Further Studies of the Optimum Operation of Desalting Plants as a Supplemental Source of Firm Yield

Calvin G. Clyde
Wesley H. Blood

Follow this and additional works at: https://digitalcommons.usu.edu/water_rep
Part of the Civil and Environmental Engineering Commons, and the Water Resource Management Commons

Recommended Citation

Clyde, Calvin G. and Blood, Wesley H., "Further Studies of the Optimum Operation of Desalting Plants as a Supplemental Source of Firm Yield" (1971). Reports. Paper 540.
https://digitalcommons.usu.edu/water_rep/540

This Report is brought to you for free and open access by the Utah Water Research Laboratory at DigitalCommons@USU. It has been accepted for inclusion in Reports by an authorized administrator of DigitalCommons@USU. For more information, please contact digitalcommons@usu.edu.

FURTHER STUDIES OF THE OPTIMUM OPERATION OF

DESALTING PLANTS AS A SUPPLEMENTAL SOURCE OF FIRM YIELD

By Calvin G. Clyde and Wesley H. Blood

Final Report to
The Office of Saline Water United States Department of the Interior

Under Contract No. 14-30-2534

Utah Water Research Laboratory College of Engineering Utah State University
Logan, Utah 84321

Abstract

The Operating Rule Program was developed in an earlier study to furnish a means to determine optimum desalting plant size, optimal operating rule, and costs of operating in conjunction with existing water supply systems. Under the present study, five further objectives were accomplished: (1) The program was applied to a New York City water supply system feasibility study in connection with a dual purpose nuclear power plant to develop costs for adding firm yield to the New York City water supply system in conjunctive operation with the desalting plant. (2) The program was modified to enable assessment of stage construction of desalting units when used in conjunction with a natural water supply system on the basis of both constant costs over the period of analysis and inflationary costs. Techniques were developed for applying the program to determine the optimal plant module size, timing of units, and cost of the water. (3) A separate, smaller program was developed to enable analysis of desalting plant operation in conjunction with a natural water supply system having no storage capacity. (4) A training program provided instruction to a selected group designated by OSW on the detailed use and application of the Modified Operating Rule Program. (5) A feasibility study of the Norfolk, Virginia, water supply system was also carried out by applying the modified program.

ACKNOWLEDGMENTS

The following professional staff members and agencies worked directly on various phases of the project, contributed information or data, or cooperated in parts of the study:

Calvin G. Clyde, Associate Director, Utah Water Research Laboratory and Project Leader for Utah State University

Wesley H. Blood, Research Associate USU (Currently with Claire A. Hill and Assoc. of Redding, California)

Dean F. Peterson, Jr., Dean, College of Engineering, USU
C. Y. Wei, Research Assistant, USU

Sam Shiozawa, Project Engineer, Desalting Feasibility and Economics Studies, Office of Saline Water
H. L. Sturza, Desalting Feasibility and Economics Studies Staff, Office of Saline Water
I. Spiewak, Oak Ridge National Laboratory
H. R. Payne, Oak Ridge National Laboratory

New York City Board of Water Supply
New York State Conservation Department
Consolidated Edison Company of New York, Inc.
City of Norfolk, Virginia

TABLE OF CONTENTS

Page
INTRODUCTION 1
SUMMARY 3
WORK ORDER NO.1: APPLICATION OF THE OPERATING RULE PROGRAM TO THE NEW YORK CITY WATER SUPPLY SYSTEM 5
Introduction 5
General Approach 5
Data for Simulation Model 5
Objective of Application Study 6
Results and Conclusions 9
WORK ORDER NO. 2: STAGE CONSTRUCTION ANALYSIS 13
Introduction 13
General Procedure for the Application of the Modified Operating Rule Program 15
General Description of the Simulation Model 16
Conjunctive operation 16
Optional criteria for determining firm yield 16
Storage considerations 18
Generation of streamflow values by operational hydrology 18
Draft on storage 19
Operation of the supplemental source of water 22
Operation of the Simulation Model 23
Phase One--Reservoir Without the Supplemental Supply 24
Firm yield of the reservoir without the supplemental supply 24
Iteration procedure for determining the firm yield, Y_{o} 24
Critical range of the hydrograph 29
Selection of reservoir starting contents 29
Phase Two--Conjunctive Operation 29
Formulation of operating rules 29
Determination of the firm yield associated with each operating rule 29
Determination of feasible operating rules 31
Stage Construction Analysis 31

TABLE OF CONTENTS (Continued)

Page
Formulating a stage construction policy 32
Cost analysis of the staging policy 35
WORK ORDER NO. 3: OPERATING RULE PROGRAM MODIFICATION FOR NO STORAGE CAPACITY SYSTEM 39
Introduction 39
General Procedure 39
WORK ORDER NO. 4: TRAINING SEMINAR 47
WORK ORDER NO. 5: APPLICATION OF THE OPERATING RULE PROGRAM TO THE NORFOLK, VIRGINIA, WATER SUPPLY SYSTEM 53
Description of the Norfolk City Water Supply System 53
Summary of Basic Data Used in the Study 55
Application of the OPRUL Program 55
Stage Construction Analysis 60
Varying Operating Rule Schemes 64
Other Alternatives to Augment the Water Supply 65
LIST OF REFERENCES 69
APPENDICES 71

LIST OF FIGURES

Figure Page
1 Composite area-capacity curve for New York City Water System reservoirs 8
2 Illustration of conjunctive operation 17
3 Optimal representations of demand rate 21
4 Reservoir storage vs. time showing shortages 26
5 Reservoir storage vs. time showing relative minimum drawdowns 27
6 Examples of stage construction policies 33
7 Increase in firm yield vs. optimum supplemental capacity 34
8 Determination of firm yield as modules are added 36
9 Determination of a staging policy 37
10 Graphical procedure for determining modular configuration 40
11 General logic flow for NOSTOR 44
12 Typical NOSTOR input data printout 45
13 Typical NOSTOR cost printout 45
14 Typical NOSTOR simulation and results printout 46
15 Norfolk City water supply system 53
16 Composite area-capacity curve for Norfolk City water system reservoirs 58
17 Typical OPRUL input data printout 59
18 Cost data for 30 MGD plant 60
19 Cost data for 50 MGD plant 60
20 Cost data for 60 MGD plant 61

LIST OF FIGURES (Continued)

Figure Page
21 Cost data for 75 MGD plant 61
22 Optimal supplmental capacity vs. firm yield added 63
23 Alternative curves describing growth of demand 64
24 Typical stage construction cost printout 65
25 Typical stage construction simulation and results printout 68

LIST OF TABLES

Table Page
1 Inflow of New York system in million gallons 7
2 Monthly evaporation potential, excess release and demand coefficients 9
3 Low cost energy coefficients 10
4 High cost energy coefficients 10
5 Capital cost of VTE/MSF desalting plant in million dollars 11
6 Summary of cost computations for dual purpose plant for New York City 12
7 Summary of Operating Rule Program utilization 14
8 Illustrative staging policy 35
9 The schedule of the training seminar 48
10 Participant list of the training seminar 49
11 Norfolk City water supply 54
12 Streamflow records for the Norfolk City water system 56
13 Summary of cost computations, Norfolk City study 62
14 Stage construction costs for three demand growth curves 66
15 Varying operating rule costs for 60 MGD plant for three demand growth curves 67

INTRODUCTION

As population growth places greater demands on existing water systems, new sources of supplemental water supply must be developed. Desalting of seawater or brackish water is one promising source of additional firm water yield. If the deslating alternative is to be evaluated fairly in any given system, a comparison should be made with other alternatives such as reservoirs, imports, groundwater, or recycled wastewater. In an earlier study by Clyde and Blood (1969) a computer program was developed as a planning tool to assist in evaluating supplemental water sources. Frequent reference will be made to the earlier report instead of repeating material that is adequately covered therein. It is strongly recommended that the reader have a copy of the report for reference, since this current report is viewed as a continuation of and supplement to the earlier report.

The Operating Rule Program of Clyde and Blood (1969) embodied two important considerations. First, the natural supplies in existing water systems are highly variable over time. Thus, a desalting plant utilized as a supplemental source should operate intermittently to supply water only when the natural supplies are insufficient. Second, what is added to the system by the desalting plant is an additional quantity of firm and reliable yield. Thus the relevant parameter to compare is the unit annual cost of additional firm yield.

The Operating Rule Program utilizes modern operational hydrology coupled with digital simulation of the water system to determine the firm yield that will be added by a desalting plant and the associated cost of the firm yield. Optimal size of the desalting plant, optimal reservoir size, and other alternatives can also be investigated utilizing the OPRUL program.

The principal problem solved by the program is when to turn the desalting plant on and off. An operating rule is expressed as a percent of the reservoir contents. Thus a 60 percent turn-on rule implies a decision to turn the plant on when the reservoir storage contents decrease to 60 percent of the total. Delay in turning the plant on as a dry period occurs may result in water shortages. Delay in turning the plant off may result in wasting precious water over the spillway. Thus, the program searches for and finds the optimal operating rule for the desalting plant operated in conjunction with the existing system. The optimal rule is the basis for cost computations and comparisons.

In this study the usefulness, efficiency, and flexibility of the Operating Rule Program have been extended; additional applications of the program have been made in analyzing the desalting alternative in water systems; and a training program in the use of the computer program has been conducted.

The specific objectives of the research are stated briefly as follows:

1. To modify the Operating Rule Program so as to add the capability of analyzing stage construction of the desalting plant, improve the program efficiency and thereby decrease computer costs, add optional ways of defining the firm yield of the system, and test the effects of cost escalation on desalting costs.
2. To apply the Modified Operating Rule Program to analyze the desalting alternative in two systems: New York City (dual purpose nuclear power MSF/VTE plant) and Norfolk City (single purpose MSF plant).
3. To prepare a separate version of the Operating Rule Program suitable for analyzing the desalting alternative for water systems in which there is no reservoir storage.
4. To conduct a Training Seminar to assist interested individuals and agencies in learning to utilize the Modified Operating Rule Program.

The parts of the investigation were separately authorized by the Office of Saline Water (OSW) by means of Work Orders and the presentation of the report sections follows the same sequence.

SUMMARY

The Operating Rule Program as reported by Clyde and Blood (1969) was improved and modified and the program was applied to analyses of desalting feasibility in both New York City and Norfolk, Virginia.

Improvements included a change in the procedure for iterating on a value of firm yield so as to reduce the required computer time. An optional cost analysis for a plant built in stages or modules was added to the program. A procedure was also added to allow a constraint, by month, on the desalting plant operation. The constraint overrides any decision for plant turn-on that would be made by the operating rule and forces the plant to remain off for the month or months specified. This last modification was incorporated to take advantage of low cost process steam that might be furnished by a nearby power plant in all but the months of peak power demand.

Work done on the project was divided into five work orders as follows:
Work Order No. 1, Application of the Operating Rule Program to the New York City Water Supply System. Until 1990 the anticipated 500 MGD growth in water requirements of New York City can be met by conventional projects. During the planning period from 1990 to 2020 an additional 450 MGD of firm yield will be needed according to estimates by the New York Board of Water Supply. The Modified Operating Rule Program was used to perform a cost analysis of supplying the 450 MGD added firm yield by means of a desalting plant operating conjunctively with the existing water supply system. The desalting plant considered was a multistage flash vertical tube evaporator (MSF/VTE) plant with energy supplied by a dual purpose nuclear power plant. Five different policies were studied each producing the required firm yield or more at any point in the planning period. The results showed the trade-off between the capital cost of the increased plant capacity and the lower energy cost to be in favor of building the larger plant and using the surplus interruptible low cost energy. The best policy, staged construction of a 750 MGD plant using interruptible energy, produced the required yield at a total cost of $\$ 36,800 / \mathrm{yr} / \mathrm{MGD}$. The effect of escalating cost on the results of the stage construction analysis was also studied. The cost increased to 47,300 and $54,300 \$ / \mathrm{yr} / \mathrm{MGD}$ for annual cost escalations of 3 percent and 5 percent.

Work Order No. 2, Stage Construction Analysis. The Operating Rule Program as developed previously was modified to enable assessment of the stage construction of desalting units when used in conjunction with a natural water supply system on the basis of a stable economy (constant costs over the period of analysis). The program was modified and logic extended in order to function in a variety of analytic situations including annual escalation or inflation of costs at a constant rate. Once the planner has ascertained that the given supplemental source is adaptable to stage construction, a staging policy must be determined. The staging policy indicates the point in time at which the next stage of the supplemental source is to be added to the system. The optimal staging policy is not given directly by the computer program. However, by repeating the analysis in the light of practical and physical limitations of the system, a best (least cost) staging policy for the assumed conditions can be approximated.

Work Order No. 3, Operating Rule Program Modification for No Storage Capacity Systems. For the efficient use of the computer, a separate, smaller computer program was developed to enable analysis of the planning situation where the water system has no appreciable reservoir storage capacity. The operating rule is simple, i.e., turn on the desalting plant or a module when the demand becomes greater than the available natural supply. An example application of the no storage capacity analysis was made for a modified Norfolk, Virginia, water supply system.

Work Order No. 4, Training Seminar. To furnish more information and to encourage and facilitate the use of the Modified Operating Rule Program, a training seminar was held May 26-28, 1970, at Utah State University. Necessary instruction and training to a selected technical group as designated by OSW on the detailed use and application of the Modified Operating Rule Program were given.

Computer services utilizing a Univac 1108 computer were provided. All participants were able to analyze the conjunctive operation of a desalting plant, and also to make a stage construction analysis of a desalting plant. Suggestions received from participants were incorporated in the program, especially changes in the format and information of the computer printout.

Work Order No. 5, Application of the Operating Rule Program to the Norfolk, Virginia, Water Supply System. To examine the use of a desalting plant operated in conjunction with the existing Norfolk, Virginia, water supply system to meet future demands, the Modified Operating Rule Program was applied. The desalting plant costs were based on a single purpose multistage flash distillation process. Computer analysis showed that, to fill the requirement of increasing the firm yield by 45 MGD from 80 to 125 MGD and thus meet continuously the needs of the year 2000 A.D., a 60 MGD plant would be required. Average cost to meet such a demand would be $175,000 \$ / \mathrm{yr} / \mathrm{MGD}$ of added firm yield. This cost is much higher than the cost reported in Work Order No. 1 for the New York City system due to the different type of plant, the much smaller scale of development and the higher cost of firm energy that would be used.

Since demand is actually growing continuously a staged or incremental construction of the facilities may be economically more efficient. Stage construction analyses were carried out for the system with three alternative demand growth curves. For the linear demand growth expressed as $\bar{D}_{i}=30+1.5 j$ in which \bar{D}_{j} is the average demand rate in year j , "average annual cost/ultimate firm yield increase" is $91,296 \$ / \mathrm{yr} / \mathrm{MGD}$. When the demand rate is higher in the earlier stages, and the demand growth curve expressed as $\bar{D}_{i}=130$ $50 e^{-0.77 j}$, "average annual cost/ultimate firm yield increase" becomes $120,659 \$ / \mathrm{yr} / \mathrm{MGD}$. When the demand rate is lower in the earlier stages, and the demand growth curve expressed as $\bar{D}_{j}=60+20 e^{0.40 j}$, "average annual cost/ultimate firm yield increase" becomes 77,155 \$/yr/MGD.

Another strategy was to build the entire plant the first year with capacity greater than enough to meet the ultimate demand at the end of the period when operated according to the optimal operating rule. Then the operating rule was modified frequently to optimally meet the growing demand. The same three demand growth curves mentioned previously were used in the study, and the desalting costs were found to be higher than stage construction costs. However, this strategy has the additional advantage of providing some extra "drought insurance" and growth capacity in its early years.

Work Order No. 1

APPLICATION OF THE OPERATING RULE PROGRAM TO THE NEW YORK CITY WATER SUPPLY SYSTEM

Introduction

A technical team representing Federal, State, City, and power company interests was organized to study the feasibility of a dual purpose nuclear-power and desalting plant to meet the long range (1.985 and beyond) projected water requirements for New York City Metropolitan region. The team consisted of representatives from Consolidated Edison Company, New York City Board of Water Supply, New York State Department of Environmental Conservation, Atomic Energy Commission, and the Office of Saline Water (OSW). The Utah Water Research Laboratory through its contract with OSW was asked to develop costs for adding firm yield to the New York City water supply system in conjunctive operation with the desalting plant.

This report outlines the procedure by which the costs were determined utilizing the Operating Rule Program developed previously for OSW. Results of this work are summarized herein and were utilized in the team study.

General Approach

The Operating Rule Program as reported by Clyde and Blood (1969) was improved and modified slightly to handle the unique features of this application. The procedure for iterating on a value of firm yield was modified in such a manner as to reduce the computational time. A cost analysis for a plant built in modules was added to the program. Further, a procedure was added to put a constraint, by month, on the desalting plant operation. The constraint overrides any decision for plant turn-on that would be made by the operating rule and forces the plant to remain off for the month or months specified.

This last modification was incorporated to take advantage of low cost process steam that can be furnished by the power plant in all but the months of peak power demand.

Data for Simulation Model

Streamflow, storage, and draft data for the study were furnished by the New York City Board of Water Supply. Desalting plant cost data for the MSF/VTE plant were furnished by OSW through the Oak Ridge National Laboratory. The Consolidated Edison Company furnished the energy supply cost details.

The total inflow to the New York City system for the period 1928 to 1967 is shown in Table 1. This includes the runoff into the seven reservoirs. Available storage for the system was determined to be 489.6 BG (billion gallons).

The area-capacity curve, as shown in Figure 1, was used for computing evaporation losses. Monthly evaporation potential for the equivalent reservoir is listed in Table 2.

New York City is required to make releases in excess of its own requirements. The excess release is for pollution control and to fulfill certain court decrees. The required annual mandatory releases were

Table 5. Capital cost of VTE/MSF desalting plant in million dollars.

D.L.F.* (\%)	Plant Size (MGD)													
	100	125	150	175	200	225	250	275	300	325	350	375	400	425
30	39.0	47.2	55.6	64.7	72.8	81.2	89.4	97.5	105.3	113.2	120.8	128.8	136.4	144.1
40	40.5	48.6	57.3	66.3	75.1	83.2	92.1	100.0	108.2	116.4	124.4	132.2	140.0	147.9
50	41.4	49.5	59.0	68.0	77.0-	85.6	94.4	102.8	111.0	119.5	127.7	135.7	143.6	151.8
60	43.6	53.1	62.5	72.0	81.6	91.5	100.8	109.7	118.4	127.5	136.3	144.8	153.1	161.2
70	46.5	56.2	66.8	76.8	87.0	97.4	108.0	117.3	126.5	135.8	145.3	153.5	162.2	171.3
80	49.9	60.3	71.4	82.6	93.5	104.6	115.4	125.2	134.7	144.5	154.2	163.4	172.7	181.5

Table 5. Continued.

D.L.F.*(\%)	Plant Size (MGD)												
	450	475	500	525	550	575	600	625	650	675	700	725	750
30	151.5	159.4	167.1	174.9	182.5	190.5	198.0	205.8	213.5	221.0	228.3	236.0	244.0
40	155.5	163.4	171.2	179.2	187.0	195.5	203.0	210.6	218.4	225.8	233.5	241.5	248.6
50	159.7	167.8	175.6	183.6	191.8	200.2	208.0	215.5	223.3	231.3	238.8	246.5	254.4
60	169.5	177.7	185.9	194.4	202.5	211.0	219.3	227.3	230.5	243.5	251.5	259.4	267.5
70	180.5	189.2	198.2	207.2	216.2	225.5	234.0	241.7	249.8	256.6	265.5	272.0	282.0
80	190.8	199.6	208.8	217.8	228.0	236.0	244.3	252.4	260.5	268.7	276.6	285.0	293.0

*Design Load Factor.

Table 6. Summary of cost computations for dual purpose plant for New York City.

Description of Plant	Best Operating Rule		\$/yr/MGD	Relative cost of desalted water
	ON	OFF		
Staged construction of a 750 MGD plant using interruptible energy (no production in June, July, and August) to meet growing demand. Add 125 MGD modules in years 1,6 , $11,16,21$, and 26	79	65	36,800	1.00
Stage construction of 700 MGD plant using firm energy (no constraint on summer operation)	38	70	39,300	1.07
Unstaged construction of 750 MGD plant, but operating with a changing demand	$\begin{aligned} & 20 \\ & \text { to } \\ & 79 \end{aligned}$	$\begin{aligned} & 30 \\ & \text { to } \\ & 65 \end{aligned}$	51,000	1.39
A 750 MGD plant to meet constant 450 MGD firm yield increase (no production in summer)	79	65	75,800	--
A 700 MGD plant to meet constant 450 MGD firm yield increase (no constaint on summer operation)	38	70	80,800	--
Same conditions as line 1 except 3 percent per year cost escalation	79	65	47,300	1.29
Same conditions as line 1 except 5 percent per year cost escalation	79	65	54,300	1.48

Work Order No. 2

STAGE CONSTRUCTION ANALYSIS

Introduction

The stage construction analysis is a study to investigate the economic advantage associated with incremental construction of desalting plants. A plant designed and installed with capacity to meet future demand will be economically inefficient in the early years of operation. A plant built in stages, in accordance with projected growth in demand, would defer some capital investment until it is needed. Under many conditions the staging of construction would be a more efficient scheme than an initial full size plant.

The Operating Rule Program originally was developed to determine the least cost operating rule for a fixed size desalting plant in conjunctive operation with an existing water system. The program has been modified and the logic extended in order to function in a variety of analytic situations. In each situation the option specification and input requirements are somewhat different. Table 7 summarizes the utilization of the program and the input requirements by categories. (See Appendix A, input data.)

The Operating Rule Program was substantially modified to decrease the computer execution time and thus decrease the cost of its application in practical problems. Work orders 1 and 5 are applications of the Modified Operating Rule Program and the stage construction analysis. Before presenting the detailed description of the stage construction analysis, the general description and explanation of the Modified Operating Rule Program will be introduced in the following section.

Table 7. Summary of operating rule program* utilization.

Case No.	Description of Utilization	Input Data Categories	Key Option Specification
1	YIELD OF EXISTING SYSTEM. Firm yield determination without supplemental supply system. Set NOF in category I equal to zero.	A thru L, and X	$\begin{aligned} & \text { KREAD=2 } \\ & \text { KVAR=1 } \\ & \text { STAGE=1 } \end{aligned}$
2	CONJUNCTIVE OPERATION YIELD. Firm yield analysis with supplemental supply. Finds feasible rule set, performs cost analysis, and selects minimum cost rule.	A thru P,T,U,W,X	$\begin{aligned} & \text { KREAD=3 } \\ & \text { KVAR=1 } \\ & \text { STAGE=1 } \end{aligned}$
3	COMBINED USAGE. Combines cases 1 and 2.	A thru O,T,X	$\begin{aligned} & \text { KREAD=2 } \\ & \text { KVAR=1 } \\ & \text { STAGE }=1 \end{aligned}$
4	COST ANALYSIS. Finds feasible rule set, performs cost analysis, and selects minimum cost rule (all firm yield data is input).	A thru P,T,V,W,X	$\begin{aligned} & \text { KREAD=1 } \\ & \text { KVAR=1 } \\ & \text { STAGE=1 } \end{aligned}$
5	VARYING OPERATING RULE. The operating rule is varied in such a manner that the yield follows the expected demand function (input category I defines the varying operating rule).	A thru Q,T,U(a),W,X	$\begin{aligned} & \text { KREAD=3 } \\ & \text { KVAR=2 } \\ & \text { STAGE=1 } \end{aligned}$
6	STAGE CONSTRUCTION COST ANALYSIS. The costs for a given stage construction policy are computed.	A thru P,R,S,T,U(a),W,X	$\begin{aligned} & \text { KREAD=3 } \\ & \text { KVAR=1 } \\ & \text { STAGE=2 } \end{aligned}$
7	MODIFIED CASE 2. Analysis is based on selected hydrographs as specified by the arguments of the random number generator.	Same as No. 1 and include P	$\begin{aligned} & \text { KREAD=4 } \\ & \text { KVAR=1 } \\ & \text { STAGE=1 } \end{aligned}$

*The complete deck of IBM cards or magnetic tape of the Operating Rule Program is available for $\$ 25$ per copy from the Utah Water Research Laboratory, Utah State University, Logan, Utah 84321.

