0	326	49	48000	
120 180	6.8 6.7	2.3 2.3	0	350 343	49 49	44000 7260	
240	6.5	2.2	0	350	49 50	3619	
300	6.5	2.2	Õ	342	50	2090	
360	6.25	2.2	4	330	49	1166	
460	6.3	2.2	8	326	50	665	
540	6.2	2.2	16	316	50	279	
600	6.2	2.2	16	311	50	211	
660	6.2	2.2	16	301	49	145	
720	6.3	2.2	16	301	50	125	
780	6.4	2.2	16	314	48	103	
840	6.5	2.2	16	314	49	78	
900	6.4	2.2	24	310	50	82	
960	6.4	2.2	24	308	50	69	
1020 1080	6.3 6.4	2.2	24 24	318 310	48 50	64 54	
1140	0.4 6.4	2.2	24 28	310	50	58	
1200	6.3	2.2	24	301	49	52	
1260	6.5	2.2	28	301	52	45	
1320	6.4	2.2	24	310	48	45	
1380	6.4	2.2	20	297	48	42	
1440	6.1	2.2	28	301	52	42	

,

$\frac{\text{Column Media}}{\text{Initial Co}} = \frac{\text{GAC} \cdot \text{Co}}{732 \text{ mg/l}}$ Final Co = $\frac{326 \text{ mg/l}}{406 \text{ mg}}$ = Co Adsorbed/295 g GAC											
D F S S C	H = 2 $O_2 = 5$ $O_4^{=} = -$ $O_6^{=} < 0$.8 .5 56 mg/1 3 mg/1		Final Feed Soln. DO = 5.7 pH = 2.7 SO ₂ = 316 mg/1 SO ₄ = 56 mg/1 as SO ₂							
<u>Column</u> Time Min.	Data: DO	Air Flo	SO ₂ mg/1	SO4 as SO2	Flow ml/min	Co µg/1	Comments				
$ \begin{array}{c} 10\\20\\30\\60\\90\\120\\180\\240\\300\\360\\420\\480\\600\\660\\720\\780\\840\\900\\960\\1020\\1020\\1020\\1080\\1140\\1200\\1260\\1320\\1350\end{array} $	$\begin{array}{c} 7.8\\ 7.4\\ 7.2\\ 6.7\\ 6.6\\ 6.1\\ 6.3\\ 5.5\\ 5.8\\ 5.5\\ 5.4\\ 5.5\\ 5.4\\ 5.7\\ 6.3\\ 6.2\\ 6.4\\ 6.5\\ 6.6\\ 6.7\\ 6.6\\ 6.7\\ 6.6\\ 6.7\\ 7.0\\ \end{array}$	$\begin{array}{c} 6.5\\ 3.6\\ 3.0\\ 2.6\\ 2.4\\ 2.35\\ 2.2\\ 2.2\\ 2.2\\ 2.2\\ 2.2\\ 2.2\\ 2.2\\ 2.$	0 0 20 24 24 28 36 36 36 48 48 56 60 64 68 60 60 60 60 60 44 36	186 270 324 377 402 427 435 451 451 451 427 427 402 410 385 402 377 369 369 369 369 385 361 357 369 348 336 316 303	50 50 50 50 50 50 50 51 49 52 52 52 51 52 51 52 51 52 51 50 50 50 50 50 50 50 50 50 50	52000 58000 34000 18000 14000 10000 5000 3000 1000 1518 814 374 172 133 132 87 43 31 31 17 17 25 24 28 17 38	Cloudy Cloudy Cloudy Cloudy Cloudy				

Table B-10. SO₂ oxidation column observations--8/14.

]	n Media = Initial Final Fe	Fe = 5 = _	50 mg/1 10 mg/1	Fe Adsorbed/	[/] 295 g GAC		
	al Feed 8 00 = 6 00 = 2 $00_2 = 49$ $00_4 = -$ $00_4 = -$ $00_4 = -$.6 .6 96 mg/1		Final Feed Soln. DO = 5.9 pH = 2.7 SO ₂ = 292 mg/1 SO ₄ = -			
Column	n Data:	Air Flo	w = 15-2	20 CFH			
Time Min.	DO	рH	SO ₂ mg/1	SO4 ⁼ as SO2	Flow ml/min	Fe mg/1	
	6.7 6.8 6.8 6.85 6.8 6.5 6.8 6.5 6.4 6.5 6.4 6.5 6.4 6.5 6.4 6.5 6.4 6.5 6.4 6.5 7.5	3.8 3.0 2.5 2.35 2.3 2.25 2.3 2.15 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 4 \\ 8 \\ 8 \\ 12 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 8 \\ 4 \\ 12 \\ 4 \\ 4 \\ 8 \\ 8 \\ 4 \\ 8 \\ 4 \\ 12 \\ 12 \\ 12 \end{array}$	No Data	$53 \\ 49 \\ 51 \\ 51 \\ 53 \\ 54 \\ 29 \\ 28 \\ 44 \\ 45 \\ 43 \\ 44 \\ 45 \\ 43 \\ 47 \\ 53 \\ 49 \\ 49 \\ 51 \\ 50 \\ 49 \\ 51 \\ 50 \\ 49 \\ 52 \\ 49 \\ 53 \\ 53 $	6 38 40 39 35 32 25 11 6 6 7 7 8 8 8 8 8 8 8 8 6 4 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2	
1380 1440	6.6 6.5		12 8		50 49	0.70 <0.3	

*One of the round clear pellets or crystals passed through and must have clogged the flow momentarily.

-

I	<u>Media</u> nitial 'inal Me	Metal =	N/A				
D P S	H = 2 $O_2 = 4$	Soln. .3 .7 60 mg/1		$\frac{\text{Final Feed Soln.}}{\text{DO} = 5.3}$ $\text{pH} = 2.8$ $\text{SO}_2 = 320 \text{ mg/1}$			
	0 ₄ = = - 	Air Flo	ow = 15-2	20 CFH	$so_4^{=} = -$		
Time Min.	DO	рН	SO ₂ mg/1	504 ⁼ as 502	Flow ml/min	Comments	
10	7.2	7.2	0	No	48		
20	7.0	6.5	0	Data	51		
30	6.8	3.4	0		51	a1 1	
60	5.9	2.7	36		49	Cloudy	
90	5.7	2.6	56		51	Cloudy	
120	5.5	2.5	68		51	Cloudy	
180 240	5.5	2.5	80 84		51 51	Cloudy	
240 300	5.4 4.8	2.4 2.4	88		51		
360	4.8 3.5	2.4	108		53		
420	4.6	2.25	68		54		
480	3.8	2.30	68		55		
540	4.4	2.3	72		52		
600	4.8	2.3	76		52		
660	3.6	2.3	72		52		
720	4.6	2.3	64		51		
780	4.8	2.3	72		52		
840	5.2	2.3	72		51		
900	5.1	2.3	68		50		
960	5.3	2.3	68		50		
1020	5.4	2.3	68		51		
1080	5.3	2.3	68		49		
1140	5.0	2.3	68		51		
1200	5.4	2.3	60		51		
1260	5.4	2.3	68		51		
1320	5.4	2.3	68		50		
1380	5.8	2.3	68		50		
1440	6.3	2.3	24		51		

Table B-12. SO₂ oxidation column observations--8/20.

I		Metal =	N/A			
<u>Initia</u> D P S	H = 2 O ₂ = 5		as SO2	Final Feed Soln. DO = 4.8 pH = 2.5 SO ₂ = 380 mg/1 SO ₄ = 67 mg/1 as SO ₂		
Column	Data:	Air Flo	w = 15 - 2	20 CFH		
Time Min.	DO	pH	SO ₂ mg/1	SO4 [≢] as SO2	Flow ml/min	Comments
$ \begin{array}{r} 10 \\ 20 \\ 30 \\ 90 \\ 120 \\ 180 \\ 240 \\ 300 \\ 360 \\ 420 \\ 480 \\ 540 \\ 600 \\ 660 \\ 720 \\ 780 \\ 840 \\ 900 \\ 960 \\ 1020 \\ 1080 \\ 1140 \\ 1200 \\ 1260 \\ 1320 \\ 1380 \\ 1440 \\ \end{array} $	5.5 6.6 4.2 5.2 5.8 5.2 5.8 5.2 5.1 4.8 5.1 4.2 5.6 4.2 5.1 4.2 5.1 4.2 5.5 6.0	6.7 5.9 3.4 2.5 2.5 2.2 2.3 2.3 2.3 2.3	0 0 24 32 44 48 56 64 60 56 64 60 56 52 52 52 60 72 76 88 88 88 88 88 88 88 88 88 88 88 88 88	206 268 284 342 362 366 387 362 354 354 354 354 354 354 354 354 354 354	54 52 50 49 51 47 49 50 52 50 50 50 50 51 57 53 50 50 55 52 51 51 52 52 52 51 51	Cloudy Cloudy Cloudy Cloudy Cloudy Feed SO ₂ = 368 mg/1

Table B-13. SO_2 oxidation column observations--8/27.

Note: At 720, add 100 ml H_2SO_3 , Feed $SO_2 = 488 \text{ mg}/1$

I	<u>Media</u> nitial 'inal Me	Metal =	N/A			
D P S		.1	as SO ₂	Final Feed Soln. DO = 6.0 pH = 2.7 SO ₂ = 432 mg/1 SO ₄ = 60 mg/1 as SO ₂		
Column	Data:	Air Flo	ow = 15-3	20 CFH		
Time Min.	DO	рH	SO ₂ mg/1	S04 ⁼ as S0 ₂	Flow ml/min	Comments
10	7.3	7.6	0	151	51	
20	7.2	7.5	0	215	52	
30	7.1	6.5	0	267	49	Cloudy
60	6.5	3.0	16	319	52	Cloudy
90	6.0	2.7	24	355	51	Cloudy
120	6.0	2.4	24	375	52	Cloudy
180	6.1	2.3	24	407	50	Cloudy
240	6.0	2.2	28		51	Cloudy
300	5.8	2.2	28	387	50	
360	5.8	2.1	24		51	
420	5.9	2.1	20	390	49	
480	5.6	2.1	28		54	
540	5.9	2.1	28	467	52	
600	6.0	2.1	24		53	
660	5.9	2.1	28	351	54	Feed SO ₂ = 440 mg/1
720	6.2	2.1	24	379	52	
780	6.1	2.1	32		53	
840	6.1		28	262	52	$T_{-} = \frac{1}{2} (0) = \frac{1}{2} (0) (1)$
900	5.9	2.1	28	363	54	Feed SO ₂ = 436 mg/1
960	6.3	2.1	36	250	53	
1020 1080	6.4 6.5	2.1	32 28	359	50 50	Feed S0 494 /1
1140	6.6	2.1 2.1	20 36	375	49	Feed SO ₂ = $484 \text{ mg}/1$
1200	6.7	2.1	36	رير	49 51	
1260	7.0	2.1	24	311	50	Feed $SO_2 = 436 \text{ mg}/1$
1320	7.0	2.1	32	J14	50	1000 D02 - 450 mg/1
1320	6.9	2.1	28	319	51	
1440	7.1	2.1	28	S S	51	

Note: At 660, add 48 ml H_2SO_3 , Feed $SO_2 = 512 \text{ mg/l}$ At 900, add 41 ml H_2SO_3 , Feed $SO_2 = 512 \text{ mg/l}$ At 1260, add 26 ml H_2SO_3 , Feed $SO_2 = 520 \text{ mg/l}$

Table B-14. SO_2 oxidation column observations--8/29.

I	nitial		570 mg/				
F	inal Me	tal =	<0.24 1 570 mg		/295 ¢ GAC		
	1 1	a 1	5,0 -6	114001004	-	1 - 1	
	$\frac{1 \text{ Feed}}{0 = 4}$	<u>Soin.</u>			eed Soln.	mg/1	
	0 = 4 H = 2					= 5.5 = 2.6	mg/1
•		.0 72 mg/1			-	r = 2.0 r = 440	ma/1
		1 mg/1	2 S O O				mg/1 as SO ₂
		0.25 mg			502	1 OT 1	ig/1 as boy
		-	w = 15 - 2	0 CFH			
lime	DO	pН	SO ₂	so₄⁼	Flow	Metal	Comments
lin.	DU	PIL	mg/1	as S02	m1/min	mg/1	Comments
			m6/ 1	as 202	mr/mru	m8/1	
10	8.1	7.4	0	86	50	<0.24	
20	8.0	4.3	Ō	159	48	26	
30	7.9	3.5	0	228	51	44	
60	7.7	2.6	0	348	49	55	
90	7.4	2.4	0	386	51	60	
120	6.5	2.4	20	399	51	44	Cloudy
180					-		j
240	5.9	2.3	48	391	50	19	
300	5.5	2.2	44	391	52	16	
360	5.6	2.3	52	374	48	13	
420	5.8	2.2	48	378	50	9	
480	5.8	2.2	60	382	51	7	
540	6.1	2.2	56	356	52	5	
600	6.3	2.2	64	344	51	4	Feed $SO_2 =$
	0.0	2.2		0,14	21		424 mg/1
660							
720	6.3	2.2	72	361	53	4	
780	6.4	2.2	64	274	50	3	
840	6.5	2.2	72	378	50	2	
900	6.7	2.2	68	382	50	2	Feed $S0_2 =$
	 -	. .				-	468 mg/Ī
960	7.0	2.2	68	<u> </u>	50	2	
.020	7.1	2.2	68	365	50	1	
080	7.0	2.2	76		51	1	Feed SO ₂ = 484 mg/1
140	7.1	2.2	84	356	51	0.9	-
200	7.3	2.2	84		49	0.8	
260	7.2	2.2	80	339	51	0.66	Feed SO ₂ = 432 mg/1
320	6.1	2.2	164		48	4.0	
380	6.8	2.3	116	305	53	0.50	
440	6.9	2.2	104		50	<0.25	

Note: At 600, Add 65 ml H₂SO₃, Feed SO₂ = 492 mg/1 At 1260 Add 22 ml H₂SO₃, Feed SO₂ = 488 mg/1 Table B-16. SO2 oxidation column observations--9/10.

Column Media = GAC·Fe Initial Metal = No Data Final Metal = Initial Feed Soln. Final Feed Soln. DO H 6.15 = 5.0 DO pH = 2.5 рН = 2.6 $SO_2 = 544 \text{ mg}/1$ $SO_2 = 446 \text{ mg}/1$ $SO_4^{=} = 64 \text{ mg}/1 \text{ as } SO_2$ $SO_4^{\pm} = 64 \text{ mg}/1 \text{ as } SO_2$ Column Data: Air Flow = 15-20 CFH Time DO S04 pН S02 Flow Comments mg/1Min. as SO₂ ml/min 10 7.6 4.0 0 130 47 20 7.4 3.3 222 52 0 7.2 30 2.8 0 297 51 7.2 60 2.4 0 355 50 90 7.2 2.3 0 359 49 120 7.1 2.3 0 392 48 2.3 180 6.8 49 4 380 240 6.7 2.3 12 359 47 300 6.2 2.25 20 371 49 360 6.3 2.25 16 355 49 420 6.5 2.25 20 346 48 2.25 480 6.5 24 342 50 6.5 540 2.25 28 334 49 Feed $SO_2 = 504 \text{ mg}/1$ 600 6.5 2.25 28 322 50 660 6.5 2.25 28 322 50 6.5 2.25 Feed SO₂ = 492 mg/1 720 32 346 49 780 6.6 2.25 16 330 45 840 6.6 2.25 24 317 50 900 6.6 2.25 32 297 50 Feed SO₂ = 496 mg/l960 2.25 16 313 50 6.6 1020 6.6 2.25 32 305 50 1080 2.25 49 Feed SO₂ = 492 mg/1 6.6 32 322 1140 2.25 28 313 48 6.6 1200 6.8 2.25 28 305 50 1260 6.7 2.3 32 288 50 Feed SO₂ = 468 mg/11320 6.7 2.3 32 267 50 1380 36 51 6.7 2.3 280 1440 6.7 2.3 36 255 50

Table B-17. SO2 oxidation column observations--9/14.