General Procedure for the Application of the Modified Operating Rule Program

The following are suggested steps to follow in a simple application of the Modified Operating Rule Program:

1. Determine the firm yield of the existing reservoir water supply system. Prepare the input data as specified in case no. 1 of Table 7.
2. Estimate the approximate optimal size of the desalting plant from
in which
$\mathrm{S}_{1} \quad$ is the estimate of the optimum size desalting plant
$\overline{\mathrm{D}}_{\mathrm{d}}$ is the design demand rate
Y_{o} is the firm yield w/o desalting (from 1)
The constant 1.3 is based on past applications of the program.
3. Determine the least cost feasible operating rule for the given design demand rate and plant size. Prepare the data deck as specified in case no. 2 of Table 7. The key to this step of the analysis is to input the turn-on and turn-off fractions that will give a fairly broad range of yields. The output of yields from this computer run can serve as the basis for formulating subsequent runs. A typical set would include four turn-on and four turn-off fractions within the range of 0.40-0.80.

The first trial may or may not locate an approximate least cost feasible rule. If the operating rule set has a broad enough range of yields, then an approximate least cost rule will probably be located. If not, by analyzing the results of the first trial run, a different and smaller set of operating rules can be specified and another computer run should then locate the optimal rule. The plant size, cost, and operating rule should be recorded.
4. Increase the plant size, S, as determined in step 2 , by about 25 percent. Use the same data deck setup as in step 3 but change the plant size and the turn-on and turn-off fractions. Since the size of plant has been increased, the turn-on and turn-off fractions should be somewhat smaller than those used to locate the optimal rule in step 3. If the approximate least cost rule is not obtained on the next trial, adjust the operating rules and run again. A third run is rarely needed.
5. Decrease the plant size, S, from step 2 by approximately 25 percent. Change the plant size and the turn-on and turn-off fractions in the data deck. In this trial the turn-on and turn-off fractions should be somewhat larger than those used in step 3.
6. Compare the costs obtained from steps 3,4 , and 5 . The desired condition is that the cost obtained in step 3 be smaller than that obtained in step 4 and step 5 . If this condition is not achieved then the plant size and operating rule set must be adjusted accordingly and another trial run made. This fourth run should establish the basis for selecting the approximate optimal size plant.

The additional steps to follow in a stage construction analysis are found starting on page 32.

General Description of the Simulation Model

As the demands on our limited water resources continue to increase, the need for efficient water resource utilization must become the focal point in planning and design. Projected demands for water in most areas show the present supply to be inadequate for the future. Therefore, planners are looking for ways to firm up their present supply and obtain additional water. The conjunctive operation of a supplemental source with the existing surface water facilities warrants consideration in such planning situations.

Conjunctive operation

Conjunctive operation is not a new concept; however, its application by digital simulation, as described herein, is a new approach. The usefulness of operating a supplemental source in conjunction with an existing system can be easily demonstrated. A plot of the accumulation of inflow minus demand as a function of time is shown in Figure 2. The curve $A B C D$ is the mass curve of inflow minus demand. The straight line AJEFG represents a balance between inflow and demand. It is assumed that the storage of the existing system is full at time, $\mathrm{t}_{\mathbf{1}}$. If there are not at least BE units of storage in the system, a shortage will be incurred at time, t_{3}.

Consider a situation where the existing storage is less than BE and greater than or equal to BK . Under the given inflow-demand pattern, a shortage would be realized at t_{3}. Therefore, the demand is too great for the given supply. Now consider a supplemental source of a given capacity as represented by line JKLM to be activated at time t_{2}. The difference, at any point in time, between JKLM and the mass curve ABCD is the amount of natural supply needed to satisfy the demand. Therefore, with the storage as stipulated and the supplemental source operating, a shortage is averted at time t_{3}.

Once the supplemental source is operating, the problem is to turn it off at the best time. Ideally, before an extended drawdown of storage occurs, the storage should be full. If, referring to Figure 2, the supplemental source is turned off at any time between t_{2} and t_{4}, the storage will not be full when drawdown starts at t_{6}. If the turn-off is delayed beyond t_{4}, then the storage will spill supplemental water that has been added. This is inefficient utilization of the supplemental source if the supplemental water is more costly than the natural water of the existing system. The ideal turn-off point in time is t_{4}. In this case, the storage would just fill at time t_{6} prior to the subsequent drawdown. Since it is not possible to have a perfect knowledge of future hydrologic events, only by extreme good luck would the ideal time to turn-off the supplemental source be selected. t_{2} is not the time when the supplemental source can be turned on to prevent the shortage from occurring at t_{3}. Therefore, the basic conjunctive operation problem is to determine, based on a given hydrologic inflow, a method (rule) for operating the supplemental source in such a manner as to prevent a drought (shortage) from occurring and at the same time minimize the amount of supplemental water wasted by spills over an extended period of time.

If the supplemental source were operated independently as a base load source, the system would obviously be using the more costly supplemental water during those periods when the natural or conventional water was adequate. Mawer and Burley (1968) and Clyde and Blood (1969) have demonstrated the efficiency achieved by operating desalting plants in a conjunction with water systems.

Optional criteria for determining firm yield

The firm yield of a water supply system, as presented in this study, involves a rate and a specified tolerance of shortages. The rate is the maximum average demand that can be satisfied on a sustained basis. It is a function of the inflow and demand pattern as well as the specified tolerance of shortages. Factors such as frequency, magnitude, and/or duration of shortages can be used to specify the tolerance in a given planning situation.

Figure 2. Illustration of conjunctive operation.

The simulation model described herein permits any one of three different tolerance specifications for determining the firm yield as follows:

1. A firm yield that is based on satisfying the expected demand schedule 100 percent of the years; i.e., no shortages tolerated.
2. A firm yield that is based on satisfying the expected demand schedule something less than 100 percent of the years; i.e., a certain number of years with shortages occurring would be tolerated. For example, a firm yield determined on a 95 percent frequency basis would register 5 years out of 100 in which shortages occurred. The magnitude and duration of the shortages are not considered in this type of firm yield determination. However, the average amount and the average duration of shortages for the given period of hydrology are computed and made available to the planner.
3. A firm yield based on the maximum monthly deficit that can be tolerated during the most severe expected drought. This is accommodated in the model by specifying the maximum tolerable deficit as a decimal fraction of the expected demand.

Choosing the manner in which the firm yield is to be determined is the responsibility of the planner. A design based on a firm yield that tolerates a small frequency of shortages or a small amount of deficits may be acceptable in some planning situations, especially if the consequences were to be only minor austerity measures. On the other hand, the responsible planner may not wish to become subject to the social and/or political consequence of any shortages. Thus, to minimize the probability of shortages occurring the planner may only accept a design based on a firm yield determined with no shortages.

These different ways in which the firm yield can be defined permit a degree of flexibility in the use of the model and, consequently, to the planning tasks to which it may be applied. A firm yield value obtained on the basis of no shortages will obviously be smaller than a firm yield value obtained when shortages are tolerated. Thus, different designs to meet a specified requirement would be required and the associated costs would be different. Thus, there is a cost attributable to the definition of firm yield. Analysis of the costs of designs based on different tolerances of shortages may be made to aid in the decision making process.

Storage considerations

Storage is handled in the model by means of a simulated reservoir with a conservation pool. The pool is augmented by monthly flows greater than the demand. On the other hand, the pool is diminished during those months where the demand is greater than the inflow. Limits are set on the size of the pool. Provisions are incorporated for specifying inactive (dead) storage.

For any complete analysis (i.e., determination of the optimum supplemental capacity to meet the specified demand rate), the storage capacity of the system is fixed. This is a reasonable assumption since the methodology is intended to be applied to planning situations dealing with existing water supply systems.

Storage is utilized in the model to meet a primary demand that is described by an average demand rate and a set of monthly coefficients. The primary demand may be for municipal and industrial needs, irrigation, or other uses as long as the monthly coefficients define the total demand schedule. An extension of the model would be required if the reservoir storage is to fulfill multiple purposes that follow different demand patterns.

The parameters required to define the storage in the model are: (1) maximum available capacity of the reservoir; (2) inactive storage; and (3) surface area as a function of reservoir contents (tabular form).

Generation of streamflow values by operational hydrology

Much of the usefulness of simulation as used in this study depends on the capability of approximating the expected performance of the water supply system that is being modeled. The response of the system over a given period is uniquely determined by the particular sequence of streamflow that is input to the model. In most planning situations, the planner is confronted with short historical records of streamflow on which to base the design. Also, future streamflow events will not duplicate those of the past. Consequently, no qualified statement can be made about the expected performance of a system based on only one sequence of streamflow.

To provide more reliability to the design, operational hydrology is used to furnish many different streamflow sequences. Thus, it is possible to analyze the response of the system to as many different, but "equally likely," streamflow sequences as desired or as can be economically justified. From the spectrum of responses, the planner can approximate the expected performance of the system with cognizance of the possible extremes.

Monthly streamflow sequences are generated by means of a mathematical model such as reported by Fiering (1967). A first-order auto-regression process is utilized that reflects the nonrandomness inherent in a monthly streamflow sequence. The basic one station model utilized involves the solution of the following recurrence equation

$$
\begin{equation*}
K_{i+1}=\beta_{j} K_{i}+Z_{i} \sqrt{1-r_{j}^{2}} \tag{5}
\end{equation*}
$$

in which
K_{i+1} is the generated monthly flow logarithm expressed as a normal standard deviate for month $i+1$
K_{i} is the generated normal standard deviate for month i
$\beta_{j} \quad$ is the least squares regression coefficient for estimating flow in month $j+1$ from flow in month j
$\mathrm{Z}_{\mathrm{i}} \quad$ is a random number from the standard normal distribution, $\mathrm{N}(0,1)$
r_{j} is the correlation coefficient between flows in month $j+1$ and month j
$j=1,2,3 \ldots 12$
$\mathrm{i}=1,2,3 \ldots 12 \mathrm{~N}$
N is the number of years to be generated
Equation (5) can be extended to generate flows at more than one gaging station as reported by the Hydrologic Engineering Center (1967) of the Corps of Engineers. The computer subprogram used to generate the monthly streamflow values is a modified version of the computer program developed by the Hydrologic Engineering Center. As presently constituted, the subprogram (GNFLO) can generate monthly flows for as many as five gaging stations for a period of up to 100 years in length.

Operational hydrology should not be considered as the "cure-all" to planning problems encumbered by meager hydrologic data. In fact, the indiscriminate use of generated streamflow in any planning situation can be very dangerous. Fiering (1967) indicates two potential problems that can produce serious discrepancies in generated flow values. First, the stream must have a stable regime. Secondly, the characteristics of the watershed must remain unaltered either by the forces of man or nature. Furthermore, it is obvious that reliable streamflow generation is impossible without a minimal amount of accurate records.

In order to function properly in its intended role, operational hydrology should synthesize the critical patterns of low (and high) flows that are probably not found in a short historical record. Such flow patterns might by chance occur in a short record, but could be expected only in very long records. Thus, the use and adequacy of a streamflow generation model should be based on this consideration as well as those mentioned previously.

Draft on storage

The draft is the rate of outflow from the reservoir conservation pool as a consequence of any or all of the following:
(a) Releases to satisfy the Municipal and Industrial (M \& I) water needs serviced by the water supply system.
(b) Mandatory releases for other than M \& I requirements.
(c) Evaporation losses.

The overall response of the simulation model is assumed insensitive to any other form of loss (outflow) from storage.

Releases to meet the M \& I requirements are specified in the form of a demand schedule. Included is the planner's best estimate of the average demand rate projected to the end of the planning horizon and a schedule of monthly demand coefficients. The projected demand rate is referred to as the design demand rate. The monthly coefficients reflect the variation in demand from one month to the next. By utilizing information on per capita consumption of water, seasonal consumption patterns, and population projections the planner can project water requirements into the future. The response of the water supply
system during simulation and, consequently, the optimum design selected depends directly on the demand schedule used in the analysis.

During simulation of the system, a demand rate for M \& I requirements is computed each month by the program as follows:

$$
\begin{align*}
d_{i}=\bar{D}_{j} C_{D i} \quad \text { for } i & =1,2, \ldots, 12 \\
j & =1,2, \ldots, N \tag{6}
\end{align*}
$$

in which
$d_{i} \quad$ is the M \& I demand rate for month i
$\vec{D}_{j} \quad$ is the average demand rate in year j
C_{Di} is the seasonal demand coefficient for month i
N is the number of years in the period of simulation
The seasonal demand coefficient must satisfy the following condition:

$$
\begin{equation*}
\frac{1}{12} \sum_{i=1}^{12} C_{D i}=1 \tag{6a}
\end{equation*}
$$

Monthly demand rates must be formulated in the model in two different phases of simulation: (1) Firm yield analysis; and (2) cost analysis. Equation (6) is used in either case, but $\overline{\mathrm{D}}$ can have varied functional forms in the cost analysis simulation. The average demand rate, $\overline{\mathrm{D}}$, can be represented in one of the following forms:
(a) Constant relationship

$$
\begin{equation*}
\bar{D}_{j}=K \quad \text { for } j=1,2, \ldots, N \tag{7}
\end{equation*}
$$

in which
$\mathrm{K} \quad$ is the design demand rate if doing a cost simulation or a first estimate of firm yield if simulation is to determine the firm yield
(b) Linear relationship (used only in cost analysis)

$$
\begin{equation*}
\bar{D}_{j}=A+j \cdot B \text { for } j=1,2, \ldots, N \tag{8}
\end{equation*}
$$

in which
A is the demand rate for $\mathrm{j}=1$ (intercept)
B is the rate of change of demand (slope)
(c) Exponential relationships (used only in cost analysis)

$$
\begin{equation*}
\bar{D}_{j}=U-W e^{-a j} \text { for } j=1,2, \ldots, N \tag{9}
\end{equation*}
$$

in which
is the final demand rate in the year $\mathrm{j}=\mathrm{N}$
$\mathrm{W} \quad$ is the difference between the demand rates in the year $\mathrm{j}=\mathrm{N}$ and the year $\mathrm{j}=1$
a is the fraction that defines the curvature of the exponential relationship
Figure 3 illustrates the possible representation of the demand rate functions.
Mandatory releases from storage generally have priority over all other uses. Usually, the mandatory release must satisfy the terms of some decree or compact. An example would be a decree to maintain a certain gage height at some point on a stream for the purpose of water quality and/or fish and wildlife conservation.

Figure 3. Optional representations of demand rate.
The manner of formulating the mandatory releases will probably vary in each case studied. As a consequence, a modification of the model may be required. The extent of the modification will depend on the complexity of the required releases.

Mandatory releases are formulated in the present model in the same manner as the demand for consumption. A monthly release rate is computed from an average release rate (MGD) over the period of a year and a set of 12 monthly coefficients as follows:

$$
\begin{equation*}
m_{i}=\bar{M} C_{M i} \quad \text { for } i=1,2, \ldots, 12 \tag{10}
\end{equation*}
$$

in which
$\underline{m}_{i} \quad$ is the mandatory release rate for month, i
$\overline{\mathrm{M}} \quad$ is the average mandatory release rate over the period of a year
C_{Mi} is the release coefficient for month, i

The coefficients must satisfy the condition.

$$
\begin{equation*}
\frac{1}{12} \sum_{i=1}^{12} C_{M i}=1 \tag{10a}
\end{equation*}
$$

The set of monthly release coefficients can, in some cases, be determined from past release information.

Evaporation losses are calculated by means of monthly evaporation coefficients. The coefficients are estimates of the average monthly evaporation from lakes and reservoirs in the area, expressed in inches per month. The water lost by evaporation is calculated from

$$
\begin{equation*}
E_{i}=2.7152 \times 10^{-5} \bar{A}_{i} e_{i} \quad \text { for } i=1,2, \ldots, 12 \tag{11}
\end{equation*}
$$

in which
$\mathrm{E}_{\mathrm{i}} \quad$ is the volume of water evaporated in month i in billion gallons (BG)
$\overline{\mathrm{A}}_{\mathrm{i}}$ is the average water surface area (acres) in month i
$e_{i} \quad$ is the evaporation rate for month i in inches
The water surface area is obtained each month by interpolation in the storage content-surface area table.

Operation of the supplemental source of water

The supplemental source is operated in conjunction with an existing water supply system in such a manner as to increase the firm yield of the system. Operating in this way the supplemental source is called on to supply water during the periods of drought which deplete the natural supply. In order to function in its intended role, the supplemental source must satisfy the following requirements:
(1) The supplemental source must be independent from the causative factors producing the natural droughts.
(2) The supplemental source must add water to the system at a constant rate (specified by its capacity or size of development) when it is operating.
(3) The supplemental source must have the capability of being activated (turned on) or deactivated (turned off) with comparative ease.
(4) The capital, operating and maintenance, replacement, turn-on, and turn-off costs must be identifiable.

Any departure from the above would require modifications of some form in the model as presently developed.

During simulation of the system when the supplemental source is activated, it supplies water for a minimum of one full month. There are no provisions in the computer program for operating for any shorter period of time. If extended continuous operation is called for; i.e., for periods of 11 months or greater, provision is made to deactivate the supplemental source for the period of one month for maintenance and/or replacements as required.

Desalination of sea and/or brackish water, pumping from large rivers, pumping from groundwater, importation, and recycling are some of the possible sources of supplemental water.

Operation of the Simulation Model

Simulation is performed in three phases. In phase one the expected firm yield of the reservoir without the supplemental supply is determined. In phase two an expected firm yield is determined for every operating rule specified for the conjunctive operation with the supplemental supply. The time period for which the simulation is conducted is a selected input to the program. Some judgment is required on the part of the user to select an appropriate time horizon. One that appears adequate and is used in subsequent demonstrations is the life expectancy of the reservoir or reservoirs in the system. In phase three costs are determined for a selected set of feasible operating rules.

The basic storage equation involved in the simulation model is

$$
\begin{equation*}
I-0=\Delta S \tag{12}
\end{equation*}
$$

in which
I is the inflow to the system
O is the outflow from the system
ΔS is the change in storage
Substituting for each term of Equation (12) its components treated as rates and introducing subscripts give the following equation:

$$
\begin{align*}
(\Delta S)_{i, j}=q_{i, j}+w \cdot J-e_{i}-d_{i}-r_{i} \quad \text { for } i & =1,2, \ldots, 12 \\
j & =1,2, \ldots, N \tag{13}
\end{align*}
$$

in which
$q_{i, j}$ is the average streamflow rate in month i, year j
w is the rate of the supplemental source
J is 1 if the supplemental source is operating and 0 if the supplemental source is not operating
$e_{i} \quad$ is the average evaporation rate for month i
$d_{i} \quad$ is the average demand rate for month i as obtained from Equation (6)
$r_{i} \quad$ is the average mandatory release rate for month i
N is the number of years in the period being simulated
Prior to the start of each month, the state of the storage in the system is examined by converting each term of Equation (13) to a volume (BG) on the basis of the number of days in the given month, and solving

$$
\begin{equation*}
S_{i+1, j}=S_{i, j}+Q_{i, j}+W_{i} \cdot J-E_{i}-D_{i}-R_{i} \cdots \cdots \tag{14}
\end{equation*}
$$

in which
$S_{i+1, j}$ is the contents of storage at the start of month $i+1$ (or end of month i), year j
$S_{i, j}$ is the contents of storage at the start of month i year j
All other terms correspond to their counterparts in Equation (13)
The value of $S_{i+1, j}$ is compared to the specified limits of storage. If $S_{i+1, j}$ is greater than the maximum, an average (spill) is recorded and $S_{i+1, j}$ is set equal to the maximum value. On the other hand, if $S_{i+1, j}$ is less than the minimum, a deficit is recorded and $S_{i+1, j}$ is set equal to the minimum value.

Phase One--Reservoir Without the Supplemental Supply

The objectives of the simulation in phase one are as follows:
(1) Obtain the firm yield of the existing water supply system, Y_{0}.
(2) Identify the critical range of the generated streamflow hydrograph.
(3) Select, at random, a set of reservoir starting contents from a sample of the distribution of year-end contents.

Firm yield of the reservoir without the supplemental supply

As previously mentioned, the firm yield of the system is the average demand rate, with its associated seasonal variation, that can be satisfied subject to some specified constraints on shortages. Thus, the value of the firm yield for any given generated hydrograph cannot be solved for directly. The unknown quantity in the simulation is \bar{D} from Equation (6). Consequently, d_{i}, in the basic storage equation, Equation (13), is dependent on the value of unknown $\overline{\mathrm{D}}$. An iteration procedure is proposed as the method to determine the value of $\overline{\mathrm{D}}$ that satisfies the constraints on shortages. Once determined, the value of $\overline{\mathrm{D}}$ is identified as the firm yield of the system, Y_{o}. The following sections outline the iteration procedure used to determine Y_{o}.

Iteration procedure for determining
 the firm yield, Y_{o}

The procedure outlined identifies the critical range of the period of generated monthly streamflow. Iteration is subsequently carried out over the critical range and not over the entire period. The iteration technique is described in the following steps.

Step 1. Make an initial guess for the yield (demand that can be satisfied), Y. This first guess is made as a function of the mean inflow to the system and the estimated scale of development as follows:

$$
\begin{equation*}
Y_{1}=\bar{Q} \cdot f \tag{15}
\end{equation*}
$$

in which
$\mathrm{Y}_{1} \quad$ is the firm yield estimate and is used as the value of $\overline{\mathrm{D}}$ in Equation (6)
$\overline{\mathrm{Q}}$ is the mean inflow rate calculated from the historic record in MGD
f is an estimated fraction, $0<\mathrm{f}<1$
Step 2. Using the demand rate (yield estimation) obtained in step 1, simulate operation of the reservoir without the supplemental supply for the entire period of N years. This involves the repetitive solution of Equation (14). The system is operated under the policy that the full demand is satisfied every month as long as water is available.

During simulation, the response of the system to the particular pattern of inflow and outflow is recorded. Of particular interest are the following:
(a) The relative minimum drawdowns (where the reservoir content stops decreasing and begins to increase).
(b) The month and year of each drawdown in (a).
(c) The month and year of the reservoir full condition prior to each minimum in (a).
(d) The amount of each monthly deficit that occurred, and the amount of the shortages.*
(e) The month and year of each deficit.
(f) Duration, in months, of each shortage.
(g) The month and year of the reservoir full condition prior to each deficit and each shortage in (d).

Step 3. After simulation is completed for the period of N years, the response is compared to the specified definition of firm yield. Logic is provided for the following cases.

Case A. Firm yield defined at the 100 percent level; i.e., no shortages tolerated. The iteration technique in this case works equally well whether shortages did or did not occur during the simulation. The iteration procedure can move directly to step 4.

Case B. Firm yield defined at less than 100 percent; i.e., some number of years with shortages will be tolerated. For example, let the firm yield be defined at the 98 percent level. The iteration scheme then requires, as a minimum, three years in 100 years in which shortages were recorded. In the event that the required number of years with shortages are not obtained, the demand rate, Y , is increased by an appropriate amount. Step 2 and step 3 (case B) are repeated until the requirement on the years with shortages is satisfied. If the initial estimate of the demand rate is large enough, the required number of years with shortages will be obtained on the first trial.

Case C. A specified maximum monthly deficit will be tolerated. In this case monthly deficits become the focal point of the iteration. As in case B some deficits must be recorded before the iteration procedure can continue. Thus, if no monthly deficits were recorded, Y must be incremented and step 2 repeated.

Step 4. Determine the critical range of the period. The logic employed in defining the critical range depends upon the manner in which the firm yield is defined. Thus, either the shortages, the monthly deficits, or the relative minimum drawdown could be the controlling factor. The logic is somewhat different in each of the three cases so each case is treated separately.

1. Shortages are the controlling factor. The critical shortage is a function of the amount of the shortage, the number of months since the prior reservoir full condition, and the tolerance of shortages specified in the definition of firm yield. To illustrate, Figure 4, a graph of reservoir storage versus time, shows shortages A, B, C, and D of amounts $20,33,40$, and 11 BG respectively. An index of the severity of each shortage is calculated as follows:

$$
\text { Severity Index }=\frac{\begin{array}{c}
\text { Amount of shortage plus sum of prior } \\
\text { shortages having the same prior } \\
\text { reservoir full condition }
\end{array}}{\text { Months since reservoir full }}
$$

The index calculated in the above illustration produces values of $1.00,1.77,1.86$, and 1.73 respectively. If firm yield is defined as 100 percent, then shortage C with the largest value of the index (1.86) is the critical shortage. The critical range over which subsequent iteration is conducted is obtained by moving back in time five years from point F. The range is, therefore, 110 months. Moving back five years assures that the reservoir full condition is always achieved when iterating over the critical range.

If the firm yield definition tolerates two occurrences of shortages, then shortage \mathbf{D} (Severity Index $=$ 1.73) is the critical shortage and the critical range is 120 months.

[^0]

Figure 4. Reservoir storage vs. time showing shortages.
2. Monthly deficits are the controlling factor. The logic in this case is similar to the shortage case. A severity index is determined for each shortage occurring over the simulation period. The critical monthly deficit occurs in some time during the shortage with the largest value of the severity index. The critical range begins five years preceding the reservoir full condition prior to critical deficit and ends at the end of the shortage in which the critical deficit occurs.
3. Relative minimum drawdowns are the controlling factor. The only condition under which this logic is employed is when the firm yield is defined at 100 percent and no shortages were recorded from step 2. Figure 5, a graph of reservoir versus time, shows eight (A-H) relative minimums. The procedure must identify the critical drawdown, that is, the drawdown that approaches the minimum usable storage the fastest as the demand rate, $\overline{\mathrm{D}}$, is increased. Minimums at $\mathrm{A}, \mathrm{B}, \mathrm{E}$, and H can obviously be removed from consideration. Minimums, C, D, F, G, have values of $5,9,5$, and 10 BG , respectively. The critical drawdown is a function of the difference between the drawdown and the minimum usable storage and the number of months since the prior reservoir full condition. Let the number of months between C and D and full condition at I be 20 and 30 months. Likewise, let the number of months between F and G and full condition J be 18 and 25 months. A critical index is calculated as

$$
\begin{equation*}
\text { Critical Index }=\frac{\mathrm{d}_{\mathrm{m}}-\mathrm{U}_{\min }}{\text { Months since reservoir full }} \tag{17}
\end{equation*}
$$

in which

[^1]The differences in this illustrative example for a minimum usable storage of 2 billion gallons are 3,7 , 3 , and 8 respectively. The corresponding values of the critical index are $.15, .23, .17$, and .32 . In this case, the smallest value of the index identifies the critical drawdown. In the example, drawdown C (index of .15) is the critical drawdown and the critical range is I minus five years to the occurrence of drawdown C plus an arbitrary two months.

Step 5. Record the critical range as obtained in either (1), (2), or (3) from step 4 for the given period of generated streamflow.

Step 6. Iterate to obtain the firm yield based on the critical range as recorded in step 5. The logic of the iteration procedure is dependent upon the controlling factor as was the determination of the critical range in step 4. Each case is outlined separately.

1. Shortages are the controlling factor. The objective is to iterate to remove the critical shortage that occurs at the end of the critical range. The iteration formula is:

$$
\begin{equation*}
Y_{i+1}=Y_{i}-\frac{\left(A_{s}\right)_{i}}{.0305 M} \quad \text { for } i=1,2, \ldots, \leq, 15 * \tag{18}
\end{equation*}
$$

in which
$\mathrm{Y} \quad$ is the estimate of the firm yield
$\left(A_{s}\right)_{i}$ is the amount of the critical shortage in the $i^{\text {th }}$ iteration
M is the number of months since the previous reservoir full condition.

Figure 5. Reservoir storage vs. time showing relative minimum drawdowns.

[^2]The iteration is terminated when

$$
\begin{equation*}
\left(A_{s}\right)_{i} \leq e \cdot Y_{i}(.0305) \tag{19}
\end{equation*}
$$

in which
e is the error tolerance expressed as a decimal fraction
2. The monthly deficit is the controlling factor. The iteration is conducted, in this case, in such a manner as to remove all monthly deficits greater than a specified amount. The amount of deficit tolerated is expressed as a fraction of the demand rate (yield). It is specified by the program user as input variable FDT.

The iteration formula is

$$
\begin{equation*}
Y_{i+1}=Y_{i}-\frac{\left(A_{d}\right)_{i}}{.0305 M} \quad \text { for } i=1,2, \ldots, \leq, 15 \tag{20}
\end{equation*}
$$

in which
$\left(A_{d}\right)_{i}$ is the summation of monthly deficits in the critical shortage up to and including the critical deficit, in the $\mathrm{i}^{\text {th }}$ iteration
M is the number of months between the critical deficit and the prior reservoir full condition
Y is the same as in Equation (18)
The iteration is terminated when

$$
\begin{equation*}
\left|\left(M_{c}\right)_{i}=(.0305) Y_{i} \cdot f\right| \leq e \tag{21}
\end{equation*}
$$

in which
$\left(\mathrm{M}_{\mathrm{c}}\right)_{\mathrm{i}}$ is the critical monthly deficit in the $\mathrm{i}^{\text {th }}$ iteration
f is the allowable deficit expressed as a fraction
$Y_{i} \quad$ is the yield (demand rate) in the $i^{\text {th }}$ iteration
3. Relative minimum drawdown controls. The objective in this case is to draw the reservoir down to the minimum usable contents without incurring any deficits. The iteration formula is

$$
\begin{equation*}
Y_{i+1}=Y_{i}+\frac{\left(d_{m}\right)_{i}-U_{\min }}{.0305 M} \quad \text { for } i=1,2, \ldots, \leq, 15 \tag{22}
\end{equation*}
$$

in which
Y_{i} is the estimate of the yield
$\left(d_{m}\right)_{i}$ is the drawdown in the $i^{\text {th }}$ iteration
$\mathrm{U}_{\text {min }}$ is the minimum usable contents
M is the number of months since the reservoir was full
The iteration is terminated when

$$
\begin{equation*}
\left|\left(d_{m}\right)_{i}-U_{\min }\right| \leq e \cdot Y_{i}(.0305) \tag{23}
\end{equation*}
$$

The value of the yield determined from any iteration formula (17), (18), or (19) is the corresponding value of firm yield of the reservoir without any supplemental supply and is designated as Y_{o}.

Critical range of the hydrograph

The identification of the critical range is actually a by-product of the iteration performed above to get Y_{0}. This range is uniquely determined for each generated streamflow hydrograph by the definition of firm yield (constraints on shortages). It is identified and recorded in this phase of simulation so that the computational effort will be greatly reduced when entering phase two.

Selection of reservoir starting contents

The reservoir contents at the beginning of a simulation period can exert some influence upon the overall results. This is more likely the case if the simulation period is short. A suitable selection of a starting storage content, or a set of replicate starts, requires that the stationary state probabilities of the reservoir contents be known in advance (Fiering, 1967). Since this is not practical to attain, a next best procedure is advocated.

Treating the first period of simulation as a "typical" period, a 50-year sample of year-end storage contents is generated. The assumption was made at the beginning of the computation that initial storage contents were one-half the storage capacity. The first period value of firm yield, Y_{o}, was determined on this assumption. In the procedure it has been observed that the value of Y_{o} determined over a long simulation period is not sensitive to this starting assumption. With the value of $\overline{\mathrm{D}}$ in Equation (6) set equal to Y_{o}, simulation is next conducted for a period of 75 years. The contents of storage are recorded at the end of each year. The first 25 years are discarded and the remaining 50 years are used as a sample from the distribution of year-end reservoir contents. A set of year-end (or start of year) contents are selected in a random fashion from this sample. All the subsequent yield and cost determinations utilize this random selection of starting contents.

Phase Two--Conjunctive Operation

In phase two simulation, the supplemental source is operated in conjunction with the existing water supply system. The increase in yield of the conjunctive system is a function of the capacity of the supplemental source and its mode of operation. In any particular analysis, the capacity is fixed so the mode of operation becomes the focal point of the analysis.

The objective associated with this phase of simulation is to determine the manner in which the supplemental source should be operated to produce a firm yield equal to the design demand rate. This involves the search of a decision space defined by a set of operating rules. The operating rules are furnished by the planner. Judgment must be used in defining the decision space so as to keep the problem tractable.

The following sections will deal with the nature of the operating rule, the formulation of the decision space, determination of the yield of the rules in the decision space, and obtaining a set of feasible rules.

Formulation of operating rules

See pp. 10-11 in Clyde and Blood (1969).

Determination of the firm yield associated with each operating rule

Each operating rule in the decision set will produce a certain firm yield which for a given supplemental capacity is a function of the hydrology and the constraints on the definition of firm yield. As in phase one of the simulation, an iterative scheme is used to determine the various values of firm yield associated with each rule.

An initial estimate of the firm yield is made on the basis of the following:

$$
\begin{equation*}
Y_{1}=\mathrm{f} \cdot\left(\overline{\mathrm{Q}}+\mathrm{C}_{\mathrm{s}}\right) \tag{24}
\end{equation*}
$$

in which
$\mathrm{Y}_{1} \quad$ is the initial estimate of the firm yield (becomes $\overline{\mathrm{D}}$ in Equation (6))
f is estimated scale of development
$\overline{\mathrm{Q}} \quad$ is the overall average inflow rate
C_{s} is the capacity of the supplemental source expressed as a rate
Iteration is conducted in much the same manner as in phase one. The variable quantity to be determined is $\overline{\mathrm{D}}$ of Equation (14). This quantity is adjusted by iteration until the firm yield constraint is satisfied within a certain error tolerance. Once the constraint is satisfied, this quantity then becomes the firm yield. In this phase of simulation, the term $\left(W_{i} \cdot J\right)$ in Equation (14) becomes active in the yield determination. While in phase one, \mathbf{J} was set at 0 for all computation, in the conjunctive operation mode, \mathbf{J} is set to either 0 or 1 depending on whether the supplemental source is to be shut down or to be operated during the month.

The iteration is conducted over the critical range of the generated streamflow period as was predetermined in the phase one simulation. Equations (18), (19), or (20), (21), or (22), (23), are applicable in the iteration depending on the constraint defining the firm yield and the factor that subsequently controls; i.e., shortages, deficits, or drawdowns.

Upon the completion of the iteration, simulation is conducted over the entire period as specified by the input parameter NYFY. The purpose of this is two-fold. First, to verify the critical range and ascertain that the addition of the supplemental source and its subsequent operation has not changed the critical range of the period. During the check, if some event is encountered that violates the constraining definition of firm yield, the critical portion of the period is relocated and the iteration procedure is repeated. Second, for the verified simulation, two load factors pertaining to the operation of the supplemental source are computed.
(a) The average operational load factor is computed by
in which

$$
\begin{equation*}
L_{A}=\frac{100}{N_{o}(12)} \sum_{j=1}^{N} 0_{j} \tag{25}
\end{equation*}
$$

L_{A} is the average operational load factor (i.e., the percent of a year the source remains active once it is turned on) for a given operating rule and a given period of hydrology
$\mathrm{O}_{\mathfrak{j}} \quad$ is the number of months in year j that the source was active
N is the number of years in the simulation period (NYFY)
N_{o} is the number of times the plant was turned on during the simulation period
(b) A gross load factor is computed as

$$
\begin{equation*}
L_{G}=\frac{100}{N(12)} \sum_{j=1}^{N} o_{j} \tag{26}
\end{equation*}
$$

in which
L_{G} is the gross load factor or the percent of time the source was active during the entire period N and O_{j} are the same as in Equation (25)

After the firm yield and load factors are determined for each rule in the decision set, the whole procedure is repeated for a new period of hydrology; i.e., generated streamflow sequence. The number of period repetitions is specified by the program user as input parameter NPFY.

The expected value for the firm yield of each operating rule is obtained as follows:

$$
\begin{equation*}
\bar{Y}_{i}=\frac{1}{N_{p}} \sum_{j=1}^{N_{p}} Y_{i, j} \quad \text { for } 1=1,2, \ldots, N_{p} \tag{27}
\end{equation*}
$$

in which
$\bar{Y}_{i} \quad$ is the expected firm yield for rule, i
$Y_{i, j}$ is the firm yield for rule i in period j
N_{p} is the number of periods (NPFY)
The expected load factors \bar{L}_{A} and \bar{L}_{G} are determined for each rule in the same manner as the firm yield.

Generally, the confidence in $\overline{\mathrm{Y}}$ as a point estimator of the population mean varies directly as the number of periods used. There is, however, a practical upper limit set by the amount of computational effort involved compared to the amount of new information generated. Here again there is no substitute for judgment on the part of the program user.

Determination of feasible operating rules

See pp. 14-15 in Clyde and Blood (1969).

Stage Construction Analysis

Earlier applications of the Operating Rule Program have been made on the basis that the full capacity of the supplemental source is installed at the beginning of the planning period. Full capacity implies the size of the supplemental source required to meet the project end-of-period demand rate. Furthermore, the end-of-period demand rate is used throughout the entire simulation period. For the purpose of determining the optimum final size of a given supplemental source the procedure is suitable. However, in situations where the planner needs an estimate of the actual expected costs over the plant lifetime or wishes to compare alternate supplemental sources, an additional cost analysis is necessary.

In a situation showing a growth of the demand for water, a supplemental source installed with full capacity in the first year of the planning period is grossly over designed throughout the early portions of the period. There will be an associated loss of efficiency with this type of policy. The ideal condition would be an expansion of the supply system such that the firm yield available just keeps pace with the demand. Practically, the firm yield can only be added to the system in increments. However, by adding small increments as the demand grows, increased operating efficiency and probably increased economic efficiency can be achieved.

The obvious policy, if the nature of the supplemental source permits, is to add the source to the system in stages or modules. Some advantages of the staging policy over the policy of building the full capacity initially are:

1. Deferred investment of capital resulting in savings of interest payments.
2. Reduced operation and maintenance costs in the earlier portions of the operating period.
3. Inadvertent excess capacity can be avoided.
4. Deferred commitments on construction may benefit by advances in technology (especially true in the case of desalting technology).

The following sections will outline a procedure for formulating a stage construction policy and performing a cost analysis.

Formulating a stage construction policy

Once the planner has ascertained that the given supplemental source is adaptable to stage construction, a staging policy must be determined. A staging policy is a step function indicating installed capacity of added firm yield as a function of time. It dictates the point in time at which the next stage of the supplemental source is to be added to the system.

The optimal staging policy is not given directly by the analysis described herein. However, by repeating the analysis in the light of practical and physical limitations of the system, a best (least cost) staging policy can be approximated. Figure $6 \mathrm{a}, \mathrm{b}$, and c shows three different policies imposed on a hypothetical demand curve. Staging policy No. 3 consisting of four modules shows the minimum deviation of firm yield from demand and is the best of the three policies. A further reduction in module size would result in a decrease of the deviations of firm yield from demand and, hence, would become the preferred staging policy from that standpoint. Even before the physical limitation of module size is reached, there may be a point of diminishing returns associated with the reduction in size of increments added to the system. The smaller modules have less economies of scale and may not have an economic advantage over larger modules.

The following steps outline a procedure for formulating a staging policy.

1. Obtain the increase in firm yield added to the system as a function of the optimal supplemental capacity as shown in Figure 7.

To obtain the curve in Figure 7,' an analysis as outlined in the earlier section must be conducted for the various values of the design demand rate. The number of times to repeat the analysis is somewhat arbitrary but a suggested procedure follows:
(a) Solve for $\Delta \bar{Y}$ in

$$
\begin{equation*}
\Delta \bar{Y}=\bar{D}_{t}-\bar{Y}_{0} \tag{28}
\end{equation*}
$$

in which
$\Delta \bar{Y} \quad$ is total increment of yield to be added
$\overline{\bar{D}}_{\mathrm{Y}} \quad$ is the design demand rate (end-of-period)
\bar{Y}_{o} is the expected firm yield of the system without any supplemental source
(b) Calculate an increment of firm yield by

$$
\begin{equation*}
I Y=\frac{\Delta \bar{Y}}{n} \tag{29}
\end{equation*}
$$

Figure 6. Examples of stage construction policies.

Figure 8. Determination of firm yield as modules are added.
(2) Input categories R through U a. The data for computing costs, category T , must be input in equation form.
(3) Input categories W, X.

An annualized cost is determined in a manner similar to that outlined in pp. 16-17 of Clyde and Blood (1969). However, the equation which is used to compute the uniform fixed cost must be modified for use with a stage construction policy. The capital investments in staged construction produce unequal cost streams which are annualized as follows:

$$
\begin{equation*}
V_{p}=\sum_{j=1}^{N} \frac{1}{(1+I)^{j}} \cdot\left[f \cdot k\left(C_{m}\right)\right] \quad \text { for } k=1,2, \ldots, n \tag{32}
\end{equation*}
$$

in which
V is the present value of the annual fixed charges
I is the interest rate
f is the fixed charge rate which if multiplied by the capital cost of a module gives the total annual charge for interest on initial capital, amortization of initial capital, interim replacements, taxes, and insurance
C_{m} is the capital cost of a module of capacity, M_{c} is the multiplier that increases the supplemental capacity in accordance with the staging policy. Thus, k is incremented each year that j equals a year in which a module is scheduled to be built
n is the number of modules

The annualized fixed cost is calculated by

$$
\begin{equation*}
U_{f}=(c . r . f .) V_{p}+I \cdot C_{N} \tag{33}
\end{equation*}
$$

in which
U_{f} is the annualized fixed cost
c.r.f. is the capital recovery factor $\mathrm{l}(1+\mathrm{I})^{\mathrm{N}} /(1+\mathrm{I})^{\mathrm{N}}-1.0$
C_{N} is the capital costs of nondepreciable items such as land and working capital
The stage construction analyses based on the procedure described in this section have been made for the New York City water supply system (see Work Order No. 1) and the Norfolk, Virginia, water supply system (see Work Order No. 5).

Figure 9. Determination of a staging policy.

Work Order No. 3

OPERATING RULE PROGRAM MODIFICATION FOR NO STORAGE CAPACITY SYSTEM

Introduction

Heretofore, desalting has been considered either as a base load operation or in conjunction with an existing surface water supply with some appreciable carry-over storage. In the conjunctive scheme the desalting plant is operated intermittently. The crux of the conjunctive operation problem is to find the most efficient size plant to furnish the specified requirements on firm yield. This in turn requires looking at many different operating rules and selecting the rule that will meet the requirements at the least cost.

Another application of desalting is found in the planning situation where the municipality has no appreciable storage capacity. In this case the operating rule is simple: turn on the desalting plant or a module thereof when the demand becomes greater than the available natural supply. This too is an intermittent type of operation and a modular type plant would work effectively in this situation.

General Procedure

No storage analysis is accomplished in the following steps:

1. Determine a module size.
(a) Compute the variable D
$D_{k}=\operatorname{Max}\left[C-f_{i}\left(q_{i, j}\right) k\right] \quad$ for $i=1,2, \ldots, 12$

$$
\begin{align*}
& j=1,2, \ldots, N Y \\
& k=1,2, \ldots, N \tag{34}
\end{align*}
$$

in which
D_{k} is the capacity of desalting plant required to prevent a deficit in the month of lowest flow, in the $\mathrm{k}^{\text {th }}$ generated streamflow sequence
C is the projected consumption of water at the end of the planning period (MGD)
$q_{i, j}$ is the average monthly rate in month i of year j of the $k^{\text {th }}$ generated streamflow sequence (MGD)
$f_{i} \quad$ is the fraction of the natural flow rate that can be withdrawn for consumption in month i
NY is the number of years in the planning period and the number of years of the generated streamflow sequence
N is the number of periods
(b) Treating the variable D_{k} as normally distributed compute the mean $\overline{\mathrm{D}}$, and the standard deviation σ_{D}

$$
\begin{align*}
& \bar{D}=\sum_{k=1}^{N} D_{k} / N \ldots \tag{35}\\
& \sigma_{D}=\sqrt{\frac{\sum_{k=1}^{N}\left(D_{k}-\bar{D}\right)^{2}}{N-1}} \tag{36}
\end{align*}
$$

(c) Calculate a size of module as

$$
\begin{equation*}
M_{s}=\left(\bar{D}+N \delta_{D}\right) / M \tag{37}
\end{equation*}
$$

in which
M_{s} is the module size rounded to an integer (MGD)
M^{s} is the number of modules as specified by the input parameter NMOD
$\mathrm{N} \quad$ is the number of standard deviations to be added to the expected value of D as specified by the input parameter NSTD ex., if $N=0$ the average value, $\overline{\mathrm{D}}$, will be used as the requirled capacity of the desalting plant

Figure 10. Graphical procedure for determining modular configuration.
2. Determine the modular configuration with respect to time based on the projected demand function. Modules are added to the plant to keep pace with the growth in demand as illustrated in Figure 10. The first module is required at the start of year 1 , the second module is required at the start of year 3, the third module is required at the start of year 9 , and a fourth module at the start of year 21 .
3. Generate a period of streamflow and simulate operation of the desalting plant using the calculated configuration and the demand function. Record, by year, the number of months each module was in operation, and the number of modular turn-on and turn-off events.
4. Perform a cost analysis based on the simulated operation to obtain a uniform annual cost. It is required that all costs are input in equation form as a function of plant or module size. The present value of the costs are obtained as follows:
(a) Capital investments

$$
\begin{equation*}
P_{c}=\sum_{j=1}^{N} \frac{1}{(1+I)^{j}}\left[k C_{m}\right] f \tag{38}
\end{equation*}
$$

in which
$\mathrm{P}_{\mathrm{c}} \quad$ is the present value of all capital investments
I^{c} is the interest rate
$\mathrm{f} \quad$ is the fixed charge rate
$\mathrm{k} \quad$ is the number of modules that have been constructed by year j
C_{m} is the cost of the module
N is the number of years in the planning period

$$
\begin{equation*}
C_{m}=a\left(M_{s}\right)^{b} \tag{39}
\end{equation*}
$$

in which
M_{s} is the module size calculated in Equation (37)
a, b are constants specified by the input parameters CCP and EXCP, respectively
(b) Operating and maintenance costs

$$
\begin{equation*}
P_{o}=\sum_{j=1}^{N} \frac{1}{(1+I)^{j}} \cdot O_{c}\left(\sum_{k=1}^{M} c_{k, j}\right) \ldots \ldots . \tag{40}
\end{equation*}
$$

in which
$P_{o} \quad$ is the present value of all operating costs for load factors >0 percent
M is the number of modules comprising the desalting plant
$c_{k, j}$ is a cost coefficient obtained by linear interpolation in the two dimensional array of load factors, FACT, and coefficients, COEFF. This array is part of the necessary input data for the program.
O_{c} is the modular operational cost
N, I are the same as in Equation (38)

$$
\begin{equation*}
o_{c}=c\left(M_{s}\right)^{d} \tag{41}
\end{equation*}
$$

in which
M_{s} is calculated module size
c,d are constants specified by the input parameters COP, and EXOP, respectively
(c) Operating costs at zero load factor

$$
\begin{equation*}
P_{n}=\sum_{j=1}^{N} \frac{1}{(1+I)^{j}} \quad\left(N_{n}\right)_{j} O_{n} \tag{42}
\end{equation*}
$$

in which
$\mathrm{P}_{\mathrm{n}} \quad$ is the present value of all modules operating at zero load factor
$\left(\mathrm{N}_{\mathrm{n}}\right)_{\mathrm{j}}$ is the number of modules, constructed, that did not operate in year j
O_{n} is the module operating cost at zero load factor
$\mathrm{N}, \mathrm{I} \quad$ are the same as in Equation (38)

$$
\begin{equation*}
o_{n}=e\left(M_{s}\right)^{f} \tag{43}
\end{equation*}
$$

in which
M_{s} is the module size
e,f are constants specified by the input parameters CNO and EXNO, respectively
(d) Plant turn-on and turn-off costs

$$
\begin{equation*}
P_{t}=\sum_{j=1}^{N} \frac{1}{(1+I)^{j}}\left(\frac{N_{o}+N_{f}}{2}\right)_{j} o_{t} \tag{44}
\end{equation*}
$$

in which
$P_{t} \quad$ is the present value of the turn-on and turn-off costs
$\mathrm{N}_{\mathrm{o}} \quad$ is the number of module turn-on events
N_{f} is the number of module turn-off events
O_{t} is the cost of a module turn-on, turn-off event
N, I are the same as in Equation (38)

$$
\begin{equation*}
o_{t}=g\left(M_{s}\right)^{h} \tag{45}
\end{equation*}
$$

in which
M_{s} is the module size
g, h are constants specified by the input parameters CTN and EXTN, respectively
5. A uniform annual cost for the period is obtained by

$$
\begin{equation*}
U=c . r . f .\left(P_{c}+P_{o}+P_{n}+P_{t}\right) \tag{46}
\end{equation*}
$$

in which
U is the uniform annual cost
c.r.f. is the capital recovery factor $\mathrm{I}(\mathrm{i}+\mathrm{I})^{\mathrm{N}} /\left[(1+\mathrm{I})^{\mathrm{N}}-1.0\right]$
6. Repeat steps (3), (4), and (5) for as many periods as specified by the parameter NPSC and obtain an average uniform annual cost

$$
\begin{equation*}
\bar{U}=\sum_{i=1}^{N} U_{i} / N \tag{47}
\end{equation*}
$$

in which
$\overline{\mathrm{U}}$ is the average uniform annual cost
N is the number of periods specified by the parameter NPER
U is the uniform cost obtained in Equation (41)
A general logic flow chart for NOSTOR program is shown in Figure 11.
An example application of the no storage capacity analysis was made for a modified Norfolk, Virginia, water supply system. The input data and the simulation results are shown in Figures 12, 13, and 14.