Column Media = GAC, 25 cm Initial Metal = N/A Final Metal = Initial Feed Soln. Final Feed Soln. D0 = 6.55.6 DO = pH = 2.6pH = 2.6 $SO_2 = 504 \text{ mg}/1$ $SO_2 = 432 \text{ mg}/1$ $SO_4^{=} = 46 \text{ mg/1 as } SO_2$ Alk = 277 mg/1 $SO_4^{=} = 71 \text{ mg}/1 \text{ as } SO_2$ Column Data: Air Flow = 0 CFHS04[≖] Time DO pН S02 Flow Comments Min. mg/1as SO_2 ml/min 7.5 49 10 7.5 0 202 20 6.6 6.6 0 264 52 30 5.6 4.7 0 313 49 Cloudy 32 60 4.4 2.6 391 50 Cloudy 90 440 3.6 2.4 56 50 Cloudy 3.8 2.2 481 49 120 68 Cloudy 2.1 180 3.5 100 473 51 4.2 477 240 2.1 124 48 50 3.7 152 452 300 2.1 152 51 360 3.6 2.1 477 144 50 420 3.8 2.0 469 Feed $SO_2 = 512 \text{ mg/l}$ 480 3.8 2.0 156 444 50 540 4.3 2.0 160 461 50 47 600 4.5 2.0 168 456 660 4.4 2.0 160 440 51 720 4.4 2.0 156 428 50 Feed $SO_2 = 472 \text{ mg}/1$ 4.4 2.0 160. 436 49 780 840 4.0 2.0 148 420 47 900 3.9 2.05 160 399 50 Feed $SO_2 = 488 \text{ mg}/1$ 960 4.1 2.0 152 395 47 49 1020 4.1 2.0 156 428 1080 4.2 2.0 148 346 50 Feed $SO_2 = 460 \text{ mg}/1$ 1140 4.0 2.05 164 52 354 1200 4.3 2.05 160 309 50 1260 4.0 2.05 172 313 54 Feed $SO_2 = 468 \text{ mg}/1$ 4.2 272 50 1320 2.0 152 1380 4.2 2.1 172 321 60 1440 136 48 4.3 2.05

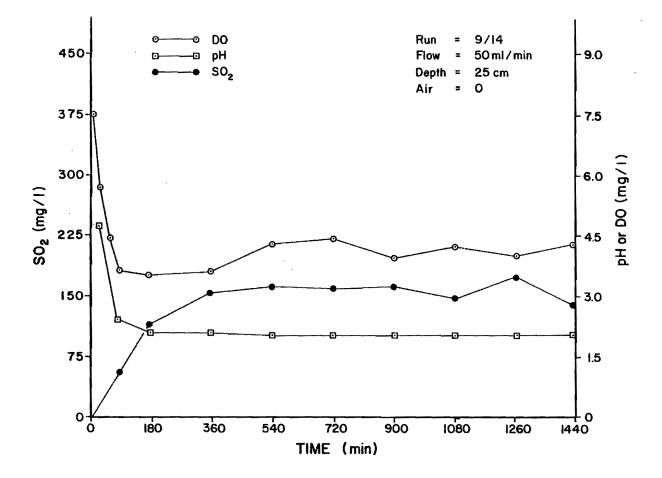


Figure B-1. SO₂ oxidation column observations.

I	Media nitial inal Me		25 cm N/A			
D P S S A	H = 2 $O_2 = 4$ $O_4 = 4$ 1k = 2	.6 .5 92 mg/1 2 mg/1 a 77 mg/1	-	$\frac{\text{Final Feed Soln.}}{\text{DO} = 4.9}$ pH = 2.5 SO ₂ = 420 mg/1 SO ₄ = 65 mg/1 as SO ₂		
Column	Data:	Air Flo	w = 0 C	FH		
Time Min.	DO	рН	SO ₂ mg/1	SO4 [≢] as SO2	Flow ml/min	Comments
10	6.7	7.1	0	172	49	
20	5.0	5.7	12	261	51	Cloudy
30	3.6	3.2	36	319	50	Cloudy
60	2.2	2.6	100	354	52	Cloudy
90	1.9	2.45	132	381	50	Cloudy
120	1.5	2.4	172	368	49	Cloudy
180	0.1	2.4	236	341	50	Cloudy
240	0.1	2.3	268	314	49	Cloudy
300	0.1	2.35	300	283	50	Cloudy
360	0.1	2.35	324	274	50	Cloudy
420 480	0.1	2.3	340	252	52	Feed 60 (00
400 540	0.1 0.1	2.3 2.3	348 328	234 230	50 50	Feed SO ₂ = 492 mg/1
600	1.8	2.3	332	198	50	
660	3.1	2.2	208	341	52	Feed SO ₂ = 468 mg/1
720	3.6	2.2	180	377	50	reed 50% - 400 mg/1
780	3.9	2.05	172	359	51	
840	4.1	2.05	156	341	50	Feed SO ₂ = 460 mg/1
900	4.1	2.1	148	350	48	1000 502 - 400 mg/1
960	4.3	2.1	144	328	50	
1020	3.9	2.1	144	310	50	

.

Table B-18. SO_2 oxidation column observations--9/16.

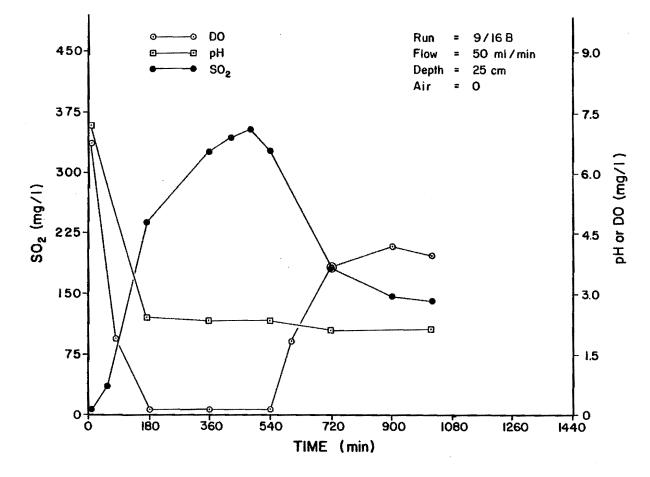


Figure B-2. SO_2 oxidation column observations.

Table B-19. SO₂ oxidation column observations--9/18.

Column Media = GAC, 25 cm Initial Metal = N/A Final Metal = Initial Feed Soln. Final Feed Soln. DO = 5.5D0 = 4.8pH = 2.7pH = 3.0 $SO_2 = 508 \text{ mg}/1$ $SO_2 = 448 \text{ mg}/1$ $SO_4^{-} = 46 \text{ mg}/1 \text{ as } SO_2$ $SO_4^{=} = 66 \text{ mg}/1 \text{ as } SO_2$ A1k = 272Column Data: Air Flow = 0 CFH Time DO pН S02 $SO_4^=$ Flow Comments Min. mg/1as $\dot{S}O_2$ ml/min 6.2 10 8.4 4 182 51 20 5.5 7.7 0 248 49 30 4.8 0 298 51 4.1 Cloudy 2.6 60 3.0 44 389 50 Cloudy 90 2.6 2.5 112 381 48 Cloudy 120 2.5 192 369 50 0.1 Cloudy 180 0.1 2.6 304 298 51 240 0.1 2.6 336 286 50 300 0.1 2.7 376 257 51 0.1 388 240 53 360 2.7 420 0.1 2.7 396 257 50 480 2.3 2.8 392 257 51 Feed SO₂ = 484 mg/1540 0.1 2.8 348 232 50 600 0.1 2.9 360 228 50 400 49 660 0.1 2.9 207 720 0.1 2.8 412 198 52 Feed $SO_2 = 460 \text{ mg}/1$ 780 2.5 2.9 186 384 50 3.6 2.9 356 194 49 840 2.9 174 47 Feed SO₂ = 464 mg/1900 2.7 380 960 3.0 392 157 50 3.1 1020 3.3 3.0 396 149 50 1080 3.4 3.1 376 140 50 Feed SO₂ = 452 mg/l1140 3.2 3.1 372 140 49 1200 2.5 3.1 368 124 50 53 Feed $SO_2 = 408 \text{ mg}/1$ 1260 2.7 3.1 348 120 Add 29 ml H₂SO3 1320 2.8 3.0 368 107 48 1380 2.5 2.9 376 53 Feed $SO_2 = 500 \text{ mg}/1$ 95 1440 2.6 2.8 392 107 52

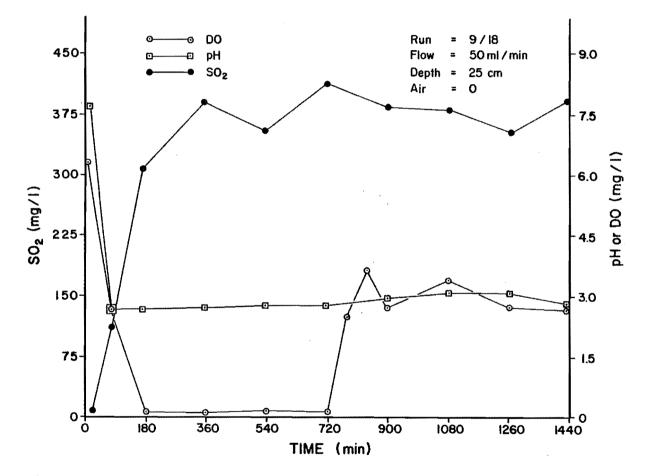


Figure B-3. SO_2 oxidation column observations.

<u>Colu</u>	<u>un Media</u> Initial Final Me	Metal =				
<u>Init</u>	$pH = 2$ $SO_2 = 4$.4	as SO2	Final Feed Soln. DO = 6.0 pH = 2.7 SO ₂ = 448 mg/1 SO ₄ = 55 mg/1 as SO ₂		
Colur	nn Data:	Air Flo	w = 0 Cl	FH		
Time Min.	DO	рН	SO ₂ mg/1	504 ⁼ as 50 ₂	Flow ml/min	Comments
10	6.7	7.7	0	191	48	
20	6.0	6.8	0	263	47	
30	4.8	5.9	0	297	51	Cloudy
60	3.6	2.8	20	344	47	Cloudy
90	2.9	2.7	84	344	49	Cloudy
120	2.4	2.5	144	319	50	Cloudy
180	0.2	2.6	256	221	51	Cloudy
240	0.2	2.6	304	174	50	Cloudy
300	0.1	2.6	336	157	50	
360	0.1	2.55	344	148	51 、	
420	3.2	2.5	208	250	50	
480	3.8		188	276	49	Feed SO ₂ = $468 \text{ mg}/1$
540	3.3		156	319	50	
600	4.1	2.3	180	293	52	
660	4.9		188	293	50	
720	4.5	2.2	172	297	50	Feed SO ₂ = 468 mg/1
780	4.7	2.3	252	199	49	
840	3.7	2.4	308	148	50	· · · · · · · · · · · · · · · · ·
900	3.3	2.45	328	131	48	Feed SO ₂ = 452 mg/1
960	3.8	2.5	356	131	49	
1020	3.7	2.5	360	110	50	$\mathbf{F}_{\mathbf{r}} = \mathbf{f}_{\mathbf{r}}^{\mathbf{r}} \mathbf{f}_{\mathbf{r}}^{\mathbf{r}}} \mathbf{f}_{\mathbf{r}}^{\mathbf{r}} \mathbf{f}_{\mathbf{r}}^{\mathbf{r}}} \mathbf{f}_{\mathbf{r}}^{\mathbf{r}} \mathbf{f}_{\mathbf{r}}^{\mathbf{r}}} \mathbf{f}_{\mathbf{r}}^{\mathbf{r}} \mathbf{f}_{\mathbf{r}}^{\mathbf{r}} \mathbf{f}_{\mathbf{r}}^{\mathbf{r}} \mathbf{f}_{\mathbf{r}}^{\mathbf{r}} \mathbf{f}_{\mathbf{r}}^{\mathbf{r}} \mathbf{f}_{\mathbf{r}}^{\mathbf{r}} \mathbf{f}_{\mathbf{r}}^{\mathbf{r}} \mathbf{f}_{\mathbf{r}}^{\mathbf{r}} \mathbf{f}_{\mathbf{r}}^{\mathbf{r}} \mathbf{f}_{\mathbf{r}}^{\mathbf{r}}} \mathbf{f}_{\mathbf{r}}^{\mathbf{r}} \mathbf{f}_{\mathbf{r}}^{\mathbf{r}}} \mathbf{f}_{\mathbf{r}}^{\mathbf{r}} \mathbf{f}_{\mathbf{r}}$
1080		2.6	376	113	49	Feed SO ₂ = 460 mg/1
1140	3.3	2.6	356	119	50	
1200	3.4	2.55	352	106	50 / 9	Food 60 126 11
1260	2.7	2.6	332	106	48	Feed SO ₂ = 436 mg/1
1320	2.8	2.6	372	97 106	47	Add 21 ml H_2SO_3
1380 1440	3.8 2.8	2.5 2.5	368 364	106 106	51 49	Feed SO ₂ = $476 \text{ mg}/1$

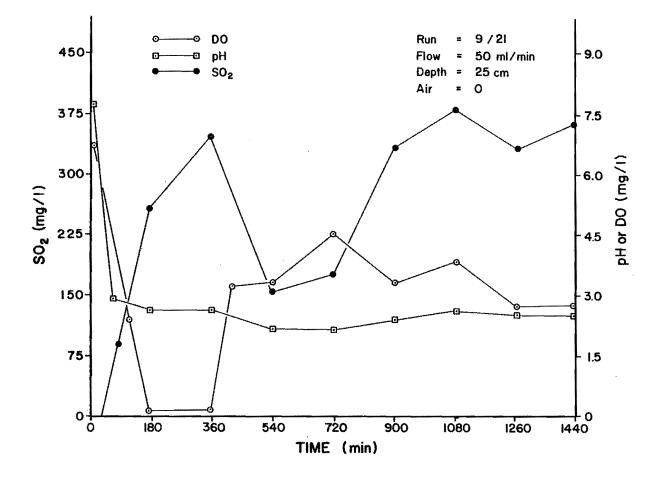


Figure B-4. SO₂ oxidation column observations.

Column Media = GAC, 25 cm Initial Metal = N/A Final Metal = Initial Feed Soln. Final Feed Soln. DO = 6.1DO = 5.3рН = pH = 2.55 2.7 $SO_2 = 552 \text{ mg}/1$ $SO_4^2 = 42 \text{ mg}/1 \text{ as } SO_2$ $SO_2 = 436 \text{ mg/l}$ $SO_4^2 = 68 \text{ mg/l} \text{ as } SO_2$ Column Data: Air Flow = 0 CFH pН so₂ Time DO S04= Flow Comments Min. mg/1as SO₂ ml/min 6.7 6.9 15 0 320 48 30 5.2 4.3 24 410 52 3.5 447 49 60 2.7 96 402 48 90 3.0 2.5 168 256 120 2.5 2.5 349 49 320 272 2.45 50 180 0.1 240 2.5 356 235 50 0.1 2.45 50 300 0.1 384 202 360 0.1 2.4 408 186 51 420 3.0 2.45 432 157 49 480 2.4 2.4 424 153 49 540 2.0 2.4 408 143 49 50 432 133 600 2.3 2.4 48 660 3.1 2.4 456 123 720 2.4 452 121 50 Feed $SO_2 = 500 \text{ mg}/1$ 4.1 780 2.1 2.4 416 137 48 840 2.4 2.4 412 110 50 900 2.3 2.4 432 108 49 Feed $SO_2 = 504 \text{ mg}/1$ 960 3.1 2.45 424 92 49 1020 3.3 2.4 436 90 50 2.45 440 88 1080 3.2 50 Feed SO₂ = 500 mg/1 2.45 436 1140 3.0 94 50 1200 2.6 2.45 436 106 50 48 Feed SO₂ = 476 mg/11260 2.9 2.5 412 108 1320 3.1 2.5 400 88 48 1380 2.8 2.5 400 84 48 1440 2.7 2.5 396 96 51

Table B-21. SO₂ oxidation column observations--9/23.