Figure 11. General logic flow for NOSTOR.

```
NO STORAGF PUN USING NORFOLK STREA"FLCW ARO DEMANS
NO. OF PERIOOS IN ANALYSIS= 10
NO. OF YEARS IN ELOTHPERION= 3n
NO. OF PERINOS IN COSTGIM= 5
IYEAR= ?
IFLOW=1
DESIGN DEMANO RATF= 175
KIO=1
KIP=2
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & ort & av & DES & Jaid & feb & MAR & APF & Mar & june & Julr & Auc: & cfit \\
\hline demand coefficients & 1.0n & . 98 & . 9 9 & .98 & . 98 & . 97 & . 0.6 & . 97 & 1.03 & 1.10 & . 10. & 1.44 \\
\hline Stream diversion coeff. & 1.bna & 1.504 & 1.001. & 1. 000 & 1.000 & 1.040 & 1.nnn & 1.000 & \(1.00 \%\) & 1.0ne & \(1.00 \%\) & 1.0611 \\
\hline DEMAND FJNCTION DGTA & & & & & & & & & & & & \\
\hline CODE ? CNEM = 125. & \(\Delta \mathrm{D}=\) & 3i. & & 1.5 & uo & & & W0 & t: & \(\Delta F=\) & - tirn & \\
\hline
\end{tabular}
```

Figure 12. NOSTOR input data printout.

部

OPERATING LOAD FACTORS APF	0.	10.	20.	30.	rn.	70.	9 l	100.
the cost comfficients aff	. 0 uli:	. 227	.429	. 510	1.rin	1.370	1.727	1.905

equation used in th cost onmputations

FIXED Charge rate $=$. OB IISCOUNT RATE $=.05$

Figure 13. Typical NOSTOR cost printout.

COL. 1 IS The yeap
Col. 2 is the number of modules available
the next 5 COLUMNS ARE THE NO. OF MONTHS THAT EACH MODULF OPERATED
the last 3 Column $\mathrm{C}_{\text {ar }}$ are the module turn-on. turn-off. and no. operated respectively
10802020. 10808786. 1090>119. 11038559. 10902879.

UNIFORM ANNUAL COST = 10890873.

Figure 14. Typical NOSTOR simulation and results printout.

Work Order No. 4

TRAINING SEMINAR

After the publication of Utah Water Research Laboratory report PRWG61-2, "Optimum Operation of Desalting Plants as a Supplemental Source of Save Yield," numerous requests were received asking for more information about the Operating Rule Program and its practical uses. In response to these requests for information and to encourage and facilitate the use of the computer program by others, a training seminar was held May $26-28,1970$, at Utah State University jointly sponsored by the Office of Saline Water, U.S. Dept. of Interior, and Utah State University.

Objectives of the training seminar were as follows:

1. To completely describe for the participants the improved Operating Rule Program including the logic, the various program options, and the various ways of defining the firm yield of a water supply system.
2. To describe in detail the steps to be followed in applying the improved Operating Rule Program to analyze the conjunctive operation of desalting plants.
3. To describe the use of the program in finding the optimal stage construction schedule for a conjunctively operated desalting plant.
4. To give the participants some "hands on" experience in using the improved Operating Rule Program in a practical situation.

A schedule of the training seminar is shown on the following page as Table 9. Costs of instruction, the printed materials and use of the computer were met by Utah State University from funds supplied by the Office of Saline Water. Participants or their employers provided travel and living expenses. The names and addresses of the 21 participants are shown in Table 10.

Computer services for the seminar were provided by a Univac 9200 terminal utilizing a Univac 1108 computer in Salt Lake City, Utah. High priority service was arranged such that very little delay was experienced with most computations. All participants were able to analyze the conjunctive operation of a desalting plant. Teams of participants were organized and each team also carried out a stage construction analysis of a desalting plant.

After the seminar the participants were asked to send in comments and criticisms concerning the seminar and suggestions for improvements in the computer program and the program description. Based on the many thoughtful and constructive suggestions received, several substantial changes were made in the OPRUL program, especially in the format and information of the computer printout.

Copies of the report, "Optimum Operation of Desalting Plants as a Supplemental Source of Safe Yield," (Utah Water Research Laboratory Report No. PRWG61-2 or OSW R \& D Progress Report No. 528) were given to the participants.

Complete computer program card decks were made available at a nominal cost to the participants who desired them.

A training manual was prepared for the seminar containing a description of the OPRUL program and its use. The title page and table of contents only are shown on the following two pages. The body of the training manual has been integrated into the appropriate sections of this report. (See Work Order 2 \& Appendix A.)

Supplement to PRWG61-2

OPTIMUM OPERATION OF DESALTING PLANTS AS

A SUPPLEMENTAL SOURCE OF SAFE YIELD

by

Calvin G. Clyde and Wesley H. Blood

Prepared for a Training Seminar

 on the use of theOperating Rule Program May 26-28, 1970
at
Utah Water Research Laboratory
College of Engineering
Utah State University Logan, Utah 84321

May 1970

TABLE OF CONTENTS

INTRODUCTION

INSTRUCTIONS FOR USE OF THE OPERATING RULE PROGRAM

FURTHER DESCRIPTION OF THE SIMULATION MODEL

> Conjunctive operation
> Optional criteria for determining firm yield
> Storage considerations
> Generation of streamflow values by operational hydrology
> Draft on storage
> Operation of the supplemental source of water
> OPERATION OF THE SIMULATION MODEL
> Phase One--Reservoir Without the Supplemental Supply
> Firm yield of the reservoir without the supplemental supply
> Iteration procedure for determining the firm yield, Yo
> Critical range of the hydrographs
> Selection of reservoir starting contents
> Phase Two--Conjunctive Operation

Formulation of operating rules
Determination of the firm yield associated with each operating rule
Determination of feasible operating rules

STAGE CONSTRUCTION ANALYSIS

Formulating a stage construction policy
Cost analysis of the staging policy
FURTHER APPLICATIONS OF THE OPERATING RULE PROGRAM

REVISION OF APPENDIX A, "Detailed Description of the Operating Rule Program and its Operation"

Work Order No. 5

APPLICATION OF THE OPERATING RULE PROGRAM TO THE NORFOLK, VIRGINIA, WATER SUPPLY SYSTEM

The Office of Saline Water first suggested that the Operating Rule Program be applied to the Norfolk, Virginia, water supply system. After consultation among OSW, USU, and Norfolk City, it was decided to undertake such a study. The objective of the investigation was to examine the use of a desalting plant operated in conjunction with the existing system to meet future demands. The optimal size plant and the optimal operating rule to meet demands through 2000 A.D. were to be determined. Furthermore, the optimal stage construction policy was to be investigated for the deslating plant. Effects of increased reservoir size and expansion of pumping plants upon the system were also to be studied.

Description of the Norfolk City Water Supply System

Norfolk City furnished most of the basic information describing the water supply system, the available water and the demand. Additional records of streamflow were taken from USGS Water Supply papers. A brief summary of the system is given here. A more detailed description is included as Appendix C.

The Norfolk City water supply system consists of 5 principal storage reservoirs, 2 pumping plants for importing water, several other pumping stations for distribution, several treatment plants, some wells and over 1000 miles of water mains. The system is shown in Figure 15.

The principal storage reservoirs and their capacity, drainage area and estimates of safe yield (reported by Norfolk City) are shown in Table 11. Also shown in the table are the import pumping stations and the wells near Lake Prince.

Figure 15. Norfolk City water supply system.

Table 15. Varying operating rule costs for 60 MGD plant for three demand growth curves.

	$\overline{\bar{D}}_{\mathbf{j}}=80+1.50 \mathrm{j}$			
Time Period	Demand at	Operating Rule	Yield	
Years	Start of Period	ON	OFF	MGD
$1-6$	80	0.10	0.10	9
$7-12$	89	.20	.10	18
$13-15$	98	.34	.20	27
$16-24$	107	.49	.40	36
$25-30$	116	.59	.60	45

$($ Average annual cost $) /($ Ultimate firm yield increase $)=115,935 \$ / \mathrm{yr} /$ MGD.

$\overline{\mathrm{D}}_{\mathrm{j}}=130-50 \mathrm{e}^{-0.077 \mathrm{j}}$				
Time Period Years	Demand at Start of Period	Operating Rule		Yield
		ON	OFF	MGD
1-3	80	0.10	0.10	9
4-7	89	. 20	. 10	18
8-11	98	. 34	. 20	27
12-17	107	. 49	. 40	36
18-30	116	. 59	. 60	45

$($ Average annual cost $) /($ Ultimate firm yield increase $)=129,178 \$ / \mathrm{yr} / \mathrm{MGD}$.

$\bar{D}_{j}=60+20 \mathrm{e}^{0.04 j}$				
Time Period Years	Demand at			Yield
	Start of Period	ON	OFF	MGD
1-9	80	0.10	0.10	9
10-16	89	. 20	. 10	18
17-22	98	. 34	. 20	27
23-26	107	. 49	. 40	36
27-30	116	. 59	. 60	45

$($ Average annual cost)/(Ultimate firm yield increase $)=110,550 \$ / \mathrm{yr} / \mathrm{MGD}$.
4. Two 70 MGD pumping plants with 15.75 BG storage. This yields 94 MGD firm yield.
5. Two 70 MGD pumping plants with 21.75 BG storage. This yields 107 MGD firm yield.

If costs of these alternatives were known the unit costs of meeting future demands could be compared with the desalting alternative. The studies mentioned in the previous sections provide only preliminary results and should be used as a basis to justify a more complete and thorough desalting feasibility investigation.

Figure 25. Typical stage construction simulation and results printout.

LIST OF REFERENCES

Clyde, Calvin G., and Wesley H. Blood. 1969. Optimum Operation of Desalting Plants as a Supplemental Source of Safe Yield. PRWG61-2, Utah Water Research Laboratory, Utah State University, Logan, Utah. July, or Research and Development Progress Report No. 528, U.S. Department of the Interior, Office of Saline Water, Washington, D.C. 1969.

Fiering, M. B. 1967. Streamflow Synthesis. Harvard University Press, Cambridge, Massachusetts.
Hydrologic Engineering Center. 1967. Generalized Computer Program--Monthly Streamflow Simulation. U.S. Army Corps of Engineers, 650 Capitol Mall, Sacramento, California. July.

Mawer, P. A., and M. J. Burley. 1968. Desalinzation 4. pp. 141-157.

APPENDIX A
 DETAILED DESCRIPTION OF THE IMPROVED OPERATING RULE PROGRAM AND ITS APPLICATION

TABLE OF CONTENTS

Page
Input Data Required by the Program 73
Other Important Variables Used in OPRUL and Subprogram YIELD 78
List and Purpose of the Subprograms Called for in OPRUL 79
Flow Diagrams for the Longer Subprograms 81
Subprogram COST Flow Diagram 81
Subprogram PLOT Flow Diagram 82
Subprogram RULE Flow Diagram 83
Subprogram TERP3 Flow Diagram 84
Subprogram YIELD Flow Diagram 85
Listing of Sample Input Data Cards 86
Typical Printout 87
Input data 87
Cost data 89
Simulation for firm yield 89
Simulation for costs and optimum rule selection 91
Plot of reservoir contents during simulation 96
Complete Listing of the Program 97
Suggestions for Efficient Use of the Operating Rule Program 111

OFI2	medium flow month increment that is sub- tracted from the turn-off fraction (columns 9-16).
ONI3	high flow month increment that is subtracted from the turn-on fraction (columns 17-24).
OFI3	high flow month increment that is subtracted from the turn-off fraction (columns 25-32).

P. Arguments for random number generator.

IYPER arguments used in RAN which enable repetitive generation of streamflow sequences must be supplied if KREAD set to 1,3 , or 4 (6 values per card, 6115 , right justified). The number of values entered is the same as the number specified by NPFY.

Q. Variable operating rule schedule.

NVYR number of times that the operating rule is changed during the period, entered if KVAR $=2$ (column 1).

KVYR array of years within the period that signifies a change in the operating rule if $\mathrm{KVAR}=2$ (1012, starting in column 6).
R. Stage construction schedule.

NMOD number of modules that comprise the ultimate plant, input if STAGE=2 (column 1).

MODY schedule of years, within the period, that a new module is added (ex., 1, 6, 11, 16, 21), must be input if STAGE=2 (1012, starting in column 6).

SIZE (NMOD) module sizes, input if STAGE=2 (10F8.0).

YLDIN (NMOD) firm yield increases, input if STAGE=2 (10F8.0).
S. Operating rules for the staged construction.

RFOP array of operating rules for each period when a module is added to the plant. $\operatorname{RFOP}(1)$ is the turn-on fraction for period $1, \operatorname{RFOP}(2)$ is the turn-off fraction for period 1 , etc. There must be NMOD pairs entered in RFOP (16F5.0).

T. Desalting plant cost data.

(a) Design (optimized) load factors.

NOLF number of design load factors for which cost data are to be input (columns 1-2, right justified).

OFACT array of the design load factors (855.0, starting in column 6).
(b) Operational load factors.

NOFF number of operational load factors for which cost data are to be entered (columns I-2, right justified).

FACT array of the operating load factors (855.0, starting in column 6).
(c) Operating and maintenance cost.

OPCST if KCOPT=1, a two-dimensional array (NOFF, NOLF) of operational costs in dollars. NOLF cards are required with NOFF entries per card (8F10.0).
if $\mathrm{KCOPT}=2$, a two-dimensional array (NOFF, NOLF) of coefficients used in the equation for computing operational costs (8 F 10.0).
(d) Interest and fixed charge.

INT interest rate used in discounting cost streams to the present expressed as a decimal fraction; i.e., 5 percent is 0.05 (columns 1-10).

RATE fixed charge rate expressed as a decimal fraction; i.e., 12 percent is 0.12 (columns 11-20).

CCND capital cost of nondepreciable items.
(e) Capital costs, input only if STAGE=2.

CSTM
capital cost of a module, input if STAGE=2 (8F10.0).

CAPC
array of the capital costs of the plants designed at the NOLF different load factors (8F10.0).
(f) Plant turn-on and turn-off costs, if KCOPT=1.

ETONC estimated cost for turning on the plant in dollars (columns 1-10).

ETOFC estimated cost for turning off the plant in dollars (columns 11-20).
(g) Constants and exponents of cost equations, if $\mathrm{KCOPT}=2$.

CNO constant in the equation for computing operating costs at zero load factor (columns 1-10).

EXNO exponent of plant size in the zero load factor operating equation (columns 11-20).

CTN constant in the equation for computing on and off costs (columns 21-30).

EXTN exponent of plant size in the on-off cost equation (columns 31-40).

COP

EXOP exponent of plant size in the operating cost equation (columns 51-60).

U. Firm yield data if $K R E A D=3$.

FYWO the expected value of the firm yield of the system without any desalted supplement (columns 1-10).

MSCP array of starting points for the critical segment of each period of generated flow, input if KVAR $\neq 2$ or STAGE $\neq 2$ (1615 , right justified).

MECP array of ending points for the critical segments of each period of generated flow, input if KVAR $\neq 2$ or STAGE $\neq 2$ (16 I 5 , right justified).

DDCP array of initial estimates of the yield for each period. Used in the iteration procedure, input if KVAR $\neq 2$ or STAGE $\neq 2$ (8 F10.0).

The above variables are all obtained from some previous computer run when KREAD was set at 2 .

V. Firm yield data if $K R E A D=1$.

AVFY array of expected (average) firm yield values, contain NR values eight per card (8 F 10.0).

XLF array of expected average yearly operational load factors, contains NR values eight per card with XLF $(1)=0.0$; i.e., operation w/o desalting (8F10.0).

GLF array of expected gross load factors, contains NR values eight per card with GLF $(1)=0.0$ (8F10.0).

W. Start-of-period reservoir contents.

RS array of reservoir start-of-period contents as determined in firm yield analysis (8 F 10.0).

X. Input data to the streamflow generator GNFLO.

(a) Identification card. Contains hollerith information to identify the data being used.

Must have an A in column 1.
(b) Control parameters (all right justified).

IYRA earliest year of record at any station for which flows are to be generated (columns 2-8).

IMNTH calendar month number of first month of year being used (columns 9-16).

IMSNG indicator, any positive number for estimating missing correlation coefficients (columns 17-24).

ITEST indicator, any positive number calls for consistency test of correlation matrices (columns 25-32).

IRCON indicator, any positive number calls for reconstitution of missing data (columns 33-40).

NSTA number of streamflow stations at which flows are to be generated (columns 41-48).

IPCHQ indicator, any number greater than 0 calls for outputing the generated flows on magnetic tape (columns 49-56).
(c) Historic streamflow data.

ISTAN station number (columns 1-6, right justified).
IYR year (columns 11-14).
QM array of monthly streamflows (12F5.0, starting in column 15).

Repeat (c) for each year of streamflow to be entered.
(d) Blank card, terminates the streamflow input.
Y. Factors for escalating prices, if $K E S C=2$ and if $S T A G E=2$.

EFO escalation factor for operating costs (columns 1-10).

EFC escalation factor for construction costs (columns 11-20).

EFI escalation factor for the interest rate (columns 21-30).
entered to perform a linear interpolation in the elevation-capacity-surface area tables. The tables must be arranged with the elevation and corresponding capacity and water surface are in ascending order. The increments should be small enough to adequately describe the curves.

TERP3 interpolates in the three-dimensional array of average firm yield values to determine the set of feasible operating rules. The argument is the projected target demand rate (TRDEM). Each turn-off fraction, in turn, is held constant and the interpolation performed to obtain a turn-on fraction. The number of interpolations attempted is always the same as the number of turn-off fractions specified by NOF. The general logic flow diagram of TERP3 is shown on page 84.
for a given period of generated streamflow, XLOC is entered to identify the critical segment of the record. Subsequent iterations are performed using the critical segment and not the entire period.

YIELD simulates system operation, using a generated streamflow sequence to determine the firm yield of the system for the various operating rules specified in the decision set of rules. An iteration scheme is employed which involves entering subprogram XLOC to identify the critical period of the streamflow sequence and performing an iteration over this period until the defining constraints on firm yield are satisfied. A firm yield of the system w/o desalting is determined unless input paramter KREAD is set to 3 . The general logic flow diagram of YIELD is shown on page 85 .