Note: Inlet change, extend tube directly to surface of carbon

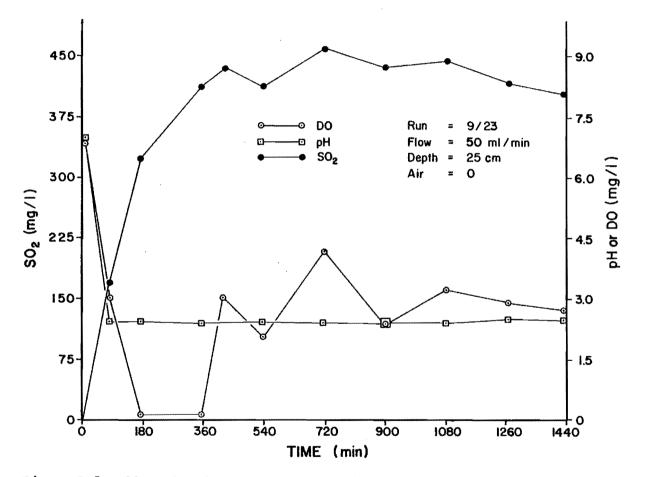


Figure B-5. SO₂ oxidation column observations.

I		Metal =		tart 85 mm	column		
D P S	H = 2	Soln. .3 .5 52 mg/1		Final Feed Soln. DO = 5.9 pH = 2.7 SO ₂ = 404 mg/1 SO ₄ == -			
Column	Data:	Air Flo	w = 0 C	FH			
Time Min.	DO	pН	SO ₂ mg/1	S04 [∓] as S02	Flow ml/min	Comments	
15	7.3	8.3	0	92	48		
30	6.9	8.2	0	144	49		
60	5.9	7.4	0	229	59		
90	4.0	6.5	0	299	41	Discharged plugged	
120	4.1	4.3	0	314	49		
180	3.5	2.5	0	388	50		
240	3.1	2.3	8	433	52		
300	4.2	2.2	52	433	47		
360	2.8	2.2	96	403	50		
420	2.4	2.3	152	348	50		
480	2.8	2.3	180	322	50		
540	0.1	2.2	212	355	50		
600	0.1	2.2	232	281	49		
660	0.1	2.2	232	299	47		
720	2.7	2.2	236	299	50	Feed $SO_2 = 520 \text{ mg/}$	
780	3.2	2.2	264	250	50	_	
840	3.3	2.2	268	218	51		
900	3.6	2.2	300	214	52	Feed $SO_2 = 468 \text{ mg}/$	
960	3.3	2.2	276	218	50		
1020	2.8	2.2	284	222	50		
1080	3.4	2.2	288	203	49	Feed $SO_2 = 476 \text{ mg/}$	
1140	3.0	2.25	280	214	50		
1200	3.4	2.25	276	196	50		
1260	3.3	2.3	280	188	49	Feed SO ₂ = 484 mg/	
1320	3.5	2.3	272	181	46		
1380	3.6	2.4	268	181	51		
1440	3.4	2.3	260	177	51		

Table B-22. SO_2 oxidation column observations--9/28.

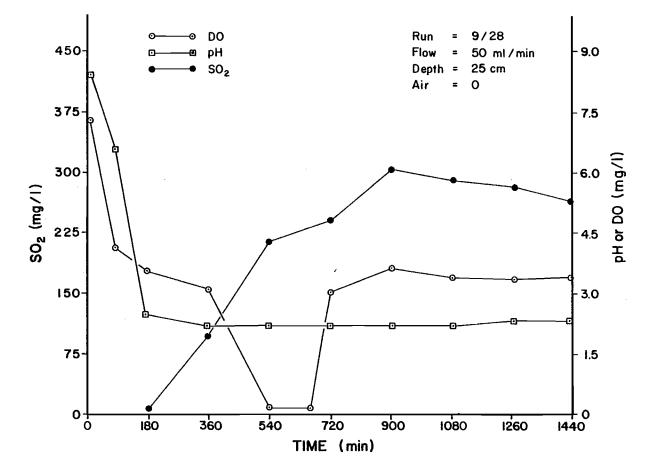


Figure B-6. SO_2 oxidation column observations.

		= GAC, Metal = etal =						
	pH = 2 $SO_2 = 4$ $SO_4^{=} = 6$.5			Final Feed Soln. DO = 5.8 pH = 2.7 SO ₂ = 484 mg/1 SO ₄ ⁼ = 61 mg/1 as SO ₂			
Time Min.	DO	рН	SO ₂ mg/1	S04 [≖] as S02	Flow ml/min	Comments		
15 30 60	7.7 7.2 5.9	8.2 8.1 7.1	0 0 0	83 141 217	48 48 49			
90 120 180 240	3.8 3.1 3.2	2.9 2.7 2.6	8 32 60	317 333 361	49 49 48	Cloudy Cloudy Cloudy		
300 360 420 480	3.0 2.6 2.8 4.1	2.6 2.5 2.5 2.4	88 116 136 140	365 341 317 333	50 52 49 49	Cloudy Cloudy		
540 600 660 720	2.6 0.1 0.1 0.1	2.5 2.4 2.45 2.45	152 168 192 216	301 285 289 265	49 50 50 48	Feed SO ₂ = 464 mg/1		
780 840 900 960	0.1 2.8 3.1 3.4	2.45 2.4 2.4 2.4	236 240 252 256	253 241 213 221	50 50 50 48	Feed $SO_2 = 464 \text{ mg}/1$		
1020 1080 1140	3.3 3.4 3.5	2.4 2.4 2.4	260 252 256	201 197 197	51 51 49 50	Feed $SO_2 = 460 \text{ mg}/1$		
1200 1260 1320 1380 1440	3.4 2.6 3.1 2.8 2.7	2.45 2.4 2.4 2.4 2.4 2.4	264 260 264 272 272	189 189 189 189 173	50 50 48 48 50	Feed $SO_2 = 456 \text{ mg/l}$ Add 16 ml H_2SO_3 Feed $SO_2 = 500 \text{ mg/l}$		

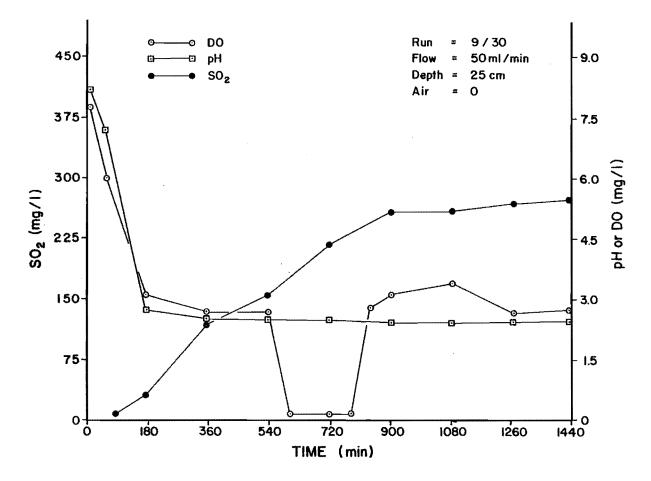


Figure B-7. SO₂ oxidation column observations.

Column		= GAC,	25 cm			
I		Metal =				
D P S	H = 2 $SO_2 = 5$	Soln. .6 .6 20 mg/1 2 mg/1 a	s SO ₂		DO pH SO	<pre>eed Soln. = 5.4 = 2.6 2 = 436 mg/1 4 = 67 mg/1 as SO2</pre>
Column	Data:	Air Flo	w = 0 C	FH		
Time Min.	DO	рН	SO ₂ mg/1	S04 ⁼ as S0 ₂	Flow ml/min	Comments
15	6.6	8.1	0	98	47	
30	5.6	7.4	0	171	51	
60	4.2	6.1	20	264	47	Cloudy
. 90	4.2	4.3	44	287	48	Cloudy
120	4.0	3.4	68	287	50	Cloudy
180	2.4	2.8	92	302	49	Cloudy
240	1.6	2.6	136	302	80	Cloudy
300	0.1	2.5	112	350	48	Cloudy
360	0.1	2.4	128	339	50	Cloudy
420	2.6	2.4	140	328	50	
480	2.6	2.35	156	310	50	×
540	0.1	2.35	164	298	50	
600	0.1	2.35	160	283	50	
660	1.8	2.3	168	275	51	
720	2.4	2.3	188	283	50	Feed SO ₂ = 480 mg/1
780	2.2	2.3	216	261	50	
840	2.9	2.3	240	257	48	
900	2.7	2.3	248	231	50	Feed $SO_2 = 476 \text{ mg}/1$
960	2.6	2.3	240	231	49	
1020	2.6	2.3	252	208	52	
1080	2.9	2.3	260	205	50	Feed SO ₂ = 452 mg/1
1140	3.3	2.35	256	201	49	
1200	3.4	2.35	252	208	49	- 1
1260	2.1	2.35	248	197	47	Feed SO ₂ = 444 mg/1
1320	2.9	2.3	260	194	50	Add 19 m1 H ₂ SO ₃
1380 1440	2.6 2.8	2.3 2.3	260 280	190 179	51 47	Feed SO ₂ = $488 \text{ mg}/1$

Table B-24. SO_2 oxidation column observations--10/2.

.

Table B-25. SO₂ oxidation column observations--10/5.

Column Media = GAC, 25 cm Initial Metal = N/A Final Metal -Initial Feed Soln. Final Feed Soln. DO = 5.7DO = 6.6pH = 2.6 pH = 2.7 $SO_2 = 520 \text{ mg}/1$ $SO_2 = 480 \text{ mg}/1$ $S0_4^{=} = SO_4^{=} = 52 \text{ mg}/1 \text{ as } SO_2$ Column Data: Air Flow = 0 CFH pН S02 S04 Time DO Flow Comments Min. mg/1as SO₂ ml/min 15 8.4 9.1 0 98 46 30 7.9 9.0 0 146 47 60 6.2 8.8 0 220 48 49 90 5.1 7.6 0 253 49 120 4.1 6.4 0 277 Cloudy 180 3.6 3.2 12 318 50 Cloudy 3.2 2.7 24 351 51 Cloudy 240 2.5 300 4.1 64 368 51 Cloudy 3.3 2.5 355 49 360 100 Cloudy 420 2.9 2.5 132 335 49 480 2.9 2.5 156 310 49 50 2.45 172 302 540 2.4 2.4 184 294 50 600 2.3 200 286 51 660 2.4 2.4 720 2.6 2.4 208 286 50 Feed $SO_2 = 496 \text{ mg}/1$ 780 2.6 2.4 204 294 51 840 2.7 2.45 228 269 50 Feed $SO_2 = 476 \text{ mg}/1$ 900 2.6 2.4 232 261 51 4.3 2.35 228 253 51 960 50 1020 1.9 2.6 224 236 50 Feed $SO_2 = 484 \text{ mg}/1$ 1080 2.4 236 232 3.8 1140 244 236 50 2.8 2.4 1200 3.7 2.4 240 -51 1260 3.5 2.4 240 212 52 Feed $SO_2 = 452 \text{ mg}/1$ 1320 3.6 2.4 240 212 52 Add 23 ml H₂SO₃ 244 53 Feed SO₂ = 508 mg/11380 3.3 2.35 203 199 51 1440 3.2 2.3 260

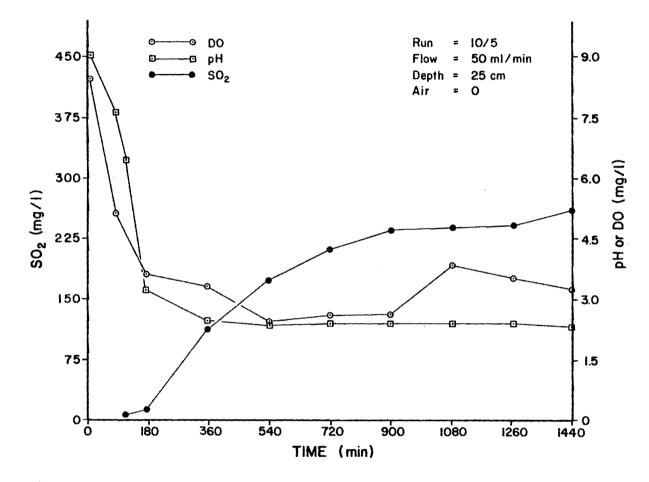


Figure B-8. SO_2 oxidation column observations.

I	<u>Media</u> Initial H Final Me		25 cm N/A			
I F S S	$50_{2} = 2$ $50_{2} = 4$ $50_{4}^{-} = -$.9 .8 76 mg/1		DO pH SO2	eed Soln. = 5.5 = 2.6 2 = 456 mg/1 = 33 mg/1 as SO ₂	
Column	Data:	Air Flo	w = 0 CI	FH		
Time Min.	DO	рН	SO ₂ mg/1	SO4 ⁼ as SO2	Flow ml/min	Comments
15 30	7.8 7.5	8.7 8.7	0 0	66 120	51 53	
60	6.3	8.45	0	170	50	
90	5.3	7.4	0	201	50	
120	4.1	6.0	0	224	50	Cloudy
180	2.85	2.85	0	261	51	Cloudy
240	3.15	2.6	16	295	51	Cloudy
300	2.85	2.5	34	291	52	Cloudy
360	3.2	2.45	56	301	50	Cloudy
420	3.3	2.5	80	301	50	Cloudy
480	3.3	2.4	96	308	50	Cloudy
540	3.3	2.4	112	308	50	Cloudy
600	3.1	2.4	120	275	50	Cloudy
660	3.8	2.6	136	261	50	
720	2.4	2.7	148	275	50	Feed $SO_2 = 460 \text{ mg}/1$
780	2.1	2.5	148	268	50	
840	3.1	2.45	168	234	50	
900	2.8	2.45	172	221	50 50	Feed SO ₂ = $452 \text{ mg}/1$
960	3.0	2.35	188	218	50	
1020	2.8	2.3	184	207	50	Food CO (AC /1
1080	3.1	2.35	176	207	50	Feed $SO_2 = 436 \text{ mg}/1$
1140	3.3	2.4	192	201	50	Add 35 ml H_2SO_3
1200	3.9	2.4	196	201	50 50	Feed $SO_2 = 500 \text{ mg/l}$
1260	3.7	2.35	208 224	207 187	50 50	Feed SO ₂ = $504 \text{ mg}/1$
1320 1380	3.2 3.9	2.3 2.3	224	187	50 50	
1380	3.3	2.3	236	181	50	
T-1-10	5.5	£ • J	~	701	~~	

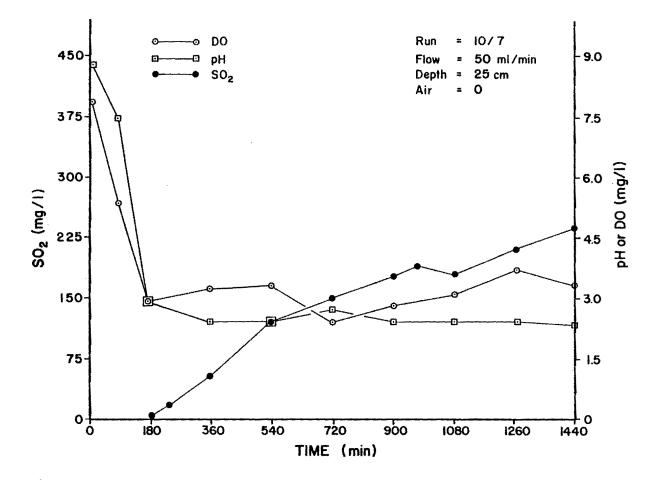


Figure B-9. SO_2 oxidation column observations.

	<u>n Media</u> Initial Final Me	Metal =		imary colur	an	
	$pH = 2$ $SO_2 = 4$.8 .7 86 mg/1			DO pH SO2	= 2.5 = 444 mg/1
	$SO_4^{=} = 4$	9 mg/1 a	as SO ₂		SO4	== 57 mg/l as SO ₂
Colum	n Data:	Air Flo	w = 0 CH	ч		
Time Min.	DO	pH	so ₂	SO4 ⁼ as SO2	Flow ml/min	Comments
15	7.4		0	98	52	
	7.2		0	147	50	D
	5.7		0	244	45	Pump fail
	4.8 4.0		0 0	265 306	49 49	Clauder
120	4.0 3.8		0	366	49 50	Cloudy
240	3.6		20	383	52	Cloudy Cloudy
300	3.3		20 40	391	50	Cloudy
360	1.0		56	399	46	Cloudy
480	3.1		140	350	50	Cloudy
600	2.9	2.4	168	318	48	Cloudy
720	3.1	2.3	176	289	52	Feed $SO_2 = 460 \text{ mg}/1$
840	2.9	2.3	220	261	53	1000 B02 400 mg/1
960	3.5	2.3	220	285	51	Feed SO ₂ = $452 \text{ mg}/1$
	3.4	2.3	236	257	49	
1200	3.4	2.1	208	253	51	Feed SO ₂ = 424 mg/1 Add 29 ml H ₂ SO ₃
1320	3.8	2.2	224	244	52	Feed $SO_2 = 486 \text{ mg}/1$
1440	3.9	2.2	248	220	54	2 ····

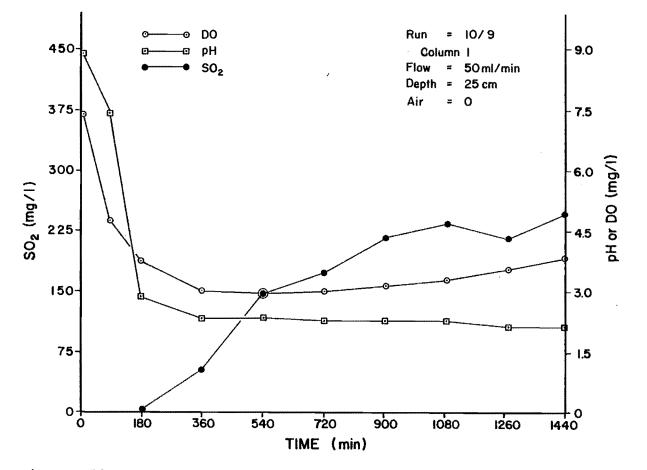


Figure B-10. SO_2 oxidation column observations.

<u>Column Media</u> = GAC, 25 cm, secondary column Initial Metal = N/A Final Metal =									
	al Feed DO = pH = SO ₂ = SO ₄ = -	Soln.		Final Feed Soln. DO = - pH = - $SO_2 = -$ $SO_4^{m} = -$					
Column	n Data:	Air Flo	w = 0 CF	Ή					
Time Min.	DO	pН	SO ₂ mg/1	SO4 as SO2	Flow ml/min	Comments*			
90 120 180 240 300 360 420 540 660 780 900 1020 1140	$7.1 \\ 6.9 \\ 6.8 \\ 6.6 \\ 5.9 \\ 5.0 \\ 4.0 \\ 4.1 \\ 4.1 \\ 4.1 \\ 4.1 \\ 4.1 \\ 4.2 \\ 2.9 \\ 7.0 \\ 7.1 $	2.2 2.1 2.1 2.1		82 131 196 253 253 253 253 285 326 374 391 440 432 432 432	49 46 46 52 47 48 49 50 50 50 50 50	0 0 8 12 28 60 120 144 156 196 188 184			
1260 1380 1500	2.9 3.9 3.7	2.1 2.1 2.1	0 0 0	423 440 476	50 50 50	196 204 220			

*Secondary feed SO₂, mg/1

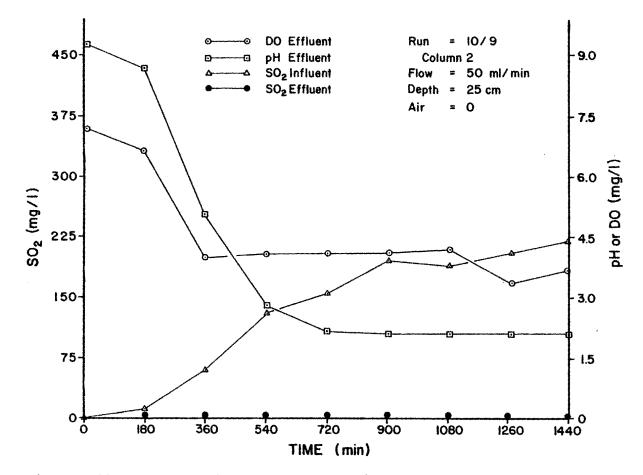


Figure B-11. SO2 oxidation column observations.

Column Media = GAC, 25 cm, primary column Initial Metal = N/A Final Metal # Final Feed Soln. Initial Feed Soln. DO ŧ 5.1 DO = 4.2 pH = 2.7 pH = 2.6 $SO_2 = 500 \text{ mg}/1$ $SO_2 = 488 \text{ mg}/1$ $SO_4^{=} = 49 \text{ mg}/1 \text{ as } SO_2$ $SO_4^{=} = 62 \text{ mg}/1 \text{ as } SO_2$ Column Data: Air Flow = 0 CFH s02 Time DO pН S04 Flow Comments mg/1 Min. as SO₂ ml/min 15 4.7 9.3 0 50 1.0 6.8 40 54 60 208 48 90 0.6 6.5 72 Cloudy 5.9 188 52 180 2.0 50 240 3.2 5.3 216 293 Cloudy 300 3.1 3.7 196 50 360 0.1 3.0 184 293 53 Cloudy 420 0.1 2.8 188 51 285 480 0.1 2.6 208 54 Cloudy 540 0.1 2.6 216 50 Feed $SO_2 = 508 \text{ mg}/1$ 0.1 2.5 204 600 277 49 0.1 2.5 228 49 660 2.5 269 54 Feed $SO_2 = 508 \text{ mg}/1$ 720 0.1 240 780 0.1 2.4 208 49 840 0.1 2.4 216 285 50 900 0.1 2.4 240 50 Feed $SO_2 = 480 \text{ mg}/1$ 960 0.1 2.35 236 50 301 2.3 1020 0.1 224 45 Feed $SO_2 = 476 \text{ mg}/1$ 1080 0.1 2.3 232 281 50 1140 0.7 2.4 224 52 1200 2.4 2.4 248 269 51 1260 2.9 2.4 256 53 Feed $SO_2 = 456 \text{ mg}/1$ 244 55 Add 18 m1 H₂SO3 1320 3.3 2.3 248 54 Feed $SO_2 = 496 \text{ mg}/1$ 1380 3.5 2.3 248 228 54 1440 3.3 2.3 248

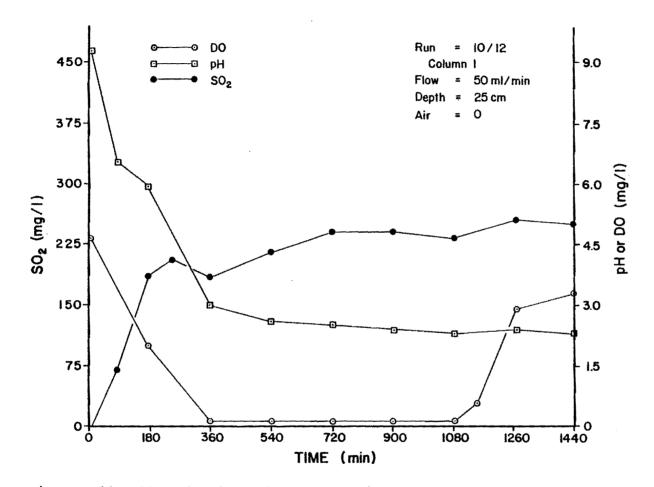


Figure B-12. SO₂ oxidation column observations.

	<u>n Media</u> Initial Final Me	Metal =		econday col	umn		
	al Feed DO = - pH = - $SO_2 = -$ $SO_4 = -$				DO pH SO2	eed Soln. = - = - = - = - = -	
Colum	n Data:	Air Flo	w = 0 CI	FH			
Time Min.	DO	рН	SO ₂ mg/1	SO4 ⁼ as SO2	Flow ml/min	Comments*	
15 120	4.5 4.3	9.1 9.3	0	196	52 52	0 124	
180	3.5	9.0	0	204	48	176	
240	4.2	7.8	0	077	52	170	
300 360	4.4 4.5	6.5 5.1	3.2 6.4	277	51 45	172 176	
420	4.3	3.9	12	326	52	188	
480	4.3	3.3	12	020	51	200	
540	4.4	2.9	12	374	51	188	
600	4.3	2.75	16		50	172	
660	4.5	2.6	16	399	51	200	
720	4.4	2.5	20		52	196	
780	4.4	2.4	20	415	49	196	
840	4.3	2.35	20		49	204	
900	4.2	2.35	16	456	50	200	
960	4.4	2.3	16		47	208	
1020	4.3	2.3	16	448	50	192	
1080	4.3	2.3	16	(0 0	50	196	
1140	4.7	2.25	20	423	50 52	188 188	
1200 1260	4.2 4.1	2.25 2.2	16 8	456	52	220	
1320	4.1 4.7	2.2	12	400	53	220	
1380	4.1	2.2	12	448	53	232	
1440	4.2	2.1	12		52	224	

*Secondary feed SO_2 , mg/1

Note: Samples 300-780 were cloudy

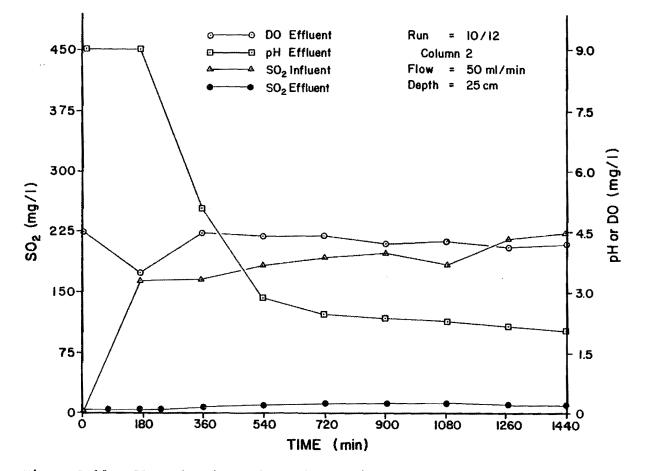


Figure B-13. SO₂ oxidation column observations.

I		Metal =		rimary colu	nn	
D P S		.6	us SO ₂		DO pH SO2	eed Soln. = 4.9 = 2.6 = 460 mg/1 = 53 mg/1 as SO ₂
Column	Data:	Air Flo	w = 0 C	FH		
Time Min.	DO	рН	SO ₂ mg/1	S04 ⁼ as S02	Flow ml/min	Comments
15 60	7.0 5.1	9.0 7.5	0		52 50	
90 180	4.2 3.8	5.2 2.7	8 32	310	50 50 52	Cloudy
240 300	3.1 0.1	2.6 2.5	52 88	371	48 51	Cloudy
360 420	0.1	2.4	104 108	391	45 51	Cloudy
480 540 600	0.1 2.4 3.5	2.4 2.3 2.3	132 148 156	346 346	54 48 50	Cloudy Feed SO ₂ = 488 mg/1
660 720	3.5	2.3	164 172	326	50 49	Feed $SO_2 = 468 mg/1$
780 840	3.5 3.5	2.3 2.3	176 172	326	47 48	Add 26 m1 H_2SO_3 Feed $SO_2 = 496 \text{ mg}/1$
900 960 1020	3.7 2.9 3.2	2.3 2.25 2.25	188 200 224	293	50 50 50	Feed $SO_2 = 500 \text{ mg/l}$
1080 1140	2.9 3.0	2.25 2.25	232 228	285	50 51	Feed $SO_2 = 480 \text{ mg/l}$
1200 1260	3.1 3.0	2.25	232 228	273	51 50	Feed $SO_2 = 484 \text{ mg/l}$
1320 1380	3.3	2.3	220 228	232	57 50	Feed $SO_2 = 452 \text{ mg/l}$ Add 17 ml H ₂ SO ₃
1440	3.3	2.3	220	257	43	Feed $SO_2 = 492 \text{ mg}/1$

Table B-31. SO₂ oxidation column observations--10/14.

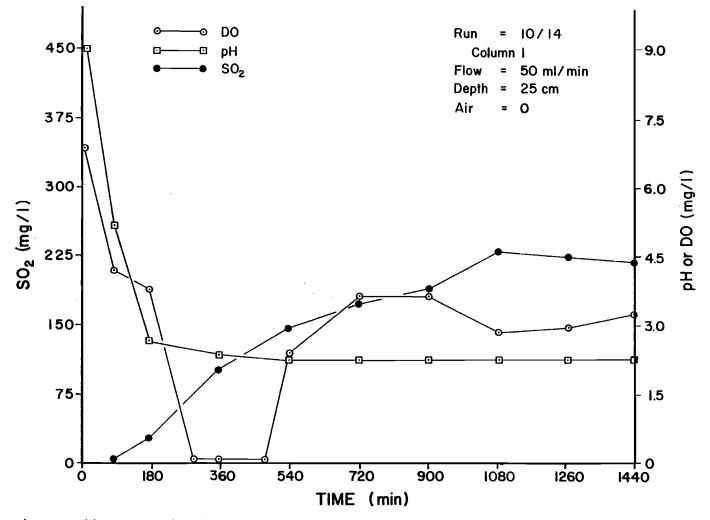


Figure B-14. SO₂ oxidation column observations.

Column Media = GAC, 25 cm, secondary column Initial Metal = N/A Final Metal =									
Initi	ial Feed : $DO = -pH = -SO_2 = -SO_4^{-} = -$	Soln.			DO pH SO2	eed Soln. = - = - = - = -			
Colum	un Data:	Air Flo	w = 0 CH	TH					
Time Min.	DO	рН	SO ₂ mg/1	S04 ⁼ as S0 ₂	Flow ml/min	Comments*			
15	6.5	9.5	0		48	0			
60	6.3	9.35	0		52	4			
90	6.25	9.2	0	155	52	10			
180	5.75	8.5	0	248	52	24			
240	4.8	6.5	0		50	56			
300	5 F	6 6	0		1.9	100			
360 420	5.5 4.9	6.6 3.2	0	318	48 51	100 116			
420	4.9	2.9	0 0	510	50	116			
480 540	4.9	2.9	0	358	50	120			
600	4.9	2.5	0	350	50	120			
660	5.0	2.4	0	403	50	132			
720	4.9	2.35	8	405	51	144			
780	4.8	2.35	12	415	48	148			
840	4.9	2.35	12		47	168			
900	4.5	2.2	12	464	52	184			
960	4.7	2.2	12		49	188			
1020	4.5	2.2	8	464	49	208			
1080	4.5	2.15	4		52	200			
1140	4.6	2.15	4	472	51	204			
1200	4.6	2.15	8		50	212			
1260	4.5	2.1	4	448	50	188			
1320	4.5	2.1	6		50	204			
1380	4.5	2.1	4	440	50	188			
1440	4.5	2.1	4		50	220			

*Secondary feed SO₂, mg/1

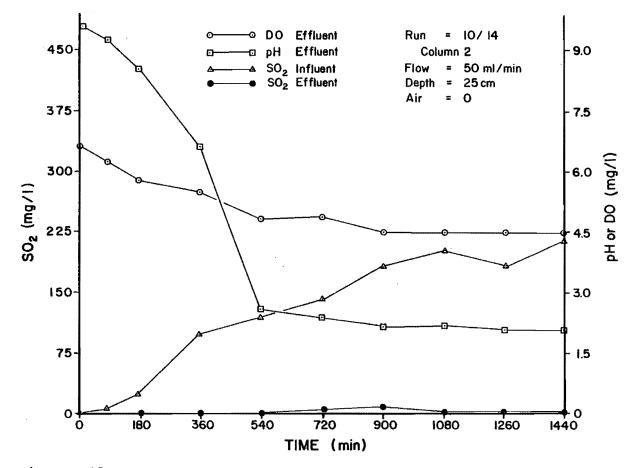


Figure B-15. SO_2 oxidation column observations.