LISTING OF SAMPLE INPUT DATA CARDS


```
**** OPERATING RULE PROGRAM *****
OFFICE OF SALINE WATER UNITED STATES DEPARTMENT OF INTERIOR
```

```
PROJECT NAME .
    OPTIMUM OPERATION OF DESALTING PLANTS AS
    A SUPPLEMENTAL SOURCE OF SAFE YIELD.
CONTRACT NUMBER , 14-01-0001-1711
```

 A COMPUTER PROGRAM DEVELOPED BY
 UTAH WATER RESEARCH LABORATORY
 UTAH STATE UNIVERSITY
 JULY 1969
 PROJECT STAFF.
SAM SHIOZAWA OSW REPRESENTATIVE
CALVIN G. CLYDE
PROJECT LEADER
DEAN F. PETERSONOJR. AOVISOR
ROLAND W. JEPPSON MSSOCIATE PROFESSOR
JAMES H. MILLIGAN RESEARCH ENGINEER
WESLEY H. BLOOD RESEARCH ENGINEER
AND PROGRAMMER
CON-ED STUOY VTE DESALTING PLANT

```
NO.OF PERIODS IN SIMULAIION= 5 NO. OF YEARS IN EACH PERIOD= 3D 
NPRC= 24
CMAX=489.600 B.G.
CMIN= 20.000 B.G.
DSCAP=300.00 M.G.D.
FORCE=1
KIO=1
KPC=2
KIP=2
KREAD= 2
IFLOW=4
ISTOR=2
ISTOR=2
KIK=1
MESC=2
NRSC=10
STAGE= I
KVAR=I
KYLD=1
FDT=.15
KCOPT=2
DESIGN DEMAND RATE= 17月5. DEMANO CODE= 
AD=1335. BD=1.50 UD= O. WD= O. AF= .OOO
DEMB=2350.ODO'M.G.D.
RBAR= 296.500 M.G.D.
\begin{tabular}{lllllllllllllllll} 
DEMAND COEFFICIENTS & .98 & .98 & .97 & .96 & .97 & 1.03 & 1.06 & 1.05 & 1.04 & 1.00 & .98 & .98 \\
RELEASE EOEFFICIENTS & .07 & .39 & .15 & .15 & .18 & .30 & 1.81 & 3.30 & 2.53 & 2.69 & .55 & .06 \\
EYAPORATION COEFFICIENTS & 1.00 & 2.50 & 2.00 & 3.00 & 4.00 & 5.00 & 5.00 & 4.00 & 3.00 & 2.00 & 1.00 & 1.00
\end{tabular}
MAXY= 0
PERIOD= 1 IY= 798531
```



```
OROJOC NON-1 DILLTNC.=
```



```
    KREAD=1 TEST FUN
NO.OF OFRIOISS IN SIMULAIION= 1 NO. OF YFARS TN EACHPPRIIOD= 3O
NDRC= 24
CMAX=4?9.r.an r.c.0
CMTN= >\Gamma.\\Gamman !.r..
DSCAP=4חn.7B m.r.n
FORCE= 1
KYO=1
K!O=
KPC=1
KREAD=1
KREAD=1
IFLOW= ?
ISTOR=?
MYFAR=
KESC=?
NRSC=5
STAGE= 1
KVAR=1
KYLD=1
FOT= -15
```



```
DEME=2T5ח. ती% M.G.C.
RBAR=206.5.5 4.G.0.
THIS IS a ? STASON: RUN
```



```
WTT SEASON ON INC:= .1 OM
```



```
DEMAND ROEFFITIENTE .9R .94 .97 .96 .97 1.33 1.3F 1.05 1.04 1.0N .08 .98
```



```
TURN-ON FPACTIONS .STI.47
TURN-CFF FPACTIONS .27 .fO .Hf
START=.F5
PCF=1.0!
                                    nEsalting plaNt cost data
```



```
IIN PFROFNT,
                            3n. 47. 57. F?. 77.
```


292990:30. 26037 17\%. 25593000.74997 arg. 24307000.					
ESTIMATEC TURN-ON CCST ? 53 USi).					
ESTIMATED TURN-OFF CJST = ? 51100.					
FTXED Chaprg Rate - .JQTh					
THE INTERFST RATF = .nr, 0 ,					
1575.9 1abx.17	1704.91	174\%.91	177 9.27	1720.15	1656.95
AVERAGE L OAT FACTODC					
.07 57.64	$43 \cdot 3!$	51.07	48.64	44.37	76.92
GROSS LOAT FACTORE					
.กา 57.1E	44.36	34.75	37.93	21.76	13.67

maximum value of chpve 3 less ihan trotm

INTEPPOLATED AVEDAGE LOAD FACTODS 58.c5 4).57 . 70

RULE NO. =? PEPIAN NO. = 1

YEAR	TIMES ON	TIMES OFF	MONTHS ON	DSPRO	DS SP	SPILL	SHORT.
1	1	Γ	3	36.80	.30	190.52	- ${ }^{\text {a }}$
$?$	1	1	7	84.80	. 30	. 00	. 30
T	1	2	ε	72.45	. 00	. 00	. 00
4	1	1	7	24.45	194.00	359.87	. 00
5	1	ก	$?$	24.40	24.40	330.99	. 00
5	1	1	9	97.20	. 00	.00	- 31
7	1	1	8	97.20	. 00	. 00	.00
8	7	2	5	60.40	74.71	74.71	.00
9	0	1	2	23.60	134.75	533.78	- 0
17	1	1	3	35.40	. 5	455.53	- 30
11	2	1	5	63.00	10.76	10.76	.00
17	1	$?$	4	48.85	22.17	22.17	. 00
13	1	1	4	43.30	112.28	197.39	.00
14	0	0	0	. 00	48.80	54.49	. 00
15	1	1	4	48.80	. 00	317.76	-00
15	1	0	4	48.80	48.80	172.81	. 0
17	1	$?$	6	72.80	. 00	. 00	.00
19	1	0	5	61.20	121.60	274.30	. 30
19	1	1	8	97.20	. 00	. 00	.00
20	1	$?$	8	96.80	. 30	. 00	. 00
21	$?$	1	4	48.70	78.64	78.64	. 00
≥ 2	1	1	6	72.40	20.13	20.13	. 00
27	1	1	7	84.80	. 0	. 0	.00
24	1	2	5	60.40	148.82	148.82	- 00
25	1	1	4	48.80	14.43	14.43	. 30
76	1	7	5	61.20	88.28	88.28	. 20
77	1	1	\bigcirc	72.40	35.24	36.24	.00
29	1	2	3	35.60	142.57	167.65	. 00
29	1	0	5	61.70	12.00	105.12	. 00
30	1	,	6	72.80	43.26	43.25	. 00

DEMAND $=1785.00 \quad$ EFFICIENCY = .2?
INCREASE IN YIELD= 259.77 M.G.D. ANNUAL COST=17.309766.J S/YEAR COST OF FYINC= $66653 . ~ S / Y E A R / M . G . D . ~$
AVERAGE COSTS FOR FEASIPLE OPERATING RULES
$44748.194366652 .9377 * * * * * * * * * *$

```
MINIMUM COST OF FYTNC= 4474:. G/YEAR/M.G.'. ADDED FIRM YIELD
INCREASE IN FIRM YFTLD= 2ra. 7m M.C.O.
TURN ON=.44 TUIPN OFF=.0n
OESIGNLOAN FACTOR=59.5 BRCSS LOAC FACTOR= 33.3
```

SINGLF DLGNT WITH A VAOYIIG DPEFATINT, RULE

```
NO.CF PERIOIS IN RIMULATION= b NO. OF YFARS IN EACHPERIOU= 3%
NO.GF PERTOOS IN &TRM YIELIN ? NO.OF YEARS IN EACH PERIOD= 75
NPRC= 24
CMAX=480.577 P.G
CMIN= ?n.\nत a.G.
DSCAP=750.nत m.j.n.
FORCE=1
kIO=1
KPC=?
KIP=2
KREAD=?
IFLOW=4
ISTOR= ?
IYYOP=?
KIKK=1
KIK=1
KESC=2
NRSC= 5
STAGE=
KVAR= ?
KYLD=1
FDT: ! !
```



```
DEME=235\Omega.095 N.c.п.
RQAR= ?36.50% M.G.I.
THIS IS A 3 SEASOU RUN
AVE. SEASON ON INC=.0SO AVE. GEASON OFF INC= .OSN
WFT SEASON ON INC. = ION WET SEASON OFF INC. = .100
```



```
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline PELEASE COTFFICIENTS & 7 & . 37 & \(.1{ }^{-}\) & .15 & . 18 & . 30 & 1.81 & 3.30 & 2.63 & P.F9 & . 55 \\
\hline
\end{tabular}
```



```
MURN-ONFDACTIONS 
STAQT= .ह5
OCF=1.7.7
```

```
    CO 90 N1,NYP
    IFISTAGE.NE.2)GGOTO 14
    S= S* DS 
    =2*(1N-1)*1
    ONCNN(1)=RFOP(L) *UCAP+CMIN
    lol
    INNCON(E)=ONCON(1)-UCAP*ONI2
    IF (NSNEEO.2)GO TO 514
    ONCON(3)=ONCON(1)-UCAP*ONI 3
    5 1 4 \text { CONTINUE}
    DO 515L=1.12 . I, IVEAR
    CALLCONN
    IN=IN+1
    4 IF (KVAR.NE -2) 60 TO 518
    IF(J-NE.KYYR(IN), GO SO 518
    ONCON(1)=ONLEV (IN)*UCAP+CMIN
    IF NSN.EO.1) GO IO 517
    ONCON(2)=ONCON(1)-UCAP.ONI
    IF ENSN-EO.2) 60 ro 517
```



```
    OFCON(3)=OFCON(1)-UCAP*OFI
517 IN=IN+1 (%N-1)+MSN(I)
    MJ=NSN*(N-1) +MSN(I)
    H=NSN*(N-1) +MSN(I +1)
    RSP=RSTOR
    MELP
C Call terp To ObTAIN THE SURFACE APEA
    CALL TERP(CAP.SA.NPRCPSTOR.SSA.NSIG)
    MFNSIG.EQ-1), 60 10 132
    LVMP=SSA*RLOSSII)* C
    RS TOR=RSTOR DOELS
6 60 TO (17.16);KAD0
6 IFIKCON.LT.11) GOOTO 118
115 KADD=1
114 NTOF(J)NNTOF(J!+1
    KF=F ORCE
    KCON=D
116 IF(MSN(I).GT.1) 60 IO 115
    IF (NOPCV(I).FO.l.OR.RSTOR.LT תPCON) EO To 117
    MF KKOF
    60 10 }1
    G0 ro 114.
117 IF (k OFF.EO.1) 60 T0 119
119 DELS=DELS*OSVII
    KF =KF-1
    KCON=KCON+1
    DSPRO(J)=DSPRO(J)+ DSVIII
    SSSP SSDSP+OSV(I)
    NMON=1
    PS TOR=RS TOR+NSV(1)
    IFIRSTOR.LT.CMAX:G0 TO 26
    K0 TO 19
218 K60=2
19 DELS =RSTIR-CMAX
    RS TOR=CMAX
    MEEV=1
    IF KON.EO.OO GO TO 70
& IF REFLS.LI.SDSD) GO TO 2n
```

SD SP $=0$
KEND $=2$

23 IF (KFI 24,231, KAOD
c enter here to turn off the desal ting plant
KADD $=1$
NTOF(J)=NTOF(J)+1
$\mathrm{NFF} \mathbf{F}$ ORCE
$\mathrm{KCO}=0$
$\mathrm{KKCN}=0$
60 TO 70
$26 \begin{aligned} & 60 \text { TO } 70 \\ & \mathrm{KGO}=1\end{aligned}$

201 OFLAG=2
DEES $=C M I N-R S T O R$
DELS $=C$ MIN
RSTOR $C M I N$
RSTOR $=C M I M$
60 TO 202
200
$\mathrm{D}=1 \mathrm{D}+1$
IF ICMD(I.J).LT.OM.1H GO TO 1202
MLOSS=ALOSS+EVAP

IF TRSTOR.GTA H.) 60 TO 202
RSTOR $\mathrm{R}=0$.
GO 10202
202 OELS CMIN-RSTOR
202 OELS $=C$
202 LE $V=$?
SSHT

2860 TO1 $38,701 \times \times A D D$
$3060 \$ 0(331.33 n)$. DFLA

$\angle 0=1$
OFLAG
OFLAG=1
331 IF (KAOD. EO .11 GO TO 35
331
31
IF (DELS
IF
35.35 .32
$\begin{array}{lll}31 & \text { IF (DELS) } & 35.35 .32 \\ 32 & \mathrm{IF} \text { (DELP) } & 33.73 .34\end{array}$
$33 \mathrm{FEM}=\mathrm{DSVCII}$ (1).

35 IF OFCON IJJILTM. ONCONT JJ" 60 TO 45
60 T01 $37.411 . \mathrm{KADD}$
C ENTER HERE TO TURN ON THE DESALIING PLANT

KO NTONIJにNTONGJ.
0 NTON (J)
60 TO 70

5 IF TRSTO
5 IF RSTOR ILT. ONCON(JJ IIGO TO 50
G0 TO 22
50 IF RSTOR .GT. OF CONI JJ ITGO TO 53
53 IF IOELS.LT.0.0.and.DELP.LT.0.0) 60 TO 54

55 Gn $10 \mathrm{O} 138.701 \times K A D 0$

71 KS TO TMM- 1
80 CONTNUE
c at this point have complettd one year of the pfridod
c at contine this int have just conpletio a period of nyp years * * . .
AT THIS POINT HAVE JUST COMPLETE
GOTOC 91,922, FKPC
Q1 CALL PLOTKSTO.NYP,KWAX.KMINI
1 CAEL PLOTCKSTO •NYP,KMAX.KMIN 1
$T E M A=0$
$T E M B=0$

TE MB $=T E M B+D S S P(J$
95 CONT INUE OSEFF(NP)=(TEMA-TEMR1/TEMA IF ISTAGE 2) GO 1097 HRITE(K.2090) NP
2090 formatilhi. Stage construction simulation run periodno.itu. GO TO 197

NO. I
5 IF IKVAR.NE.? 60 TO 96
 60 TO 197
WRITEL5. 300
 $\left.100 \mathrm{NO} \mathrm{C}^{\prime} \mathrm{I} 3\right)^{\circ}$
197 WR ITE(6.3001
 $\begin{array}{ll}105 P R O & \text { DSS } \\ \text { DO } 3002 & 5=1 . N Y P\end{array}$

SHORT.l'
 1 SSHT(J)
3 FORMAT(4112.4F12.2)
WR ITE 6,3004) DD OSSEFF (NP)

IF STAGE -E O. 11 GO TO 98
CALL SCOST ONYD.ANCST.NM
AVEU=A VEU* AUNIT
SAC=SAC+ANCST
G0 To 100

OO UCFY (NP,N) =ANCST/FYINC
G0 TO(120.300).KIK
170 WRITE(6, 2000) FYINC, ANCST, UCFY (NP.N)

2092 FORMAT 11
c average the unit cost of the increase in firm yielo

405 CONT INUE
410 CONTINUE
IF ISTAGE
AV AN $\operatorname{SaC} A C$ /NPEP
IF (EFI CLT.0.0NOS)
2096 FORMAT (1H0 O
FORMATIHO, THIS IS AN INTEREST ESCALATION RUN. THE COST NUMBER GI
IVEN BELOW IS THE AVERAGE OF THE PRESENT VALUE OF THE COSTS OF NPER 2 PERIODS:1HO, 'AVPV= •F12.0. DOLLAPS')
60 TO 415
398 AVEU $=A$ VE U/NPER
2093 FORMATIHD. 1 IAVERAGE ANNUAL OSTI/FYINC= PF10.D./1HD.*AVERAGE OF UN IIT COST DISCOUNTED=PFio.D." \$/YEARM.G.D.',
IF KKESC.EO.1) GO TO 3 E30
EF ORT=100.0*FFO
3330 FORMAT(IHD.'THIS IS A COST ESCALATION ATPF4.1.' PERCENTMYR.',
353060 T0 415
6 IF IKVAR.NE.2) GC TO 41
WRITE(5.2094) AVUC (1)
 1 GRTO 415
2009 format (iho."average costs for feasible operating rules. HPITE(6.2010) (A vuci JIJ=1•NOF
2010 FORMAT(1H 1 IFF12 4)
C FIND the LOWFST AVERAGE UNIt COST of Fyinc $1 \mathrm{x}=1$
CALL FINO(AVUC, NOF © IX)
WRITE(6.30n5) AVUC (IX)
3OR 5 FODMAT (IH1.OMINIMUM COST OF FYINC: PF7.O.' G/YEAR/M.G.D. ADDED FIRM 5 FODMAT (1H
1 YIELD
 WRITE(E,3007) ON(IX), OFLEVIIX)
 WRITE(5.30त8) AL (IX).GL(IX)

415 STOP
 ST OP
END
aFOR.IS CSTIO.CSTIO
SUROUTINE CST IO (K COPT. STAGE NMMOD
C THIS SUBPROGRAM IS ENTERED TO INPUT AND OUTPUT THE COST DATA COMMON/8LOCC

IN TEGER STAGE
REAL INT
1 READ (5.1000) NOLF. (0FACT(J), 上1, NOLF)
1000 FORMATII2.3X.8F5.0)
$005 \mathrm{~J}=1 \mathrm{NOLF}$
READ (5,1001) (OPCSTII,J),I=1 ©NOFF)
1001 FORMAT (8F10.0)
5 CONTINUE
READ 55.10011 INT.RATE.CCND
IF ISTAGE.NE.
READ (5.1001) ' GOTO 6

60 ro
PEAD

6 PEAD (5.1001) CADC CH)
7 IF KKCOPT.EO.2) GO TO 8
60 TO 9
8 READ I5,IDOI) CNO EXNO.CTN.EXTN.COP,EXOP
022 FORMAT (1h1.40x DeESal ting plant cost data. GO TO 10.121 , KCOP
WRITE(6.1023)
 ZRCEN II
GO TO 15
12 WPITE(6.1024)
 IING THE OPERATING COSTS•/1H ••(IN PERCENT)'I

DO $20 \quad \mathrm{I}=1$, NOFF 10 O 10.0
do
16 WRITE(5.1026) FACT (I), 10 PCST(I, J), J=1.NOLF)
1076 FORMAT (1HO.2X.F5.0.13X.10F10.0)
GO to 20
18 WRITE(6,1027) FACT(I), COPCST (I.J).J=1. NOLF)
0.7 FORMAT(1HO.2X.F5.0.11).10F10.3)

0 CONTINUE
IF (STAGE.NE.?) GO TO 21
WRITE(6.1028) (CSTM(L):L=1.NMOD)
GOTO 121
GO TO 121
WRITET 6.1

121 60 TO(22.25).kCOPT
22 WRITE (6.1029) ETONC. ET OFC
O29 FORMAT (1HO, ESTMATED TUR
-ON COST = PF8.D./Ih .'EStimated turn-off 5 CRITEI 8.01
 GOTO(40.26) *K COPT
c output the equations used in the cost computations
26 UR ITE(5.2000)
zoo formatilho.'fouations used in the cost computations.
2002 FRITE(6.2002) CNO.A.EPEXNO

1) ${ }^{1}$ HR I)
003 KRITE(6,2003) CTN.A.E.EXTN

14.A1.मC(1) 1

0 PE TUR
ENO
aFRR.IS COST, COST
SUBROUTINE CRSTINYP.NP.AVEL, WCST,KCOPT,S.K)

COMMON/BLOCC/ FACT (101, CAPC(10),00CST110, 101.OFACT(10),NOLF:NOFF.
 real int

$3{ }_{60}{ }^{5}{ }^{1} \mathrm{TO}$?
2 If (AVEL.LT.OFACTINOLF) 1 GOTO 14 $\begin{array}{cc}60 \\ 60 & 10 \\ 00 & 20\end{array}$
$140018 \mathrm{I}=1$. NOLF
 (1) OFACTII - OFACT(I+1)-AVEL) GO TO 17

$17 \underset{60}{50} 1020$
18 CONTINUE
>0 PW TH $=0$.
c annualize the operating exoenss NNUALIZE THE
OO $40 \quad L=1$, NYP AA FNMONTL
 IF XXLF G GTO.) 60 TO 22 CST= COCST1.J
IF IKCOPT EEO.21 CST $=\mathrm{CNO}$ *S**EXNO

22 IF (xLLF -LT. 95.0) GO TN 25
60 T0 30
$25 \begin{array}{rl}60 & 50 \\ 00 & 27 \\ \text { I }\end{array}$

可 $\quad 7$ CONIINUE
C discount the costs fod the lityeap to the present

TEMK TNTONCLI +NTOF(L) 1/2. O*CTN*S**EXTN
$35 \mathrm{FAC}=(1.0+I N T) \ldots+$
40 CONT INUE
C APRYY CAPTIAL RECOVERY FACTOR TO ObTAIN UNIFORM SERIES USER $=$ PWTH
45 ANCST=USER +CAP +INT*CCND RE TURN
aFRR.IS SCOST.SCOST
SURROUTINE SCOSTINYP.ANCST•NMDD.KESC.PWTH, AUNIT•EFII OIMENSION COEFFT10,101,CADT(50)
COMMON/BLOCC/ FACT(10).CADC(10), OPCST(10. 101. OFACT(10).NOLF,NQFF.

uivalence opp St.coeff)
DATA KENT/
QEAL INT
60 TO(5,1).kFs
c tF ENTERING COST FOR THE FIRST TME READ in the escalation factors
2 PEAD (5.1000) EFF EEFC.EFI
1 OMO FQRMAT(3F10.
O FORMAT(3F10.0)

KENT $=2$
60 TO
TO

$5 \begin{aligned} & \mathrm{GO} \mathrm{C}=0 \\ & \mathrm{EF}=\mathrm{D} \\ & \mathrm{EF}=0 .\end{aligned}$
$\mathrm{EF} \mathrm{C}=0$.
$\mathrm{EF} \mathrm{I}=0$.
.
$\begin{aligned} 7 \mathrm{PW} T \mathrm{H} & =0 \\ \text { PWUC } & =0\end{aligned}$.
$\mathrm{MI}=1$
CAD $=0$.
on g J=1,n y

IF (J.EO.MODV(MII) GO T0 8
CAPT (S) =CADT(J-1)
GO TO

$M I=1$
S
5

IF (S.NE.MOOY(MI)) 60 TO 10

YINC $=\mathrm{YLLDINIMII}$
$M I=M I+1$
$10 \mathrm{TEM}=1 . \mathrm{D}^{+}$

2 IFIXIF 20
12 IF (XLF LLT.95.) 60 T0 15
50 TO 17
15 DO 19 IF 1 , NOFF
FRAC=IXLF-FACTII川, GACTIO 19 FACTII
 GOTO 17
CONT INUE
19 CONTINUE
17 CS TITEM*COP*S**EXOP*C

TI $=I N T+(J)=E F I$
YEARC $=$ CST+CTUPN+CAPT(J)
UN IT $=Y$ EARC $/ Y I N C$
$P W T H O P W T H A E A D C$

30 CONT INUE ANCST=PHTH
IF GKESC.EQ.2.and.EFI.GT. O. 000051 go to 35
 $A N C S T=A F A C * P W T H+I N T+C C N D$
$A U N I T=A F A C P W U C+I N T * C C N D$
35 RE TUR
aFOR.IS YIELO.YIELD
SUBROUTINE YIELD NNOP.NYP.NOR N IO.ONLEV.OFLEV.NON.NOF
COMM ON $/ \mathrm{BL}$ OCKA $/ 0(1201.51$

COMMON/BLOCKBIONC ON (100). OF CON(1OO). UCAP
COMMON
LOCKZ/IY

COMM ON $/$ BL OCKG/GLF (50)

DIMENSTON KONI 75), IOD (75), DD (75). CMD (12). KDUR (200)RRCON(100)
-DFCIT (20.10), MO D 20.10).MPF (20,101, TEMH (12) IEML(1)
OIME NS ION ONLEV(10), OFLEV(IO)
IN TE GER
FN YP
MA
KPY
MAP

NY PS $V=\mathrm{NYP}$
PP CF $=\mathrm{PCF} .100$

$\mathrm{C}=.00004$
$\mathrm{KSR} \mathrm{T}=1$
KT

IA PG $=798531$
$Z R A N-2 A N(I A R G I$
ZRAN $=R A N T$
$I Y=I A R G$
$006 L=1.50$
GLF(L)=0.
GLF(L) $=0$.
6 CONTNUE
$00170 \mathrm{NP}=1$. NOD

KIIE1
DBAR
NV $=1$
$\mathrm{NV}=1$
$\mathrm{MS}=1$
$\mathrm{ME}=\mathrm{N}$

IF IKREAD EEQ－2）IYPER（NP）＝I

12 DO $160 \mathrm{~N}=\mathrm{NV}$ ．NR
$J=N S N *(N-2)+M S N(1)$
$J=N S N * 1$
IT $\mathrm{IME}=0$
DD（1）＝DBaR＊START

MS M SCP（P）
ME $=M E(P(N P)$
MS
ME MECPI
$K I T=$ ？
If ins．EO
311

$A=O N C O N(J)$
$B=O F(O N J J)$
$P A=O$
$\mathrm{RA}=0.5 * U C A P+C M I N$
$R B=0.75 * U C A P+C M I N$

IF（BATTRA）DO（1）＝DBAR＊（START－0．05）
313 IF（A．GT．RE．AND．B．GT．RB）DD（1）$=0$ OAAP＊（START＋0．05
$130014 \quad 51.20$
$\operatorname{KON(J)}=0$
$\operatorname{ICD(J)}=0$
14 CONTINUE
$D x=0$.
$D E=0$.
$\mathrm{DE} L \mathrm{SS}=0$.
$I I=0$
$I=I I+1$

c CONVERT THE MONTHLY DEMENAND RATES TO VOLUMES
322 Do 21 I＝1．12

CALL CON（DEM．CD．I．IYEAR
CMDII
COD
21 CONTINUE
$22 \mathrm{LEV}=1$

Stot $121=$
KC ON＝D
K
$\mathrm{KCON}=0$
$\mathrm{KS} \mathrm{OH}_{\mathrm{o}}=0$
$K A D D=1$
$R S T O R=R S$
IN
IF（N．EQ．1）GO TO 30