Column Media = GAC, 50 cm Initial Metal = N/A Final Metal ****** Initial Feed Soln. Final Feed Soln. = 4.3 DO = 3.4 DO pH = pH = 2.62.6 $SO_2 = 532 \text{ mg}/1$ $SO_2 = 460 \text{ mg}/1$ $SO_4^{=} = 49 \text{ mg}/1 \text{ as } SO_2$ $SO_4^{=} = 53 \text{ mg}/1 \text{ as } SO_2$ Column Data: Air Flow = 0 CFH S04 Time DO pН so₂ Flow Comments Min. mg/1as SO₂ ml/min 15 6.8 9.0 0 51 54 60 6.1 9.0 0 81 49 90 5.7 8.9 0 120 4.9 8.8 0 158 50 3.7 6.7 0 50 180 240 3.7 5.5 0 266 50 Cloudy 50 3.0 12 300 3.5 360 3.2 2.8 16 50 Cloudy 330 2.7 40 50 420 2.7 480 1.6 2.6 56 338 50 Cloudy Feed $SO_2 = 512 \text{ mg}/1$ 540 1.6 2.6 50 68 600 0.1 2.5 76 361 50 Cloudy 0.1 2.5 84 51 660 88 50 Cloudy 720 0.1 2.45 361 2.4 96 50 780 0.1 51 2.35 330 840 0.1 100 900 2.4 108 50 Feed SO₂ = 480 mg/10.1 49 960 0.1 2.4 104 330 1020 0.1 2.3 112 50 1080 0.1 2.3 116 338 50 Feed SO₂ = 464 mg/11140 0.1 2.3 120 50 Add 18 ml H₂SO3 1200 Feed SO₂ = $\overline{492}$ mg/1 1260 2.0 2.3 156 286 50 1320 49 2.3 188 1380 3.0 1440 3.1 2.3 192 258 51

Table B-33. SO₂ oxidation column observations--10/16.

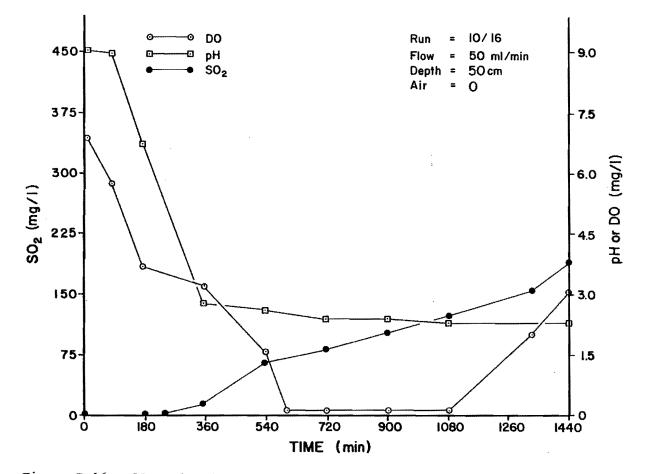


Figure B-16. SO₂ oxidation column observations.

Table B-34. SO₂ oxidation column observations--10/19.

Column Media = GAC, 25 cm Initial Metal = N/A Final Metal = Initial Feed Soln. Final Feed Soln. DO = 4.23.5 DO = pH = pH = 2.7 2.75 $SO_2 = 492 \text{ mg}/1$ $SO_2 = 460 \text{ mg}/1$ $SO_4^{--} = 49 \text{ mg}/1 \text{ as } SO_2$ $SO_4^{=} = 59 \text{ mg}/1 \text{ as } SO_2$ Column Data: Air Flow = 5 CFH Time DO pН s02 S04= Flow Comments Min. mg/1as SO_2 ml/min 6.4 0 49 15 8.7 52 60 6.4 8.6 0 173 90 5.6 7.1 0 50 254 120 5.5 4.7 0 50 180 5.15 2.9 0 50 5.0 0 240 2.7 343 51 300 5.1 2.55 0 51 5.1 360 2.4 0 392 50 5.2 51 420 2.4 0 5.4 51 480 2.3 0 408 5.4 2.3 0 50 540 Feed $SO_2 = 468 \text{ mg}/1$ 0 51 600 5.5 2.25 449 Add 34 ml H₂SO3 660 5.6 2.2 0 51 Feed $SO_2 = 524 \text{ mg}/1$ 720 5.5 2.2 0 465 50 Feed $SO_2 = 464 \text{ mg}/1$ Add 32 ml H₂SO₃ 780 5.7 2.2 0 51 Feed $SO_2 = 520 \text{ mg/l}$ Feed $SO_2 = 488 \text{ mg/l}$ 840 5.7 2.15 0 498 50 5.8 2.1 0 900 50 5.8 960 2.1 0 506 50 50 1020 5.8 2.1 0 0 50 1080 5.9 2.1 510 Feed $SO_2 = 492 \text{ mg/l}$ 1140 5.9 2.1 0 49 1200 5.9 0 502 48 2.1 49 Feed $SO_2 = 488 \text{ mg}/1$ 1260 5.9 2.1 0 1320 6.1 2.1 0 498 52 0 52 1380 6.0 2.1 0 1440 6.0 2.1 461 52

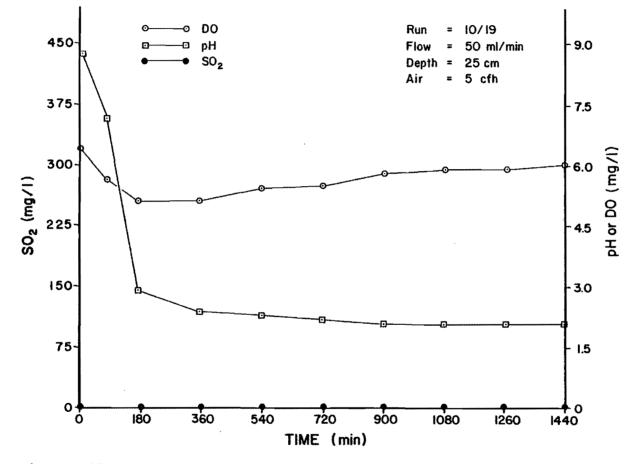


Figure B-17. SO_2 oxidation column observations.

1		= GAC, Metal = etal =					
I F S		.5	as SO ₂	Final Feed Soln. DO = 3.2 pH = 2.5 SO ₂ = 488 mg/1 SO ₄ = 57 mg/1 as SO ₂			
Column	Data:	Air Flo	w = 5 C	FH			
Time Min.	DO	pН	SO ₂ mg/1	504 ⁼ as 502	Flow ml/min	Comments	
15 30 60	7.1 6.8		0 0		91 100		
90 120 180 240	4.1 3.8	2.9 2.3	0 8	382 456	100 100		
300 360 420	3.5 3.6 3.1	2.1 2.1 2.1	24 32 44	529 537	100 100 100		
480 540 600 660	3.2 3.2 3.6 3.8	2.1 2.1 2.1 2.1	40 48 64 68	529 496	100 100 100 100	Feed $SO_2 = 540 \text{ mg}/1$	
720 780 840 900	3.7 3.5 3.6 3.4	2.1	64 72 68 64	492 480	100 100 100 100	Feed $SO_2 = 548 \text{ mg/l}$ Feed $SO_2 = 540 \text{ mg/l}$	
	3.3 3.2 2.9		72 68 64	476 472	100 100 100	Feed SO ₂ = 544 mg/1	
1 140 1 200 1 260	3.1 3.5 3.3	2.1 2.1 2.1	64 64 60	484	100 100 100	Feed $SO_2 = 508 \text{ mg/l}$	
1320 1380 1440	3.5 3.5 3.5	2.0 2.0 2.0	52 52 50	468 456	100 100 100		

Table B-35. SO2 oxidation column observations--10/21.

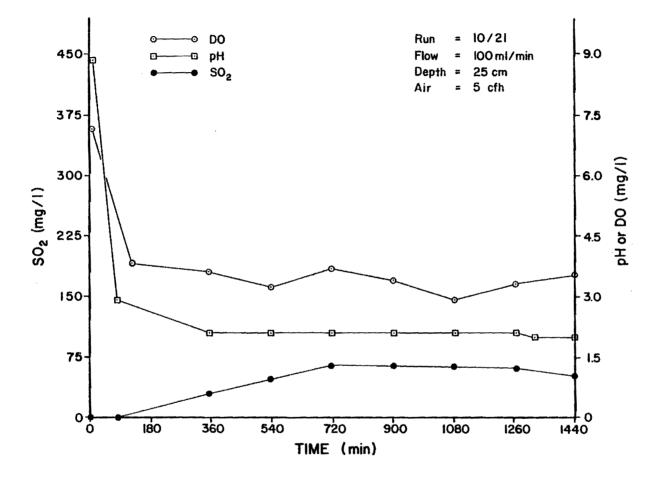


Figure B-18. SO_2 oxidation column observations.

Table B-36. SO2 oxidation column observations--10/23.

Column Media = GAC, 35 cm Initial Metal = N/A Final Metal Initial Feed Soln. Final Feed Soln. DO = 5.2DO = 4.52.5 pH = pH = 2.6 $SO_2 = 488 \text{ mg}/1$ $SO_4^{=} = 45 \text{ mg}/1 \text{ as } SO_2$ $SO_2 = 460 \text{ mg}/1$ $SO_4 = 62 \text{ mg}/1 \text{ as } SO_2$ Column Data: Air Flow = 5 CFH s02 DO Time pН SO4= Flow Comments Min. mg/1as SO₂ m1/min 15 7.2 9.0 0 102 7.2 8.9 100 30 0 60 6.9 8.6 0 204 102 90 100 6.4 6.9 0 120 5.2 3.6 0 277 100 5.1 180 2.6 0 98 2.4 0 100 240 5.4 391 5.5 2.3 0 100 300 100 360 5.6 2.2 0 440 420 5.7 2.2 0 100 0 456 100 480 5.8 2.1 540 5.8 2.1 0 100 5.9 2.1 0 488 100 600 660 6.0 2.1 0 100 720 6.0 2.05 0 501 100 Feed $SO_2 = 452 \text{ mg}/1$ 780 6.0 2.05 0 100 Add 69 ml H2SO3 Feed $SO_2 = 512 \text{ mg/l}$ Feed $SO_2 = 524 \text{ mg/l}$ 840 5.8 2.0 0 521 100 100 900 5.7 2.0 0 960 5.6 2.0 0 100 533 0 100 1020 5.7 2.0 0 Feed $SO_2 = 540 \text{ mg}/1$ 1080 5.7 2.0 533 100 1140 5.8 2.0 0 100 1200 5.7 1.95 0 529 100 Feed SO₂ = 518 mg/1 1260 5.7 1.95 0 100 1320 5.7 2.0 0 537 100 1380 5.8 2.0 0 100 2.0 0 501 100 1440 5.8

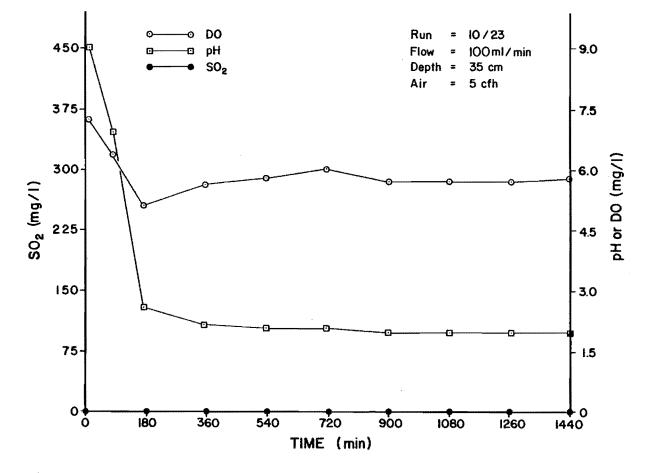


Figure B-19. SO₂ oxidation column observations.

Table B-37. SO2 oxidation column observations--10/26.

Column Media = GAC, 35 cm Initial Metal = N/A Final Metal # Initial Feed Soln. Final Feed Soln. DO = 5.6D0 = 4.1pH = 2.7 2.7 pH = $SO_2 = 456 \text{ mg}/1$ $SO_2 = 496 \text{ mg}/1$ $SO_4 = 45 \text{ mg}/1 \text{ as } SO_2$ $SO_4^{=} = 60 \text{ mg}/1 \text{ as } SO_2^{-}$ Column Data: Air Flow = 5 CFH Time DO S02 pН S04= Flow Comments Min. mg/1as SO₂ ml/min 15 6.6 8.7 0 139 150 30 6.0 7.7 154 0 4.3 8 326 60 3.3 150 Cloudy 3.8 90 2.7 20 150 120 3.8 150 2.5 30 407 Cloudy 3.3 2.35 150 180 56 3.2 2.3 448 150 240 64 2.9 2.2 150 300 78 360 3.1 2.2 82 448 150 420 3.1 2.2 88 150 80 150 480 3.2 2.2 460 84 150 540 3.3 2.2 600 3.5 2.2 104 448 147 660 3.7 2.2 108 150 720 3.6 2.15 112 440 150 Feed $SO_2 = 492 \text{ mg}/1$ 150 780 3.6 2.15 108 840 3.6 2.15 112 423 150 900 3.3 2.15 120 150 Feed $SO_2 = 508 \text{ mg}/1$ 960 3.1 2.15 128 411 150 1020 3.1 2.15 120 150 Feed $SO_2 = 504 \text{ mg}/1$ 1080 3.1 2.15 116 411 150 1140 2.15 116 150 3.0 1200 3.0 2.15 112 383 150 1260 3.0 2.15 112 150 Feed $SO_2 = 488 \text{ mg}/1$ 1320 3.2 2.15 150 108 383 1380 3.3 2.1 104 150 1440 3.6 108 350 150 2.1

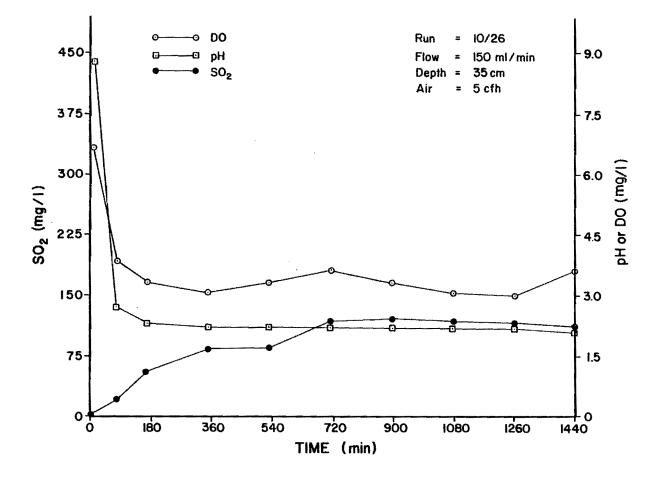


Figure B-20. SO2 oxidation column observations.