$\mathrm{KADD}=2$
$\mathrm{KCO}=1$
KONTIIに1

Ko $=0$
$K D=0$
$M D=0$

25 TEMLITE
f $10=0$
$A L O A D=0$ ．
$G O A D=0$.

kFULL＝1
IF（MS．E日．1）kFuLL＝？

DF LAG $=1$
M OS $S=0$.
MLOSS $=0$ ．
KDUR $11=0$
RM IN $=9$ 99999．
CR IT M
MC FL $6=29$

DO 31 上 $\mathrm{L} \cdot \mathrm{NYP}$
1 CONT INUE
$n=1$
1F（MS．GT．1）M＝（MS－1）＊12＊1

32 CALL TEPP（CAPSSA，NPRC．RS TOR，SSA，NS IG）
IF INSIG．EQ． 1 GO TO 902

OELS $=0(\mathrm{M} \cdot 1)-\mathrm{CMD}(\mathrm{I})-E V A P$
RS TOR $=$ RS TOR + DELS
35 IF KCON．LT．111 60 TO 33
ENTER HERE IF CONTINUOUS OPERAT ION FOR 11 MONTHS
IF INSN

$\mathrm{KF}=\mathrm{F}$ ORCE
$\mathrm{KADO}=1$
$\begin{array}{ll}K A D O=1 \\ K S U M & =K S U M+K C O N\end{array}$
$\mathrm{KKCON}=\mathrm{O}$
GO TO
336 IFIMSN（IM．GT．1） 60 T0 335
338 IF（NOPCVITI．EG．O．AND．RSTOR ．GT．OPCON GO TO 335

$\mathrm{KF}=\mathrm{KK}-1$
$\mathrm{KC} 0 \mathrm{KN}=\mathrm{KON+}$
ado oesalt production for the given month

DELS $=$ RST OR－CMAX
RSTOR＝CMAX
$\operatorname{KF} \mathrm{U} \ell=2$
$\mathrm{~L}=1$
42 IF（KADD．E日． 11 GO TO BO
C ENER HERE IF STORAGE IS FULL AN DESALTING PLANT IS ON
46 KADF） 46,46 ．8
$46 \mathrm{KADD=1}$
$\mathrm{KF}=F=\mathrm{R} C E$
Ks um $=\mathrm{K}$ SUM +KCON
$\mathrm{KCON}=0$
60 TO 80
50 IF RSTOR－GT．CMIN I GO TO 56 IF TCMIN．LT．0．0005）GO TO 54
50 TOC 54 ． 53 3）－DFLAG
$4 \mathrm{OF} L A G=2$
$K 0=K 0+1$
MOFIKD $=\mathrm{MF}$ ULL
DE LS $=C$ CIN N－RS TO
RS TOR $=C M I N$
$53 \begin{gathered}60 \mathrm{TO} 55 \\ \mathrm{LO}=\mathrm{O} \\ \mathrm{DO}+1\end{gathered}$

IF N．GT．1．AND．NOPCVIII．NE．OI OELS＝DELS－DSVIT
IFIRSTOR．GT．O．） 60 TO 55
RS TOR $=0$ ．
155 DELS CCMIN－RSTOR
c sum the shortages
C RECORO IKYLD．EQ．I．OR．KIT．EG．1）GO TO 156

156 STOT（KDI＝STOTKO 1• DELS

56 IF DFLAGEDO． 11 GO TO 59
C ENTER HERE IF COMING OFF A DRNUGHT
$57 \mathrm{IDO}_{\mathrm{MD}}^{\mathrm{ID}}=\mathrm{ID}$
TODCIIにIO
KOUR1IDI＝LD
$\mathrm{LD}=1$
$\mathrm{DFLAG}=1$
mos（к0）＝
al $05 \mathrm{~s}=0.0$
59 IF（KIT EAEAND．KTHRU．NE． 21601080

$M F=M F U L L$
$M O M=M$
GO 1062
KO IF（RSTOR．GT．UCAP＊O．75）GO TO 62

fi CoNI INUE
IF RSSIOR．GT：SMAX）GO TO 6，
MRFIIXI＝MFULL
MRM（IX）＝M
62 IF in EO． 11 Gn to 80
It．oncont jull go to 70
IF RRSTOR．GT：GO TO 6

IF（NOPCV（IXI．EQ．0） 60 to 80
KADO $=2$
（IIたKON（IT） 1
$58 \begin{gathered}\text { GO TO } \\ \text { IF TRSTOR }\end{gathered}$
ENTER TO BO
if tupn－on level highep than turn－off
70 IF IRSTOR．GT．ONCONI JJII GO TO 42
IF IRSTOR．LT．OFCONI JJII GO TO

75 GO TO 180.441 ．KA DO

 IF RCST OR
MCFLG＝1
Co
378 IF（RSTOR ALT．CRITM）CRITM＝RSTM
MCF＝MFULL
81 CONT INUE

90 CONTINUE
c at this point a period of nyp yedes has reen completed 1 IF KTHRU．E日． 11 GO TO 93
c IF KTHRU \Rightarrow and KStrt $=2$ GENERATE STARTING CONTENTS

XN WNO R AN（I ARGI＊5D．B＋ 0.5
NUM $=$ XNUM
NUM $=$ NUM +25
PS（Ll $1=\mathrm{RC}$ ON（NUM）
TXST＝CMA \times－D．ПOI $*$ CMAX

IF（RS（L）．GT．TXST）RS（L）$=$ TXS
92 CONTINUE
 KSTRT＝1 NY P＝NYPSV
60 TO 100
C ENTER HERE HHEN in It TERATION PROCESS
 Ox $=0.000^{\circ} \mathrm{DB}$ AR
IF（IT．EE．5）STOP
GO TO
394 CALL XOCLKD．MSTRT，MEND．DX．CMIN．MAXY，MD．TEST．KYLDI MCRIT $=$ ME ND－2
SFIMSTRT－60．GT．0）MS＝（MSTRT－60）／12＋1
ME $=M E N D$
IE
$M=D D(I I)+D X$
WRITE（6．3030 MS．TEM

$\mathrm{KITF}=\mathrm{Z}$
MS SV

96 IF（FFULL ．EQ．1．AND．MS．NE． 1 II GO TO 501 IF（III．LE－15）GO TO 97
 DD（II）$=\mathbf{C D O}(I I)+0 D I I-1) / 2$.

60 TO
IF

97 IF（KD．EO－0）GO TO 98
SHORTAGE occ URRED AT LOCM
IF tMLD．EG－2）GO TO 99

ENTER IF MAXY．GT．OAND MCFLG．EG． 2
RM IN FCRI TM
MO NLEMCRI T
$\mathrm{MON}=\mathrm{MCRIT}$
$\mathrm{MF}=\mathrm{MCF}$

$\mathrm{MF}=\mathrm{MCF}$
GO TO
98

397 SMax $\begin{aligned} & \text { SSOM } \\ & \text { SSOM }\end{aligned}$

$94 \begin{gathered}\text { IT } \\ \text { CON }\end{gathered}$
94 CONTINUE
60 TO 95
SSUM
395 SSUM＝S TOT（KO）
95 WR ITE（6．7000）MOS（IT），MOF IT I．SSUM

GO TO 20
tor GREATER than CMIN at locm
C RSTOR GREATER THAN CMIN AT LOCM
98 HRITE（5．7001）MOMOMF．RMIN
 IF IPMIN－CMIN－LTERR＊TEST，G0 TO 100
$x=(R M$ IN－CMIN）／（（MOM－MF）＊．O3U5）

Lif
IF TKAXD．E0．11 60 ro 250
Max $=0$.
00240
240

IF TMES LIT．TMAX） 60 TO 240
TMAX
$\operatorname{TMAX}_{t=1}=\mathrm{TES}$
240 CONTINUE

IC $\mathrm{IF}=$ MODCI•LI－I MULT -1
$\mathrm{c}=\mathrm{ICC}$
DO $255 \mathrm{I}=1$ •LNGTH

255 IFIC.EO.13IC $=1$

$1 \mathrm{Ix}=1$

259 Ix=?
SUM=DFCITIT,L1

IF IDFCII(IDL).LT.TEMHI ICN GO TO 263
SUM= SUM+ DFCITII.LI
$263 \begin{aligned} & \text { CONT IN }\end{aligned}$
265 IF (IX.EQ ELNGTH) SUM=SUM-TEST

c enter here if the iteration is completed
100 IF KKTHRU.EQ. 21 GO TO 101
KT HR U
$M \mathrm{~S}=1$
$M S=1$
$M E=N P * 12+1$
 $\mathrm{KS} \mathrm{UM}=\mathrm{O}$.

IF IKD.GE.MAXY-1. AND.KD.LE.MAXY +1) G0 ro 104

 1 2 OOKING FOR PI 3 .' SHCRTAGES',
102 IF If
1 1ח2 IF IITME. 6 T. 51 G0 10 502
ssim $=0$.

103 SS UMT SUMM+STOTIL)
402 CONINUE
IF IS SUM.LT.EPR•TESTI GO TO 104
C enter here if iteration over dre cetermineo critical
DEPIOD NOT VALIDFORTHE ENT TRE PERIOD
ERRP $=5.0 *$ ERR
IF IS SUM.LT.ER
IF 15 SUM. LT.ERP 2* TEST) GO TO 104
404 CASITILE.GT.2.AND. SSUM.LT. O. 10*TESTI GO 10104 MS $=1$ KLOCLKD.MSTRT,MEND.DX.CMIN•MAXY.MD.TEST•KYLDI
MC RI T= MEND-2
IF MSTRT
ME $=$ MEND
M

IT IME
406 IF (KHEEG.0) 6
 IF (ITIME.LT.f) 60 TO 404

ITIME
KSTRT

MS $=M S S V$
c compute the frequency, amount and average ouration of shortages
$\mathrm{KF} \mathrm{O}=\mathrm{D}$
$\mathrm{TO} \mathrm{F}=0$

5 CONTNUE
YOEF $=D$ OTI
FN YP
ON YP
FREO = $1.00-F K F O / F N Y P 1 * 100$

KD SUM K KD SUM + KDUR (L)
$110 \begin{gathered}\text { CONTINUE } \\ \text { SUME KOSUM } \\ \text { Fin }\end{gathered}$
SUM K KD SU
FID $=10$
AVDUR=0.
IF (FID. 6 T. D.) AVDUR= SUM/FID
C COMP IF IN EQ
FK SUM K KSUM
FK ON
FK ON = K ON III
AL OADEFK SUM/ (F KON* 12.1 :100
Q OADEFK SUM/ (NYP*12):100.
AVLF $(N)=A V L F(N)+A L O A D$
$G F(N)=G L F(N)=G L D$
$123 \mathrm{FY}(\mathbb{N P} \cdot \mathrm{N})=0 \mathrm{D}(\mathrm{IT})$
ENTE TO $1125.1501, \mathrm{KIO}$

125 IF IN. 6 T. 11 GO TO 128
3ong formatilito.0 operation without the desalting planto

$128 \mathrm{KP}=\mathrm{NSN}+\mathrm{N}-2)+1$
3001 format ihai. operat ing rule. expressed as reservoir contents. $00130 \mathrm{~K}=10 \mathrm{NSN}$
 $\mathrm{KP}=\mathrm{KP} P+1$
130 CONTINUE

$00149 \mathrm{~L}=1, K 0$

CONTINX
150 IF IN EEQ. 11 DBAR $=D E M B+$ DS CAP
150 CONTNUE
C at this point have completed all rules for one period
c AT This Point have completed all periods

0.01 60 то $2 \pi n$

DO 181 I A=1, NON
$\begin{aligned} & D 0 \\ & K=K+1 \\ & K\end{aligned} \quad B=1$, NOF

181 CONTINUE
200 RE TURN
501 WR ITEC6. 6001
 TO Lor.m. 1

502 WR ITEI6．60021
go mation critical period mot located in 5 titerations．
60 TO 999
WR ITE 6.601
6003 FORMAT（IH1．＇N M MONTHLY Defic its here pecorded．）

99 ST OP
FFOR．IS XLOC．\times LOC
COMMNNRLOCWSTOT（50）．MOS（50），MOF（50）．MRM（25）．MRF（25）．SMINI25）
DIMENSTON AMTSTO）．TEST（50
IF（ko．e日．a） 50 to 10
1 AMTI
AM（II）$=5$ TOT（1）
IF（KD．EA．
$004 \mathrm{~L}=2 \times \mathrm{KD}$ GOTO 5

3 AMTしい SSTOTLI
4 Continue
5 SMAX
DO $8 \mathrm{~L}=1 \mathrm{KD}$

IX
IX
continue
and
IF MMAXY．EO．O．OR．KYLO．EO． 21 GOTO

宁 MSTRTMO（IX）
 IF（KYLD．E日． 21 OD＝DD＊ 0.75
1000

1
60 TO 15
STES
T
DO $13 \mathrm{L=1.20}$
TEST $(L)=S M I N(L) /$ MRM（L）－MRF（L））
IFTEST（L）．GT．STEST） 60 TO 13
STEST＝TESTル）
$13 \begin{aligned} & \text { IXEL } \\ & \text { CoNT INUE }\end{aligned}$
13 MSTR T＝MRF（IX）
ME ND $\operatorname{MMRM}(I x)+2$

15 RE TURN
AFORTIS TERP 3．TERO3
SUBROUTINE TERPICNON•NOF．TRDEY．ONL EV．OFLEV，
COMMON／BLOCKG／GLF（501

DIMENS ION ONLEVC10）．OFLEV（10）
ON（J）$=0$.
CONINUE
5 CONTINUE
$10050 L=1, N O F$
0050 上1，NON

IF（AVFY（I）－LT．TRDEM）GO in 48
IF（J．NENON）GO TO 50

ONGI＝ONLEVIJ
AL（L）＝XLF（I）

52 DIFF＝TRDEM－AVFY（I）
IF IO IFF．GT＿0．00250 TRDEM）GO TO 55 ON IL $)=0 \mathrm{ONLEV}(\mathrm{J})$
AL IL
＝XLF（I）

G．1Lに日F（I）

 laf（II）
60 T0 60
50 Coni inve
MRITE（6．2000） 2
2000 format iho．，minimum value of curve ifz．，greater than troem．， KNTEKNT－1
60 TO 60
55 WR ITE 6.2001$)$
2001 FORMAT（1H0，
ihd．pmaximum value of curveriz．．less than trdem．）
KN KN KNT1
60 CONT INE
2002 KR IIE F RHATIHO． 202 ）KN T
lie pilfs found．，＇feastble rue information．／ih．．onumber of feas ib IF TKNT EEO．OI STOP

IF（ON（L）．GT．O．D）WRITE（6．2003）ON（L）．OFLEV（L），AL（L）．GLIL）

 RE TUR
END
aF OR．IS PL OT PLLOT
SURR OUTINE PLOTCMSTOR．NY，NFULL ，NEMPT
DI ME NS ION NARR（120），MA（120）．OTT（120）．MSTOR（360）
DAN BK／LH／，$\times / 1 \mathrm{LH}$／

TEMEMS TORIII
TEMETEM／2．0
TEME TEM／
NTEM
IEM

$2 \begin{gathered}\text { CONT INGE } \\ \text { FL IN } \mathrm{INY}\end{gathered}$
TEMEFLTN／10．＊O．5
$\mathrm{NN}=\mathrm{TEM} \mathrm{M}=\mathrm{NN}$
$\mathrm{DO} 30 \mathrm{H}=1, \mathrm{NN}$
u＝（1I－1）$=10$
If（1NY－Lい．LT．10）KK $=\mathrm{LL}+12$
$\mathrm{JA}=(\mathrm{II}-1) \times 120$
NARR（JJJ＝MSTRO（JJ＋JA）
5 MA（JJ） $\begin{gathered}\text { CONTINUE } \\ \text { and }\end{gathered}$
c
rank values in desceneing order

$9 \mathrm{M}=\mathrm{M} / \mathrm{?}$
IF （M） 10.20 .10

10 | $\mathrm{K}=\mathrm{M}=\mathrm{M}, \mathrm{M}$ |
| :---: |
| s, M |

IF INARRTLI－NARRIII）15．15．15
15 NB $=$ NaRR（L）
NARR（L）＝NARRII）

$\mathrm{NaRR}(\mathrm{I})=\mathrm{NB}$
$\mathrm{MA}(\mathrm{I})=\mathrm{Na}$
$\mathrm{I}=\mathrm{I}-\mathrm{M}$

16 | $\mathrm{J}=\mathrm{J}+1$ |
| :---: |
| $\mathrm{FF}(\mathrm{J}-\mathrm{K}$ |

20 KRITE（6．1000）NFULL，NEMPT．II

1 ABLE LEVEL=•I4, B.G. $1 / 1 \mathrm{H}$, OROINATE IRESERVOIR CONTENT, IS IN PERC ENTP
KOPD
OXX

Ix $=1$

NO RO $=(51-I X) * 2$

GOTO 122
2 WRITE($6 \cdot 1003$

23 OUTノ $10=8 \mathrm{~K}$
24 IF (K.GTKKK) G0 ro 26
IF INARR(K) ME. KORD) GO TO 25
$\mathrm{L}=\mathrm{MA}(\mathrm{K})$
OUT(L)
O
$k=k+1$
60
K
$5 \begin{gathered}60 \text { TO } 24 \\ K O R D \\ \text { KKORD-2 }\end{gathered}$

1001 FORMAT (1H + , $6 \times, 120411$
28 CONT INUE
28 CONTINUE
30 CONT INUE
35 RENURN
END
aFor.is terp,terp

a array increases.

IF YARG NE.ACNPTSIIGO TO 10
60 To 50
$100020 \mathrm{I}=1 \cdot \mathrm{NPTS}$

60 5050
20 CONTINUE
GO 1050
30 KRITE (6, 40).
40 format 1 Ho. the argument is aut of the range of the reservoir data 19
NS IG
NE
RE TURN
50 RE TURN
ENO
aF ORIIS RULE.RULE
SUBROUTINE RULEINON, NDF, NOR, NSN.KIO)

DIMENSION RUL(25.2)
c this routine formulates the rules that constitute the decision space ** ** * KM $=0 \quad 1=$ NON
DO
DO
5
5
$\begin{array}{ll}\text { Do } \\ K H \\ K H M & J=1\end{array}$
$K M=K M+1$
PUL $(K M, 1)=O N C O N(I)$

IF INSN.EO.11 GO TO 15
OONZ $=0$ NI $2 * U C A P$
DOF2 $=0 \mathrm{FI} 2 *$ UCAD
IF ©NSEEO.2) GO TO 15
DO NS $=0 \mathrm{NI} 3 *$ UC AP

$5 \mathrm{~L}=0$

IF $\operatorname{CON(INSH}$) $=0$ FCON(I)- DOF 2
IF INSNGEQ.2) GD TO 20

20 CONTINUE OFCONTI
60 TO $121 \cdot 221 . \mathrm{KIO}$
21 WR ITET6,1005) (ONC ON (J), of COM JI, J=1,KP)
22 RE TUPN
22 RE RUN
OOO WRITE $6.2000, ~$
oid formatilitionumber of seasons specified is in error., STOP
END
aFor.is con. CON
SUBROUTINE CONival.cual.K. iyeari
60 TO
60 TO 10,111$)$ I YEAR

$1 \mathrm{CVAL}=.031 \cdot \mathrm{Va}$
$2 \mathrm{CVAL}=.028$ V.VAL
cotio
3 CVAL
5
5 RE TURN
aF OR.IS FIND, FIND
SUBR OUTINE FIND(AA,N.IX)
OI MENS ION AA (50
C this subrout ine finds the minimum cost of the increase in firm rield
1 AM IN $=99999999$.

$\mathrm{AM} I N=A A(J)$
$I X=J$

\rightarrow| Ix |
| :--- |
| 0 continue |

RE TURN
END

aF ORIIS DE MF DEMF
FUNCTION DEMF(L.JY,C.A.3.U.W,AF)
GOTOC1.2.3).
1 DE MF $=\mathrm{C}$
60 TO 5

END
aF OR.IS RAN. PAN
FUNCTIONRAN, iAPG,
COMMON /BLOCKZIY

IX IX IARG
IV
3 IV =I Y 262147

RANE IY
RANERAN* $2910383 E-10 ~$

aF OR.
c FIVE STATION VERSI ON IIMENSI OVED FOR 100 YEARS
COMM ON /BLOCKA/ O(12ח1.5)
common/blockzify

2R(10.11).RA112.5.10).SD112.5).SKEW(13.5).SOA(12-101. SOB(12.10),
3 SUMA $(12,10)$, SUMB $(12,10), \times(10)$, XPAB $(12,10)$.

DOURLE PRECISION R.B
DATALTRA/IHA/•BLANK/IH/PE/IHE/•KENT/1/
NY MXG G NY RG
IF KEENTEEO.2) 60 то 1 ก91
KE NT $=2$
KS TA $=5$
$C=.0004356 * 7.48$
IARG $=\mathrm{IY}$

```
    MYR=100
    IE NOF=0
    IOG5T=0
    2 FORMAT(1X.17.9I8)
    3 formatilimal
    3 FORMAT(1HO)
    4 FORMAT(IG.4X.14.12F5;0)
c (a)
    10 READ(5.12)IA.(0(M.1).M=1.20)
        IF (IA.NE.LTPA) G0 TOM 10
    IF(IENDF.GT.M)
    I1 FORMA(1H.T4,16,1218,I1O)
    2. FORMAT (A1, '
    IF (KIP-EO.2) GO 10, 
    3 WRITEIG.2) 'O(M.1),M=1.201
    *)
    ITMP =IRCON+NYPG 
    G0 TO 10
    20 KRTTE (6.25)
    5. FORMAT//19H OIMENSION EXCEEDED
    30 IF IKIP EE.2) 60 TO 4?
    Mrite(G;40).,iyga imnth imsng itest ircon nyrg nsta ipche nymeg*
        '2) WRITEIG.41) IYRA,IMNTH.IMSNG.ITEST.IDCON.NYRG.NSTA,IPCHQ.NYMXG
    41 FORMAT (2016)
```

 \(42 \begin{aligned} & \mathrm{T}=9999999 \\ & \mathrm{TM}=\mathrm{T}-1.0\end{aligned}\)
 IYRA=I YRA-1
 IMNTH= IMNTH-
 DO 50 I $=1.12$
IT MP $=\mathrm{K}$ ST $A * 2$

On $45 \mathrm{t}=1,1 \mathrm{ImP}$
5 As (I:Kル)
4 E CONTINUE

50 CONTINUE
58
NYPS
DO
70
IS
K

- istack r=1000-k
Do $60 \mathrm{M}=1, \mathrm{KM}$
$0(\mathrm{M} \cdot \mathrm{K})=-1$
$0(M+K)=-1$.
$0065 \quad \mathrm{I}=1.12$

70 CONTINUE
 * *.** * read and process 1 ttation-yfar of data * * * * * * * * * * * *
75 READ (5.4)ISTAN,IYR.1OM(I), I=1.121
BLANK CARD TNDICATESEND OF FLOH DAT
78 IFIISTAN LTT. IGGOTO 130
c IF INSTA.LASSIGN SUBSCPIPT TO STATION
if (istan.EQ.ista (x)) go to lob
BE CONTINUE
90 NS TA =NSTA.
$\mathrm{K}=\mathrm{NS}$ TA
ISTA
($)=$ ISTAN
to assign subscript to reab

c
stode flows in station and month arpay

$M=M+1$
$I Z=\theta M I$
IFITZ.EQ.-1) 60 To 12
IF Iz.EQ- -11 GOTO 120
CONVERT THE FLOHS TO B BG. I MONTH
TO B.E./MONTH
$5 \mathrm{GM}(\mathrm{I})=\mathrm{OH}(\mathrm{I}) * \mathrm{C}$

506 OM (II $=0 \mathrm{OM}(\mathrm{I})$. F 546317
50760 TO 1511.51746317

OM (I) $=$ OH (I) $)$. 031

GM (I) $=0 \mathrm{M}(\mathrm{I}) * .030$
60 T0 508
4 OM (I) $=0 \mathrm{OM}(\mathrm{I}) * .028$
$800(I \cdot K)=D O(I \cdot$
$0(4, k)=0 M(I)$

O(4RK)
CONTINUE

20 CONT INUE
130 NS TAA $=$ NS TA +1
IF (NYRS.GT.KYR) GO TO 20
. nstax=nsta +nsta . compute freuency statistics
Go TO(131.316).KIP
1 WR ITET6.314)
14 FORMAT $1 / 21 \mathrm{H}$ FREQUENCY STATISTICS)

$31600317 \mathrm{~K}=1 \mathrm{MSST}$
317 OONTINOT

AV(I)K1=0.
SO $(I \cdot k)=0$.
SKEW(T)KO
TE MP $\operatorname{ZNLOG(I\cdot K)}$

320 c
$M=1$
$00350 J=1, N Y R S$

$12=0(m . k)$

sum. SQuares. and cufes

60 T0 340
330 o(M, K) $=$ MISSING flows equatiol to
330 O(M.K)
340 CONTINU
340 CONTINUE
350 CONTINUE

TMP=Av(T,K)
AV(I K K) TMP) TEMD

TMPA $=50(\mathrm{I}, \mathrm{k})$

355 SC (TM)
SKEW(IOK)=
SKEWII OK
360 CONT INUE

SKEW(13.K)=SKEW(1.K)
GOTO($361.4211 . K 19$
351 HR ITE (6, 362)ISTA (K), (AV(I)K) :I $=1 \cdot 12$
352 FORMAF $1 / 15.8 \mathrm{H}$ MEAN 12 FR . 3)
364 FORMAT 7 XX . 7 HSTO DEV 12 FB .3)

WR ITE ($6 \cdot 368$) $100(1, K), I=1.12$
358 FOPMAT $18 \times 6 \mathrm{HINCRMT}$ F7.2.11FB 2
421. CONTINUE TRANSFOQM IO STANDA
*****Transform to standamolzeo variates
$k=1$
00
$0.180 \mathrm{~J}=1$, NYAS
$00480 \mathrm{~J}=1 \mathrm{NYOS}$
$00470 \mathrm{I}=1.12$
$M=M+1$

O(M,K)=(OCM,K)-AV(I,K), SO(I,k)
C IZ \quad PABS (SKEAPSONTYPE III TR ANSFARM
IZ $=A B S$ (S KEW(I.K) $1+0.999$

TMP:1.
IF TTEMP. GE.
TE MP
TM
TE TE MP
$T M P=-1$
$O T$
$M=$

450 OCM. KINE
470 CONTNUE
480 CONT INEE
490 CONT INUE
c.

$x=k+1$
O $510 \mathrm{~L}=\mathrm{Kx}$. NSTAX
$\stackrel{\rightharpoonup}{\boldsymbol{\circ}}$
Sumair ll) $=1-4$.

SORTICL $=0$.
XPABIILI

50 NCOAB NNE
510 CONT
$\begin{array}{lll}\text { Do } & 520 \text { I }=1 \cdot 12 \\ \text { DO } & 515 \mathrm{~L} & =1 \cdot \mathrm{~K}\end{array}$

$\begin{array}{ll}\mathrm{M}=1 \\ 00 & 50 \mathrm{~J}=1 \text {.NYRS }\end{array}$
$\mu=\mu+1$
TE MP =O (M.K)
IF (TEMP.GT.TM) GO TO 540
c subscripts exceging nsta pelate to preceding month
IF (
IF (LXX.GT.0) TMP $O(M-1, L x)$
IF TMD.GT.TMI 60 TO 530
COUNT AND USE OMM Y e CORDED PAIRS
sumalidilisuma (It)+TEMP
SUMB (I, Li=SUMBGILlTMP

530 CONTINLE
540 CONTINUE
540 CONTINUE
550 CONTINUE
c....... compute coprelation coeff it

c 575 DO $58 \mathrm{~L} L=\mathrm{KX}$. NS TAX

IEMD $\operatorname{ANCABLI\cdot L)}$
AB (I:k

c eliminate pairs hith zero variance product

IF TMPA.LITA.1TMPA=0.

RA(ITR K$)=\mathrm{RA}(\mathrm{I} \cdot \mathrm{K} \cdot \mathrm{L}$)
AA (I L L k) $=A B(I \cdot K+L)$
580
if (IDGST.LE.0) 60 TO 596

IZ RACIOKOL

597 CONTINUE
598 CONTINUE
600 CONT INUE
612 TE MP $=0$.

$81500880 \mathrm{I}=1.12$
8? © FORMAT:/4OH CONSISTENT CORRQATION MATRIX FOR MONTH (3)

825 FORMAT $1 / 3 \times 3 \mathrm{BHSTA} 18171$
830 FORMAT 200.19 H HITH CURRENT MONTHI
840 WO $840 \mathrm{~K}=1$,N NSTA

850 FORHAT(I6.18F7.3
WRITE (6.860)
850 FORAT $120 \times 38 \mathrm{H}$ WIth PRECEDING MONTH AT above station
IT $\mathrm{P}=\mathrm{NS} \mathrm{TA}+1$
$\mathrm{DO} 870 \mathrm{k}=1$.

870
880
885
CONTINUE
IF ITRCON.LE.0) GO TO 1015
WR ITE (6.3)
$\mathrm{MR}_{\mathrm{M}=1} \mathrm{ITE} 6.31$
c doran use average for month preceding record
$9310(1, K)=0$.

$r=M+1 \quad \mathrm{I}=1.12$

C NINDP=0 FORM CORRELATION MATRIX FOR EACH MISSING FLOW
DO $950 \mathrm{~L}=1$, NSTA
$\mathrm{LX}=\mathrm{L}+\mathrm{NSTA}$

932 NI NOP P NI NNP +1

R(L.NVAR $=R A(T \cdot K \cdot L X)$
$6010 \quad 935$
IF 10 ir L)

$X(N I N D P)=O(M \cdot L)$
$A C(N D P)=A B(I \cdot K \cdot L)-A A(I \cdot K \cdot L)$
935
ITP=NINDP
R(ITP. ITP)
DO $940 \mathrm{LA}=\mathrm{L}$. NS

IF (L.EOCK) GOTO 936

936
TM) 60 ro 940
RININDP.ITP) $=$ RAII.LA.LX

940 CONTINUE
950 CONT INUE
IT MP $=$ NIN DP +1
c 95

$\overline{\text { CALL }}==\underset{\text { CROUT }}{=}=\overline{=}$ (R.DTRMC•NINDP•B)
$=====$ ado random component to presfrve vartance
$T \mathrm{MP}=\mathrm{R} \operatorname{AN}(I A R S)$
$\operatorname{TMP}=\mathrm{RAN(IARG)}$

WRITE G6,7 IOK.OTPMC

955
AL $=(1,-D R M C) * * 5$
TEMP $=T$ EMP* AL
Do $960 L=1, N$ INOP
960 TEMP $=T E M P+B(L) *(X(L)-A C(L))$ $O(M, K)=\Gamma E M P$
$\stackrel{\rightharpoonup}{\circ}$

970
980
990
CONTINUE
0 CONTINU
IF KKIP EQ E.2) GO T0 1994
993 FORMAT133H RECOR
4 ANR $\mathrm{S}=\mathrm{NYRS}$
00 CO
$1011 \mathrm{~K}=1$, NSTA
IF KKIP E EO. 2) G0 To 1995
WRITE(6.995) (MOC I) •I=1.12
995 FORMAT/T1H STA YEAR L218.60, SHTOTAL
$1995 \mathrm{M}=1$
DO 1999 上lenyR
15 $\mathrm{P}=0$
$00997 \quad \mathrm{I}=1.12$
$M=M+1$
$\mathrm{M}=\mathrm{M}+1$
TE
$\mathrm{MP}=3(M, K)$
tmpesken(tokert standard deviates to flows

2 ППO TEMP $=($ (TMP* (TEMP - TMP /6.1/6.*1.)**3-1.)*2./TMP
2001 FF (GR(M)K).NF.EE GO TO 992

91 IF (TEMP. GT. TMP) TEMP =TMP
60 T0 992
994 IF (TEMP.LT.TMP) TEMP $=T$ MP
TMP $=T E M P * S D(I-K)+A V(I \cdot K)$
$B(M-K)=10 \cdots T M P-D(I, K)$

996 IO (I) $=0(\mathrm{M} \cdot \mathrm{K})$.
$97 \begin{aligned} & \text { IT } P=I T P+I O(I) \\ & \text { IY } R=I Y R A+J\end{aligned}$
IF KIP EO. 2150 TO 19
IF IIPCHO LLE.OIGO TA 998

998 HPTVE(6.999)ISTA(K). IVR.

1000 D0 1001 I=1.12

$\operatorname{Do~}_{M=M+1} 1002 \quad \mathrm{I}=1 \cdot 12$

1002 SD (ITK) SO (I , K) + TEMP *TEMP
3 Cont inue

SD TI K K IETMP*** $5 * .4342945$
1004 AV (I, K : $=$ TEMP/A NYRS $*-4342945$
1011 CONTINUE PRINT ADUUSTED

WR ITE(6.1012)
1012 format $1 /$ 30h ad just ed fre quencr statistics
$001013 \mathrm{~K}=1$. NSTA

$\begin{array}{ll}\text { WRITE }(6.365) & (S K E W(I, K) \cdot I=1.12) \\ \text { WRITE }(6,368) & (D 0(I, K), I=1,12)\end{array}$
1013 CONTINUE
1015 * N *****
NVAR $=N S T A+1$
D0 $1090 I=1,1$
IP $=1$
IF (IP.LT.1) IP=12

RO $1052 \mathrm{LA}=\mathrm{L}$,NSTA
$1 \times \mathcal{I A} A+N S T A$

- 1060 corpelations hith poeceding month
$1055 \begin{aligned} & L X Z+N S T A \\ & R(L) N V A R)=R A(I, K \cdot L X\end{aligned}$
DO 1057 LAAL ONSTA

$c^{1060 \text { CONT INE }}=====$

18 H OTRMC $=\mathrm{FF} .31$
1078 IF TDTRMC.GE. D.) GO TO 1079
WRITE(6.7II.K.OTRMC
DTRMC=0.
DTRMC=0.
AL $C F T(I)$

1090 CONT INUE

$\left.1 \begin{array}{l}J A=1 \\ N=0 \\ M A\end{array}\right)$

$c^{1100 \text { OPREVIKI }=0 \text { GENERATE } 2 \text { YEARS FOF DICCARDING }}$
$\mathrm{NJ}=2$
$\mathrm{JX}=-2$

60 105106
$1105 \underset{\substack{\text { KR ITEC6．} \\ N=N+1}}{ }$
SCOUENCE NO．．4＝MONTH NO．．JX＝YEAR NO．

106 FORMAT（16H GENERATO FLO
5106
$003107 \mathrm{~K}=1$ ，NSTA
Do $31061=1.12$
$M \in(I \cdot K)=0$
$\operatorname{AvG}(I \cdot K)=0$.
AVG（I．K）$=0$.
SDV（I，k）$=0$.
3106 CONT INUE
3107 CONT INUE
3107 CONT INUE
1108003125 よJA．N」
$8=12125 J=J A$
$M=12+1$
$j=1 \times 1$

$M=M+1 \geqslant 0 \quad \mathrm{~K}=1$ ，NSTA
$0011 \geqslant 0$
R
1111 TEMP＝RAN（IARG）COMPONENT

$T E M P=1-2 * A L O G(T E M P) 1 * * 5 * S I M 6.2832 * T M P)$
ateo standard deviate
TMP＝QPREVIL

M G $G(I, k)=N(G(I, k)+1$
AVG（I－K）$=A V G(I \quad K)+T E M P$
$S D V(I, K)=S D V(I) K) T E$

1120 CONTINUE
1125 CONT INUE
3125 CONT
3125 CONTINUE
 DO $3126 \quad 1=1,12$
TE MP $=N L G(I, K)$
AVG（I，K）$=A V G(I, K) / T E$ MP
SDV（I，k）$=(S S D V(L, K)-A V G($

326 KODVIIR

$J X=J x+1$
$M=12 * J-1$

C transform to log pearson type ili variate（flow） TM $P=$ SKEW（I $\cdot K$ ）

 IEMP $=1-2.1 / 5 K E W(1, K)$
123 IF（IMD GI TEMP ITMP－TEMP
123 IF（TMD ． 67

1126 TMP $=0$（M．K）
 $T M P=T M P * S O(I * K)+A V(I \bullet K)$
$O(M \cdot K)=10, * T M P-D O(I \bullet K)$

1128 IO（I）＝01M．K1＋．5
1129 ITP＝ITP＋IOII

3129 CONT INUE
1130 CONT INUE
$C^{1250 \mathrm{NJ}=\mathrm{NYMXG}} \mathrm{GO}^{125}$ TO NEW JOB
1270 IF INYRG．LE．0） 60 TO 127

$\mathrm{NY} \mathrm{RG}=\mathrm{N}$ YR $6-\mathrm{NJ}$
1271
$\begin{array}{ll}M=1 \\ D 0 & 1273 \\ D=1 \\ 0 & \text { ，NYMX }\end{array}$
DO $1273 \mathrm{~J}=1 . \mathrm{NY} \times$
Do $1273 \mathrm{I}=1.12$
$M=M+1$
$T E M A$
$I E M$
M

IF（TEMEGT．E． $13501 \mathrm{TEMA}=2.1350$
$23^{0(M \cdot 1)=0(M-1)+T E M A+\text { EMB }}$
1273 CONTINGE
aF OR IIS CROUT，CROUT

OI HENS ION $B(20)$ ，R（10．11）RRX（10． 111
DOUELE PRECSSTON R

DO $5 \quad J=1$ NINDP
DO
4
$\mathrm{~K}=1$ ，NVAP

IF（NINDP．GT．1）Go TO 1
$\mathrm{B}(1)=\mathrm{R}(1,21 / \mathrm{R}(1,1)$
$\mathrm{OT} R \mathrm{C}=\mathrm{B}(1) \mathrm{B}(1)$
OTRMC $=B(1) * B(1)$
RE
＊＊＊＊＊o oerju
10 DO $2 n K=2$ NVAR
0 R（1．K）$=R(1, K) / R(1,1)$
DO $60 \mathrm{~K}=$
ITP＝K－1
DO 40 J＝x．NiND
00 $30 \mathrm{I}=1.1 \mathrm{TD}$
30 R（J．K）$=R(J \cdot K)-R(J, L) * R(L, k)$
IF（J．E日．K ） 60 T0 40
0 CONTINUE
00 CONTINU
L＝k－I $\mathrm{I}=1$－ITP

c 60 RKKNVAR I＝rKK．NVARY／RK．
BINTNDPI＝R NINDP NVAR）

$\mathrm{IX}=\mathrm{N}=1$
BI
1

$B(J)=P(J P N V A R)$
$0070 \quad L=1 . I X$

70 B（J）＝8（J）－b（k）＊R（J．K）
70 CONTINUE
OTRYC＝0．
DO $90 \quad 51$ ，NINOP

RE TUR
END

Suggestions for More Efficient Use of the Operating Rule Program

The user may be somewhat bewildered as to the proper formulation of certain input parameters to achieve the desired objectives. Therefore a few suggestions are made for getting started on a computation.

The projected water demand is satisfied by two components: (1) the natural yield of the system, and (2) the supplement from the desalting plant. The natural yield of the system is determined by the program and is not known beforehand. This makes selection of the trial plant size somewhat difficult. If the plant size selected is too small, then even the high yield producing rules fall short of the required demand. On the other hand, if the plant selected is too large, the lower yield producing rules exceed the target demand. In either case, the set of feasible rules cannot be determined and the computer time involved is wasted. Experience with the program has
shown that a plant size 1.30 times the required increase in firm yield is usually near optimal.

To decrease the wasted computer time, a pilot run should be made utilizing the best information available about the physical system under study and with the trial plant size suggested above. Select one or two operating rules and make a run using two or three periods. If one high and one low yield producing rule are used, the results will indicate an upper and lower limit on the firm yield for the given plant size. Actually, the information gained is twofold. First, the ability of the selected plant to produce the required yield can be judged, and second, if the plant is adequate, information is gained for formulating the operating rules. If the required demand is in the range of the high yield producing rules, then the lower yield producing rules need not be considered, and vice versa. By judicious selection of the operating rules, the computational effort can be greatly reduced.

APPENDIX B

DETAILED DESCRIPTION OF THE NO STORAGE VERSION OF THE OPERATING RULE PROGRAM AND ITS APPLICATION

Input Data Required by the NOSTOR Program
A. Job identification card. The first card contains from 1 to 80 columns of hollerith information specified by the program user to identify a particular job.
B. Specification card. This card contains the parameters that control the operation of the program.

Variable Name	Card Columns	Definition
NPER	$1-2$	number of periods of generated streamflow used in the determination of the required desalting plant capacity.
NYP	3-4	number of years in a period.
NPSC	5-6	number of periods of generated streamflow used in the simulation for determining costs.
IYEAR	8	specifies the type year used in the study. 1=calendar year (January to December). $2=$ water year (October to September).
IFLOW	10	input option for the historical streamflow data. $1=$ monthly flow values are in cubic feet per second (cfs). $2=$ monthly flow values are in million gallons per day (MGD).
NMOD	11-12	number of modules desired to build the plant up to its required capacity.
NSTD	13-14	number of standard deviations to be added to $\overline{\mathrm{D}}$ for determining the required desalting plant capacity $(-3 \leq \text { NSTD } \leq 3)$
KIP	16	printout option for generated streamflow values.

1=printout statistics of historic data and the monthly values of the generated streamflow for each period.
2=no printout .
printout option in the simulation analysis.
$1=$ output a summary by year of the plant operation.
$2=$ suppress the printout.
C. Design demand rate and monthly demand coefficients.

DDR design demand rate, i.e., end of planning period demand rate expressed in millions of gallons per day (columns 1-10).

DC array of monthly demand coefficients (12F5.0 starting in column 11).
D. Parameters for specifying the demand growth function.

KDF	2	specifies the nature of the demand growth. $1=$ constant. $2=$ constant slope, i.e., linear increase with time. $3=$ exponential function.
CDEM	11-20	design demand rate, used if KDF $=1$.
AD	21-30	year zero (intercept) of the linear demand function, required if KDF $=2$.
BD	31-40	slope of the linear demand function, required if $\mathrm{KDF}=2$.
UD	41-50	upper limit (asymptote) of the exponential demand function, required if $\mathrm{KDF}=3$.
WD	51-60	difference between UD and the demand rate in year zero, required if $\mathrm{KDF}=3$.

AF 61-70 | exponent of e that defines the |
| :--- |
| rate of growth, required if $\mathrm{KDF}=$ |
| 3. |

E. Coefficients that constrain the amount of
water that can be withdrawn.

PSDA monthly coefficients (decimal fractions) expressing the percentage of the natural flow that can be withdrawn for consumption (12F5.0 starting in column 1).
F. Data required for generating streamflow sequences.
(a) Identification card contains hollerith information specified by the user to identify the data being used. Must have an A in column 1.
(b) Control parameters (right hand justified in their respective fields).

IYRA $\quad 5-8$ earliest year of record at any of the stations for which flows are to be generated.

IMNTH 15-16 calendar month number of first month of year being used, ex., if water year is specified IMNTH = 10.

IMSNG 23-24 $\begin{aligned} & \text { indicator, any positive number for } \\ & \text { estimating missing correlation co- }\end{aligned}$ efficients.

ITEST 31-32 indicator, any positive number

	calls for a consistency test of cor- relation matrices.
IRCON $\quad 39-40$	indicator, any positive number calls for reconstitution of missing

NSTA 47-48 number of streamflow stations at which flows are to be generated.

IPCHQ 55-56 indicator, any number greater than o calls for output of the generated flows on magnetic tape.
(c) Historic streamflow data.

ISTAN	$1-6$	station number (right hand justi- fied).
IYR	$11-14$	year of record.
QM	$15-74$	array of monthly flows for year IYR (12F5.0).

Repeat (c) for each year of streamflow and for each station.
(d) Blank card, terminates the streamflow input.

G. Desalting plant cost data.

(a) Operating load factors.

NOFF	1-2	number of load factors to be used in the cost analysis.
FACT	$6-45$	yearly operational load factors ex- pressed in percent of a year that a plant or module operates (8F5.0).
(b) Operating and maintenance cost coefficients.		

COEF 1-80 multiplicative coefficients for determining yearly operating and maintenance costs as a function of load factor. Either the coefficients or data from which coefficients are derived were furnished by ORNL (8F10.0).
(c) Desalting plant cost equations (constants and exponents).

CNO	$1-10$	constant in the equation for com- puting operating and maintenance costs at zero load factor.
EXNO	$11-20$	exponent of plant size in the zero load factor operating equation.
CTN	$21-30$	constant in the equation for com- puting turn-on and turn-off costs.
EXTN	$31-40$	exponent of plant size in the equation for computing the turn- on and turn-off costs.

COP
constant in the equation for computing operating costs for load factors >0.

Exponent of plant size in the operating cost equations.