Colum	<u>n Media</u> Initial Final Me	Metal =					
<u>Initi</u>	$\begin{array}{r} \text{al Feed} \\ \text{DO} &= 4 \\ \text{pH} &= 2 \\ \text{SO}_2 &= 5 \\ \text{SO}_4^{\text{ansatz}} &= 5 \end{array}$		as SO ₂	$\frac{\text{Final Feed Soln.}}{\text{DO} = 4.1}$ $pH = 2.6$ $SO_2 = 468$ $SO_4 = 60 \text{ mg/1 as } SO_2$			
Colum	n Data:	Air Flo	w = 5 Cl	FH			
Time Min.	DO	ЪН	SO ₂ mg/1	SO4 ⁼ as SO ₂	Flow ml/min	Comments	
15	7.4	9.0	0	52	150		
30	7.2	8.9	0		152		
60	6.9	8.4	0	197	150		
90	5.3	6.5	0		150		
120	4.5	3.4	0	292	150		
180	4.6	2.6	0		150		
240	5.0	2.3	0	400	150		
300	4.8	2.2	0		150		
360	4.8	2.2	0	458	150		
420	4.8	2.2	0		150		
480	4.8	2.1	0	451	150		
540	4.8	2.1	0		150	Feed SO ₂ = 512 mg/1	
600	4.8	2.05	0	473	150		
660	4.6	2.05	0		150		
720	4.7	2.05	0	458	150	Feed SO ₂ = 496 mg/1	
780	4.6	2.0	0		150		
840	4.5	2.0	0	451	150		
900	4.3	2.0	0	/ 51	150		
960	4.4	2.0	0	451	150		
1020	4.4	2.0	0	165	150		
1080	4.5	2.0	0	465	150		
1140	4.5	2.0	0	115	150	T 1 00 ((0 /1	
1200	4.5	2.0	0	465	150	Feed $SO_2 = 460 \text{ mg}/1$	
1260		2.0	0	480	150	Add 41 ml H_2SO_3	
1320	4.7	2.0	4	480	154	Feed SO ₂ = 520 mg/1	
1380	4.8	2.0	4	165	154		
1440	4.6	2.0	4	465	154		

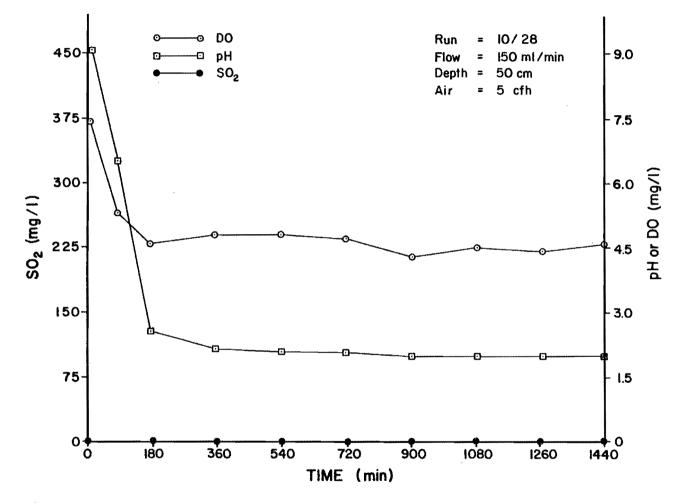


Figure B-21. SO₂ oxidation column observations.

Table B-39. SO₂ oxidation column observations--10/30.

Column Media = GAC, 50 cm Initial Metal = N/A Final Metal Initial Feed Soln. Final Feed Soln. DO = 6.3DO = 4.6pH = 2.5pH = 2.6 $SO_2 = 536 \text{ mg}/1$ $SO_2 = 448$ $SO_4^{-} = 45 \text{ mg}/1 \text{ as } SO_2$ $SO_4^{=} = 65 \text{ mg}/1 \text{ as } SO_2$ Column Data: Air Flow = 5 CFH S04 Time DO S02 рĦ Flow -Comments mg71Min. as SO₂ ml/min 15 7.6 8.8 0 110 171 30 7.2 8.4 0 176 60 5.1 5.9 0 285 176 Cloudy 90 2.85 0 176 4.4 120 176 4.1 2.5 4 383 Cloudy 180 4.0 2.2 22 174 2.2 240 3.8 456 174 34 300 3.8 2.1 44 174 360 4.3 2.1 50 456 174 4.1 2.1 171 420 54 480 3.8 2.1 64 456 171 540 3.2 2.1 68 176 Feed $SO_2 = 512 \text{ mg}/1$ 600 3.1 2.1 76 460 176 660 2.1 76 176 3.6 Feed $SO_2 = 512 \text{ mg}/1$ 720 3.4 2.05 80 436 176 780 3.3 2.05 80 175 840 3.2 2.05 80 436 175 900 3.5 2.05 84 175 175 960 3.4 2.05 84 415 1020 3.7 2.05 80 176 80 407 174 1080 2.05 3.1 76 172 1140 3.6 2.05 Feed $SO_2 = 496 \text{ mg}/1$ 1200 3.7 2.05 76 407 172 1260 3.8 2.05 72 175 1320 3.6 2.05 68 415 175 1380 2.05 66 172 4.1 1440 3.2 2.05 62 391 169

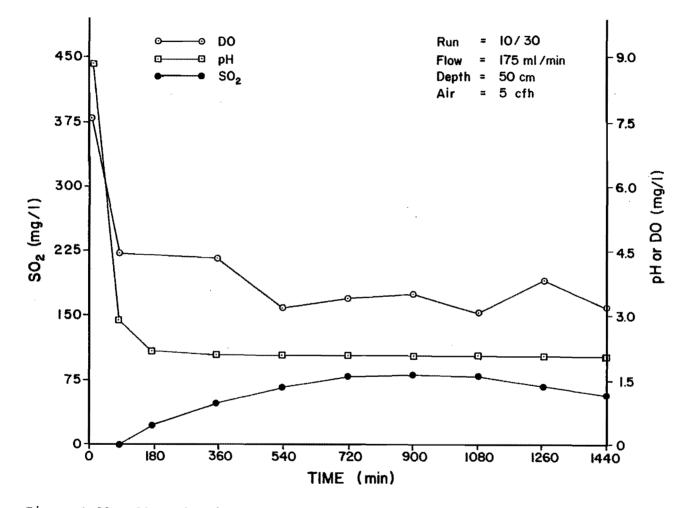


Figure B-22. SO₂ oxidation column observations.

I	<u>Media</u> nitial inal Me	= GAC, Metal = tal =	25 cm N/A					
D p S	H = 2 0 ₂ = 5	.1	s SO2	$\frac{\text{Final Feed Soln.}}{\text{D0} = 3.6}$ $pH = 2.6$ $SO_2 = 428 \text{ mg/1}$ $SO_4^2 = 65 \text{ mg/1 as } SO_2$				
Column	Data:	Air Flo	w = 5 C	FH				
Time Min.	DO	рН	SO ₂ mg/1	S04 [≖] as S0 ₂	Flow ml/min	Comments		
15	7.6	8.6	0	86	76			
30	7.4	8.4	0		78			
60	7.0	6.3	0	231	79	Cloudy		
90	5.6	3.9	0		77	2		
120	4.9	3.0	0	342	75	*		
180	5.1	2.5	0		76			
240	5.7	2.3	0	453	76			
300	5.3	2.2	0		76			
360	5.2	2.15	0	488	76			
420	5.1	2.1	0		76			
480	5.3	2.1	4	496	76			
540	5.0	2.1	4		76			
600	4.9		4	479	76			
660	4.8		4		76			
720	4.9		4	462	76	Feed SO ₂ = $504 \text{ mg}/1$		
780	4.9		4		76	4 1 1 1 1 1 1 1 1 1 1		
840	4.8		4	505	76			
900		2.05	4		76			
960	4.7		4	513	76			
1020	4.8	2.05	8		76			
1080	4.7	2.05	8	488	76			
1140	4.8	2.05	8		76			
1200	4.8	2.05	8	492	76	Feed $SO_2 = 472 \text{ mg}/1$		
1260	4.7	2.05	8	. –	76	Add 17 ml H2S03		
1320	4.9	2.0	8	505	76	Feed $SO_2 = 504 \text{ mg}/1$		
1380	5.1	2.0	8		76			
1440	5.0	2.0	8	470	76			

Table B-40. SO_2 oxidation column observations--11/2.

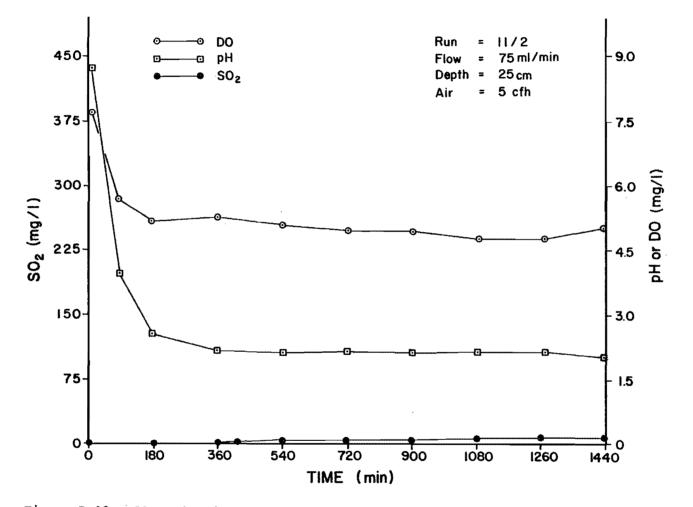


Figure B-23. SO_2 oxidation column observations.

I		= GAC, Metal = tal =					
D P S		.1	as SO ₂	Final Feed Soln. DO = 4.2 pH = 2.6 SO ₂ = 486 mg/1 SO ₄ = 66 mg/1 as SO ₂			
Column	Data:	Air Flo	w = 2.5	CFH			
Time Min.	DO	pН	SO ₂ mg/1	SO4 ⁼ as SO ₂	Flo w ml/min	Comments	
15	7.2	8.7	0	115	154		
30	6.8	8.0	0		150		
60	5.9	6.5	4	251	150	Cloudy	
90	5.0	3.35	20		150	-	
120	4.8	2.9	24	329	150	Cloudy	
180	4.5	2.6	34		148		
240	4.5	2.4	36	387	148	Cloudy	
300	4.1	2.4	36		150	Feed SO ₂ = 464 mg/1	
360	4.1	2.3	40	436	150	Add 36 ml H ₂ SO ₃	
420	4.1	2.2	48		150	Feed SO ₂ = $484 \text{ mg}/1$	
480	4.0	2.2	50	448	150		
540	3.9	2.2	56		150	Feed $SO_2 = 520 \text{ mg}/1$	
600	3.8	2.1	60	477	150		
660	3.5		64		150		
720	3.6	2.1	72	485	150	Feed SO ₂ = 504 mg/1	
780	3.7		80		150		
840	3.6	2.05	80	510	150		
900	3.7		80		150		
960	3.9		84	543	150	Feed $SO_2 = 512 \text{ mg}/1$	
1020	3.9	2.05	84		150	_	
1080	3.8	2.05	80	485	150		
1140	3.8	2.05	84		150		
1200	3.9	2.05	84	457	150	Feed $SO_2 = 496 \text{ mg}/1$	
1260	3.8	2.05	76		150		
1320	4.0	2.1	68	444	150		
1380	4.1	2.1	74		150		
1440	3.9	2.1	76	436	150		

Table B-41. SO₂ oxidation column observations--11/4.

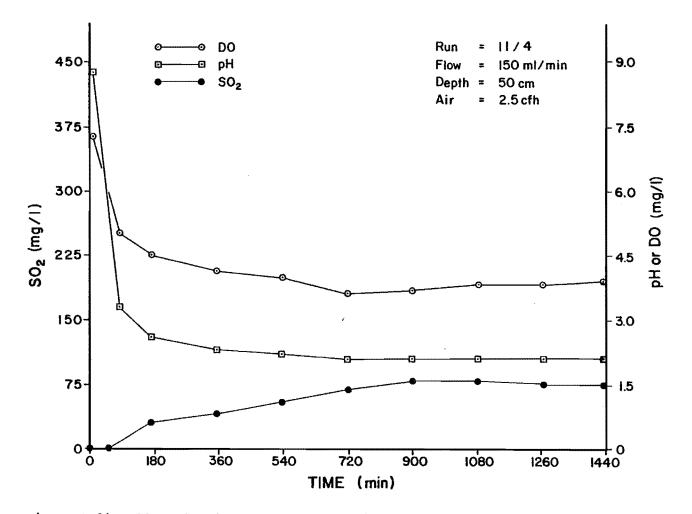


Figure B-24. SO₂ oxidation column observations.

Table B-42. SO₂ oxidation column observations--11/6.

```
Column Media = Anthracite, 50 cm
     Initial Metal = N/A
     Final Metal
                                                  Final Feed Soln.
Initial Feed Soln.
     DO = 6.2
                                                        DO = 5.7
      pH = 2.8
                                                        pH = 2.75
      SO_2 = 496 \text{ mg}/1
                                                        SO_2 = 484 \text{ mg}/1
     SO_4^{=} = 45 \text{ mg/l} \text{ as } SO_2
                                                        SO_4^{=} = 62 \text{ mg}/1 \text{ as } SO_2
Column Data: Air Flow = 5 CFH
Time
                           SO_2
                                       S0/=
          DO
                                                    Flow
                                                             Comments
                   pН
Min.
                           mg/1
                                                  ml/min
                                      as SO_2
         0.5
  15
                 2.5
                            216
                                      476
                                                    150
                                                              Yellow Effluent
  30
         0.1
                 2.5
                            304
                                       360
                                                    150
  60
         0.8
                 2.6
                            360
                                       299
                                                    154
  90
         3.0
                 2.7
                            384
                                                    146
                                                              Clear
                                       308
         4.2
                 2.7
 120
                            392
                                       243
                                                    146
         6.6
                            400
                                                    146
 180
                 2.7
                                      211
 240
         6.6
                 2.7
                            400
                                       219
                                                    146
 300
 360
 420
 480
 540
 600
 660
 720
```

Note: Run ended at 240 due to high breakthrough

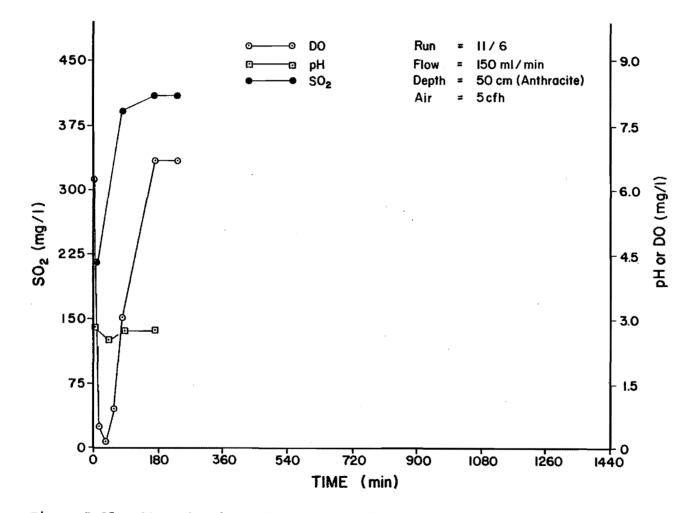


Figure B-25. SO₂ oxidation column observations.

I		= GAC, Metal = tal =						
E F S S	OH = 2 $O_2 = 4$ $O_4^{=} = 1$.5 .7 96 mg/1 30 mg/1	as SO ₂ as CaCO ₃	Final Feed Soln. DO = 2.5 pH = 2.6 SO ₂ = 480 mg/1 SO ₄ ⁼⁼ 146 mg/1 as SO ₂				
Column	Data:	Air Flo	w = 5 C	FH				
Tíme Min.	DO	рН	SO ₂ mg/1	SO4 [≇] as SO2	Flow m1/min	Comments		
15	7.6	8.7	0	170	145			
30	7.4	8.6	0		150			
60	6.8	7.4	0	331	148			
90	6.1	5.8	0		148			
120	5.9	3.5	0	428	145	Cloudy		
180	5.8	2.6	0		145	2		
240	5.6	2.4	0	529	145			
300	5.4	2.35	4		144			
360	5.6		0	565	145			
420	5.4		6		145			
480	5.3		4	590	145			
540	5.5		6		146			
600	5.4		6	638	146			
660	5.0		8		145			
720	5.3		12	646	146	Feed SO ₂ = 500 mg/1		
780	5.4	2.1	16		145	2 -		
840	5.1	2.1	16	630	145			
900	5.5	2.1	16		146			
960	5.3	2.1	12	650	145	Feed SO ₂ = 492 mg/1		
1020	5.2	2.1	16		146			
1080	5.3	2.1	16	646	146			
1140	5.0	2.1	16		145			
1200	5.4	2.1	16	646	145	Feed SO ₂ = 472 mg/1		
1260	5.4	2.1	16		145	Add 27 $m1$ H ₂ SO ₃		
1320	5.3	2.1	20	662	145	Feed SO ₂ = $496 \text{ mg}/1$		
1380	5.2	2.1	16		145	_ 0		
1440	5.1	2.1	20	646	145			

Note: Sewage from Salt Lake City

......