CCP
$61-70$

EXCP
71-80
constant in the equation for computing capital cost of the module.
exponent of plant size in the capital cost equation.

```
NO TS NOSTOP.NoSTME
    STODEGR MMELPMNETATIC,
```



```
        Nocom(50)
        DIMENSIONDC(17),DSEA(12),MNDAA(1),MMNTHE112),DMAX(100),FLOW(11tO).
```



```
    14HAUG,4HSEPT,4HNXT,4HNOV.4-4DEC
```



```
        /a,
    * READ(E:1GDU)
        WR ITE(6,1000)
```



```
    On1 FORMAT(91>)
    READ(5.10015) n[D.(nc(1).1=1.17)
    M,
    OIO FORMATIT2.8x,FF1O.0
    OnG FORMAT(12F5.
```



```
        $H.OKYP=,IT)
            GO TO (10.11), IYEAP
    COn\ FORMAT(14H.27x.12A6)
    11 60 TO 1?
    12WPITF(F,DOUN) (MNTHO(I),T=1,12
```



```
    M, (1)
        FMT(1)=FA
        FFMT(3)=FT
        N=54)=SKP
        FMT|J|=FF
    cNj+1
    5 CONTINUE
        FMT(J+N)=FT
        CMM(J+\)=F
        FMT(J+3)=FC
        OR 3HN=1,NPFD
        NYG=NYP
C RETIPN FOOM GNFLS WITH NVD YEAR = OF MONTHLY FLOWS IN :.g.d
        TM\Deltax=п.
        m=1, 
        M=M+1
        O=DDQ*)C(I)-OIM,1)*PSRACI
        IFID.LT.TMax) 6n to >0
        Mmax=0
    IX=I
    7) CONTINUE
        DMAxMS=TMAx
        FLOW(M)=R(MX.1
    zo contjnue
```



```
        onvs=1.
```


FORMACIH. 2r 15. P•TIM1

35 CONT INME

WRITEIG. ?O20) OMAXF.STO
 KAPY $=D M A \times B+N \subset T D * S T D$
$K A D M=C A P T / N M O D * S L O$
HRITE 16.2011) KAPM

determine the mariul ad configuration with respect to time MYEAR(1) $=1$
NM $000(1)=1$
NM ODOO $11=1$
FY WO ODR $-D$ MAXR
FY wo
NM $=1$
$N=0$
00
00
$\mathrm{N}=0$
OO 50 上1•NYP
IF

$K=J+1$
$Y O=D E M F(K D F, K, C D F M, A C, B D, U 0, \mathrm{LR}, \mathrm{AF}$

4 | KFLAG |
| :---: |
| $\mathrm{TE}=\mathrm{FY} \mathrm{F}$ |

IF (YD. (T.TEM) 50 T0 4
IF (KFLAG.EO.1) N N N + 1
$\mathrm{KF} L \mathrm{LAG}=2$
$\mathrm{NM}=\mathrm{NM}+1$
MYEARIN =J
NH ODO
60 TO
TO
46
49 MODAVIJI=NM
50 CONT INUE
c output the modular mnstouction ichajolit

-MODULIFS IN CDEPATIOND (1 (11.25x.171)

$0054 \mathrm{~L}=1,10$
MSUM(L JJ=0
54 CONTINUE
55 CONTINUE
NY $G=$ NYP

$4000 \mathrm{D}_{1}(1)=0$

MODOP(I+1) $=0$

c determane the number of modules nespro to prfuent a deficit TEM=D/KAPM
KTEM=TEM
KTEM $=$ TEM
FM $=$ TEM
TE
IF IFM.GT-1).1

IF (KTEM.LE -MOMAV (S') GO in 8

A5 CONTINUE
c SUMMAPITE THE ODFRATION FOO THE YEAR

$7 \mathrm{kk} \boldsymbol{2}$（J）$=\mathrm{KOFF}(\mathrm{J})-\mathrm{K}$

89 IF（kK．EQ．O）so ro an

R8 CONTNUE
90 CONTINUE
MODOP（1）＝MRECD（13）
95 CONTINUE

$$
\begin{aligned}
& \text { COLLCNYP.UAC.KABU, } \\
& \text { IFIKINEG.21 GOTD } 140
\end{aligned}
$$

IFIKIn－E A．21 GO GO 10
，WRTIFG．2am ap

 1 CO
no continue

avCSt＝avcstalac
150 CONTINUF
aVCST＝AVCS

 ST OP
END
afor．is \sin COSTCOST

NODOR（50）
DIMENSION COTEIIII，FACTCIO，

DEAL KENT
QEAL
IN

FORMAT（BF10．\quad（

 WR TIF（6．2nO1）IFART（J）．J＝1，NGFF）

 4．AAB＇C（I）
WPITF

$10 \mathrm{~s}=\mathrm{a}$.

PuIt $=$＝ ．

IF MA．NE．MYEARIII）
NO MENMOD TO
IS
CAPTr $=$ NOM＊CAD＊FIX
$15 \begin{aligned} & \text { I＝} \mathrm{I}+1 \\ & \text { CSTOP } \mathrm{P}=\mathrm{O}\end{aligned}$
M＝NO NOP（J）
aF＝MSUM（L．J1／12．0＊10n．

IF（OLF LLT．95．01） 60 TO 1
$\mathrm{C}=\mathrm{COEF}$（ NOFF ）
60 TO 17

601017

5 NM NO $=$ NOM－M
$\mathrm{S}=$ NM NO PO KAPM
$S=$ NM NO P $*$ KA
CS TNOP $=0$ ．

26 CTURN二（KON（J）＋KOFF（Jい1？．＊CTMKADM＊＊FXTN
OFAC $=1,0 /(1+(1+I N T) * J)$
PWTH $=P W T H+(C S T O P+C S T N O P+C T U P N+C A P T C) * \cap F A C$
PWTH＝PWTH ICSTOP＋CSTNDP

40 | CONTINUE |
| :---: |
| $F=1.0 / D F A C$ |

aFOD．IS RAM，RAN
FUNCTION RAN（IARG
COMMON／BLOCTIY

If（Iarg．e日．Ix）go in 3
$1 x=I A R G$
y

IF（IY．LT．0）IY＝IY＋34359739367＋

REN
aF OP．IS DEMF DEMF
FUNCTION DEMF（L，JY，C．A，R，U，H．AF）

3 DE MF＝U－N＊EXP（－AF＊JY
5 RE TURN
END
FOR．IS GNFL O．GNFLO

COMM ON／BLOCA $0(601.5)$

DOUBLE PRECICIONR•B
OATALTRA／HA／：BLANK／IH／，E／IHE／．KFNT／I／
NYMXG＝NYRG
IF（KENT．EO．2）GO IT 1091
YF KEN
KE NT $=$ P
KSTA $=5$

IE NDF $=0$
IOCS $\mathrm{T}=\mathrm{D}$
FORMAT $11 \times$.17.018)
3 FORMAT (1H03).9A4.10A4)
FORMAT (16.4X.14.12F5.0)
FORMAT (1X.13.14.1216)
7 FORMAT(1X.13.14.12F6.3)

IENDF=IENOF+1

WRIIE (5.3)

IF (KIP-EQ.2) 60 TO
WRIF
13

IF (ITMP. GT.01GO 30
60 TO 10
HRITE
(6.25)
stop

30 IF KIP IP EE. 2) GO TO 4
40 formatciho.'iyra imnth imsng itfet ipcon nypg nsta ipche nymego

(format | 2016 |
| :---: |
| set |

$42 \begin{gathered}\mathrm{T}=9999999 \\ \mathrm{TM}=\mathrm{T}-1.0\end{gathered}$

IMNTH=IMNTH-1
DO $50 \quad 1=1.12$
DO 4 G K $\mathrm{K}=1 \cdot \mathrm{~K}$ STA

45 ABITK.LI
46 CONTINUE
MO (IIIMNTH +1
IF (MOCIMOTH13160 TO 50
50 continue
58 NYRS $=0$

c
DO 60 INTITATE-1, NO RECCOD FOR all flows
50 O(M. K$)=-1$. M .

55 CONTINUE
c * ***** read and process 1 station-yfap of data * * * * * * * * * * * *

c if cistan blank cari indicates end of flon data

-

ROCONTINUF
$90 \underset{k=N S T A}{\text { NSTA }}=$ NSTA
TSTA(K) ISTAN
cho 10 IYR-IYRASTGN SUBSCDIPT TO YEAQ
(AO JF INYQS.LT.JINYRS=J IF U.GT:0160 TO 116
WRITE (E.0105)IYR

c $110 \mathrm{~m}=\mathrm{J} * 12-11$ STODR FLOWS in STATITI ANO month arpar $10 \mathrm{~m}=\mathrm{J} * 12-11$
$M=M+1$
$I 7=0 M(I)$

C CONVERT THE FLOHS TO MGD
$506{ }^{60}$ TO ${ }^{\text {TO }}$ (506.507). IFLO
506 OM(I) $=04(I) * .546317$

20 CONTINUE
60 To 75
120 NSTA $=$ NS $T A+1$
IF INTRS.GT
NSTAX
TMS
. nstax nstatnsta to to 20
******* COMPUTE F
131 WR ITE $(6,314)$
14 FORMAT $1 / 21 \mathrm{H}$ FRE QuENCY STATITICSI
315 WRITE(6, 315) (MO(II.I=1.12)

DO A $21 \mathrm{~K}=1$, NSTA
$1800320 \mathrm{I}=1 \cdot 17$
AV $(I+k)=0$.
so $(I \cdot k)=0$.

32 O CONT

D0 340 I $=1 \cdot 12$
$M=M+1$
$I Z=0(M, K)$
IFIIZ.FQ.-11 60 To 33 त
C IEMP - REPLACE FLOW ARPAY with log array

SUM. SOUARES. AND CIBES

SD (I K K) SO (I K K) + TEMP*TEMP
SKEW(ItK) SKFW(I *K) + TEMP *TEMP*TEMP
60 TO 340
c
230 ormaki $=$ т
340 CONT INUE
390 CONT INUE
Do $360 \mathrm{I}=1$, 1?
$T M P=A V(I \cdot K)$
AV (I $\quad \mathrm{K})=\mathrm{TMP/TF}$ MP
IF (SDIITK) LE.O. IGO TC 355
TMPA $=50(1 \cdot k)$
SD (T.K

SKEW(I,K)=

TM $P=$ SKEW $(12 \cdot K)$
SKEW(13.K) $=5 \mathrm{KEW}(1, \mathrm{~K})$
351 WRITEA6.362)ISTA(K), (AVII,K).I $=1.121$

364 FOPM AT (7x.7HSTO DEV 12F8.3)

471 CONTINUE

OO 480 J=1•NYRS
$\mathrm{D}_{\mathrm{M}=\mathrm{M}+1}^{4} 70 \mathrm{I}=1.17$

TM $P=1$.
IF GTEAP. GE.O. 100 10 450
TE MP $=-$ TEMD
TE MP $=-$ TEM
$T M P=-1$.

$60 \mathrm{~T} \cap \mathrm{n}$
$0(\mathrm{M} \cdot \mathrm{K})=0$.
450 O(M.K) $=0$.
470 CONTINUE
480 CONTINUE
490 CONTINUE

$\begin{array}{ll}k X=k+1 \\ 00 & 51\end{array}$

$00500 \mathrm{I}=1.12$
SUMA(T:O)=0.
SUMA $(T+L)=0$.
SUMB $(I: L)=0$.
SOAIILL) $=0$.
SOR(I.L)
xpabill
500 NCABIItL
510 CONT INUE
Do 520 $1=1 \cdot 1$?
DO $515 \mathrm{~L}=1 \cdot k$
5 NCAB(I)
N
$15 \mathrm{NCAB(ItL}=-1$
$570 \mathrm{RA}(\mathrm{I} \cdot \mathrm{K})=1$
570 $\begin{aligned} \mathrm{RA} A \\ M=1\end{aligned}$
DO $550 \mathrm{~J}=1$.NYRS

TE MP $=Q(M \cdot K)$
IF (TEMP.GT.TM) GO TO 540
c subceripts fxceedine nsta pelate to prfceding month
Lx 3 -NSTA

SUMB (T:L) SUMR(ITL) T TMP

SPO CONTINUE
540 CONTINUE

540 CONT INUE
$5 \circ$
50

c
D0 $498 \mathrm{I}=1,12$
HPITEIE, 56 GOMO GOC IO 575
550 formatiober rah corritation mefficients for monthiz. 12h at stat

570 FORMATIGH WITHSTA IIS.11I10)

C TFGUD. ELE.
$\operatorname{TMPB}_{T M P A}=1$.
teitmpatiain al gerraic sion

TMPA=1.-(1.-TMPA) (TEMD-1.) (TEMP-2.
IF TTMPA.LT:D.)TMPA=0.

IFIIDGST.LE.DI GO TN 596
IF ITDGST.LLE.D) GOTN 596
O FORMAT (12H THIS MONTH

c eliminate negative correlat ions
600597 L=1,NSTAX
IF (RaIIKM.L).LT. D. .AND.IT.NE,-4) PATI,K.L) $=0$.
597 CONTINUE
598 CONTINUE
600 CONT INU
$612 \mathrm{TEMP}=0$.
if (IDGStale.ol go to abs
c * * * * * print coqpelation matrix
5 DO $880 \quad \mathrm{I}=1,12$

WRIEE(6.825) (ISTACK):K=1•NSTA

WR IE $E(6,830)$
FORMAT 1200)
DO 84i20x.19h with current mnthi

peo formattoux bsh with ppecening month at above station ITP=NSTA+1
DO \quad 70 K $=1$.NCTA

885 IF (IRCON.LE.O) GO TO 1015

00 $931 \mathrm{~K}=1$ USE average for month prectring record
21 $0110 \mathrm{~K},=0$.

$\begin{array}{ll}00 \\ M=M+1 \\ 9 & B M \\ I & =1.12\end{array}$

OR $(M, K)=A L A N K$

NI NOP=0 FORM CORRELATION MATRIX FOQ EACH MISSING FLOW

932 NI ND P=NI NOP 41 . 1 .

$\triangle C$ NINDP $=A B(I \cdot K \cdot L x)-A A S I, K, L x)$
${ }_{60}$ TO 935

AC (NINDP)=AB(I)K•L)-AA(I•K•L)

935
TTP=NIND
$R(I T P, I T P)=1$.
$0094 \mathrm{LA}=\mathrm{L}$. NS
IF GA-EESOCO TO 940

936 IF $(0(M-L A)-G T . T M)$ G0 To 941

GRG R(ITD.NINDP) $=P$ (NINDP.ITP)
940 CONT INUE
950 CONT TNUE
IT MP $=\mathbb{N}$ INDP +1
c ${ }^{952}$
(1.ITMP) $=8(1$-NV AR)

CALLI CROUIR. OTRMC•NINUP•R
c $=====$ =
$\operatorname{TE} M P=R A N(I A Q G$,
$T M P=R A N(I A R G)$

WR ITE (B.7) ITK, OT RMC

$\mathrm{AL}=(1, \rightarrow T R M C) * * S$
$T E M P=T E M P * A L$
DO $950 L=1, N \mathrm{~N} N \mathrm{DP}$
$T E M P=T E M P+B(L) *(x(L)-A C(L)$
$O(M \cdot K)=T E M P$
$O R(M \cdot K)=E$
970 continue
980 CONTINUE

993
1994
$A N Y R S=N Y R S$
$D 01011 \mathrm{~K}=1$, NSTA

$1995 \mathrm{M}=1$
ITD=0 1999 LI, NYRS
$909 \quad \mathrm{I}=1,1$?
$M=M+1$
$T E M P=0(M, K)$
c

IF (TEMP.GT. 2.. AND SO (I.K). GT .. 3) TEMD=7.+(TEMP-2.1*.3/SOIT.K
M $P=1-2.1 /$ SKFW(I $\cdot K)$
991 IF IFKEW(IEKMP.GTVMP) 991.992 .994
60 TO 992
994 IF (TEMP. LT.TMP) TEMP $=T M P$
$T M P=T E M P * S D(I, K)+A V(I, K)$
$O(M, K)=10 . * T M P-D O(I, K)$

$99610(1)=\sigma(M \cdot K)+.5$
$I T P=I T P+1011$
$I Y R T Y P A+1$

1999 CONTINUE

$M=M+$

$10 \cap \begin{aligned} & A V(I \cdot K)=A V(I \cdot k)+T E M D \\ & S D(I * K)=S O(I * K)+T E M O\end{aligned}$
1003 CONTINEE
$001004 \mathrm{I}=1.17$
$001004 \quad 1=1,17$
TE MP $=A V(I, k)$
TMP $=(S D C I, K$) -TEMPM TEMP/ANYRS I/ (ANYRS-1.)

$10 \mathrm{O}_{4}$ AV(İK)=TEMP/ANYRS-4342945
if IKid print a DuUSted frequency statistics
WR ITETE:3i 60 To 1015
WRITE(6.1012)
2 FORMATH 3 OH ADJUSTEO FRE QUENCT STATISTICS,
DO $1013 \mathrm{k}=1$, NS TA

1013 CONT INUE

NI NO $D=$ NS TA
NV $A R=$ ST $A+1$
$\mathrm{N}=1090 \quad 1=1,1$?
IP $=1.1$
IF 10

$\mathrm{LX}=1 \mathrm{~A}+\mathrm{NS}$ TA

$1052 \mathrm{RTLAOL}=\mathrm{RCLL}(\mathrm{LA})$
correlation with paf centino month
R(L)NVAR)=RA(I,KALX)
DO 1057 LAE E P NSTA
1057 R(LA.LI $=$ RIL.LA)
1050 CONTINUE

c $\quad=====$
1070 RETA(I,K L=1.NSTA
IF (DTPMC ALE.1.) कि 10 1078

 WR ITEEG.
OT PMC=0.

1080 CONT INUE
IO90 CONTINUE
1091*****
$1 \begin{aligned} & J A=1 \\ & N=0 \\ & M A=0\end{aligned}$
109500 M $1100 \mathrm{~K}=1$.NSTA
1100 oprev(k)=0. GENERATE? YFARS FOD discarding
$\mathrm{NJ}=2$
$\mathrm{JX}=-7$

5 WR ITFC. 6.3

1106 FORMAT (27H GFNERATFO FLOWG FOR PFQICR I3)

Do 31ng $\mathrm{I}=1,12$


```
    AVG(I!K)=0.
    3105 CONTINUE
    31n6 CONTINUE
    10B DO 31O5 J=Ja.NJ
    M=1?*! \-1
    N0 11>5 I=1.17
    M=M+1
C L111 TEMP=RAN(INARGOM COMPONENT
TMMP=QAN(IARG)
    TEMP=1-7**AL OGTTEMPIN*. 5* SINT6.2832*TMP)
    TE MP =TEMP* AL CFTIIPK
```



```
    TMP=QPREVILI
    IFIL-LT-K\TMD=Q1M
    110-TEMO=TEMP+ EETA(L,K.L).TM
    M.G(I.K)=NLG(I,K)+1
    AVG(I!K)=AVG(I!K)+ IEMP
    SOV(I;K)=SDV(I:K)+IFMO*TEMP
    O(MOK)=TEMP
    120 CONTINUE
    l170 CONTINEE
    DONTNUE
    1>2 IFINJ+JXTMP.GT.O.ANO.KIP.FO.1) WRITE(G.995)(MOCI).I=1.12)
    DO 3126 1=1,11
    AVG(I:K)=AVGII:K)/TEMP
    SOV(I*K)=(1SOV(I,K)-avG(I*K)**2*TFMP)/TEMP)**.*
    19. ANH.KIP.EO.1) WPITF(6.51%6) ISTA(K),MOII).AVGII.
    176 CONTINUE
    5176 FORMAT (4H STAI4.8H MONTHI,7H MEANF.%.1OH STO MEVF5.3)
        DO 3179 上JA.NJ
        Jx=Jx+1
        M=12*J-11
    If P=0
    DO 1129 I=1.1
c transform to log pearson trof itil vortate (flow)
```



```
    MF=ARSISKEW(T-KII*0.9099
    *)
    MP=U1TMP*10(M.K1-TMD/6.1/6.+1.)**3-1***2/TMP
    IEMP =1-2.)/SKEW(I,K)
    IFISKW(I|K)1 1173,11726.1124
    60 to 1127
    1174 IF (TMD.LT.TFMP) TMP=TFMP
    l17%600 TO 1127
    11ग7 IF(TMP.GT.7..AND.SD(t,K).GT..3) TMP=2.+1TMP-2.1*.3/SOII.K)
    TMP=TMP*SDII,KI+AN(I!k)
    178 O(M,K)=10.**TMP-Do(I,k)
    1>8 IF (1)(M.k.LT.O.1 O(M.K)=0.
    1>8 10(I)=G(M.K) +.
    179 ITP=ITP+10
    IO(13)=ITD (% GO TO 31?Q
```



```
    IF IIPCHO.LE.OISOTO 3:2O
    WRITE (7.6) ISTA(K),JX.(10(I),I=1.12)
    31>9 continue
    1130 CONTNUE
1250 NJ = NYMXG TO TO NEW JOO
```



```
    IF NN.GT-NYOGINJ=NYDG
    NYRG=NYRG-N,
```


$\begin{array}{lll}00 & 1773 & \mathrm{~J}=1 . \mathrm{NYMXG} \\ 00 & 1773 & \mathrm{I}=1,12\end{array}$
$M=\mu+1 \quad 1=1,1$
$M=M+1$
TEMA $=0(M \cdot 2) \cdot 0.5$
TEMB $=0(M \cdot 3) * 0.5$
IF (TEMA. GT-35. TT EMA $=35.0$
(M.1) $二)_{(M-1)+T E M A+T E M B}$

1773 CONTINUE
1775 RE TURN
RE TU
END
aFOR.IS CROUT.CROUT
SUBR OUTI NE CROUTRX, DTRMC.NINP.B

NV AR $=$ INAP +1

$4 \mathrm{R(J.K}=R \times(J . K$
CONTINUE

OTR $C=B(1) * B(1)$
$R E T U P N$
c ******** Derived matri
$>0 \mathrm{R}(1, \mathrm{~K})=\mathrm{R}(1, \mathrm{~K}) / \mathrm{R}(1.1)$

$30 \begin{aligned} & R(J, k)=R(J, k)-R(J, L) * P(L, k)\end{aligned}$

$\mathrm{D}=\mathrm{K}-\mathrm{I}$
0

c * **** BACK SOLUTICN
RININOP) $=$ R (NINDP NVAR)
O $80 \mathrm{I}=2$. NTMD
$\mathrm{J}=\mathrm{NVAR}$
$\mathrm{IX}=1$

007
$k=j+1$
L
$\mathrm{~L}=1, \mathrm{I}$

90 CONTINUE
DTRMC=0.

APPENDIX C

NORFOLK CITY WATER SUPPLY

Irv Spiewak
February 5, 1970
Page 2
(a) Module analysis.

Plant Size	Operating Rule	Yield MGD	Cost \$/yr/MGD
120	$90-70$	1409	92300
125	$78-65$	1410	91400
150	$55-60$	1410	97100
225	$80-90$	1483	90500
250	$78-65$	1485	86200
275	$52-70$	1485	86700
	$79-65$	1635	79600

This analysis combined with that in section (1) indicates the module size should be 125 MGD.
(b) Six modules of 125 MGD per module.

Stage	Year Module Added	Total Plant Capacity	Operating Rule	Yie1d MGD
1	1		$78-65$	14.10
2	6	125	$78-65$	1485
3	11	350	$78-65$	1560
4	16	500	$79-65$	1635
5	21	625	$79-65$	1710
6	26	750	$79-65$	1785

Average unit cost $=\$ 36800 /$ year $/$ MGD
Total cost $=\$ 496,800,000$
4. Operating a 750 MGD plant in a growing demand condition with a varying rule.

Time Period Year	Demand at Start of Period	Operating Rule	Yield MGD
$1-6$	1335	$20-30$	1430
$7-11$	1425	$30-40$	1495
$12-18$	1500	$40-50$	1610
$19-23$	1605	$40-60$	1699
$24-27$	1680	$50-70$	1743
$28-30$	1740	$79-65$	1785

Irv Spiewak
February 5, 1970
Page 3

Average unit cost $=\$ 51000 /$ year $/$ MGD
Total cost $=\$ 688,500,000$
The basic conditions for the above computations are:
The firm yield analysis is based on the average of five periods of 75 years per period;

Firm yield defined at the 100% leve1;
Cost figures are the average of 10 useful life periods;
Useful life of the plant or any one module is 30 years;
Fixed charge rate $=8 \%$, discount interest rate $=6 \%$; and
Capital and operating costs for VTE plant as furnished by ORNL.

[^0]: *A shortage is defined as the sum of any consecutive monthly deficits which occur. A single isolated deficit is also termed a shortage.

[^1]: $\mathrm{d}_{\mathrm{m}} \quad$ is the drawdown (relative minimum)
 $\mathrm{U}_{\mathrm{min}}$ is the minimum usable storage

[^2]: *If the program fails to converge to after 15 iterations, the lack of convergence is flagged, the program then uses the last available iteration result and checks to see if it meets the appropriate firm yield criteria.