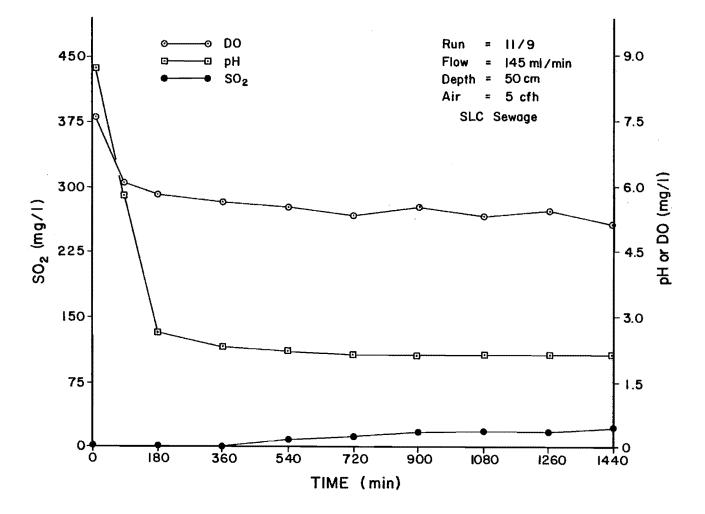


Figure B-26. SO_2 oxidation column observations.

Column Media = GAC, 35 cm Initial Metal = N/A Final Metal = Initial Feed Soln. Final Feed Soln. DO = 6.0 DO = 4.8 = 2.6 pН pH = 2.7 SO₂ = 568 mg/1 SO₄ = 45 mg/1 as SO₂ Alk = 271 mg/1 $SO_2 = 456 \text{ mg}/1$ $SO_4^{=} = 55 \text{ mg}/1 \text{ as } SO_2$ Column Data: Air Flow = 7.5 CFH so₂ so4 Time DO pН Flow Comments Min. mg71 as $\dot{S}0_2$ ml/min 15 7.4 8.6 0 172 150 6.9 152 30 7.6 0 284 150 60 5.2 5.0 0 Cloudy 90 4.5 3.1 4 152 120 4.8 2.7 0 372 146 Cloudy 5.4 2.3 154 180 8 240 4.2 2.2 18 480 154 300 4.8 2.2 22 146 360 3.7 2.15 30 505 148 420 3.7 2.15 36 146 148 480 3.7 2.1 44 489 Feed SO₂ = 532 mg/1 4.1 40 152 540 2.1 4.5 2.1 48 480 150 600 4.2 2.1 150 660 44 3.9 2.1 150 Feed $SO_2 = 508 \text{ mg}/1$ 720 44 465 780 3.7 2.1 48 150 3.6 2.1 48 457 150 840 150 900 3.8 2.1 48 150 Feed $SO_2 = 516 \text{ mg}/1$ 960 3.8 2.1 52 457 1020 3.7 2.1 52 150 1080 3.5 48 150 2.1 441 52 150 1140 3.8 2.1 Feed $SO_2 = 508 \text{ mg}/1$ 1200 3.6 2.1 52 457 150 1260 2.1 48 150 1320 4.1 2.1 44 441 150 1380 4.2 2.1 40 150 1440

Table B-44. SO₂ oxidation column observations--11/11.

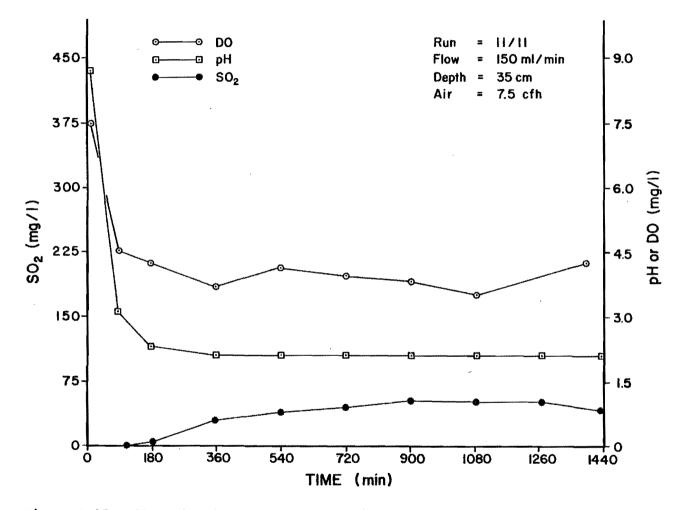


Figure B-27. SO₂ oxidation column observations.

=

]		= GAC, Metal = tal =				
I I S	$\begin{array}{rcl} a1 & Feed \\ 00 & = & 4 \\ 01 & = & 2 \\ 02 & = & 5 \\ 02 & = & 5 \\ 04 & = & 4 \\ \end{array}$.4	as SO2	Final Feed Soln. D0 = 4.2 pH = 2.6 S0 ₂ = 464 mg/1 S0 ₄ = 53 mg/1 as S0 ₂		
Column	n Data:	Air Flo	w = 5 C	FH		
Time Min.	DO	рН	SO ₂ mg/1	SO4 ⁼ as SO ₂	Flow m1/min	Comments
15	7.6	8.8	0	110	143	
30	7.4	8.6	0		145	
60	5.5		0	262	146	Cloudy
90	5.3		6		146	
	4.7		16	358	146	Cloudy
180	5.1		26		146	
	4.8		34	400	146	
	4.5		36		144	
	4.6		40	434	144	
420	4.5		40		144	
480	4.5		42	461	145	
540	4.7		40	(145	Feed SO ₂ = 528 mg/1
600	5.2		44	483	145	
660	4.8		44		146	
720	4.6		48	499	146	Feed SO ₂ = 496 mg/1
780	4.5		48	(0.0	146	
840	4.5	2.1	48	480	146	
900	4.6	2.1	48 48	6.01	146	$E_{22} = 512 - 512$
960	4.5	2.1	48	491	146	Feed $SO_2 = 512 \text{ mg/l}$
1020	4.4	2.1	48	(0)	146	
1080	4.7	2.1 2.1	52	483	146	
1140	4.6		44	4.00	144	$\pi_{0} = 1$ (0) $\pi_{0} = 50/(-1)$
1200	4.6	2.1	48 48	499	146 146	Feed $SO_2 = 504 \text{ mg}/1$
1260	4.7	2.1		461	146	
1320	5.0	2.1	44	401		
1380 1440	4.9 4.9	2.1 2.1	44 40	444	146 146	
T-4-4A	т. <i>Э</i>	6 • 1			140	

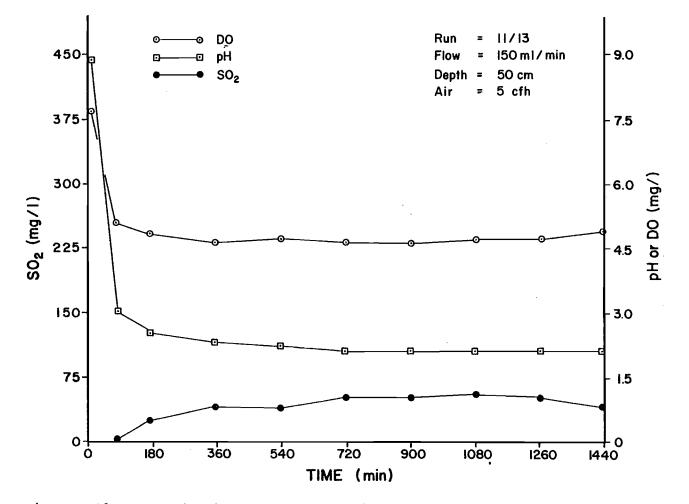


Figure B-28. SO₂ oxidation column observations.

I		= GAC, Metal = tal =				
D P S	1 Feed 0 = 6 0 = 2 $0_2 = 5$ $0_4 = 5$.0	us SO2	DO pH SO	eed Soln. = 5.9 = 2.6 2 = 508 mg/1 4 = 62 mg/1 as SO2	
Column	Data:	Air Flo	w = 5 C	FH		
Time Min.	DO	рН	SO ₂ mg/1	SO4 ⁼ as SO2	Flow m1/min	Comments
15	7.2	8.7	0	75	146	
30	7.2		0		145	
60	7.1		0	194	146	
90		6.6	0		145	
120	4.3	3.5	0	271	145	
180	4.7	2.7	Õ		146	
240	5.4	2.4	Ō	370	144	
300	5.4	2.25	õ	2.0	145	
360	5.6		õ	417	145	
420	5.5	2.2	õ		145	
480	5.9	2.2	Ő	423 `	145	
	6.1	2.2	Ő	423	145	Feed SO ₂ = 512 mg/1
	6.0		õ	430	145	1000 002 J12 mg/1
660	5.9		Ő	400	145	
	5.9		Ő	417	145	Feed SO ₂ = 504 mg/1
	5.8		õ	41,	145	1000 002 904 mg/1
	5.8		0	430	145	
	5.7		0	450	145	
	5.8		0	423	145	Feed SO ₂ = 496 mg/1
1020				423	145	reed 502 = 490 mg/1
	5.7	2.05	0	417		
1080	5.9	2.05	0	41/	145	
1140	5.8	2.05	0	207	143	$E_{0,0} = 1.76 + 11$
1200	5.9	2.05	0	397	145	Feed $SO_2 = 476 \text{ mg}/1$
1260	5.8	2.05	0	600	145	Add 23 ml H_2SO_3
1320	5.7	2.05	4	423	146	Feed $SO_2 = 500 \text{ mg}/1$
1380	6.0	2.05	0	(2 2	146	
1440	5.4	2.0	4	430	146	

Table B-46. SO2 oxidation column observations--11/16.

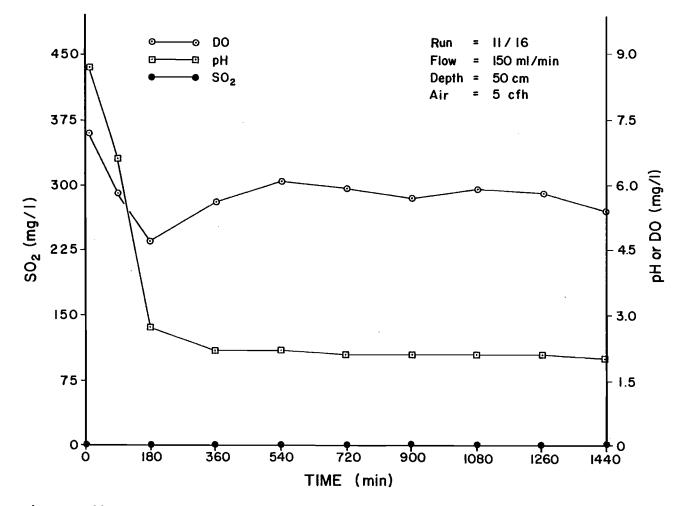


Figure B-29. SO₂ oxidation column observations.

1		Metal =	Cont. 11, N/A	/16			
L F S	a1 Feed 00 = - 00 = - $00_2 = -$ $00_4 = -$	Soln.		Final Feed Soln. DO = 6.4 pH = 2.6 $SO_2 = 502 \text{ mg/1}$ $SO_4^2 = 65 \text{ mg/1 as } SO_2$			
Column	<u>Data</u> :	Air Flo	w = 5 C	FH			
Time Hrs.	DO	рН	SO ₂ mg/1	SO4 as SO ₂	Flow ml/min	Comments	
27	5.4	2.05	4	541	146	аналаан оодоо түүн оос баан оосоосоосоосоосоосоосоосоосоосоосоосоос	
30	4.9	2.0	4	525	146	Feed $SO_2 = 492 \text{ mg}/1$	
33	5.1	2.05	4	512	144	Feed $SO_2 = 484 \text{ mg}/1$	
36		2.05	8	525	144	*512 mg/1	
39		2.05	12	516	145	Feed $SO_2 = 496 \text{ mg}/1$	
42	4.9	2.0	8	516	145	Feed $SO_2 = 500 \text{ mg/l}$	
45	4.4	2.0	8	516	144	Feed $SO_2 = 492 \text{ mg/l}$	
48		2.0	10	508	145	Feed $SO_2 = 484 \text{ mg}/1$	
51	4.8	2.0	16	550	145	*540 mg/1	
54 57	4.3	2.0	20 16	533 491	145 145	$E_{00} = 526 - 100$	
57 60		2.1 2.0	32	491	145	Feed $SO_2 = 536 \text{ mg/}1$	
63	4.0	2.05	36	508	145	Feed $SO_2 = 540 \text{ mg/l}$	
66		2.0	36	516	144	Feed $SO_2 = 512 \text{ mg/l}$	
69	3.8	2.05	28	516	144	Feed $SO_2 = 508 \text{ mg}/1$	
72	3.9	2.0	24	516	144	Feed $SO_2 = 484 \text{ mg}/1$	
75	3.9	2.05	24	483	144	*500 mg/1	
78	3.9	2.1	24	474	144	-	
81	4.7	2.1	16	449	145	Feed $SO_2 = 488 \text{ mg}/1$	
84	4.1	2.1	20	441	145		
87	4.4	2.05	32	441	145	Feed $SO_2 = 488 \text{ mg}/1$	
90 [.]	3.8		40	441	145	Feed $SO_2 = 492 \text{ mg}/1$	
93	3.5	2.05	40	449	145	Feed $SO_2 = 492 \text{ mg}/1$	
93 96	3.5	2.05	40 40	449 441	145 146	Feed $SO_2 = 492$	

Table B-47. SO₂ oxidation column observations--11/17.

*Start new feed tank

I		= GAC, Metal = tal =				
Initia	al Feed	Soln			Final F	eed Soln.
	$\frac{1}{10} = 6$					= 5.1
	он = 2				pH	
-		02 mg/1			-	p = 500 mg/1
S	$SO_{4}^{2} = 5$	2 mg/1 a	s SO2			= 105 mg/1 as SO ₂
	-	0.	-		_	
Column	Data:	Air Flo	w = 5 CI	FH		
Time	DO	рH	SO2	SO4	Flow	Comments
Min.			mg71	as Š0 ₂		
15	7.2	8.4	0	190	103	
30	7.1	7.9	0		98	
60	5.8	4.7	0	261	100	
90	5.1	3.0	0		100	
120	5.1	2.7	0	345	100	
180	4.9	2.4	4		100	
240	4.6	2.2	8	424	100	Feed SO ₂ = 480 mg/1
300	4.5	2.1	8		100	Add 27 ml H_2SO_3
360	4.6	2.1	12	466	100	Feed SO ₂ = $500 \text{ mg}/1$
420	5.0	2.1	12		100	-
480	4.5	2.1	20	483	100	Feed SO ₂ = 516 mg/1
540	4.5	2.1	20		100	
600	4.4	2.1	24	449	100	
BW						See Note
15	6.2	4.9	0	249	102	
30	5.6	2.7	0		100	
60	5.2	2.35	0	374	100	
	5.3		4		100	
	5.1	2.2	4	441	100	
180	5.1	2.2	4		100	
240	5.2	2.15	8	449	100	
300	5.7	2.15	8	1.00	100	P 1.60 / 0.7 / 1
360	5.3	2.15	12	466	100	Feed SO ₂ = 496 mg/1
420	5.1	2.25	12	110	100	
480 540	5.3	2.15	12	449	100	
540	5.6	2.1	16	1.27	100	$\mathbf{F}_{\mathbf{a}} = \mathbf{A} + \mathbf{C} + $
600 660	5.3	2.1	16	437	100	Feed $SO_2 = 484 \text{ mg}/1$
660 720	5.1	2.1	16 16	<u>/ 5 0</u>	100	Add 30 ml H_2SO_3
720 780	5.4 5.2	2.1 2.1	16 16	458	100 100	Feed SO ₂ = 512 mg/1
780 840	5.1	2.1	16	453	100	
900	5.2	2.1	16	775	100	
500	2.2	2 • I	10		100	

Table B-48. SO2 oxidation column observations--11/20.

Column Media= GAC, 25 cmInitial Metal= N/AFinal Metal=Initial Feed Soln.Final Feed Soln.								
<u>Initial</u> DO					Final Fe	eed Soln. = 5.1		
-	= 2	.6			pH	= 2.5		
		2 mg/1				= 500 mg/1		
50	4 - 52	2 mg/1 a	s 502		504	= 105 mg/1 as SO2		
Column	Data:	Air Flo	w = 5 CI	TH				
Time	DO	pН	S02	S04	Flow	Comments		
Min.			mg71	as SO ₂	m1/min			
		2.1		458	100			
		2.1			100	Feed SO ₂ = 504 mg/1		
	5.1		16	479	100			
	5.1		16		100			
	5.0		16	472	100	Feed SO ₂ = 488 mg/1		
	5.1		16		100			
	5.1		16	472	100	Start New Feed Tank		
	5.3		16		100	Feed $SO_2 = 508 \text{ mg}/1$		
	5.3		16	464	100	Add 50 m1 H ₂ SO3		
27 hrs			22	472	100	Feed $SO_2 = 540 \text{ mg/l}$		
		2.05		472	95	Feed $SO_2 = 460 \text{ mg}/1$		
3/hrs	5.1	2.05		479	100	Add 20 ml H_2SO_3		
39 hrs			12	488	95	Feed SO ₂ = 500 mg/1		
40 hrs	3.L	2.0	18	488	100			

Note: Backwashing:

Run tap water up through column, 120 g/hr for 20 min., monitor pH and time.

pH Time (min.)	_
5.0 3.5 6.0 4.0 6.8 20.0	

Column expanded 20% (5 cm) Bed resettled only 2.5 cm, new bed depth = 27.5 cm

In: Fin Initial	itial nal Me <u>Feed</u> = 6 = 2 2 = 5	<u>Soln.</u> .0			Final Fa		
DO	= 6 = 2 2 = 5	.0 .6			Final Fa	ad Colm	
SO2		2 mg/l a	s SO ₂	Final Feed Soln. DO = 6.6 pH = 2.6 SO ₂ = 504 mg/1 SO ₄ = 73 mg/1 as SO ₂			
Column 1	Data:	Air Flo	w = 2.5	CFH			
Time Min.	DO	рН	SO ₂ mg/1	504 ⁼ as 50 ₂	Flow ml/min	Comments	
15 30	7.4 7.2	8.4 8.2	0 0	105	143 146		
60	5.6	6.3	0	244	146	Cloudy	
90	5.1	3.3	6		145		
	5.3	2.7	14	336	145	Cloudy	
180	4.7	2.5	24		145		
240	4.6	2.4	30	400	145		
300	4.4	2.3	36		145		
360	4.5	2.2	36	448	145		
	4.7	2.2	32		145		
	4.7	2.2	40	448	145	Feed $SO_2 = 520 \text{ mg}/1$	
	4.6	2.2	36		145	Start New Feed Tank	
	4.2	2.2	44	448	145	Feed SO ₂ = 536 mg/1	
	4.1	2.15	48	(= 0	145		
	4.3	2.1	48	479	145	Feed SO ₂ = 520 mg/1	
	4.0	2.1	48	501	145		
	4.1	2.1	48	504	145		
	4.1	2.1 2.1	44	1.00	145	Read 60 - 500 /1	
960	4.0		44 44	488	145	Feed SO ₂ = 508 mg/1	
1020	4.0	2.1	44	50%	145		
$\begin{array}{c} 1080 \\ 1140 \end{array}$	4.2 4.2	2.05	44 44	504	145 145		
1200	4.2	2.05 2.05	44	488	145	Feed SO ₂ = 504 mg/1	
1260	4.0	2.05	40 40	400		reeu 302 - 504 mg/I	
1320	4.2	2.05	40 36	488	145 145		
1320	⊶ 7 • ∠	2.00	UU.	400	147		
1440	4.4	2.05	36	479	145		

Table B-49. SO_2 oxidation column observations--11/23.

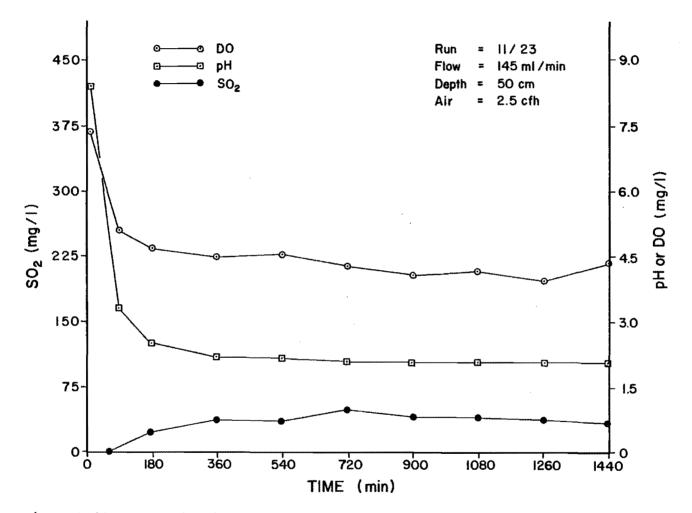


Figure B-30. SO₂ oxidation column observations.

Appendix C

Oxygen Requirements

M. W. $SO_2 = 64$ M. W. $HSO_3 = 81$ M. W. $O_2 = 32$

500 mg/1 SO₂ $(\frac{81}{64}) = 633$ mg/1 HSO₃⁻ At pH 2.5, all aqueous SO₂ is in HSO₃⁻ form HSO₃⁻ + $\frac{1}{2}$ O₂ + SO₄⁼ O₂ required = 633 $(\frac{16}{81}) = 125$ mg/1 Air flow for 150 ml/min.: Assume: Air = 21% O₂ 1 & air = 1.06 g 8% air to water oxygen transfer efficiency 125 mg/1 x 0.00015 x 10⁶ ml/min. x 1 g/ml = 0.01875 g O₂/min.

0.01875 g $0_2/\text{min.} \times 1/0.21 \times 1 \ \ell/1.06$ g air x 1/0.08 x 60 min./h = 63 ℓ/hr

Appendix D

Cost Data

Assumptions for estimating costs of filters

1) Use EPA cost curves for dual media filters.

(EPA 1980, Innovative and Alternative Technology Assessment Manual)

- 2) Use ENR cost index 3357 (November 1980).
- 3) To enter EPA construction cost curves, multiply flows by 4 for worst case and by 2 for best case to account for different filter loading rates.
- Add cost of activated carbon media; ignore cost of sand and anthracite (used to make up cost of influent feed modifications).
- 5) Carbon cost equal for best and worst case.
- 6) Add cost to epoxy line concrete structures.
- 7) Add cost of forced draft blowers.

Activated carbon requirements

- Assume: 0.046 lbs/gal (5.5 g/l)
- Mass Required per MGD = 46,000 lbs
- A.C. Cost = \$0.83/1b, FOB Kentucky

Use \$1.085/1b Installed

FILTRATION, DUAL MEDIA

FACT SHEET 3.1.7

<u>Description</u> - Dual media filtration-gravity is one of the most economical forms of granular media filtration. Granular media filtration involves the passage of water through a bed of filter media with resulting deposition of solids. Eventually, the pressure drop across the bed becomes excessive or the ability of the bed to remove suspended solids is impaired. Cleaning is then necessary to restore operating head and effluent quality. The time in service between cleanings is termed the run length. The head loss at which filtration is interrupted for cleaning is called the terminal head loss, and this head loss is maximized by the judicious choice of media sizes.

Dual media filtration involves the use of both sand and anthracite as filter media, with anthracite being placed on top of the sand. Gravity filters operate by either using the available head from the previous treatment unit, or by pumping to a flow split box after which the wastewater flows by gravity to the filter cells. Pressure filters utilize pumping to increase the available head.

Normally filter systems include multiple filter compartments. This allows for the filtration system to continue to operate while one compartment is being backwashed.

A filter unit generally consists of a containing vessel, the filter media, structures to support the media, distribution and collection devices for influent, effluent and backwash water flows, supplemental cleaning devices (see "Common Modifications"), and necessary controls for flows, water levels and backwash sequencing.

<u>Common Modifications</u> - Filtration systems can be constructed out of concrete or steel, with single or multiple compartment units. Steel units can be either horizontal or vertical and are generally used for pressure filters. Systems can be manually or automatically operated.

Backwash sequences can include air scour or surface wash steps. Backwash water can be stored separately or in chambers that are integral parts of the filter unit. Backwash water can be pumped through the unit or can be supplied through gravity head tanks.

Technology Status - Has been used for many years in the potable water industry, and has been used in the wastewater treatment field for 10 to 15 years.

Typical Equipment/No. of Mfrs. (23) - Dual media filters/20; blowers/7; controls/29.

<u>Applications</u> - Removal of residual biological floc in settled effluents from secondary treatment and removal of residual chemical-biological floc after alum, iron, or lime precipitation in tertiary or independent physical-chemical waste treatment.

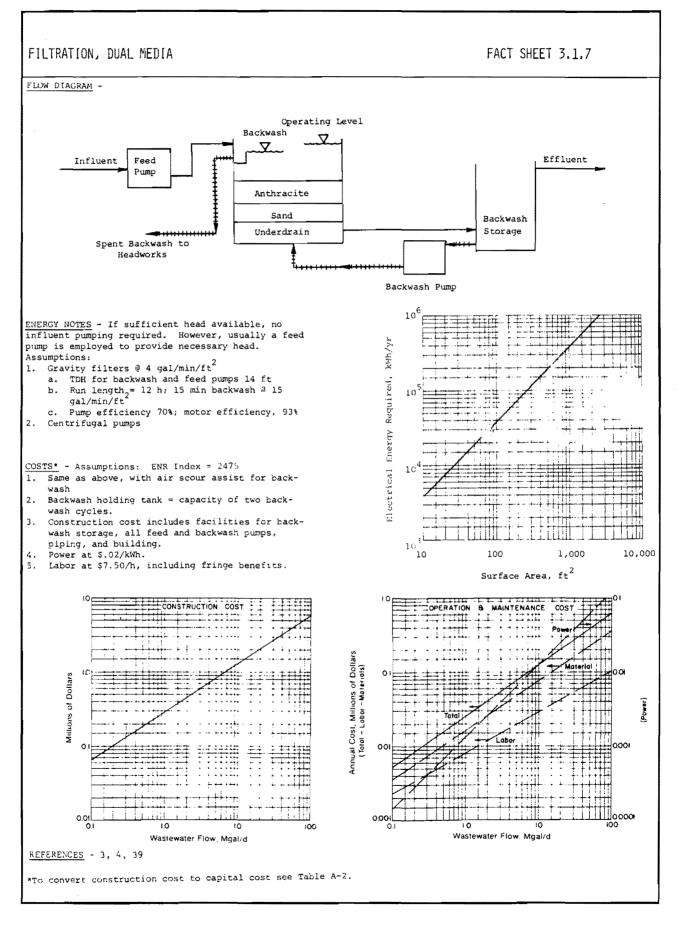
In these applications filtration may serve both as an intermediate process to prepare wastewater for further treatment (such as carbon adsorption, clinoptilolite ammonia exchange columns, or reverse osmosis) or as a final polishing step following other processes.

Limitations ~ Economics are highly dependent on consistent pretreatment quality and flow modulations. Increasing suspended solids loading will reduce run lengths, and large flow variations will deleteriously effect effluent quality in chemical treatment sequences.

Performance -

	Filter Influent	Filter Effluent mg/l
	High Rate Trickling Filter	10 to 20
ŧ,	2-Stage Trickling Filter	6 to 15
	Contact Stabilization	6 to 15
	Conventional Activated Sludge	3 to 10
	Extended Aeration	1 to 5

<u>Chemicals Required</u> - Alum and iron salts, and polymers can be added as coagulant aids directly ahead of filtration units. This, however, will generally reduce run lengths.


<u>Residuals Generated</u> - Backwash water, which generally approximates two to ten percent of the throughput. Backwash water can be returned to the head of the plant.

Design Criteria (99) -Piltration rate 2 to 8 gal/min/ft²; bed depth 24 to 48 inches (depth ratios of 1:1-4:1 sand to anthracite); backwash rate 15 to 25 gal/min/ft²; air scour rate 3 to 5 stdft²/min/ft²; filter run length 8 to 48 hours; terminal head loss 6 to 15 ft.

Unit Process Reliability- Dual media filtration systems are very reliable from both a process and unit standpoint.

Environmental Impact - Requires relatively little use of land. Backwash water will need further treatment, with an ultimate production of solids which will need disposal. Air scour blowers usually need silencers to control noise. No air pollution generated.

References - 23 26, 39, 44, 99

Corrosion lining costs, worst case

For 1 MGD, Assume two filters, 23' sq x 6' deep, ea Total wall area = $(23 \times 6) \times 8 = 1104 \text{ ft}^2$ Total floor area = $(23 \times 23) \times 2 = \frac{1058}{2162} \text{ ft}^2$ For 10 MGD, Assume four filters, 74' sq x 6' deep, ea Total wall area = $(74 \times 6) \times 16 = 7104$ Total floor area = $(74 \times 74) \times 4 = \frac{21904}{29000} \text{ sq ft}$ Lining costs, use \$10/SF

Double costs to account for lining backwash storage tank

Corrosion lining costs, best case

For 1 MGD, Assume two filters, 14' sq x 10' deep, ea Total wall area = (14 x 10) x 8 = 1120 ft² Total floor area = (14 x 14) x 2 = $\frac{392}{1512}$ ft² For 10 MGD, Assume four filters, 30' sq x 10' deep, ea Total wall area = (30 x 10) x 16 = 4800 Total floor area = (30 x 30) x 4 = $\frac{3600}{8400}$ ft² Lining costs, use \$5/SF Double costs to include backwash storage tank 1) Horsepower requirements for blowers

Superficial Velocity fpm	Headloss in. of water per foot of bed		
10	2		
20	4.2		
50	11.5		
100	28		

Headloss through activated carbon by air

Air Flow	Media	Velocity	H _L ,	in. of Wa	HL	HP	
cfm	Area ft ²	fpm	Media	Water Flow	Total*	psi	
750 7500 1500 15000	347 3470 1080 10800	2.2 2.2 1.4 1.4	2 2 0.5 0.5	60 60 20 20	64 64 21 21	2.4 2.4 0.8 0.8	10 100 10 100

*Assume underdrain headloss = 2 x media H₁

2) Annual power cost for blowers

kw*	kwh/yr**	Ş
10	87600	5700
100	876000	57000

*Assume: 90% motor eff.

85% power factor

 \therefore 1 HP \cong 1 kw

**24 hrs/day, 365 days/yr

	· · · · · · · · · · · · · · · · · · ·	Best	t Case	Wors	t Case
	Unit	1 MGD (\$)	10 MGD (\$)	1 MGD (\$)	10 MGD (\$)
1.	SO ₂ Equipment including installation	20,000	20,000	20,000	20,000
2.	Absorption Tower complete w/fan a. Equipment b. Installation	22,983 4,596	190,561 38,112	28,728 11,491	236,551 94,620
3.	Contact Basin (30 min) a. Materials including lining b. Installation, miscellaneous	16,169 4,850	150,080 45,024	30,518 15,259	281,960 140,980
4.	Pumps a. Absorption tower pump	3,000	3,000	3,000	3,000
5.	Oxidation Process, complete	687,100	3,352,600	1,065,200	5,393,200
6.	Lime Process a. Equipment b. Installation	46,250 9,250	73,550 14,710	75,050 37,525	
SUBTOTAL		\$814,198	\$3,887,637	\$1,286,771	\$6,296,386
7.	Electrical & Piping	162,840	777,527	312,693	1,574,096
TOT	AL CAPITAL**	\$997,000	\$4,665,000	\$1,608,000	\$7,870,000

Table D-1. Summary of capital costs for sulfur dioxide disinfection systems.*

*Nielsen, Maxwell & Wangsgard-Montgomery. 1981. Preliminary report for sulfur dioxide disinfection pilot plant. ** Values rounded to nearest \$1,000.

Item	Best Case		Worst Case	
	1 MGD (\$)	10 MGD (\$)	1 MGD (\$)	10 MGD (\$)
Chemicals	15,464	154,640	57,904	579,040
Power	7,457	81,936	12,752	134,857
Maintenance	3,049	12,841	8,309	33,869
Labor	3,300	4,620	5,665	25,800
Σ Ο&Μ	\$29,270	\$254,037	\$84,630	\$773,566

Table D-2. Summary of O&M costs for sulfur dioxide disinfection systems excluding SO₂ oxidation.